Compare commits
360 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b8712e0b89 | ||
|
|
37dda4333d | ||
|
|
64826b9af7 | ||
|
|
47b0c35441 | ||
|
|
1dcda47013 | ||
|
|
1f81a1e5a8 | ||
|
|
35e92d2aef | ||
|
|
0d99e5549e | ||
|
|
fed1594ddc | ||
|
|
14b90bb36b | ||
|
|
f86b7f1f08 | ||
|
|
54355d5a7a | ||
|
|
ff7306349a | ||
|
|
77df56cddc | ||
|
|
97ae139de5 | ||
|
|
afd15ef2c5 | ||
|
|
6c73eae9f6 | ||
|
|
7078f47f72 | ||
|
|
d43954cc88 | ||
|
|
c87de93498 | ||
|
|
810843a5ab | ||
|
|
f7cbd2c803 | ||
|
|
faf1852012 | ||
|
|
43cfab5d4b | ||
|
|
627a20936d | ||
|
|
1d7f19ffaf | ||
|
|
d80565d780 | ||
|
|
d7ba88953d | ||
|
|
30e1c3171e | ||
|
|
1f058b16ac | ||
|
|
4a192f4057 | ||
|
|
0331bf47f7 | ||
|
|
2acdaa96b2 | ||
|
|
1d200d53ab | ||
|
|
df9e1f408e | ||
|
|
4a18696686 | ||
|
|
46b3b285f5 | ||
|
|
1d6aeab9dc | ||
|
|
ab110ba30b | ||
|
|
2f0fa4ee56 | ||
|
|
0005816c1d | ||
|
|
f70672e5a0 | ||
|
|
ee057071a5 | ||
|
|
4f26404002 | ||
|
|
df7652856a | ||
|
|
de755463e3 | ||
|
|
2fe98d9a2c | ||
|
|
2e42039607 | ||
|
|
71abd357a4 | ||
|
|
68228a4552 | ||
|
|
79851433f8 | ||
|
|
bd4de12e05 | ||
|
|
c0aa6aaba9 | ||
|
|
d7abe5f0d1 | ||
|
|
5e5e1e9651 | ||
|
|
f8388a0527 | ||
|
|
f8b764ef8f | ||
|
|
fcfaa5944e | ||
|
|
f89e89c1c9 | ||
|
|
a25965530c | ||
|
|
971124d0d7 | ||
|
|
d7dcc90008 | ||
|
|
df969fcfc6 | ||
|
|
c4042bbfd8 | ||
|
|
4112200b4c | ||
|
|
3f9a54e36f | ||
|
|
3ed4456135 | ||
|
|
e0df9ae47b | ||
|
|
87b2c3ed7d | ||
|
|
50ff7ef6bc | ||
|
|
c7a580ca8a | ||
|
|
eaae7624a7 | ||
|
|
fcd59de6fb | ||
|
|
1bbe127209 | ||
|
|
b868adc058 | ||
|
|
a24b78e8c3 | ||
|
|
c8025f1cff | ||
|
|
fe0860dbf0 | ||
|
|
02d5d641d1 | ||
|
|
a057bb6c5b | ||
|
|
c9e4ae7fa1 | ||
|
|
79a97b2bc4 | ||
|
|
ef53951a16 | ||
|
|
74f1a1c033 | ||
|
|
ce986cfc6d | ||
|
|
61cea2a784 | ||
|
|
8a13bd3c1e | ||
|
|
da68926e9c | ||
|
|
e0b7453883 | ||
|
|
91e2828a95 | ||
|
|
bcf6409536 | ||
|
|
d7d4f87620 | ||
|
|
b3e35a4cdd | ||
|
|
8764c37b03 | ||
|
|
d12a173f39 | ||
|
|
64fa939c19 | ||
|
|
9c8e7b2f08 | ||
|
|
abfd668523 | ||
|
|
ebacf383f5 | ||
|
|
eb25dc6bcb | ||
|
|
aecacde819 | ||
|
|
3ef22239eb | ||
|
|
719090cc8c | ||
|
|
dbb8374d89 | ||
|
|
4d875a8c00 | ||
|
|
30b6d66a2d | ||
|
|
9d89b6f4db | ||
|
|
d2928e54f7 | ||
|
|
49ba5c97f7 | ||
|
|
4054fac359 | ||
|
|
dfae1d9645 | ||
|
|
0f16a0dd1b | ||
|
|
cb05a8a2ae | ||
|
|
a51385173c | ||
|
|
4e18222a35 | ||
|
|
daabcf58a0 | ||
|
|
d0fd480bd6 | ||
|
|
1df345b5eb | ||
|
|
77868c798b | ||
|
|
f56748a941 | ||
|
|
29c5b1d804 | ||
|
|
34095a6c36 | ||
|
|
05b9b42b56 | ||
|
|
211ae342af | ||
|
|
5ae683e915 | ||
|
|
dc59fb39c7 | ||
|
|
49960774ee | ||
|
|
b718452618 | ||
|
|
15ae312b37 | ||
|
|
6938b5b20e | ||
|
|
9b3b06ab04 | ||
|
|
e2a7c93753 | ||
|
|
34349aee0b | ||
|
|
8e79370e95 | ||
|
|
652c35322b | ||
|
|
e2fc57ac24 | ||
|
|
994fc7c828 | ||
|
|
b9a960d984 | ||
|
|
3baf260f4d | ||
|
|
d037ded146 | ||
|
|
622287f3da | ||
|
|
5d12bf74f6 | ||
|
|
c88f9321f5 | ||
|
|
f9f1d5c9fc | ||
|
|
0edec68376 | ||
|
|
ee63dc25f4 | ||
|
|
fee8fe73f2 | ||
|
|
1689f9e7e7 | ||
|
|
a1ed0cb2e9 | ||
|
|
5ee5fa7e6e | ||
|
|
d8c70453ec | ||
|
|
e930eb5967 | ||
|
|
aec6ad636a | ||
|
|
750c91bd3e | ||
|
|
fcc3886db1 | ||
|
|
22afc98be5 | ||
|
|
5b1a9448e6 | ||
|
|
07d89e3eeb | ||
|
|
96e97d9c1e | ||
|
|
bcb125e168 | ||
|
|
6fbb86667c | ||
|
|
2d545604f4 | ||
|
|
7210a7481e | ||
|
|
55210c89e2 | ||
|
|
c725d11dd9 | ||
|
|
ba2a6bd06c | ||
|
|
57b80c6ed0 | ||
|
|
115c59d5e1 | ||
|
|
543ff468b7 | ||
|
|
96ae47989e | ||
|
|
368932a610 | ||
|
|
f2cd531fcb | ||
|
|
511652b71c | ||
|
|
525fb132d6 | ||
|
|
5acb1fd958 | ||
|
|
76761ee453 | ||
|
|
134b2884e6 | ||
|
|
261e7c8916 | ||
|
|
987854fe49 | ||
|
|
c54d10795f | ||
|
|
b7d9ab0845 | ||
|
|
176800444a | ||
|
|
00c13cfc3f | ||
|
|
620e0228ed | ||
|
|
87ca694b0b | ||
|
|
417389c5f6 | ||
|
|
fa9f62b42c | ||
|
|
2c4e9f69eb | ||
|
|
119204368d | ||
|
|
87a86042d2 | ||
|
|
32c386799d | ||
|
|
b56a55e81d | ||
|
|
2fe7a23049 | ||
|
|
9ed3547738 | ||
|
|
a0522594da | ||
|
|
1cac147df4 | ||
|
|
db67f30082 | ||
|
|
08cf09416a | ||
|
|
7f2f4f15c1 | ||
|
|
97f6af595e | ||
|
|
447f4572b1 | ||
|
|
5c9b4a4c05 | ||
|
|
70f2271b94 | ||
|
|
15cd689741 | ||
|
|
82a68593bb | ||
|
|
21910af96a | ||
|
|
412a0fe135 | ||
|
|
cf0972ba52 | ||
|
|
3fe9ef4546 | ||
|
|
4cd5a56070 | ||
|
|
35a7437714 | ||
|
|
131a7ddf4a | ||
|
|
1465908574 | ||
|
|
3eb10f08bb | ||
|
|
b20990d380 | ||
|
|
1a5bf4a95e | ||
|
|
3d123524e7 | ||
|
|
25a41e51b3 | ||
|
|
f998ff239a | ||
|
|
bae9ae6551 | ||
|
|
285e8b1577 | ||
|
|
ce915cdf6a | ||
|
|
84317a03e8 | ||
|
|
ac1fa09604 | ||
|
|
43bc08648d | ||
|
|
e93c77394d | ||
|
|
4b2509e643 | ||
|
|
14fbb437ff | ||
|
|
8963543159 | ||
|
|
377f71b16b | ||
|
|
d32351c130 | ||
|
|
967be6f88f | ||
|
|
fcdda71b46 | ||
|
|
138251932c | ||
|
|
4d1a2396e3 | ||
|
|
b06e292989 | ||
|
|
b1d5b84dd6 | ||
|
|
2beddab114 | ||
|
|
7f85a08508 | ||
|
|
721653a812 | ||
|
|
d99488f22f | ||
|
|
21c3009945 | ||
|
|
3f77762fda | ||
|
|
9590d93c34 | ||
|
|
e0e846a191 | ||
|
|
e9cc9b0798 | ||
|
|
51c5696bb9 | ||
|
|
64f0610ed7 | ||
|
|
1591430742 | ||
|
|
17c690dfb1 | ||
|
|
4b640f884b | ||
|
|
8976764ee5 | ||
|
|
47db663fcd | ||
|
|
366e67bb6e | ||
|
|
b52bae6e17 | ||
|
|
714b8834c7 | ||
|
|
631704d04d | ||
|
|
5896593951 | ||
|
|
8431b5d24f | ||
|
|
bbd1ac1484 | ||
|
|
5990567a79 | ||
|
|
fa0fcc2c89 | ||
|
|
face4c97e8 | ||
|
|
c0ad99673b | ||
|
|
510683c57e | ||
|
|
cea1d8b4d1 | ||
|
|
b7c34b0d42 | ||
|
|
a95fbbbd78 | ||
|
|
d1560674b3 | ||
|
|
4fdfbd2f82 | ||
|
|
635767408f | ||
|
|
39a7eee8ea | ||
|
|
6ec6044901 | ||
|
|
4760a552d4 | ||
|
|
6294327273 | ||
|
|
260f51955a | ||
|
|
29ea886576 | ||
|
|
dae3f72d04 | ||
|
|
796338a32f | ||
|
|
66621e4ceb | ||
|
|
a6f5b520c3 | ||
|
|
c23c644fbc | ||
|
|
cb85c0938d | ||
|
|
88a5d11e15 | ||
|
|
1ecb0b444b | ||
|
|
72d601370d | ||
|
|
4814b88172 | ||
|
|
cfad67a922 | ||
|
|
c28f5604ab | ||
|
|
5853b8ca8d | ||
|
|
ebfc0ce672 | ||
|
|
e62fcd152a | ||
|
|
9bd9b9ecbd | ||
|
|
17faa9c5b8 | ||
|
|
4cd445bf77 | ||
|
|
4fb35845b0 | ||
|
|
f373f1caa8 | ||
|
|
4e75531651 | ||
|
|
539c538d65 | ||
|
|
d90186db33 | ||
|
|
a2d8729ae3 | ||
|
|
edc6ac7297 | ||
|
|
e89e23621c | ||
|
|
6b9ec4c6fa | ||
|
|
ced0966ffc | ||
|
|
966b912013 | ||
|
|
dc71054e61 | ||
|
|
408f3c1a4d | ||
|
|
38b775c937 | ||
|
|
f2ec1067bf | ||
|
|
b01584c49e | ||
|
|
01e56382a3 | ||
|
|
391c067250 | ||
|
|
5b98b5c0a7 | ||
|
|
5bde0abb8d | ||
|
|
1036852924 | ||
|
|
2b10ccd507 | ||
|
|
e1df1bfc3f | ||
|
|
b41a2e7039 | ||
|
|
b63370928d | ||
|
|
06a125b8d7 | ||
|
|
b03b00419b | ||
|
|
2f5a7d2d51 | ||
|
|
e318331909 | ||
|
|
796e5f22c0 | ||
|
|
b49968c145 | ||
|
|
cf16e54463 | ||
|
|
7bc8da2e29 | ||
|
|
26174d4c10 | ||
|
|
3c18ce34c7 | ||
|
|
c8b2bb53ef | ||
|
|
9f5d15a7d5 | ||
|
|
8291c50058 | ||
|
|
1f3f6cf9a8 | ||
|
|
83905c65c7 | ||
|
|
9af2b1d208 | ||
|
|
67c9381b82 | ||
|
|
4bdfa2d54c | ||
|
|
9945338458 | ||
|
|
d93157bde4 | ||
|
|
4db9b13803 | ||
|
|
69ab273706 | ||
|
|
d4ce828e99 | ||
|
|
8838b60e97 | ||
|
|
cbb249725d | ||
|
|
53b6a5ffe0 | ||
|
|
11b743aa53 | ||
|
|
a8c936a885 | ||
|
|
7fb27b927c | ||
|
|
50bee24e8c | ||
|
|
a196ce6da8 | ||
|
|
154827f367 | ||
|
|
deb9e030cb | ||
|
|
da033ab096 | ||
|
|
0fc429f5a3 | ||
|
|
142e30622e | ||
|
|
81d050d596 | ||
|
|
5e698a8312 | ||
|
|
55bb33bcbb | ||
|
|
b4efce15f4 |
10
.gitattributes
vendored
Normal file
10
.gitattributes
vendored
Normal file
@@ -0,0 +1,10 @@
|
||||
backend-python/rwkv_pip/** linguist-vendored
|
||||
backend-python/wkv_cuda_utils/** linguist-vendored
|
||||
backend-python/get-pip.py linguist-vendored
|
||||
backend-python/convert_model.py linguist-vendored
|
||||
backend-python/convert_safetensors.py linguist-vendored
|
||||
backend-python/utils/midi.py linguist-vendored
|
||||
build/** linguist-vendored
|
||||
finetune/lora/** linguist-vendored
|
||||
finetune/json2binidx_tool/** linguist-vendored
|
||||
frontend/wailsjs/** linguist-generated
|
||||
157
.github/workflows/release.yml
vendored
Normal file
157
.github/workflows/release.yml
vendored
Normal file
@@ -0,0 +1,157 @@
|
||||
name: release
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- "v*"
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
env:
|
||||
GH_TOKEN: ${{ github.token }}
|
||||
|
||||
jobs:
|
||||
create-draft:
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
ref: master
|
||||
|
||||
- uses: jossef/action-set-json-field@v2.1
|
||||
with:
|
||||
file: manifest.json
|
||||
field: version
|
||||
value: ${{ env.VERSION }}
|
||||
|
||||
- continue-on-error: true
|
||||
run: |
|
||||
git config --global user.email "github-actions[bot]@users.noreply.github.com"
|
||||
git config --global user.name "github-actions[bot]"
|
||||
git commit -am "release ${{github.ref_name}}"
|
||||
git push
|
||||
|
||||
- run: |
|
||||
gh release create ${{github.ref_name}} -d -F CURRENT_CHANGE.md -t ${{github.ref_name}}
|
||||
|
||||
windows:
|
||||
runs-on: windows-2022
|
||||
needs: create-draft
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
ref: master
|
||||
- uses: actions/setup-go@v4
|
||||
with:
|
||||
go-version: '1.20.5'
|
||||
- uses: actions/setup-python@v4
|
||||
id: cp310
|
||||
with:
|
||||
python-version: '3.10'
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: stable
|
||||
override: true
|
||||
target: wasm32-unknown-unknown
|
||||
- uses: crazy-max/ghaction-chocolatey@v2
|
||||
with:
|
||||
args: install upx
|
||||
- run: |
|
||||
Start-BitsTransfer https://github.com/josStorer/LibreHardwareMonitor.Console/releases/download/v0.1.0/LibreHardwareMonitor.Console.zip ./LibreHardwareMonitor.Console.zip
|
||||
Expand-Archive ./LibreHardwareMonitor.Console.zip -DestinationPath ./components/LibreHardwareMonitor.Console
|
||||
Start-BitsTransfer https://www.python.org/ftp/python/3.10.11/python-3.10.11-embed-amd64.zip ./python-3.10.11-embed-amd64.zip
|
||||
Expand-Archive ./python-3.10.11-embed-amd64.zip -DestinationPath ./py310
|
||||
$content=Get-Content "./py310/python310._pth"; $content | ForEach-Object {if ($_.ReadCount -eq 3) {"Lib\\site-packages"} else {$_}} | Set-Content ./py310/python310._pth
|
||||
./py310/python ./backend-python/get-pip.py
|
||||
./py310/python -m pip install Cython==3.0.4
|
||||
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../include" -Destination "py310/include" -Recurse
|
||||
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../libs" -Destination "py310/libs" -Recurse
|
||||
./py310/python -m pip install cyac==1.9
|
||||
git clone https://github.com/josStorer/ai00_rwkv_server --depth=1
|
||||
cd ai00_rwkv_server
|
||||
cargo build --release
|
||||
mv ./target/release/ai00_server.exe ../backend-rust/webgpu_server.exe
|
||||
cd ..
|
||||
go install github.com/wailsapp/wails/v2/cmd/wails@latest
|
||||
(Get-Content -Path ./backend-golang/app.go) -replace "//go:custom_build windows ", "" | Set-Content -Path ./backend-golang/app.go
|
||||
make
|
||||
Rename-Item -Path "build/bin/RWKV-Runner.exe" -NewName "RWKV-Runner_windows_x64.exe"
|
||||
|
||||
- run: gh release upload ${{github.ref_name}} build/bin/RWKV-Runner_windows_x64.exe
|
||||
|
||||
linux:
|
||||
runs-on: ubuntu-20.04
|
||||
needs: create-draft
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
ref: master
|
||||
- uses: actions/setup-go@v4
|
||||
with:
|
||||
go-version: '1.20.5'
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: stable
|
||||
override: true
|
||||
target: wasm32-unknown-unknown
|
||||
- run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install upx
|
||||
sudo apt-get install build-essential libgtk-3-dev libwebkit2gtk-4.0-dev
|
||||
git clone https://github.com/josStorer/ai00_rwkv_server --depth=1
|
||||
cd ai00_rwkv_server
|
||||
sudo apt-get install libudev-dev
|
||||
sudo apt-get install libasound2-dev
|
||||
rustup target add x86_64-unknown-linux-gnu
|
||||
cargo build --release --target x86_64-unknown-linux-gnu
|
||||
mv ./target/x86_64-unknown-linux-gnu/release/ai00_server ../backend-rust/webgpu_server
|
||||
cd ..
|
||||
go install github.com/wailsapp/wails/v2/cmd/wails@latest
|
||||
rm ./backend-python/rwkv_pip/wkv_cuda.pyd
|
||||
rm ./backend-python/rwkv_pip/rwkv5.pyd
|
||||
rm ./backend-python/rwkv_pip/beta/wkv_cuda.pyd
|
||||
rm ./backend-python/get-pip.py
|
||||
make
|
||||
mv build/bin/RWKV-Runner build/bin/RWKV-Runner_linux_x64
|
||||
|
||||
- run: gh release upload ${{github.ref_name}} build/bin/RWKV-Runner_linux_x64
|
||||
|
||||
macos:
|
||||
runs-on: macos-13
|
||||
needs: create-draft
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
with:
|
||||
ref: master
|
||||
- uses: actions/setup-go@v4
|
||||
with:
|
||||
go-version: '1.20.5'
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: stable
|
||||
override: true
|
||||
target: wasm32-unknown-unknown
|
||||
- run: |
|
||||
git clone https://github.com/josStorer/ai00_rwkv_server --depth=1
|
||||
cd ai00_rwkv_server
|
||||
cargo build --release
|
||||
mv ./target/release/ai00_server ../backend-rust/webgpu_server
|
||||
cd ..
|
||||
go install github.com/wailsapp/wails/v2/cmd/wails@latest
|
||||
rm ./backend-python/rwkv_pip/wkv_cuda.pyd
|
||||
rm ./backend-python/rwkv_pip/rwkv5.pyd
|
||||
rm ./backend-python/rwkv_pip/beta/wkv_cuda.pyd
|
||||
rm ./backend-python/get-pip.py
|
||||
make
|
||||
cp build/darwin/Readme_Install.txt build/bin/Readme_Install.txt
|
||||
cp build/bin/RWKV-Runner.app/Contents/MacOS/RWKV-Runner build/bin/RWKV-Runner_darwin_universal
|
||||
cd build/bin && zip -r RWKV-Runner_macos_universal.zip RWKV-Runner.app Readme_Install.txt
|
||||
|
||||
- run: gh release upload ${{github.ref_name}} build/bin/RWKV-Runner_macos_universal.zip build/bin/RWKV-Runner_darwin_universal
|
||||
|
||||
publish-release:
|
||||
runs-on: ubuntu-22.04
|
||||
needs: [ windows, linux, macos ]
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- run: gh release edit ${{github.ref_name}} --draft=false
|
||||
14
.gitignore
vendored
14
.gitignore
vendored
@@ -5,16 +5,26 @@ __pycache__
|
||||
.idea
|
||||
.vs
|
||||
*.pth
|
||||
*.st
|
||||
*.safetensors
|
||||
*.bin
|
||||
/config.json
|
||||
/cache.json
|
||||
/presets.json
|
||||
/frontend/stats.html
|
||||
/frontend/package.json.md5
|
||||
/backend-python/get-pip.py
|
||||
/backend-python/.get-pip.py
|
||||
/py310
|
||||
*.zip
|
||||
/cmd-helper.bat
|
||||
/install-py-dep.bat
|
||||
/backend-python/wkv_cuda
|
||||
/backend-python/rwkv5
|
||||
*.exe
|
||||
*.old
|
||||
.DS_Store
|
||||
*.log.*
|
||||
*.log
|
||||
train_log.txt
|
||||
finetune/json2binidx_tool/data
|
||||
/wsl.state
|
||||
/components
|
||||
|
||||
19
.vscode/launch.json
vendored
19
.vscode/launch.json
vendored
@@ -10,9 +10,24 @@
|
||||
"name": "Python",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "./backend-python/main.py",
|
||||
"program": "${workspaceFolder}/backend-python/main.py",
|
||||
"console": "integratedTerminal",
|
||||
"justMyCode": false,
|
||||
"justMyCode": false
|
||||
},
|
||||
{
|
||||
"name": "Golang",
|
||||
"type": "go",
|
||||
"request": "launch",
|
||||
"mode": "exec",
|
||||
"program": "${workspaceFolder}/build/bin/testwails.exe",
|
||||
"console": "integratedTerminal",
|
||||
"preLaunchTask": "build dev"
|
||||
},
|
||||
{
|
||||
"name": "Frontend",
|
||||
"type": "node-terminal",
|
||||
"request": "launch",
|
||||
"command": "wails dev -browser"
|
||||
}
|
||||
]
|
||||
}
|
||||
40
.vscode/tasks.json
vendored
Normal file
40
.vscode/tasks.json
vendored
Normal file
@@ -0,0 +1,40 @@
|
||||
{
|
||||
"version": "2.0.0",
|
||||
"tasks": [
|
||||
{
|
||||
"label": "build dev",
|
||||
"type": "shell",
|
||||
"options": {
|
||||
"cwd": "${workspaceFolder}",
|
||||
"env": {
|
||||
"CGO_ENABLED": "1"
|
||||
}
|
||||
},
|
||||
"osx": {
|
||||
"options": {
|
||||
"env": {
|
||||
"CGO_CFLAGS": "-mmacosx-version-min=10.13",
|
||||
"CGO_LDFLAGS": "-framework UniformTypeIdentifiers -mmacosx-version-min=10.13"
|
||||
}
|
||||
}
|
||||
},
|
||||
"windows": {
|
||||
"options": {
|
||||
"env": {
|
||||
"CGO_ENABLED": "0"
|
||||
}
|
||||
}
|
||||
},
|
||||
"command": "go",
|
||||
"args": [
|
||||
"build",
|
||||
"-tags",
|
||||
"dev",
|
||||
"-gcflags",
|
||||
"all=-N -l",
|
||||
"-o",
|
||||
"build/bin/testwails.exe"
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
33
CURRENT_CHANGE.md
Normal file
33
CURRENT_CHANGE.md
Normal file
@@ -0,0 +1,33 @@
|
||||
## Changes
|
||||
|
||||
### Features
|
||||
|
||||
- chat attachment is now related to single message (Experimental)
|
||||
- port occupied detection
|
||||
|
||||
### Upgrades
|
||||
|
||||
- upgrade to rwkv 0.8.20
|
||||
|
||||
### Improvements
|
||||
|
||||
- improve the compatibility between frontend presets and chatgpt api
|
||||
- improve memory usage of state cache
|
||||
|
||||
### Chores
|
||||
|
||||
- update ngrok_connect
|
||||
- python38 compatibility
|
||||
- adjust startup process
|
||||
|
||||
### Fixes
|
||||
|
||||
- fix log encoding error
|
||||
- fix stop button status of Chat page
|
||||
|
||||
## Install
|
||||
|
||||
- Windows: https://github.com/josStorer/RWKV-Runner/blob/master/build/windows/Readme_Install.txt
|
||||
- MacOS: https://github.com/josStorer/RWKV-Runner/blob/master/build/darwin/Readme_Install.txt
|
||||
- Linux: https://github.com/josStorer/RWKV-Runner/blob/master/build/linux/Readme_Install.txt
|
||||
- Server-Deploy-Examples: https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples
|
||||
11
Makefile
11
Makefile
@@ -1,15 +1,22 @@
|
||||
ifeq ($(OS), Windows_NT)
|
||||
build: build-windows
|
||||
else
|
||||
else ifeq ($(shell uname -s), Darwin)
|
||||
build: build-macos
|
||||
else
|
||||
build: build-linux
|
||||
endif
|
||||
|
||||
build-windows:
|
||||
@echo ---- build for windows
|
||||
wails build -upx -ldflags "-s -w"
|
||||
wails build -upx -ldflags "-s -w" -platform windows/amd64
|
||||
|
||||
build-macos:
|
||||
@echo ---- build for macos
|
||||
wails build -ldflags "-s -w" -platform darwin/universal
|
||||
|
||||
build-linux:
|
||||
@echo ---- build for linux
|
||||
wails build -upx -ldflags "-s -w" -platform linux/amd64
|
||||
|
||||
dev:
|
||||
wails dev
|
||||
|
||||
103
README.md
103
README.md
@@ -13,9 +13,15 @@ compatible with the OpenAI API, which means that every ChatGPT client is an RWKV
|
||||
[![license][license-image]][license-url]
|
||||
[![release][release-image]][release-url]
|
||||
|
||||
English | [简体中文](README_ZH.md)
|
||||
English | [简体中文](README_ZH.md) | [日本語](README_JA.md)
|
||||
|
||||
[FAQs](https://github.com/josStorer/RWKV-Runner/wiki/FAQs) | [Preview](#Preview) | [Download][download-url]
|
||||
### Install
|
||||
|
||||
[![Windows][Windows-image]][Windows-url]
|
||||
[![MacOS][MacOS-image]][MacOS-url]
|
||||
[![Linux][Linux-image]][Linux-url]
|
||||
|
||||
[FAQs](https://github.com/josStorer/RWKV-Runner/wiki/FAQs) | [Preview](#Preview) | [Download][download-url] | [Server-Deploy-Examples](https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples)
|
||||
|
||||
[license-image]: http://img.shields.io/badge/license-MIT-blue.svg
|
||||
|
||||
@@ -27,9 +33,25 @@ English | [简体中文](README_ZH.md)
|
||||
|
||||
[download-url]: https://github.com/josStorer/RWKV-Runner/releases
|
||||
|
||||
[Windows-image]: https://img.shields.io/badge/-Windows-blue?logo=windows
|
||||
|
||||
[Windows-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/windows/Readme_Install.txt
|
||||
|
||||
[MacOS-image]: https://img.shields.io/badge/-MacOS-black?logo=apple
|
||||
|
||||
[MacOS-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/darwin/Readme_Install.txt
|
||||
|
||||
[Linux-image]: https://img.shields.io/badge/-Linux-black?logo=linux
|
||||
|
||||
[Linux-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/linux/Readme_Install.txt
|
||||
|
||||
</div>
|
||||
|
||||
#### Default configs do not enable custom CUDA kernel acceleration, but I strongly recommend that you enable it and run with int8 precision, which is much faster and consumes much less VRAM. Go to the Configs page and turn on `Use Custom CUDA kernel to Accelerate`.
|
||||
#### Tip: You can deploy [backend-python](./backend-python/) on a server and use this program as a client only. Fill in your server address in the Settings `API URL`.
|
||||
|
||||
#### Default configs has enabled custom CUDA kernel acceleration, which is much faster and consumes much less VRAM. If you encounter possible compatibility issues (output garbled), go to the Configs page and turn off `Use Custom CUDA kernel to Accelerate`, or try to upgrade your gpu driver.
|
||||
|
||||
#### If Windows Defender claims this is a virus, you can try downloading [v1.3.7_win.zip](https://github.com/josStorer/RWKV-Runner/releases/download/v1.3.7/RWKV-Runner_win.zip) and letting it update automatically to the latest version, or add it to the trusted list (`Windows Security` -> `Virus & threat protection` -> `Manage settings` -> `Exclusions` -> `Add or remove exclusions` -> `Add an exclusion` -> `Folder` -> `RWKV-Runner`).
|
||||
|
||||
#### For different tasks, adjusting API parameters can achieve better results. For example, for translation tasks, you can try setting Temperature to 1 and Top_P to 0.3.
|
||||
|
||||
@@ -39,10 +61,13 @@ English | [简体中文](README_ZH.md)
|
||||
- Fully compatible with the OpenAI API, making every ChatGPT client an RWKV client. After starting the model,
|
||||
open http://127.0.0.1:8000/docs to view more details.
|
||||
- Automatic dependency installation, requiring only a lightweight executable program
|
||||
- User-friendly chat interaction interface included
|
||||
- Configs with 2G to 32G VRAM are included, works well on almost all computers
|
||||
- User-friendly chat and completion interaction interface included
|
||||
- Easy-to-understand and operate parameter configuration
|
||||
- Built-in model conversion tool
|
||||
- Built-in download management and remote model inspection
|
||||
- Built-in one-click LoRA Finetune
|
||||
- Can also be used as an OpenAI ChatGPT and GPT-Playground client
|
||||
- Multilingual localization
|
||||
- Theme switching
|
||||
- Automatic updates
|
||||
@@ -66,45 +91,91 @@ body.json:
|
||||
}
|
||||
```
|
||||
|
||||
## Todo
|
||||
## Embeddings API Example
|
||||
|
||||
- [ ] Model training functionality
|
||||
- [x] CUDA operator int8 acceleration
|
||||
- [ ] macOS support
|
||||
- [ ] Linux support
|
||||
Note: v1.4.0 has improved the quality of embeddings API. The generated results are not compatible
|
||||
with previous versions. If you are using embeddings API to generate knowledge bases or similar, please regenerate.
|
||||
|
||||
If you are using langchain, just use `OpenAIEmbeddings(openai_api_base="http://127.0.0.1:8000", openai_api_key="sk-")`
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
import requests
|
||||
|
||||
|
||||
def cosine_similarity(a, b):
|
||||
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
|
||||
|
||||
|
||||
values = [
|
||||
"I am a girl",
|
||||
"我是个女孩",
|
||||
"私は女の子です",
|
||||
"广东人爱吃福建人",
|
||||
"我是个人类",
|
||||
"I am a human",
|
||||
"that dog is so cute",
|
||||
"私はねこむすめです、にゃん♪",
|
||||
"宇宙级特大事件!号外号外!"
|
||||
]
|
||||
|
||||
embeddings = []
|
||||
for v in values:
|
||||
r = requests.post("http://127.0.0.1:8000/embeddings", json={"input": v})
|
||||
embedding = r.json()["data"][0]["embedding"]
|
||||
embeddings.append(embedding)
|
||||
|
||||
compared_embedding = embeddings[0]
|
||||
|
||||
embeddings_cos_sim = [cosine_similarity(compared_embedding, e) for e in embeddings]
|
||||
|
||||
for i in np.argsort(embeddings_cos_sim)[::-1]:
|
||||
print(f"{embeddings_cos_sim[i]:.10f} - {values[i]}")
|
||||
```
|
||||
|
||||
## Related Repositories:
|
||||
|
||||
- RWKV-4-World: https://huggingface.co/BlinkDL/rwkv-4-world/tree/main
|
||||
- RWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main
|
||||
- ChatRWKV: https://github.com/BlinkDL/ChatRWKV
|
||||
- RWKV-LM: https://github.com/BlinkDL/RWKV-LM
|
||||
- RWKV-LM-LoRA: https://github.com/Blealtan/RWKV-LM-LoRA
|
||||
- MIDI-LLM-tokenizer: https://github.com/briansemrau/MIDI-LLM-tokenizer
|
||||
|
||||
## Preview
|
||||
|
||||
### Homepage
|
||||
|
||||

|
||||

|
||||
|
||||
### Chat
|
||||
|
||||

|
||||

|
||||
|
||||
### Completion
|
||||
|
||||

|
||||

|
||||
|
||||
### Composition
|
||||
|
||||

|
||||
|
||||
### Configuration
|
||||
|
||||

|
||||

|
||||
|
||||
### Model Management
|
||||
|
||||

|
||||

|
||||
|
||||
### Download Management
|
||||
|
||||

|
||||

|
||||
|
||||
### LoRA Finetune
|
||||
|
||||

|
||||
|
||||
### Settings
|
||||
|
||||

|
||||

|
||||
|
||||
182
README_JA.md
Normal file
182
README_JA.md
Normal file
@@ -0,0 +1,182 @@
|
||||
<p align="center">
|
||||
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/d24834b0-265d-45f5-93c0-fac1e19562af">
|
||||
</p>
|
||||
|
||||
<h1 align="center">RWKV Runner</h1>
|
||||
|
||||
<div align="center">
|
||||
|
||||
このプロジェクトは、すべてを自動化することで、大規模な言語モデルを使用する際の障壁をなくすことを目的としています。必要なのは、
|
||||
わずか数メガバイトの軽量な実行プログラムだけです。さらに、このプロジェクトは OpenAI API と互換性のあるインターフェイスを提供しており、
|
||||
すべての ChatGPT クライアントは RWKV クライアントであることを意味します。
|
||||
|
||||
[![license][license-image]][license-url]
|
||||
[![release][release-image]][release-url]
|
||||
|
||||
[English](README.md) | [简体中文](README_ZH.md) | 日本語
|
||||
|
||||
### インストール
|
||||
|
||||
[![Windows][Windows-image]][Windows-url]
|
||||
[![MacOS][MacOS-image]][MacOS-url]
|
||||
[![Linux][Linux-image]][Linux-url]
|
||||
|
||||
[FAQs](https://github.com/josStorer/RWKV-Runner/wiki/FAQs) | [プレビュー](#Preview) | [ダウンロード][download-url] | [サーバーデプロイ例](https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples)
|
||||
|
||||
[license-image]: http://img.shields.io/badge/license-MIT-blue.svg
|
||||
|
||||
[license-url]: https://github.com/josStorer/RWKV-Runner/blob/master/LICENSE
|
||||
|
||||
[release-image]: https://img.shields.io/github/release/josStorer/RWKV-Runner.svg
|
||||
|
||||
[release-url]: https://github.com/josStorer/RWKV-Runner/releases/latest
|
||||
|
||||
[download-url]: https://github.com/josStorer/RWKV-Runner/releases
|
||||
|
||||
[Windows-image]: https://img.shields.io/badge/-Windows-blue?logo=windows
|
||||
|
||||
[Windows-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/windows/Readme_Install.txt
|
||||
|
||||
[MacOS-image]: https://img.shields.io/badge/-MacOS-black?logo=apple
|
||||
|
||||
[MacOS-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/darwin/Readme_Install.txt
|
||||
|
||||
[Linux-image]: https://img.shields.io/badge/-Linux-black?logo=linux
|
||||
|
||||
[Linux-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/linux/Readme_Install.txt
|
||||
|
||||
</div>
|
||||
|
||||
#### ヒント:サーバーに[backend-python](./backend-python/)をデプロイし、このプログラムをクライアントとして使用することができます。設定された`API URL`にサーバーアドレスを入力してください。
|
||||
|
||||
#### デフォルトの設定はカスタム CUDA カーネルアクセラレーションを有効にしています。互換性の問題 (文字化けを出力する) が発生する可能性がある場合は、コンフィグページに移動し、`Use Custom CUDA kernel to Accelerate` をオフにしてください、あるいは、GPUドライバーをアップグレードしてみてください。
|
||||
|
||||
#### Windows Defender がこれをウイルスだと主張する場合は、[v1.3.7_win.zip](https://github.com/josStorer/RWKV-Runner/releases/download/v1.3.7/RWKV-Runner_win.zip) をダウンロードして最新版に自動更新させるか、信頼済みリストに追加してみてください (`Windows Security` -> `Virus & threat protection` -> `Manage settings` -> `Exclusions` -> `Add or remove exclusions` -> `Add an exclusion` -> `Folder` -> `RWKV-Runner`)。
|
||||
|
||||
#### 異なるタスクについては、API パラメータを調整することで、より良い結果を得ることができます。例えば、翻訳タスクの場合、Temperature を 1 に、Top_P を 0.3 に設定してみてください。
|
||||
|
||||
## 特徴
|
||||
|
||||
- RWKV モデル管理とワンクリック起動
|
||||
- OpenAI API と完全に互換性があり、すべての ChatGPT クライアントを RWKV クライアントにします。モデル起動後、
|
||||
http://127.0.0.1:8000/docs を開いて詳細をご覧ください。
|
||||
- 依存関係の自動インストールにより、軽量な実行プログラムのみを必要とします
|
||||
- 2G から 32G の VRAM のコンフィグが含まれており、ほとんどのコンピュータで動作します
|
||||
- ユーザーフレンドリーなチャットと完成インタラクションインターフェースを搭載
|
||||
- 分かりやすく操作しやすいパラメータ設定
|
||||
- 内蔵モデル変換ツール
|
||||
- ダウンロード管理とリモートモデル検査機能内蔵
|
||||
- 内蔵のLoRA微調整機能を搭載しています
|
||||
- このプログラムは、OpenAI ChatGPTとGPT Playgroundのクライアントとしても使用できます
|
||||
- 多言語ローカライズ
|
||||
- テーマ切り替え
|
||||
- 自動アップデート
|
||||
|
||||
## API 同時実行ストレステスト
|
||||
|
||||
```bash
|
||||
ab -p body.json -T application/json -c 20 -n 100 -l http://127.0.0.1:8000/chat/completions
|
||||
```
|
||||
|
||||
body.json:
|
||||
|
||||
```json
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Hello"
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
## 埋め込み API の例
|
||||
|
||||
注意: v1.4.0 では、埋め込み API の品質が向上しました。生成される結果は、以前のバージョンとは互換性がありません。
|
||||
もし、embeddings API を使って知識ベースなどを生成している場合は、再生成してください。
|
||||
|
||||
LangChain を使用している場合は、`OpenAIEmbeddings(openai_api_base="http://127.0.0.1:8000", openai_api_key="sk-")`
|
||||
を使用してください
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
import requests
|
||||
|
||||
|
||||
def cosine_similarity(a, b):
|
||||
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
|
||||
|
||||
|
||||
values = [
|
||||
"I am a girl",
|
||||
"我是个女孩",
|
||||
"私は女の子です",
|
||||
"广东人爱吃福建人",
|
||||
"我是个人类",
|
||||
"I am a human",
|
||||
"that dog is so cute",
|
||||
"私はねこむすめです、にゃん♪",
|
||||
"宇宙级特大事件!号外号外!"
|
||||
]
|
||||
|
||||
embeddings = []
|
||||
for v in values:
|
||||
r = requests.post("http://127.0.0.1:8000/embeddings", json={"input": v})
|
||||
embedding = r.json()["data"][0]["embedding"]
|
||||
embeddings.append(embedding)
|
||||
|
||||
compared_embedding = embeddings[0]
|
||||
|
||||
embeddings_cos_sim = [cosine_similarity(compared_embedding, e) for e in embeddings]
|
||||
|
||||
for i in np.argsort(embeddings_cos_sim)[::-1]:
|
||||
print(f"{embeddings_cos_sim[i]:.10f} - {values[i]}")
|
||||
```
|
||||
|
||||
## 関連リポジトリ:
|
||||
|
||||
- RWKV-4-World: https://huggingface.co/BlinkDL/rwkv-4-world/tree/main
|
||||
- RWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main
|
||||
- ChatRWKV: https://github.com/BlinkDL/ChatRWKV
|
||||
- RWKV-LM: https://github.com/BlinkDL/RWKV-LM
|
||||
- RWKV-LM-LoRA: https://github.com/Blealtan/RWKV-LM-LoRA
|
||||
- MIDI-LLM-tokenizer: https://github.com/briansemrau/MIDI-LLM-tokenizer
|
||||
|
||||
## プレビュー
|
||||
|
||||
### ホームページ
|
||||
|
||||

|
||||
|
||||
### チャット
|
||||
|
||||

|
||||
|
||||
### 補完
|
||||
|
||||

|
||||
|
||||
### 作曲
|
||||
|
||||

|
||||
|
||||
### コンフィグ
|
||||
|
||||

|
||||
|
||||
### モデル管理
|
||||
|
||||

|
||||
|
||||
### ダウンロード管理
|
||||
|
||||

|
||||
|
||||
### LoRA Finetune
|
||||
|
||||

|
||||
|
||||
### 設定
|
||||
|
||||

|
||||
104
README_ZH.md
104
README_ZH.md
@@ -12,9 +12,15 @@ API兼容的接口,这意味着一切ChatGPT客户端都是RWKV客户端。
|
||||
[![license][license-image]][license-url]
|
||||
[![release][release-image]][release-url]
|
||||
|
||||
[English](README.md) | 简体中文
|
||||
[English](README.md) | 简体中文 | [日本語](README_JA.md)
|
||||
|
||||
[视频演示](https://www.bilibili.com/video/BV1hM4y1v76R) | [疑难解答](https://www.bilibili.com/read/cv23921171) | [预览](#Preview) | [下载][download-url]
|
||||
### 安装
|
||||
|
||||
[![Windows][Windows-image]][Windows-url]
|
||||
[![MacOS][MacOS-image]][MacOS-url]
|
||||
[![Linux][Linux-image]][Linux-url]
|
||||
|
||||
[视频演示](https://www.bilibili.com/video/BV1hM4y1v76R) | [疑难解答](https://www.bilibili.com/read/cv23921171) | [预览](#Preview) | [下载][download-url] | [懒人包](https://pan.baidu.com/s/1zdzZ_a0uM3gDqi6pXIZVAA?pwd=1111) | [服务器部署示例](https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples)
|
||||
|
||||
[license-image]: http://img.shields.io/badge/license-MIT-blue.svg
|
||||
|
||||
@@ -26,11 +32,25 @@ API兼容的接口,这意味着一切ChatGPT客户端都是RWKV客户端。
|
||||
|
||||
[download-url]: https://github.com/josStorer/RWKV-Runner/releases
|
||||
|
||||
[Windows-image]: https://img.shields.io/badge/-Windows-blue?logo=windows
|
||||
|
||||
[Windows-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/windows/Readme_Install.txt
|
||||
|
||||
[MacOS-image]: https://img.shields.io/badge/-MacOS-black?logo=apple
|
||||
|
||||
[MacOS-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/darwin/Readme_Install.txt
|
||||
|
||||
[Linux-image]: https://img.shields.io/badge/-Linux-black?logo=linux
|
||||
|
||||
[Linux-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/linux/Readme_Install.txt
|
||||
|
||||
</div>
|
||||
|
||||
#### 注意 目前RWKV中文模型质量一般,推荐使用英文模型体验实际RWKV能力
|
||||
#### 小贴士:你可以在服务器部署[backend-python](./backend-python/),然后将此程序仅用作客户端,在设置的`API URL`中填入你的服务器地址
|
||||
|
||||
#### 预设配置没有开启自定义CUDA算子加速,但我强烈建议你开启它并使用int8量化运行,速度非常快,且显存消耗少得多。前往配置页面,打开`使用自定义CUDA算子加速`
|
||||
#### 预设配置已经开启自定义CUDA算子加速,速度更快,且显存消耗更少。如果你遇到可能的兼容性(输出乱码)问题,前往配置页面,关闭`使用自定义CUDA算子加速`,或更新你的显卡驱动
|
||||
|
||||
#### 如果Windows Defender说这是一个病毒,你可以尝试下载[v1.3.7_win.zip](https://github.com/josStorer/RWKV-Runner/releases/download/v1.3.7/RWKV-Runner_win.zip),然后让其自动更新到最新版,或添加信任 (`Windows Security` -> `Virus & threat protection` -> `Manage settings` -> `Exclusions` -> `Add or remove exclusions` -> `Add an exclusion` -> `Folder` -> `RWKV-Runner`)
|
||||
|
||||
#### 对于不同的任务,调整API参数会获得更好的效果,例如对于翻译任务,你可以尝试设置Temperature为1,Top_P为0.3
|
||||
|
||||
@@ -39,10 +59,13 @@ API兼容的接口,这意味着一切ChatGPT客户端都是RWKV客户端。
|
||||
- RWKV模型管理,一键启动
|
||||
- 与OpenAI API完全兼容,一切ChatGPT客户端,都是RWKV客户端。启动模型后,打开 http://127.0.0.1:8000/docs 查看详细内容
|
||||
- 全自动依赖安装,你只需要一个轻巧的可执行程序
|
||||
- 自带用户友好的聊天交互页面
|
||||
- 预设了2G至32G显存的配置,几乎在各种电脑上工作良好
|
||||
- 自带用户友好的聊天和续写交互页面
|
||||
- 易于理解和操作的参数配置
|
||||
- 内置模型转换工具
|
||||
- 内置下载管理和远程模型检视
|
||||
- 内置一键LoRA微调
|
||||
- 也可用作 OpenAI ChatGPT 和 GPT Playground 客户端
|
||||
- 多语言本地化
|
||||
- 主题切换
|
||||
- 自动更新
|
||||
@@ -66,45 +89,90 @@ body.json:
|
||||
}
|
||||
```
|
||||
|
||||
## Todo
|
||||
## Embeddings API 示例
|
||||
|
||||
- [ ] 模型训练功能
|
||||
- [x] CUDA算子int8提速
|
||||
- [ ] macOS支持
|
||||
- [ ] linux支持
|
||||
注意: 1.4.0 版本对embeddings API质量进行了改善,生成结果与之前的版本不兼容,如果你正在使用此API生成知识库等,请重新生成
|
||||
|
||||
如果你在用langchain, 直接使用 `OpenAIEmbeddings(openai_api_base="http://127.0.0.1:8000", openai_api_key="sk-")`
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
import requests
|
||||
|
||||
|
||||
def cosine_similarity(a, b):
|
||||
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
|
||||
|
||||
|
||||
values = [
|
||||
"I am a girl",
|
||||
"我是个女孩",
|
||||
"私は女の子です",
|
||||
"广东人爱吃福建人",
|
||||
"我是个人类",
|
||||
"I am a human",
|
||||
"that dog is so cute",
|
||||
"私はねこむすめです、にゃん♪",
|
||||
"宇宙级特大事件!号外号外!"
|
||||
]
|
||||
|
||||
embeddings = []
|
||||
for v in values:
|
||||
r = requests.post("http://127.0.0.1:8000/embeddings", json={"input": v})
|
||||
embedding = r.json()["data"][0]["embedding"]
|
||||
embeddings.append(embedding)
|
||||
|
||||
compared_embedding = embeddings[0]
|
||||
|
||||
embeddings_cos_sim = [cosine_similarity(compared_embedding, e) for e in embeddings]
|
||||
|
||||
for i in np.argsort(embeddings_cos_sim)[::-1]:
|
||||
print(f"{embeddings_cos_sim[i]:.10f} - {values[i]}")
|
||||
```
|
||||
|
||||
## 相关仓库:
|
||||
|
||||
- RWKV-4-World: https://huggingface.co/BlinkDL/rwkv-4-world/tree/main
|
||||
- RWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main
|
||||
- ChatRWKV: https://github.com/BlinkDL/ChatRWKV
|
||||
- RWKV-LM: https://github.com/BlinkDL/RWKV-LM
|
||||
- RWKV-LM-LoRA: https://github.com/Blealtan/RWKV-LM-LoRA
|
||||
- MIDI-LLM-tokenizer: https://github.com/briansemrau/MIDI-LLM-tokenizer
|
||||
|
||||
## Preview
|
||||
|
||||
### 主页
|
||||
|
||||

|
||||

|
||||
|
||||
### 聊天
|
||||
|
||||

|
||||

|
||||
|
||||
### 补全
|
||||
### 续写
|
||||
|
||||

|
||||

|
||||
|
||||
### 作曲
|
||||
|
||||

|
||||
|
||||
### 配置
|
||||
|
||||

|
||||

|
||||
|
||||
### 模型管理
|
||||
|
||||

|
||||

|
||||
|
||||
### 下载管理
|
||||
|
||||

|
||||

|
||||
|
||||
### LoRA微调
|
||||
|
||||

|
||||
|
||||
### 设置
|
||||
|
||||

|
||||

|
||||
|
||||
BIN
assets/default_sound_font.sf2
Normal file
BIN
assets/default_sound_font.sf2
Normal file
Binary file not shown.
116
assets/sound-font/sound_fetch.py
Normal file
116
assets/sound-font/sound_fetch.py
Normal file
@@ -0,0 +1,116 @@
|
||||
# https://github.com/magenta/magenta-js/issues/164
|
||||
|
||||
import json
|
||||
import os
|
||||
import urllib.request
|
||||
|
||||
|
||||
def get_pitches_array(min_pitch, max_pitch):
|
||||
return list(range(min_pitch, max_pitch + 1))
|
||||
|
||||
|
||||
base_url = 'https://storage.googleapis.com/magentadata/js/soundfonts'
|
||||
soundfont_path = 'sgm_plus'
|
||||
soundfont_json_url = f"{base_url}/{soundfont_path}/soundfont.json"
|
||||
|
||||
# Download soundfont.json
|
||||
soundfont_json = ""
|
||||
|
||||
if not os.path.exists('soundfont.json'):
|
||||
try:
|
||||
with urllib.request.urlopen(soundfont_json_url) as response:
|
||||
soundfont_json = response.read()
|
||||
|
||||
# Save soundfont.json
|
||||
with open('soundfont.json', 'wb') as file:
|
||||
file.write(soundfont_json)
|
||||
|
||||
except:
|
||||
print("Failed to download soundfont.json")
|
||||
|
||||
else:
|
||||
# If file exists, get it from the file system
|
||||
with open('soundfont.json', 'rb') as file:
|
||||
soundfont_json = file.read()
|
||||
|
||||
# Parse soundfont.json
|
||||
soundfont_data = json.loads(soundfont_json)
|
||||
|
||||
if soundfont_data is not None:
|
||||
|
||||
# Iterate over each instrument
|
||||
for instrument_id, instrument_name in soundfont_data['instruments'].items():
|
||||
|
||||
if not os.path.isdir(instrument_name):
|
||||
|
||||
# Create instrument directory if it doesn't exist
|
||||
os.makedirs(instrument_name)
|
||||
|
||||
instrument_json = ""
|
||||
|
||||
instrument_path = f"{soundfont_path}/{instrument_name}"
|
||||
|
||||
if not os.path.exists(f"{instrument_name}/instrument.json"):
|
||||
|
||||
# Download instrument.json
|
||||
instrument_json_url = f"{base_url}/{instrument_path}/instrument.json"
|
||||
|
||||
try:
|
||||
with urllib.request.urlopen(instrument_json_url) as response:
|
||||
instrument_json = response.read()
|
||||
|
||||
# Save instrument.json
|
||||
with open(f"{instrument_name}/instrument.json", 'wb') as file:
|
||||
file.write(instrument_json)
|
||||
|
||||
except:
|
||||
print(f"Failed to download {instrument_name}/instrument.json")
|
||||
|
||||
else:
|
||||
|
||||
# If file exists, get it from the file system
|
||||
with open(f"{instrument_name}/instrument.json", 'rb') as file:
|
||||
instrument_json = file.read()
|
||||
|
||||
# Parse instrument.json
|
||||
instrument_data = json.loads(instrument_json)
|
||||
|
||||
if instrument_data is not None:
|
||||
# Iterate over each pitch and velocity
|
||||
for velocity in instrument_data['velocities']:
|
||||
|
||||
pitches = get_pitches_array(instrument_data['minPitch'], instrument_data['maxPitch'])
|
||||
|
||||
for pitch in pitches:
|
||||
|
||||
# Create the file name
|
||||
file_name = f'p{pitch}_v{velocity}.mp3'
|
||||
|
||||
# Check if the file already exists
|
||||
if os.path.exists(f"{instrument_name}/{file_name}"):
|
||||
pass
|
||||
#print(f"Skipping {instrument_name}/{file_name} - File already exists")
|
||||
|
||||
else:
|
||||
|
||||
# Download pitch/velocity file
|
||||
file_url = f"{base_url}/{instrument_path}/{file_name}"
|
||||
|
||||
try:
|
||||
with urllib.request.urlopen(file_url) as response:
|
||||
file_contents = response.read()
|
||||
|
||||
# Save pitch/velocity file
|
||||
with open(f"{instrument_name}/{file_name}", 'wb') as file:
|
||||
file.write(file_contents)
|
||||
|
||||
print(f"Downloaded {instrument_name}/{file_name}")
|
||||
|
||||
except:
|
||||
print(f"Failed to download {instrument_name}/{file_name}")
|
||||
|
||||
else:
|
||||
print(f"Failed to parse instrument.json for {instrument_name}")
|
||||
|
||||
else:
|
||||
print('Failed to parse soundfont.json')
|
||||
134
assets/sound-font/soundfont.json
Normal file
134
assets/sound-font/soundfont.json
Normal file
@@ -0,0 +1,134 @@
|
||||
{
|
||||
"name": "sgm_plus",
|
||||
"instruments": {
|
||||
"0": "acoustic_grand_piano",
|
||||
"1": "bright_acoustic_piano",
|
||||
"2": "electric_grand_piano",
|
||||
"3": "honkytonk_piano",
|
||||
"4": "electric_piano_1",
|
||||
"5": "electric_piano_2",
|
||||
"6": "harpsichord",
|
||||
"7": "clavichord",
|
||||
"8": "celesta",
|
||||
"9": "glockenspiel",
|
||||
"10": "music_box",
|
||||
"11": "vibraphone",
|
||||
"12": "marimba",
|
||||
"13": "xylophone",
|
||||
"14": "tubular_bells",
|
||||
"15": "dulcimer",
|
||||
"16": "drawbar_organ",
|
||||
"17": "percussive_organ",
|
||||
"18": "rock_organ",
|
||||
"19": "church_organ",
|
||||
"20": "reed_organ",
|
||||
"21": "accordion",
|
||||
"22": "harmonica",
|
||||
"23": "tango_accordion",
|
||||
"24": "acoustic_guitar_nylon",
|
||||
"25": "acoustic_guitar_steel",
|
||||
"26": "electric_guitar_jazz",
|
||||
"27": "electric_guitar_clean",
|
||||
"28": "electric_guitar_muted",
|
||||
"29": "overdriven_guitar",
|
||||
"30": "distortion_guitar",
|
||||
"31": "guitar_harmonics",
|
||||
"32": "acoustic_bass",
|
||||
"33": "electric_bass_finger",
|
||||
"34": "electric_bass_pick",
|
||||
"35": "fretless_bass",
|
||||
"36": "slap_bass_1",
|
||||
"37": "slap_bass_2",
|
||||
"38": "synth_bass_1",
|
||||
"39": "synth_bass_2",
|
||||
"40": "violin",
|
||||
"41": "viola",
|
||||
"42": "cello",
|
||||
"43": "contrabass",
|
||||
"44": "tremolo_strings",
|
||||
"45": "pizzicato_strings",
|
||||
"46": "orchestral_harp",
|
||||
"47": "timpani",
|
||||
"48": "string_ensemble_1",
|
||||
"49": "string_ensemble_2",
|
||||
"50": "synthstrings_1",
|
||||
"51": "synthstrings_2",
|
||||
"52": "choir_aahs",
|
||||
"53": "voice_oohs",
|
||||
"54": "synth_voice",
|
||||
"55": "orchestra_hit",
|
||||
"56": "trumpet",
|
||||
"57": "trombone",
|
||||
"58": "tuba",
|
||||
"59": "muted_trumpet",
|
||||
"60": "french_horn",
|
||||
"61": "brass_section",
|
||||
"62": "synthbrass_1",
|
||||
"63": "synthbrass_2",
|
||||
"64": "soprano_sax",
|
||||
"65": "alto_sax",
|
||||
"66": "tenor_sax",
|
||||
"67": "baritone_sax",
|
||||
"68": "oboe",
|
||||
"69": "english_horn",
|
||||
"70": "bassoon",
|
||||
"71": "clarinet",
|
||||
"72": "piccolo",
|
||||
"73": "flute",
|
||||
"74": "recorder",
|
||||
"75": "pan_flute",
|
||||
"76": "blown_bottle",
|
||||
"77": "shakuhachi",
|
||||
"78": "whistle",
|
||||
"79": "ocarina",
|
||||
"80": "lead_1_square",
|
||||
"81": "lead_2_sawtooth",
|
||||
"82": "lead_3_calliope",
|
||||
"83": "lead_4_chiff",
|
||||
"84": "lead_5_charang",
|
||||
"85": "lead_6_voice",
|
||||
"86": "lead_7_fifths",
|
||||
"87": "lead_8_bass_lead",
|
||||
"88": "pad_1_new_age",
|
||||
"89": "pad_2_warm",
|
||||
"90": "pad_3_polysynth",
|
||||
"91": "pad_4_choir",
|
||||
"92": "pad_5_bowed",
|
||||
"93": "pad_6_metallic",
|
||||
"94": "pad_7_halo",
|
||||
"95": "pad_8_sweep",
|
||||
"96": "fx_1_rain",
|
||||
"97": "fx_2_soundtrack",
|
||||
"98": "fx_3_crystal",
|
||||
"99": "fx_4_atmosphere",
|
||||
"100": "fx_5_brightness",
|
||||
"101": "fx_6_goblins",
|
||||
"102": "fx_7_echoes",
|
||||
"103": "fx_8_scifi",
|
||||
"104": "sitar",
|
||||
"105": "banjo",
|
||||
"106": "shamisen",
|
||||
"107": "koto",
|
||||
"108": "kalimba",
|
||||
"109": "bag_pipe",
|
||||
"110": "fiddle",
|
||||
"111": "shanai",
|
||||
"112": "tinkle_bell",
|
||||
"113": "agogo",
|
||||
"114": "steel_drums",
|
||||
"115": "woodblock",
|
||||
"116": "taiko_drum",
|
||||
"117": "melodic_tom",
|
||||
"118": "synth_drum",
|
||||
"119": "reverse_cymbal",
|
||||
"120": "guitar_fret_noise",
|
||||
"121": "breath_noise",
|
||||
"122": "seashore",
|
||||
"123": "bird_tweet",
|
||||
"124": "telephone_ring",
|
||||
"125": "helicopter",
|
||||
"126": "applause",
|
||||
"127": "gunshot",
|
||||
"drums": "percussion"
|
||||
}
|
||||
}
|
||||
469
assets/soundfont_builder.rb
Normal file
469
assets/soundfont_builder.rb
Normal file
@@ -0,0 +1,469 @@
|
||||
#!/usr/bin/env ruby
|
||||
#
|
||||
# JavaScript Soundfont Builder for MIDI.js
|
||||
# Author: 0xFE <mohit@muthanna.com>
|
||||
# edited by Valentijn Nieman <valentijnnieman@gmail.com>
|
||||
#
|
||||
# Requires:
|
||||
#
|
||||
# FluidSynth
|
||||
# Lame
|
||||
# Ruby Gems: midilib parallel
|
||||
#
|
||||
# $ brew install fluidsynth lame (on OSX)
|
||||
# $ gem install midilib parallel
|
||||
#
|
||||
# You'll need to download a GM soundbank to generate audio.
|
||||
#
|
||||
# Usage:
|
||||
#
|
||||
# 1) Install the above dependencies.
|
||||
# 2) Edit BUILD_DIR, SOUNDFONT, and INSTRUMENTS as required.
|
||||
# 3) Run without any argument.
|
||||
|
||||
require 'base64'
|
||||
require 'digest/sha1'
|
||||
require 'etc'
|
||||
require 'fileutils'
|
||||
require 'midilib'
|
||||
require 'parallel'
|
||||
require 'zlib'
|
||||
require 'json'
|
||||
|
||||
include FileUtils
|
||||
|
||||
BUILD_DIR = "./sound-font" # Output path
|
||||
SOUNDFONT = "./default_sound_font.sf2" # Soundfont file path
|
||||
|
||||
# This script will generate MIDI.js-compatible instrument JS files for
|
||||
# all instruments in the below array. Add or remove as necessary.
|
||||
INSTRUMENTS = [
|
||||
0,
|
||||
1,
|
||||
2,
|
||||
3,
|
||||
4,
|
||||
5,
|
||||
6,
|
||||
7,
|
||||
8,
|
||||
9,
|
||||
10,
|
||||
11,
|
||||
12,
|
||||
13,
|
||||
14,
|
||||
15,
|
||||
16,
|
||||
17,
|
||||
18,
|
||||
19,
|
||||
20,
|
||||
21,
|
||||
22,
|
||||
23,
|
||||
24,
|
||||
25,
|
||||
26,
|
||||
27,
|
||||
28,
|
||||
29,
|
||||
30,
|
||||
31,
|
||||
32,
|
||||
33,
|
||||
34,
|
||||
35,
|
||||
36,
|
||||
37,
|
||||
38,
|
||||
39,
|
||||
40,
|
||||
41,
|
||||
42,
|
||||
43,
|
||||
44,
|
||||
45,
|
||||
46,
|
||||
47,
|
||||
48,
|
||||
49,
|
||||
50,
|
||||
51,
|
||||
52,
|
||||
53,
|
||||
54,
|
||||
55,
|
||||
56,
|
||||
57,
|
||||
58,
|
||||
59,
|
||||
60,
|
||||
61,
|
||||
62,
|
||||
63,
|
||||
64,
|
||||
65,
|
||||
66,
|
||||
67,
|
||||
68,
|
||||
69,
|
||||
70,
|
||||
71,
|
||||
72,
|
||||
73,
|
||||
74,
|
||||
75,
|
||||
76,
|
||||
77,
|
||||
78,
|
||||
79,
|
||||
80,
|
||||
81,
|
||||
82,
|
||||
83,
|
||||
84,
|
||||
85,
|
||||
86,
|
||||
87,
|
||||
88,
|
||||
89,
|
||||
90,
|
||||
91,
|
||||
92,
|
||||
93,
|
||||
94,
|
||||
95,
|
||||
96,
|
||||
97,
|
||||
98,
|
||||
99,
|
||||
100,
|
||||
101,
|
||||
102,
|
||||
103,
|
||||
104,
|
||||
105,
|
||||
106,
|
||||
107,
|
||||
108,
|
||||
109,
|
||||
110,
|
||||
111,
|
||||
112,
|
||||
113,
|
||||
114,
|
||||
115,
|
||||
116,
|
||||
117,
|
||||
118,
|
||||
119,
|
||||
120,
|
||||
121,
|
||||
122,
|
||||
123,
|
||||
124,
|
||||
125,
|
||||
126,
|
||||
127
|
||||
]
|
||||
|
||||
# It was found that midilib uses names that are incompatible with MIDI.js
|
||||
# For example, midilib uses "SynthBrass 1" -> https://github.com/jimm/midilib/blob/6c8e481ae72cd9f00a38eb3700ddfca6b549f153/lib/midilib/consts.rb#L280
|
||||
# and the MIDI association uses "SynthBrass 1" -> https://www.midi.org/specifications-old/item/gm-level-1-sound-set
|
||||
# but the MIDI.js calls this "Synth Brass 1" -> https://github.com/mudcube/MIDI.js/blob/a8a84257afa70721ae462448048a87301fc1554a/js/midi/gm.js#L44
|
||||
# there are others like "Bag pipe" vs "Bagpipe", etc.
|
||||
# here, we use the MIDI.js definitions because that is how most users will interact with the generated soundfonts.
|
||||
MIDIJS_PATCH_NAMES = [
|
||||
"Acoustic Grand Piano",
|
||||
"Bright Acoustic Piano",
|
||||
"Electric Grand Piano",
|
||||
"Honky-tonk Piano",
|
||||
"Electric Piano 1",
|
||||
"Electric Piano 2",
|
||||
"Harpsichord",
|
||||
"Clavinet",
|
||||
"Celesta",
|
||||
"Glockenspiel",
|
||||
"Music Box",
|
||||
"Vibraphone",
|
||||
"Marimba",
|
||||
"Xylophone",
|
||||
"Tubular Bells",
|
||||
"Dulcimer",
|
||||
"Drawbar Organ",
|
||||
"Percussive Organ",
|
||||
"Rock Organ",
|
||||
"Church Organ",
|
||||
"Reed Organ",
|
||||
"Accordion",
|
||||
"Harmonica",
|
||||
"Tango Accordion",
|
||||
"Acoustic Guitar (nylon)",
|
||||
"Acoustic Guitar (steel)",
|
||||
"Electric Guitar (jazz)",
|
||||
"Electric Guitar (clean)",
|
||||
"Electric Guitar (muted)",
|
||||
"Overdriven Guitar",
|
||||
"Distortion Guitar",
|
||||
"Guitar Harmonics",
|
||||
"Acoustic Bass",
|
||||
"Electric Bass (finger)",
|
||||
"Electric Bass (pick)",
|
||||
"Fretless Bass",
|
||||
"Slap Bass 1",
|
||||
"Slap Bass 2",
|
||||
"Synth Bass 1",
|
||||
"Synth Bass 2",
|
||||
"Violin",
|
||||
"Viola",
|
||||
"Cello",
|
||||
"Contrabass",
|
||||
"Tremolo Strings",
|
||||
"Pizzicato Strings",
|
||||
"Orchestral Harp",
|
||||
"Timpani",
|
||||
"String Ensemble 1",
|
||||
"String Ensemble 2",
|
||||
"Synth Strings 1",
|
||||
"Synth Strings 2",
|
||||
"Choir Aahs",
|
||||
"Voice Oohs",
|
||||
"Synth Choir",
|
||||
"Orchestra Hit",
|
||||
"Trumpet",
|
||||
"Trombone",
|
||||
"Tuba",
|
||||
"Muted Trumpet",
|
||||
"French Horn",
|
||||
"Brass Section",
|
||||
"Synth Brass 1",
|
||||
"Synth Brass 2",
|
||||
"Soprano Sax",
|
||||
"Alto Sax",
|
||||
"Tenor Sax",
|
||||
"Baritone Sax",
|
||||
"Oboe",
|
||||
"English Horn",
|
||||
"Bassoon",
|
||||
"Clarinet",
|
||||
"Piccolo",
|
||||
"Flute",
|
||||
"Recorder",
|
||||
"Pan Flute",
|
||||
"Blown Bottle",
|
||||
"Shakuhachi",
|
||||
"Whistle",
|
||||
"Ocarina",
|
||||
"Lead 1 (square)",
|
||||
"Lead 2 (sawtooth)",
|
||||
"Lead 3 (calliope)",
|
||||
"Lead 4 (chiff)",
|
||||
"Lead 5 (charang)",
|
||||
"Lead 6 (voice)",
|
||||
"Lead 7 (fifths)",
|
||||
"Lead 8 (bass + lead)",
|
||||
"Pad 1 (new age)",
|
||||
"Pad 2 (warm)",
|
||||
"Pad 3 (polysynth)",
|
||||
"Pad 4 (choir)",
|
||||
"Pad 5 (bowed)",
|
||||
"Pad 6 (metallic)",
|
||||
"Pad 7 (halo)",
|
||||
"Pad 8 (sweep)",
|
||||
"FX 1 (rain)",
|
||||
"FX 2 (soundtrack)",
|
||||
"FX 3 (crystal)",
|
||||
"FX 4 (atmosphere)",
|
||||
"FX 5 (brightness)",
|
||||
"FX 6 (goblins)",
|
||||
"FX 7 (echoes)",
|
||||
"FX 8 (sci-fi)",
|
||||
"Sitar",
|
||||
"Banjo",
|
||||
"Shamisen",
|
||||
"Koto",
|
||||
"Kalimba",
|
||||
"Bagpipe",
|
||||
"Fiddle",
|
||||
"Shanai",
|
||||
"Tinkle Bell",
|
||||
"Agogo",
|
||||
"Steel Drums",
|
||||
"Woodblock",
|
||||
"Taiko Drum",
|
||||
"Melodic Tom",
|
||||
"Synth Drum",
|
||||
"Reverse Cymbal",
|
||||
"Guitar Fret Noise",
|
||||
"Breath Noise",
|
||||
"Seashore",
|
||||
"Bird Tweet",
|
||||
"Telephone Ring",
|
||||
"Helicopter",
|
||||
"Applause",
|
||||
"Gunshot"
|
||||
]
|
||||
|
||||
# The encoders and tools are expected in your PATH. You can supply alternate
|
||||
# paths by changing the constants below.
|
||||
LAME = "lame" # `which lame`.chomp
|
||||
FLUIDSYNTH = "fluidsynth" # `which fluidsynth`.chomp
|
||||
|
||||
puts "Building the following instruments using font: " + SOUNDFONT
|
||||
|
||||
# Display instrument names.
|
||||
INSTRUMENTS.each do |i|
|
||||
puts " #{i}: " + MIDIJS_PATCH_NAMES[i]
|
||||
end
|
||||
|
||||
puts
|
||||
puts "Using MP3 encoder: " + LAME
|
||||
puts "Using FluidSynth encoder: " + FLUIDSYNTH
|
||||
puts
|
||||
puts "Sending output to: " + BUILD_DIR
|
||||
puts
|
||||
|
||||
raise "Can't find soundfont: #{SOUNDFONT}" unless File.exist? SOUNDFONT
|
||||
raise "Can't find 'lame' command" if LAME.empty?
|
||||
raise "Can't find 'fluidsynth' command" if FLUIDSYNTH.empty?
|
||||
raise "Output directory does not exist: #{BUILD_DIR}" unless File.exist?(BUILD_DIR)
|
||||
|
||||
puts "Hit return to begin."
|
||||
$stdin.readline
|
||||
|
||||
NOTES = {
|
||||
"C" => 0,
|
||||
"Db" => 1,
|
||||
"D" => 2,
|
||||
"Eb" => 3,
|
||||
"E" => 4,
|
||||
"F" => 5,
|
||||
"Gb" => 6,
|
||||
"G" => 7,
|
||||
"Ab" => 8,
|
||||
"A" => 9,
|
||||
"Bb" => 10,
|
||||
"B" => 11
|
||||
}
|
||||
|
||||
MIDI_C0 = 12
|
||||
VELOCITY = 100
|
||||
DURATION = Integer(3000)
|
||||
TEMP_FILE = "#{BUILD_DIR}/%s%stemp.midi"
|
||||
FLUIDSYNTH_RAW = "%s.wav"
|
||||
|
||||
def deflate(string, level)
|
||||
z = Zlib::Deflate.new(level)
|
||||
dst = z.deflate(string, Zlib::FINISH)
|
||||
z.close
|
||||
dst
|
||||
end
|
||||
|
||||
def note_to_int(note, octave)
|
||||
value = NOTES[note]
|
||||
increment = MIDI_C0 * octave
|
||||
return value + increment
|
||||
end
|
||||
|
||||
def int_to_note(value)
|
||||
raise "Bad Value" if value < MIDI_C0
|
||||
reverse_notes = NOTES.invert
|
||||
value -= MIDI_C0
|
||||
octave = value / 12
|
||||
note = value % 12
|
||||
return { key: reverse_notes[note],
|
||||
octave: octave }
|
||||
end
|
||||
|
||||
# Run a quick table validation
|
||||
MIDI_C0.upto(100) do |x|
|
||||
note = int_to_note x
|
||||
#raise "Broken table" unless note_to_int(note[:key], note[:octave]) == x
|
||||
end
|
||||
|
||||
def generate_midi(program, note_value, file)
|
||||
include MIDI
|
||||
seq = Sequence.new()
|
||||
track = Track.new(seq)
|
||||
|
||||
seq.tracks << track
|
||||
track.events << ProgramChange.new(0, Integer(program))
|
||||
track.events << NoteOn.new(0, note_value, VELOCITY, 0) # channel, note, velocity, delta
|
||||
track.events << NoteOff.new(0, note_value, VELOCITY, DURATION)
|
||||
|
||||
File.open(file, 'wb') { | file | seq.write(file) }
|
||||
end
|
||||
|
||||
def run_command(cmd)
|
||||
puts "Running: " + cmd
|
||||
`#{cmd}`
|
||||
end
|
||||
|
||||
def midi_to_audio(source, target)
|
||||
run_command "#{FLUIDSYNTH} -C no -R no -g 0.5 -F #{target} #{SOUNDFONT} #{source}"
|
||||
run_command "#{LAME} -v -b 8 -B 64 #{target}"
|
||||
rm target
|
||||
end
|
||||
|
||||
def open_js_file(instrument_key, type)
|
||||
js_file = File.open("#{BUILD_DIR}/#{instrument_key}-#{type}.js", "w")
|
||||
js_file.write(
|
||||
"""
|
||||
if (typeof(MIDI) === 'undefined') var MIDI = {};
|
||||
if (typeof(MIDI.Soundfont) === 'undefined') MIDI.Soundfont = {};
|
||||
MIDI.Soundfont.#{instrument_key} = {
|
||||
""")
|
||||
return js_file
|
||||
end
|
||||
|
||||
def close_js_file(file)
|
||||
file.write("\n}\n")
|
||||
file.close
|
||||
end
|
||||
|
||||
def base64js(note, file, type)
|
||||
output = '"' + note + '": '
|
||||
output += '"' + "data:audio/#{type};base64,"
|
||||
output += Base64.strict_encode64(File.read(file)) + '"'
|
||||
return output
|
||||
end
|
||||
|
||||
def generate_audio(program)
|
||||
instrument = MIDIJS_PATCH_NAMES[program]
|
||||
instrument_key = instrument.downcase.gsub(/[^a-z0-9 ]/, "").gsub(/[ ]/, "_")
|
||||
|
||||
puts "Generating audio for: " + instrument + "(#{instrument_key})"
|
||||
|
||||
mkdir_p "#{BUILD_DIR}/#{instrument_key}"
|
||||
|
||||
|
||||
note_to_int("A", 0).upto(note_to_int("C", 8)) do |note_value|
|
||||
output_name = "p#{note_value}_v#{VELOCITY}"
|
||||
output_path_prefix = BUILD_DIR + "/#{instrument_key}" + output_name
|
||||
|
||||
puts "Generating: #{output_name}"
|
||||
temp_file_specific = TEMP_FILE % [output_name, instrument_key]
|
||||
generate_midi(program, note_value, temp_file_specific)
|
||||
midi_to_audio(temp_file_specific, output_path_prefix + ".wav")
|
||||
|
||||
mv output_path_prefix + ".mp3", "#{BUILD_DIR}/#{instrument_key}/#{output_name}.mp3"
|
||||
rm temp_file_specific
|
||||
end
|
||||
|
||||
tempHash = {
|
||||
"name" => instrument_key,
|
||||
"minPitch" => 0,
|
||||
"maxPitch" => 127,
|
||||
"durationSeconds" => 3.0,
|
||||
"releaseSeconds" => 1.0,
|
||||
"percussive": false,
|
||||
"velocities": [100]
|
||||
}
|
||||
|
||||
File.open("#{BUILD_DIR}/#{instrument_key}/instrument.json", "w") do |f|
|
||||
f.write(tempHash.to_json)
|
||||
end
|
||||
end
|
||||
|
||||
Parallel.each(INSTRUMENTS, :in_processes=>Etc.nprocessors){|i| generate_audio(i)}
|
||||
@@ -1,19 +1,28 @@
|
||||
package backend_golang
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"context"
|
||||
"errors"
|
||||
"net/http"
|
||||
"os"
|
||||
"os/exec"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"syscall"
|
||||
|
||||
"github.com/fsnotify/fsnotify"
|
||||
"github.com/minio/selfupdate"
|
||||
wruntime "github.com/wailsapp/wails/v2/pkg/runtime"
|
||||
)
|
||||
|
||||
// App struct
|
||||
type App struct {
|
||||
ctx context.Context
|
||||
ctx context.Context
|
||||
HasConfigData bool
|
||||
ConfigData map[string]any
|
||||
exDir string
|
||||
cmdPrefix string
|
||||
}
|
||||
|
||||
// NewApp creates a new App application struct
|
||||
@@ -25,8 +34,88 @@ func NewApp() *App {
|
||||
// so we can call the runtime methods
|
||||
func (a *App) OnStartup(ctx context.Context) {
|
||||
a.ctx = ctx
|
||||
a.exDir = ""
|
||||
a.cmdPrefix = ""
|
||||
|
||||
if runtime.GOOS == "darwin" {
|
||||
ex, _ := os.Executable()
|
||||
a.exDir = filepath.Dir(ex) + "/../../../"
|
||||
a.cmdPrefix = "cd " + a.exDir + " && "
|
||||
}
|
||||
|
||||
os.Chmod("./backend-rust/webgpu_server", 0777)
|
||||
os.Mkdir(a.exDir+"models", os.ModePerm)
|
||||
os.Mkdir(a.exDir+"lora-models", os.ModePerm)
|
||||
os.Mkdir(a.exDir+"finetune/json2binidx_tool/data", os.ModePerm)
|
||||
f, err := os.Create(a.exDir + "lora-models/train_log.txt")
|
||||
if err == nil {
|
||||
f.Close()
|
||||
}
|
||||
|
||||
a.downloadLoop()
|
||||
a.watchFs()
|
||||
a.monitorHardware()
|
||||
}
|
||||
|
||||
func (a *App) OnBeforeClose(ctx context.Context) bool {
|
||||
if monitor != nil {
|
||||
monitor.Process.Kill()
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
func (a *App) watchFs() {
|
||||
watcher, err := fsnotify.NewWatcher()
|
||||
if err == nil {
|
||||
watcher.Add("./lora-models")
|
||||
watcher.Add("./models")
|
||||
go func() {
|
||||
for {
|
||||
select {
|
||||
case event, ok := <-watcher.Events:
|
||||
if !ok {
|
||||
return
|
||||
}
|
||||
wruntime.EventsEmit(a.ctx, "fsnotify", event.Name)
|
||||
case _, ok := <-watcher.Errors:
|
||||
if !ok {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
}()
|
||||
}
|
||||
}
|
||||
|
||||
var monitor *exec.Cmd
|
||||
|
||||
func (a *App) monitorHardware() {
|
||||
if runtime.GOOS != "windows" {
|
||||
return
|
||||
}
|
||||
|
||||
monitor = exec.Command("./components/LibreHardwareMonitor.Console/LibreHardwareMonitor.Console.exe")
|
||||
stdout, err := monitor.StdoutPipe()
|
||||
if err != nil {
|
||||
monitor = nil
|
||||
return
|
||||
}
|
||||
|
||||
go func() {
|
||||
reader := bufio.NewReader(stdout)
|
||||
for {
|
||||
line, _, err := reader.ReadLine()
|
||||
if err != nil {
|
||||
wruntime.EventsEmit(a.ctx, "monitorerr", err.Error())
|
||||
break
|
||||
}
|
||||
wruntime.EventsEmit(a.ctx, "monitor", string(line))
|
||||
}
|
||||
}()
|
||||
|
||||
monitor.SysProcAttr = &syscall.SysProcAttr{}
|
||||
//go:custom_build windows monitor.SysProcAttr.HideWindow = true
|
||||
monitor.Start()
|
||||
}
|
||||
|
||||
func (a *App) UpdateApp(url string) (broken bool, err error) {
|
||||
@@ -42,15 +131,30 @@ func (a *App) UpdateApp(url string) (broken bool, err error) {
|
||||
}
|
||||
return false, err
|
||||
}
|
||||
name, err := os.Executable()
|
||||
if err != nil {
|
||||
return false, err
|
||||
if runtime.GOOS == "windows" {
|
||||
name, err := os.Executable()
|
||||
if err != nil {
|
||||
return false, err
|
||||
}
|
||||
exec.Command(name, os.Args[1:]...).Start()
|
||||
wruntime.Quit(a.ctx)
|
||||
}
|
||||
exec.Command(name, os.Args[1:]...).Start()
|
||||
wruntime.Quit(a.ctx)
|
||||
return false, nil
|
||||
}
|
||||
|
||||
func (a *App) RestartApp() error {
|
||||
if runtime.GOOS == "windows" {
|
||||
name, err := os.Executable()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
exec.Command(name, os.Args[1:]...).Start()
|
||||
wruntime.Quit(a.ctx)
|
||||
return nil
|
||||
}
|
||||
return errors.New("unsupported OS")
|
||||
}
|
||||
|
||||
func (a *App) GetPlatform() string {
|
||||
return runtime.GOOS
|
||||
}
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
package backend_golang
|
||||
|
||||
import (
|
||||
"context"
|
||||
"path/filepath"
|
||||
"time"
|
||||
|
||||
@@ -9,7 +10,7 @@ import (
|
||||
)
|
||||
|
||||
func (a *App) DownloadFile(path string, url string) error {
|
||||
_, err := grab.Get(path, url)
|
||||
_, err := grab.Get(a.exDir+path, url)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -18,6 +19,7 @@ func (a *App) DownloadFile(path string, url string) error {
|
||||
|
||||
type DownloadStatus struct {
|
||||
resp *grab.Response
|
||||
cancel context.CancelFunc
|
||||
Name string `json:"name"`
|
||||
Path string `json:"path"`
|
||||
Url string `json:"url"`
|
||||
@@ -29,7 +31,7 @@ type DownloadStatus struct {
|
||||
Done bool `json:"done"`
|
||||
}
|
||||
|
||||
var downloadList []DownloadStatus
|
||||
var downloadList []*DownloadStatus
|
||||
|
||||
func existsInDownloadList(url string) bool {
|
||||
for _, ds := range downloadList {
|
||||
@@ -41,49 +43,58 @@ func existsInDownloadList(url string) bool {
|
||||
}
|
||||
|
||||
func (a *App) PauseDownload(url string) {
|
||||
for i, ds := range downloadList {
|
||||
for _, ds := range downloadList {
|
||||
if ds.Url == url {
|
||||
if ds.resp != nil {
|
||||
ds.resp.Cancel()
|
||||
}
|
||||
|
||||
downloadList[i] = DownloadStatus{
|
||||
resp: ds.resp,
|
||||
Name: ds.Name,
|
||||
Path: ds.Path,
|
||||
Url: ds.Url,
|
||||
Downloading: false,
|
||||
if ds.cancel != nil {
|
||||
ds.cancel()
|
||||
}
|
||||
ds.resp = nil
|
||||
ds.Downloading = false
|
||||
ds.Speed = 0
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (a *App) ContinueDownload(url string) {
|
||||
for i, ds := range downloadList {
|
||||
for _, ds := range downloadList {
|
||||
if ds.Url == url {
|
||||
client := grab.NewClient()
|
||||
req, _ := grab.NewRequest(ds.Path, ds.Url)
|
||||
resp := client.Do(req)
|
||||
if !ds.Downloading && ds.resp == nil && !ds.Done {
|
||||
ds.Downloading = true
|
||||
|
||||
downloadList[i] = DownloadStatus{
|
||||
resp: resp,
|
||||
Name: ds.Name,
|
||||
Path: ds.Path,
|
||||
Url: ds.Url,
|
||||
Downloading: true,
|
||||
req, err := grab.NewRequest(ds.Path, ds.Url)
|
||||
if err != nil {
|
||||
ds.Downloading = false
|
||||
break
|
||||
}
|
||||
// if PauseDownload() is called before the request finished, ds.Downloading will be false
|
||||
// if the user keeps clicking pause and resume, it may result in multiple requests being successfully downloaded at the same time
|
||||
// so we have to create a context and cancel it when PauseDownload() is called
|
||||
ctx, cancel := context.WithCancel(context.Background())
|
||||
ds.cancel = cancel
|
||||
req = req.WithContext(ctx)
|
||||
resp := grab.DefaultClient.Do(req)
|
||||
|
||||
if resp != nil && resp.HTTPResponse != nil &&
|
||||
resp.HTTPResponse.StatusCode >= 200 && resp.HTTPResponse.StatusCode < 300 {
|
||||
ds.resp = resp
|
||||
} else {
|
||||
ds.Downloading = false
|
||||
}
|
||||
}
|
||||
break
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func (a *App) AddToDownloadList(path string, url string) {
|
||||
if !existsInDownloadList(url) {
|
||||
downloadList = append(downloadList, DownloadStatus{
|
||||
downloadList = append(downloadList, &DownloadStatus{
|
||||
resp: nil,
|
||||
Name: filepath.Base(path),
|
||||
Path: path,
|
||||
Path: a.exDir + path,
|
||||
Url: url,
|
||||
Downloading: true,
|
||||
Downloading: false,
|
||||
})
|
||||
a.ContinueDownload(url)
|
||||
} else {
|
||||
@@ -96,32 +107,17 @@ func (a *App) downloadLoop() {
|
||||
go func() {
|
||||
for {
|
||||
<-ticker.C
|
||||
for i, ds := range downloadList {
|
||||
transferred := int64(0)
|
||||
size := int64(0)
|
||||
speed := float64(0)
|
||||
progress := float64(0)
|
||||
downloading := ds.Downloading
|
||||
done := false
|
||||
for _, ds := range downloadList {
|
||||
if ds.resp != nil {
|
||||
transferred = ds.resp.BytesComplete()
|
||||
size = ds.resp.Size()
|
||||
speed = ds.resp.BytesPerSecond()
|
||||
progress = 100 * ds.resp.Progress()
|
||||
downloading = !ds.resp.IsComplete()
|
||||
done = ds.resp.Progress() == 1
|
||||
}
|
||||
downloadList[i] = DownloadStatus{
|
||||
resp: ds.resp,
|
||||
Name: ds.Name,
|
||||
Path: ds.Path,
|
||||
Url: ds.Url,
|
||||
Transferred: transferred,
|
||||
Size: size,
|
||||
Speed: speed,
|
||||
Progress: progress,
|
||||
Downloading: downloading,
|
||||
Done: done,
|
||||
ds.Transferred = ds.resp.BytesComplete()
|
||||
ds.Size = ds.resp.Size()
|
||||
ds.Speed = ds.resp.BytesPerSecond()
|
||||
ds.Progress = 100 * ds.resp.Progress()
|
||||
ds.Downloading = !ds.resp.IsComplete()
|
||||
ds.Done = ds.resp.Progress() == 1
|
||||
if !ds.Downloading {
|
||||
ds.resp = nil
|
||||
}
|
||||
}
|
||||
}
|
||||
runtime.EventsEmit(a.ctx, "downloadList", downloadList)
|
||||
|
||||
@@ -2,13 +2,16 @@ package backend_golang
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"fmt"
|
||||
"errors"
|
||||
"io"
|
||||
"os"
|
||||
"os/exec"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
wruntime "github.com/wailsapp/wails/v2/pkg/runtime"
|
||||
)
|
||||
|
||||
func (a *App) SaveJson(fileName string, jsonData any) error {
|
||||
@@ -17,14 +20,14 @@ func (a *App) SaveJson(fileName string, jsonData any) error {
|
||||
return err
|
||||
}
|
||||
|
||||
if err := os.WriteFile(fileName, text, 0644); err != nil {
|
||||
if err := os.WriteFile(a.exDir+fileName, text, 0644); err != nil {
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (a *App) ReadJson(fileName string) (any, error) {
|
||||
file, err := os.ReadFile(fileName)
|
||||
file, err := os.ReadFile(a.exDir + fileName)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -39,7 +42,7 @@ func (a *App) ReadJson(fileName string) (any, error) {
|
||||
}
|
||||
|
||||
func (a *App) FileExists(fileName string) bool {
|
||||
_, err := os.Stat(fileName)
|
||||
_, err := os.Stat(a.exDir + fileName)
|
||||
return err == nil
|
||||
}
|
||||
|
||||
@@ -50,12 +53,12 @@ type FileInfo struct {
|
||||
ModTime string `json:"modTime"`
|
||||
}
|
||||
|
||||
func (a *App) ReadFileInfo(fileName string) (FileInfo, error) {
|
||||
info, err := os.Stat(fileName)
|
||||
func (a *App) ReadFileInfo(fileName string) (*FileInfo, error) {
|
||||
info, err := os.Stat(a.exDir + fileName)
|
||||
if err != nil {
|
||||
return FileInfo{}, err
|
||||
return nil, err
|
||||
}
|
||||
return FileInfo{
|
||||
return &FileInfo{
|
||||
Name: info.Name(),
|
||||
Size: info.Size(),
|
||||
IsDir: info.IsDir(),
|
||||
@@ -64,7 +67,7 @@ func (a *App) ReadFileInfo(fileName string) (FileInfo, error) {
|
||||
}
|
||||
|
||||
func (a *App) ListDirFiles(dirPath string) ([]FileInfo, error) {
|
||||
files, err := os.ReadDir(dirPath)
|
||||
files, err := os.ReadDir(a.exDir + dirPath)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
@@ -86,7 +89,7 @@ func (a *App) ListDirFiles(dirPath string) ([]FileInfo, error) {
|
||||
}
|
||||
|
||||
func (a *App) DeleteFile(path string) error {
|
||||
err := os.Remove(path)
|
||||
err := os.Remove(a.exDir + path)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -94,13 +97,18 @@ func (a *App) DeleteFile(path string) error {
|
||||
}
|
||||
|
||||
func (a *App) CopyFile(src string, dst string) error {
|
||||
sourceFile, err := os.Open(src)
|
||||
sourceFile, err := os.Open(a.exDir + src)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
defer sourceFile.Close()
|
||||
|
||||
destFile, err := os.Create(dst)
|
||||
err = os.MkdirAll(a.exDir+dst[:strings.LastIndex(dst, "/")], 0755)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
destFile, err := os.Create(a.exDir + dst)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -113,8 +121,52 @@ func (a *App) CopyFile(src string, dst string) error {
|
||||
return nil
|
||||
}
|
||||
|
||||
func (a *App) OpenFileFolder(path string) error {
|
||||
absPath, err := filepath.Abs(path)
|
||||
func (a *App) OpenSaveFileDialog(filterPattern string, defaultFileName string, savedContent string) (string, error) {
|
||||
return a.OpenSaveFileDialogBytes(filterPattern, defaultFileName, []byte(savedContent))
|
||||
}
|
||||
|
||||
func (a *App) OpenSaveFileDialogBytes(filterPattern string, defaultFileName string, savedContent []byte) (string, error) {
|
||||
path, err := wruntime.SaveFileDialog(a.ctx, wruntime.SaveDialogOptions{
|
||||
DefaultFilename: defaultFileName,
|
||||
Filters: []wruntime.FileFilter{{
|
||||
Pattern: filterPattern,
|
||||
}},
|
||||
CanCreateDirectories: true,
|
||||
})
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
if path == "" {
|
||||
return "", nil
|
||||
}
|
||||
if err := os.WriteFile(path, savedContent, 0644); err != nil {
|
||||
return "", err
|
||||
}
|
||||
return path, nil
|
||||
}
|
||||
|
||||
// Only return the path of the selected file, because communication between frontend and backend is slow. Use AssetServer Handler to read the file.
|
||||
func (a *App) OpenOpenFileDialog(filterPattern string) (string, error) {
|
||||
path, err := wruntime.OpenFileDialog(a.ctx, wruntime.OpenDialogOptions{
|
||||
Filters: []wruntime.FileFilter{{Pattern: filterPattern}},
|
||||
})
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
if path == "" {
|
||||
return "", nil
|
||||
}
|
||||
return path, nil
|
||||
}
|
||||
|
||||
func (a *App) OpenFileFolder(path string, relative bool) error {
|
||||
var absPath string
|
||||
var err error
|
||||
if relative {
|
||||
absPath, err = filepath.Abs(a.exDir + path)
|
||||
} else {
|
||||
absPath, err = filepath.Abs(path)
|
||||
}
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
@@ -125,10 +177,21 @@ func (a *App) OpenFileFolder(path string) error {
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
case "darwin":
|
||||
fmt.Println("Running on macOS")
|
||||
cmd := exec.Command("open", "-R", absPath)
|
||||
err := cmd.Run()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
case "linux":
|
||||
fmt.Println("Running on Linux")
|
||||
cmd := exec.Command("xdg-open", absPath)
|
||||
err := cmd.Run()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
return nil
|
||||
return errors.New("unsupported OS")
|
||||
}
|
||||
|
||||
@@ -1,63 +1,178 @@
|
||||
package backend_golang
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"os"
|
||||
"os/exec"
|
||||
"runtime"
|
||||
"strconv"
|
||||
"strings"
|
||||
)
|
||||
|
||||
func (a *App) StartServer(port int, host string) (string, error) {
|
||||
python, err := GetPython()
|
||||
func (a *App) StartServer(python string, port int, host string, rwkvBeta bool) (string, error) {
|
||||
var err error
|
||||
if python == "" {
|
||||
python, err = GetPython()
|
||||
}
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
return Cmd(python, "./backend-python/main.py", strconv.Itoa(port), host)
|
||||
args := []string{python, "./backend-python/main.py"}
|
||||
if rwkvBeta {
|
||||
args = append(args, "--rwkv-beta")
|
||||
}
|
||||
args = append(args, "--port", strconv.Itoa(port), "--host", host)
|
||||
return Cmd(args...)
|
||||
}
|
||||
|
||||
func (a *App) ConvertModel(modelPath string, strategy string, outPath string) (string, error) {
|
||||
python, err := GetPython()
|
||||
func (a *App) StartWebGPUServer(port int, host string) (string, error) {
|
||||
args := []string{"./backend-rust/webgpu_server"}
|
||||
args = append(args, "--port", strconv.Itoa(port), "--ip", host)
|
||||
return Cmd(args...)
|
||||
}
|
||||
|
||||
func (a *App) ConvertModel(python string, modelPath string, strategy string, outPath string) (string, error) {
|
||||
var err error
|
||||
if python == "" {
|
||||
python, err = GetPython()
|
||||
}
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
return Cmd(python, "./backend-python/convert_model.py", "--in", modelPath, "--out", outPath, "--strategy", strategy)
|
||||
}
|
||||
|
||||
func (a *App) DepCheck() error {
|
||||
python, err := GetPython()
|
||||
func (a *App) ConvertSafetensors(python string, modelPath string, outPath string) (string, error) {
|
||||
var err error
|
||||
if python == "" {
|
||||
python, err = GetPython()
|
||||
}
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
return Cmd(python, "./backend-python/convert_safetensors.py", "--input", modelPath, "--output", outPath)
|
||||
}
|
||||
|
||||
func (a *App) ConvertData(python string, input string, outputPrefix string, vocab string) (string, error) {
|
||||
var err error
|
||||
if python == "" {
|
||||
python, err = GetPython()
|
||||
}
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
tokenizerType := "HFTokenizer"
|
||||
if strings.Contains(vocab, "rwkv_vocab_v20230424") {
|
||||
tokenizerType = "RWKVTokenizer"
|
||||
}
|
||||
|
||||
input = strings.TrimSuffix(input, "/")
|
||||
if fi, err := os.Stat(input); err == nil && fi.IsDir() {
|
||||
files, err := os.ReadDir(input)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
jsonlFile, err := os.Create(outputPrefix + ".jsonl")
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer jsonlFile.Close()
|
||||
for _, file := range files {
|
||||
if file.IsDir() || !strings.HasSuffix(file.Name(), ".txt") {
|
||||
continue
|
||||
}
|
||||
textContent, err := os.ReadFile(input + "/" + file.Name())
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
textJson, err := json.Marshal(map[string]string{"text": strings.ReplaceAll(strings.ReplaceAll(string(textContent), "\r\n", "\n"), "\r", "\n")})
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
if _, err := jsonlFile.WriteString(string(textJson) + "\n"); err != nil {
|
||||
return "", err
|
||||
}
|
||||
}
|
||||
input = outputPrefix + ".jsonl"
|
||||
} else if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
return Cmd(python, "./finetune/json2binidx_tool/tools/preprocess_data.py", "--input", input, "--output-prefix", outputPrefix, "--vocab", vocab,
|
||||
"--tokenizer-type", tokenizerType, "--dataset-impl", "mmap", "--append-eod")
|
||||
}
|
||||
|
||||
func (a *App) MergeLora(python string, useGpu bool, loraAlpha int, baseModel string, loraPath string, outputPath string) (string, error) {
|
||||
var err error
|
||||
if python == "" {
|
||||
python, err = GetPython()
|
||||
}
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
args := []string{python, "./finetune/lora/merge_lora.py"}
|
||||
if useGpu {
|
||||
args = append(args, "--use-gpu")
|
||||
}
|
||||
args = append(args, strconv.Itoa(loraAlpha), baseModel, loraPath, outputPath)
|
||||
return Cmd(args...)
|
||||
}
|
||||
|
||||
func (a *App) DepCheck(python string) error {
|
||||
var err error
|
||||
if python == "" {
|
||||
python, err = GetPython()
|
||||
}
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
out, err := exec.Command(python, "./backend-python/dep_check.py").CombinedOutput()
|
||||
out, err := exec.Command(python, a.exDir+"./backend-python/dep_check.py").CombinedOutput()
|
||||
if err != nil {
|
||||
return errors.New("DepCheck Error: " + string(out))
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (a *App) InstallPyDep(cnMirror bool) (string, error) {
|
||||
python, err := GetPython()
|
||||
func (a *App) InstallPyDep(python string, cnMirror bool) (string, error) {
|
||||
var err error
|
||||
if python == "" {
|
||||
python, err = GetPython()
|
||||
if runtime.GOOS == "windows" {
|
||||
python = `"%CD%/` + python + `"`
|
||||
}
|
||||
}
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
if runtime.GOOS == "windows" {
|
||||
ChangeFileLine("./py310/python310._pth", 3, "Lib\\site-packages")
|
||||
installScript := python + " ./backend-python/get-pip.py -i https://pypi.tuna.tsinghua.edu.cn/simple --no-warn-script-location\n" +
|
||||
python + " -m pip install torch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 --index-url https://download.pytorch.org/whl/cu117 --no-warn-script-location\n" +
|
||||
python + " -m pip install -r ./backend-python/requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple --no-warn-script-location\n" +
|
||||
"exit"
|
||||
if !cnMirror {
|
||||
installScript = strings.Replace(installScript, " -i https://pypi.tuna.tsinghua.edu.cn/simple", "", -1)
|
||||
}
|
||||
err = os.WriteFile("./install-py-dep.bat", []byte(installScript), 0644)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
return Cmd("install-py-dep.bat")
|
||||
}
|
||||
|
||||
if cnMirror {
|
||||
_, err = Cmd(python, "./backend-python/get-pip.py", "-i", "https://pypi.tuna.tsinghua.edu.cn/simple")
|
||||
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_without_cyac.txt", "-i", "https://pypi.tuna.tsinghua.edu.cn/simple")
|
||||
} else {
|
||||
_, err = Cmd(python, "./backend-python/get-pip.py")
|
||||
}
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
_, err = Cmd(python, "-m", "pip", "install", "torch==1.13.1", "torchvision==0.14.1", "torchaudio==0.13.1", "--index-url", "https://download.pytorch.org/whl/cu117")
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
if cnMirror {
|
||||
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements.txt", "-i", "https://pypi.tuna.tsinghua.edu.cn/simple")
|
||||
} else {
|
||||
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_versions.txt")
|
||||
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_without_cyac.txt")
|
||||
}
|
||||
}
|
||||
|
||||
func (a *App) GetPyError() string {
|
||||
content, err := os.ReadFile("./error.txt")
|
||||
if err != nil {
|
||||
return ""
|
||||
}
|
||||
return string(content)
|
||||
}
|
||||
|
||||
@@ -5,34 +5,57 @@ import (
|
||||
"bufio"
|
||||
"embed"
|
||||
"errors"
|
||||
"fmt"
|
||||
"io"
|
||||
"io/fs"
|
||||
"net"
|
||||
"os"
|
||||
"os/exec"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"strconv"
|
||||
"strings"
|
||||
)
|
||||
|
||||
func Cmd(args ...string) (string, error) {
|
||||
if runtime.GOOS == "windows" {
|
||||
_, err := os.Stat("cmd-helper.bat")
|
||||
if err != nil {
|
||||
if err := os.WriteFile("./cmd-helper.bat", []byte("start %*"), 0644); err != nil {
|
||||
return "", err
|
||||
}
|
||||
switch platform := runtime.GOOS; platform {
|
||||
case "windows":
|
||||
if err := os.WriteFile("./cmd-helper.bat", []byte("start %*"), 0644); err != nil {
|
||||
return "", err
|
||||
}
|
||||
cmdHelper, err := filepath.Abs("./cmd-helper")
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
if strings.Contains(cmdHelper, " ") {
|
||||
for _, arg := range args {
|
||||
if strings.Contains(arg, " ") {
|
||||
return "", errors.New("path contains space") // golang bug https://github.com/golang/go/issues/17149#issuecomment-473976818
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
cmd := exec.Command(cmdHelper, args...)
|
||||
out, err := cmd.CombinedOutput()
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
return string(out), nil
|
||||
} else {
|
||||
case "darwin":
|
||||
ex, err := os.Executable()
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
exDir := filepath.Dir(ex) + "/../../../"
|
||||
cmd := exec.Command("osascript", "-e", `tell application "Terminal" to do script "`+"cd "+exDir+" && "+strings.Join(args, " ")+`"`)
|
||||
err = cmd.Start()
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
cmd.Wait()
|
||||
return "", nil
|
||||
case "linux":
|
||||
cmd := exec.Command(args[0], args[1:]...)
|
||||
err := cmd.Start()
|
||||
if err != nil {
|
||||
@@ -41,9 +64,19 @@ func Cmd(args ...string) (string, error) {
|
||||
cmd.Wait()
|
||||
return "", nil
|
||||
}
|
||||
return "", errors.New("unsupported OS")
|
||||
}
|
||||
|
||||
func CopyEmbed(efs embed.FS) error {
|
||||
prefix := ""
|
||||
if runtime.GOOS == "darwin" {
|
||||
ex, err := os.Executable()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
prefix = filepath.Dir(ex) + "/../../../"
|
||||
}
|
||||
|
||||
err := fs.WalkDir(efs, ".", func(path string, d fs.DirEntry, err error) error {
|
||||
if d.IsDir() {
|
||||
return nil
|
||||
@@ -56,6 +89,7 @@ func CopyEmbed(efs embed.FS) error {
|
||||
return err
|
||||
}
|
||||
|
||||
path = prefix + path
|
||||
err = os.MkdirAll(path[:strings.LastIndex(path, "/")], 0755)
|
||||
if err != nil {
|
||||
return err
|
||||
@@ -174,3 +208,12 @@ func Unzip(source, destination string) error {
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (a *App) IsPortAvailable(port int) bool {
|
||||
l, err := net.Listen("tcp", fmt.Sprintf("127.0.0.1:%s", strconv.Itoa(port)))
|
||||
if err != nil {
|
||||
return false
|
||||
}
|
||||
defer l.Close()
|
||||
return true
|
||||
}
|
||||
|
||||
31
backend-golang/wsl_unix.go
Normal file
31
backend-golang/wsl_unix.go
Normal file
@@ -0,0 +1,31 @@
|
||||
//go:build darwin || linux
|
||||
|
||||
package backend_golang
|
||||
|
||||
import (
|
||||
"errors"
|
||||
)
|
||||
|
||||
func (a *App) WslStart() error {
|
||||
return errors.New("wsl not supported")
|
||||
}
|
||||
|
||||
func (a *App) WslCommand(command string) error {
|
||||
return errors.New("wsl not supported")
|
||||
}
|
||||
|
||||
func (a *App) WslStop() error {
|
||||
return errors.New("wsl not supported")
|
||||
}
|
||||
|
||||
func (a *App) WslIsEnabled() error {
|
||||
return errors.New("wsl not supported")
|
||||
}
|
||||
|
||||
func (a *App) WslEnable(forceMode bool) error {
|
||||
return errors.New("wsl not supported")
|
||||
}
|
||||
|
||||
func (a *App) WslInstallUbuntu() error {
|
||||
return errors.New("wsl not supported")
|
||||
}
|
||||
181
backend-golang/wsl_windows.go
Normal file
181
backend-golang/wsl_windows.go
Normal file
@@ -0,0 +1,181 @@
|
||||
//go:build windows
|
||||
|
||||
package backend_golang
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"context"
|
||||
"errors"
|
||||
"io"
|
||||
"os"
|
||||
"os/exec"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
su "github.com/nyaosorg/go-windows-su"
|
||||
wsl "github.com/ubuntu/gowsl"
|
||||
wruntime "github.com/wailsapp/wails/v2/pkg/runtime"
|
||||
)
|
||||
|
||||
var distro *wsl.Distro
|
||||
var stdin io.WriteCloser
|
||||
var cmd *exec.Cmd
|
||||
|
||||
func isWslRunning() (bool, error) {
|
||||
if distro == nil {
|
||||
return false, nil
|
||||
}
|
||||
state, err := distro.State()
|
||||
if err != nil {
|
||||
return false, err
|
||||
}
|
||||
if state != wsl.Running {
|
||||
distro = nil
|
||||
return false, nil
|
||||
}
|
||||
return true, nil
|
||||
}
|
||||
|
||||
func (a *App) WslStart() error {
|
||||
running, err := isWslRunning()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if running {
|
||||
return nil
|
||||
}
|
||||
distros, err := wsl.RegisteredDistros(context.Background())
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
for _, d := range distros {
|
||||
if strings.Contains(d.Name(), "Ubuntu") {
|
||||
distro = &d
|
||||
break
|
||||
}
|
||||
}
|
||||
if distro == nil {
|
||||
return errors.New("ubuntu not found")
|
||||
}
|
||||
|
||||
cmd = exec.Command("wsl", "-d", distro.Name(), "-u", "root")
|
||||
|
||||
stdin, err = cmd.StdinPipe()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
stdout, err := cmd.StdoutPipe()
|
||||
cmd.Stderr = cmd.Stdout
|
||||
if err != nil {
|
||||
// stdin.Close()
|
||||
stdin = nil
|
||||
return err
|
||||
}
|
||||
|
||||
go func() {
|
||||
reader := bufio.NewReader(stdout)
|
||||
for {
|
||||
if stdin == nil {
|
||||
break
|
||||
}
|
||||
line, _, err := reader.ReadLine()
|
||||
if err != nil {
|
||||
wruntime.EventsEmit(a.ctx, "wslerr", err.Error())
|
||||
break
|
||||
}
|
||||
wruntime.EventsEmit(a.ctx, "wsl", string(line))
|
||||
}
|
||||
// stdout.Close()
|
||||
}()
|
||||
|
||||
if err := cmd.Start(); err != nil {
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (a *App) WslCommand(command string) error {
|
||||
running, err := isWslRunning()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if !running {
|
||||
return errors.New("wsl not running")
|
||||
}
|
||||
_, err = stdin.Write([]byte(command + "\n"))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (a *App) WslStop() error {
|
||||
running, err := isWslRunning()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if !running {
|
||||
return errors.New("wsl not running")
|
||||
}
|
||||
if cmd != nil {
|
||||
err = cmd.Process.Kill()
|
||||
cmd = nil
|
||||
}
|
||||
// stdin.Close()
|
||||
stdin = nil
|
||||
distro = nil
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (a *App) WslIsEnabled() error {
|
||||
ex, err := os.Executable()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
exDir := filepath.Dir(ex)
|
||||
|
||||
data, err := os.ReadFile(exDir + "/wsl.state")
|
||||
if err == nil {
|
||||
if strings.Contains(string(data), "Enabled") {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
|
||||
cmd := `-Command (Get-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Linux).State | Out-File -Encoding utf8 -FilePath ` + exDir + "/wsl.state"
|
||||
_, err = su.ShellExecute(su.RUNAS, "powershell", cmd, exDir)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
time.Sleep(2 * time.Second)
|
||||
data, err = os.ReadFile(exDir + "/wsl.state")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if strings.Contains(string(data), "Enabled") {
|
||||
return nil
|
||||
} else {
|
||||
return errors.New("wsl is not enabled")
|
||||
}
|
||||
}
|
||||
|
||||
func (a *App) WslEnable(forceMode bool) error {
|
||||
cmd := `/online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux`
|
||||
_, err := su.ShellExecute(su.RUNAS, "dism", cmd, `C:\`)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if forceMode {
|
||||
os.WriteFile("./wsl.state", []byte("Enabled"), 0644)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (a *App) WslInstallUbuntu() error {
|
||||
_, err := Cmd("ms-windows-store://pdp/?ProductId=9PN20MSR04DW")
|
||||
return err
|
||||
}
|
||||
22
backend-python/convert_model.py
vendored
22
backend-python/convert_model.py
vendored
@@ -219,13 +219,17 @@ def get_args():
|
||||
return p.parse_args()
|
||||
|
||||
|
||||
args = get_args()
|
||||
if not args.quiet:
|
||||
print(f"** {args}")
|
||||
try:
|
||||
args = get_args()
|
||||
if not args.quiet:
|
||||
print(f"** {args}")
|
||||
|
||||
RWKV(
|
||||
getattr(args, "in"),
|
||||
args.strategy,
|
||||
verbose=not args.quiet,
|
||||
convert_and_save_and_exit=args.out,
|
||||
)
|
||||
RWKV(
|
||||
getattr(args, "in"),
|
||||
args.strategy,
|
||||
verbose=not args.quiet,
|
||||
convert_and_save_and_exit=args.out,
|
||||
)
|
||||
except Exception as e:
|
||||
with open("error.txt", "w") as f:
|
||||
f.write(str(e))
|
||||
|
||||
69
backend-python/convert_safetensors.py
vendored
Normal file
69
backend-python/convert_safetensors.py
vendored
Normal file
@@ -0,0 +1,69 @@
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import copy
|
||||
import torch
|
||||
from safetensors.torch import load_file, save_file
|
||||
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--input", type=str, help="Path to input pth model")
|
||||
parser.add_argument(
|
||||
"--output",
|
||||
type=str,
|
||||
default="./converted.st",
|
||||
help="Path to output safetensors model",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
def rename_key(rename, name):
|
||||
for k, v in rename.items():
|
||||
if k in name:
|
||||
name = name.replace(k, v)
|
||||
return name
|
||||
|
||||
|
||||
def convert_file(pt_filename: str, sf_filename: str, transpose_names=[], rename={}):
|
||||
loaded = torch.load(pt_filename, map_location="cpu")
|
||||
if "state_dict" in loaded:
|
||||
loaded = loaded["state_dict"]
|
||||
|
||||
loaded = {k: v.clone().half() for k, v in loaded.items()}
|
||||
# for k, v in loaded.items():
|
||||
# print(f'{k}\t{v.shape}\t{v.dtype}')
|
||||
|
||||
# For tensors to be contiguous
|
||||
for k, v in loaded.items():
|
||||
for transpose_name in transpose_names:
|
||||
if transpose_name in k:
|
||||
loaded[k] = v.transpose(0, 1)
|
||||
loaded = {rename_key(rename, k).lower(): v.contiguous() for k, v in loaded.items()}
|
||||
|
||||
for k, v in loaded.items():
|
||||
print(f"{k}\t{v.shape}\t{v.dtype}")
|
||||
|
||||
dirname = os.path.dirname(sf_filename)
|
||||
os.makedirs(dirname, exist_ok=True)
|
||||
save_file(loaded, sf_filename, metadata={"format": "pt"})
|
||||
reloaded = load_file(sf_filename)
|
||||
for k in loaded:
|
||||
pt_tensor = loaded[k]
|
||||
sf_tensor = reloaded[k]
|
||||
if not torch.equal(pt_tensor, sf_tensor):
|
||||
raise RuntimeError(f"The output tensors do not match for key {k}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
try:
|
||||
convert_file(
|
||||
args.input,
|
||||
args.output,
|
||||
["lora_A"],
|
||||
{"time_faaaa": "time_first", "lora_A": "lora.0", "lora_B": "lora.1"},
|
||||
)
|
||||
print(f"Saved to {args.output}")
|
||||
except Exception as e:
|
||||
with open("error.txt", "w") as f:
|
||||
f.write(str(e))
|
||||
@@ -1,8 +1,19 @@
|
||||
import cyac
|
||||
import multipart
|
||||
import fitz
|
||||
import safetensors
|
||||
import midi2audio
|
||||
import mido
|
||||
import lm_dataformat
|
||||
import ftfy
|
||||
import tqdm
|
||||
import tiktoken
|
||||
import GPUtil
|
||||
|
||||
import torch
|
||||
import rwkv
|
||||
import langchain
|
||||
import numpy
|
||||
import tokenizers
|
||||
import fastapi
|
||||
import uvicorn
|
||||
import sse_starlette
|
||||
|
||||
32321
backend-python/get-pip.py
vendored
Normal file
32321
backend-python/get-pip.py
vendored
Normal file
File diff suppressed because it is too large
Load Diff
@@ -1,5 +1,6 @@
|
||||
from enum import Enum, auto
|
||||
|
||||
Args = "args"
|
||||
Model = "model"
|
||||
Model_Status = "model_status"
|
||||
Model_Config = "model_config"
|
||||
|
||||
@@ -1,20 +1,67 @@
|
||||
import time
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
import argparse
|
||||
from typing import Union, Sequence
|
||||
|
||||
|
||||
def get_args(args: Union[Sequence[str], None] = None):
|
||||
parser = argparse.ArgumentParser()
|
||||
group = parser.add_argument_group(title="server arguments")
|
||||
group.add_argument(
|
||||
"--port",
|
||||
type=int,
|
||||
default=8000,
|
||||
help="port to run the server on (default: 8000)",
|
||||
)
|
||||
group.add_argument(
|
||||
"--host",
|
||||
type=str,
|
||||
default="127.0.0.1",
|
||||
help="host to run the server on (default: 127.0.0.1)",
|
||||
)
|
||||
group = parser.add_argument_group(title="mode arguments")
|
||||
group.add_argument(
|
||||
"--rwkv-beta",
|
||||
action="store_true",
|
||||
help="whether to use rwkv-beta (default: False)",
|
||||
)
|
||||
args = parser.parse_args(args)
|
||||
|
||||
return args
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
|
||||
|
||||
import psutil
|
||||
from fastapi import FastAPI
|
||||
from contextlib import asynccontextmanager
|
||||
from fastapi import Depends, FastAPI
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
import uvicorn
|
||||
|
||||
from utils.rwkv import *
|
||||
from utils.torch import *
|
||||
from utils.ngrok import *
|
||||
from routes import completion, config, state_cache
|
||||
from utils.log import log_middleware
|
||||
from routes import completion, config, state_cache, midi, misc, file_process
|
||||
import global_var
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
init()
|
||||
yield
|
||||
|
||||
|
||||
app = FastAPI(lifespan=lifespan, dependencies=[Depends(log_middleware)])
|
||||
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
@@ -26,12 +73,19 @@ app.add_middleware(
|
||||
|
||||
app.include_router(completion.router)
|
||||
app.include_router(config.router)
|
||||
app.include_router(midi.router)
|
||||
app.include_router(file_process.router)
|
||||
app.include_router(misc.router)
|
||||
app.include_router(state_cache.router)
|
||||
|
||||
|
||||
@app.on_event("startup")
|
||||
def init():
|
||||
global_var.init()
|
||||
cmd_params = os.environ["RWKV_RUNNER_PARAMS"]
|
||||
global_var.set(
|
||||
global_var.Args, get_args(cmd_params.split(" ") if cmd_params else None)
|
||||
)
|
||||
|
||||
state_cache.init()
|
||||
|
||||
set_torch()
|
||||
@@ -40,12 +94,12 @@ def init():
|
||||
ngrok_connect()
|
||||
|
||||
|
||||
@app.get("/")
|
||||
@app.get("/", tags=["Root"])
|
||||
def read_root():
|
||||
return {"Hello": "World!", "pid": os.getpid()}
|
||||
return {"Hello": "World!"}
|
||||
|
||||
|
||||
@app.post("/exit")
|
||||
@app.post("/exit", tags=["Root"])
|
||||
def exit():
|
||||
parent_pid = os.getpid()
|
||||
parent = psutil.Process(parent_pid)
|
||||
@@ -54,20 +108,7 @@ def exit():
|
||||
parent.kill()
|
||||
|
||||
|
||||
def debug():
|
||||
model = RWKV(
|
||||
model="../models/RWKV-4-Raven-7B-v11-Eng49%-Chn49%-Jpn1%-Other1%-20230430-ctx8192.pth",
|
||||
strategy="cuda fp16",
|
||||
tokens_path="20B_tokenizer.json",
|
||||
)
|
||||
d = model.tokenizer.decode([])
|
||||
print(d)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
uvicorn.run(
|
||||
"main:app",
|
||||
port=8000 if len(sys.argv) < 2 else int(sys.argv[1]),
|
||||
host="127.0.0.1" if len(sys.argv) < 3 else sys.argv[2],
|
||||
)
|
||||
# debug()
|
||||
os.environ["RWKV_RUNNER_PARAMS"] = " ".join(sys.argv[1:])
|
||||
print("--- %s seconds ---" % (time.time() - start_time))
|
||||
uvicorn.run("main:app", port=args.port, host=args.host, workers=1)
|
||||
|
||||
Binary file not shown.
Binary file not shown.
23
backend-python/requirements_without_cyac.txt
Normal file
23
backend-python/requirements_without_cyac.txt
Normal file
@@ -0,0 +1,23 @@
|
||||
torch
|
||||
torchvision
|
||||
torchaudio
|
||||
rwkv==0.8.16
|
||||
langchain==0.0.322
|
||||
fastapi==0.104.0
|
||||
uvicorn==0.23.2
|
||||
sse-starlette==1.6.5
|
||||
pydantic==2.4.2
|
||||
psutil==5.9.6
|
||||
gputil==1.4.0
|
||||
tiktoken==0.5.1
|
||||
ftfy==6.1.1
|
||||
lm-dataformat==0.0.20
|
||||
numpy==1.24.4
|
||||
tokenizers==0.14.1
|
||||
tqdm==4.66.1
|
||||
midi2audio==0.1.1
|
||||
mido==1.3.0
|
||||
safetensors==0.4.0
|
||||
PyMuPDF==1.23.5
|
||||
python-multipart==0.0.6
|
||||
Cython==3.0.4
|
||||
@@ -1,218 +1,167 @@
|
||||
import asyncio
|
||||
import json
|
||||
from threading import Lock
|
||||
from typing import List
|
||||
from typing import List, Union
|
||||
from enum import Enum
|
||||
import base64
|
||||
|
||||
from fastapi import APIRouter, Request, status, HTTPException
|
||||
from sse_starlette.sse import EventSourceResponse
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, Field
|
||||
import numpy as np
|
||||
import tiktoken
|
||||
from utils.rwkv import *
|
||||
from utils.log import quick_log
|
||||
import global_var
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
class Role(Enum):
|
||||
User = "user"
|
||||
Assistant = "assistant"
|
||||
System = "system"
|
||||
|
||||
|
||||
class Message(BaseModel):
|
||||
role: str
|
||||
content: str
|
||||
role: Role
|
||||
content: str = Field(min_length=0)
|
||||
raw: bool = Field(False, description="Whether to treat content as raw text")
|
||||
|
||||
|
||||
default_stop = [
|
||||
"\n\nUser",
|
||||
"\n\nQuestion",
|
||||
"\n\nQ",
|
||||
"\n\nHuman",
|
||||
"\n\nBob",
|
||||
]
|
||||
|
||||
|
||||
class ChatCompletionBody(ModelConfigBody):
|
||||
messages: List[Message]
|
||||
model: str = "rwkv"
|
||||
messages: Union[List[Message], None]
|
||||
model: Union[str, None] = "rwkv"
|
||||
stream: bool = False
|
||||
stop: str = None
|
||||
stop: Union[str, List[str], None] = default_stop
|
||||
user_name: Union[str, None] = Field(
|
||||
None, description="Internal user name", min_length=1
|
||||
)
|
||||
assistant_name: Union[str, None] = Field(
|
||||
None, description="Internal assistant name", min_length=1
|
||||
)
|
||||
presystem: bool = Field(
|
||||
True, description="Whether to insert default system prompt at the beginning"
|
||||
)
|
||||
|
||||
class Config:
|
||||
json_schema_extra = {
|
||||
"example": {
|
||||
"messages": [
|
||||
{"role": Role.User.value, "content": "hello", "raw": False}
|
||||
],
|
||||
"model": "rwkv",
|
||||
"stream": False,
|
||||
"stop": None,
|
||||
"user_name": None,
|
||||
"assistant_name": None,
|
||||
"presystem": True,
|
||||
"max_tokens": 1000,
|
||||
"temperature": 1.2,
|
||||
"top_p": 0.5,
|
||||
"presence_penalty": 0.4,
|
||||
"frequency_penalty": 0.4,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
class CompletionBody(ModelConfigBody):
|
||||
prompt: Union[str, List[str], None]
|
||||
model: Union[str, None] = "rwkv"
|
||||
stream: bool = False
|
||||
stop: Union[str, List[str], None] = None
|
||||
|
||||
class Config:
|
||||
json_schema_extra = {
|
||||
"example": {
|
||||
"prompt": "The following is an epic science fiction masterpiece that is immortalized, "
|
||||
+ "with delicate descriptions and grand depictions of interstellar civilization wars.\nChapter 1.\n",
|
||||
"model": "rwkv",
|
||||
"stream": False,
|
||||
"stop": None,
|
||||
"max_tokens": 100,
|
||||
"temperature": 1.2,
|
||||
"top_p": 0.5,
|
||||
"presence_penalty": 0.4,
|
||||
"frequency_penalty": 0.4,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
completion_lock = Lock()
|
||||
|
||||
requests_num = 0
|
||||
|
||||
@router.post("/v1/chat/completions")
|
||||
@router.post("/chat/completions")
|
||||
async def chat_completions(body: ChatCompletionBody, request: Request):
|
||||
model: RWKV = global_var.get(global_var.Model)
|
||||
if model is None:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "model not loaded")
|
||||
|
||||
question = body.messages[-1]
|
||||
if question.role == "user":
|
||||
question = question.content
|
||||
async def eval_rwkv(
|
||||
model: AbstractRWKV,
|
||||
request: Request,
|
||||
body: ModelConfigBody,
|
||||
prompt: str,
|
||||
stream: bool,
|
||||
stop: Union[str, List[str], None],
|
||||
chat_mode: bool,
|
||||
):
|
||||
global requests_num
|
||||
requests_num = requests_num + 1
|
||||
quick_log(request, None, "Start Waiting. RequestsNum: " + str(requests_num))
|
||||
while completion_lock.locked():
|
||||
if await request.is_disconnected():
|
||||
requests_num = requests_num - 1
|
||||
print(f"{request.client} Stop Waiting (Lock)")
|
||||
quick_log(
|
||||
request,
|
||||
None,
|
||||
"Stop Waiting (Lock). RequestsNum: " + str(requests_num),
|
||||
)
|
||||
return
|
||||
await asyncio.sleep(0.1)
|
||||
else:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "no question found")
|
||||
|
||||
interface = model.interface
|
||||
user = model.user
|
||||
bot = model.bot
|
||||
|
||||
completion_text = (
|
||||
f"""
|
||||
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
|
||||
{bot} is very intelligent, creative and friendly. \
|
||||
{bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \
|
||||
{bot} likes to tell {user} a lot about herself and her opinions. \
|
||||
{bot} usually gives {user} kind, helpful and informative advices.\n
|
||||
"""
|
||||
if user == "Bob"
|
||||
else ""
|
||||
)
|
||||
for message in body.messages:
|
||||
if message.role == "system":
|
||||
completion_text = (
|
||||
f"The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. "
|
||||
if user == "Bob"
|
||||
else ""
|
||||
+ message.content.replace("\\n", "\n")
|
||||
.replace("\r\n", "\n")
|
||||
.replace("\n\n", "\n")
|
||||
.replace("\n", " ")
|
||||
.strip()
|
||||
.replace("You are", f"{bot} is")
|
||||
.replace("you are", f"{bot} is")
|
||||
.replace("You're", f"{bot} is")
|
||||
.replace("you're", f"{bot} is")
|
||||
.replace("You", f"{bot}")
|
||||
.replace("you", f"{bot}")
|
||||
.replace("Your", f"{bot}'s")
|
||||
.replace("your", f"{bot}'s")
|
||||
.replace("你", f"{bot}")
|
||||
+ "\n\n"
|
||||
)
|
||||
elif message.role == "user":
|
||||
completion_text += (
|
||||
f"{user}{interface} "
|
||||
+ message.content.replace("\\n", "\n")
|
||||
.replace("\r\n", "\n")
|
||||
.replace("\n\n", "\n")
|
||||
.strip()
|
||||
+ "\n\n"
|
||||
)
|
||||
elif message.role == "assistant":
|
||||
completion_text += (
|
||||
f"{bot}{interface} "
|
||||
+ message.content.replace("\\n", "\n")
|
||||
.replace("\r\n", "\n")
|
||||
.replace("\n\n", "\n")
|
||||
.strip()
|
||||
+ "\n\n"
|
||||
)
|
||||
completion_text += f"{bot}{interface}"
|
||||
|
||||
async def eval_rwkv():
|
||||
while completion_lock.locked():
|
||||
with completion_lock:
|
||||
if await request.is_disconnected():
|
||||
requests_num = requests_num - 1
|
||||
print(f"{request.client} Stop Waiting (Lock)")
|
||||
quick_log(
|
||||
request,
|
||||
None,
|
||||
"Stop Waiting (Lock). RequestsNum: " + str(requests_num),
|
||||
)
|
||||
return
|
||||
await asyncio.sleep(0.1)
|
||||
else:
|
||||
completion_lock.acquire()
|
||||
set_rwkv_config(model, global_var.get(global_var.Model_Config))
|
||||
set_rwkv_config(model, body)
|
||||
if body.stream:
|
||||
for response, delta in model.generate(
|
||||
completion_text,
|
||||
stop=f"\n\n{user}" if body.stop is None else body.stop,
|
||||
):
|
||||
if await request.is_disconnected():
|
||||
break
|
||||
|
||||
response, prompt_tokens, completion_tokens = "", 0, 0
|
||||
for response, delta, prompt_tokens, completion_tokens in model.generate(
|
||||
prompt,
|
||||
stop=stop,
|
||||
):
|
||||
if await request.is_disconnected():
|
||||
break
|
||||
if stream:
|
||||
yield json.dumps(
|
||||
{
|
||||
"response": response,
|
||||
"model": "rwkv",
|
||||
"object": "chat.completion.chunk"
|
||||
if chat_mode
|
||||
else "text_completion",
|
||||
# "response": response,
|
||||
"model": model.name,
|
||||
"choices": [
|
||||
{
|
||||
"delta": {"content": delta},
|
||||
"index": 0,
|
||||
"finish_reason": None,
|
||||
}
|
||||
],
|
||||
}
|
||||
)
|
||||
# torch_gc()
|
||||
completion_lock.release()
|
||||
if await request.is_disconnected():
|
||||
return
|
||||
yield json.dumps(
|
||||
{
|
||||
"response": response,
|
||||
"model": "rwkv",
|
||||
"choices": [
|
||||
{
|
||||
"delta": {},
|
||||
"index": 0,
|
||||
"finish_reason": "stop",
|
||||
}
|
||||
],
|
||||
}
|
||||
)
|
||||
yield "[DONE]"
|
||||
else:
|
||||
response = None
|
||||
for response, delta in model.generate(
|
||||
completion_text,
|
||||
stop=f"\n\n{user}" if body.stop is None else body.stop,
|
||||
):
|
||||
if await request.is_disconnected():
|
||||
break
|
||||
# torch_gc()
|
||||
completion_lock.release()
|
||||
if await request.is_disconnected():
|
||||
return
|
||||
yield {
|
||||
"response": response,
|
||||
"model": "rwkv",
|
||||
"choices": [
|
||||
{
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": response,
|
||||
},
|
||||
"index": 0,
|
||||
"finish_reason": "stop",
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
if body.stream:
|
||||
return EventSourceResponse(eval_rwkv())
|
||||
else:
|
||||
return await eval_rwkv().__anext__()
|
||||
|
||||
|
||||
class CompletionBody(ModelConfigBody):
|
||||
prompt: str
|
||||
model: str = "rwkv"
|
||||
stream: bool = False
|
||||
stop: str = None
|
||||
|
||||
|
||||
@router.post("/v1/completions")
|
||||
@router.post("/completions")
|
||||
async def completions(body: CompletionBody, request: Request):
|
||||
model: RWKV = global_var.get(global_var.Model)
|
||||
if model is None:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "model not loaded")
|
||||
|
||||
if body.prompt is None or body.prompt == "":
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "prompt not found")
|
||||
|
||||
async def eval_rwkv():
|
||||
while completion_lock.locked():
|
||||
if await request.is_disconnected():
|
||||
return
|
||||
await asyncio.sleep(0.1)
|
||||
else:
|
||||
completion_lock.acquire()
|
||||
set_rwkv_config(model, global_var.get(global_var.Model_Config))
|
||||
set_rwkv_config(model, body)
|
||||
if body.stream:
|
||||
for response, delta in model.generate(body.prompt, stop=body.stop):
|
||||
if await request.is_disconnected():
|
||||
break
|
||||
yield json.dumps(
|
||||
{
|
||||
"response": response,
|
||||
"model": "rwkv",
|
||||
"choices": [
|
||||
{
|
||||
if chat_mode
|
||||
else {
|
||||
"text": delta,
|
||||
"index": 0,
|
||||
"finish_reason": None,
|
||||
@@ -220,16 +169,37 @@ async def completions(body: CompletionBody, request: Request):
|
||||
],
|
||||
}
|
||||
)
|
||||
# torch_gc()
|
||||
completion_lock.release()
|
||||
if await request.is_disconnected():
|
||||
return
|
||||
# torch_gc()
|
||||
requests_num = requests_num - 1
|
||||
if await request.is_disconnected():
|
||||
print(f"{request.client} Stop Waiting")
|
||||
quick_log(
|
||||
request,
|
||||
body,
|
||||
response + "\nStop Waiting. RequestsNum: " + str(requests_num),
|
||||
)
|
||||
return
|
||||
quick_log(
|
||||
request,
|
||||
body,
|
||||
response + "\nFinished. RequestsNum: " + str(requests_num),
|
||||
)
|
||||
if stream:
|
||||
yield json.dumps(
|
||||
{
|
||||
"response": response,
|
||||
"model": "rwkv",
|
||||
"object": "chat.completion.chunk"
|
||||
if chat_mode
|
||||
else "text_completion",
|
||||
# "response": response,
|
||||
"model": model.name,
|
||||
"choices": [
|
||||
{
|
||||
"delta": {},
|
||||
"index": 0,
|
||||
"finish_reason": "stop",
|
||||
}
|
||||
if chat_mode
|
||||
else {
|
||||
"text": "",
|
||||
"index": 0,
|
||||
"finish_reason": "stop",
|
||||
@@ -239,19 +209,26 @@ async def completions(body: CompletionBody, request: Request):
|
||||
)
|
||||
yield "[DONE]"
|
||||
else:
|
||||
response = None
|
||||
for response, delta in model.generate(body.prompt, stop=body.stop):
|
||||
if await request.is_disconnected():
|
||||
break
|
||||
# torch_gc()
|
||||
completion_lock.release()
|
||||
if await request.is_disconnected():
|
||||
return
|
||||
yield {
|
||||
"response": response,
|
||||
"model": "rwkv",
|
||||
"object": "chat.completion" if chat_mode else "text_completion",
|
||||
# "response": response,
|
||||
"model": model.name,
|
||||
"usage": {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": prompt_tokens + completion_tokens,
|
||||
},
|
||||
"choices": [
|
||||
{
|
||||
"message": {
|
||||
"role": Role.Assistant.value,
|
||||
"content": response,
|
||||
},
|
||||
"index": 0,
|
||||
"finish_reason": "stop",
|
||||
}
|
||||
if chat_mode
|
||||
else {
|
||||
"text": response,
|
||||
"index": 0,
|
||||
"finish_reason": "stop",
|
||||
@@ -259,7 +236,270 @@ async def completions(body: CompletionBody, request: Request):
|
||||
],
|
||||
}
|
||||
|
||||
|
||||
@router.post("/v1/chat/completions", tags=["Completions"])
|
||||
@router.post("/chat/completions", tags=["Completions"])
|
||||
async def chat_completions(body: ChatCompletionBody, request: Request):
|
||||
model: TextRWKV = global_var.get(global_var.Model)
|
||||
if model is None:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "model not loaded")
|
||||
|
||||
if body.messages is None or body.messages == []:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "messages not found")
|
||||
|
||||
interface = model.interface
|
||||
user = model.user if body.user_name is None else body.user_name
|
||||
bot = model.bot if body.assistant_name is None else body.assistant_name
|
||||
|
||||
is_raven = model.rwkv_type == RWKVType.Raven
|
||||
|
||||
completion_text: str = ""
|
||||
basic_system: Union[str, None] = None
|
||||
if body.presystem:
|
||||
if body.messages[0].role == Role.System:
|
||||
basic_system = body.messages[0].content
|
||||
|
||||
if basic_system is None:
|
||||
completion_text = (
|
||||
f"""
|
||||
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
|
||||
{bot} is very intelligent, creative and friendly. \
|
||||
{bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \
|
||||
{bot} likes to tell {user} a lot about herself and her opinions. \
|
||||
{bot} usually gives {user} kind, helpful and informative advices.\n
|
||||
"""
|
||||
if is_raven
|
||||
else (
|
||||
f"{user}{interface} hi\n\n{bot}{interface} Hi. "
|
||||
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
|
||||
)
|
||||
)
|
||||
else:
|
||||
if not body.messages[0].raw:
|
||||
basic_system = (
|
||||
basic_system.replace("\r\n", "\n")
|
||||
.replace("\r", "\n")
|
||||
.replace("\n\n", "\n")
|
||||
.replace("\n", " ")
|
||||
.strip()
|
||||
)
|
||||
completion_text = (
|
||||
(
|
||||
f"The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. "
|
||||
if is_raven
|
||||
else f"{user}{interface} hi\n\n{bot}{interface} Hi. "
|
||||
)
|
||||
+ basic_system.replace("You are", f"{bot} is" if is_raven else "I am")
|
||||
.replace("you are", f"{bot} is" if is_raven else "I am")
|
||||
.replace("You're", f"{bot} is" if is_raven else "I'm")
|
||||
.replace("you're", f"{bot} is" if is_raven else "I'm")
|
||||
.replace("You", f"{bot}" if is_raven else "I")
|
||||
.replace("you", f"{bot}" if is_raven else "I")
|
||||
.replace("Your", f"{bot}'s" if is_raven else "My")
|
||||
.replace("your", f"{bot}'s" if is_raven else "my")
|
||||
.replace("你", f"{bot}" if is_raven else "我")
|
||||
+ "\n\n"
|
||||
)
|
||||
|
||||
for message in body.messages[(0 if basic_system is None else 1) :]:
|
||||
append_message: str = ""
|
||||
if message.role == Role.User:
|
||||
append_message = f"{user}{interface} " + message.content
|
||||
elif message.role == Role.Assistant:
|
||||
append_message = f"{bot}{interface} " + message.content
|
||||
elif message.role == Role.System:
|
||||
append_message = message.content
|
||||
if not message.raw:
|
||||
append_message = (
|
||||
append_message.replace("\r\n", "\n")
|
||||
.replace("\r", "\n")
|
||||
.replace("\n\n", "\n")
|
||||
.strip()
|
||||
)
|
||||
completion_text += append_message + "\n\n"
|
||||
completion_text += f"{bot}{interface}"
|
||||
|
||||
user_code = model.pipeline.decode([model.pipeline.encode(user)[0]])
|
||||
bot_code = model.pipeline.decode([model.pipeline.encode(bot)[0]])
|
||||
if type(body.stop) == str:
|
||||
body.stop = [body.stop, f"\n\n{user_code}", f"\n\n{bot_code}"]
|
||||
elif type(body.stop) == list:
|
||||
body.stop.append(f"\n\n{user_code}")
|
||||
body.stop.append(f"\n\n{bot_code}")
|
||||
elif body.stop is None:
|
||||
body.stop = default_stop
|
||||
|
||||
if body.stream:
|
||||
return EventSourceResponse(eval_rwkv())
|
||||
return EventSourceResponse(
|
||||
eval_rwkv(
|
||||
model, request, body, completion_text, body.stream, body.stop, True
|
||||
)
|
||||
)
|
||||
else:
|
||||
return await eval_rwkv().__anext__()
|
||||
try:
|
||||
return await eval_rwkv(
|
||||
model, request, body, completion_text, body.stream, body.stop, True
|
||||
).__anext__()
|
||||
except StopAsyncIteration:
|
||||
return None
|
||||
|
||||
|
||||
@router.post("/v1/completions", tags=["Completions"])
|
||||
@router.post("/completions", tags=["Completions"])
|
||||
async def completions(body: CompletionBody, request: Request):
|
||||
model: AbstractRWKV = global_var.get(global_var.Model)
|
||||
if model is None:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "model not loaded")
|
||||
|
||||
if body.prompt is None or body.prompt == "" or body.prompt == []:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "prompt not found")
|
||||
|
||||
if type(body.prompt) == list:
|
||||
body.prompt = body.prompt[0] # TODO: support multiple prompts
|
||||
|
||||
if body.stream:
|
||||
return EventSourceResponse(
|
||||
eval_rwkv(model, request, body, body.prompt, body.stream, body.stop, False)
|
||||
)
|
||||
else:
|
||||
try:
|
||||
return await eval_rwkv(
|
||||
model, request, body, body.prompt, body.stream, body.stop, False
|
||||
).__anext__()
|
||||
except StopAsyncIteration:
|
||||
return None
|
||||
|
||||
|
||||
class EmbeddingsBody(BaseModel):
|
||||
input: Union[str, List[str], List[List[int]], None]
|
||||
model: Union[str, None] = "rwkv"
|
||||
encoding_format: str = None
|
||||
fast_mode: bool = False
|
||||
|
||||
class Config:
|
||||
json_schema_extra = {
|
||||
"example": {
|
||||
"input": "a big apple",
|
||||
"model": "rwkv",
|
||||
"encoding_format": None,
|
||||
"fast_mode": False,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def embedding_base64(embedding: List[float]) -> str:
|
||||
return base64.b64encode(np.array(embedding).astype(np.float32)).decode("utf-8")
|
||||
|
||||
|
||||
@router.post("/v1/embeddings", tags=["Embeddings"])
|
||||
@router.post("/embeddings", tags=["Embeddings"])
|
||||
@router.post("/v1/engines/text-embedding-ada-002/embeddings", tags=["Embeddings"])
|
||||
@router.post("/engines/text-embedding-ada-002/embeddings", tags=["Embeddings"])
|
||||
async def embeddings(body: EmbeddingsBody, request: Request):
|
||||
model: AbstractRWKV = global_var.get(global_var.Model)
|
||||
if model is None:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "model not loaded")
|
||||
|
||||
if body.input is None or body.input == "" or body.input == [] or body.input == [[]]:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "input not found")
|
||||
|
||||
global requests_num
|
||||
requests_num = requests_num + 1
|
||||
quick_log(request, None, "Start Waiting. RequestsNum: " + str(requests_num))
|
||||
while completion_lock.locked():
|
||||
if await request.is_disconnected():
|
||||
requests_num = requests_num - 1
|
||||
print(f"{request.client} Stop Waiting (Lock)")
|
||||
quick_log(
|
||||
request,
|
||||
None,
|
||||
"Stop Waiting (Lock). RequestsNum: " + str(requests_num),
|
||||
)
|
||||
return
|
||||
await asyncio.sleep(0.1)
|
||||
else:
|
||||
with completion_lock:
|
||||
if await request.is_disconnected():
|
||||
requests_num = requests_num - 1
|
||||
print(f"{request.client} Stop Waiting (Lock)")
|
||||
quick_log(
|
||||
request,
|
||||
None,
|
||||
"Stop Waiting (Lock). RequestsNum: " + str(requests_num),
|
||||
)
|
||||
return
|
||||
|
||||
base64_format = False
|
||||
if body.encoding_format == "base64":
|
||||
base64_format = True
|
||||
|
||||
embeddings = []
|
||||
prompt_tokens = 0
|
||||
if type(body.input) == list:
|
||||
if type(body.input[0]) == list:
|
||||
encoding = tiktoken.model.encoding_for_model(
|
||||
"text-embedding-ada-002"
|
||||
)
|
||||
for i in range(len(body.input)):
|
||||
if await request.is_disconnected():
|
||||
break
|
||||
input = encoding.decode(body.input[i])
|
||||
embedding, token_len = model.get_embedding(
|
||||
input, body.fast_mode
|
||||
)
|
||||
prompt_tokens = prompt_tokens + token_len
|
||||
if base64_format:
|
||||
embedding = embedding_base64(embedding)
|
||||
embeddings.append(embedding)
|
||||
else:
|
||||
for i in range(len(body.input)):
|
||||
if await request.is_disconnected():
|
||||
break
|
||||
embedding, token_len = model.get_embedding(
|
||||
body.input[i], body.fast_mode
|
||||
)
|
||||
prompt_tokens = prompt_tokens + token_len
|
||||
if base64_format:
|
||||
embedding = embedding_base64(embedding)
|
||||
embeddings.append(embedding)
|
||||
else:
|
||||
embedding, prompt_tokens = model.get_embedding(
|
||||
body.input, body.fast_mode
|
||||
)
|
||||
if base64_format:
|
||||
embedding = embedding_base64(embedding)
|
||||
embeddings.append(embedding)
|
||||
|
||||
requests_num = requests_num - 1
|
||||
if await request.is_disconnected():
|
||||
print(f"{request.client} Stop Waiting")
|
||||
quick_log(
|
||||
request,
|
||||
None,
|
||||
"Stop Waiting. RequestsNum: " + str(requests_num),
|
||||
)
|
||||
return
|
||||
quick_log(
|
||||
request,
|
||||
None,
|
||||
"Finished. RequestsNum: " + str(requests_num),
|
||||
)
|
||||
|
||||
ret_data = [
|
||||
{
|
||||
"object": "embedding",
|
||||
"index": i,
|
||||
"embedding": embedding,
|
||||
}
|
||||
for i, embedding in enumerate(embeddings)
|
||||
]
|
||||
|
||||
return {
|
||||
"object": "list",
|
||||
"data": ret_data,
|
||||
"model": model.name,
|
||||
"usage": {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"total_tokens": prompt_tokens,
|
||||
},
|
||||
}
|
||||
|
||||
@@ -1,61 +1,68 @@
|
||||
import pathlib
|
||||
from utils.log import quick_log
|
||||
|
||||
from fastapi import APIRouter, HTTPException, Response, status
|
||||
from fastapi import APIRouter, HTTPException, Request, Response, status as Status
|
||||
from pydantic import BaseModel
|
||||
from langchain.llms import RWKV
|
||||
from utils.rwkv import *
|
||||
from utils.torch import *
|
||||
import global_var
|
||||
import GPUtil
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
def get_tokens_path(model_path: str):
|
||||
model_path = model_path.lower()
|
||||
default_tokens_path = (
|
||||
f"{pathlib.Path(__file__).parent.parent.resolve()}/rwkv_pip/20B_tokenizer.json"
|
||||
)
|
||||
if "raven" in model_path:
|
||||
return default_tokens_path
|
||||
elif "world" in model_path:
|
||||
return "rwkv_vocab_v20230424"
|
||||
else:
|
||||
return default_tokens_path
|
||||
|
||||
|
||||
class SwitchModelBody(BaseModel):
|
||||
model: str
|
||||
strategy: str
|
||||
tokenizer: Union[str, None] = None
|
||||
customCuda: bool = False
|
||||
|
||||
class Config:
|
||||
json_schema_extra = {
|
||||
"example": {
|
||||
"model": "models/RWKV-4-World-3B-v1-20230619-ctx4096.pth",
|
||||
"strategy": "cuda fp16",
|
||||
"tokenizer": None,
|
||||
"customCuda": False,
|
||||
}
|
||||
}
|
||||
|
||||
@router.post("/switch-model")
|
||||
def switch_model(body: SwitchModelBody, response: Response):
|
||||
|
||||
@router.post("/switch-model", tags=["Configs"])
|
||||
def switch_model(body: SwitchModelBody, response: Response, request: Request):
|
||||
if global_var.get(global_var.Model_Status) is global_var.ModelStatus.Loading:
|
||||
response.status_code = status.HTTP_304_NOT_MODIFIED
|
||||
response.status_code = Status.HTTP_304_NOT_MODIFIED
|
||||
return
|
||||
|
||||
global_var.set(global_var.Model_Status, global_var.ModelStatus.Offline)
|
||||
global_var.set(global_var.Model, None)
|
||||
torch_gc()
|
||||
|
||||
if body.model == "":
|
||||
return "success"
|
||||
|
||||
if "->" in body.strategy:
|
||||
state_cache.disable_state_cache()
|
||||
else:
|
||||
try:
|
||||
state_cache.enable_state_cache()
|
||||
except HTTPException:
|
||||
pass
|
||||
|
||||
os.environ["RWKV_CUDA_ON"] = "1" if body.customCuda else "0"
|
||||
|
||||
global_var.set(global_var.Model_Status, global_var.ModelStatus.Loading)
|
||||
try:
|
||||
global_var.set(
|
||||
global_var.Model,
|
||||
RWKV(
|
||||
model=body.model,
|
||||
strategy=body.strategy,
|
||||
tokens_path=get_tokens_path(body.model),
|
||||
),
|
||||
RWKV(model=body.model, strategy=body.strategy, tokenizer=body.tokenizer),
|
||||
)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
quick_log(request, body, f"Exception: {e}")
|
||||
global_var.set(global_var.Model_Status, global_var.ModelStatus.Offline)
|
||||
raise HTTPException(status.HTTP_500_INTERNAL_SERVER_ERROR, "failed to load")
|
||||
raise HTTPException(
|
||||
Status.HTTP_500_INTERNAL_SERVER_ERROR, f"failed to load: {e}"
|
||||
)
|
||||
|
||||
if global_var.get(global_var.Model_Config) is None:
|
||||
global_var.set(
|
||||
@@ -66,7 +73,7 @@ def switch_model(body: SwitchModelBody, response: Response):
|
||||
return "success"
|
||||
|
||||
|
||||
@router.post("/update-config")
|
||||
@router.post("/update-config", tags=["Configs"])
|
||||
def update_config(body: ModelConfigBody):
|
||||
"""
|
||||
Will not update the model config immediately, but set it when completion called to avoid modifications during generation
|
||||
@@ -78,8 +85,10 @@ def update_config(body: ModelConfigBody):
|
||||
return "success"
|
||||
|
||||
|
||||
@router.get("/status")
|
||||
@router.get("/status", tags=["Configs"])
|
||||
def status():
|
||||
import GPUtil
|
||||
|
||||
gpus = GPUtil.getGPUs()
|
||||
if len(gpus) == 0:
|
||||
device_name = "CPU"
|
||||
|
||||
79
backend-python/routes/file_process.py
Normal file
79
backend-python/routes/file_process.py
Normal file
@@ -0,0 +1,79 @@
|
||||
import os
|
||||
from fastapi import (
|
||||
APIRouter,
|
||||
HTTPException,
|
||||
status,
|
||||
Depends,
|
||||
File,
|
||||
UploadFile,
|
||||
)
|
||||
from pydantic import BaseModel
|
||||
from typing import Iterator
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
class FileToTextParams(BaseModel):
|
||||
file_name: str
|
||||
file_encoding: str = "utf-8"
|
||||
|
||||
|
||||
@router.post("/file-to-text", tags=["File Process"])
|
||||
async def file_to_text(
|
||||
params: FileToTextParams = Depends(), file_data: UploadFile = File(...)
|
||||
):
|
||||
from langchain.schema import Document
|
||||
from langchain.document_loaders.blob_loaders import Blob
|
||||
|
||||
# from langchain
|
||||
def parse_text(blob: Blob) -> Iterator[Document]:
|
||||
yield Document(page_content=blob.as_string(), metadata={"source": blob.source})
|
||||
|
||||
# from langchain
|
||||
def parse_pdf(blob: Blob) -> Iterator[Document]:
|
||||
import fitz
|
||||
|
||||
with blob.as_bytes_io() as stream:
|
||||
doc = fitz.Document(stream=stream)
|
||||
|
||||
yield from [
|
||||
Document(
|
||||
page_content=page.get_text(),
|
||||
metadata=dict(
|
||||
{
|
||||
"source": blob.source,
|
||||
"file_path": blob.source,
|
||||
"page": page.number,
|
||||
"total_pages": len(doc),
|
||||
},
|
||||
**{
|
||||
k: doc.metadata[k]
|
||||
for k in doc.metadata
|
||||
if type(doc.metadata[k]) in [str, int]
|
||||
},
|
||||
),
|
||||
)
|
||||
for page in doc
|
||||
]
|
||||
|
||||
file_parsers = {".txt": parse_text, ".pdf": parse_pdf}
|
||||
|
||||
file_name = file_data.filename or params.file_name
|
||||
file_ext = os.path.splitext(file_name)[-1]
|
||||
|
||||
if file_ext not in file_parsers:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "file type not supported")
|
||||
|
||||
try:
|
||||
pages: Iterator[Document] = file_parsers[file_ext](
|
||||
Blob.from_data(
|
||||
await file_data.read(),
|
||||
encoding=params.file_encoding,
|
||||
path=file_name,
|
||||
)
|
||||
)
|
||||
pages = list(pages)
|
||||
except Exception as e:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, f"{e}")
|
||||
|
||||
return {"pages": pages}
|
||||
131
backend-python/routes/midi.py
Normal file
131
backend-python/routes/midi.py
Normal file
@@ -0,0 +1,131 @@
|
||||
import io
|
||||
from fastapi import APIRouter, HTTPException, status
|
||||
from starlette.responses import StreamingResponse
|
||||
from pydantic import BaseModel
|
||||
from utils.midi import *
|
||||
from midi2audio import FluidSynth
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
class TextToMidiBody(BaseModel):
|
||||
text: str
|
||||
|
||||
class Config:
|
||||
json_schema_extra = {
|
||||
"example": {
|
||||
"text": "p:24:a p:2a:a p:31:a p:39:a p:3b:a p:45:a b:26:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:24:0 p:2a:0 p:31:0 p:39:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:26:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:2e:a p:3b:a p:45:a b:26:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:2e:0 p:3b:0 p:45:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:2e:a p:3b:a p:45:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:2e:0 p:3b:0 p:45:0 b:26:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:26:a p:2a:a p:3b:a p:45:a t14 p:26:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a b:26:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:2a:0 p:3b:0 p:45:0 b:26:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:2d:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 b:2d:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:24:a p:2e:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:24:0 p:2e:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:26:a p:2a:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:26:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:26:a p:2e:a p:31:a p:39:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:26:0 p:2e:0 p:31:0 p:39:0 p:3b:0 p:45:0 b:21:0 t2 p:26:a p:2e:a p:31:a p:39:a p:3b:a p:45:a b:21:a t14 p:26:0 p:2e:0 p:31:0 p:39:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:24:a p:2a:a p:31:a p:39:a p:3b:a p:45:a b:1f:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:24:0 p:2a:0 p:31:0 p:39:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:1f:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:2e:a p:3b:a p:45:a b:1f:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:2e:0 p:3b:0 p:45:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:2e:a p:3b:a p:45:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:2e:0 p:3b:0 p:45:0 b:1f:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:26:a p:2a:a p:3b:a p:45:a t14 p:26:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a b:1f:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:2a:0 p:3b:0 p:45:0 b:1f:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:1f:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 b:1f:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:24:a p:2e:a p:3b:a p:45:a b:26:a g:39:a g:39:a g:3e:a g:3e:a g:42:a g:42:a pi:39:a pi:3e:a pi:42:a t14 p:24:0 p:2e:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0",
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@router.post("/text-to-midi", tags=["MIDI"])
|
||||
def text_to_midi(body: TextToMidiBody):
|
||||
vocab_config = "backend-python/utils/midi_vocab_config.json"
|
||||
cfg = VocabConfig.from_json(vocab_config)
|
||||
mid = convert_str_to_midi(cfg, body.text.strip())
|
||||
mid_data = io.BytesIO()
|
||||
mid.save(None, mid_data)
|
||||
mid_data.seek(0)
|
||||
|
||||
return StreamingResponse(mid_data, media_type="audio/midi")
|
||||
|
||||
|
||||
class TxtToMidiBody(BaseModel):
|
||||
txt_path: str
|
||||
midi_path: str
|
||||
|
||||
class Config:
|
||||
json_schema_extra = {
|
||||
"example": {
|
||||
"txt_path": "midi/sample.txt",
|
||||
"midi_path": "midi/sample.mid",
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@router.post("/txt-to-midi", tags=["MIDI"])
|
||||
def txt_to_midi(body: TxtToMidiBody):
|
||||
if not body.midi_path.startswith("midi/"):
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "bad output path")
|
||||
|
||||
vocab_config = "backend-python/utils/midi_vocab_config.json"
|
||||
cfg = VocabConfig.from_json(vocab_config)
|
||||
with open(body.txt_path, "r") as f:
|
||||
text = f.read()
|
||||
text = text.strip()
|
||||
mid = convert_str_to_midi(cfg, text)
|
||||
mid.save(body.midi_path)
|
||||
|
||||
return "success"
|
||||
|
||||
|
||||
class MidiToWavBody(BaseModel):
|
||||
midi_path: str
|
||||
wav_path: str
|
||||
sound_font_path: str = "assets/default_sound_font.sf2"
|
||||
|
||||
class Config:
|
||||
json_schema_extra = {
|
||||
"example": {
|
||||
"midi_path": "midi/sample.mid",
|
||||
"wav_path": "midi/sample.wav",
|
||||
"sound_font_path": "assets/default_sound_font.sf2",
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@router.post("/midi-to-wav", tags=["MIDI"])
|
||||
def midi_to_wav(body: MidiToWavBody):
|
||||
"""
|
||||
Install fluidsynth first, see more: https://github.com/FluidSynth/fluidsynth/wiki/Download#distributions
|
||||
"""
|
||||
|
||||
if not body.wav_path.startswith("midi/"):
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "bad output path")
|
||||
|
||||
fs = FluidSynth(body.sound_font_path)
|
||||
fs.midi_to_audio(body.midi_path, body.wav_path)
|
||||
|
||||
return "success"
|
||||
|
||||
|
||||
class TextToWavBody(BaseModel):
|
||||
text: str
|
||||
wav_name: str
|
||||
sound_font_path: str = "assets/default_sound_font.sf2"
|
||||
|
||||
class Config:
|
||||
json_schema_extra = {
|
||||
"example": {
|
||||
"text": "p:24:a p:2a:a p:31:a p:39:a p:3b:a p:45:a b:26:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:24:0 p:2a:0 p:31:0 p:39:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:26:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:2e:a p:3b:a p:45:a b:26:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:2e:0 p:3b:0 p:45:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:2e:a p:3b:a p:45:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:2e:0 p:3b:0 p:45:0 b:26:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:26:a p:2a:a p:3b:a p:45:a t14 p:26:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a b:26:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:2a:0 p:3b:0 p:45:0 b:26:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:2d:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 b:2d:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:24:a p:2e:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:24:0 p:2e:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:26:a p:2a:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:26:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:26:a p:2e:a p:31:a p:39:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:26:0 p:2e:0 p:31:0 p:39:0 p:3b:0 p:45:0 b:21:0 t2 p:26:a p:2e:a p:31:a p:39:a p:3b:a p:45:a b:21:a t14 p:26:0 p:2e:0 p:31:0 p:39:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:24:a p:2a:a p:31:a p:39:a p:3b:a p:45:a b:1f:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:24:0 p:2a:0 p:31:0 p:39:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:1f:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:2e:a p:3b:a p:45:a b:1f:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:2e:0 p:3b:0 p:45:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:2e:a p:3b:a p:45:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:2e:0 p:3b:0 p:45:0 b:1f:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:26:a p:2a:a p:3b:a p:45:a t14 p:26:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a b:1f:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:2a:0 p:3b:0 p:45:0 b:1f:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:1f:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 b:1f:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:24:a p:2e:a p:3b:a p:45:a b:26:a g:39:a g:39:a g:3e:a g:3e:a g:42:a g:42:a pi:39:a pi:3e:a pi:42:a t14 p:24:0 p:2e:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0",
|
||||
"wav_name": "sample",
|
||||
"sound_font_path": "assets/default_sound_font.sf2",
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@router.post("/text-to-wav", tags=["MIDI"])
|
||||
def text_to_wav(body: TextToWavBody):
|
||||
"""
|
||||
Install fluidsynth first, see more: https://github.com/FluidSynth/fluidsynth/wiki/Download#distributions
|
||||
"""
|
||||
|
||||
text = body.text.strip()
|
||||
if not text.startswith("<start>"):
|
||||
text = "<start> " + text
|
||||
if not text.endswith("<end>"):
|
||||
text = text + " <end>"
|
||||
txt_path = f"midi/{body.wav_name}.txt"
|
||||
midi_path = f"midi/{body.wav_name}.mid"
|
||||
wav_path = f"midi/{body.wav_name}.wav"
|
||||
with open(txt_path, "w") as f:
|
||||
f.write(text)
|
||||
txt_to_midi(TxtToMidiBody(txt_path=txt_path, midi_path=midi_path))
|
||||
midi_to_wav(
|
||||
MidiToWavBody(
|
||||
midi_path=midi_path, wav_path=wav_path, sound_font_path=body.sound_font_path
|
||||
)
|
||||
)
|
||||
|
||||
return "success"
|
||||
131
backend-python/routes/misc.py
Normal file
131
backend-python/routes/misc.py
Normal file
@@ -0,0 +1,131 @@
|
||||
from fastapi import APIRouter, HTTPException, status
|
||||
from utils.rwkv import AbstractRWKV
|
||||
import global_var
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
@router.get("/dashboard/billing/credit_grants", tags=["MISC"])
|
||||
def credit_grants():
|
||||
return {
|
||||
"object": "credit_summary",
|
||||
"total_granted": 10000,
|
||||
"total_used": 0,
|
||||
"total_available": 10000,
|
||||
"grants": {
|
||||
"object": "list",
|
||||
"data": [
|
||||
{
|
||||
"object": "credit_grant",
|
||||
"grant_amount": 10000,
|
||||
"used_amount": 0,
|
||||
"effective_at": 1672531200,
|
||||
"expires_at": 33229440000,
|
||||
}
|
||||
],
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
fake_models = [
|
||||
{
|
||||
"id": "gpt-3.5-turbo",
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai",
|
||||
"permission": [
|
||||
{
|
||||
"id": "modelperm-zy5TOjnE2zVaicIcKO9bQDgX",
|
||||
"object": "model_permission",
|
||||
"created": 1690864883,
|
||||
"allow_create_engine": False,
|
||||
"allow_sampling": True,
|
||||
"allow_logprobs": True,
|
||||
"allow_search_indices": False,
|
||||
"allow_view": True,
|
||||
"allow_fine_tuning": False,
|
||||
"organization": "*",
|
||||
"group": None,
|
||||
"is_blocking": False,
|
||||
}
|
||||
],
|
||||
"root": "gpt-3.5-turbo",
|
||||
"parent": None,
|
||||
},
|
||||
{
|
||||
"id": "text-davinci-003",
|
||||
"object": "model",
|
||||
"created": 1669599635,
|
||||
"owned_by": "openai-internal",
|
||||
"permission": [
|
||||
{
|
||||
"id": "modelperm-a6niqBmW2JaGmo0fDO7FEt1n",
|
||||
"object": "model_permission",
|
||||
"created": 1690930172,
|
||||
"allow_create_engine": False,
|
||||
"allow_sampling": True,
|
||||
"allow_logprobs": True,
|
||||
"allow_search_indices": False,
|
||||
"allow_view": True,
|
||||
"allow_fine_tuning": False,
|
||||
"organization": "*",
|
||||
"group": None,
|
||||
"is_blocking": False,
|
||||
}
|
||||
],
|
||||
"root": "text-davinci-003",
|
||||
"parent": None,
|
||||
},
|
||||
]
|
||||
|
||||
|
||||
@router.get("/v1/models", tags=["MISC"])
|
||||
@router.get("/models", tags=["MISC"])
|
||||
def models():
|
||||
model: AbstractRWKV = global_var.get(global_var.Model)
|
||||
model_name = model.name if model else "rwkv"
|
||||
|
||||
return {
|
||||
"object": "list",
|
||||
"data": [
|
||||
{
|
||||
"id": model_name,
|
||||
"object": "model",
|
||||
"owned_by": "rwkv",
|
||||
"root": model_name,
|
||||
"parent": None,
|
||||
},
|
||||
*fake_models,
|
||||
],
|
||||
}
|
||||
|
||||
|
||||
@router.get("/v1/models/{model_id}", tags=["MISC"])
|
||||
@router.get("/models/{model_id}", tags=["MISC"])
|
||||
def model(model_id: str):
|
||||
for fake_model in fake_models:
|
||||
if fake_model["id"] == model_id:
|
||||
return fake_model
|
||||
|
||||
if "rwkv" in model_id.lower():
|
||||
model: AbstractRWKV = global_var.get(global_var.Model)
|
||||
model_name = model.name if model else "rwkv"
|
||||
return {
|
||||
"id": model_name,
|
||||
"object": "model",
|
||||
"owned_by": "rwkv",
|
||||
"root": model_name,
|
||||
"parent": None,
|
||||
}
|
||||
|
||||
raise HTTPException(
|
||||
status.HTTP_404_NOT_FOUND,
|
||||
{
|
||||
"error": {
|
||||
"message": f"The model '{model_id}' does not exist",
|
||||
"type": "invalid_request_error",
|
||||
"param": "model",
|
||||
"code": "model_not_found",
|
||||
}
|
||||
},
|
||||
)
|
||||
@@ -1,5 +1,6 @@
|
||||
from typing import Any, Dict
|
||||
from fastapi import APIRouter, HTTPException, Response, status
|
||||
from typing import Any, Dict, List, Union
|
||||
from utils.log import quick_log
|
||||
from fastapi import APIRouter, HTTPException, Request, Response, status
|
||||
from pydantic import BaseModel
|
||||
import gc
|
||||
import copy
|
||||
@@ -8,55 +9,112 @@ router = APIRouter()
|
||||
|
||||
trie = None
|
||||
dtrie: Dict = {}
|
||||
max_trie_len = 300
|
||||
loop_start_id = 1 # to prevent preloaded prompts from being deleted
|
||||
loop_del_trie_id = loop_start_id
|
||||
|
||||
|
||||
def init():
|
||||
global trie
|
||||
try:
|
||||
import cyac
|
||||
import mmap
|
||||
import os
|
||||
|
||||
if os.path.exists("state_cache.trie"):
|
||||
with open("state_cache.trie", "r") as bf:
|
||||
buff_object = mmap.mmap(bf.fileno(), 0, access=mmap.ACCESS_READ)
|
||||
trie = cyac.Trie.from_buff(buff_object, copy=False)
|
||||
else:
|
||||
trie = cyac.Trie()
|
||||
# import mmap
|
||||
# import os
|
||||
#
|
||||
# if os.path.exists("state_cache.trie"):
|
||||
# with open("state_cache.trie", "r") as bf:
|
||||
# buff_object = mmap.mmap(bf.fileno(), 0, access=mmap.ACCESS_READ)
|
||||
# trie = cyac.Trie.from_buff(buff_object, copy=False)
|
||||
# else:
|
||||
trie = cyac.Trie()
|
||||
except ModuleNotFoundError:
|
||||
print("cyac not found")
|
||||
|
||||
|
||||
class AddStateBody(BaseModel):
|
||||
prompt: str
|
||||
tokens: list[str]
|
||||
state: Any
|
||||
logits: Any
|
||||
|
||||
|
||||
@router.post("/add-state")
|
||||
def add_state(body: AddStateBody):
|
||||
@router.post("/disable-state-cache", tags=["State Cache"])
|
||||
def disable_state_cache():
|
||||
global trie, dtrie
|
||||
if trie is None:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
|
||||
|
||||
id = trie.insert(body.prompt)
|
||||
dtrie[id] = {
|
||||
"tokens": copy.deepcopy(body.tokens),
|
||||
"state": copy.deepcopy(body.state),
|
||||
"logits": copy.deepcopy(body.logits),
|
||||
}
|
||||
trie = None
|
||||
dtrie = {}
|
||||
gc.collect()
|
||||
|
||||
return "success"
|
||||
|
||||
|
||||
@router.post("/reset-state")
|
||||
def reset_state():
|
||||
global trie
|
||||
@router.post("/enable-state-cache", tags=["State Cache"])
|
||||
def enable_state_cache():
|
||||
global trie, dtrie
|
||||
try:
|
||||
import cyac
|
||||
|
||||
trie = cyac.Trie()
|
||||
dtrie = {}
|
||||
gc.collect()
|
||||
|
||||
return "success"
|
||||
except ModuleNotFoundError:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "cyac not found")
|
||||
|
||||
|
||||
class AddStateBody(BaseModel):
|
||||
prompt: str
|
||||
tokens: List[Union[str, int]]
|
||||
state: Any
|
||||
logits: Any
|
||||
|
||||
|
||||
@router.post("/add-state", tags=["State Cache"])
|
||||
def add_state(body: AddStateBody):
|
||||
global trie, dtrie, loop_del_trie_id
|
||||
if trie is None:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
|
||||
|
||||
import torch
|
||||
|
||||
try:
|
||||
id: int = trie.insert(body.prompt)
|
||||
device: torch.device = body.state[0].device
|
||||
dtrie[id] = {
|
||||
"tokens": copy.deepcopy(body.tokens),
|
||||
"state": [tensor.cpu() for tensor in body.state]
|
||||
if device != torch.device("cpu")
|
||||
else copy.deepcopy(body.state),
|
||||
"logits": copy.deepcopy(body.logits),
|
||||
"device": device,
|
||||
}
|
||||
|
||||
if len(trie) >= max_trie_len:
|
||||
del_prompt = trie[loop_del_trie_id]
|
||||
trie.remove(del_prompt)
|
||||
dtrie[loop_del_trie_id] = None
|
||||
loop_del_trie_id = loop_del_trie_id + 1
|
||||
if loop_del_trie_id >= max_trie_len:
|
||||
loop_del_trie_id = loop_start_id
|
||||
|
||||
quick_log(
|
||||
None,
|
||||
None,
|
||||
f"New Trie Id: {id}\nTrie Len: {len(trie)}\nTrie Buff Size: {trie.buff_size()}\nDtrie Buff Size Of Id: {__get_a_dtrie_buff_size(dtrie[id])}",
|
||||
)
|
||||
return "success"
|
||||
except Exception as e:
|
||||
raise HTTPException(
|
||||
status.HTTP_400_BAD_REQUEST, f"insert failed, bad prompt.\n{e}"
|
||||
)
|
||||
|
||||
|
||||
@router.post("/reset-state", tags=["State Cache"])
|
||||
def reset_state():
|
||||
global trie, dtrie
|
||||
if trie is None:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
|
||||
|
||||
import cyac
|
||||
|
||||
trie = cyac.Trie()
|
||||
dtrie = {}
|
||||
gc.collect()
|
||||
|
||||
return "success"
|
||||
@@ -66,33 +124,68 @@ class LongestPrefixStateBody(BaseModel):
|
||||
prompt: str
|
||||
|
||||
|
||||
@router.post("/longest-prefix-state")
|
||||
def longest_prefix_state(body: LongestPrefixStateBody):
|
||||
def __get_a_dtrie_buff_size(dtrie_v):
|
||||
# print(sys.getsizeof(dtrie_v["tokens"][0])) # str
|
||||
# print(sys.getsizeof(dtrie_v["tokens"][0]) * len(dtrie_v["tokens"]))
|
||||
# print(dtrie_v["state"][0][0].element_size())
|
||||
# print(dtrie_v["state"][0].nelement())
|
||||
# print(len(dtrie_v["state"]))
|
||||
# print(
|
||||
# len(dtrie_v["state"])
|
||||
# * dtrie_v["state"][0].nelement()
|
||||
# * dtrie_v["state"][0][0].element_size()
|
||||
# )
|
||||
# print(dtrie_v["logits"][0].element_size())
|
||||
# print(dtrie_v["logits"].nelement())
|
||||
# print(dtrie_v["logits"][0].element_size() * dtrie_v["logits"].nelement())
|
||||
return 54 * len(dtrie_v["tokens"]) + 491520 + 262144 + 28 # TODO
|
||||
|
||||
|
||||
@router.post("/longest-prefix-state", tags=["State Cache"])
|
||||
def longest_prefix_state(body: LongestPrefixStateBody, request: Request):
|
||||
global trie
|
||||
if trie is None:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
|
||||
|
||||
import torch
|
||||
|
||||
id = -1
|
||||
for id, len in trie.prefix(body.prompt):
|
||||
try:
|
||||
for id, len in trie.prefix(body.prompt):
|
||||
pass
|
||||
except:
|
||||
pass
|
||||
if id != -1:
|
||||
v = dtrie[id]
|
||||
device: torch.device = v["device"]
|
||||
prompt: str = trie[id]
|
||||
|
||||
quick_log(request, body, "Hit:\n" + prompt)
|
||||
return {
|
||||
"prompt": trie[id],
|
||||
"prompt": prompt,
|
||||
"tokens": v["tokens"],
|
||||
"state": v["state"],
|
||||
"state": [tensor.to(device) for tensor in v["state"]]
|
||||
if device != torch.device("cpu")
|
||||
else v["state"],
|
||||
"logits": v["logits"],
|
||||
"device": device.type,
|
||||
}
|
||||
else:
|
||||
return {"prompt": "", "tokens": [], "state": None, "logits": None}
|
||||
return {
|
||||
"prompt": "",
|
||||
"tokens": [],
|
||||
"state": None,
|
||||
"logits": None,
|
||||
"device": None,
|
||||
}
|
||||
|
||||
|
||||
@router.post("/save-state")
|
||||
@router.post("/save-state", tags=["State Cache"])
|
||||
def save_state():
|
||||
global trie
|
||||
if trie is None:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
|
||||
|
||||
trie.save("state_cache.trie")
|
||||
# trie.save("state_cache.trie")
|
||||
|
||||
return "success"
|
||||
return "not implemented"
|
||||
|
||||
124
backend-python/rwkv_pip/beta/cuda/att_one.cu
vendored
Normal file
124
backend-python/rwkv_pip/beta/cuda/att_one.cu
vendored
Normal file
@@ -0,0 +1,124 @@
|
||||
#include "ATen/ATen.h"
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <torch/extension.h>
|
||||
|
||||
#include "element_wise.h"
|
||||
#include "util.h"
|
||||
|
||||
// Equivalent Python code:
|
||||
// ww = t_first + k
|
||||
// p = torch.maximum(pp, ww)
|
||||
// e1 = torch.exp(pp - p)
|
||||
// e2 = torch.exp(ww - p)
|
||||
// wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
|
||||
// ww = t_decay + pp
|
||||
// p = torch.maximum(ww, k)
|
||||
// e1 = torch.exp(ww - p)
|
||||
// e2 = torch.exp(k - p)
|
||||
// t1 = e1 * aa + e2 * v
|
||||
// t2 = e1 * bb + e2
|
||||
// r = r * wkv
|
||||
// return t1, t2, p, r
|
||||
struct WkvForwardOne {
|
||||
const float *t_first;
|
||||
const float *k;
|
||||
const float *pp;
|
||||
const float *aa;
|
||||
const float *bb;
|
||||
const float *t_decay;
|
||||
const float *v;
|
||||
/* out */ float *t1;
|
||||
/* out */ float *t2;
|
||||
/* out */ float *p;
|
||||
/* in & out */ half *r;
|
||||
|
||||
__device__ void operator()(int i) const {
|
||||
float ww = t_first[i] + k[i];
|
||||
float pp_ = pp[i];
|
||||
float p_ = (pp_ > ww) ? pp_ : ww;
|
||||
float e1 = expf(pp_ - p_);
|
||||
float e2 = expf(ww - p_);
|
||||
float aa_ = aa[i];
|
||||
float bb_ = bb[i];
|
||||
float v_ = v[i];
|
||||
r[i] = __hmul(r[i], __float2half(((e1 * aa_ + e2 * v_) / (e1 * bb_ + e2))));
|
||||
ww = t_decay[i] + pp_;
|
||||
float k_ = k[i];
|
||||
p_ = (ww > k_) ? ww : k_;
|
||||
e1 = expf(ww - p_);
|
||||
e2 = expf(k_ - p_);
|
||||
t1[i] = e1 * aa_ + e2 * v_;
|
||||
t2[i] = e1 * bb_ + e2;
|
||||
p[i] = p_;
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
Equivalent Python code:
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
vx = xx * v_mix + sx * (1 - v_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
*/
|
||||
|
||||
struct Mix {
|
||||
const half *xx;
|
||||
const half *sx;
|
||||
const half *k_mix;
|
||||
const half *v_mix;
|
||||
const half *r_mix;
|
||||
/* out */ half *kx;
|
||||
/* out */ half *vx;
|
||||
/* out */ half *rx;
|
||||
|
||||
__device__ void operator()(int i) const {
|
||||
half xx_ = xx[i];
|
||||
half sx_ = sx[i];
|
||||
half k_mix_ = k_mix[i];
|
||||
half v_mix_ = v_mix[i];
|
||||
half r_mix_ = r_mix[i];
|
||||
kx[i] = __hadd(__hmul(xx_, k_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
||||
vx[i] = __hadd(__hmul(xx_, v_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), v_mix_)));
|
||||
rx[i] = __hadd(__hmul(xx_, r_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
||||
}
|
||||
};
|
||||
|
||||
using torch::Tensor;
|
||||
|
||||
void gemm_fp16_cublas_tensor(Tensor a, Tensor b, Tensor c);
|
||||
|
||||
Tensor att_one(Tensor x, Tensor ln_w, Tensor ln_b, Tensor sx, Tensor k_mix,
|
||||
Tensor v_mix, Tensor r_mix, Tensor kw,
|
||||
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx, Tensor rw,
|
||||
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
|
||||
/* imm */ Tensor k, Tensor pp, Tensor ww, Tensor aa, Tensor bb,
|
||||
Tensor t_decay, /* imm */ Tensor v, /* in & out */ Tensor r,
|
||||
/* out */ Tensor x_plus_out, /* out */ Tensor t1,
|
||||
/* out */ Tensor t2, /* out */ Tensor p) {
|
||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
||||
element_wise(Mix{data_ptr<half>(xx), data_ptr<half>(sx),
|
||||
data_ptr<half>(k_mix), data_ptr<half>(v_mix),
|
||||
data_ptr<half>(r_mix), data_ptr<half>(kx),
|
||||
data_ptr<half>(vx), data_ptr<half>(rx)},
|
||||
x.numel());
|
||||
|
||||
gemm_fp16_cublas_tensor(kx, kw, k);
|
||||
gemm_fp16_cublas_tensor(vx, vw, v);
|
||||
gemm_fp16_cublas_tensor(rx, rw, r);
|
||||
at::sigmoid_(r);
|
||||
|
||||
element_wise(WkvForwardOne{data_ptr<float>(t_first), data_ptr<float>(k),
|
||||
data_ptr<float>(pp), data_ptr<float>(aa),
|
||||
data_ptr<float>(bb), data_ptr<float>(t_decay),
|
||||
data_ptr<float>(v), data_ptr<float>(t1),
|
||||
data_ptr<float>(t2), data_ptr<float>(p),
|
||||
data_ptr<half>(r)},
|
||||
x.numel());
|
||||
|
||||
gemm_fp16_cublas_tensor(r, ow, x_plus_out);
|
||||
x_plus_out += x;
|
||||
return xx;
|
||||
}
|
||||
109
backend-python/rwkv_pip/beta/cuda/att_one_v5.cu
vendored
Normal file
109
backend-python/rwkv_pip/beta/cuda/att_one_v5.cu
vendored
Normal file
@@ -0,0 +1,109 @@
|
||||
#include "ATen/ATen.h"
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <torch/extension.h>
|
||||
|
||||
#include "element_wise.h"
|
||||
#include "util.h"
|
||||
|
||||
// Equivalent Python code:
|
||||
// s1 = t_first * a + s
|
||||
// s2 = a + t_decay * s
|
||||
struct Fused1 {
|
||||
const float *t_first;
|
||||
const float *t_decay;
|
||||
const float *a;
|
||||
const float *s;
|
||||
const int32_t inner_size;
|
||||
/* out */ float *s1;
|
||||
/* out */ float *s2;
|
||||
|
||||
__device__ void operator()(int i) const {
|
||||
const int j = i / inner_size;
|
||||
s1[i] = t_first[j] * a[i] + s[i];
|
||||
s2[i] = a[i] + t_decay[j] * s[i];
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
Equivalent Python code:
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
vx = xx * v_mix + sx * (1 - v_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
*/
|
||||
|
||||
struct Mix {
|
||||
const half *xx;
|
||||
const half *sx;
|
||||
const half *k_mix;
|
||||
const half *v_mix;
|
||||
const half *r_mix;
|
||||
/* out */ half *kx;
|
||||
/* out */ half *vx;
|
||||
/* out */ half *rx;
|
||||
|
||||
__device__ void operator()(int i) const {
|
||||
half xx_ = xx[i];
|
||||
half sx_ = sx[i];
|
||||
half k_mix_ = k_mix[i];
|
||||
half v_mix_ = v_mix[i];
|
||||
half r_mix_ = r_mix[i];
|
||||
kx[i] = __hadd(__hmul(xx_, k_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
||||
vx[i] = __hadd(__hmul(xx_, v_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), v_mix_)));
|
||||
rx[i] = __hadd(__hmul(xx_, r_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
||||
}
|
||||
};
|
||||
|
||||
using torch::Tensor;
|
||||
|
||||
void gemm_fp16_cublas_tensor(Tensor a, Tensor b, Tensor c);
|
||||
|
||||
Tensor att_one_v5(Tensor x, Tensor sx, Tensor s, Tensor ln_w, Tensor ln_b,
|
||||
Tensor lx_w, Tensor lx_b, Tensor k_mix, Tensor v_mix,
|
||||
Tensor r_mix, Tensor kw,
|
||||
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx,
|
||||
Tensor rw,
|
||||
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
|
||||
/* imm */ Tensor k, Tensor t_decay, /* imm */ Tensor v,
|
||||
/* imm */ Tensor r, /* imm */ Tensor s1,
|
||||
/* out */ Tensor x_plus_out, /* out */ Tensor s2) {
|
||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
||||
element_wise(Mix{data_ptr<half>(xx), data_ptr<half>(sx),
|
||||
data_ptr<half>(k_mix), data_ptr<half>(v_mix),
|
||||
data_ptr<half>(r_mix), data_ptr<half>(kx),
|
||||
data_ptr<half>(vx), data_ptr<half>(rx)},
|
||||
x.numel());
|
||||
|
||||
int H = t_decay.size(0);
|
||||
int S = x.size(-1) / H;
|
||||
gemm_fp16_cublas_tensor(rx, rw, r);
|
||||
r = at::reshape(r, {H, 1, S});
|
||||
gemm_fp16_cublas_tensor(kx, kw, k);
|
||||
k = at::reshape(k, {H, S, 1});
|
||||
gemm_fp16_cublas_tensor(vx, vw, v);
|
||||
v = at::reshape(v, {H, 1, S});
|
||||
|
||||
{
|
||||
Tensor a = at::matmul(k, v);
|
||||
|
||||
// s1 = t_first * a + s
|
||||
// s2 = a + t_decay * s
|
||||
element_wise(Fused1{data_ptr<float>(t_first), data_ptr<float>(t_decay),
|
||||
data_ptr<float>(a), data_ptr<float>(s),
|
||||
static_cast<int32_t>(a.size(1) * a.size(2)),
|
||||
data_ptr<float>(s1), data_ptr<float>(s2)},
|
||||
a.numel());
|
||||
}
|
||||
|
||||
Tensor out = at::matmul(r, s1);
|
||||
out = at::flatten(out);
|
||||
out = at::squeeze(at::group_norm(at::unsqueeze(out, 0), H, lx_w, lx_b), 0);
|
||||
out = at::_cast_Half(out);
|
||||
|
||||
gemm_fp16_cublas_tensor(out, ow, x_plus_out);
|
||||
x_plus_out += x;
|
||||
return xx;
|
||||
}
|
||||
178
backend-python/rwkv_pip/beta/cuda/att_seq.cu
vendored
Normal file
178
backend-python/rwkv_pip/beta/cuda/att_seq.cu
vendored
Normal file
@@ -0,0 +1,178 @@
|
||||
#include "ATen/ATen.h"
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <torch/extension.h>
|
||||
|
||||
#include "util.h"
|
||||
#include "element_wise.h"
|
||||
|
||||
using torch::Tensor;
|
||||
|
||||
void gemm_fp16_cublas(const void *a, const void *b, void *c, int m,
|
||||
int n, int k, bool output_fp32);
|
||||
|
||||
// based on `kernel_wkv_forward`, fusing more operations
|
||||
__global__ void kernel_wkv_forward_new(
|
||||
const int B, const int T, const int C, const float *__restrict__ const _w,
|
||||
const float *__restrict__ const _u, const float *__restrict__ const _k,
|
||||
const float *__restrict__ const _v, const half *__restrict__ const r,
|
||||
half *__restrict__ const _y, float *__restrict__ const _aa,
|
||||
float *__restrict__ const _bb, float *__restrict__ const _pp) {
|
||||
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int _b = idx / C;
|
||||
const int _c = idx % C;
|
||||
const int _offset = _b * T * C + _c;
|
||||
const int _state_offset = _b * C + _c;
|
||||
|
||||
float u = _u[_c];
|
||||
float w = _w[_c];
|
||||
const float *__restrict__ const k = _k + _offset;
|
||||
const float *__restrict__ const v = _v + _offset;
|
||||
half *__restrict__ const y = _y + _offset;
|
||||
|
||||
float aa = _aa[_state_offset];
|
||||
float bb = _bb[_state_offset];
|
||||
float pp = _pp[_state_offset];
|
||||
for (int i = 0; i < T; i++) {
|
||||
const int ii = i * C;
|
||||
const float kk = k[ii];
|
||||
const float vv = v[ii];
|
||||
float ww = u + kk;
|
||||
float p = max(pp, ww);
|
||||
float e1 = exp(pp - p);
|
||||
float e2 = exp(ww - p);
|
||||
y[ii] = __float2half((e1 * aa + e2 * vv) / (e1 * bb + e2));
|
||||
ww = w + pp;
|
||||
p = max(ww, kk);
|
||||
e1 = exp(ww - p);
|
||||
e2 = exp(kk - p);
|
||||
aa = e1 * aa + e2 * vv;
|
||||
bb = e1 * bb + e2;
|
||||
pp = p;
|
||||
}
|
||||
_aa[_state_offset] = aa;
|
||||
_bb[_state_offset] = bb;
|
||||
_pp[_state_offset] = pp;
|
||||
}
|
||||
|
||||
void cuda_wkv_forward_new(int B, int T, int C, float *w, float *u, float *k,
|
||||
float *v, half *r, half *y, float *aa, float *bb,
|
||||
float *pp) {
|
||||
dim3 threadsPerBlock(min(C, 32));
|
||||
assert(B * C % threadsPerBlock.x == 0);
|
||||
dim3 numBlocks(B * C / threadsPerBlock.x);
|
||||
kernel_wkv_forward_new<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, r,
|
||||
y, aa, bb, pp);
|
||||
}
|
||||
|
||||
__global__ void _att_mix(const half *xx, const half *sx, const half *k_mix,
|
||||
const half *v_mix, const half *r_mix,
|
||||
const int outer_size, const int inner_size, half *kx,
|
||||
half *vx, half *rx) {
|
||||
for (int idx2 = blockIdx.x * blockDim.x + threadIdx.x; idx2 < inner_size;
|
||||
idx2 += blockDim.x * gridDim.x) {
|
||||
half k_mix_ = k_mix[idx2];
|
||||
half v_mix_ = v_mix[idx2];
|
||||
half r_mix_ = r_mix[idx2];
|
||||
for (int row = 0; row < outer_size; ++row) {
|
||||
int idx1 = row * inner_size + idx2;
|
||||
half xx_ = xx[idx1];
|
||||
half sx_ = sx[idx1];
|
||||
kx[idx1] = __hadd(__hmul(xx_, k_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
||||
vx[idx1] = __hadd(__hmul(xx_, v_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), v_mix_)));
|
||||
rx[idx1] = __hadd(__hmul(xx_, r_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void att_mix(const half *xx, const half *sx, const half *k_mix,
|
||||
const half *v_mix, const half *r_mix, const int outer_size,
|
||||
const int inner_size, half *kx, half *vx, half *rx) {
|
||||
// 256 is good enough on most GPUs
|
||||
const int32_t BLOCK_SIZE = 256;
|
||||
assert(inner_size % BLOCK_SIZE == 0);
|
||||
_att_mix<<<inner_size / BLOCK_SIZE, BLOCK_SIZE>>>(
|
||||
xx, sx, k_mix, v_mix, r_mix, outer_size, inner_size, kx, vx, rx);
|
||||
}
|
||||
|
||||
struct InplaceSigmoid {
|
||||
__device__ __forceinline__ half operator()(int i) const {
|
||||
ptr[i] = __float2half(1.0 / (1.0 + exp(-__half2float(ptr[i]))));
|
||||
}
|
||||
half *ptr;
|
||||
};
|
||||
|
||||
struct InplaceMul {
|
||||
__device__ __forceinline__ half operator()(int i) const {
|
||||
y[i] = __hmul(x[i], y[i]);
|
||||
}
|
||||
half *y;
|
||||
half *x;
|
||||
};
|
||||
|
||||
/*
|
||||
Equivalent Python code:
|
||||
|
||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
||||
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
vx = xx * v_mix + sx * (1 - v_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
|
||||
r = torch.sigmoid(gemm(rx, rw))
|
||||
k = gemm(kx, kw, output_dtype=torch.float32)
|
||||
v = gemm(vx, vw, output_dtype=torch.float32)
|
||||
|
||||
T = x.shape[0]
|
||||
for t in range(T):
|
||||
kk = k[t]
|
||||
vv = v[t]
|
||||
ww = t_first + kk
|
||||
p = torch.maximum(pp, ww)
|
||||
e1 = torch.exp(pp - p)
|
||||
e2 = torch.exp(ww - p)
|
||||
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
|
||||
ww = t_decay + pp
|
||||
p = torch.maximum(ww, kk)
|
||||
e1 = torch.exp(ww - p)
|
||||
e2 = torch.exp(kk - p)
|
||||
aa = e1 * aa + e2 * vv
|
||||
bb = e1 * bb + e2
|
||||
pp = p
|
||||
out = gemm(r * sx, ow)
|
||||
return x + out, xx[-1,:], aa, bb, pp
|
||||
*/
|
||||
Tensor att_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
||||
Tensor v_mix, Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
||||
Tensor ow, Tensor t_first, Tensor pp, Tensor aa, Tensor bb,
|
||||
Tensor t_decay, /* imm */ Tensor buf, /* out */ Tensor x_plus_out) {
|
||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
||||
sx = at::cat({sx.unsqueeze(0), xx.slice(0, 0, -1)}, 0);
|
||||
char* buf_ptr = (char*)buf.data_ptr();
|
||||
half* kx = (half*)buf_ptr;
|
||||
half* vx = kx + x.numel();
|
||||
half* rx = vx + x.numel();
|
||||
half* wkv_y = rx + x.numel();
|
||||
att_mix(data_ptr<half>(xx), data_ptr<half>(sx), data_ptr<half>(k_mix),
|
||||
data_ptr<half>(v_mix), data_ptr<half>(r_mix), xx.size(0), xx.size(1),
|
||||
kx, vx, rx);
|
||||
float* k = reinterpret_cast<float*>(wkv_y + x.numel());
|
||||
float* v = k + x.size(0) * kw.size(1);
|
||||
half* r = reinterpret_cast<half*>(v + x.size(0) * vw.size(1));
|
||||
|
||||
gemm_fp16_cublas(kx, kw.data_ptr(), k, x.size(0), kw.size(1), kw.size(0), true);
|
||||
gemm_fp16_cublas(vx, vw.data_ptr(), v, x.size(0), vw.size(1), vw.size(0), true);
|
||||
gemm_fp16_cublas(rx, rw.data_ptr(), r, x.size(0), rw.size(1), rw.size(0), false);
|
||||
element_wise(InplaceSigmoid{r}, x.size(0) * rw.size(1));
|
||||
cuda_wkv_forward_new(1, x.size(0), x.size(1), data_ptr<float>(t_decay),
|
||||
data_ptr<float>(t_first), k, v, r,
|
||||
wkv_y, data_ptr<float>(aa),
|
||||
data_ptr<float>(bb), data_ptr<float>(pp));
|
||||
element_wise(InplaceMul{wkv_y, r}, x.numel());
|
||||
gemm_fp16_cublas(wkv_y, ow.data_ptr(), x_plus_out.data_ptr(), x.size(0), ow.size(1), ow.size(0), false);
|
||||
x_plus_out += x;
|
||||
return xx;
|
||||
}
|
||||
21
backend-python/rwkv_pip/beta/cuda/element_wise.h
vendored
Normal file
21
backend-python/rwkv_pip/beta/cuda/element_wise.h
vendored
Normal file
@@ -0,0 +1,21 @@
|
||||
#include <cassert>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
|
||||
template <typename Func> __global__ void _element_wise(Func func, int n) {
|
||||
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n;
|
||||
i += blockDim.x * gridDim.x) {
|
||||
func(i);
|
||||
}
|
||||
}
|
||||
|
||||
// NOTE: packed data type (e.g. float4) is a overkill for current sizes
|
||||
// (4096 in 7B model and 768 in 0.1B model),
|
||||
// and is not faster than the plain float version.
|
||||
template <typename Func>
|
||||
void element_wise(Func func, int n) {
|
||||
// 256 is good enough on most GPUs
|
||||
const int32_t BLOCK_SIZE = 256;
|
||||
assert(n % BLOCK_SIZE == 0);
|
||||
_element_wise<<<n / BLOCK_SIZE, BLOCK_SIZE>>>(func, n);
|
||||
}
|
||||
165
backend-python/rwkv_pip/beta/cuda/ffn.cu
vendored
Normal file
165
backend-python/rwkv_pip/beta/cuda/ffn.cu
vendored
Normal file
@@ -0,0 +1,165 @@
|
||||
#include "ATen/ATen.h"
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <torch/extension.h>
|
||||
|
||||
#include "element_wise.h"
|
||||
#include "util.h"
|
||||
|
||||
using torch::Tensor;
|
||||
|
||||
void gemm_fp16_cublas(const void *a, const void *b, void *c, int ori_m,
|
||||
int ori_n, int ori_k, bool output_fp32);
|
||||
|
||||
__global__ void _ffn_seq_mix(const half *xx, const half *sx, const half *k_mix,
|
||||
const half *r_mix, const int outer_size,
|
||||
const int inner_size, half *kx, half *rx) {
|
||||
for (int idx2 = blockIdx.x * blockDim.x + threadIdx.x; idx2 < inner_size;
|
||||
idx2 += blockDim.x * gridDim.x) {
|
||||
half k_mix_ = k_mix[idx2];
|
||||
half r_mix_ = r_mix[idx2];
|
||||
for (int row = 0; row < outer_size; ++row) {
|
||||
int idx1 = row * inner_size + idx2;
|
||||
half xx_ = xx[idx1];
|
||||
half sx_ = sx[idx1];
|
||||
kx[idx1] = __hadd(__hmul(xx_, k_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
||||
rx[idx1] = __hadd(__hmul(xx_, r_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ffn_seq_mix(const half *xx, const half *sx, const half *k_mix,
|
||||
const half *r_mix, const int outer_size, const int inner_size,
|
||||
half *kx, half *rx) {
|
||||
// 256 is good enough on most GPUs
|
||||
const int32_t BLOCK_SIZE = 256;
|
||||
assert(inner_size % BLOCK_SIZE == 0);
|
||||
_ffn_seq_mix<<<inner_size / BLOCK_SIZE, BLOCK_SIZE>>>(
|
||||
xx, sx, k_mix, r_mix, outer_size, inner_size, kx, rx);
|
||||
}
|
||||
|
||||
struct InplaceSigmoid {
|
||||
__device__ __forceinline__ void operator()(int i) const {
|
||||
ptr[i] = __float2half(1.0 / (1.0 + exp(-__half2float(ptr[i]))));
|
||||
}
|
||||
half *ptr;
|
||||
};
|
||||
|
||||
struct InplaceReLUAndSquare {
|
||||
__device__ __forceinline__ void operator()(int i) const {
|
||||
// __hmax is not defined in old cuda
|
||||
if (__hgt(ptr[i], __float2half(0))) {
|
||||
ptr[i] = __hmul(ptr[i], ptr[i]);
|
||||
} else {
|
||||
ptr[i] = __float2half(0);
|
||||
}
|
||||
}
|
||||
half *ptr;
|
||||
};
|
||||
|
||||
struct InplaceFma {
|
||||
__device__ __forceinline__ void operator()(int i) const {
|
||||
a[i] = __hfma(a[i], b[i], c[i]);
|
||||
}
|
||||
half *a;
|
||||
const half *b;
|
||||
const half *c;
|
||||
};
|
||||
|
||||
/*
|
||||
Equivalent Python code:
|
||||
|
||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
||||
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
|
||||
r = torch.sigmoid(gemm(rx, rw))
|
||||
vx = torch.square(torch.relu(gemm(kx, kw)))
|
||||
out = r * gemm(vx, vw)
|
||||
return x + out, xx[-1,:]
|
||||
*/
|
||||
Tensor ffn_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
||||
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
||||
/* imm */ Tensor buf,
|
||||
/* out */ Tensor x_plus_out) {
|
||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
||||
sx = at::cat({sx.unsqueeze(0), xx.slice(0, 0, -1)}, 0);
|
||||
char *buf_ptr = (char *)buf.data_ptr();
|
||||
half *kx = (half *)buf_ptr;
|
||||
half *rx = kx + x.numel();
|
||||
half *vx = rx + x.numel();
|
||||
half *r = vx + x.size(0) * kw.size(1);
|
||||
ffn_seq_mix(data_ptr<half>(xx), data_ptr<half>(sx), data_ptr<half>(k_mix),
|
||||
data_ptr<half>(r_mix), xx.size(0), xx.size(1), kx, rx);
|
||||
|
||||
gemm_fp16_cublas(rx, rw.data_ptr(), r, x.size(0), rw.size(1), x.size(1),
|
||||
false);
|
||||
element_wise(InplaceSigmoid{r}, x.size(0) * rw.size(1));
|
||||
gemm_fp16_cublas(kx, kw.data_ptr(), vx, x.size(0), kw.size(1), x.size(1),
|
||||
false);
|
||||
element_wise(InplaceReLUAndSquare{vx}, x.size(0) * kw.size(1));
|
||||
gemm_fp16_cublas(vx, vw.data_ptr(), x_plus_out.data_ptr(), x.size(0),
|
||||
vw.size(1), vw.size(0), false);
|
||||
element_wise(InplaceFma{data_ptr<half>(x_plus_out), r, data_ptr<half>(x)},
|
||||
x_plus_out.numel());
|
||||
return xx;
|
||||
}
|
||||
|
||||
struct FfnOneMix {
|
||||
__device__ __forceinline__ void operator()(int idx) {
|
||||
half k_mix_ = k_mix[idx];
|
||||
half r_mix_ = r_mix[idx];
|
||||
half xx_ = xx[idx];
|
||||
half sx_ = sx[idx];
|
||||
kx[idx] = __hadd(__hmul(xx_, k_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
||||
rx[idx] = __hadd(__hmul(xx_, r_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
||||
}
|
||||
half *k_mix;
|
||||
half *r_mix;
|
||||
half *xx;
|
||||
half *sx;
|
||||
half *kx;
|
||||
half *rx;
|
||||
};
|
||||
|
||||
/*
|
||||
Equivalent Python code:
|
||||
|
||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
|
||||
r = torch.sigmoid(gemm(rx, rw))
|
||||
vx = torch.square(torch.relu(gemm(kx, kw)))
|
||||
out = r * gemm(vx, vw)
|
||||
return x + out, xx
|
||||
*/
|
||||
Tensor ffn_one(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
||||
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
||||
/* imm */ Tensor buf,
|
||||
/* out */ Tensor x_plus_out) {
|
||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
||||
char *buf_ptr = (char *)buf.data_ptr();
|
||||
half *kx = (half *)buf_ptr;
|
||||
half *rx = kx + x.numel();
|
||||
half *vx = rx + x.numel();
|
||||
half *r = vx + x.size(0) * kw.size(1);
|
||||
element_wise(FfnOneMix{data_ptr<half>(k_mix), data_ptr<half>(r_mix),
|
||||
data_ptr<half>(xx), data_ptr<half>(sx), kx, rx},
|
||||
x.numel());
|
||||
// vector * matrix, so m = 1
|
||||
gemm_fp16_cublas(rx, rw.data_ptr(), r, 1, rw.size(1), rw.size(0), false);
|
||||
element_wise(InplaceSigmoid{r}, rw.size(1));
|
||||
gemm_fp16_cublas(kx, kw.data_ptr(), vx, 1, kw.size(1), kw.size(0), false);
|
||||
element_wise(InplaceReLUAndSquare{vx}, kw.size(1));
|
||||
gemm_fp16_cublas(vx, vw.data_ptr(), x_plus_out.data_ptr(), 1, vw.size(1),
|
||||
vw.size(0), false);
|
||||
element_wise(InplaceFma{data_ptr<half>(x_plus_out), r, data_ptr<half>(x)},
|
||||
x_plus_out.numel());
|
||||
return xx;
|
||||
}
|
||||
128
backend-python/rwkv_pip/beta/cuda/gemm_fp16_cublas.cpp
vendored
Normal file
128
backend-python/rwkv_pip/beta/cuda/gemm_fp16_cublas.cpp
vendored
Normal file
@@ -0,0 +1,128 @@
|
||||
#include <cublas_v2.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <torch/extension.h>
|
||||
|
||||
#define CUBLAS_CHECK(condition) \
|
||||
for (cublasStatus_t _cublas_check_status = (condition); \
|
||||
_cublas_check_status != CUBLAS_STATUS_SUCCESS;) \
|
||||
throw std::runtime_error("cuBLAS error " + \
|
||||
std::to_string(_cublas_check_status) + " at " + \
|
||||
std::to_string(__LINE__));
|
||||
|
||||
#define CUDA_CHECK(condition) \
|
||||
for (cudaError_t _cuda_check_status = (condition); \
|
||||
_cuda_check_status != cudaSuccess;) \
|
||||
throw std::runtime_error( \
|
||||
"CUDA error " + std::string(cudaGetErrorString(_cuda_check_status)) + \
|
||||
" at " + std::to_string(__LINE__));
|
||||
|
||||
cublasHandle_t get_cublas_handle() {
|
||||
static cublasHandle_t cublas_handle = []() {
|
||||
cublasHandle_t handle = nullptr;
|
||||
CUBLAS_CHECK(cublasCreate(&handle));
|
||||
#if CUDA_VERSION < 11000
|
||||
CUBLAS_CHECK(cublasSetMathMode(handle, CUBLAS_TENSOR_OP_MATH));
|
||||
#else
|
||||
CUBLAS_CHECK(cublasSetMathMode(handle, CUBLAS_DEFAULT_MATH));
|
||||
#endif // CUDA_VERSION < 11000
|
||||
return handle;
|
||||
}();
|
||||
return cublas_handle;
|
||||
}
|
||||
|
||||
/*
|
||||
NOTE: blas gemm is column-major by default, but we need row-major output.
|
||||
The data of row-major, transposed matrix is exactly the same as the
|
||||
column-major, non-transposed matrix, and C = A * B ---> C^T = B^T * A^T
|
||||
*/
|
||||
void gemm_fp16_cublas(const void *a, const void *b, void *c, int ori_m,
|
||||
int ori_n, int ori_k, bool output_fp32) {
|
||||
const auto cuda_data_type = CUDA_R_16F;
|
||||
const auto cuda_c_data_type = output_fp32 ? CUDA_R_32F : CUDA_R_16F;
|
||||
const auto compute_type = CUDA_R_32F;
|
||||
const float sp_alpha = 1.f;
|
||||
// use CUBLAS_OP_N. see the notes above
|
||||
const cublasOperation_t cublas_trans_a = CUBLAS_OP_N;
|
||||
const cublasOperation_t cublas_trans_b = CUBLAS_OP_N;
|
||||
// m = (B^T).size(0) = B.size(1) = n;
|
||||
const int cublas_m = ori_n;
|
||||
const int cublas_k = ori_k;
|
||||
// comptiable with rwkv one mode, where 1-D tensor * 2-D tensor
|
||||
// const int n = a.dense_dim() == 1 ? 1 : a.size(0);
|
||||
const int cublas_n = ori_m;
|
||||
const int cublas_lda = cublas_m;
|
||||
const int cublas_ldb = cublas_k;
|
||||
const int cublas_ldc = cublas_m;
|
||||
cublasHandle_t cublas_handle = get_cublas_handle();
|
||||
|
||||
#if CUDA_VERSION >= 11000
|
||||
cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT;
|
||||
#else
|
||||
cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
|
||||
#endif
|
||||
const float sp_beta = 0.f;
|
||||
CUBLAS_CHECK(cublasGemmEx(
|
||||
cublas_handle, cublas_trans_a, cublas_trans_b, cublas_m, cublas_n,
|
||||
cublas_k, &sp_alpha, b, cuda_data_type, cublas_lda,
|
||||
a, cuda_data_type, cublas_ldb, &sp_beta, c,
|
||||
cuda_c_data_type, cublas_ldc, compute_type, algo));
|
||||
}
|
||||
|
||||
/*
|
||||
NOTE: blas gemm is column-major by default, but we need row-major output.
|
||||
The data of row-major, transposed matrix is exactly the same as the
|
||||
column-major, non-transposed matrix, and C = A * B ---> C^T = B^T * A^T
|
||||
*/
|
||||
void gemm_fp16_cublas_tensor(torch::Tensor a, torch::Tensor b, torch::Tensor c) {
|
||||
if (a.sizes().size() == 1) {
|
||||
assert(b.sizes().size() == 2);
|
||||
a = at::unsqueeze(a, 0);
|
||||
}
|
||||
const auto cuda_data_type = CUDA_R_16F;
|
||||
const auto cuda_c_data_type =
|
||||
c.dtype() == torch::kFloat32 ? CUDA_R_32F : CUDA_R_16F;
|
||||
const auto compute_type = CUDA_R_32F;
|
||||
const float sp_alpha = 1.f;
|
||||
// swap a and b, and use CUBLAS_OP_N. see the notes above
|
||||
std::swap(a, b);
|
||||
const cublasOperation_t cublas_trans_a = CUBLAS_OP_N;
|
||||
const cublasOperation_t cublas_trans_b = CUBLAS_OP_N;
|
||||
// m = (B^T).size(0) = B.size(1), and = A.size(1) after swap,
|
||||
// negative axis is used because of the existence of batch matmul.
|
||||
const int m = a.size(-1);
|
||||
const int k = a.size(-2);
|
||||
const int n = b.size(-2);
|
||||
const int cublas_lda = m;
|
||||
const int cublas_ldb = k;
|
||||
const int cublas_ldc = m;
|
||||
cublasHandle_t cublas_handle = get_cublas_handle();
|
||||
|
||||
#if CUDA_VERSION >= 11000
|
||||
cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT;
|
||||
#else
|
||||
cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
|
||||
#endif
|
||||
const float sp_beta = 0.f;
|
||||
if (a.sizes().size() == 2 && b.sizes().size() == 2) {
|
||||
CUBLAS_CHECK(cublasGemmEx(
|
||||
cublas_handle, cublas_trans_a, cublas_trans_b, m, n, k, &sp_alpha,
|
||||
a.data_ptr(), cuda_data_type, cublas_lda, b.data_ptr(), cuda_data_type,
|
||||
cublas_ldb, &sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc,
|
||||
compute_type, algo));
|
||||
} else {
|
||||
// batch matmul
|
||||
assert(a.sizes().size() == 3 && b.sizes().size() == 3);
|
||||
|
||||
const long long int cublas_stride_a = m * k;
|
||||
const long long int cublas_stride_b = k * n;
|
||||
const long long int cublas_stride_c = m * n;
|
||||
CUBLAS_CHECK(cublasGemmStridedBatchedEx(
|
||||
cublas_handle, cublas_trans_a, cublas_trans_b, m,
|
||||
n, k, &sp_alpha, a.data_ptr(), cuda_data_type, cublas_lda,
|
||||
cublas_stride_a, b.data_ptr(), cuda_data_type, cublas_ldb, cublas_stride_b,
|
||||
&sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc, cublas_stride_c,
|
||||
a.size(0), compute_type, algo));
|
||||
}
|
||||
}
|
||||
246
backend-python/rwkv_pip/beta/cuda/operators.cu
vendored
Normal file
246
backend-python/rwkv_pip/beta/cuda/operators.cu
vendored
Normal file
@@ -0,0 +1,246 @@
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include "ATen/ATen.h"
|
||||
#include <cuda_fp16.h>
|
||||
#define MIN_VALUE (-1e38)
|
||||
typedef at::Half fp16;
|
||||
__half *cast(fp16 *ptr) {
|
||||
return reinterpret_cast<__half *>(ptr);
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
__global__ void kernel_wkv_forward(const int B, const int T, const int C,
|
||||
const float *__restrict__ const _w, const float *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
|
||||
F *__restrict__ const _y, float *__restrict__ const _aa, float *__restrict__ const _bb, float *__restrict__ const _pp) {
|
||||
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int _b = idx / C;
|
||||
const int _c = idx % C;
|
||||
const int _offset = _b * T * C + _c;
|
||||
const int _state_offset = _b * C + _c;
|
||||
|
||||
float u = _u[_c];
|
||||
float w = _w[_c];
|
||||
const F *__restrict__ const k = _k + _offset;
|
||||
const F *__restrict__ const v = _v + _offset;
|
||||
F *__restrict__ const y = _y + _offset;
|
||||
|
||||
float aa = _aa[_state_offset];
|
||||
float bb = _bb[_state_offset];
|
||||
float pp = _pp[_state_offset];
|
||||
for (int i = 0; i < T; i++) {
|
||||
const int ii = i * C;
|
||||
const float kk = float(k[ii]);
|
||||
const float vv = float(v[ii]);
|
||||
float ww = u + kk;
|
||||
float p = max(pp, ww);
|
||||
float e1 = exp(pp - p);
|
||||
float e2 = exp(ww - p);
|
||||
y[ii] = F((e1 * aa + e2 * vv) / (e1 * bb + e2));
|
||||
ww = w + pp;
|
||||
p = max(ww, kk);
|
||||
e1 = exp(ww - p);
|
||||
e2 = exp(kk - p);
|
||||
aa = e1 * aa + e2 * vv;
|
||||
bb = e1 * bb + e2;
|
||||
pp = p;
|
||||
}
|
||||
_aa[_state_offset] = aa;
|
||||
_bb[_state_offset] = bb;
|
||||
_pp[_state_offset] = pp;
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void cuda_wkv_forward(int B, int T, int C, float *w, float *u, F *k, F *v, F *y, float *aa, float *bb, float *pp) {
|
||||
dim3 threadsPerBlock( min(C, 32) );
|
||||
assert(B * C % threadsPerBlock.x == 0);
|
||||
dim3 numBlocks(B * C / threadsPerBlock.x);
|
||||
kernel_wkv_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, aa, bb, pp);
|
||||
}
|
||||
|
||||
template void cuda_wkv_forward<fp16>(
|
||||
int B, int T, int C,
|
||||
float *w, float *u, fp16 *k, fp16 *v, fp16 *y,
|
||||
float *aa, float *bb, float *pp);
|
||||
template void cuda_wkv_forward<float>(
|
||||
int B, int T, int C,
|
||||
float *w, float *u, float *k, float *v, float *y,
|
||||
float *aa, float *bb, float *pp);
|
||||
|
||||
__global__ void kernel_mm_seq_fp32i8(
|
||||
const int B, const int N, const int M,
|
||||
const float *__restrict__ const x, const int x_stride,
|
||||
const uint8_t *__restrict__ const w, const int w_stride,
|
||||
const float *__restrict__ const mx,
|
||||
const float *__restrict__ const rx,
|
||||
const float *__restrict__ const my,
|
||||
const float *__restrict__ const ry,
|
||||
float *__restrict__ const y, const int y_stride) {
|
||||
|
||||
const int i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (i < B && k < M) {
|
||||
float y_local = 0;
|
||||
for (int j = 0; j < N; ++j) {
|
||||
y_local += x[i * x_stride + j] * (
|
||||
(float(w[j * w_stride + k]) + 0.5f)
|
||||
* rx[k] * ry[j] + mx[k] + my[j]
|
||||
);
|
||||
}
|
||||
y[i * y_stride + k] = y_local;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void cuda_mm8_seq(int B, int N, int M,
|
||||
F *x, int x_stride,
|
||||
uint8_t *w, int w_stride,
|
||||
F *mx, F *rx,
|
||||
F *my, F *ry,
|
||||
F *y, int y_stride);
|
||||
|
||||
template <>
|
||||
void cuda_mm8_seq<float>(int B, int N, int M,
|
||||
float *x, int x_stride,
|
||||
uint8_t *w, int w_stride,
|
||||
float *mx, float *rx,
|
||||
float *my, float *ry,
|
||||
float *y, int y_stride) {
|
||||
dim3 blockSize(1, 128);
|
||||
dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
|
||||
kernel_mm_seq_fp32i8<<<gridSize, blockSize>>>(
|
||||
B, N, M, x, x_stride, w, w_stride,
|
||||
mx, rx, my, ry, y, y_stride);
|
||||
}
|
||||
|
||||
__global__ void kernel_mm_seq_fp16i8(
|
||||
const int B, const int N, const int M,
|
||||
const __half *__restrict__ const x, const int x_stride,
|
||||
const uint8_t *__restrict__ const w, const int w_stride,
|
||||
const __half *__restrict__ const mx,
|
||||
const __half *__restrict__ const rx,
|
||||
const __half *__restrict__ const my,
|
||||
const __half *__restrict__ const ry,
|
||||
__half *__restrict__ const y, const int y_stride) {
|
||||
|
||||
const int i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (i < B && k < M) {
|
||||
float y_local = 0;
|
||||
for (int j = 0; j < N; ++j) {
|
||||
y_local += __half2float(x[i * x_stride + j]) * (
|
||||
(float(w[j * w_stride + k]) + 0.5f)
|
||||
* __half2float(rx[k]) * __half2float(ry[j])
|
||||
+ __half2float(mx[k]) + __half2float(my[j])
|
||||
);
|
||||
}
|
||||
y[i * y_stride + k] = __float2half(y_local);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
void cuda_mm8_seq<fp16>(int B, int N, int M,
|
||||
fp16 *x, int x_stride,
|
||||
uint8_t *w, int w_stride,
|
||||
fp16 *mx, fp16 *rx,
|
||||
fp16 *my, fp16 *ry,
|
||||
fp16 *y, int y_stride) {
|
||||
dim3 blockSize(1, 128);
|
||||
dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
|
||||
kernel_mm_seq_fp16i8<<<gridSize, blockSize>>>(
|
||||
B, N, M, cast(x), x_stride, w, w_stride,
|
||||
cast(mx), cast(rx), cast(my), cast(ry), cast(y), y_stride);
|
||||
}
|
||||
|
||||
#define MM8_ONE_JSPLIT 24
|
||||
#define MM8_ONE_TILE 1024
|
||||
|
||||
__global__ void kernel_mm_one_fp32i8(
|
||||
const int N, const int M,
|
||||
const float *__restrict__ const x,
|
||||
const uint8_t *__restrict__ const w, const int w_stride,
|
||||
const float *__restrict__ const mx,
|
||||
const float *__restrict__ const rx,
|
||||
const float *__restrict__ const my,
|
||||
const float *__restrict__ const ry,
|
||||
float *__restrict__ const y) {
|
||||
|
||||
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
||||
const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
||||
|
||||
if (k < M) {
|
||||
float y_local = 0;
|
||||
for (int j = j0; j < j1; ++j) {
|
||||
y_local += x[j] * (
|
||||
(float(w[j * w_stride + k]) + 0.5f)
|
||||
* rx[k] * ry[j] + mx[k] + my[j]
|
||||
);
|
||||
}
|
||||
atomicAdd(&y[k], y_local);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void cuda_mm8_one(int N, int M,
|
||||
F *x,
|
||||
uint8_t *w, int w_stride,
|
||||
F *mx, F *rx,
|
||||
F *my, F *ry,
|
||||
float *y);
|
||||
|
||||
template <>
|
||||
void cuda_mm8_one<float>(int N, int M,
|
||||
float *x,
|
||||
uint8_t *w, int w_stride,
|
||||
float *mx, float *rx,
|
||||
float *my, float *ry,
|
||||
float *y) {
|
||||
dim3 blockSize(1, MM8_ONE_TILE);
|
||||
dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
|
||||
kernel_mm_one_fp32i8<<<gridSize, blockSize>>>(
|
||||
N, M, x, w, w_stride,
|
||||
mx, rx, my, ry, y);
|
||||
}
|
||||
|
||||
__global__ void kernel_mm_one_fp16i8(
|
||||
const int N, const int M,
|
||||
const __half *__restrict__ const x,
|
||||
const uint8_t *__restrict__ const w, const int w_stride,
|
||||
const __half *__restrict__ const mx,
|
||||
const __half *__restrict__ const rx,
|
||||
const __half *__restrict__ const my,
|
||||
const __half *__restrict__ const ry,
|
||||
float *__restrict__ const y) {
|
||||
|
||||
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
||||
const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
||||
|
||||
if (k < M) {
|
||||
float y_local = 0;
|
||||
for (int j = j0; j < j1; ++j) {
|
||||
y_local += __half2float(x[j]) * (
|
||||
(float(w[j * w_stride + k]) + 0.5f)
|
||||
* __half2float(rx[k]) * __half2float(ry[j])
|
||||
+ __half2float(mx[k]) + __half2float(my[j])
|
||||
);
|
||||
}
|
||||
atomicAdd(&y[k], y_local);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
void cuda_mm8_one<fp16>(int N, int M,
|
||||
fp16 *x,
|
||||
uint8_t *w, int w_stride,
|
||||
fp16 *mx, fp16 *rx,
|
||||
fp16 *my, fp16 *ry,
|
||||
float *y) {
|
||||
dim3 blockSize(1, MM8_ONE_TILE);
|
||||
dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
|
||||
kernel_mm_one_fp16i8<<<gridSize, blockSize>>>(
|
||||
N, M, cast(x), w, w_stride,
|
||||
cast(mx), cast(rx), cast(my), cast(ry), y);
|
||||
}
|
||||
7
backend-python/rwkv_pip/beta/cuda/util.h
vendored
Normal file
7
backend-python/rwkv_pip/beta/cuda/util.h
vendored
Normal file
@@ -0,0 +1,7 @@
|
||||
#include "ATen/ATen.h"
|
||||
#include <cuda_fp16.h>
|
||||
|
||||
template <typename T> T *data_ptr(torch::Tensor x) { return x.data_ptr<T>(); }
|
||||
template <> inline half *data_ptr(torch::Tensor x) {
|
||||
return reinterpret_cast<half *>(x.data_ptr<at::Half>());
|
||||
}
|
||||
181
backend-python/rwkv_pip/beta/cuda/wrapper.cpp
vendored
Normal file
181
backend-python/rwkv_pip/beta/cuda/wrapper.cpp
vendored
Normal file
@@ -0,0 +1,181 @@
|
||||
#include <torch/extension.h>
|
||||
#include "ATen/ATen.h"
|
||||
#include <iostream>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
|
||||
typedef at::Half fp16;
|
||||
|
||||
template <typename F>
|
||||
void cuda_wkv_forward(int B, int T, int C,
|
||||
float *w, float *u, F *k, F *v, F *y,
|
||||
float *aa, float *bb, float *pp);
|
||||
template <typename F>
|
||||
void cuda_mm8_seq(int B, int N, int M,
|
||||
F *x, int x_stride,
|
||||
uint8_t *w, int w_stride,
|
||||
F *mx, F *rx,
|
||||
F *my, F *ry,
|
||||
F *y, int y_stride);
|
||||
template <typename F>
|
||||
void cuda_mm8_one(int N, int M,
|
||||
F *x,
|
||||
uint8_t *w, int w_stride,
|
||||
F *mx, F *rx,
|
||||
F *my, F *ry,
|
||||
float *y);
|
||||
|
||||
void wkv_forward(int64_t B, int64_t T, int64_t C,
|
||||
torch::Tensor &w, torch::Tensor &u,
|
||||
torch::Tensor &k, torch::Tensor &v, torch::Tensor &y,
|
||||
torch::Tensor &aa, torch::Tensor &bb, torch::Tensor &pp) {
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
|
||||
switch (k.scalar_type()) {
|
||||
case c10::ScalarType::Half:
|
||||
cuda_wkv_forward(B, T, C,
|
||||
w.data_ptr<float>(), u.data_ptr<float>(),
|
||||
k.data_ptr<fp16>(), v.data_ptr<fp16>(), y.data_ptr<fp16>(),
|
||||
aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
|
||||
break;
|
||||
case c10::ScalarType::Float:
|
||||
cuda_wkv_forward(B, T, C,
|
||||
w.data_ptr<float>(), u.data_ptr<float>(),
|
||||
k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>(),
|
||||
aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
|
||||
break;
|
||||
default:
|
||||
assert(false && "Only FP16 and FP32 are currently supported");
|
||||
}
|
||||
}
|
||||
|
||||
void mm8_seq(int64_t B, int64_t N, int64_t M,
|
||||
torch::Tensor &x, torch::Tensor &w,
|
||||
torch::Tensor &mx, torch::Tensor &rx,
|
||||
torch::Tensor &my, torch::Tensor &ry,
|
||||
torch::Tensor &y) {
|
||||
assert(x.stride(1) == 1);
|
||||
assert(w.stride(1) == 1);
|
||||
assert(mx.stride(0) == 1 && rx.stride(0) == 1);
|
||||
assert(my.stride(0) == 1 && ry.stride(0) == 1);
|
||||
assert(y.stride(1) == 1);
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
|
||||
switch (x.scalar_type()) {
|
||||
case c10::ScalarType::Half:
|
||||
cuda_mm8_seq(
|
||||
B, N, M,
|
||||
x.data_ptr<fp16>(), x.stride(0),
|
||||
w.data_ptr<uint8_t>(), w.stride(0),
|
||||
mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
|
||||
my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
|
||||
y.data_ptr<fp16>(), y.stride(0));
|
||||
break;
|
||||
case c10::ScalarType::Float:
|
||||
cuda_mm8_seq(
|
||||
B, N, M,
|
||||
x.data_ptr<float>(), x.stride(0),
|
||||
w.data_ptr<uint8_t>(), w.stride(0),
|
||||
mx.data_ptr<float>(), rx.data_ptr<float>(),
|
||||
my.data_ptr<float>(), ry.data_ptr<float>(),
|
||||
y.data_ptr<float>(), y.stride(0));
|
||||
break;
|
||||
default:
|
||||
assert(false && "Only FP16 and FP32 are currently supported");
|
||||
}
|
||||
}
|
||||
void mm8_one(int64_t N, int64_t M,
|
||||
torch::Tensor &x, torch::Tensor &w,
|
||||
torch::Tensor &mx, torch::Tensor &rx,
|
||||
torch::Tensor &my, torch::Tensor &ry,
|
||||
torch::Tensor &y) {
|
||||
assert(x.stride(0) == 1);
|
||||
assert(w.stride(1) == 1);
|
||||
assert(mx.stride(0) == 1 && rx.stride(0) == 1);
|
||||
assert(my.stride(0) == 1 && ry.stride(0) == 1);
|
||||
assert(y.stride(0) == 1);
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
|
||||
switch (x.scalar_type()) {
|
||||
case c10::ScalarType::Half:
|
||||
cuda_mm8_one(
|
||||
N, M,
|
||||
x.data_ptr<fp16>(),
|
||||
w.data_ptr<uint8_t>(), w.stride(0),
|
||||
mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
|
||||
my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
|
||||
y.data_ptr<float>());
|
||||
break;
|
||||
case c10::ScalarType::Float:
|
||||
cuda_mm8_one(
|
||||
N, M,
|
||||
x.data_ptr<float>(),
|
||||
w.data_ptr<uint8_t>(), w.stride(0),
|
||||
mx.data_ptr<float>(), rx.data_ptr<float>(),
|
||||
my.data_ptr<float>(), ry.data_ptr<float>(),
|
||||
y.data_ptr<float>());
|
||||
break;
|
||||
default:
|
||||
assert(false && "Only FP16 and FP32 are currently supported");
|
||||
}
|
||||
}
|
||||
|
||||
using torch::Tensor;
|
||||
|
||||
#ifndef DISABLE_CUBLAS_GEMM
|
||||
void gemm_fp16_cublas_tensor(Tensor a, Tensor b, Tensor c);
|
||||
#endif
|
||||
|
||||
Tensor att_one(Tensor x, Tensor ln_w, Tensor ln_b, Tensor sx, Tensor k_mix,
|
||||
Tensor v_mix, Tensor r_mix, Tensor kw,
|
||||
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx, Tensor rw,
|
||||
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
|
||||
/* imm */ Tensor k, Tensor pp, Tensor ww, Tensor aa, Tensor bb,
|
||||
Tensor t_decay, /* imm */ Tensor v, /* in & out */ Tensor r,
|
||||
/* out */ Tensor x_plus_out, /* out */ Tensor t1,
|
||||
/* out */ Tensor t2, /* out */ Tensor p);
|
||||
|
||||
Tensor att_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
||||
Tensor v_mix, Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
||||
Tensor ow, Tensor t_first, Tensor pp, Tensor aa, Tensor bb,
|
||||
Tensor t_decay, /* imm */ Tensor buf, /* out */ Tensor x_plus_out);
|
||||
|
||||
Tensor att_one_v5(Tensor x, Tensor sx, Tensor s, Tensor ln_w, Tensor ln_b,
|
||||
Tensor lx_w, Tensor lx_b, Tensor k_mix, Tensor v_mix,
|
||||
Tensor r_mix, Tensor kw,
|
||||
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx,
|
||||
Tensor rw,
|
||||
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
|
||||
/* imm */ Tensor k, Tensor t_decay, /* imm */ Tensor v,
|
||||
/* imm */ Tensor r, /* imm */ Tensor s1,
|
||||
/* out */ Tensor x_plus_out, /* out */ Tensor s2);
|
||||
|
||||
Tensor ffn_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
||||
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
||||
/* imm */ Tensor buf,
|
||||
/* out */ Tensor x_plus_out);
|
||||
|
||||
Tensor ffn_one(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
||||
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
||||
/* imm */ Tensor buf,
|
||||
/* out */ Tensor x_plus_out);
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("wkv_forward", &wkv_forward, "wkv forward");
|
||||
m.def("mm8_seq", &mm8_seq, "mm8 seq");
|
||||
m.def("mm8_one", &mm8_one, "mm8 one");
|
||||
m.def("gemm_fp16_cublas", &gemm_fp16_cublas_tensor, "gemv fp16 cublas");
|
||||
m.def("att_one", &att_one, "att one");
|
||||
m.def("att_one_v5", &att_one_v5, "att one v5");
|
||||
m.def("att_seq", &att_seq, "att seq");
|
||||
m.def("ffn_seq", &ffn_seq, "ffn seq");
|
||||
m.def("ffn_one", &ffn_one, "ffn one");
|
||||
}
|
||||
|
||||
TORCH_LIBRARY(rwkv, m) {
|
||||
m.def("wkv_forward", wkv_forward);
|
||||
m.def("mm8_seq", mm8_seq);
|
||||
m.def("mm8_one", mm8_one);
|
||||
m.def("gemm_fp16_cublas", gemm_fp16_cublas_tensor);
|
||||
m.def("att_one", att_one);
|
||||
m.def("att_one_v5", &att_one_v5);
|
||||
m.def("att_seq", att_seq);
|
||||
m.def("ffn_seq", ffn_seq);
|
||||
m.def("ffn_one", ffn_one);
|
||||
}
|
||||
1821
backend-python/rwkv_pip/beta/model.py
vendored
Normal file
1821
backend-python/rwkv_pip/beta/model.py
vendored
Normal file
File diff suppressed because it is too large
Load Diff
BIN
backend-python/rwkv_pip/beta/wkv_cuda.pyd
vendored
Normal file
BIN
backend-python/rwkv_pip/beta/wkv_cuda.pyd
vendored
Normal file
Binary file not shown.
75
backend-python/rwkv_pip/cuda/gemm_fp16_cublas.cpp
vendored
Normal file
75
backend-python/rwkv_pip/cuda/gemm_fp16_cublas.cpp
vendored
Normal file
@@ -0,0 +1,75 @@
|
||||
#include <cublas_v2.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <torch/extension.h>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
#include <ATen/cuda/CUDAContext.h>
|
||||
|
||||
#define CUBLAS_CHECK(condition) \
|
||||
for (cublasStatus_t _cublas_check_status = (condition); \
|
||||
_cublas_check_status != CUBLAS_STATUS_SUCCESS;) \
|
||||
throw std::runtime_error("cuBLAS error " + \
|
||||
std::to_string(_cublas_check_status) + " at " + \
|
||||
std::to_string(__LINE__));
|
||||
|
||||
#define CUDA_CHECK(condition) \
|
||||
for (cudaError_t _cuda_check_status = (condition); \
|
||||
_cuda_check_status != cudaSuccess;) \
|
||||
throw std::runtime_error( \
|
||||
"CUDA error " + std::string(cudaGetErrorString(_cuda_check_status)) + \
|
||||
" at " + std::to_string(__LINE__));
|
||||
|
||||
/*
|
||||
NOTE: blas gemm is column-major by default, but we need row-major output.
|
||||
The data of row-major, transposed matrix is exactly the same as the
|
||||
column-major, non-transposed matrix, and C = A * B ---> C^T = B^T * A^T
|
||||
*/
|
||||
void gemm_fp16_cublas(torch::Tensor a, torch::Tensor b, torch::Tensor c) {
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
|
||||
const auto cuda_data_type = CUDA_R_16F;
|
||||
const auto cuda_c_data_type =
|
||||
c.dtype() == torch::kFloat32 ? CUDA_R_32F : CUDA_R_16F;
|
||||
const auto compute_type = CUDA_R_32F;
|
||||
const float sp_alpha = 1.f;
|
||||
// swap a and b, and use CUBLAS_OP_N. see the notes above
|
||||
std::swap(a, b);
|
||||
const cublasOperation_t cublas_trans_a = CUBLAS_OP_N;
|
||||
const cublasOperation_t cublas_trans_b = CUBLAS_OP_N;
|
||||
// m = (B^T).size(0) = B.size(1), and = A.size(1) after swap,
|
||||
// negative axis is used because of the existence of batch matmul.
|
||||
const int m = a.size(-1);
|
||||
const int k = a.size(-2);
|
||||
const int n = b.size(-2);
|
||||
const int cublas_lda = m;
|
||||
const int cublas_ldb = k;
|
||||
const int cublas_ldc = m;
|
||||
cublasHandle_t cublas_handle = at::cuda::getCurrentCUDABlasHandle();
|
||||
|
||||
#if CUDA_VERSION >= 11000
|
||||
cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT;
|
||||
#else
|
||||
cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
|
||||
#endif
|
||||
const float sp_beta = 0.f;
|
||||
if (a.sizes().size() == 2 && b.sizes().size() == 2) {
|
||||
CUBLAS_CHECK(cublasGemmEx(
|
||||
cublas_handle, cublas_trans_a, cublas_trans_b, m, n, k, &sp_alpha,
|
||||
a.data_ptr(), cuda_data_type, cublas_lda, b.data_ptr(), cuda_data_type,
|
||||
cublas_ldb, &sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc,
|
||||
compute_type, algo));
|
||||
} else {
|
||||
// batch matmul
|
||||
assert(a.sizes().size() == 3 && b.sizes().size() == 3);
|
||||
|
||||
const long long int cublas_stride_a = m * k;
|
||||
const long long int cublas_stride_b = k * n;
|
||||
const long long int cublas_stride_c = m * n;
|
||||
CUBLAS_CHECK(cublasGemmStridedBatchedEx(
|
||||
cublas_handle, cublas_trans_a, cublas_trans_b, m,
|
||||
n, k, &sp_alpha, a.data_ptr(), cuda_data_type, cublas_lda,
|
||||
cublas_stride_a, b.data_ptr(), cuda_data_type, cublas_ldb, cublas_stride_b,
|
||||
&sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc, cublas_stride_c,
|
||||
a.size(0), compute_type, algo));
|
||||
}
|
||||
}
|
||||
246
backend-python/rwkv_pip/cuda/operators.cu
vendored
Normal file
246
backend-python/rwkv_pip/cuda/operators.cu
vendored
Normal file
@@ -0,0 +1,246 @@
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include "ATen/ATen.h"
|
||||
#include <cuda_fp16.h>
|
||||
#define MIN_VALUE (-1e38)
|
||||
typedef at::Half fp16;
|
||||
__half *cast(fp16 *ptr) {
|
||||
return reinterpret_cast<__half *>(ptr);
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
__global__ void kernel_wkv_forward(const int B, const int T, const int C,
|
||||
const float *__restrict__ const _w, const float *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
|
||||
F *__restrict__ const _y, float *__restrict__ const _aa, float *__restrict__ const _bb, float *__restrict__ const _pp) {
|
||||
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int _b = idx / C;
|
||||
const int _c = idx % C;
|
||||
const int _offset = _b * T * C + _c;
|
||||
const int _state_offset = _b * C + _c;
|
||||
|
||||
float u = _u[_c];
|
||||
float w = _w[_c];
|
||||
const F *__restrict__ const k = _k + _offset;
|
||||
const F *__restrict__ const v = _v + _offset;
|
||||
F *__restrict__ const y = _y + _offset;
|
||||
|
||||
float aa = _aa[_state_offset];
|
||||
float bb = _bb[_state_offset];
|
||||
float pp = _pp[_state_offset];
|
||||
for (int i = 0; i < T; i++) {
|
||||
const int ii = i * C;
|
||||
const float kk = float(k[ii]);
|
||||
const float vv = float(v[ii]);
|
||||
float ww = u + kk;
|
||||
float p = max(pp, ww);
|
||||
float e1 = exp(pp - p);
|
||||
float e2 = exp(ww - p);
|
||||
y[ii] = F((e1 * aa + e2 * vv) / (e1 * bb + e2));
|
||||
ww = w + pp;
|
||||
p = max(ww, kk);
|
||||
e1 = exp(ww - p);
|
||||
e2 = exp(kk - p);
|
||||
aa = e1 * aa + e2 * vv;
|
||||
bb = e1 * bb + e2;
|
||||
pp = p;
|
||||
}
|
||||
_aa[_state_offset] = aa;
|
||||
_bb[_state_offset] = bb;
|
||||
_pp[_state_offset] = pp;
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void cuda_wkv_forward(int B, int T, int C, float *w, float *u, F *k, F *v, F *y, float *aa, float *bb, float *pp) {
|
||||
dim3 threadsPerBlock( min(C, 32) );
|
||||
assert(B * C % threadsPerBlock.x == 0);
|
||||
dim3 numBlocks(B * C / threadsPerBlock.x);
|
||||
kernel_wkv_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, aa, bb, pp);
|
||||
}
|
||||
|
||||
template void cuda_wkv_forward<fp16>(
|
||||
int B, int T, int C,
|
||||
float *w, float *u, fp16 *k, fp16 *v, fp16 *y,
|
||||
float *aa, float *bb, float *pp);
|
||||
template void cuda_wkv_forward<float>(
|
||||
int B, int T, int C,
|
||||
float *w, float *u, float *k, float *v, float *y,
|
||||
float *aa, float *bb, float *pp);
|
||||
|
||||
__global__ void kernel_mm_seq_fp32i8(
|
||||
const int B, const int N, const int M,
|
||||
const float *__restrict__ const x, const int x_stride,
|
||||
const uint8_t *__restrict__ const w, const int w_stride,
|
||||
const float *__restrict__ const mx,
|
||||
const float *__restrict__ const rx,
|
||||
const float *__restrict__ const my,
|
||||
const float *__restrict__ const ry,
|
||||
float *__restrict__ const y, const int y_stride) {
|
||||
|
||||
const int i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (i < B && k < M) {
|
||||
float y_local = 0;
|
||||
for (int j = 0; j < N; ++j) {
|
||||
y_local += x[i * x_stride + j] * (
|
||||
(float(w[j * w_stride + k]) + 0.5f)
|
||||
* rx[k] * ry[j] + mx[k] + my[j]
|
||||
);
|
||||
}
|
||||
y[i * y_stride + k] = y_local;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void cuda_mm8_seq(int B, int N, int M,
|
||||
F *x, int x_stride,
|
||||
uint8_t *w, int w_stride,
|
||||
F *mx, F *rx,
|
||||
F *my, F *ry,
|
||||
F *y, int y_stride);
|
||||
|
||||
template <>
|
||||
void cuda_mm8_seq<float>(int B, int N, int M,
|
||||
float *x, int x_stride,
|
||||
uint8_t *w, int w_stride,
|
||||
float *mx, float *rx,
|
||||
float *my, float *ry,
|
||||
float *y, int y_stride) {
|
||||
dim3 blockSize(1, 128);
|
||||
dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
|
||||
kernel_mm_seq_fp32i8<<<gridSize, blockSize>>>(
|
||||
B, N, M, x, x_stride, w, w_stride,
|
||||
mx, rx, my, ry, y, y_stride);
|
||||
}
|
||||
|
||||
__global__ void kernel_mm_seq_fp16i8(
|
||||
const int B, const int N, const int M,
|
||||
const __half *__restrict__ const x, const int x_stride,
|
||||
const uint8_t *__restrict__ const w, const int w_stride,
|
||||
const __half *__restrict__ const mx,
|
||||
const __half *__restrict__ const rx,
|
||||
const __half *__restrict__ const my,
|
||||
const __half *__restrict__ const ry,
|
||||
__half *__restrict__ const y, const int y_stride) {
|
||||
|
||||
const int i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (i < B && k < M) {
|
||||
float y_local = 0;
|
||||
for (int j = 0; j < N; ++j) {
|
||||
y_local += __half2float(x[i * x_stride + j]) * (
|
||||
(float(w[j * w_stride + k]) + 0.5f)
|
||||
* __half2float(rx[k]) * __half2float(ry[j])
|
||||
+ __half2float(mx[k]) + __half2float(my[j])
|
||||
);
|
||||
}
|
||||
y[i * y_stride + k] = __float2half(y_local);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
void cuda_mm8_seq<fp16>(int B, int N, int M,
|
||||
fp16 *x, int x_stride,
|
||||
uint8_t *w, int w_stride,
|
||||
fp16 *mx, fp16 *rx,
|
||||
fp16 *my, fp16 *ry,
|
||||
fp16 *y, int y_stride) {
|
||||
dim3 blockSize(1, 128);
|
||||
dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
|
||||
kernel_mm_seq_fp16i8<<<gridSize, blockSize>>>(
|
||||
B, N, M, cast(x), x_stride, w, w_stride,
|
||||
cast(mx), cast(rx), cast(my), cast(ry), cast(y), y_stride);
|
||||
}
|
||||
|
||||
#define MM8_ONE_JSPLIT 24
|
||||
#define MM8_ONE_TILE 1024
|
||||
|
||||
__global__ void kernel_mm_one_fp32i8(
|
||||
const int N, const int M,
|
||||
const float *__restrict__ const x,
|
||||
const uint8_t *__restrict__ const w, const int w_stride,
|
||||
const float *__restrict__ const mx,
|
||||
const float *__restrict__ const rx,
|
||||
const float *__restrict__ const my,
|
||||
const float *__restrict__ const ry,
|
||||
float *__restrict__ const y) {
|
||||
|
||||
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
||||
const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
||||
|
||||
if (k < M) {
|
||||
float y_local = 0;
|
||||
for (int j = j0; j < j1; ++j) {
|
||||
y_local += x[j] * (
|
||||
(float(w[j * w_stride + k]) + 0.5f)
|
||||
* rx[k] * ry[j] + mx[k] + my[j]
|
||||
);
|
||||
}
|
||||
atomicAdd(&y[k], y_local);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void cuda_mm8_one(int N, int M,
|
||||
F *x,
|
||||
uint8_t *w, int w_stride,
|
||||
F *mx, F *rx,
|
||||
F *my, F *ry,
|
||||
float *y);
|
||||
|
||||
template <>
|
||||
void cuda_mm8_one<float>(int N, int M,
|
||||
float *x,
|
||||
uint8_t *w, int w_stride,
|
||||
float *mx, float *rx,
|
||||
float *my, float *ry,
|
||||
float *y) {
|
||||
dim3 blockSize(1, MM8_ONE_TILE);
|
||||
dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
|
||||
kernel_mm_one_fp32i8<<<gridSize, blockSize>>>(
|
||||
N, M, x, w, w_stride,
|
||||
mx, rx, my, ry, y);
|
||||
}
|
||||
|
||||
__global__ void kernel_mm_one_fp16i8(
|
||||
const int N, const int M,
|
||||
const __half *__restrict__ const x,
|
||||
const uint8_t *__restrict__ const w, const int w_stride,
|
||||
const __half *__restrict__ const mx,
|
||||
const __half *__restrict__ const rx,
|
||||
const __half *__restrict__ const my,
|
||||
const __half *__restrict__ const ry,
|
||||
float *__restrict__ const y) {
|
||||
|
||||
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
||||
const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
||||
|
||||
if (k < M) {
|
||||
float y_local = 0;
|
||||
for (int j = j0; j < j1; ++j) {
|
||||
y_local += __half2float(x[j]) * (
|
||||
(float(w[j * w_stride + k]) + 0.5f)
|
||||
* __half2float(rx[k]) * __half2float(ry[j])
|
||||
+ __half2float(mx[k]) + __half2float(my[j])
|
||||
);
|
||||
}
|
||||
atomicAdd(&y[k], y_local);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
void cuda_mm8_one<fp16>(int N, int M,
|
||||
fp16 *x,
|
||||
uint8_t *w, int w_stride,
|
||||
fp16 *mx, fp16 *rx,
|
||||
fp16 *my, fp16 *ry,
|
||||
float *y) {
|
||||
dim3 blockSize(1, MM8_ONE_TILE);
|
||||
dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
|
||||
kernel_mm_one_fp16i8<<<gridSize, blockSize>>>(
|
||||
N, M, cast(x), w, w_stride,
|
||||
cast(mx), cast(rx), cast(my), cast(ry), y);
|
||||
}
|
||||
88
backend-python/rwkv_pip/cuda/rwkv5.cu
vendored
Normal file
88
backend-python/rwkv_pip/cuda/rwkv5.cu
vendored
Normal file
@@ -0,0 +1,88 @@
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include "ATen/ATen.h"
|
||||
typedef at::BFloat16 bf16;
|
||||
typedef at::Half fp16;
|
||||
typedef float fp32;
|
||||
|
||||
template <typename F>
|
||||
__global__ void kernel_forward(const int B, const int T, const int C, const int H, float *__restrict__ _state,
|
||||
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u,
|
||||
F *__restrict__ const _y)
|
||||
{
|
||||
const int b = blockIdx.x / H;
|
||||
const int h = blockIdx.x % H;
|
||||
const int i = threadIdx.x;
|
||||
_w += h*_N_;
|
||||
_u += h*_N_;
|
||||
_state += h*_N_*_N_ + i*_N_; // wrong if B > 1 !!!
|
||||
|
||||
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
|
||||
|
||||
float state[_N_];
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
state[j] = _state[j];
|
||||
|
||||
__syncthreads();
|
||||
u[i] = float(_u[i]);
|
||||
w[i] = _w[i];
|
||||
__syncthreads();
|
||||
|
||||
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
|
||||
{
|
||||
__syncthreads();
|
||||
r[i] = float(_r[t]);
|
||||
k[i] = float(_k[t]);
|
||||
__syncthreads();
|
||||
|
||||
const float v = float(_v[t]);
|
||||
float y = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j+=4)
|
||||
{
|
||||
const float4& r_ = (float4&)(r[j]);
|
||||
const float4& k_ = (float4&)(k[j]);
|
||||
const float4& w_ = (float4&)(w[j]);
|
||||
const float4& u_ = (float4&)(u[j]);
|
||||
float4& s = (float4&)(state[j]);
|
||||
float4 x;
|
||||
|
||||
x.x = k_.x * v;
|
||||
x.y = k_.y * v;
|
||||
x.z = k_.z * v;
|
||||
x.w = k_.w * v;
|
||||
|
||||
y += r_.x * (u_.x * x.x + s.x);
|
||||
y += r_.y * (u_.y * x.y + s.y);
|
||||
y += r_.z * (u_.z * x.z + s.z);
|
||||
y += r_.w * (u_.w * x.w + s.w);
|
||||
|
||||
s.x = s.x * w_.x + x.x;
|
||||
s.y = s.y * w_.y + x.y;
|
||||
s.z = s.z * w_.z + x.z;
|
||||
s.w = s.w * w_.w + x.w;
|
||||
}
|
||||
_y[t] = F(y);
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
_state[j] = state[j];
|
||||
}
|
||||
|
||||
void cuda_forward_bf16(int B, int T, int C, int H, float *state, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y)
|
||||
{
|
||||
assert(H*_N_ == C);
|
||||
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
|
||||
}
|
||||
void cuda_forward_fp16(int B, int T, int C, int H, float *state, fp16 *r, fp16 *k, fp16 *v, float *w, fp16 *u, fp16 *y)
|
||||
{
|
||||
assert(H*_N_ == C);
|
||||
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
|
||||
}
|
||||
void cuda_forward_fp32(int B, int T, int C, int H, float *state, fp32 *r, fp32 *k, fp32 *v, float *w, fp32 *u, fp32 *y)
|
||||
{
|
||||
assert(H*_N_ == C);
|
||||
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
|
||||
}
|
||||
34
backend-python/rwkv_pip/cuda/rwkv5_op.cpp
vendored
Normal file
34
backend-python/rwkv_pip/cuda/rwkv5_op.cpp
vendored
Normal file
@@ -0,0 +1,34 @@
|
||||
#include <torch/extension.h>
|
||||
#include "ATen/ATen.h"
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
typedef at::BFloat16 bf16;
|
||||
typedef at::Half fp16;
|
||||
typedef float fp32;
|
||||
|
||||
void cuda_forward_bf16(int B, int T, int C, int H, float *state, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y);
|
||||
void cuda_forward_fp16(int B, int T, int C, int H, float *state, fp16 *r, fp16 *k, fp16 *v, float *w, fp16 *u, fp16 *y);
|
||||
void cuda_forward_fp32(int B, int T, int C, int H, float *state, fp32 *r, fp32 *k, fp32 *v, float *w, fp32 *u, fp32 *y);
|
||||
|
||||
void forward_bf16(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(state));
|
||||
cuda_forward_bf16(B, T, C, H, state.data_ptr<float>(), r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), y.data_ptr<bf16>());
|
||||
}
|
||||
void forward_fp16(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(state));
|
||||
cuda_forward_fp16(B, T, C, H, state.data_ptr<float>(), r.data_ptr<fp16>(), k.data_ptr<fp16>(), v.data_ptr<fp16>(), w.data_ptr<float>(), u.data_ptr<fp16>(), y.data_ptr<fp16>());
|
||||
}
|
||||
void forward_fp32(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(state));
|
||||
cuda_forward_fp32(B, T, C, H, state.data_ptr<float>(), r.data_ptr<fp32>(), k.data_ptr<fp32>(), v.data_ptr<fp32>(), w.data_ptr<float>(), u.data_ptr<fp32>(), y.data_ptr<fp32>());
|
||||
}
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("forward_bf16", &forward_bf16, "rwkv5 forward_bf16");
|
||||
m.def("forward_fp16", &forward_fp16, "rwkv5 forward_fp16");
|
||||
m.def("forward_fp32", &forward_fp32, "rwkv5 forward_fp32");
|
||||
}
|
||||
TORCH_LIBRARY(rwkv5, m) {
|
||||
m.def("forward_bf16", forward_bf16);
|
||||
m.def("forward_fp16", forward_fp16);
|
||||
m.def("forward_fp32", forward_fp32);
|
||||
}
|
||||
141
backend-python/rwkv_pip/cuda/wrapper.cpp
vendored
Normal file
141
backend-python/rwkv_pip/cuda/wrapper.cpp
vendored
Normal file
@@ -0,0 +1,141 @@
|
||||
#include <torch/extension.h>
|
||||
#include "ATen/ATen.h"
|
||||
#include <iostream>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
|
||||
typedef at::Half fp16;
|
||||
|
||||
template <typename F>
|
||||
void cuda_wkv_forward(int B, int T, int C,
|
||||
float *w, float *u, F *k, F *v, F *y,
|
||||
float *aa, float *bb, float *pp);
|
||||
template <typename F>
|
||||
void cuda_mm8_seq(int B, int N, int M,
|
||||
F *x, int x_stride,
|
||||
uint8_t *w, int w_stride,
|
||||
F *mx, F *rx,
|
||||
F *my, F *ry,
|
||||
F *y, int y_stride);
|
||||
template <typename F>
|
||||
void cuda_mm8_one(int N, int M,
|
||||
F *x,
|
||||
uint8_t *w, int w_stride,
|
||||
F *mx, F *rx,
|
||||
F *my, F *ry,
|
||||
float *y);
|
||||
|
||||
void wkv_forward(int64_t B, int64_t T, int64_t C,
|
||||
torch::Tensor &w, torch::Tensor &u,
|
||||
torch::Tensor &k, torch::Tensor &v, torch::Tensor &y,
|
||||
torch::Tensor &aa, torch::Tensor &bb, torch::Tensor &pp) {
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
|
||||
switch (k.scalar_type()) {
|
||||
case c10::ScalarType::Half:
|
||||
cuda_wkv_forward(B, T, C,
|
||||
w.data_ptr<float>(), u.data_ptr<float>(),
|
||||
k.data_ptr<fp16>(), v.data_ptr<fp16>(), y.data_ptr<fp16>(),
|
||||
aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
|
||||
break;
|
||||
case c10::ScalarType::Float:
|
||||
cuda_wkv_forward(B, T, C,
|
||||
w.data_ptr<float>(), u.data_ptr<float>(),
|
||||
k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>(),
|
||||
aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
|
||||
break;
|
||||
default:
|
||||
assert(false && "Only FP16 and FP32 are currently supported");
|
||||
}
|
||||
}
|
||||
|
||||
void mm8_seq(int64_t B, int64_t N, int64_t M,
|
||||
torch::Tensor &x, torch::Tensor &w,
|
||||
torch::Tensor &mx, torch::Tensor &rx,
|
||||
torch::Tensor &my, torch::Tensor &ry,
|
||||
torch::Tensor &y) {
|
||||
assert(x.stride(1) == 1);
|
||||
assert(w.stride(1) == 1);
|
||||
assert(mx.stride(0) == 1 && rx.stride(0) == 1);
|
||||
assert(my.stride(0) == 1 && ry.stride(0) == 1);
|
||||
assert(y.stride(1) == 1);
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
|
||||
switch (x.scalar_type()) {
|
||||
case c10::ScalarType::Half:
|
||||
cuda_mm8_seq(
|
||||
B, N, M,
|
||||
x.data_ptr<fp16>(), x.stride(0),
|
||||
w.data_ptr<uint8_t>(), w.stride(0),
|
||||
mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
|
||||
my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
|
||||
y.data_ptr<fp16>(), y.stride(0));
|
||||
break;
|
||||
case c10::ScalarType::Float:
|
||||
cuda_mm8_seq(
|
||||
B, N, M,
|
||||
x.data_ptr<float>(), x.stride(0),
|
||||
w.data_ptr<uint8_t>(), w.stride(0),
|
||||
mx.data_ptr<float>(), rx.data_ptr<float>(),
|
||||
my.data_ptr<float>(), ry.data_ptr<float>(),
|
||||
y.data_ptr<float>(), y.stride(0));
|
||||
break;
|
||||
default:
|
||||
assert(false && "Only FP16 and FP32 are currently supported");
|
||||
}
|
||||
}
|
||||
void mm8_one(int64_t N, int64_t M,
|
||||
torch::Tensor &x, torch::Tensor &w,
|
||||
torch::Tensor &mx, torch::Tensor &rx,
|
||||
torch::Tensor &my, torch::Tensor &ry,
|
||||
torch::Tensor &y) {
|
||||
assert(x.stride(0) == 1);
|
||||
assert(w.stride(1) == 1);
|
||||
assert(mx.stride(0) == 1 && rx.stride(0) == 1);
|
||||
assert(my.stride(0) == 1 && ry.stride(0) == 1);
|
||||
assert(y.stride(0) == 1);
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
|
||||
switch (x.scalar_type()) {
|
||||
case c10::ScalarType::Half:
|
||||
cuda_mm8_one(
|
||||
N, M,
|
||||
x.data_ptr<fp16>(),
|
||||
w.data_ptr<uint8_t>(), w.stride(0),
|
||||
mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
|
||||
my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
|
||||
y.data_ptr<float>());
|
||||
break;
|
||||
case c10::ScalarType::Float:
|
||||
cuda_mm8_one(
|
||||
N, M,
|
||||
x.data_ptr<float>(),
|
||||
w.data_ptr<uint8_t>(), w.stride(0),
|
||||
mx.data_ptr<float>(), rx.data_ptr<float>(),
|
||||
my.data_ptr<float>(), ry.data_ptr<float>(),
|
||||
y.data_ptr<float>());
|
||||
break;
|
||||
default:
|
||||
assert(false && "Only FP16 and FP32 are currently supported");
|
||||
}
|
||||
}
|
||||
|
||||
using torch::Tensor;
|
||||
|
||||
#ifndef DISABLE_CUBLAS_GEMM
|
||||
void gemm_fp16_cublas(Tensor a, Tensor b, Tensor c);
|
||||
#endif
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("wkv_forward", &wkv_forward, "wkv forward");
|
||||
m.def("mm8_seq", &mm8_seq, "mm8 seq");
|
||||
m.def("mm8_one", &mm8_one, "mm8 one");
|
||||
#ifndef DISABLE_CUBLAS_GEMM
|
||||
m.def("gemm_fp16_cublas", &gemm_fp16_cublas, "gemv fp16 cublas");
|
||||
#endif
|
||||
}
|
||||
|
||||
TORCH_LIBRARY(rwkv, m) {
|
||||
m.def("wkv_forward", wkv_forward);
|
||||
m.def("mm8_seq", mm8_seq);
|
||||
m.def("mm8_one", mm8_one);
|
||||
#ifndef DISABLE_CUBLAS_GEMM
|
||||
m.def("gemm_fp16_cublas", gemm_fp16_cublas);
|
||||
#endif
|
||||
}
|
||||
1800
backend-python/rwkv_pip/model.py
vendored
Normal file
1800
backend-python/rwkv_pip/model.py
vendored
Normal file
File diff suppressed because it is too large
Load Diff
BIN
backend-python/rwkv_pip/rwkv5.pyd
vendored
Normal file
BIN
backend-python/rwkv_pip/rwkv5.pyd
vendored
Normal file
Binary file not shown.
4
backend-python/rwkv_pip/rwkv_tokenizer.py
vendored
4
backend-python/rwkv_pip/rwkv_tokenizer.py
vendored
@@ -72,9 +72,9 @@ class TRIE_TOKENIZER:
|
||||
for t, i in self.token2idx.items():
|
||||
_ = self.root.add(t, val=(t, i))
|
||||
|
||||
def encodeBytes(self, src: bytes) -> list[int]:
|
||||
def encodeBytes(self, src: bytes):
|
||||
idx: int = 0
|
||||
tokens: list[int] = []
|
||||
tokens = []
|
||||
while idx < len(src):
|
||||
_idx: int = idx
|
||||
idx, _, values = self.root.find_longest(src, idx)
|
||||
|
||||
20144
backend-python/rwkv_pip/tokenizer-midi.json
vendored
Normal file
20144
backend-python/rwkv_pip/tokenizer-midi.json
vendored
Normal file
File diff suppressed because it is too large
Load Diff
26
backend-python/rwkv_pip/utils.py
vendored
26
backend-python/rwkv_pip/utils.py
vendored
@@ -16,6 +16,7 @@ class PIPELINE_ARGS:
|
||||
top_k=0,
|
||||
alpha_frequency=0.2,
|
||||
alpha_presence=0.2,
|
||||
alpha_decay=0.996,
|
||||
token_ban=[],
|
||||
token_stop=[],
|
||||
chunk_len=256,
|
||||
@@ -25,6 +26,7 @@ class PIPELINE_ARGS:
|
||||
self.top_k = top_k
|
||||
self.alpha_frequency = alpha_frequency # Frequency Penalty (as in GPT-3)
|
||||
self.alpha_presence = alpha_presence # Presence Penalty (as in GPT-3)
|
||||
self.alpha_decay = alpha_decay # gradually decay the penalty
|
||||
self.token_ban = token_ban # ban the generation of some tokens
|
||||
self.token_stop = token_stop # stop generation whenever you see any token here
|
||||
self.chunk_len = (
|
||||
@@ -33,7 +35,7 @@ class PIPELINE_ARGS:
|
||||
|
||||
|
||||
class PIPELINE:
|
||||
def __init__(self, model, WORD_NAME):
|
||||
def __init__(self, model, WORD_NAME: str):
|
||||
self.model = model
|
||||
if WORD_NAME == "cl100k_base":
|
||||
import tiktoken
|
||||
@@ -47,9 +49,15 @@ class PIPELINE:
|
||||
os.path.dirname(os.path.abspath(__file__)) + "/rwkv_vocab_v20230424.txt"
|
||||
)
|
||||
else:
|
||||
from tokenizers import Tokenizer
|
||||
if WORD_NAME.endswith(".txt"):
|
||||
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
|
||||
from rwkv_tokenizer import TRIE_TOKENIZER
|
||||
|
||||
self.tokenizer = Tokenizer.from_file(WORD_NAME)
|
||||
self.tokenizer = TRIE_TOKENIZER(WORD_NAME)
|
||||
else:
|
||||
from tokenizers import Tokenizer
|
||||
|
||||
self.tokenizer = Tokenizer.from_file(WORD_NAME)
|
||||
|
||||
def refine_context(self, context):
|
||||
context = context.strip().split("\n")
|
||||
@@ -73,12 +81,13 @@ class PIPELINE:
|
||||
def sample_logits(self, logits, temperature=1.0, top_p=0.85, top_k=0):
|
||||
probs = F.softmax(logits.float(), dim=-1)
|
||||
top_k = int(top_k)
|
||||
if probs.device == torch.device("cpu"):
|
||||
probs = probs.numpy()
|
||||
# 'privateuseone' is the type of custom devices like `torch_directml.device()`
|
||||
if probs.device.type in ["cpu", "privateuseone"]:
|
||||
probs = probs.cpu().numpy()
|
||||
sorted_ids = np.argsort(probs)
|
||||
sorted_probs = probs[sorted_ids][::-1]
|
||||
cumulative_probs = np.cumsum(sorted_probs)
|
||||
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
|
||||
cutoff = float(sorted_probs[np.argmax(cumulative_probs >= top_p)])
|
||||
probs[probs < cutoff] = 0
|
||||
if top_k < len(probs) and top_k > 0:
|
||||
probs[sorted_ids[:-top_k]] = 0
|
||||
@@ -92,7 +101,7 @@ class PIPELINE:
|
||||
sorted_probs = probs[sorted_ids]
|
||||
sorted_probs = torch.flip(sorted_probs, dims=(0,))
|
||||
cumulative_probs = torch.cumsum(sorted_probs, dim=-1).cpu().numpy()
|
||||
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
|
||||
cutoff = float(sorted_probs[np.argmax(cumulative_probs >= top_p)])
|
||||
probs[probs < cutoff] = 0
|
||||
if top_k < len(probs) and top_k > 0:
|
||||
probs[sorted_ids[:-top_k]] = 0
|
||||
@@ -127,10 +136,13 @@ class PIPELINE:
|
||||
if token in args.token_stop:
|
||||
break
|
||||
all_tokens += [token]
|
||||
for xxx in occurrence:
|
||||
occurrence[xxx] *= args.alpha_decay
|
||||
if token not in occurrence:
|
||||
occurrence[token] = 1
|
||||
else:
|
||||
occurrence[token] += 1
|
||||
# print(occurrence) # debug
|
||||
|
||||
# output
|
||||
tmp = self.decode(all_tokens[out_last:])
|
||||
|
||||
BIN
backend-python/rwkv_pip/wkv_cuda.pyd
vendored
Normal file
BIN
backend-python/rwkv_pip/wkv_cuda.pyd
vendored
Normal file
Binary file not shown.
49
backend-python/utils/log.py
Normal file
49
backend-python/utils/log.py
Normal file
@@ -0,0 +1,49 @@
|
||||
import json
|
||||
import logging
|
||||
from typing import Any
|
||||
from fastapi import Request
|
||||
from pydantic import BaseModel
|
||||
from enum import Enum
|
||||
|
||||
|
||||
logger = logging.getLogger()
|
||||
logger.setLevel(logging.INFO)
|
||||
formatter = logging.Formatter("%(asctime)s - %(levelname)s\n%(message)s")
|
||||
fh = logging.handlers.RotatingFileHandler(
|
||||
"api.log", mode="a", maxBytes=3 * 1024 * 1024, backupCount=3, encoding="utf-8"
|
||||
)
|
||||
fh.setFormatter(formatter)
|
||||
logger.addHandler(fh)
|
||||
|
||||
|
||||
class ClsEncoder(json.JSONEncoder):
|
||||
def default(self, obj):
|
||||
if isinstance(obj, BaseModel):
|
||||
return obj.dict()
|
||||
if isinstance(obj, Enum):
|
||||
return obj.value
|
||||
return super().default(obj)
|
||||
|
||||
|
||||
def quick_log(request: Request, body: Any, response: str):
|
||||
try:
|
||||
logger.info(
|
||||
f"Client: {request.client if request else ''}\nUrl: {request.url if request else ''}\n"
|
||||
+ (
|
||||
f"Body: {json.dumps(body.__dict__, ensure_ascii=False, cls=ClsEncoder)}\n"
|
||||
if body
|
||||
else ""
|
||||
)
|
||||
+ (f"Data:\n{response}\n" if response else "")
|
||||
)
|
||||
except Exception as e:
|
||||
logger.info(f"Error quick_log request:\n{e}")
|
||||
|
||||
|
||||
async def log_middleware(request: Request):
|
||||
try:
|
||||
logger.info(
|
||||
f"Client: {request.client}\nUrl: {request.url}\nBody: {await request.body()}\n"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.info(f"Error log_middleware request:\n{e}")
|
||||
685
backend-python/utils/midi.py
vendored
Normal file
685
backend-python/utils/midi.py
vendored
Normal file
@@ -0,0 +1,685 @@
|
||||
# https://github.com/briansemrau/MIDI-LLM-tokenizer
|
||||
|
||||
# MIT License
|
||||
|
||||
# Copyright (c) 2023 Brian Semrau
|
||||
|
||||
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
||||
|
||||
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
||||
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||||
|
||||
import json
|
||||
import random
|
||||
from dataclasses import dataclass
|
||||
from functools import lru_cache
|
||||
from math import ceil, floor, log
|
||||
from typing import Dict, Iterator, List, Optional, Tuple
|
||||
|
||||
import mido
|
||||
|
||||
|
||||
@dataclass
|
||||
class VocabConfig:
|
||||
# Number of note events. Should be 128.
|
||||
note_events: int
|
||||
# Number of wait events. Configurable, must evenly divide max_wait_time.
|
||||
wait_events: int
|
||||
# Max wait time in milliseconds to be represented by a single token.
|
||||
max_wait_time: int
|
||||
# Number of velocity events. Should be 128 (or 100? need to check midi standard)
|
||||
velocity_events: int
|
||||
# Number of bins to quantize velocity into. Should evenly divide velocity_events.
|
||||
velocity_bins: int
|
||||
# Exponential scaling factor for velocity bin sizes. 1.0 = linear scaling.
|
||||
velocity_exp: float
|
||||
# Whether to sort tokens by instrument, note. This should improve data reducibility.
|
||||
do_token_sorting: bool
|
||||
# Whether tokens should be represented as combined instrument/note/velocity tokens, or separate tokens for each.
|
||||
unrolled_tokens: bool
|
||||
# If non-zero, notes held for this many seconds will be automatically released during str->midi decoding.
|
||||
decode_end_held_note_delay: float
|
||||
# If true, repeated notes will be automatically released before playing again during str->midi decoding.
|
||||
decode_fix_repeated_notes: bool
|
||||
# List of instrument names to use for binning. Must have at most 16 values.
|
||||
bin_instrument_names: List[str]
|
||||
# Indicates which bin name represents percussion instruments on MIDI channel 10.
|
||||
ch10_instrument_bin_name: str
|
||||
# Mapping from instrument name to bin name.
|
||||
program_name_to_bin_name: Dict[str, str]
|
||||
# Mapping from bin name to program name.
|
||||
bin_name_to_program_name: Dict[str, str]
|
||||
# Mapping from program number to instrument name.
|
||||
instrument_names: Dict[str, str]
|
||||
|
||||
def __post_init__(self):
|
||||
self.validate()
|
||||
|
||||
self._instrument_names_str_to_int = {
|
||||
name: int(i) for i, name in self.instrument_names.items()
|
||||
}
|
||||
self._instrument_names_int_to_str = {
|
||||
int(i): name for i, name in self.instrument_names.items()
|
||||
}
|
||||
|
||||
self._bin_str_to_int = {
|
||||
name: int(i) for i, name in enumerate(self.bin_instrument_names)
|
||||
}
|
||||
|
||||
self._bin_int_to_instrument_int = [
|
||||
self._instrument_names_str_to_int[self.bin_name_to_program_name[name]]
|
||||
if name != self.ch10_instrument_bin_name
|
||||
else 0
|
||||
for name in self.bin_instrument_names
|
||||
]
|
||||
self._instrument_int_to_bin_int = [
|
||||
self._bin_str_to_int[self.program_name_to_bin_name[instr]]
|
||||
if self.program_name_to_bin_name[instr] != ""
|
||||
else -1
|
||||
for instr in self.program_name_to_bin_name.keys()
|
||||
]
|
||||
|
||||
self._ch10_bin_int = (
|
||||
self._bin_str_to_int[self.ch10_instrument_bin_name]
|
||||
if self.ch10_instrument_bin_name
|
||||
else -1
|
||||
)
|
||||
|
||||
self.short_instr_bin_names = []
|
||||
for instr in self.bin_instrument_names:
|
||||
i = min(1, len(instr))
|
||||
while instr[:i] in self.short_instr_bin_names:
|
||||
i += 1
|
||||
self.short_instr_bin_names.append(instr[:i])
|
||||
self._short_instrument_names_str_to_int = {
|
||||
name: int(i) for i, name in enumerate(self.short_instr_bin_names)
|
||||
}
|
||||
|
||||
range_excluding_ch10 = [
|
||||
(i if i < 9 else i + 1) for i in range(len(self.bin_instrument_names))
|
||||
]
|
||||
bins_excluding_ch10 = [
|
||||
n for n in self.bin_instrument_names if n != self.ch10_instrument_bin_name
|
||||
]
|
||||
self.bin_channel_map = {
|
||||
bin: channel
|
||||
for channel, bin in zip(range_excluding_ch10, bins_excluding_ch10)
|
||||
}
|
||||
if self.ch10_instrument_bin_name:
|
||||
self.bin_channel_map[self.ch10_instrument_bin_name] = 9
|
||||
|
||||
def validate(self):
|
||||
if self.max_wait_time % self.wait_events != 0:
|
||||
raise ValueError("max_wait_time must be exactly divisible by wait_events")
|
||||
if self.velocity_bins < 2:
|
||||
raise ValueError("velocity_bins must be at least 2")
|
||||
if len(self.bin_instrument_names) > 16:
|
||||
raise ValueError("bin_instruments must have at most 16 values")
|
||||
if (
|
||||
self.ch10_instrument_bin_name
|
||||
and self.ch10_instrument_bin_name not in self.bin_instrument_names
|
||||
):
|
||||
raise ValueError("ch10_instrument_bin_name must be in bin_instruments")
|
||||
if self.velocity_exp <= 0:
|
||||
raise ValueError("velocity_exp must be greater than 0")
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, path: str):
|
||||
with open(path, "r") as f:
|
||||
config = json.load(f)
|
||||
return cls(**config)
|
||||
|
||||
|
||||
class VocabUtils:
|
||||
def __init__(self, cfg: VocabConfig) -> None:
|
||||
self.cfg = cfg
|
||||
|
||||
@lru_cache(maxsize=128)
|
||||
def format_wait_token(self, wait: int) -> str:
|
||||
return f"t{wait}"
|
||||
|
||||
@lru_cache(maxsize=128)
|
||||
def format_note_token(
|
||||
self, instrument_bin: int, note: int, velocity_bin: int
|
||||
) -> str:
|
||||
return f"{self.cfg.short_instr_bin_names[instrument_bin]}:{note:x}:{velocity_bin:x}"
|
||||
|
||||
def format_unrolled_note(self, note: int) -> str:
|
||||
return f"n{note:x}"
|
||||
|
||||
def format_unrolled_velocity(self, velocity_bin: int) -> str:
|
||||
return f"v{velocity_bin:x}"
|
||||
|
||||
def format_unrolled_instrument_bin(self, instrument_bin: int) -> str:
|
||||
return f"i{self.cfg.short_instr_bin_names[instrument_bin]}"
|
||||
|
||||
def velocity_to_bin(self, velocity: float) -> int:
|
||||
velocity = max(0, min(velocity, self.cfg.velocity_events - 1))
|
||||
binsize = self.cfg.velocity_events / (self.cfg.velocity_bins - 1)
|
||||
if self.cfg.velocity_exp == 1.0:
|
||||
return ceil(velocity / binsize)
|
||||
else:
|
||||
return ceil(
|
||||
(
|
||||
self.cfg.velocity_events
|
||||
* (
|
||||
(
|
||||
self.cfg.velocity_exp
|
||||
** (velocity / self.cfg.velocity_events)
|
||||
- 1.0
|
||||
)
|
||||
/ (self.cfg.velocity_exp - 1.0)
|
||||
)
|
||||
)
|
||||
/ binsize
|
||||
)
|
||||
|
||||
def bin_to_velocity(self, bin: int) -> int:
|
||||
binsize = self.cfg.velocity_events / (self.cfg.velocity_bins - 1)
|
||||
if self.cfg.velocity_exp == 1.0:
|
||||
return max(0, ceil(bin * binsize - 1))
|
||||
else:
|
||||
return max(
|
||||
0,
|
||||
ceil(
|
||||
self.cfg.velocity_events
|
||||
* log(
|
||||
((self.cfg.velocity_exp - 1) * binsize * bin)
|
||||
/ self.cfg.velocity_events
|
||||
+ 1,
|
||||
self.cfg.velocity_exp,
|
||||
)
|
||||
- 1
|
||||
),
|
||||
)
|
||||
|
||||
def delta_to_wait_ids(self, delta_ms: float) -> Iterator[int]:
|
||||
def roundi(f: float):
|
||||
return ceil(f - 0.5)
|
||||
|
||||
max_wait_ms = self.cfg.max_wait_time
|
||||
div = max_wait_ms / self.cfg.wait_events
|
||||
|
||||
# if delta_ms // max_wait_ms > 512: # arbitrary limit to avoid excessive time_shifts
|
||||
# raise ValueError("delta_time is too large")
|
||||
if delta_ms > max_wait_ms * 10:
|
||||
delta_ms = max_wait_ms * 10 # truncate time
|
||||
|
||||
for _ in range(floor(delta_ms / max_wait_ms)):
|
||||
yield roundi(max_wait_ms / div)
|
||||
leftover_time_shift = roundi((delta_ms % max_wait_ms) / div)
|
||||
if leftover_time_shift > 0:
|
||||
yield leftover_time_shift
|
||||
|
||||
def prog_data_to_token_data(
|
||||
self, program: int, channel: int, note: int, velocity: float
|
||||
) -> Optional[Tuple[int, int, int]]:
|
||||
if channel == 9:
|
||||
if self.cfg._ch10_bin_int == -1:
|
||||
return None
|
||||
return self.cfg._ch10_bin_int, note, self.velocity_to_bin(velocity)
|
||||
|
||||
instrument_bin = self.cfg._instrument_int_to_bin_int[program]
|
||||
if instrument_bin != -1:
|
||||
return instrument_bin, note, self.velocity_to_bin(velocity)
|
||||
return None
|
||||
|
||||
def prog_data_list_to_token_data_list(
|
||||
self, data: List[Tuple[int, int, int, float]]
|
||||
) -> Iterator[Tuple[int, int, int]]:
|
||||
for d in data:
|
||||
token_data = self.prog_data_to_token_data(*d)
|
||||
if token_data is not None:
|
||||
yield token_data
|
||||
|
||||
def sort_token_data(
|
||||
self, data: List[Tuple[int, int, int]]
|
||||
) -> List[Tuple[int, int, int]]:
|
||||
# ensure order is preserved for tokens with the same instrument, note
|
||||
data = [(i, n, v, x) for x, (i, n, v) in enumerate(data)]
|
||||
data.sort(key=lambda x: (x[0] != self.cfg._ch10_bin_int, x[0], x[1], x[3]))
|
||||
return [(i, n, v) for i, n, v, _ in data]
|
||||
|
||||
def data_to_wait_tokens(self, delta_ms: float) -> List[str]:
|
||||
if delta_ms == 0.0:
|
||||
return []
|
||||
return [self.format_wait_token(i) for i in self.delta_to_wait_ids(delta_ms)]
|
||||
|
||||
def wait_token_to_delta(self, token: str) -> float:
|
||||
return self.cfg.max_wait_time / self.cfg.wait_events * int(token[1:])
|
||||
|
||||
def note_token_to_data(self, token: str) -> Tuple[int, int, int]:
|
||||
instr_str, note_str, velocity_str = token.strip().split(":")
|
||||
instr_bin = self.cfg._short_instrument_names_str_to_int[instr_str]
|
||||
note = int(note_str, base=16)
|
||||
velocity = self.bin_to_velocity(int(velocity_str, base=16))
|
||||
return instr_bin, note, velocity
|
||||
|
||||
|
||||
@dataclass
|
||||
class AugmentValues:
|
||||
instrument_bin_remap: Dict[int, int]
|
||||
velocity_mod_factor: float
|
||||
transpose_semitones: int
|
||||
time_stretch_factor: float
|
||||
|
||||
@classmethod
|
||||
def default(cls) -> "AugmentValues":
|
||||
return cls(
|
||||
instrument_bin_remap={},
|
||||
velocity_mod_factor=1.0,
|
||||
transpose_semitones=0,
|
||||
time_stretch_factor=1.0,
|
||||
)
|
||||
|
||||
|
||||
@dataclass
|
||||
class AugmentConfig:
|
||||
# The number of times to augment each MIDI file. The dataset size will be multiplied by this number.
|
||||
augment_data_factor: int
|
||||
# A list of instrument names to randomly swap with each other.
|
||||
instrument_mixups: List[List[str]]
|
||||
# A list of percentages to change the note velocity by. 0.0 = no change. 0 is included by default.
|
||||
velocity_mod_pct: List[float]
|
||||
# A list of semitones to transpose by. 0 is included by default.
|
||||
transpose_semitones: List[int]
|
||||
# A list of percentages to stretch the tempo by. 0.0 = no stretch. 0 is included by default.
|
||||
time_stretch_pct: List[float]
|
||||
# Random seed to use for reproducibility.
|
||||
seed: int
|
||||
|
||||
cfg: VocabConfig
|
||||
|
||||
def __post_init__(self):
|
||||
self.validate()
|
||||
if len(self.velocity_mod_pct) == 0:
|
||||
self.velocity_mod_pct = [0.0]
|
||||
if len(self.transpose_semitones) == 0:
|
||||
self.transpose_semitones = [0]
|
||||
if len(self.time_stretch_pct) == 0:
|
||||
self.time_stretch_pct = [0.0]
|
||||
|
||||
self._instrument_mixups_int = [
|
||||
[self.cfg._bin_str_to_int[i] for i in l if i in self.cfg._bin_str_to_int]
|
||||
for l in self.instrument_mixups
|
||||
]
|
||||
self._instrument_mixups_int = [
|
||||
l for l in self._instrument_mixups_int if len(l) > 0
|
||||
] # remove empty lists
|
||||
self._instrument_pool_assignments = {}
|
||||
self._mixup_pools = []
|
||||
for pool_i, mixup_list in enumerate(self._instrument_mixups_int):
|
||||
pool = set()
|
||||
for i in mixup_list:
|
||||
pool.add(i)
|
||||
self._instrument_pool_assignments[i] = pool_i
|
||||
self._mixup_pools.append(pool)
|
||||
|
||||
def validate(self):
|
||||
if self.augment_data_factor < 1:
|
||||
raise ValueError("augment_data_factor must be at least 1")
|
||||
used_instruments = set()
|
||||
for mixup_list in self.instrument_mixups:
|
||||
for n in mixup_list:
|
||||
if n in used_instruments:
|
||||
raise ValueError(f"Duplicate instrument name: {n}")
|
||||
used_instruments.add(n)
|
||||
|
||||
@classmethod
|
||||
def from_json(cls, path: str, cfg: VocabConfig):
|
||||
with open(path, "r") as f:
|
||||
config = json.load(f)
|
||||
config["cfg"] = cfg
|
||||
if "seed" not in config:
|
||||
config["seed"] = random.randint(0, 2**32 - 1)
|
||||
return cls(**config)
|
||||
|
||||
def get_augment_values(self, filename: str) -> Iterator[AugmentValues]:
|
||||
# first yield default values
|
||||
yield AugmentValues.default()
|
||||
|
||||
rng = random.Random(self.seed + hash(filename))
|
||||
for _ in range(int(self.augment_data_factor - 1)):
|
||||
# randomize order for each pool
|
||||
randomized_pools = [list(pool) for pool in self._mixup_pools]
|
||||
for pool in randomized_pools:
|
||||
rng.shuffle(pool)
|
||||
# distribute reassignments
|
||||
instrument_bin_remap = {}
|
||||
for i, pool in enumerate(randomized_pools):
|
||||
for j, instrument in enumerate(pool):
|
||||
instrument_bin_remap[instrument] = randomized_pools[i - 1][j]
|
||||
yield AugmentValues(
|
||||
instrument_bin_remap=instrument_bin_remap,
|
||||
velocity_mod_factor=1.0 + rng.choice(self.velocity_mod_pct),
|
||||
transpose_semitones=rng.choice(self.transpose_semitones),
|
||||
time_stretch_factor=1.0 + rng.choice(self.time_stretch_pct),
|
||||
)
|
||||
|
||||
|
||||
def mix_volume(velocity: int, volume: int, expression: int) -> float:
|
||||
return velocity * (volume / 127.0) * (expression / 127.0)
|
||||
|
||||
|
||||
def convert_midi_to_str(
|
||||
cfg: VocabConfig, mid: mido.MidiFile, augment: AugmentValues = None
|
||||
) -> str:
|
||||
utils = VocabUtils(cfg)
|
||||
if augment is None:
|
||||
augment = AugmentValues.default()
|
||||
|
||||
# filter out unknown meta messages before merge (https://github.com/mido/mido/pull/286)
|
||||
for i in range(len(mid.tracks)):
|
||||
mid.tracks[i] = [msg for msg in mid.tracks[i] if msg.type != "unknown_meta"]
|
||||
|
||||
if len(mid.tracks) > 1:
|
||||
mid.tracks = [mido.merge_tracks(mid.tracks)]
|
||||
|
||||
delta_time_ms = 0.0
|
||||
tempo = 500000
|
||||
channel_program = {i: 0 for i in range(16)}
|
||||
channel_volume = {i: 127 for i in range(16)}
|
||||
channel_expression = {
|
||||
i: 127 for i in range(16)
|
||||
} # unlikely to be useful. expression usually modifies an already played note.
|
||||
channel_notes = {i: {} for i in range(16)}
|
||||
channel_pedal_on = {i: False for i in range(16)}
|
||||
channel_pedal_events = {
|
||||
i: {} for i in range(16)
|
||||
} # {channel: {(note, program) -> True}}
|
||||
started_flag = False
|
||||
|
||||
output = ["<start>"]
|
||||
token_data_buffer: List[
|
||||
Tuple[int, int, int, float]
|
||||
] = [] # need to sort notes between wait tokens
|
||||
|
||||
def flush_token_data_buffer():
|
||||
nonlocal token_data_buffer, output, cfg, utils, augment
|
||||
token_data = [
|
||||
x for x in utils.prog_data_list_to_token_data_list(token_data_buffer)
|
||||
]
|
||||
if augment.instrument_bin_remap or augment.transpose_semitones:
|
||||
# TODO put transpose in a real function
|
||||
raw_transpose = (
|
||||
lambda bin, n: n + augment.transpose_semitones
|
||||
if bin != cfg._ch10_bin_int
|
||||
else n
|
||||
)
|
||||
octave_shift_if_oob = (
|
||||
lambda n: n + 12 if n < 0 else n - 12 if n >= cfg.note_events else n
|
||||
)
|
||||
# TODO handle ranges beyond 12
|
||||
# octave_shift_if_oob = lambda n: 0 if n < 0 else (n - cfg.note_events) % 12 + cfg.note_events if n >= cfg.note_events else n
|
||||
transpose = lambda bin, n: octave_shift_if_oob(raw_transpose(bin, n))
|
||||
|
||||
token_data = [
|
||||
(augment.instrument_bin_remap.get(i, i), transpose(i, n), v)
|
||||
for i, n, v in token_data
|
||||
]
|
||||
if cfg.do_token_sorting:
|
||||
token_data = utils.sort_token_data(token_data)
|
||||
if cfg.unrolled_tokens:
|
||||
for t in token_data:
|
||||
output += [
|
||||
utils.format_unrolled_instrument_bin(t[0]),
|
||||
utils.format_unrolled_note(t[1]),
|
||||
utils.format_unrolled_velocity(t[2]),
|
||||
]
|
||||
else:
|
||||
output += [utils.format_note_token(*t) for t in token_data]
|
||||
token_data_buffer = []
|
||||
|
||||
def consume_note_program_data(prog: int, chan: int, note: int, vel: float):
|
||||
nonlocal output, started_flag, delta_time_ms, cfg, utils, token_data_buffer
|
||||
is_token_valid = (
|
||||
utils.prog_data_to_token_data(prog, chan, note, vel) is not None
|
||||
)
|
||||
if not is_token_valid:
|
||||
return
|
||||
if started_flag:
|
||||
wait_tokens = utils.data_to_wait_tokens(delta_time_ms)
|
||||
if len(wait_tokens) > 0:
|
||||
flush_token_data_buffer()
|
||||
output += wait_tokens
|
||||
delta_time_ms = 0.0
|
||||
token_data_buffer.append((prog, chan, note, vel * augment.velocity_mod_factor))
|
||||
started_flag = True
|
||||
|
||||
for msg in mid.tracks[0]:
|
||||
time_ms = mido.tick2second(msg.time, mid.ticks_per_beat, tempo) * 1000.0
|
||||
delta_time_ms += time_ms
|
||||
t = msg.type
|
||||
|
||||
if msg.is_meta:
|
||||
if t == "set_tempo":
|
||||
tempo = msg.tempo * augment.time_stretch_factor
|
||||
continue
|
||||
|
||||
def handle_note_off(ch, prog, n):
|
||||
if channel_pedal_on[ch]:
|
||||
channel_pedal_events[ch][(n, prog)] = True
|
||||
else:
|
||||
consume_note_program_data(prog, ch, n, 0)
|
||||
if n in channel_notes[ch]:
|
||||
del channel_notes[ch][n]
|
||||
|
||||
if t == "program_change":
|
||||
channel_program[msg.channel] = msg.program
|
||||
elif t == "note_on":
|
||||
if msg.velocity == 0:
|
||||
handle_note_off(msg.channel, channel_program[msg.channel], msg.note)
|
||||
else:
|
||||
if (msg.note, channel_program[msg.channel]) in channel_pedal_events[
|
||||
msg.channel
|
||||
]:
|
||||
del channel_pedal_events[msg.channel][
|
||||
(msg.note, channel_program[msg.channel])
|
||||
]
|
||||
consume_note_program_data(
|
||||
channel_program[msg.channel],
|
||||
msg.channel,
|
||||
msg.note,
|
||||
mix_volume(
|
||||
msg.velocity,
|
||||
channel_volume[msg.channel],
|
||||
channel_expression[msg.channel],
|
||||
),
|
||||
)
|
||||
channel_notes[msg.channel][msg.note] = True
|
||||
elif t == "note_off":
|
||||
handle_note_off(msg.channel, channel_program[msg.channel], msg.note)
|
||||
elif t == "control_change":
|
||||
if msg.control == 7 or msg.control == 39: # volume
|
||||
channel_volume[msg.channel] = msg.value
|
||||
elif msg.control == 11: # expression
|
||||
channel_expression[msg.channel] = msg.value
|
||||
elif msg.control == 64: # sustain pedal
|
||||
channel_pedal_on[msg.channel] = msg.value >= 64
|
||||
if not channel_pedal_on[msg.channel]:
|
||||
for note, program in channel_pedal_events[msg.channel]:
|
||||
handle_note_off(msg.channel, program, note)
|
||||
channel_pedal_events[msg.channel] = {}
|
||||
elif msg.control == 123: # all notes off
|
||||
for channel in channel_notes.keys():
|
||||
for note in list(channel_notes[channel]).copy():
|
||||
handle_note_off(channel, channel_program[channel], note)
|
||||
else:
|
||||
pass
|
||||
|
||||
flush_token_data_buffer()
|
||||
output.append("<end>")
|
||||
return " ".join(output)
|
||||
|
||||
|
||||
def generate_program_change_messages(cfg: VocabConfig):
|
||||
for bin_name, channel in cfg.bin_channel_map.items():
|
||||
if channel == 9:
|
||||
continue
|
||||
program = cfg._instrument_names_str_to_int[
|
||||
cfg.bin_name_to_program_name[bin_name]
|
||||
]
|
||||
yield mido.Message("program_change", program=program, time=0, channel=channel)
|
||||
yield mido.Message("program_change", program=0, time=0, channel=9)
|
||||
|
||||
|
||||
@dataclass
|
||||
class DecodeState:
|
||||
total_time: float # milliseconds
|
||||
delta_accum: float # milliseconds
|
||||
current_bin: int
|
||||
current_note: int
|
||||
active_notes: Dict[Tuple[int, int], float] # { (channel, note): time started, ... }
|
||||
|
||||
|
||||
def token_to_midi_message(
|
||||
utils: VocabUtils, token: str, state: DecodeState, end_token_pause: float = 3.0
|
||||
) -> Iterator[Tuple[Optional[mido.Message], DecodeState]]:
|
||||
if state is None:
|
||||
state = DecodeState(
|
||||
total_time=0.0,
|
||||
delta_accum=0.0,
|
||||
current_bin=utils.cfg._short_instrument_names_str_to_int[
|
||||
utils.cfg.short_instr_bin_names[0]
|
||||
],
|
||||
current_note=0,
|
||||
active_notes={},
|
||||
)
|
||||
token = token.strip()
|
||||
if not token:
|
||||
yield None, state
|
||||
return
|
||||
if token == "<end>":
|
||||
d = end_token_pause * 1000.0
|
||||
state.delta_accum += d
|
||||
state.total_time += d
|
||||
if utils.cfg.decode_end_held_note_delay != 0.0:
|
||||
# end held notes
|
||||
for (channel, note), start_time in list(state.active_notes.items()).copy():
|
||||
ticks = int(mido.second2tick(state.delta_accum / 1000.0, 480, 500000))
|
||||
state.delta_accum = 0.0
|
||||
del state.active_notes[(channel, note)]
|
||||
yield mido.Message(
|
||||
"note_off", note=note, time=ticks, channel=channel
|
||||
), state
|
||||
yield None, state
|
||||
return
|
||||
if token.startswith("<"):
|
||||
yield None, state
|
||||
return
|
||||
|
||||
if utils.cfg.unrolled_tokens:
|
||||
if token[0] == "t":
|
||||
d = utils.wait_token_to_delta(token)
|
||||
state.delta_accum += d
|
||||
state.total_time += d
|
||||
elif token[0] == "n":
|
||||
state.current_note = int(token[1:], base=16)
|
||||
elif token[0] == "i":
|
||||
state.current_bin = utils.cfg._short_instrument_names_str_to_int[token[1:]]
|
||||
elif token[0] == "v":
|
||||
current_velocity = utils.bin_to_velocity(int(token[1:], base=16))
|
||||
channel = utils.cfg.bin_channel_map[
|
||||
utils.cfg.bin_instrument_names[state.current_bin]
|
||||
]
|
||||
ticks = int(mido.second2tick(state.delta_accum / 1000.0, 480, 500000))
|
||||
state.delta_accum = 0.0
|
||||
if current_velocity > 0:
|
||||
yield mido.Message(
|
||||
"note_on",
|
||||
note=state.current_note,
|
||||
velocity=current_velocity,
|
||||
time=ticks,
|
||||
channel=channel,
|
||||
), state
|
||||
else:
|
||||
yield mido.Message(
|
||||
"note_off",
|
||||
note=state.current_note,
|
||||
velocity=0,
|
||||
time=ticks,
|
||||
channel=channel,
|
||||
), state
|
||||
else:
|
||||
if token[0] == "t" and token[1].isdigit(): # wait token
|
||||
d = utils.wait_token_to_delta(token)
|
||||
state.delta_accum += d
|
||||
state.total_time += d
|
||||
if utils.cfg.decode_end_held_note_delay != 0.0:
|
||||
# remove notes that have been held for too long
|
||||
for (channel, note), start_time in list(
|
||||
state.active_notes.items()
|
||||
).copy():
|
||||
if (
|
||||
state.total_time - start_time
|
||||
> utils.cfg.decode_end_held_note_delay * 1000.0
|
||||
):
|
||||
ticks = int(
|
||||
mido.second2tick(state.delta_accum / 1000.0, 480, 500000)
|
||||
)
|
||||
state.delta_accum = 0.0
|
||||
del state.active_notes[(channel, note)]
|
||||
yield mido.Message(
|
||||
"note_off", note=note, time=ticks, channel=channel
|
||||
), state
|
||||
return
|
||||
else: # note token
|
||||
bin, note, velocity = utils.note_token_to_data(token)
|
||||
channel = utils.cfg.bin_channel_map[utils.cfg.bin_instrument_names[bin]]
|
||||
ticks = int(mido.second2tick(state.delta_accum / 1000.0, 480, 500000))
|
||||
state.delta_accum = 0.0
|
||||
if velocity > 0:
|
||||
if utils.cfg.decode_fix_repeated_notes:
|
||||
if (channel, note) in state.active_notes:
|
||||
del state.active_notes[(channel, note)]
|
||||
yield mido.Message(
|
||||
"note_off", note=note, time=ticks, channel=channel
|
||||
), state
|
||||
ticks = 0
|
||||
state.active_notes[(channel, note)] = state.total_time
|
||||
yield mido.Message(
|
||||
"note_on", note=note, velocity=velocity, time=ticks, channel=channel
|
||||
), state
|
||||
return
|
||||
else:
|
||||
if (channel, note) in state.active_notes:
|
||||
del state.active_notes[(channel, note)]
|
||||
yield mido.Message(
|
||||
"note_off", note=note, time=ticks, channel=channel
|
||||
), state
|
||||
return
|
||||
yield None, state
|
||||
|
||||
|
||||
def str_to_midi_messages(utils: VocabUtils, data: str) -> Iterator[mido.Message]:
|
||||
state = None
|
||||
for token in data.split(" "):
|
||||
for msg, new_state in token_to_midi_message(utils, token, state):
|
||||
state = new_state
|
||||
if msg is not None:
|
||||
yield msg
|
||||
|
||||
|
||||
def convert_str_to_midi(
|
||||
cfg: VocabConfig, data: str, meta_text: str = "Generated by MIDI-LLM-tokenizer"
|
||||
) -> mido.MidiFile:
|
||||
utils = VocabUtils(cfg)
|
||||
mid = mido.MidiFile()
|
||||
track = mido.MidiTrack()
|
||||
mid.tracks.append(track)
|
||||
|
||||
tempo = 500000
|
||||
if meta_text:
|
||||
track.append(mido.MetaMessage("text", text=meta_text, time=0))
|
||||
track.append(mido.MetaMessage("set_tempo", tempo=tempo, time=0))
|
||||
for msg in generate_program_change_messages(cfg):
|
||||
track.append(msg)
|
||||
|
||||
# data = data.replace("<start>", "").replace("<end>", "").replace("<pad>", "").strip()
|
||||
for msg in str_to_midi_messages(utils, data):
|
||||
track.append(msg)
|
||||
|
||||
track.append(mido.MetaMessage("end_of_track", time=0))
|
||||
|
||||
return mid
|
||||
303
backend-python/utils/midi_vocab_config.json
Normal file
303
backend-python/utils/midi_vocab_config.json
Normal file
@@ -0,0 +1,303 @@
|
||||
{
|
||||
"note_events": 128,
|
||||
"wait_events": 125,
|
||||
"max_wait_time": 1000,
|
||||
"velocity_events": 128,
|
||||
"velocity_bins": 12,
|
||||
"velocity_exp": 0.5,
|
||||
"do_token_sorting": true,
|
||||
"unrolled_tokens": false,
|
||||
"decode_end_held_note_delay": 5.0,
|
||||
"decode_fix_repeated_notes": true,
|
||||
"bin_instrument_names": [
|
||||
"percussion",
|
||||
"drum",
|
||||
"tuba",
|
||||
"marimba",
|
||||
"bass",
|
||||
"guitar",
|
||||
"violin",
|
||||
"trumpet",
|
||||
"piano",
|
||||
"sax",
|
||||
"flute",
|
||||
"lead",
|
||||
"pad"
|
||||
],
|
||||
"ch10_instrument_bin_name": "percussion",
|
||||
"program_name_to_bin_name": {
|
||||
"Acoustic Grand Piano": "piano",
|
||||
"Bright Acoustic Piano": "piano",
|
||||
"Electric Grand Piano": "piano",
|
||||
"Honky-tonk Piano": "piano",
|
||||
"Electric Piano 1 (Rhodes Piano)": "piano",
|
||||
"Electric Piano 2 (Chorused Piano)": "piano",
|
||||
"Harpsichord": "piano",
|
||||
"Clavinet": "piano",
|
||||
"Celesta": "marimba",
|
||||
"Glockenspiel": "marimba",
|
||||
"Music Box": "marimba",
|
||||
"Vibraphone": "marimba",
|
||||
"Marimba": "marimba",
|
||||
"Xylophone": "marimba",
|
||||
"Tubular Bells": "marimba",
|
||||
"Dulcimer (Santur)": "marimba",
|
||||
"Drawbar Organ (Hammond)": "marimba",
|
||||
"Percussive Organ": "piano",
|
||||
"Rock Organ": "piano",
|
||||
"Church Organ": "piano",
|
||||
"Reed Organ": "piano",
|
||||
"Accordion (French)": "piano",
|
||||
"Harmonica": "piano",
|
||||
"Tango Accordion (Band neon)": "piano",
|
||||
"Acoustic Guitar (nylon)": "guitar",
|
||||
"Acoustic Guitar (steel)": "guitar",
|
||||
"Electric Guitar (jazz)": "guitar",
|
||||
"Electric Guitar (clean)": "guitar",
|
||||
"Electric Guitar (muted)": "guitar",
|
||||
"Overdriven Guitar": "guitar",
|
||||
"Distortion Guitar": "guitar",
|
||||
"Guitar harmonics": "guitar",
|
||||
"Acoustic Bass": "bass",
|
||||
"Electric Bass (fingered)": "bass",
|
||||
"Electric Bass (picked)": "bass",
|
||||
"Fretless Bass": "bass",
|
||||
"Slap Bass 1": "bass",
|
||||
"Slap Bass 2": "bass",
|
||||
"Synth Bass 1": "bass",
|
||||
"Synth Bass 2": "bass",
|
||||
"Violin": "violin",
|
||||
"Viola": "violin",
|
||||
"Cello": "bass",
|
||||
"Contrabass": "bass",
|
||||
"Tremolo Strings": "violin",
|
||||
"Pizzicato Strings": "violin",
|
||||
"Orchestral Harp": "violin",
|
||||
"Timpani": "drum",
|
||||
"String Ensemble 1 (strings)": "violin",
|
||||
"String Ensemble 2 (slow strings)": "violin",
|
||||
"SynthStrings 1": "violin",
|
||||
"SynthStrings 2": "violin",
|
||||
"Choir Aahs": "violin",
|
||||
"Voice Oohs": "violin",
|
||||
"Synth Voice": "violin",
|
||||
"Orchestra Hit": "",
|
||||
"Trumpet": "trumpet",
|
||||
"Trombone": "tuba",
|
||||
"Tuba": "tuba",
|
||||
"Muted Trumpet": "trumpet",
|
||||
"French Horn": "trumpet",
|
||||
"Brass Section": "trumpet",
|
||||
"SynthBrass 1": "trumpet",
|
||||
"SynthBrass 2": "trumpet",
|
||||
"Soprano Sax": "sax",
|
||||
"Alto Sax": "sax",
|
||||
"Tenor Sax": "sax",
|
||||
"Baritone Sax": "sax",
|
||||
"Oboe": "sax",
|
||||
"English Horn": "trumpet",
|
||||
"Bassoon": "sax",
|
||||
"Clarinet": "sax",
|
||||
"Piccolo": "flute",
|
||||
"Flute": "flute",
|
||||
"Recorder": "flute",
|
||||
"Pan Flute": "flute",
|
||||
"Blown Bottle": "flute",
|
||||
"Shakuhachi": "flute",
|
||||
"Whistle": "flute",
|
||||
"Ocarina": "flute",
|
||||
"Lead 1 (square wave)": "lead",
|
||||
"Lead 2 (sawtooth wave)": "lead",
|
||||
"Lead 3 (calliope)": "lead",
|
||||
"Lead 4 (chiffer)": "lead",
|
||||
"Lead 5 (charang)": "lead",
|
||||
"Lead 6 (voice solo)": "violin",
|
||||
"Lead 7 (fifths)": "lead",
|
||||
"Lead 8 (bass + lead)": "lead",
|
||||
"Pad 1 (new age Fantasia)": "pad",
|
||||
"Pad 2 (warm)": "pad",
|
||||
"Pad 3 (polysynth)": "pad",
|
||||
"Pad 4 (choir space voice)": "violin",
|
||||
"Pad 5 (bowed glass)": "pad",
|
||||
"Pad 6 (metallic pro)": "pad",
|
||||
"Pad 7 (halo)": "pad",
|
||||
"Pad 8 (sweep)": "pad",
|
||||
"FX 1 (rain)": "",
|
||||
"FX 2 (soundtrack)": "",
|
||||
"FX 3 (crystal)": "",
|
||||
"FX 4 (atmosphere)": "",
|
||||
"FX 5 (brightness)": "",
|
||||
"FX 6 (goblins)": "",
|
||||
"FX 7 (echoes, drops)": "",
|
||||
"FX 8 (sci-fi, star theme)": "",
|
||||
"Sitar": "guitar",
|
||||
"Banjo": "guitar",
|
||||
"Shamisen": "guitar",
|
||||
"Koto": "guitar",
|
||||
"Kalimba": "guitar",
|
||||
"Bag pipe": "sax",
|
||||
"Fiddle": "violin",
|
||||
"Shanai": "sax",
|
||||
"Tinkle Bell": "marimba",
|
||||
"Agogo": "marimba",
|
||||
"Steel Drums": "marimba",
|
||||
"Woodblock": "marimba",
|
||||
"Taiko Drum": "drum",
|
||||
"Melodic Tom": "drum",
|
||||
"Synth Drum": "drum",
|
||||
"Reverse Cymbal": "",
|
||||
"Guitar Fret Noise": "",
|
||||
"Breath Noise": "",
|
||||
"Seashore": "",
|
||||
"Bird Tweet": "",
|
||||
"Telephone Ring": "",
|
||||
"Helicopter": "",
|
||||
"Applause": "",
|
||||
"Gunshot": ""
|
||||
},
|
||||
"bin_name_to_program_name": {
|
||||
"piano": "Acoustic Grand Piano",
|
||||
"marimba": "Marimba",
|
||||
"drum": "Synth Drum",
|
||||
"guitar": "Acoustic Guitar (steel)",
|
||||
"bass": "Acoustic Bass",
|
||||
"violin": "Violin",
|
||||
"percussion": "",
|
||||
"trumpet": "Trumpet",
|
||||
"tuba": "Tuba",
|
||||
"sax": "Tenor Sax",
|
||||
"flute": "Flute",
|
||||
"lead": "Lead 1 (square wave)",
|
||||
"pad": "Pad 1 (new age Fantasia)"
|
||||
},
|
||||
"instrument_names": {
|
||||
"0": "Acoustic Grand Piano",
|
||||
"1": "Bright Acoustic Piano",
|
||||
"2": "Electric Grand Piano",
|
||||
"3": "Honky-tonk Piano",
|
||||
"4": "Electric Piano 1 (Rhodes Piano)",
|
||||
"5": "Electric Piano 2 (Chorused Piano)",
|
||||
"6": "Harpsichord",
|
||||
"7": "Clavinet",
|
||||
"8": "Celesta",
|
||||
"9": "Glockenspiel",
|
||||
"10": "Music Box",
|
||||
"11": "Vibraphone",
|
||||
"12": "Marimba",
|
||||
"13": "Xylophone",
|
||||
"14": "Tubular Bells",
|
||||
"15": "Dulcimer (Santur)",
|
||||
"16": "Drawbar Organ (Hammond)",
|
||||
"17": "Percussive Organ",
|
||||
"18": "Rock Organ",
|
||||
"19": "Church Organ",
|
||||
"20": "Reed Organ",
|
||||
"21": "Accordion (French)",
|
||||
"22": "Harmonica",
|
||||
"23": "Tango Accordion (Band neon)",
|
||||
"24": "Acoustic Guitar (nylon)",
|
||||
"25": "Acoustic Guitar (steel)",
|
||||
"26": "Electric Guitar (jazz)",
|
||||
"27": "Electric Guitar (clean)",
|
||||
"28": "Electric Guitar (muted)",
|
||||
"29": "Overdriven Guitar",
|
||||
"30": "Distortion Guitar",
|
||||
"31": "Guitar harmonics",
|
||||
"32": "Acoustic Bass",
|
||||
"33": "Electric Bass (fingered)",
|
||||
"34": "Electric Bass (picked)",
|
||||
"35": "Fretless Bass",
|
||||
"36": "Slap Bass 1",
|
||||
"37": "Slap Bass 2",
|
||||
"38": "Synth Bass 1",
|
||||
"39": "Synth Bass 2",
|
||||
"40": "Violin",
|
||||
"41": "Viola",
|
||||
"42": "Cello",
|
||||
"43": "Contrabass",
|
||||
"44": "Tremolo Strings",
|
||||
"45": "Pizzicato Strings",
|
||||
"46": "Orchestral Harp",
|
||||
"47": "Timpani",
|
||||
"48": "String Ensemble 1 (strings)",
|
||||
"49": "String Ensemble 2 (slow strings)",
|
||||
"50": "SynthStrings 1",
|
||||
"51": "SynthStrings 2",
|
||||
"52": "Choir Aahs",
|
||||
"53": "Voice Oohs",
|
||||
"54": "Synth Voice",
|
||||
"55": "Orchestra Hit",
|
||||
"56": "Trumpet",
|
||||
"57": "Trombone",
|
||||
"58": "Tuba",
|
||||
"59": "Muted Trumpet",
|
||||
"60": "French Horn",
|
||||
"61": "Brass Section",
|
||||
"62": "SynthBrass 1",
|
||||
"63": "SynthBrass 2",
|
||||
"64": "Soprano Sax",
|
||||
"65": "Alto Sax",
|
||||
"66": "Tenor Sax",
|
||||
"67": "Baritone Sax",
|
||||
"68": "Oboe",
|
||||
"69": "English Horn",
|
||||
"70": "Bassoon",
|
||||
"71": "Clarinet",
|
||||
"72": "Piccolo",
|
||||
"73": "Flute",
|
||||
"74": "Recorder",
|
||||
"75": "Pan Flute",
|
||||
"76": "Blown Bottle",
|
||||
"77": "Shakuhachi",
|
||||
"78": "Whistle",
|
||||
"79": "Ocarina",
|
||||
"80": "Lead 1 (square wave)",
|
||||
"81": "Lead 2 (sawtooth wave)",
|
||||
"82": "Lead 3 (calliope)",
|
||||
"83": "Lead 4 (chiffer)",
|
||||
"84": "Lead 5 (charang)",
|
||||
"85": "Lead 6 (voice solo)",
|
||||
"86": "Lead 7 (fifths)",
|
||||
"87": "Lead 8 (bass + lead)",
|
||||
"88": "Pad 1 (new age Fantasia)",
|
||||
"89": "Pad 2 (warm)",
|
||||
"90": "Pad 3 (polysynth)",
|
||||
"91": "Pad 4 (choir space voice)",
|
||||
"92": "Pad 5 (bowed glass)",
|
||||
"93": "Pad 6 (metallic pro)",
|
||||
"94": "Pad 7 (halo)",
|
||||
"95": "Pad 8 (sweep)",
|
||||
"96": "FX 1 (rain)",
|
||||
"97": "FX 2 (soundtrack)",
|
||||
"98": "FX 3 (crystal)",
|
||||
"99": "FX 4 (atmosphere)",
|
||||
"100": "FX 5 (brightness)",
|
||||
"101": "FX 6 (goblins)",
|
||||
"102": "FX 7 (echoes, drops)",
|
||||
"103": "FX 8 (sci-fi, star theme)",
|
||||
"104": "Sitar",
|
||||
"105": "Banjo",
|
||||
"106": "Shamisen",
|
||||
"107": "Koto",
|
||||
"108": "Kalimba",
|
||||
"109": "Bag pipe",
|
||||
"110": "Fiddle",
|
||||
"111": "Shanai",
|
||||
"112": "Tinkle Bell",
|
||||
"113": "Agogo",
|
||||
"114": "Steel Drums",
|
||||
"115": "Woodblock",
|
||||
"116": "Taiko Drum",
|
||||
"117": "Melodic Tom",
|
||||
"118": "Synth Drum",
|
||||
"119": "Reverse Cymbal",
|
||||
"120": "Guitar Fret Noise",
|
||||
"121": "Breath Noise",
|
||||
"122": "Seashore",
|
||||
"123": "Bird Tweet",
|
||||
"124": "Telephone Ring",
|
||||
"125": "Helicopter",
|
||||
"126": "Applause",
|
||||
"127": "Gunshot"
|
||||
}
|
||||
}
|
||||
@@ -1,11 +1,13 @@
|
||||
import os
|
||||
import sys
|
||||
import global_var
|
||||
|
||||
|
||||
def ngrok_connect():
|
||||
from pyngrok import ngrok, conf
|
||||
|
||||
conf.set_default(conf.PyngrokConfig(ngrok_path="./ngrok"))
|
||||
conf.set_default(
|
||||
conf.PyngrokConfig(ngrok_path="./ngrok.exe" if os.name == "nt" else "./ngrok")
|
||||
)
|
||||
ngrok.set_auth_token(os.environ["ngrok_token"])
|
||||
http_tunnel = ngrok.connect(8000 if len(sys.argv) == 1 else int(sys.argv[1]))
|
||||
print(http_tunnel.public_url)
|
||||
http_tunnel = ngrok.connect(global_var.get(global_var.Args).port)
|
||||
print(f"ngrok url: {http_tunnel.public_url}")
|
||||
|
||||
@@ -1,100 +1,233 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from enum import Enum, auto
|
||||
import os
|
||||
import pathlib
|
||||
import copy
|
||||
from typing import Dict, List
|
||||
import re
|
||||
from typing import Dict, Iterable, List, Tuple, Union, Type
|
||||
from utils.log import quick_log
|
||||
from fastapi import HTTPException
|
||||
from pydantic import BaseModel
|
||||
from rwkv_pip.utils import PIPELINE
|
||||
from pydantic import BaseModel, Field
|
||||
import numpy as np
|
||||
from routes import state_cache
|
||||
import global_var
|
||||
|
||||
|
||||
END_OF_TEXT = 0
|
||||
END_OF_LINE = 187
|
||||
END_OF_LINE_DOUBLE = 535
|
||||
|
||||
|
||||
os.environ["TORCH_EXTENSIONS_DIR"] = f"{pathlib.Path(__file__).parent.parent.resolve()}"
|
||||
|
||||
|
||||
class RWKV:
|
||||
def __init__(self, model: str, strategy: str, tokens_path: str) -> None:
|
||||
from rwkv.model import RWKV as Model # dynamic import to make RWKV_CUDA_ON work
|
||||
class RWKVType(Enum):
|
||||
NoneType = auto()
|
||||
Raven = auto()
|
||||
World = auto()
|
||||
Music = auto()
|
||||
|
||||
self.model = Model(model, strategy)
|
||||
self.pipeline = PIPELINE(self.model, tokens_path)
|
||||
|
||||
class AbstractRWKV(ABC):
|
||||
def __init__(self, model, pipeline):
|
||||
self.name = "rwkv"
|
||||
self.model = model
|
||||
self.pipeline = pipeline
|
||||
self.model_state = None
|
||||
self.model_tokens = []
|
||||
|
||||
self.CHUNK_LEN = 256
|
||||
self.rwkv_type: RWKVType = RWKVType.NoneType
|
||||
self.tokenizer_len = len(model.w["emb.weight"])
|
||||
|
||||
self.max_tokens_per_generation = 500
|
||||
self.temperature = 1
|
||||
self.top_p = 0.5
|
||||
self.penalty_alpha_presence = 0.4
|
||||
self.penalty_alpha_frequency = 0.4
|
||||
self.top_p = 0.3
|
||||
self.top_k = 0
|
||||
self.penalty_alpha_presence = 0
|
||||
self.penalty_alpha_frequency = 1
|
||||
|
||||
self.interface = ":"
|
||||
if "rwkv_vocab" in tokens_path:
|
||||
self.user = "Human"
|
||||
self.bot = "Bot"
|
||||
else:
|
||||
self.user = "Bob"
|
||||
self.bot = "Alice"
|
||||
@abstractmethod
|
||||
def adjust_occurrence(self, occurrence: Dict, token: int):
|
||||
pass
|
||||
|
||||
self.AVOID_REPEAT_TOKENS = []
|
||||
AVOID_REPEAT = ",:?!"
|
||||
for i in AVOID_REPEAT:
|
||||
dd = self.pipeline.encode(i)
|
||||
assert len(dd) == 1
|
||||
self.AVOID_REPEAT_TOKENS += dd
|
||||
@abstractmethod
|
||||
def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int):
|
||||
pass
|
||||
|
||||
self.preload()
|
||||
# Model only saw '\n\n' as [187, 187] before, but the tokenizer outputs [535] for it at the end
|
||||
@abstractmethod
|
||||
def fix_tokens(self, tokens) -> List[int]:
|
||||
pass
|
||||
|
||||
def preload(self):
|
||||
if self.user == "Bob":
|
||||
bot = self.bot
|
||||
user = self.user
|
||||
preset_system = f"""
|
||||
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
|
||||
{bot} is very intelligent, creative and friendly. \
|
||||
{bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \
|
||||
{bot} likes to tell {user} a lot about herself and her opinions. \
|
||||
{bot} usually gives {user} kind, helpful and informative advices.\n
|
||||
"""
|
||||
logits = self.run_rnn(self.pipeline.encode(preset_system))
|
||||
try:
|
||||
state_cache.add_state(
|
||||
state_cache.AddStateBody(
|
||||
prompt=preset_system,
|
||||
tokens=self.model_tokens,
|
||||
state=self.model_state,
|
||||
logits=logits,
|
||||
)
|
||||
)
|
||||
except HTTPException:
|
||||
pass
|
||||
@abstractmethod
|
||||
def run_rnn(
|
||||
self, _tokens: List[str], newline_adj: int = 0
|
||||
) -> Tuple[List[float], int]:
|
||||
pass
|
||||
|
||||
def run_rnn(self, _tokens: List[str], newline_adj: int = 0):
|
||||
tokens = [int(x) for x in _tokens]
|
||||
self.model_tokens += tokens
|
||||
@abstractmethod
|
||||
def delta_postprocess(self, delta: str) -> str:
|
||||
pass
|
||||
|
||||
while len(tokens) > 0:
|
||||
out, self.model_state = self.model.forward(
|
||||
tokens[: self.CHUNK_LEN], self.model_state
|
||||
def get_embedding(self, input: str, fast_mode: bool) -> Tuple[List[float], int]:
|
||||
if fast_mode:
|
||||
embedding, token_len = self.__fast_embedding(
|
||||
self.fix_tokens(self.pipeline.encode(input)), None
|
||||
)
|
||||
tokens = tokens[self.CHUNK_LEN :]
|
||||
else:
|
||||
self.model_state = None
|
||||
self.model_tokens = []
|
||||
_, token_len = self.run_rnn(self.fix_tokens(self.pipeline.encode(input)))
|
||||
embedding = self.model_state[-11].tolist()
|
||||
embedding = (embedding / np.linalg.norm(embedding)).tolist()
|
||||
return embedding, token_len
|
||||
|
||||
out[END_OF_LINE] += newline_adj # adjust \n probability
|
||||
def __fast_embedding(self, tokens: List[str], state):
|
||||
import torch
|
||||
|
||||
if self.model_tokens[-1] in self.AVOID_REPEAT_TOKENS:
|
||||
out[self.model_tokens[-1]] = -999999999
|
||||
return out
|
||||
tokens = [int(x) for x in tokens]
|
||||
token_len = len(tokens)
|
||||
self = self.model
|
||||
|
||||
def generate(self, prompt: str, stop: str = None):
|
||||
with torch.no_grad():
|
||||
w = self.w
|
||||
args = self.args
|
||||
|
||||
if state == None:
|
||||
state = [None] * args.n_layer * 5
|
||||
for i in range(
|
||||
args.n_layer
|
||||
): # state: 0=att_xx 1=att_aa 2=att_bb 3=att_pp 4=ffn_xx
|
||||
dd = self.strategy[i]
|
||||
dev = dd.device
|
||||
atype = dd.atype
|
||||
state[i * 5 + 0] = torch.zeros(
|
||||
args.n_embd, dtype=atype, requires_grad=False, device=dev
|
||||
).contiguous()
|
||||
state[i * 5 + 1] = torch.zeros(
|
||||
args.n_embd, dtype=torch.float, requires_grad=False, device=dev
|
||||
).contiguous()
|
||||
state[i * 5 + 2] = torch.zeros(
|
||||
args.n_embd, dtype=torch.float, requires_grad=False, device=dev
|
||||
).contiguous()
|
||||
state[i * 5 + 3] = (
|
||||
torch.zeros(
|
||||
args.n_embd,
|
||||
dtype=torch.float,
|
||||
requires_grad=False,
|
||||
device=dev,
|
||||
).contiguous()
|
||||
- 1e30
|
||||
)
|
||||
state[i * 5 + 4] = torch.zeros(
|
||||
args.n_embd, dtype=atype, requires_grad=False, device=dev
|
||||
).contiguous()
|
||||
|
||||
break
|
||||
|
||||
seq_mode = len(tokens) > 1
|
||||
|
||||
x = w["emb.weight"][tokens if seq_mode else tokens[0]]
|
||||
|
||||
for i in range(args.n_layer):
|
||||
bbb = f"blocks.{i}."
|
||||
att = f"blocks.{i}.att."
|
||||
ffn = f"blocks.{i}.ffn."
|
||||
dd = self.strategy[i]
|
||||
dev = dd.device
|
||||
atype = dd.atype
|
||||
wtype = dd.wtype
|
||||
if seq_mode:
|
||||
if "cuda" in str(dev) and os.environ["RWKV_CUDA_ON"] == "1":
|
||||
ATT = (
|
||||
self.cuda_att_seq
|
||||
if wtype != torch.uint8
|
||||
else self.cuda_att_seq_i8
|
||||
)
|
||||
else:
|
||||
ATT = self.att_seq if wtype != torch.uint8 else self.att_seq_i8
|
||||
FFN = self.ffn_seq if wtype != torch.uint8 else self.ffn_seq_i8
|
||||
else:
|
||||
ATT = self.att_one if wtype != torch.uint8 else self.att_one_i8
|
||||
FFN = self.ffn_one if wtype != torch.uint8 else self.ffn_one_i8
|
||||
|
||||
x = x.to(dtype=atype, device=dev)
|
||||
|
||||
kw = w[f"{att}key.weight"]
|
||||
vw = w[f"{att}value.weight"]
|
||||
rw = w[f"{att}receptance.weight"]
|
||||
ow = w[f"{att}output.weight"]
|
||||
if dd.stream:
|
||||
kw = kw.to(device=dev, non_blocking=True)
|
||||
vw = vw.to(device=dev, non_blocking=True)
|
||||
rw = rw.to(device=dev, non_blocking=True)
|
||||
ow = ow.to(device=dev, non_blocking=True)
|
||||
kmx = w[f"{att}key.weight_mx"] if wtype == torch.uint8 else x
|
||||
krx = w[f"{att}key.weight_rx"] if wtype == torch.uint8 else x
|
||||
kmy = w[f"{att}key.weight_my"] if wtype == torch.uint8 else x
|
||||
kry = w[f"{att}key.weight_ry"] if wtype == torch.uint8 else x
|
||||
vmx = w[f"{att}value.weight_mx"] if wtype == torch.uint8 else x
|
||||
vrx = w[f"{att}value.weight_rx"] if wtype == torch.uint8 else x
|
||||
vmy = w[f"{att}value.weight_my"] if wtype == torch.uint8 else x
|
||||
vry = w[f"{att}value.weight_ry"] if wtype == torch.uint8 else x
|
||||
rmx = w[f"{att}receptance.weight_mx"] if wtype == torch.uint8 else x
|
||||
rrx = w[f"{att}receptance.weight_rx"] if wtype == torch.uint8 else x
|
||||
rmy = w[f"{att}receptance.weight_my"] if wtype == torch.uint8 else x
|
||||
rry = w[f"{att}receptance.weight_ry"] if wtype == torch.uint8 else x
|
||||
omx = w[f"{att}output.weight_mx"] if wtype == torch.uint8 else x
|
||||
orx = w[f"{att}output.weight_rx"] if wtype == torch.uint8 else x
|
||||
omy = w[f"{att}output.weight_my"] if wtype == torch.uint8 else x
|
||||
ory = w[f"{att}output.weight_ry"] if wtype == torch.uint8 else x
|
||||
(
|
||||
x,
|
||||
state[i * 5 + 0],
|
||||
state[i * 5 + 1],
|
||||
state[i * 5 + 2],
|
||||
state[i * 5 + 3],
|
||||
) = ATT(
|
||||
x,
|
||||
state[i * 5 + 0],
|
||||
state[i * 5 + 1],
|
||||
state[i * 5 + 2],
|
||||
state[i * 5 + 3],
|
||||
w[f"{bbb}ln1.weight"],
|
||||
w[f"{bbb}ln1.bias"],
|
||||
w[f"{att}time_mix_k"],
|
||||
w[f"{att}time_mix_v"],
|
||||
w[f"{att}time_mix_r"],
|
||||
w[f"{att}time_decay"],
|
||||
w[f"{att}time_first"],
|
||||
kw,
|
||||
vw,
|
||||
rw,
|
||||
ow,
|
||||
kmx,
|
||||
krx,
|
||||
kmy,
|
||||
kry,
|
||||
vmx,
|
||||
vrx,
|
||||
vmy,
|
||||
vry,
|
||||
rmx,
|
||||
rrx,
|
||||
rmy,
|
||||
rry,
|
||||
omx,
|
||||
orx,
|
||||
omy,
|
||||
ory,
|
||||
)
|
||||
|
||||
return state[0].tolist(), token_len
|
||||
|
||||
def generate(
|
||||
self, prompt: str, stop: Union[str, List[str], None] = None
|
||||
) -> Iterable[Tuple[str, str, int, int]]:
|
||||
quick_log(None, None, "Generation Prompt:\n" + prompt)
|
||||
cache = None
|
||||
delta_prompt = prompt
|
||||
try:
|
||||
cache = state_cache.longest_prefix_state(
|
||||
state_cache.LongestPrefixStateBody(prompt=prompt)
|
||||
state_cache.LongestPrefixStateBody(prompt=prompt), None
|
||||
)
|
||||
except HTTPException:
|
||||
pass
|
||||
@@ -107,8 +240,11 @@ The following is a coherent verbose detailed conversation between a girl named {
|
||||
self.model_tokens = copy.deepcopy(cache["tokens"])
|
||||
logits = copy.deepcopy(cache["logits"])
|
||||
|
||||
prompt_token_len = 0
|
||||
if delta_prompt != "":
|
||||
logits = self.run_rnn(self.pipeline.encode(delta_prompt))
|
||||
logits, prompt_token_len = self.run_rnn(
|
||||
self.fix_tokens(self.pipeline.encode(delta_prompt))
|
||||
)
|
||||
try:
|
||||
state_cache.add_state(
|
||||
state_cache.AddStateBody(
|
||||
@@ -126,44 +262,63 @@ The following is a coherent verbose detailed conversation between a girl named {
|
||||
|
||||
occurrence: Dict = {}
|
||||
|
||||
completion_token_len = 0
|
||||
response = ""
|
||||
for i in range(self.max_tokens_per_generation):
|
||||
for n in occurrence:
|
||||
logits[n] -= (
|
||||
self.penalty_alpha_presence
|
||||
+ occurrence[n] * self.penalty_alpha_frequency
|
||||
)
|
||||
self.adjust_forward_logits(logits, occurrence, i)
|
||||
|
||||
token = self.pipeline.sample_logits(
|
||||
logits, temperature=self.temperature, top_p=self.top_p
|
||||
logits, temperature=self.temperature, top_p=self.top_p, top_k=self.top_k
|
||||
)
|
||||
|
||||
if token == END_OF_TEXT:
|
||||
yield response, "", prompt_token_len, completion_token_len
|
||||
break
|
||||
if token not in occurrence:
|
||||
occurrence[token] = 1
|
||||
else:
|
||||
occurrence[token] += 1
|
||||
|
||||
logits = self.run_rnn([token])
|
||||
delta: str = self.pipeline.decode(self.model_tokens[out_last:])
|
||||
self.adjust_occurrence(occurrence, token)
|
||||
|
||||
logits, _ = self.run_rnn([token])
|
||||
completion_token_len = completion_token_len + 1
|
||||
delta: str = self.delta_postprocess(
|
||||
self.pipeline.decode(self.model_tokens[out_last:])
|
||||
)
|
||||
if "\ufffd" not in delta: # avoid utf-8 display issues
|
||||
response += delta
|
||||
if stop is not None:
|
||||
if stop in response:
|
||||
response = response.split(stop)[0]
|
||||
try:
|
||||
state_cache.add_state(
|
||||
state_cache.AddStateBody(
|
||||
prompt=prompt + response,
|
||||
tokens=self.model_tokens,
|
||||
state=self.model_state,
|
||||
logits=logits,
|
||||
if type(stop) == str:
|
||||
if stop in response:
|
||||
try:
|
||||
state_cache.add_state(
|
||||
state_cache.AddStateBody(
|
||||
prompt=prompt + response,
|
||||
tokens=self.model_tokens,
|
||||
state=self.model_state,
|
||||
logits=logits,
|
||||
)
|
||||
)
|
||||
)
|
||||
except HTTPException:
|
||||
pass
|
||||
yield response, ""
|
||||
break
|
||||
except HTTPException:
|
||||
pass
|
||||
response = response.split(stop)[0]
|
||||
yield response, "", prompt_token_len, completion_token_len
|
||||
break
|
||||
elif type(stop) == list:
|
||||
stop_exist_regex = "|".join(stop)
|
||||
matched = re.search(stop_exist_regex, response)
|
||||
if matched:
|
||||
try:
|
||||
state_cache.add_state(
|
||||
state_cache.AddStateBody(
|
||||
prompt=prompt + response,
|
||||
tokens=self.model_tokens,
|
||||
state=self.model_state,
|
||||
logits=logits,
|
||||
)
|
||||
)
|
||||
except HTTPException:
|
||||
pass
|
||||
response = response.split(matched.group())[0]
|
||||
yield response, "", prompt_token_len, completion_token_len
|
||||
break
|
||||
out_last = begin + i + 1
|
||||
if i == self.max_tokens_per_generation - 1:
|
||||
try:
|
||||
@@ -177,31 +332,254 @@ The following is a coherent verbose detailed conversation between a girl named {
|
||||
)
|
||||
except HTTPException:
|
||||
pass
|
||||
yield response, delta
|
||||
yield response, delta, prompt_token_len, completion_token_len
|
||||
|
||||
|
||||
class TextRWKV(AbstractRWKV):
|
||||
def __init__(self, model, pipeline) -> None:
|
||||
super().__init__(model, pipeline)
|
||||
|
||||
self.CHUNK_LEN = 256
|
||||
|
||||
self.max_tokens_per_generation = 500
|
||||
self.temperature = 1
|
||||
self.top_p = 0.3
|
||||
self.top_k = 0
|
||||
self.penalty_alpha_presence = 0
|
||||
self.penalty_alpha_frequency = 1
|
||||
|
||||
self.interface = ":"
|
||||
if self.tokenizer_len < 65536:
|
||||
self.rwkv_type = RWKVType.Raven
|
||||
self.user = "Bob"
|
||||
self.bot = "Alice"
|
||||
self.END_OF_LINE = 187
|
||||
else:
|
||||
self.rwkv_type = RWKVType.World
|
||||
self.user = "User"
|
||||
self.bot = "Assistant"
|
||||
self.END_OF_LINE = 11
|
||||
|
||||
self.AVOID_REPEAT_TOKENS = []
|
||||
AVOID_REPEAT = ",:?!"
|
||||
for i in AVOID_REPEAT:
|
||||
dd = self.pipeline.encode(i)
|
||||
assert len(dd) == 1
|
||||
self.AVOID_REPEAT_TOKENS += dd
|
||||
|
||||
self.__preload()
|
||||
|
||||
def adjust_occurrence(self, occurrence: Dict, token: int):
|
||||
for xxx in occurrence:
|
||||
occurrence[xxx] *= 0.996
|
||||
if token not in occurrence:
|
||||
occurrence[token] = 1
|
||||
else:
|
||||
occurrence[token] += 1
|
||||
|
||||
def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int):
|
||||
for n in occurrence:
|
||||
logits[n] -= (
|
||||
self.penalty_alpha_presence
|
||||
+ occurrence[n] * self.penalty_alpha_frequency
|
||||
)
|
||||
|
||||
if i == 0:
|
||||
for token in self.model_tokens:
|
||||
token = int(token)
|
||||
for xxx in occurrence:
|
||||
occurrence[xxx] *= 0.996
|
||||
if token not in occurrence:
|
||||
occurrence[token] = 1
|
||||
else:
|
||||
occurrence[token] += 1
|
||||
|
||||
# Model only saw '\n\n' as [187, 187] before, but the tokenizer outputs [535] for it at the end
|
||||
def fix_tokens(self, tokens) -> List[int]:
|
||||
if self.rwkv_type == RWKVType.World:
|
||||
return tokens
|
||||
if len(tokens) > 0 and tokens[-1] == END_OF_LINE_DOUBLE:
|
||||
tokens = tokens[:-1] + [self.END_OF_LINE, self.END_OF_LINE]
|
||||
return tokens
|
||||
|
||||
def run_rnn(
|
||||
self, _tokens: List[str], newline_adj: int = 0
|
||||
) -> Tuple[List[float], int]:
|
||||
tokens = [int(x) for x in _tokens]
|
||||
token_len = len(tokens)
|
||||
self.model_tokens += tokens
|
||||
|
||||
while len(tokens) > 0:
|
||||
out, self.model_state = self.model.forward(
|
||||
tokens[: self.CHUNK_LEN], self.model_state
|
||||
)
|
||||
tokens = tokens[self.CHUNK_LEN :]
|
||||
|
||||
out[self.END_OF_LINE] += newline_adj # adjust \n probability
|
||||
|
||||
if self.model_tokens[-1] in self.AVOID_REPEAT_TOKENS:
|
||||
out[self.model_tokens[-1]] = -999999999
|
||||
return out, token_len
|
||||
|
||||
def delta_postprocess(self, delta: str) -> str:
|
||||
return delta
|
||||
|
||||
def __preload(self):
|
||||
interface = self.interface
|
||||
user = self.user
|
||||
bot = self.bot
|
||||
preset_system = (
|
||||
f"""
|
||||
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
|
||||
{bot} is very intelligent, creative and friendly. \
|
||||
{bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \
|
||||
{bot} likes to tell {user} a lot about herself and her opinions. \
|
||||
{bot} usually gives {user} kind, helpful and informative advices.\n
|
||||
"""
|
||||
if self.rwkv_type == RWKVType.Raven
|
||||
else (
|
||||
f"{user}{interface} hi\n\n{bot}{interface} Hi. "
|
||||
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
|
||||
)
|
||||
)
|
||||
logits, _ = self.run_rnn(self.fix_tokens(self.pipeline.encode(preset_system)))
|
||||
try:
|
||||
state_cache.add_state(
|
||||
state_cache.AddStateBody(
|
||||
prompt=preset_system,
|
||||
tokens=self.model_tokens,
|
||||
state=self.model_state,
|
||||
logits=logits,
|
||||
)
|
||||
)
|
||||
except HTTPException:
|
||||
pass
|
||||
|
||||
|
||||
class MusicRWKV(AbstractRWKV):
|
||||
def __init__(self, model, pipeline):
|
||||
super().__init__(model, pipeline)
|
||||
|
||||
self.max_tokens_per_generation = 500
|
||||
self.temperature = 1
|
||||
self.top_p = 0.8
|
||||
self.top_k = 8
|
||||
|
||||
self.rwkv_type = RWKVType.Music
|
||||
|
||||
def adjust_occurrence(self, occurrence: Dict, token: int):
|
||||
for n in occurrence:
|
||||
occurrence[n] *= 0.997 #### decay repetition penalty
|
||||
if token >= 128 or token == 127:
|
||||
occurrence[token] = 1 + (occurrence[token] if token in occurrence else 0)
|
||||
else:
|
||||
occurrence[token] = 0.3 + (occurrence[token] if token in occurrence else 0)
|
||||
|
||||
def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int):
|
||||
for n in occurrence:
|
||||
logits[n] -= 0 + occurrence[n] * 0.5
|
||||
|
||||
logits[0] += (i - 2000) / 500 # try not to be too short or too long
|
||||
logits[127] -= 1 # avoid "t125"
|
||||
|
||||
def fix_tokens(self, tokens) -> List[int]:
|
||||
return tokens
|
||||
|
||||
def run_rnn(
|
||||
self, _tokens: List[str], newline_adj: int = 0
|
||||
) -> Tuple[List[float], int]:
|
||||
tokens = [int(x) for x in _tokens]
|
||||
token_len = len(tokens)
|
||||
self.model_tokens += tokens
|
||||
out, self.model_state = self.model.forward(tokens, self.model_state)
|
||||
return out, token_len
|
||||
|
||||
def delta_postprocess(self, delta: str) -> str:
|
||||
return " " + delta
|
||||
|
||||
|
||||
def get_tokenizer(tokenizer_len: int):
|
||||
tokenizer_dir = f"{pathlib.Path(__file__).parent.parent.resolve()}/rwkv_pip/"
|
||||
if tokenizer_len < 50277:
|
||||
return tokenizer_dir + "tokenizer-midi.json"
|
||||
elif tokenizer_len < 65536:
|
||||
return tokenizer_dir + "20B_tokenizer.json"
|
||||
else:
|
||||
return "rwkv_vocab_v20230424"
|
||||
|
||||
|
||||
def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV:
|
||||
rwkv_beta = global_var.get(global_var.Args).rwkv_beta
|
||||
|
||||
# dynamic import to make RWKV_CUDA_ON work
|
||||
if rwkv_beta:
|
||||
from rwkv_pip.beta.model import (
|
||||
RWKV as Model,
|
||||
)
|
||||
else:
|
||||
from rwkv_pip.model import (
|
||||
RWKV as Model,
|
||||
)
|
||||
from rwkv_pip.utils import PIPELINE
|
||||
|
||||
filename, _ = os.path.splitext(os.path.basename(model))
|
||||
model = Model(model, strategy)
|
||||
if not tokenizer:
|
||||
tokenizer = get_tokenizer(len(model.w["emb.weight"]))
|
||||
pipeline = PIPELINE(model, tokenizer)
|
||||
|
||||
rwkv_map: dict[str, Type[AbstractRWKV]] = {
|
||||
"20B_tokenizer": TextRWKV,
|
||||
"rwkv_vocab_v20230424": TextRWKV,
|
||||
"tokenizer-midi": MusicRWKV,
|
||||
}
|
||||
tokenizer_name = os.path.splitext(os.path.basename(tokenizer))[0]
|
||||
rwkv: AbstractRWKV
|
||||
if tokenizer_name in rwkv_map:
|
||||
rwkv = rwkv_map[tokenizer_name](model, pipeline)
|
||||
else:
|
||||
rwkv = TextRWKV(model, pipeline)
|
||||
rwkv.name = filename
|
||||
|
||||
return rwkv
|
||||
|
||||
|
||||
class ModelConfigBody(BaseModel):
|
||||
max_tokens: int = None
|
||||
temperature: float = None
|
||||
top_p: float = None
|
||||
presence_penalty: float = None
|
||||
frequency_penalty: float = None
|
||||
max_tokens: int = Field(default=None, gt=0, le=102400)
|
||||
temperature: float = Field(default=None, ge=0, le=2)
|
||||
top_p: float = Field(default=None, ge=0, le=1)
|
||||
presence_penalty: float = Field(default=None, ge=-2, le=2)
|
||||
frequency_penalty: float = Field(default=None, ge=-2, le=2)
|
||||
|
||||
class Config:
|
||||
json_schema_extra = {
|
||||
"example": {
|
||||
"max_tokens": 1000,
|
||||
"temperature": 1.2,
|
||||
"top_p": 0.5,
|
||||
"presence_penalty": 0.4,
|
||||
"frequency_penalty": 0.4,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def set_rwkv_config(model: RWKV, body: ModelConfigBody):
|
||||
if body.max_tokens:
|
||||
def set_rwkv_config(model: AbstractRWKV, body: ModelConfigBody):
|
||||
if body.max_tokens is not None:
|
||||
model.max_tokens_per_generation = body.max_tokens
|
||||
if body.temperature:
|
||||
model.temperature = body.temperature
|
||||
if body.top_p:
|
||||
if body.temperature is not None:
|
||||
if body.temperature < 0.1:
|
||||
model.temperature = 0.1
|
||||
else:
|
||||
model.temperature = body.temperature
|
||||
if body.top_p is not None:
|
||||
model.top_p = body.top_p
|
||||
if body.presence_penalty:
|
||||
if body.presence_penalty is not None:
|
||||
model.penalty_alpha_presence = body.presence_penalty
|
||||
if body.frequency_penalty:
|
||||
if body.frequency_penalty is not None:
|
||||
model.penalty_alpha_frequency = body.frequency_penalty
|
||||
|
||||
|
||||
def get_rwkv_config(model: RWKV) -> ModelConfigBody:
|
||||
def get_rwkv_config(model: AbstractRWKV) -> ModelConfigBody:
|
||||
return ModelConfigBody(
|
||||
max_tokens=model.max_tokens_per_generation,
|
||||
temperature=model.temperature,
|
||||
|
||||
BIN
backend-python/wkv_cuda_utils/wkv_cuda10_30.pyd
vendored
BIN
backend-python/wkv_cuda_utils/wkv_cuda10_30.pyd
vendored
Binary file not shown.
BIN
backend-python/wkv_cuda_utils/wkv_cuda40.pyd
vendored
BIN
backend-python/wkv_cuda_utils/wkv_cuda40.pyd
vendored
Binary file not shown.
734
backend-python/wkv_cuda_utils/wkv_cuda_model.py
vendored
734
backend-python/wkv_cuda_utils/wkv_cuda_model.py
vendored
@@ -1,734 +0,0 @@
|
||||
########################################################################################################
|
||||
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
|
||||
########################################################################################################
|
||||
|
||||
import types, gc, os, time, re
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
torch.backends.cudnn.benchmark = True
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
current_path = os.path.dirname(os.path.abspath(__file__))
|
||||
|
||||
# https://zhuanlan.zhihu.com/p/612879065
|
||||
def LoadPreCompileLibrary(file):
|
||||
import importlib
|
||||
import os
|
||||
|
||||
import torch
|
||||
|
||||
# load the custom_op_library and register the custom ops
|
||||
lib_dir = os.path.dirname(__file__)
|
||||
if os.name == "nt":
|
||||
# Register the main torchvision library location on the default DLL path
|
||||
import ctypes
|
||||
import sys
|
||||
|
||||
kernel32 = ctypes.WinDLL("kernel32.dll", use_last_error=True)
|
||||
with_load_library_flags = hasattr(kernel32, "AddDllDirectory")
|
||||
prev_error_mode = kernel32.SetErrorMode(0x0001)
|
||||
|
||||
if with_load_library_flags:
|
||||
kernel32.AddDllDirectory.restype = ctypes.c_void_p
|
||||
|
||||
if sys.version_info >= (3, 8):
|
||||
os.add_dll_directory(lib_dir)
|
||||
elif with_load_library_flags:
|
||||
res = kernel32.AddDllDirectory(lib_dir)
|
||||
if res is None:
|
||||
err = ctypes.WinError(ctypes.get_last_error())
|
||||
err.strerror += f' Error adding "{lib_dir}" to the DLL directories.'
|
||||
raise ValueError(err)
|
||||
|
||||
kernel32.SetErrorMode(prev_error_mode)
|
||||
|
||||
loader_details = (
|
||||
importlib.machinery.ExtensionFileLoader,
|
||||
importlib.machinery.EXTENSION_SUFFIXES,
|
||||
)
|
||||
|
||||
extfinder = importlib.machinery.FileFinder(lib_dir, loader_details)
|
||||
ext_specs = extfinder.find_spec(file)
|
||||
if ext_specs is None:
|
||||
return False
|
||||
|
||||
try:
|
||||
torch.ops.load_library(ext_specs.origin)
|
||||
except OSError as exc:
|
||||
return False
|
||||
return True
|
||||
|
||||
########################################################################################################
|
||||
|
||||
if os.environ.get('RWKV_JIT_ON') != '0':
|
||||
os.environ["RWKV_JIT_ON"] = '1'
|
||||
MyModule = torch.jit.ScriptModule
|
||||
MyFunction = torch.jit.script_method
|
||||
MyStatic = torch.jit.script
|
||||
else:
|
||||
MyModule = torch.nn.Module
|
||||
def __nop(ob):
|
||||
return ob
|
||||
MyFunction = __nop
|
||||
MyStatic = __nop
|
||||
|
||||
if os.environ.get('RWKV_CUDA_ON') == '1':
|
||||
if LoadPreCompileLibrary('wkv_cuda') is False:
|
||||
from torch.utils.cpp_extension import load
|
||||
load(
|
||||
name=f"wkv_cuda",
|
||||
sources=[f"{current_path}/cuda/wrapper.cpp", f"{current_path}/cuda/operators.cu"],
|
||||
verbose=True,
|
||||
extra_cuda_cflags=["-t 4", "-std=c++17", "--use_fast_math", "-O3", "--extra-device-vectorization"],
|
||||
is_python_module=False)
|
||||
|
||||
@MyStatic
|
||||
def cuda_wkv(T: int, C: int, w, u, k, v, aa, bb, pp):
|
||||
assert 1 * C % min(C, 32) == 0
|
||||
assert k.dtype == v.dtype == torch.float16 or k.dtype == v.dtype == torch.float32
|
||||
assert w.dtype == u.dtype == aa.dtype == bb.dtype == pp.dtype == torch.float32
|
||||
w = w.contiguous()
|
||||
u = u.contiguous()
|
||||
k = k.contiguous()
|
||||
v = v.contiguous()
|
||||
y = torch.empty((T, C), device=w.device, memory_format=torch.contiguous_format, dtype=k.dtype)
|
||||
torch.ops.rwkv.wkv_forward(1, T, C, w, u, k, v, y, aa, bb, pp)
|
||||
return y, aa, bb, pp
|
||||
@MyStatic
|
||||
def cuda_mm8_seq(B: int, N: int, M: int, x, w, mx, rx, my, ry):
|
||||
assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
|
||||
assert x.dtype == torch.float32 or x.dtype == torch.float16
|
||||
assert w.dtype == torch.uint8
|
||||
assert x.shape == [B, N]
|
||||
assert w.shape == [N, M]
|
||||
assert rx.shape == mx.shape == [M]
|
||||
assert ry.shape == my.shape == [N, 1]
|
||||
y = torch.empty((B, M), device=w.device, dtype=x.dtype)
|
||||
torch.ops.rwkv.mm8_seq(B, N, M, x, w, mx, rx, my, ry, y)
|
||||
return y
|
||||
@MyStatic
|
||||
def cuda_mm8_one(N: int, M: int, x, w, mx, rx, my, ry):
|
||||
assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
|
||||
assert x.dtype == torch.float32 or x.dtype == torch.float16
|
||||
assert w.dtype == torch.uint8
|
||||
assert x.shape == [N]
|
||||
assert w.shape == [N, M]
|
||||
assert rx.shape == mx.shape == [M]
|
||||
assert ry.shape == my.shape == [N, 1]
|
||||
y = torch.zeros((M,), device=w.device, dtype=torch.float32)
|
||||
torch.ops.rwkv.mm8_one(N, M, x, w, mx, rx, my, ry, y)
|
||||
return y.to(dtype=x.dtype)
|
||||
else:
|
||||
os.environ["RWKV_CUDA_ON"] = '0'
|
||||
|
||||
########################################################################################################
|
||||
|
||||
class RWKV(MyModule):
|
||||
def __init__(self, model, strategy, verbose = True, convert_and_save_and_exit = None):
|
||||
super().__init__()
|
||||
if verbose:
|
||||
prxxx = lambda *args, **kwargs: print(*args, **kwargs)
|
||||
else:
|
||||
prxxx = lambda *args, **kwargs: None
|
||||
|
||||
STRATEGY_REGEX = r"^(?:(?:^|->) *(?:cuda(?::[\d]+)?|cpu|mps) (?:fp(?:16|32)|bf16)(?:i8|i4|i3)?(?: \*[\d]+\+?)? *)+$"
|
||||
if not re.match(STRATEGY_REGEX, strategy):
|
||||
raise ValueError("Invalid strategy. Please read https://pypi.org/project/rwkv/")
|
||||
|
||||
strategy = ('->'.join([x.strip() for x in strategy.split('->')])).replace('->', ' -> ')
|
||||
self.args = types.SimpleNamespace()
|
||||
args = self.args
|
||||
args.MODEL_NAME = model
|
||||
args.strategy_string = strategy
|
||||
|
||||
# Rescale for fp16 mode: set x = x/2 every X layer (to avoid fp16 overflow)
|
||||
self.RESCALE_LAYER = 6 if 'fp16' in strategy else 0
|
||||
prxxx(f'RWKV_JIT_ON {os.environ["RWKV_JIT_ON"]} RWKV_CUDA_ON {os.environ["RWKV_CUDA_ON"]} RESCALE_LAYER {self.RESCALE_LAYER}\n')
|
||||
|
||||
args.MODEL_NAME = args.MODEL_NAME.strip()
|
||||
if not args.MODEL_NAME.endswith('.pth'):
|
||||
args.MODEL_NAME += '.pth'
|
||||
prxxx(f'Loading {args.MODEL_NAME} ...')
|
||||
with torch.no_grad():
|
||||
self.w = torch.load(args.MODEL_NAME, map_location='cpu') # load model to CPU first
|
||||
gc.collect()
|
||||
w = self.w
|
||||
|
||||
ALREADY_CONVERTED = False
|
||||
if '_strategy' in w:
|
||||
ALREADY_CONVERTED = True
|
||||
assert convert_and_save_and_exit == None # you should only convert a raw model
|
||||
prxxx(f"Converted model: strategy {w['_strategy']}, version {w['_version']}\n")
|
||||
assert w['_strategy'] == args.strategy_string # if you are using a new strategy, re-convert the model
|
||||
assert float(w['_version']) >= 0.7 # sometimes you should re-convert using latest convert_model.py
|
||||
assert w['_rescale_layer'] == self.RESCALE_LAYER
|
||||
del w['_strategy']
|
||||
del w['_version']
|
||||
del w['_rescale_layer']
|
||||
|
||||
args.n_embd = w['emb.weight'].shape[1]
|
||||
args.n_layer = 0
|
||||
keys = list(w.keys())
|
||||
for x in keys:
|
||||
layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
|
||||
args.n_layer = max(args.n_layer, layer_id+1)
|
||||
|
||||
####################### Compute strategy
|
||||
|
||||
s = [x.strip().split(' ') for x in strategy.split('->')]
|
||||
plan = [0] * len(s)
|
||||
stream_i = -1
|
||||
stream_count = 0
|
||||
to_allocate = args.n_layer + 1
|
||||
allocated = 0
|
||||
free_slots = 0
|
||||
for i in range(len(s)):
|
||||
si = s[i]
|
||||
si1 = si[1]
|
||||
if si1.startswith('fp32'): si[1] = [torch.float]
|
||||
elif si1.startswith('fp16'): si[1] = [torch.float16]
|
||||
elif si1.startswith('bf16'): si[1] = [torch.bfloat16]
|
||||
if si1.endswith('i8'): si[1] += [torch.uint8]
|
||||
else: si[1] += [si[1][0]]
|
||||
if len(si) > 2:
|
||||
ss = si[2]
|
||||
assert ss.startswith('*')
|
||||
if ss.endswith('+'):
|
||||
plan[i] = int(ss[1:-1])
|
||||
stream_i = i
|
||||
else:
|
||||
plan[i] = int(ss[1:])
|
||||
allocated += plan[i]
|
||||
if allocated >= to_allocate:
|
||||
plan[i] += to_allocate - allocated
|
||||
break
|
||||
else:
|
||||
free_slots += 1
|
||||
if stream_i < 0:
|
||||
if free_slots > 0 and to_allocate > allocated:
|
||||
for i in range(len(s)):
|
||||
if plan[i] == 0:
|
||||
plan[i] = (to_allocate - allocated) // free_slots
|
||||
allocated += plan[i]
|
||||
free_slots -= 1
|
||||
if to_allocate > allocated:
|
||||
plan[len(s)-1] += to_allocate - allocated
|
||||
else:
|
||||
if to_allocate > allocated:
|
||||
stream_count = to_allocate - allocated
|
||||
plan[stream_i] += stream_count
|
||||
prxxx(f'Strategy: (total {args.n_layer}+1={args.n_layer+1} layers)')
|
||||
for i in range(len(s)):
|
||||
ss = s[i]
|
||||
if i != stream_i:
|
||||
prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]} layers')
|
||||
else:
|
||||
prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]-stream_count} layers, stream {stream_count} layers')
|
||||
plan[i] += (0 if i == 0 else plan[i-1])
|
||||
self.strategy = [None] * (args.n_layer + 1)
|
||||
strategy = self.strategy
|
||||
for n in range(args.n_layer + 1):
|
||||
for i in range(len(s)):
|
||||
if n < plan[i]:
|
||||
strategy[n] = types.SimpleNamespace()
|
||||
strategy[n].device = s[i][0]
|
||||
strategy[n].atype = s[i][1][0]
|
||||
strategy[n].wtype = s[i][1][1]
|
||||
strategy[n].stream = False
|
||||
if i == stream_i and n >= (plan[i] - stream_count):
|
||||
strategy[n].stream = True
|
||||
break
|
||||
prxxx(f"{n}-{strategy[n].device}-{str(strategy[n].atype).replace('torch.','')}-{str(strategy[n].wtype).replace('torch.','')}{'-stream' if strategy[n].stream else ''}",end=' ')
|
||||
prxxx()
|
||||
|
||||
####################### Load weights to self.w
|
||||
|
||||
if not ALREADY_CONVERTED:
|
||||
try: # precompute embedding
|
||||
w['emb.weight'] = F.layer_norm(w['emb.weight'], (args.n_embd,), weight=w['blocks.0.ln0.weight'], bias=w['blocks.0.ln0.bias'])
|
||||
except:
|
||||
w['emb.weight'] = F.layer_norm(w['emb.weight'].float(), (args.n_embd,), weight=w['blocks.0.ln0.weight'].float(), bias=w['blocks.0.ln0.bias'].float())
|
||||
del w['blocks.0.ln0.weight']
|
||||
del w['blocks.0.ln0.bias']
|
||||
|
||||
print_need_newline = False
|
||||
keys = list(w.keys())
|
||||
for x in keys:
|
||||
w[x].requires_grad = False
|
||||
layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
|
||||
if ('ln_out.' in x) or ('head.' in x):
|
||||
layer_id = args.n_layer
|
||||
dd = strategy[layer_id]
|
||||
DEVICE = dd.device
|
||||
ATYPE = dd.atype
|
||||
WTYPE = dd.wtype
|
||||
|
||||
if not ALREADY_CONVERTED:
|
||||
if self.RESCALE_LAYER > 0:
|
||||
if 'att.output.weight' in x:
|
||||
w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
|
||||
if 'ffn.value.weight' in x:
|
||||
w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
|
||||
|
||||
if '.time_' in x:
|
||||
w[x] = w[x].squeeze()
|
||||
if 'key.weight' in x or 'value.weight' in x or 'receptance.weight' in x or 'output.weight' in x or 'head.weight' in x:
|
||||
w[x] = w[x].t()
|
||||
|
||||
if '.time_decay' in x: # need fp32 for this
|
||||
w[x] = -torch.exp(w[x].float())
|
||||
elif '.time_first' in x: # need fp32 for this
|
||||
w[x] = w[x].float()
|
||||
else:
|
||||
if (len(w[x].shape) == 2) and ('emb' not in x):
|
||||
if WTYPE != torch.uint8:
|
||||
w[x] = w[x].to(dtype=WTYPE)
|
||||
else:
|
||||
w[x] = w[x].float()
|
||||
|
||||
if w[x].shape[0] > w[x].shape[1]:
|
||||
w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
|
||||
w[x] = w[x] - w[x+'_my']
|
||||
w[x+'_mx'] = torch.amin(w[x], dim=0)
|
||||
w[x] = w[x] - w[x+'_mx']
|
||||
w[x+'_rx'] = torch.amax(w[x], dim=0)
|
||||
w[x] = w[x] / w[x+'_rx']
|
||||
w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
|
||||
w[x] = w[x] / w[x+'_ry']
|
||||
else:
|
||||
w[x+'_mx'] = torch.amin(w[x], dim=0)
|
||||
w[x] = w[x] - w[x+'_mx']
|
||||
w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
|
||||
w[x] = w[x] - w[x+'_my']
|
||||
w[x+'_rx'] = torch.amax(w[x], dim=0)
|
||||
w[x] = w[x] / w[x+'_rx']
|
||||
w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
|
||||
w[x] = w[x] / w[x+'_ry']
|
||||
|
||||
w[x] = torch.clip(torch.floor(w[x] * 256), min=0, max=255).to(dtype=torch.uint8)
|
||||
w[x+'_mx'] = w[x+'_mx'].to(dtype=ATYPE).contiguous()
|
||||
w[x+'_rx'] = (w[x+'_rx'] / 16).to(dtype=ATYPE).contiguous()
|
||||
w[x+'_my'] = w[x+'_my'].to(dtype=ATYPE).contiguous()
|
||||
w[x+'_ry'] = (w[x+'_ry'] / 16).to(dtype=ATYPE).contiguous()
|
||||
else:
|
||||
w[x] = w[x].to(dtype=ATYPE)
|
||||
|
||||
if convert_and_save_and_exit == None:
|
||||
if 'emb.' in x:
|
||||
w[x] = w[x].contiguous()
|
||||
elif (dd.stream) and (x.endswith('key.weight') or x.endswith('value.weight') or x.endswith('receptance.weight') or x.endswith('output.weight')):
|
||||
try:
|
||||
w[x] = w[x].contiguous().pin_memory() # if you see "CUDA error: out of memory" here, that's out of CPU RAM, not VRAM. Get more RAM :)
|
||||
except:
|
||||
print('Note: You are running out of RAM. Get more CPU RAM. Now this will run much slower.')
|
||||
elif DEVICE != 'cpu':
|
||||
w[x] = w[x].to(device=DEVICE).contiguous()
|
||||
|
||||
if (dd.stream) or (DEVICE != 'cpu'):
|
||||
try:
|
||||
w[x+'_mx'] = w[x+'_mx'].to(device=DEVICE).contiguous()
|
||||
w[x+'_rx'] = w[x+'_rx'].to(device=DEVICE).contiguous()
|
||||
w[x+'_my'] = w[x+'_my'].to(device=DEVICE).contiguous()
|
||||
w[x+'_ry'] = w[x+'_ry'].to(device=DEVICE).contiguous()
|
||||
except:
|
||||
pass
|
||||
|
||||
if 'ffn.value.weight' in x:
|
||||
gc.collect()
|
||||
if 'cuda' in args.strategy_string:
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
shape = [i for i in w[x].shape if i != 1]
|
||||
if len(shape) > 1:
|
||||
shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)}"
|
||||
else:
|
||||
shape = f" {str(shape[0]).rjust(5)} "
|
||||
if layer_id == 0 or layer_id >= args.n_layer-1:
|
||||
if print_need_newline:
|
||||
prxxx('\n', end = '')
|
||||
print_need_newline = False
|
||||
dt = str(w[x].dtype).replace('torch.', '')
|
||||
dt = dt.replace('float32', 'f32').replace('bfloat16', 'bf16').replace('float16', 'f16').replace('uint8', 'i8')
|
||||
prxxx(x.ljust(32), dt.rjust(4), str(w[x].device).rjust(8), shape, ' (pinned)' if w[x].is_pinned() else '')
|
||||
else:
|
||||
print_need_newline = True
|
||||
prxxx('.', end = '', flush = True)
|
||||
|
||||
if convert_and_save_and_exit:
|
||||
w['_strategy'] = args.strategy_string
|
||||
w['_rescale_layer'] = self.RESCALE_LAYER
|
||||
w['_version'] = '0.7'
|
||||
if not convert_and_save_and_exit.endswith('.pth'):
|
||||
convert_and_save_and_exit += '.pth'
|
||||
prxxx(f'Saving to {convert_and_save_and_exit}...')
|
||||
torch.save(w, convert_and_save_and_exit)
|
||||
prxxx(f'Converted and saved. Now this will exit.')
|
||||
exit(0)
|
||||
|
||||
gc.collect()
|
||||
if 'cuda' in args.strategy_string:
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
@MyFunction
|
||||
def torch_mm8_seq(self, x, w, mx, rx, my, ry):
|
||||
return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)
|
||||
|
||||
@MyFunction
|
||||
def torch_mm8_one(self, x, w, mx, rx, my, ry):
|
||||
return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)
|
||||
|
||||
if os.environ.get('RWKV_CUDA_ON') == '1':
|
||||
@MyFunction
|
||||
def mm8_seq(self, x, w, mx, rx, my, ry):
|
||||
if w.device.type == 'cuda' and x.dtype == torch.float16:
|
||||
B, N, M = x.shape[0], w.shape[0], w.shape[1]
|
||||
return cuda_mm8_seq(B, N, M, x, w, mx, rx, my, ry)
|
||||
else:
|
||||
return self.torch_mm8_seq(x, w, mx, rx, my, ry)
|
||||
@MyFunction
|
||||
def mm8_one(self, x, w, mx, rx, my, ry):
|
||||
if w.device.type == 'cuda':
|
||||
N, M = w.shape[0], w.shape[1]
|
||||
return cuda_mm8_one(N, M, x, w, mx, rx, my, ry)
|
||||
else:
|
||||
return self.torch_mm8_one(x, w, mx, rx, my, ry)
|
||||
else:
|
||||
@MyFunction
|
||||
def mm8_seq(self, x, w, mx, rx, my, ry):
|
||||
return self.torch_mm8_seq(x, w, mx, rx, my, ry)
|
||||
@MyFunction
|
||||
def mm8_one(self, x, w, mx, rx, my, ry):
|
||||
return self.torch_mm8_one(x, w, mx, rx, my, ry)
|
||||
|
||||
########################################################################################################
|
||||
|
||||
@MyFunction
|
||||
def ffn_one(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
|
||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
|
||||
r = torch.sigmoid(rx @ rw)
|
||||
vx = torch.square(torch.relu(kx @ kw))
|
||||
out = r * (vx @ vw)
|
||||
return x + out, xx
|
||||
|
||||
@MyFunction
|
||||
def ffn_one_i8(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
|
||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
|
||||
r = torch.sigmoid(self.mm8_one(rx, rw, rmx, rrx, rmy, rry))
|
||||
vx = torch.square(torch.relu(self.mm8_one(kx, kw, kmx, krx, kmy, kry)))
|
||||
out = r * (self.mm8_one(vx, vw, vmx, vrx, vmy, vry))
|
||||
return x + out, xx
|
||||
|
||||
########################################################################################################
|
||||
|
||||
@MyFunction
|
||||
def ffn_seq(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
|
||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
||||
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
|
||||
r = torch.sigmoid(rx @ rw)
|
||||
vx = torch.square(torch.relu(kx @ kw))
|
||||
out = r * (vx @ vw)
|
||||
return x + out, xx[-1,:]
|
||||
|
||||
@MyFunction
|
||||
def ffn_seq_i8(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
|
||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
||||
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
|
||||
r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
|
||||
vx = torch.square(torch.relu(self.mm8_seq(kx, kw, kmx, krx, kmy, kry)))
|
||||
out = r * (self.mm8_seq(vx, vw, vmx, vrx, vmy, vry))
|
||||
return x + out, xx[-1,:]
|
||||
|
||||
########################################################################################################
|
||||
|
||||
@MyFunction
|
||||
def att_one(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
|
||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
vx = xx * v_mix + sx * (1 - v_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
|
||||
r = torch.sigmoid(rx @ rw)
|
||||
k = (kx @ kw).float()
|
||||
v = (vx @ vw).float()
|
||||
|
||||
ww = t_first + k
|
||||
p = torch.maximum(pp, ww)
|
||||
e1 = torch.exp(pp - p)
|
||||
e2 = torch.exp(ww - p)
|
||||
wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
|
||||
ww = t_decay + pp
|
||||
p = torch.maximum(ww, k)
|
||||
e1 = torch.exp(ww - p)
|
||||
e2 = torch.exp(k - p)
|
||||
|
||||
out = (r * wkv) @ ow
|
||||
return x + out, xx, e1 * aa + e2 * v, e1 * bb + e2, p
|
||||
|
||||
@MyFunction
|
||||
def att_one_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
|
||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
vx = xx * v_mix + sx * (1 - v_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
|
||||
r = torch.sigmoid(self.mm8_one(rx, rw, rmx, rrx, rmy, rry))
|
||||
k = (self.mm8_one(kx, kw, kmx, krx, kmy, kry)).float()
|
||||
v = (self.mm8_one(vx, vw, vmx, vrx, vmy, vry)).float()
|
||||
|
||||
ww = t_first + k
|
||||
p = torch.maximum(pp, ww)
|
||||
e1 = torch.exp(pp - p)
|
||||
e2 = torch.exp(ww - p)
|
||||
wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
|
||||
ww = t_decay + pp
|
||||
p = torch.maximum(ww, k)
|
||||
e1 = torch.exp(ww - p)
|
||||
e2 = torch.exp(k - p)
|
||||
|
||||
out = self.mm8_one(r * wkv, ow, omx, orx, omy, ory)
|
||||
return x + out, xx, e1 * aa + e2 * v, e1 * bb + e2, p
|
||||
|
||||
########################################################################################################
|
||||
|
||||
@MyFunction
|
||||
def att_seq(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
|
||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
||||
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
vx = xx * v_mix + sx * (1 - v_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
|
||||
r = torch.sigmoid(rx @ rw)
|
||||
k = (kx @ kw).float()
|
||||
v = (vx @ vw).float()
|
||||
|
||||
T = x.shape[0]
|
||||
for t in range(T):
|
||||
kk = k[t]
|
||||
vv = v[t]
|
||||
ww = t_first + kk
|
||||
p = torch.maximum(pp, ww)
|
||||
e1 = torch.exp(pp - p)
|
||||
e2 = torch.exp(ww - p)
|
||||
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
|
||||
ww = t_decay + pp
|
||||
p = torch.maximum(ww, kk)
|
||||
e1 = torch.exp(ww - p)
|
||||
e2 = torch.exp(kk - p)
|
||||
aa = e1 * aa + e2 * vv
|
||||
bb = e1 * bb + e2
|
||||
pp = p
|
||||
out = (r * sx) @ ow
|
||||
return x + out, xx[-1,:], aa, bb, pp
|
||||
|
||||
@MyFunction
|
||||
def att_seq_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
|
||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
||||
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
vx = xx * v_mix + sx * (1 - v_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
|
||||
r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
|
||||
k = self.mm8_seq(kx, kw, kmx, krx, kmy, kry).float()
|
||||
v = self.mm8_seq(vx, vw, vmx, vrx, vmy, vry).float()
|
||||
|
||||
T = x.shape[0]
|
||||
for t in range(T):
|
||||
kk = k[t]
|
||||
vv = v[t]
|
||||
ww = t_first + kk
|
||||
p = torch.maximum(pp, ww)
|
||||
e1 = torch.exp(pp - p)
|
||||
e2 = torch.exp(ww - p)
|
||||
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
|
||||
ww = t_decay + pp
|
||||
p = torch.maximum(ww, kk)
|
||||
e1 = torch.exp(ww - p)
|
||||
e2 = torch.exp(kk - p)
|
||||
aa = e1 * aa + e2 * vv
|
||||
bb = e1 * bb + e2
|
||||
pp = p
|
||||
out = self.mm8_seq(r * sx, ow, omx, orx, omy, ory)
|
||||
return x + out, xx[-1,:], aa, bb, pp
|
||||
|
||||
########################################################################################################
|
||||
|
||||
if os.environ["RWKV_CUDA_ON"] == '1':
|
||||
@MyFunction
|
||||
def cuda_att_seq(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
|
||||
T, C = x.size()
|
||||
xx = F.layer_norm(x, (C,), weight=ln_w, bias=ln_b)
|
||||
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
vx = xx * v_mix + sx * (1 - v_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
|
||||
r = torch.sigmoid(rx @ rw)
|
||||
k = kx @ kw
|
||||
v = vx @ vw
|
||||
y, aa, bb, pp = cuda_wkv(T, C, t_decay, t_first, k, v, aa, bb, pp)
|
||||
|
||||
out = (r * y) @ ow
|
||||
return x + out, xx[-1,:], aa, bb, pp
|
||||
|
||||
@MyFunction
|
||||
def cuda_att_seq_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
|
||||
T, C = x.size()
|
||||
xx = F.layer_norm(x, (C,), weight=ln_w, bias=ln_b)
|
||||
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
vx = xx * v_mix + sx * (1 - v_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
|
||||
r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
|
||||
k = self.mm8_seq(kx, kw, kmx, krx, kmy, kry)
|
||||
v = self.mm8_seq(vx, vw, vmx, vrx, vmy, vry)
|
||||
y, aa, bb, pp = cuda_wkv(T, C, t_decay, t_first, k, v, aa, bb, pp)
|
||||
|
||||
out = self.mm8_seq(r * y, ow, omx, orx, omy, ory)
|
||||
return x + out, xx[-1,:], aa, bb, pp
|
||||
|
||||
########################################################################################################
|
||||
|
||||
def forward(self, tokens, state, full_output=False):
|
||||
with torch.no_grad():
|
||||
w = self.w
|
||||
args = self.args
|
||||
|
||||
if state == None:
|
||||
state = [None] * args.n_layer * 5
|
||||
for i in range(args.n_layer): # state: 0=att_xx 1=att_aa 2=att_bb 3=att_pp 4=ffn_xx
|
||||
dd = self.strategy[i]
|
||||
dev = dd.device
|
||||
atype = dd.atype
|
||||
state[i*5+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
||||
state[i*5+1] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous()
|
||||
state[i*5+2] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous()
|
||||
state[i*5+3] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous() - 1e30
|
||||
state[i*5+4] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
|
||||
|
||||
seq_mode = len(tokens) > 1
|
||||
|
||||
x = w['emb.weight'][tokens if seq_mode else tokens[0]]
|
||||
|
||||
for i in range(args.n_layer):
|
||||
bbb = f'blocks.{i}.'
|
||||
att = f'blocks.{i}.att.'
|
||||
ffn = f'blocks.{i}.ffn.'
|
||||
dd = self.strategy[i]
|
||||
dev = dd.device
|
||||
atype = dd.atype
|
||||
wtype = dd.wtype
|
||||
if seq_mode:
|
||||
if 'cuda' in str(dev) and os.environ["RWKV_CUDA_ON"] == '1':
|
||||
ATT = self.cuda_att_seq if wtype != torch.uint8 else self.cuda_att_seq_i8
|
||||
else:
|
||||
ATT = self.att_seq if wtype != torch.uint8 else self.att_seq_i8
|
||||
FFN = self.ffn_seq if wtype != torch.uint8 else self.ffn_seq_i8
|
||||
else:
|
||||
ATT = self.att_one if wtype != torch.uint8 else self.att_one_i8
|
||||
FFN = self.ffn_one if wtype != torch.uint8 else self.ffn_one_i8
|
||||
|
||||
x = x.to(dtype=atype, device=dev)
|
||||
|
||||
kw = w[f'{att}key.weight']
|
||||
vw = w[f'{att}value.weight']
|
||||
rw = w[f'{att}receptance.weight']
|
||||
ow = w[f'{att}output.weight']
|
||||
if dd.stream:
|
||||
kw = kw.to(device=dev, non_blocking=True)
|
||||
vw = vw.to(device=dev, non_blocking=True)
|
||||
rw = rw.to(device=dev, non_blocking=True)
|
||||
ow = ow.to(device=dev, non_blocking=True)
|
||||
kmx = w[f'{att}key.weight_mx'] if wtype == torch.uint8 else x
|
||||
krx = w[f'{att}key.weight_rx'] if wtype == torch.uint8 else x
|
||||
kmy = w[f'{att}key.weight_my'] if wtype == torch.uint8 else x
|
||||
kry = w[f'{att}key.weight_ry'] if wtype == torch.uint8 else x
|
||||
vmx = w[f'{att}value.weight_mx'] if wtype == torch.uint8 else x
|
||||
vrx = w[f'{att}value.weight_rx'] if wtype == torch.uint8 else x
|
||||
vmy = w[f'{att}value.weight_my'] if wtype == torch.uint8 else x
|
||||
vry = w[f'{att}value.weight_ry'] if wtype == torch.uint8 else x
|
||||
rmx = w[f'{att}receptance.weight_mx'] if wtype == torch.uint8 else x
|
||||
rrx = w[f'{att}receptance.weight_rx'] if wtype == torch.uint8 else x
|
||||
rmy = w[f'{att}receptance.weight_my'] if wtype == torch.uint8 else x
|
||||
rry = w[f'{att}receptance.weight_ry'] if wtype == torch.uint8 else x
|
||||
omx = w[f'{att}output.weight_mx'] if wtype == torch.uint8 else x
|
||||
orx = w[f'{att}output.weight_rx'] if wtype == torch.uint8 else x
|
||||
omy = w[f'{att}output.weight_my'] if wtype == torch.uint8 else x
|
||||
ory = w[f'{att}output.weight_ry'] if wtype == torch.uint8 else x
|
||||
x, state[i*5+0], state[i*5+1], state[i*5+2], state[i*5+3] = ATT(
|
||||
x, state[i*5+0], state[i*5+1], state[i*5+2], state[i*5+3],
|
||||
w[f'{bbb}ln1.weight'], w[f'{bbb}ln1.bias'],
|
||||
w[f'{att}time_mix_k'], w[f'{att}time_mix_v'], w[f'{att}time_mix_r'],
|
||||
w[f'{att}time_decay'], w[f'{att}time_first'],
|
||||
kw, vw, rw, ow,
|
||||
kmx, krx, kmy, kry,
|
||||
vmx, vrx, vmy, vry,
|
||||
rmx, rrx, rmy, rry,
|
||||
omx, orx, omy, ory,
|
||||
)
|
||||
if dd.stream:
|
||||
del kw, vw, rw, ow
|
||||
|
||||
kw = w[f'{ffn}key.weight']
|
||||
vw = w[f'{ffn}value.weight']
|
||||
rw = w[f'{ffn}receptance.weight']
|
||||
if dd.stream:
|
||||
kw = kw.to(device=dev, non_blocking=True)
|
||||
vw = vw.to(device=dev, non_blocking=True)
|
||||
rw = rw.to(device=dev, non_blocking=True)
|
||||
kmx = w[f'{ffn}key.weight_mx'] if wtype == torch.uint8 else x
|
||||
krx = w[f'{ffn}key.weight_rx'] if wtype == torch.uint8 else x
|
||||
kmy = w[f'{ffn}key.weight_my'] if wtype == torch.uint8 else x
|
||||
kry = w[f'{ffn}key.weight_ry'] if wtype == torch.uint8 else x
|
||||
vmx = w[f'{ffn}value.weight_mx'] if wtype == torch.uint8 else x
|
||||
vrx = w[f'{ffn}value.weight_rx'] if wtype == torch.uint8 else x
|
||||
vmy = w[f'{ffn}value.weight_my'] if wtype == torch.uint8 else x
|
||||
vry = w[f'{ffn}value.weight_ry'] if wtype == torch.uint8 else x
|
||||
rmx = w[f'{ffn}receptance.weight_mx'] if wtype == torch.uint8 else x
|
||||
rrx = w[f'{ffn}receptance.weight_rx'] if wtype == torch.uint8 else x
|
||||
rmy = w[f'{ffn}receptance.weight_my'] if wtype == torch.uint8 else x
|
||||
rry = w[f'{ffn}receptance.weight_ry'] if wtype == torch.uint8 else x
|
||||
x, state[i*5+4] = FFN(
|
||||
x, state[i*5+4],
|
||||
w[f'{bbb}ln2.weight'], w[f'{bbb}ln2.bias'],
|
||||
w[f'{ffn}time_mix_k'], w[f'{ffn}time_mix_r'],
|
||||
kw, vw, rw,
|
||||
kmx, krx, kmy, kry,
|
||||
vmx, vrx, vmy, vry,
|
||||
rmx, rrx, rmy, rry,
|
||||
)
|
||||
if dd.stream:
|
||||
del kw, vw, rw
|
||||
|
||||
if self.RESCALE_LAYER > 0:
|
||||
if (i+1) % self.RESCALE_LAYER == 0:
|
||||
x = x / 2
|
||||
|
||||
dd = self.strategy[args.n_layer]
|
||||
x = x[-1,:] if (seq_mode and (not full_output)) else x
|
||||
x = x.to(dtype=dd.atype, device=dd.device)
|
||||
|
||||
x = F.layer_norm(x, (args.n_embd,), weight=w['ln_out.weight'], bias=w['ln_out.bias'])
|
||||
if w['head.weight'].dtype != torch.uint8:
|
||||
x = x @ w['head.weight']
|
||||
else:
|
||||
if seq_mode and full_output:
|
||||
x = self.mm8_seq(x, w['head.weight'], w['head.weight_mx'], w['head.weight_rx'], w['head.weight_my'], w['head.weight_ry'])
|
||||
else:
|
||||
x = self.mm8_one(x, w['head.weight'], w['head.weight_mx'], w['head.weight_rx'], w['head.weight_my'], w['head.weight_ry'])
|
||||
|
||||
return x.float(), state
|
||||
66861
backend-rust/assets/rwkv_vocab_v20230424.json
Normal file
66861
backend-rust/assets/rwkv_vocab_v20230424.json
Normal file
File diff suppressed because it is too large
Load Diff
BIN
build/appicon.png
vendored
BIN
build/appicon.png
vendored
Binary file not shown.
|
Before Width: | Height: | Size: 102 KiB After Width: | Height: | Size: 83 KiB |
2
build/darwin/Info.dev.plist
vendored
2
build/darwin/Info.dev.plist
vendored
@@ -8,7 +8,7 @@
|
||||
<key>CFBundleExecutable</key>
|
||||
<string>{{.Name}}</string>
|
||||
<key>CFBundleIdentifier</key>
|
||||
<string>com.wails.{{.Name}}</string>
|
||||
<string>dev.josStorer.RWKV-Runner</string>
|
||||
<key>CFBundleVersion</key>
|
||||
<string>{{.Info.ProductVersion}}</string>
|
||||
<key>CFBundleGetInfoString</key>
|
||||
|
||||
2
build/darwin/Info.plist
vendored
2
build/darwin/Info.plist
vendored
@@ -8,7 +8,7 @@
|
||||
<key>CFBundleExecutable</key>
|
||||
<string>{{.Name}}</string>
|
||||
<key>CFBundleIdentifier</key>
|
||||
<string>com.wails.{{.Name}}</string>
|
||||
<string>dev.josStorer.RWKV-Runner</string>
|
||||
<key>CFBundleVersion</key>
|
||||
<string>{{.Info.ProductVersion}}</string>
|
||||
<key>CFBundleGetInfoString</key>
|
||||
|
||||
13
build/darwin/Readme_Install.txt
vendored
Normal file
13
build/darwin/Readme_Install.txt
vendored
Normal file
@@ -0,0 +1,13 @@
|
||||
For Mac and Linux users, please manually install Python 3.10 (usually the latest systems come with it built-in). You can specify the Python interpreter to use in Settings. (which python3)
|
||||
对于Mac和Linux用户,请手动安装 Python3.10 (通常最新的系统已经内置了). 你可以在设置中指定使用的Python解释器. (which python3)
|
||||
MacおよびLinuxのユーザーの方は、Python3.10を手動でインストールしてください(通常、最新のシステムには既に組み込まれています)。 設定メニューで使用するPythonインタプリタを指定することができます。 (which python3)
|
||||
|
||||
Please execute this program in an empty directory. All related dependencies will be placed in this directory.
|
||||
请将本程序放在一个空目录内执行, 所有相关依赖均会放置于此目录.
|
||||
このプログラムを空のディレクトリで実行してください。関連するすべての依存関係は、このディレクトリに配置されます。
|
||||
|
||||
Please execute the following command in the terminal to remove the permission restrictions of this app, and then this program can work properly:
|
||||
请在终端执行以下命令解除本app的权限限制, 然后本程序才可以正常工作:
|
||||
このアプリの権限制限を解除するために、ターミナルで以下のコマンドを実行してください。その後、このプログラムは正常に動作するようになります:
|
||||
|
||||
sudo xattr -r -d com.apple.quarantine ./RWKV-Runner.app
|
||||
16
build/darwin/entitlements.plist
vendored
Normal file
16
build/darwin/entitlements.plist
vendored
Normal file
@@ -0,0 +1,16 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
|
||||
<plist version="1.0">
|
||||
<dict>
|
||||
<key>com.apple.security.app-sandbox</key>
|
||||
<false/>
|
||||
<key>com.apple.security.network.client</key>
|
||||
<true/>
|
||||
<key>com.apple.security.network.server</key>
|
||||
<true/>
|
||||
<key>com.apple.security.files.user-selected.read-write</key>
|
||||
<true/>
|
||||
<key>com.apple.security.files.downloads.read-write</key>
|
||||
<true/>
|
||||
</dict>
|
||||
</plist>
|
||||
17
build/darwin/gon-sign.json
vendored
Normal file
17
build/darwin/gon-sign.json
vendored
Normal file
@@ -0,0 +1,17 @@
|
||||
{
|
||||
"source": [
|
||||
"./build/bin/RWKV-Runner_darwin.app"
|
||||
],
|
||||
"bundle_id": "dev.josStorer.RWKV-Runner",
|
||||
"apple_id": {
|
||||
"username": "joshua1466587594@outlook.com",
|
||||
"password": ""
|
||||
},
|
||||
"sign": {
|
||||
"application_identity": "D00A983569B4EAA2A008B963254F385F42A493FD",
|
||||
"entitlements_file": "./build/darwin/entitlements.plist"
|
||||
},
|
||||
"zip": {
|
||||
"output_path": "./build/bin/RWKV-Runner_darwin.archive.zip"
|
||||
}
|
||||
}
|
||||
19
build/linux/Readme_Install.txt
vendored
Normal file
19
build/linux/Readme_Install.txt
vendored
Normal file
@@ -0,0 +1,19 @@
|
||||
For Mac and Linux users, please manually install Python 3.10 (usually the latest systems come with it built-in). You can specify the Python interpreter to use in Settings.
|
||||
对于Mac和Linux用户,请手动安装 Python3.10 (通常最新的系统已经内置了). 你可以在设置中指定使用的Python解释器.
|
||||
MacおよびLinuxのユーザーの方は、Python3.10を手動でインストールしてください(通常、最新のシステムには既に組み込まれています)。 設定メニューで使用するPythonインタプリタを指定することができます。
|
||||
|
||||
Please execute this program in an empty directory. All related dependencies will be placed in this directory.
|
||||
请将本程序放在一个空目录内执行, 所有相关依赖均会放置于此目录.
|
||||
このプログラムを空のディレクトリで実行してください。関連するすべての依存関係は、このディレクトリに配置されます。
|
||||
|
||||
On Linux system, this program cannot invoke the terminal for automatic dependency installation. You must manually execute the following commands for installation so that it can be used normally:
|
||||
在Linux系统下, 本程序无法调用终端自动安装依赖, 你必须手动执行以下命令进行安装, 之后方可正常使用:
|
||||
Linuxシステムでは、このプログラムはターミナルを自動的に呼び出して依存関係をインストールすることができません。以下のコマンドを手動で実行する必要があります。それが完了した後に、正常に使用することができます:
|
||||
|
||||
sudo apt install python3-dev
|
||||
chmod +x ./RWKV-Runner
|
||||
./RWKV-Runner
|
||||
cd backend-python
|
||||
pip3 install -r requirements.txt # or pip3 install -r requirements_without_cyac.txt
|
||||
|
||||
# See More: https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples
|
||||
3
build/windows/Readme_Install.txt
vendored
Normal file
3
build/windows/Readme_Install.txt
vendored
Normal file
@@ -0,0 +1,3 @@
|
||||
Please execute this program in an empty directory. All related dependencies will be placed in this directory.
|
||||
请将本程序放在一个空目录内执行, 所有相关依赖均会放置于此目录.
|
||||
このプログラムを空のディレクトリで実行してください。関連するすべての依存関係は、このディレクトリに配置されます。
|
||||
BIN
build/windows/icon.ico
vendored
BIN
build/windows/icon.ico
vendored
Binary file not shown.
|
Before Width: | Height: | Size: 147 KiB After Width: | Height: | Size: 175 KiB |
24
deploy-examples/ChatGPT-Next-Web/setup.bat
Normal file
24
deploy-examples/ChatGPT-Next-Web/setup.bat
Normal file
@@ -0,0 +1,24 @@
|
||||
: install git python3.10 yarn by yourself
|
||||
: change model and strategy according to your hardware
|
||||
|
||||
mkdir RWKV-Next-Web
|
||||
cd RWKV-Next-Web
|
||||
|
||||
git clone https://github.com/josStorer/RWKV-Runner --depth=1
|
||||
python -m pip install torch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 --index-url https://download.pytorch.org/whl/cu117
|
||||
python -m pip install -r RWKV-Runner/backend-python/requirements.txt
|
||||
start python ./RWKV-Runner/backend-python/main.py
|
||||
|
||||
powershell -Command "(Test-Path ./RWKV-Runner/models) -or (mkdir RWKV-Runner/models)"
|
||||
powershell -Command "Import-Module BitsTransfer"
|
||||
powershell -Command "(Test-Path ./RWKV-Runner/models/RWKV-4-World-1.5B-v1-fixed-20230612-ctx4096.pth) -or (Start-BitsTransfer https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-1.5B-v1-fixed-20230612-ctx4096.pth ./RWKV-Runner/models/RWKV-4-World-1.5B-v1-fixed-20230612-ctx4096.pth)"
|
||||
powershell -Command "Invoke-WebRequest http://127.0.0.1:8000/switch-model -Method POST -ContentType 'application/json' -Body '{\"model\":\"./RWKV-Runner/models/RWKV-4-World-1.5B-v1-fixed-20230612-ctx4096.pth\",\"strategy\":\"cuda fp32 *20+\"}'"
|
||||
|
||||
git clone https://github.com/Yidadaa/ChatGPT-Next-Web --depth=1
|
||||
cd ChatGPT-Next-Web
|
||||
call yarn install
|
||||
call yarn build
|
||||
set PROXY_URL=""
|
||||
set BASE_URL=http://127.0.0.1:8000
|
||||
start "C:\Program Files (x86)\Microsoft\Edge\Application\msedge.exe" "http://127.0.0.1:3000"
|
||||
yarn start
|
||||
27
deploy-examples/ChatGPT-Next-Web/setup.sh
Normal file
27
deploy-examples/ChatGPT-Next-Web/setup.sh
Normal file
@@ -0,0 +1,27 @@
|
||||
# install git python3.10 yarn by yourself
|
||||
# change model and strategy according to your hardware
|
||||
|
||||
sudo apt install python3-dev
|
||||
|
||||
mkdir RWKV-Next-Web
|
||||
cd RWKV-Next-Web
|
||||
|
||||
git clone https://github.com/josStorer/RWKV-Runner --depth=1
|
||||
python3 -m pip install torch torchvision torchaudio
|
||||
python3 -m pip install -r RWKV-Runner/backend-python/requirements.txt
|
||||
python3 ./RWKV-Runner/backend-python/main.py > log.txt &
|
||||
|
||||
if [ ! -d RWKV-Runner/models ]; then
|
||||
mkdir RWKV-Runner/models
|
||||
fi
|
||||
wget -N https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-0.1B-v1-20230520-ctx4096.pth -P RWKV-Runner/models/
|
||||
|
||||
git clone https://github.com/Yidadaa/ChatGPT-Next-Web --depth=1
|
||||
cd ChatGPT-Next-Web
|
||||
yarn install
|
||||
yarn build
|
||||
export PROXY_URL=""
|
||||
export BASE_URL=http://127.0.0.1:8000
|
||||
yarn start &
|
||||
|
||||
curl http://127.0.0.1:8000/switch-model -X POST -H "Content-Type: application/json" -d '{"model":"./RWKV-Runner/models/RWKV-4-World-0.1B-v1-20230520-ctx4096.pth","strategy":"cpu fp32"}'
|
||||
5
finetune/data/sample.jsonl
Normal file
5
finetune/data/sample.jsonl
Normal file
@@ -0,0 +1,5 @@
|
||||
{"text": "The following is an epic science fiction masterpiece that is immortalized, with delicate descriptions and grand depictions of interstellar civilization wars.\nChapter 1.\nAs I sit down to write here amidst the shadows of vine-leaves under the blue sky of southern Italy, it comes to me with a certain quality of astonishment that my participation in these amazing adventures of Mr. Cavor was, after all, the outcome of the purest accident. It might have been any one. I fell into these things at a time when I thought myself removed from the slightest possibility of disturbing experiences. I had gone to Lympne because I had imagined it the most uneventful place in the world. “Here, at any rate,” said I, “I shall find peace and a chance to work!”"}
|
||||
{"text": "Translate the following into Chinese.\n\nEnglish: What rooms do you have available?\nChinese: 你们有哪些房间可以提供"}
|
||||
{"text": "User: Hello.\n\nAssistant: I'm here, meow~.\n\nUser: Can you tell some jokes?\n\nAssistant: Of course, master. What kind of jokes would you like to hear?"}
|
||||
{"text": "Instruction: Write a story using the following information\n\nInput: A man named Alex chops a tree down\n\nResponse: Once upon a time, there was a man named Alex who lived in the heart of the forest. He had always been fascinated by trees and spent most of his days exploring the forest and learning about its many wonders. One day, while wandering through the woods, he stumbled upon an old oak tree that stood tall and proud in the middle of a clearing."}
|
||||
{"text": "def get_args(args: Union[Sequence[str], None] = None):\n parser = argparse.ArgumentParser()\n group = parser.add_argument_group(title=\"server arguments\")\n group.add_argument(\n \"--port\",\n type=int,\n default=8000,\n help=\"port to run the server on (default: 8000)\",\n )\n group.add_argument(\n \"--host\",\n type=str,\n default=\"127.0.0.1\",\n help=\"host to run the server on (default: 127.0.0.1)\",\n )"}
|
||||
41
finetune/get_layer_and_embd.py
Normal file
41
finetune/get_layer_and_embd.py
Normal file
@@ -0,0 +1,41 @@
|
||||
import torch
|
||||
import sys
|
||||
import time
|
||||
import os
|
||||
import threading
|
||||
import gc
|
||||
|
||||
|
||||
def file_cleaner(file):
|
||||
last_pos = 0
|
||||
|
||||
def cleaner():
|
||||
nonlocal last_pos
|
||||
while True:
|
||||
time.sleep(0.1)
|
||||
pos = file.tell()
|
||||
if pos > last_pos:
|
||||
os.posix_fadvise(
|
||||
file.fileno(), last_pos, pos - last_pos, os.POSIX_FADV_DONTNEED
|
||||
)
|
||||
last_pos = pos
|
||||
|
||||
return cleaner
|
||||
|
||||
|
||||
model_file = open(sys.argv[1], "rb")
|
||||
cleaner = file_cleaner(model_file)
|
||||
cleaner_thread = threading.Thread(target=cleaner, daemon=True)
|
||||
cleaner_thread.start()
|
||||
|
||||
w = torch.load(model_file, map_location="cpu")
|
||||
gc.collect()
|
||||
|
||||
n_embd = w["emb.weight"].shape[1]
|
||||
n_layer = 0
|
||||
keys = list(w.keys())
|
||||
for x in keys:
|
||||
layer_id = int(x.split(".")[1]) if ("blocks." in x) else 0
|
||||
n_layer = max(n_layer, layer_id + 1)
|
||||
|
||||
print(f"--n_layer {n_layer} --n_embd {n_embd}", end="")
|
||||
54
finetune/install-wsl-dep-and-train.sh
Normal file
54
finetune/install-wsl-dep-and-train.sh
Normal file
@@ -0,0 +1,54 @@
|
||||
echo $@
|
||||
|
||||
if [[ ${cnMirror} == 1 ]]; then
|
||||
export PIP_INDEX_URL="https://pypi.tuna.tsinghua.edu.cn/simple"
|
||||
if grep -q "mirrors.aliyun.com" /etc/apt/sources.list; then
|
||||
echo "apt cnMirror already set"
|
||||
else
|
||||
sudo sed -i 's/http:\/\/archive.ubuntu.com\/ubuntu\//http:\/\/mirrors.aliyun.com\/ubuntu\//g' /etc/apt/sources.list
|
||||
sudo apt update
|
||||
fi
|
||||
fi
|
||||
|
||||
if dpkg -s "gcc" >/dev/null 2>&1; then
|
||||
echo "gcc installed"
|
||||
else
|
||||
sudo apt -y install gcc
|
||||
fi
|
||||
|
||||
if dpkg -s "python3-pip" >/dev/null 2>&1; then
|
||||
echo "pip installed"
|
||||
else
|
||||
sudo apt -y install python3-pip
|
||||
fi
|
||||
|
||||
if dpkg -s "ninja-build" >/dev/null 2>&1; then
|
||||
echo "ninja installed"
|
||||
else
|
||||
sudo apt -y install ninja-build
|
||||
fi
|
||||
|
||||
if dpkg -s "cuda" >/dev/null 2>&1 && dpkg -s "cuda" | grep Version | awk '{print $2}' | grep -q "12"; then
|
||||
echo "cuda 12 installed"
|
||||
else
|
||||
wget -N https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin
|
||||
sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600
|
||||
wget -N https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda-repo-wsl-ubuntu-12-2-local_12.2.0-1_amd64.deb
|
||||
sudo dpkg -i cuda-repo-wsl-ubuntu-12-2-local_12.2.0-1_amd64.deb
|
||||
sudo cp /var/cuda-repo-wsl-ubuntu-12-2-local/cuda-*-keyring.gpg /usr/share/keyrings/
|
||||
sudo apt-get update
|
||||
sudo apt-get -y install cuda
|
||||
fi
|
||||
|
||||
if python3 -c "import pkg_resources; pkg_resources.require(open('./finetune/requirements.txt',mode='r'))" &>/dev/null; then
|
||||
echo "requirements satisfied"
|
||||
else
|
||||
python3 -m pip install -r ./finetune/requirements.txt
|
||||
fi
|
||||
|
||||
echo "loading $loadModel"
|
||||
modelInfo=$(python3 ./finetune/get_layer_and_embd.py $loadModel)
|
||||
echo $modelInfo
|
||||
|
||||
python3 ./finetune/lora/train.py $modelInfo $@ --proj_dir lora-models --data_type binidx --lora \
|
||||
--lora_parts=att,ffn,time,ln --strategy deepspeed_stage_2 --accelerator gpu
|
||||
597
finetune/json2binidx_tool/tools/indexed_dataset.py
vendored
Normal file
597
finetune/json2binidx_tool/tools/indexed_dataset.py
vendored
Normal file
@@ -0,0 +1,597 @@
|
||||
# Copyright (c) 2021, EleutherAI
|
||||
# This file is based on code by the authors denoted below and has been modified from its original version.
|
||||
#
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
#
|
||||
# This source code is licensed under the MIT license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
|
||||
# copied from fairseq/fairseq/data/indexed_dataset.py
|
||||
# Removed IndexedRawTextDataset since it relied on Fairseq dictionary
|
||||
# other slight modifications to remove fairseq dependencies
|
||||
# Added document index to index file and made it accessible.
|
||||
# An empty sentence no longer separates documents.
|
||||
|
||||
import os
|
||||
import shutil
|
||||
import struct
|
||||
from functools import lru_cache
|
||||
from itertools import accumulate
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
|
||||
|
||||
|
||||
def __best_fitting_dtype(vocab_size=None):
|
||||
if vocab_size is not None and vocab_size < 65500:
|
||||
return np.uint16
|
||||
else:
|
||||
return np.int32
|
||||
|
||||
|
||||
def infer_dataset_impl(path):
|
||||
if IndexedDataset.exists(path):
|
||||
with open(index_file_path(path), "rb") as f:
|
||||
magic = f.read(8)
|
||||
if magic == IndexedDataset._HDR_MAGIC:
|
||||
return "cached"
|
||||
elif magic == MMapIndexedDataset.Index._HDR_MAGIC[:8]:
|
||||
return "mmap"
|
||||
else:
|
||||
return None
|
||||
else:
|
||||
print(f"Dataset does not exist: {path}")
|
||||
print(
|
||||
"Path should be a basename that both .idx and .bin can be appended to get full filenames."
|
||||
)
|
||||
return None
|
||||
|
||||
|
||||
def make_builder(out_file, impl, vocab_size=None):
|
||||
if impl == "mmap":
|
||||
return MMapIndexedDatasetBuilder(
|
||||
out_file, dtype=__best_fitting_dtype(vocab_size)
|
||||
)
|
||||
else:
|
||||
return IndexedDatasetBuilder(out_file)
|
||||
|
||||
|
||||
def make_dataset(path, impl, skip_warmup=False):
|
||||
if not IndexedDataset.exists(path):
|
||||
print(f"Dataset does not exist: {path}")
|
||||
print(
|
||||
"Path should be a basename that both .idx and .bin can be appended to get full filenames."
|
||||
)
|
||||
return None
|
||||
if impl == "infer":
|
||||
impl = infer_dataset_impl(path)
|
||||
if impl == "lazy" and IndexedDataset.exists(path):
|
||||
return IndexedDataset(path)
|
||||
elif impl == "cached" and IndexedDataset.exists(path):
|
||||
return IndexedCachedDataset(path)
|
||||
elif impl == "mmap" and MMapIndexedDataset.exists(path):
|
||||
return MMapIndexedDataset(path, skip_warmup)
|
||||
print(f"Unknown dataset implementation: {impl}")
|
||||
return None
|
||||
|
||||
|
||||
def dataset_exists(path, impl):
|
||||
if impl == "mmap":
|
||||
return MMapIndexedDataset.exists(path)
|
||||
else:
|
||||
return IndexedDataset.exists(path)
|
||||
|
||||
|
||||
def read_longs(f, n):
|
||||
a = np.empty(n, dtype=np.int64)
|
||||
f.readinto(a)
|
||||
return a
|
||||
|
||||
|
||||
def write_longs(f, a):
|
||||
f.write(np.array(a, dtype=np.int64))
|
||||
|
||||
|
||||
dtypes = {
|
||||
1: np.uint8,
|
||||
2: np.int8,
|
||||
3: np.int16,
|
||||
4: np.int32,
|
||||
5: np.int64,
|
||||
6: np.float32,
|
||||
7: np.float64,
|
||||
8: np.uint16,
|
||||
}
|
||||
|
||||
|
||||
def code(dtype):
|
||||
for k in dtypes.keys():
|
||||
if dtypes[k] == dtype:
|
||||
return k
|
||||
raise ValueError(dtype)
|
||||
|
||||
|
||||
def index_file_path(prefix_path):
|
||||
return prefix_path + ".idx"
|
||||
|
||||
|
||||
def data_file_path(prefix_path):
|
||||
return prefix_path + ".bin"
|
||||
|
||||
|
||||
def create_doc_idx(sizes):
|
||||
doc_idx = [0]
|
||||
for i, s in enumerate(sizes):
|
||||
if s == 0:
|
||||
doc_idx.append(i + 1)
|
||||
return doc_idx
|
||||
|
||||
|
||||
class IndexedDataset(torch.utils.data.Dataset):
|
||||
"""Loader for IndexedDataset"""
|
||||
|
||||
_HDR_MAGIC = b"TNTIDX\x00\x00"
|
||||
|
||||
def __init__(self, path):
|
||||
super().__init__()
|
||||
self.path = path
|
||||
self.data_file = None
|
||||
self.read_index(path)
|
||||
|
||||
def read_index(self, path):
|
||||
with open(index_file_path(path), "rb") as f:
|
||||
magic = f.read(8)
|
||||
assert magic == self._HDR_MAGIC, (
|
||||
"Index file doesn't match expected format. "
|
||||
"Make sure that --dataset-impl is configured properly."
|
||||
)
|
||||
version = f.read(8)
|
||||
assert struct.unpack("<Q", version) == (1,)
|
||||
code, self.element_size = struct.unpack("<QQ", f.read(16))
|
||||
self.dtype = dtypes[code]
|
||||
self._len, self.s = struct.unpack("<QQ", f.read(16))
|
||||
self.doc_count = struct.unpack("<Q", f.read(8))
|
||||
self.dim_offsets = read_longs(f, self._len + 1)
|
||||
self.data_offsets = read_longs(f, self._len + 1)
|
||||
self.sizes = read_longs(f, self.s)
|
||||
self.doc_idx = read_longs(f, self.doc_count)
|
||||
|
||||
def read_data(self, path):
|
||||
self.data_file = open(data_file_path(path), "rb", buffering=0)
|
||||
|
||||
def check_index(self, i):
|
||||
if i < 0 or i >= self._len:
|
||||
raise IndexError("index out of range")
|
||||
|
||||
def __del__(self):
|
||||
if self.data_file:
|
||||
self.data_file.close()
|
||||
|
||||
# @lru_cache(maxsize=8)
|
||||
def __getitem__(self, idx):
|
||||
if not self.data_file:
|
||||
self.read_data(self.path)
|
||||
if isinstance(idx, int):
|
||||
i = idx
|
||||
self.check_index(i)
|
||||
tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]]
|
||||
a = np.empty(tensor_size, dtype=self.dtype)
|
||||
self.data_file.seek(self.data_offsets[i] * self.element_size)
|
||||
self.data_file.readinto(a)
|
||||
return a
|
||||
elif isinstance(idx, slice):
|
||||
start, stop, step = idx.indices(len(self))
|
||||
if step != 1:
|
||||
raise ValueError("Slices into indexed_dataset must be contiguous")
|
||||
sizes = self.sizes[self.dim_offsets[start] : self.dim_offsets[stop]]
|
||||
size = sum(sizes)
|
||||
a = np.empty(size, dtype=self.dtype)
|
||||
self.data_file.seek(self.data_offsets[start] * self.element_size)
|
||||
self.data_file.readinto(a)
|
||||
offsets = list(accumulate(sizes))
|
||||
sents = np.split(a, offsets[:-1])
|
||||
return sents
|
||||
|
||||
def __len__(self):
|
||||
return self._len
|
||||
|
||||
def num_tokens(self, index):
|
||||
return self.sizes[index]
|
||||
|
||||
def size(self, index):
|
||||
return self.sizes[index]
|
||||
|
||||
@staticmethod
|
||||
def exists(path):
|
||||
return os.path.exists(index_file_path(path)) and os.path.exists(
|
||||
data_file_path(path)
|
||||
)
|
||||
|
||||
@property
|
||||
def supports_prefetch(self):
|
||||
return False # avoid prefetching to save memory
|
||||
|
||||
|
||||
class IndexedCachedDataset(IndexedDataset):
|
||||
def __init__(self, path):
|
||||
super().__init__(path)
|
||||
self.cache = None
|
||||
self.cache_index = {}
|
||||
|
||||
@property
|
||||
def supports_prefetch(self):
|
||||
return True
|
||||
|
||||
def prefetch(self, indices):
|
||||
if all(i in self.cache_index for i in indices):
|
||||
return
|
||||
if not self.data_file:
|
||||
self.read_data(self.path)
|
||||
indices = sorted(set(indices))
|
||||
total_size = 0
|
||||
for i in indices:
|
||||
total_size += self.data_offsets[i + 1] - self.data_offsets[i]
|
||||
self.cache = np.empty(total_size, dtype=self.dtype)
|
||||
ptx = 0
|
||||
self.cache_index.clear()
|
||||
for i in indices:
|
||||
self.cache_index[i] = ptx
|
||||
size = self.data_offsets[i + 1] - self.data_offsets[i]
|
||||
a = self.cache[ptx : ptx + size]
|
||||
self.data_file.seek(self.data_offsets[i] * self.element_size)
|
||||
self.data_file.readinto(a)
|
||||
ptx += size
|
||||
if self.data_file:
|
||||
# close and delete data file after prefetch so we can pickle
|
||||
self.data_file.close()
|
||||
self.data_file = None
|
||||
|
||||
# @lru_cache(maxsize=8)
|
||||
def __getitem__(self, idx):
|
||||
if isinstance(idx, int):
|
||||
i = idx
|
||||
self.check_index(i)
|
||||
tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]]
|
||||
a = np.empty(tensor_size, dtype=self.dtype)
|
||||
ptx = self.cache_index[i]
|
||||
np.copyto(a, self.cache[ptx : ptx + a.size])
|
||||
return a
|
||||
elif isinstance(idx, slice):
|
||||
# Hack just to make this work, can optimizer later if necessary
|
||||
sents = []
|
||||
for i in range(*idx.indices(len(self))):
|
||||
sents.append(self[i])
|
||||
return sents
|
||||
|
||||
|
||||
class IndexedDatasetBuilder(object):
|
||||
element_sizes = {
|
||||
np.uint8: 1,
|
||||
np.int8: 1,
|
||||
np.int16: 2,
|
||||
np.int32: 4,
|
||||
np.int64: 8,
|
||||
np.float32: 4,
|
||||
np.float64: 8,
|
||||
}
|
||||
|
||||
def __init__(self, out_file, dtype=np.int32):
|
||||
self.out_file = open(out_file, "wb")
|
||||
self.dtype = dtype
|
||||
self.data_offsets = [0]
|
||||
self.dim_offsets = [0]
|
||||
self.sizes = []
|
||||
self.element_size = self.element_sizes[self.dtype]
|
||||
self.doc_idx = [0]
|
||||
|
||||
def add_item(self, np_array):
|
||||
assert isinstance(np_array, np.ndarray) and np_array.dtype == self.dtype
|
||||
bytes = self.out_file.write(np_array)
|
||||
self.data_offsets.append(self.data_offsets[-1] + bytes / self.element_size)
|
||||
for s in np_array.shape:
|
||||
self.sizes.append(s)
|
||||
self.dim_offsets.append(self.dim_offsets[-1] + len(np_array.shape))
|
||||
|
||||
def end_document(self):
|
||||
self.doc_idx.append(len(self.sizes))
|
||||
|
||||
def merge_file_(self, another_file):
|
||||
index = IndexedDataset(another_file)
|
||||
assert index.dtype == self.dtype
|
||||
|
||||
begin = self.data_offsets[-1]
|
||||
for offset in index.data_offsets[1:]:
|
||||
self.data_offsets.append(begin + offset)
|
||||
self.sizes.extend(index.sizes)
|
||||
begin = self.dim_offsets[-1]
|
||||
for dim_offset in index.dim_offsets[1:]:
|
||||
self.dim_offsets.append(begin + dim_offset)
|
||||
|
||||
with open(data_file_path(another_file), "rb") as f:
|
||||
while True:
|
||||
data = f.read(1024)
|
||||
if data:
|
||||
self.out_file.write(data)
|
||||
else:
|
||||
break
|
||||
|
||||
def finalize(self, index_file):
|
||||
self.out_file.close()
|
||||
index = open(index_file, "wb")
|
||||
index.write(b"TNTIDX\x00\x00")
|
||||
index.write(struct.pack("<Q", 1))
|
||||
index.write(struct.pack("<QQ", code(self.dtype), self.element_size))
|
||||
index.write(struct.pack("<QQ", len(self.data_offsets) - 1, len(self.sizes)))
|
||||
index.write(struct.pack("<Q", len(self.doc_idx)))
|
||||
write_longs(index, self.dim_offsets)
|
||||
write_longs(index, self.data_offsets)
|
||||
write_longs(index, self.sizes)
|
||||
write_longs(index, self.doc_idx)
|
||||
index.close()
|
||||
|
||||
|
||||
def _warmup_mmap_file(path):
|
||||
with open(path, "rb") as stream:
|
||||
while stream.read(100 * 1024 * 1024):
|
||||
pass
|
||||
|
||||
|
||||
class MMapIndexedDataset(torch.utils.data.Dataset):
|
||||
class Index(object):
|
||||
_HDR_MAGIC = b"MMIDIDX\x00\x00"
|
||||
|
||||
@classmethod
|
||||
def writer(cls, path, dtype):
|
||||
class _Writer(object):
|
||||
def __enter__(self):
|
||||
self._file = open(path, "wb")
|
||||
|
||||
# Write Magic string so we can check the file format then opening it again.
|
||||
self._file.write(cls._HDR_MAGIC)
|
||||
# Write version number
|
||||
# Little endian unsigned 64 Bit integer
|
||||
self._file.write(struct.pack("<Q", 1))
|
||||
# Little endian unsigned 8 Bit integer
|
||||
self._file.write(struct.pack("<B", code(dtype)))
|
||||
|
||||
return self
|
||||
|
||||
@staticmethod
|
||||
def _get_pointers(sizes):
|
||||
pointers = np.zeros(len(sizes), dtype=np.int64)
|
||||
sizes = np.array(sizes, dtype=np.int64)
|
||||
|
||||
np.cumsum(sizes[:-1], out=pointers[1:])
|
||||
pointers = pointers * dtype().itemsize
|
||||
return pointers
|
||||
|
||||
def write(self, sizes, doc_idx):
|
||||
pointers = self._get_pointers(sizes)
|
||||
|
||||
# Little endian unsigned 64 Bit integer
|
||||
self._file.write(struct.pack("<Q", len(sizes)))
|
||||
# Little endian unsigned 64 Bit integer
|
||||
self._file.write(struct.pack("<Q", len(doc_idx)))
|
||||
|
||||
sizes = np.array(sizes, dtype=np.int32)
|
||||
self._file.write(sizes.tobytes(order="C"))
|
||||
del sizes
|
||||
|
||||
pointers = np.array(pointers, dtype=np.int64)
|
||||
self._file.write(pointers.tobytes(order="C"))
|
||||
del pointers
|
||||
|
||||
doc_idx = np.array(doc_idx, dtype=np.int64)
|
||||
self._file.write(doc_idx.tobytes(order="C"))
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
self._file.close()
|
||||
|
||||
return _Writer()
|
||||
|
||||
def __init__(self, path, skip_warmup=False):
|
||||
with open(path, "rb") as stream:
|
||||
magic_test = stream.read(9)
|
||||
assert self._HDR_MAGIC == magic_test, (
|
||||
"Index file doesn't match expected format. "
|
||||
"Make sure that --dataset-impl is configured properly."
|
||||
)
|
||||
# Little endian unsigned 64 Bit integer
|
||||
version = struct.unpack("<Q", stream.read(8))
|
||||
assert (1,) == version
|
||||
|
||||
# Little endian unsigned 8 Bit integer
|
||||
(dtype_code,) = struct.unpack("<B", stream.read(1))
|
||||
self._dtype = dtypes[dtype_code]
|
||||
self._dtype_size = self._dtype().itemsize
|
||||
|
||||
self._len = struct.unpack("<Q", stream.read(8))[0]
|
||||
self._doc_count = struct.unpack("<Q", stream.read(8))[0]
|
||||
offset = stream.tell()
|
||||
|
||||
if not skip_warmup:
|
||||
print(" warming up index mmap file...")
|
||||
_warmup_mmap_file(path)
|
||||
|
||||
self._bin_buffer_mmap = np.memmap(path, mode="r", order="C")
|
||||
self._bin_buffer = memoryview(self._bin_buffer_mmap)
|
||||
print(" reading sizes...")
|
||||
self._sizes = np.frombuffer(
|
||||
self._bin_buffer, dtype=np.int32, count=self._len, offset=offset
|
||||
)
|
||||
print(" reading pointers...")
|
||||
self._pointers = np.frombuffer(
|
||||
self._bin_buffer,
|
||||
dtype=np.int64,
|
||||
count=self._len,
|
||||
offset=offset + self._sizes.nbytes,
|
||||
)
|
||||
print(" reading document index...")
|
||||
self._doc_idx = np.frombuffer(
|
||||
self._bin_buffer,
|
||||
dtype=np.int64,
|
||||
count=self._doc_count,
|
||||
offset=offset + self._sizes.nbytes + self._pointers.nbytes,
|
||||
)
|
||||
|
||||
def __del__(self):
|
||||
self._bin_buffer_mmap._mmap.close()
|
||||
del self._bin_buffer_mmap
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
return self._dtype
|
||||
|
||||
@property
|
||||
def sizes(self):
|
||||
return self._sizes
|
||||
|
||||
@property
|
||||
def doc_idx(self):
|
||||
return self._doc_idx
|
||||
|
||||
@lru_cache(maxsize=8)
|
||||
def __getitem__(self, i):
|
||||
return self._pointers[i], self._sizes[i]
|
||||
|
||||
def __len__(self):
|
||||
return self._len
|
||||
|
||||
def __init__(self, path, skip_warmup=False):
|
||||
super().__init__()
|
||||
|
||||
self._path = None
|
||||
self._index = None
|
||||
self._bin_buffer = None
|
||||
|
||||
self._do_init(path, skip_warmup)
|
||||
|
||||
def __getstate__(self):
|
||||
return self._path
|
||||
|
||||
def __setstate__(self, state):
|
||||
self._do_init(state)
|
||||
|
||||
def _do_init(self, path, skip_warmup):
|
||||
self._path = path
|
||||
self._index = self.Index(index_file_path(self._path), skip_warmup)
|
||||
|
||||
if not skip_warmup:
|
||||
print(" warming up data mmap file...")
|
||||
_warmup_mmap_file(data_file_path(self._path))
|
||||
print(" creating numpy buffer of mmap...")
|
||||
self._bin_buffer_mmap = np.memmap(
|
||||
data_file_path(self._path), mode="r", order="C"
|
||||
)
|
||||
print(" creating memory view of numpy buffer...")
|
||||
self._bin_buffer = memoryview(self._bin_buffer_mmap)
|
||||
|
||||
def __del__(self):
|
||||
self._bin_buffer_mmap._mmap.close()
|
||||
del self._bin_buffer_mmap
|
||||
del self._index
|
||||
|
||||
def __len__(self):
|
||||
return len(self._index)
|
||||
|
||||
# @lru_cache(maxsize=8)
|
||||
def __getitem__(self, idx):
|
||||
if isinstance(idx, int):
|
||||
ptr, size = self._index[idx]
|
||||
np_array = np.frombuffer(
|
||||
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
|
||||
)
|
||||
return np_array
|
||||
elif isinstance(idx, slice):
|
||||
start, stop, step = idx.indices(len(self))
|
||||
if step != 1:
|
||||
raise ValueError("Slices into indexed_dataset must be contiguous")
|
||||
ptr = self._index._pointers[start]
|
||||
sizes = self._index._sizes[idx]
|
||||
offsets = list(accumulate(sizes))
|
||||
total_size = sum(sizes)
|
||||
np_array = np.frombuffer(
|
||||
self._bin_buffer, dtype=self._index.dtype, count=total_size, offset=ptr
|
||||
)
|
||||
sents = np.split(np_array, offsets[:-1])
|
||||
return sents
|
||||
|
||||
def get(self, idx, offset=0, length=None):
|
||||
"""Retrieves a single item from the dataset with the option to only
|
||||
return a portion of the item.
|
||||
|
||||
get(idx) is the same as [idx] but get() does not support slicing.
|
||||
"""
|
||||
ptr, size = self._index[idx]
|
||||
if length is None:
|
||||
length = size - offset
|
||||
ptr += offset * np.dtype(self._index.dtype).itemsize
|
||||
np_array = np.frombuffer(
|
||||
self._bin_buffer, dtype=self._index.dtype, count=length, offset=ptr
|
||||
)
|
||||
return np_array
|
||||
|
||||
@property
|
||||
def sizes(self):
|
||||
return self._index.sizes
|
||||
|
||||
@property
|
||||
def doc_idx(self):
|
||||
return self._index.doc_idx
|
||||
|
||||
def get_doc_idx(self):
|
||||
return self._index._doc_idx
|
||||
|
||||
def set_doc_idx(self, doc_idx_):
|
||||
self._index._doc_idx = doc_idx_
|
||||
|
||||
@property
|
||||
def supports_prefetch(self):
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def exists(path):
|
||||
return os.path.exists(index_file_path(path)) and os.path.exists(
|
||||
data_file_path(path)
|
||||
)
|
||||
|
||||
|
||||
class MMapIndexedDatasetBuilder(object):
|
||||
def __init__(self, out_file, dtype=np.int64):
|
||||
self._data_file = open(out_file, "wb")
|
||||
self._dtype = dtype
|
||||
self._sizes = []
|
||||
self._doc_idx = [0]
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
return self._dtype
|
||||
|
||||
def add_item(self, np_array):
|
||||
assert isinstance(np_array, np.ndarray) and np_array.dtype == self.dtype
|
||||
self._data_file.write(np_array.tobytes(order="C"))
|
||||
self._sizes.append(np_array.size)
|
||||
|
||||
def end_document(self):
|
||||
self._doc_idx.append(len(self._sizes))
|
||||
|
||||
def merge_file_(self, another_file):
|
||||
# Concatenate index
|
||||
index = MMapIndexedDataset.Index(index_file_path(another_file))
|
||||
assert index.dtype == self._dtype
|
||||
|
||||
for size in index.sizes:
|
||||
self._sizes.append(size)
|
||||
|
||||
# Concatenate data
|
||||
with open(data_file_path(another_file), "rb") as f:
|
||||
shutil.copyfileobj(f, self._data_file)
|
||||
|
||||
def finalize(self, index_file):
|
||||
self._data_file.close()
|
||||
|
||||
with MMapIndexedDataset.Index.writer(index_file, self._dtype) as index:
|
||||
index.write(self._sizes, self._doc_idx)
|
||||
250
finetune/json2binidx_tool/tools/preprocess_data.py
vendored
Normal file
250
finetune/json2binidx_tool/tools/preprocess_data.py
vendored
Normal file
@@ -0,0 +1,250 @@
|
||||
# Copyright (c) 2021, EleutherAI
|
||||
# This file is based on code by the authors denoted below and has been modified from its original version.
|
||||
#
|
||||
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Processing data for pretraining."""
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
|
||||
|
||||
import argparse
|
||||
import multiprocessing
|
||||
|
||||
import lm_dataformat as lmd
|
||||
import numpy as np
|
||||
|
||||
sys.path.append(
|
||||
os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))
|
||||
)
|
||||
import time
|
||||
import tqdm
|
||||
import ftfy
|
||||
|
||||
from tokenizer import build_tokenizer
|
||||
import indexed_dataset
|
||||
from threading import Semaphore
|
||||
|
||||
|
||||
class Encoder(object):
|
||||
def __init__(self, args):
|
||||
self.args = args
|
||||
|
||||
def initializer(self):
|
||||
# Use Encoder class as a container for global data
|
||||
Encoder.tokenizer = build_tokenizer(self.args)
|
||||
|
||||
def encode(self, text):
|
||||
if self.args.ftfy:
|
||||
text = ftfy.fix_text(text)
|
||||
ids = {}
|
||||
for key in self.args.jsonl_keys:
|
||||
doc_ids = []
|
||||
text_ids = Encoder.tokenizer.tokenize(text)
|
||||
if len(text_ids) > 0:
|
||||
doc_ids.append(text_ids)
|
||||
if self.args.append_eod:
|
||||
doc_ids[-1].append(Encoder.tokenizer.eod)
|
||||
ids[key] = doc_ids
|
||||
return ids, len(text)
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
group = parser.add_argument_group(title="input data")
|
||||
group.add_argument(
|
||||
"--input",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to input jsonl files or lmd archive(s) - if using multiple archives, put them in a comma separated "
|
||||
"list",
|
||||
)
|
||||
group.add_argument(
|
||||
"--jsonl-keys",
|
||||
nargs="+",
|
||||
default=["text"],
|
||||
help="space separate listed of keys to extract from jsonl. Defa",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-docs",
|
||||
default=None,
|
||||
help="Optional: Number of documents in the input data (if known) for an accurate progress bar.",
|
||||
type=int,
|
||||
)
|
||||
group = parser.add_argument_group(title="tokenizer")
|
||||
group.add_argument(
|
||||
"--tokenizer-type",
|
||||
type=str,
|
||||
required=True,
|
||||
choices=[
|
||||
"HFGPT2Tokenizer",
|
||||
"HFTokenizer",
|
||||
"GPT2BPETokenizer",
|
||||
"CharLevelTokenizer",
|
||||
"TiktokenTokenizer",
|
||||
"RWKVTokenizer",
|
||||
],
|
||||
help="What type of tokenizer to use.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--vocab-file", type=str, default=None, help="Path to the vocab file"
|
||||
)
|
||||
group.add_argument(
|
||||
"--merge-file",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to the BPE merge file (if necessary).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--append-eod",
|
||||
action="store_true",
|
||||
help="Append an <eod> token to the end of a document.",
|
||||
)
|
||||
group.add_argument("--ftfy", action="store_true", help="Use ftfy to clean text")
|
||||
group = parser.add_argument_group(title="output data")
|
||||
group.add_argument(
|
||||
"--output-prefix",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to binary output file without suffix",
|
||||
)
|
||||
group.add_argument(
|
||||
"--dataset-impl",
|
||||
type=str,
|
||||
default="mmap",
|
||||
choices=["lazy", "cached", "mmap"],
|
||||
help="Dataset implementation to use. Default: mmap",
|
||||
)
|
||||
|
||||
group = parser.add_argument_group(title="runtime")
|
||||
group.add_argument(
|
||||
"--workers", type=int, default=1, help="Number of worker processes to launch"
|
||||
)
|
||||
group.add_argument(
|
||||
"--log-interval",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Interval between progress updates",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
args.keep_empty = False
|
||||
|
||||
# some default/dummy values for the tokenizer
|
||||
args.rank = 0
|
||||
args.make_vocab_size_divisible_by = 128
|
||||
args.model_parallel_size = 1
|
||||
|
||||
return args
|
||||
|
||||
|
||||
def yield_from_files(fnames: list, semaphore):
|
||||
"""
|
||||
Iterator over input documents using lm_dataformat. Should be able to handle jsons / texts /
|
||||
other compressed formats. Also filters out empty documents.
|
||||
|
||||
:param fnames: list of filenames
|
||||
"""
|
||||
|
||||
def yielder(fname, semaphore):
|
||||
for f in filter(lambda x: x, lmd.Reader(fname).stream_data()):
|
||||
semaphore.acquire()
|
||||
yield f
|
||||
|
||||
for fname in fnames:
|
||||
semaphore.acquire()
|
||||
|
||||
yield from yielder(fname, semaphore)
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
encoder = Encoder(args)
|
||||
tokenizer = build_tokenizer(args)
|
||||
print(f"Vocab size: {tokenizer.vocab_size}")
|
||||
print(f"Output prefix: {args.output_prefix}")
|
||||
|
||||
# build a semaphore object to stop `yield_from_files` from getting ahead of encoder.encode and
|
||||
# hence building up memory
|
||||
semaphore = Semaphore(10000 + args.workers)
|
||||
|
||||
# use multiprocessing to iterate over input documents
|
||||
fin = yield_from_files(args.input.split(","), semaphore)
|
||||
|
||||
if args.workers > 1:
|
||||
pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer)
|
||||
encoded_docs = pool.imap(encoder.encode, fin, chunksize=25)
|
||||
else:
|
||||
encoder.initializer()
|
||||
encoded_docs = (encoder.encode(doc) for doc in fin)
|
||||
|
||||
# make a dataset builder for each key in args.jsonl_keys
|
||||
# each key will output to a different file beginning with args.output_prefix
|
||||
output_bin_files = {}
|
||||
output_idx_files = {}
|
||||
builders = {}
|
||||
for key in args.jsonl_keys:
|
||||
output_bin_files[key] = "{}_{}_{}.bin".format(
|
||||
args.output_prefix, key, "document"
|
||||
)
|
||||
output_idx_files[key] = "{}_{}_{}.idx".format(
|
||||
args.output_prefix, key, "document"
|
||||
)
|
||||
builders[key] = indexed_dataset.make_builder(
|
||||
output_bin_files[key],
|
||||
impl=args.dataset_impl,
|
||||
vocab_size=tokenizer.vocab_size,
|
||||
)
|
||||
|
||||
# actually do tokenization
|
||||
proc_start = time.time()
|
||||
total_bytes_processed = 0
|
||||
pbar = tqdm.tqdm()
|
||||
for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1):
|
||||
total_bytes_processed += bytes_processed
|
||||
|
||||
# release semaphore so `yield_from_files` can add another file to the buffer
|
||||
semaphore.release()
|
||||
|
||||
# add each tokenized document / sentence
|
||||
for key, sentences in doc.items():
|
||||
for sentence in sentences:
|
||||
builders[key].add_item(np.array(sentence, dtype=builders[key].dtype))
|
||||
# separate with eos token
|
||||
builders[key].end_document()
|
||||
|
||||
# log progress
|
||||
if i % args.log_interval == 0:
|
||||
current = time.time()
|
||||
elapsed = current - proc_start
|
||||
mbs = total_bytes_processed / elapsed / 1024 / 1024
|
||||
pbar.set_description(
|
||||
f"Processed {i}{'' if args.num_docs is None else '/' + str(args.num_docs)} documents ({i / elapsed:0.2f} docs/s, {mbs:0.2f} MB/s)."
|
||||
)
|
||||
if i != 0:
|
||||
pbar.update(args.log_interval)
|
||||
|
||||
# save output file
|
||||
for key in args.jsonl_keys:
|
||||
builders[key].finalize(output_idx_files[key])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
try:
|
||||
main()
|
||||
except Exception as e:
|
||||
with open("error.txt", "w") as f:
|
||||
f.write(str(e))
|
||||
232
finetune/json2binidx_tool/tools/rwkv_tokenizer.py
vendored
Normal file
232
finetune/json2binidx_tool/tools/rwkv_tokenizer.py
vendored
Normal file
@@ -0,0 +1,232 @@
|
||||
########################################################################################################
|
||||
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
|
||||
# Source: https://github.com/BlinkDL/ChatRWKV/blob/main/tokenizer/rwkv_tokenizer.py
|
||||
########################################################################################################
|
||||
|
||||
import os, sys, time, random
|
||||
|
||||
print('''
|
||||
#######################################################################################################################
|
||||
|
||||
This tokenizer is not used in any RWKV models yet. I plan to use it for the future multilang RWKV models.
|
||||
|
||||
Benefits:
|
||||
|
||||
* Good support of most languages, from European to CJK to Arabic and Hindi and more.
|
||||
|
||||
* Clean vocab. Good for code too. Vocab size = 65525 (use 0 for <|endoftext|>).
|
||||
|
||||
* Good at numbers: the numerical tokens are '0'~'9', '10'~'99', ' 0'~' 9', ' 10'~' 99'.
|
||||
|
||||
* Very easy tokenization:
|
||||
|
||||
** The input text must be in UTF-8.
|
||||
|
||||
** Greedy encoding: always pick the longest (in bytes) token (with the highest id) that matches your UTF-8 bytes.
|
||||
|
||||
* The tokenization result is surprisingly good, because the vocab respects word boundaries and UTF-8 boundaries.
|
||||
|
||||
For 10x faster speed:
|
||||
mypyc rwkv_tokenizer.py
|
||||
python3 -c "import rwkv_tokenizer"
|
||||
|
||||
#######################################################################################################################
|
||||
''')
|
||||
|
||||
########################################################################################################
|
||||
# Tokenizer #1 (reference, naive, slow)
|
||||
########################################################################################################
|
||||
|
||||
class RWKV_TOKENIZER():
|
||||
table = None # : list[list[list[bytes]]] = None
|
||||
good = None # : list[set[int]]
|
||||
wlen = None # : list[int]
|
||||
def __init__(self, file_name):
|
||||
self.vocab_size = 65525
|
||||
self.idx2token = {}
|
||||
sorted = [] # must be already sorted
|
||||
lines = open(file_name, "r", encoding="utf-8").readlines()
|
||||
for l in lines:
|
||||
idx = int(l[:l.index(' ')])
|
||||
x = eval(l[l.index(' '):l.rindex(' ')])
|
||||
x = x.encode("utf-8") if isinstance(x, str) else x
|
||||
assert isinstance(x, bytes)
|
||||
assert len(x) == int(l[l.rindex(' '):])
|
||||
sorted += [x]
|
||||
self.idx2token[idx] = x
|
||||
|
||||
self.token2idx = {}
|
||||
for k, v in self.idx2token.items():
|
||||
self.token2idx[v] = int(k)
|
||||
|
||||
# precompute some tables for fast matching
|
||||
self.table = [[[] for j in range(256)] for i in range(256)]
|
||||
self.good = [set() for i in range(256)]
|
||||
self.wlen = [0 for i in range(256)]
|
||||
|
||||
for i in reversed(range(len(sorted))): # reverse order - match longer tokens first
|
||||
s = sorted[i]
|
||||
if len(s) >= 2:
|
||||
s0 = int(s[0])
|
||||
s1 = int(s[1])
|
||||
self.table[s0][s1] += [s]
|
||||
self.wlen[s0] = max(self.wlen[s0], len(s))
|
||||
self.good[s0].add(s1)
|
||||
|
||||
def encodeBytes(self, src: bytes):
|
||||
src_len: int = len(src)
|
||||
tokens = []
|
||||
i: int = 0
|
||||
while i < src_len:
|
||||
s: bytes = src[i : i + 1]
|
||||
|
||||
if i < src_len - 1:
|
||||
s1: int = int(src[i + 1])
|
||||
s0: int = int(src[i])
|
||||
if s1 in self.good[s0]:
|
||||
sss: bytes = src[i : i + self.wlen[s0]]
|
||||
try:
|
||||
s = next(filter(sss.startswith, self.table[s0][s1]))
|
||||
except:
|
||||
pass
|
||||
tokens.append(self.token2idx[s])
|
||||
i += len(s)
|
||||
|
||||
return tokens
|
||||
|
||||
def decodeBytes(self, tokens):
|
||||
return b''.join(map(lambda i: self.idx2token[i], tokens))
|
||||
|
||||
def encode(self, src: str):
|
||||
return self.encodeBytes(src.encode("utf-8"))
|
||||
|
||||
def decode(self, tokens):
|
||||
return self.decodeBytes(tokens).decode('utf-8')
|
||||
|
||||
def token_to_id(self, token):
|
||||
return self.token2idx[token]
|
||||
|
||||
def get_vocab_size(self):
|
||||
return self.vocab_size
|
||||
|
||||
def get_vocab(self):
|
||||
return self.idx2token
|
||||
|
||||
def printTokens(self, tokens):
|
||||
for i in tokens:
|
||||
s = self.idx2token[i]
|
||||
try:
|
||||
s = s.decode('utf-8')
|
||||
except:
|
||||
pass
|
||||
print(f'{repr(s)}{i}', end=' ')
|
||||
# print(repr(s), i)
|
||||
print()
|
||||
|
||||
########################################################################################################
|
||||
# Tokenizer #2 (trie, faster) https://github.com/TkskKurumi/ChatRWKV-TRIE-Tokenizer
|
||||
########################################################################################################
|
||||
|
||||
class TRIE:
|
||||
__slots__ = tuple("ch,to,values,front".split(","))
|
||||
to:list
|
||||
values:set
|
||||
def __init__(self, front=None, ch=None):
|
||||
self.ch = ch
|
||||
self.to = [None for ch in range(256)]
|
||||
self.values = set()
|
||||
self.front = front
|
||||
|
||||
def __repr__(self):
|
||||
fr = self
|
||||
ret = []
|
||||
while(fr!=None):
|
||||
if(fr.ch!=None):
|
||||
ret.append(fr.ch)
|
||||
fr = fr.front
|
||||
return "<TRIE %s %s>"%(ret[::-1], self.values)
|
||||
|
||||
def add(self, key:bytes, idx:int=0, val=None):
|
||||
if(idx == len(key)):
|
||||
if(val is None):
|
||||
val = key
|
||||
self.values.add(val)
|
||||
return self
|
||||
ch = key[idx]
|
||||
if(self.to[ch] is None):
|
||||
self.to[ch] = TRIE(front=self, ch=ch)
|
||||
return self.to[ch].add(key, idx=idx+1, val=val)
|
||||
|
||||
def find_longest(self, key:bytes, idx:int=0):
|
||||
u:TRIE = self
|
||||
ch:int = key[idx]
|
||||
|
||||
while(u.to[ch] is not None):
|
||||
u = u.to[ch]
|
||||
idx += 1
|
||||
if(u.values):
|
||||
ret = idx, u, u.values
|
||||
if(idx==len(key)):
|
||||
break
|
||||
ch = key[idx]
|
||||
return ret
|
||||
|
||||
class TRIE_TOKENIZER():
|
||||
def __init__(self, file_name):
|
||||
self.vocab_size = 65525
|
||||
self.idx2token = {}
|
||||
sorted = [] # must be already sorted
|
||||
with open(file_name, "r", encoding="utf-8") as f:
|
||||
lines = f.readlines()
|
||||
for l in lines:
|
||||
idx = int(l[:l.index(' ')])
|
||||
x = eval(l[l.index(' '):l.rindex(' ')])
|
||||
x = x.encode("utf-8") if isinstance(x, str) else x
|
||||
assert isinstance(x, bytes)
|
||||
assert len(x) == int(l[l.rindex(' '):])
|
||||
sorted += [x]
|
||||
self.idx2token[idx] = x
|
||||
|
||||
self.token2idx = {}
|
||||
for k,v in self.idx2token.items():
|
||||
self.token2idx[v] = int(k)
|
||||
|
||||
self.root = TRIE()
|
||||
for t, i in self.token2idx.items():
|
||||
_ = self.root.add(t, val=(t, i))
|
||||
|
||||
def encodeBytes(self, src:bytes):
|
||||
idx:int = 0
|
||||
tokens = []
|
||||
while (idx < len(src)):
|
||||
_idx:int = idx
|
||||
idx, _, values = self.root.find_longest(src, idx)
|
||||
assert(idx != _idx)
|
||||
_, token = next(iter(values))
|
||||
tokens.append(token)
|
||||
return tokens
|
||||
|
||||
def decodeBytes(self, tokens):
|
||||
return b''.join(map(lambda i: self.idx2token[i], tokens))
|
||||
|
||||
def encode(self, src):
|
||||
return self.encodeBytes(src.encode("utf-8"))
|
||||
|
||||
def decode(self, tokens):
|
||||
return self.decodeBytes(tokens).decode('utf-8')
|
||||
|
||||
def get_vocab_size(self):
|
||||
return self.vocab_size
|
||||
|
||||
def get_vocab(self):
|
||||
return self.idx2token
|
||||
|
||||
def printTokens(self, tokens):
|
||||
for i in tokens:
|
||||
s = self.idx2token[i]
|
||||
try:
|
||||
s = s.decode('utf-8')
|
||||
except:
|
||||
pass
|
||||
print(f'{repr(s)}{i}', end=' ')
|
||||
print()
|
||||
205
finetune/json2binidx_tool/tools/tokenizer.py
vendored
Normal file
205
finetune/json2binidx_tool/tools/tokenizer.py
vendored
Normal file
@@ -0,0 +1,205 @@
|
||||
# Copyright (c) 2021, EleutherAI
|
||||
# This file is based on code by the authors denoted below and has been modified from its original version.
|
||||
#
|
||||
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Megatron tokenizers."""
|
||||
|
||||
from abc import ABC
|
||||
from abc import abstractmethod
|
||||
|
||||
from tokenizers import Tokenizer
|
||||
from rwkv_tokenizer import RWKV_TOKENIZER, TRIE_TOKENIZER
|
||||
|
||||
from typing import List, Union
|
||||
|
||||
|
||||
def build_tokenizer(args):
|
||||
"""Initialize tokenizer."""
|
||||
if args.rank == 0:
|
||||
print("> building {} tokenizer ...".format(args.tokenizer_type), flush=True)
|
||||
|
||||
# Select and instantiate the tokenizer.
|
||||
|
||||
if args.tokenizer_type.lower() == "HFTokenizer".lower():
|
||||
assert args.vocab_file is not None
|
||||
tokenizer = HFTokenizer(args.vocab_file)
|
||||
elif args.tokenizer_type.lower() == "RWKVTokenizer".lower():
|
||||
assert args.vocab_file is not None
|
||||
tokenizer = RWKVTokenizer(args.vocab_file)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"{} tokenizer is not " "implemented.".format(args.tokenizer_type)
|
||||
)
|
||||
|
||||
# Add vocab size.
|
||||
args.padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size, args)
|
||||
|
||||
return tokenizer
|
||||
|
||||
|
||||
def _vocab_size_with_padding(orig_vocab_size, args):
|
||||
"""Pad vocab size so it is divisible by model parallel size and
|
||||
still having GPU friendly size."""
|
||||
|
||||
after = orig_vocab_size
|
||||
multiple = args.make_vocab_size_divisible_by * args.model_parallel_size
|
||||
while (after % multiple) != 0:
|
||||
after += 1
|
||||
if args.rank == 0:
|
||||
print(
|
||||
" > padded vocab (size: {}) with {} dummy tokens "
|
||||
"(new size: {})".format(orig_vocab_size, after - orig_vocab_size, after),
|
||||
flush=True,
|
||||
)
|
||||
return after
|
||||
|
||||
|
||||
class AbstractTokenizer(ABC):
|
||||
"""Abstract class for tokenizer."""
|
||||
|
||||
def __init__(self, name):
|
||||
self.name = name
|
||||
super().__init__()
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def vocab_size(self):
|
||||
pass
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def vocab(self):
|
||||
"""Dictionary from vocab text token to id token."""
|
||||
pass
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def inv_vocab(self):
|
||||
"""Dictionary from vocab id token to text token."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def tokenize(self, text):
|
||||
pass
|
||||
|
||||
def detokenize(self, token_ids):
|
||||
raise NotImplementedError(
|
||||
"detokenizer is not implemented for {} " "tokenizer".format(self.name)
|
||||
)
|
||||
|
||||
@property
|
||||
def cls(self):
|
||||
raise NotImplementedError(
|
||||
"CLS is not provided for {} " "tokenizer".format(self.name)
|
||||
)
|
||||
|
||||
@property
|
||||
def sep(self):
|
||||
raise NotImplementedError(
|
||||
"SEP is not provided for {} " "tokenizer".format(self.name)
|
||||
)
|
||||
|
||||
@property
|
||||
def pad(self):
|
||||
raise NotImplementedError(
|
||||
"PAD is not provided for {} " "tokenizer".format(self.name)
|
||||
)
|
||||
|
||||
@property
|
||||
def eod(self):
|
||||
raise NotImplementedError(
|
||||
"EOD is not provided for {} " "tokenizer".format(self.name)
|
||||
)
|
||||
|
||||
@property
|
||||
def mask(self):
|
||||
raise NotImplementedError(
|
||||
"MASK is not provided for {} " "tokenizer".format(self.name)
|
||||
)
|
||||
|
||||
|
||||
class HFTokenizer(AbstractTokenizer):
|
||||
"""Designed to Integrate HF's Tokenizer library."""
|
||||
|
||||
def __init__(self, vocab_file):
|
||||
name = "HFTokenizer"
|
||||
super().__init__(name)
|
||||
|
||||
self.tokenizer = Tokenizer.from_file(vocab_file)
|
||||
self.eod_id = self.tokenizer.token_to_id("<|endoftext|>")
|
||||
self.pad_id = self.tokenizer.token_to_id("<|padding|>")
|
||||
|
||||
@property
|
||||
def vocab_size(self):
|
||||
return self.tokenizer.get_vocab_size()
|
||||
|
||||
@property
|
||||
def vocab(self):
|
||||
return self.tokenizer.get_vocab()
|
||||
|
||||
@property
|
||||
def inv_vocab(self):
|
||||
return self.tokenizer.decoder
|
||||
|
||||
def tokenize(self, text: str):
|
||||
return self.tokenizer.encode(text).ids
|
||||
|
||||
def tokenize_batch(self, text_batch: Union[List[str], str]):
|
||||
return self.tokenizer.encode_batch(text_batch)
|
||||
|
||||
def detokenize(self, token_ids):
|
||||
return self.tokenizer.decode(token_ids)
|
||||
|
||||
@property
|
||||
def eod(self):
|
||||
return self.eod_id
|
||||
|
||||
|
||||
class RWKVTokenizer(AbstractTokenizer):
|
||||
"""RWKV Worlds Tokenizer."""
|
||||
|
||||
def __init__(self, vocab_file='rwkv_vocab_v20230424.txt'):
|
||||
name = "RWKVTokenizer"
|
||||
super().__init__(name)
|
||||
|
||||
self.tokenizer = TRIE_TOKENIZER(vocab_file)
|
||||
self.eod_id = 0 # self.tokenizer.token_to_id("<|endoftext|>")
|
||||
# self.pad_id = self.tokenizer.token_to_id("<|padding|>")
|
||||
|
||||
@property
|
||||
def vocab_size(self):
|
||||
return self.tokenizer.get_vocab_size()
|
||||
|
||||
@property
|
||||
def vocab(self):
|
||||
return self.tokenizer.get_vocab()
|
||||
|
||||
@property
|
||||
def inv_vocab(self):
|
||||
return self.tokenizer.decode
|
||||
|
||||
def tokenize(self, text: str):
|
||||
return self.tokenizer.encode(text)
|
||||
|
||||
def tokenize_batch(self, text_batch: Union[List[str], str]):
|
||||
return self.tokenizer.encode_batch(text_batch)
|
||||
|
||||
def detokenize(self, token_ids):
|
||||
return self.tokenizer.decode(token_ids)
|
||||
|
||||
@property
|
||||
def eod(self):
|
||||
return self.eod_id
|
||||
133
finetune/lora/cuda/wkv_cuda.cu
vendored
Normal file
133
finetune/lora/cuda/wkv_cuda.cu
vendored
Normal file
@@ -0,0 +1,133 @@
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
|
||||
#define MIN_VALUE (-1e38)
|
||||
|
||||
template <typename F>
|
||||
__global__ void kernel_forward(const int B, const int T, const int C,
|
||||
const F *__restrict__ const _w, const F *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
|
||||
F *__restrict__ const _y) {
|
||||
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int _b = idx / C;
|
||||
const int _c = idx % C;
|
||||
const int _offset = _b * T * C + _c;
|
||||
|
||||
F u = _u[_c];
|
||||
F w = _w[_c];
|
||||
const F *__restrict__ const k = _k + _offset;
|
||||
const F *__restrict__ const v = _v + _offset;
|
||||
F *__restrict__ const y = _y + _offset;
|
||||
|
||||
// aa and bb are running sums divided by exp(pp) (to avoid overflow)
|
||||
F aa = 0, bb = 0, pp = MIN_VALUE;
|
||||
for (int i = 0; i < T; i++) {
|
||||
const int ii = i * C;
|
||||
const F kk = k[ii];
|
||||
const F vv = v[ii];
|
||||
|
||||
F ww = u + kk;
|
||||
F p = max(pp, ww);
|
||||
F e1 = exp(pp - p);
|
||||
F e2 = exp(ww - p);
|
||||
y[ii] = (e1 * aa + e2 * vv) / (e1 * bb + e2);
|
||||
|
||||
ww = w + pp;
|
||||
p = max(ww, kk);
|
||||
e1 = exp(ww - p);
|
||||
e2 = exp(kk - p);
|
||||
aa = e1 * aa + e2 * vv;
|
||||
bb = e1 * bb + e2;
|
||||
pp = p;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
__global__ void kernel_backward(const int B, const int T, const int C,
|
||||
const F *__restrict__ const _w, const F *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
|
||||
const F *__restrict__ const _y, const F *__restrict__ const _gy,
|
||||
F *__restrict__ const _gw, F *__restrict__ const _gu, F *__restrict__ const _gk, F *__restrict__ const _gv) {
|
||||
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int _b = idx / C;
|
||||
const int _c = idx % C;
|
||||
const int _offset = _b * T * C + _c;
|
||||
|
||||
F u = _u[_c];
|
||||
F w = _w[_c];
|
||||
const F *__restrict__ const k = _k + _offset;
|
||||
const F *__restrict__ const v = _v + _offset;
|
||||
const F *__restrict__ const y = _y + _offset;
|
||||
const F *__restrict__ const gy = _gy + _offset;
|
||||
F *__restrict__ const gk = _gk + _offset;
|
||||
F *__restrict__ const gv = _gv + _offset;
|
||||
|
||||
F q[Tmax], r[Tmax];
|
||||
|
||||
F gw = 0, gu = 0, aa = 0, bb = 0, ga = 0, gb = 0, pp = MIN_VALUE;
|
||||
for (int i = 0; i < T; i++) {
|
||||
const int ii = i * C;
|
||||
const F kk = k[ii];
|
||||
const F vv = v[ii];
|
||||
const F yy = y[ii];
|
||||
|
||||
F ww = u + kk;
|
||||
F p = max(pp, ww);
|
||||
F e1 = exp(pp - p);
|
||||
F e2 = exp(ww - p);
|
||||
const F qq = gy[ii] / (e1 * bb + e2);
|
||||
gw += (ga - gb * yy) * e1 * qq;
|
||||
gu += (vv - yy) * e2 * qq;
|
||||
q[i] = qq;
|
||||
r[i] = ww - p;
|
||||
|
||||
ww = w + pp;
|
||||
p = max(ww, kk);
|
||||
e1 = exp(ww - p);
|
||||
e2 = exp(kk - p);
|
||||
ga = e1 * (aa + ga);
|
||||
gb = e1 * (bb + gb);
|
||||
aa = e1 * aa + e2 * vv;
|
||||
bb = e1 * bb + e2;
|
||||
pp = p;
|
||||
}
|
||||
const int _offsetBC = _b * C + _c;
|
||||
_gw[_offsetBC] = gw * _w[_c]; // multiply by w because of w -> -exp(w) in python forward()
|
||||
_gu[_offsetBC] = gu;
|
||||
|
||||
aa = 0, bb = 0, pp = MIN_VALUE;
|
||||
for (int i = T - 1; i >= 0; i--) {
|
||||
const int ii = i * C;
|
||||
const F kk = k[ii];
|
||||
const F vv = v[ii];
|
||||
const F yy = y[ii];
|
||||
const F qq = q[i];
|
||||
const F rr = r[i];
|
||||
|
||||
F e1 = qq * exp(rr);
|
||||
F e2 = exp(kk + pp);
|
||||
gk[ii] = e1 * (vv - yy) + e2 * (aa * vv + bb);
|
||||
gv[ii] = e1 + e2 * aa;
|
||||
|
||||
const F ww = w + pp;
|
||||
const F www = rr - u - kk;
|
||||
const F p = max(ww, www);
|
||||
e1 = exp(ww - p);
|
||||
e2 = qq * exp(www - p);
|
||||
aa = e1 * aa + e2;
|
||||
bb = e1 * bb - e2 * yy;
|
||||
pp = p;
|
||||
}
|
||||
}
|
||||
|
||||
void cuda_forward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y) {
|
||||
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
|
||||
assert(B * C % threadsPerBlock.x == 0);
|
||||
dim3 numBlocks(B * C / threadsPerBlock.x);
|
||||
kernel_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y);
|
||||
}
|
||||
|
||||
void cuda_backward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y, float *gy, float *gw, float *gu, float *gk, float *gv) {
|
||||
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
|
||||
assert(B * C % threadsPerBlock.x == 0);
|
||||
dim3 numBlocks(B * C / threadsPerBlock.x);
|
||||
kernel_backward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, gy, gw, gu, gk, gv);
|
||||
}
|
||||
132
finetune/lora/cuda/wkv_cuda_bf16.cu
vendored
Normal file
132
finetune/lora/cuda/wkv_cuda_bf16.cu
vendored
Normal file
@@ -0,0 +1,132 @@
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include "ATen/ATen.h"
|
||||
#define MIN_VALUE (-1e38)
|
||||
typedef at::BFloat16 bf16;
|
||||
|
||||
__global__ void kernel_forward(const int B, const int T, const int C,
|
||||
const float *__restrict__ const _w, const bf16 *__restrict__ const _u, const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v,
|
||||
bf16 *__restrict__ const _y) {
|
||||
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int _b = idx / C;
|
||||
const int _c = idx % C;
|
||||
const int _offset = _b * T * C + _c;
|
||||
|
||||
float u = float(_u[_c]);
|
||||
float w = _w[_c];
|
||||
const bf16 *__restrict__ const k = _k + _offset;
|
||||
const bf16 *__restrict__ const v = _v + _offset;
|
||||
bf16 *__restrict__ const y = _y + _offset;
|
||||
|
||||
// aa and bb are running sums divided by exp(pp) (to avoid overflow)
|
||||
float aa = 0, bb = 0, pp = MIN_VALUE;
|
||||
for (int i = 0; i < T; i++) {
|
||||
const int ii = i * C;
|
||||
const float kk = float(k[ii]);
|
||||
const float vv = float(v[ii]);
|
||||
|
||||
float ww = u + kk;
|
||||
float p = max(pp, ww);
|
||||
float e1 = exp(pp - p);
|
||||
float e2 = exp(ww - p);
|
||||
y[ii] = bf16((e1 * aa + e2 * vv) / (e1 * bb + e2));
|
||||
|
||||
ww = w + pp;
|
||||
p = max(ww, kk);
|
||||
e1 = exp(ww - p);
|
||||
e2 = exp(kk - p);
|
||||
aa = e1 * aa + e2 * vv;
|
||||
bb = e1 * bb + e2;
|
||||
pp = p;
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void kernel_backward(const int B, const int T, const int C,
|
||||
const float *__restrict__ const _w, const bf16 *__restrict__ const _u, const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v,
|
||||
const bf16 *__restrict__ const _y, const bf16 *__restrict__ const _gy,
|
||||
bf16 *__restrict__ const _gw, bf16 *__restrict__ const _gu, bf16 *__restrict__ const _gk, bf16 *__restrict__ const _gv) {
|
||||
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int _b = idx / C;
|
||||
const int _c = idx % C;
|
||||
const int _offset = _b * T * C + _c;
|
||||
|
||||
float u = float(_u[_c]);
|
||||
float w = _w[_c];
|
||||
const bf16 *__restrict__ const k = _k + _offset;
|
||||
const bf16 *__restrict__ const v = _v + _offset;
|
||||
const bf16 *__restrict__ const y = _y + _offset;
|
||||
const bf16 *__restrict__ const gy = _gy + _offset;
|
||||
bf16 *__restrict__ const gk = _gk + _offset;
|
||||
bf16 *__restrict__ const gv = _gv + _offset;
|
||||
|
||||
float q[Tmax], r[Tmax];
|
||||
|
||||
float gw = 0, gu = 0, aa = 0, bb = 0, ga = 0, gb = 0, pp = MIN_VALUE;
|
||||
for (int i = 0; i < T; i++) {
|
||||
const int ii = i * C;
|
||||
const float kk = float(k[ii]);
|
||||
const float vv = float(v[ii]);
|
||||
const float yy = float(y[ii]);
|
||||
|
||||
float ww = u + kk;
|
||||
float p = max(pp, ww);
|
||||
float e1 = exp(pp - p);
|
||||
float e2 = exp(ww - p);
|
||||
const float qq = float(gy[ii]) / (e1 * bb + e2);
|
||||
gw += (ga - gb * yy) * e1 * qq;
|
||||
gu += (vv - yy) * e2 * qq;
|
||||
q[i] = qq;
|
||||
r[i] = ww - p;
|
||||
|
||||
ww = w + pp;
|
||||
p = max(ww, kk);
|
||||
e1 = exp(ww - p);
|
||||
e2 = exp(kk - p);
|
||||
ga = e1 * (aa + ga);
|
||||
gb = e1 * (bb + gb);
|
||||
aa = e1 * aa + e2 * vv;
|
||||
bb = e1 * bb + e2;
|
||||
pp = p;
|
||||
}
|
||||
const int _offsetBC = _b * C + _c;
|
||||
_gw[_offsetBC] = bf16(gw * _w[_c]); // multiply by w because of w -> -exp(w) in python forward()
|
||||
_gu[_offsetBC] = bf16(gu);
|
||||
|
||||
aa = 0, bb = 0, pp = MIN_VALUE;
|
||||
for (int i = T - 1; i >= 0; i--) {
|
||||
const int ii = i * C;
|
||||
const float kk = float(k[ii]);
|
||||
const float vv = float(v[ii]);
|
||||
const float yy = float(y[ii]);
|
||||
const float qq = q[i];
|
||||
const float rr = r[i];
|
||||
|
||||
float e1 = qq * exp(rr);
|
||||
float e2 = exp(kk + pp);
|
||||
gk[ii] = bf16(e1 * (vv - yy) + e2 * (aa * vv + bb));
|
||||
gv[ii] = bf16(e1 + e2 * aa);
|
||||
|
||||
const float ww = w + pp;
|
||||
const float www = rr - u - kk;
|
||||
const float p = max(ww, www);
|
||||
e1 = exp(ww - p);
|
||||
e2 = qq * exp(www - p);
|
||||
aa = e1 * aa + e2;
|
||||
bb = e1 * bb - e2 * yy;
|
||||
pp = p;
|
||||
}
|
||||
}
|
||||
|
||||
void cuda_forward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y) {
|
||||
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
|
||||
assert(B * C % threadsPerBlock.x == 0);
|
||||
dim3 numBlocks(B * C / threadsPerBlock.x);
|
||||
kernel_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y);
|
||||
}
|
||||
|
||||
void cuda_backward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, bf16 *gy, bf16 *gw, bf16 *gu, bf16 *gk, bf16 *gv) {
|
||||
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
|
||||
assert(B * C % threadsPerBlock.x == 0);
|
||||
dim3 numBlocks(B * C / threadsPerBlock.x);
|
||||
kernel_backward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, gy, gw, gu, gk, gv);
|
||||
}
|
||||
21
finetune/lora/cuda/wkv_op.cpp
vendored
Normal file
21
finetune/lora/cuda/wkv_op.cpp
vendored
Normal file
@@ -0,0 +1,21 @@
|
||||
#include <torch/extension.h>
|
||||
|
||||
void cuda_forward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y);
|
||||
void cuda_backward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y, float *gy, float *gw, float *gu, float *gk, float *gv);
|
||||
|
||||
void forward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y) {
|
||||
cuda_forward(B, T, C, w.data_ptr<float>(), u.data_ptr<float>(), k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>());
|
||||
}
|
||||
void backward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y, torch::Tensor &gy, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gk, torch::Tensor &gv) {
|
||||
cuda_backward(B, T, C, w.data_ptr<float>(), u.data_ptr<float>(), k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>(), gy.data_ptr<float>(), gw.data_ptr<float>(), gu.data_ptr<float>(), gk.data_ptr<float>(), gv.data_ptr<float>());
|
||||
}
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("forward", &forward, "wkv forward");
|
||||
m.def("backward", &backward, "wkv backward");
|
||||
}
|
||||
|
||||
TORCH_LIBRARY(wkv, m) {
|
||||
m.def("forward", forward);
|
||||
m.def("backward", backward);
|
||||
}
|
||||
25
finetune/lora/cuda/wkv_op_bf16.cpp
vendored
Normal file
25
finetune/lora/cuda/wkv_op_bf16.cpp
vendored
Normal file
@@ -0,0 +1,25 @@
|
||||
#include <torch/extension.h>
|
||||
#include "ATen/ATen.h"
|
||||
typedef at::BFloat16 bf16;
|
||||
|
||||
void cuda_forward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y);
|
||||
void cuda_backward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, bf16 *gy, bf16 *gw, bf16 *gu, bf16 *gk, bf16 *gv);
|
||||
|
||||
void forward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y) {
|
||||
cuda_forward(B, T, C, w.data_ptr<float>(), u.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), y.data_ptr<bf16>());
|
||||
}
|
||||
void backward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y,
|
||||
torch::Tensor &gy, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gk, torch::Tensor &gv) {
|
||||
cuda_backward(B, T, C, w.data_ptr<float>(), u.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), y.data_ptr<bf16>(),
|
||||
gy.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>());
|
||||
}
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("forward", &forward, "wkv forward");
|
||||
m.def("backward", &backward, "wkv backward");
|
||||
}
|
||||
|
||||
TORCH_LIBRARY(wkv, m) {
|
||||
m.def("forward", forward);
|
||||
m.def("backward", backward);
|
||||
}
|
||||
68
finetune/lora/merge_lora.py
vendored
Normal file
68
finetune/lora/merge_lora.py
vendored
Normal file
@@ -0,0 +1,68 @@
|
||||
from collections import OrderedDict
|
||||
import os
|
||||
import sys
|
||||
from typing import Dict
|
||||
import typing
|
||||
import torch
|
||||
|
||||
try:
|
||||
if "-h" in sys.argv or "--help" in sys.argv:
|
||||
print(
|
||||
f"Usage: python3 {sys.argv[0]} [--use-gpu] <lora_alpha> <base_model.pth> <lora_checkpoint.pth> <output.pth>"
|
||||
)
|
||||
|
||||
if sys.argv[1] == "--use-gpu":
|
||||
device = "cuda"
|
||||
lora_alpha, base_model, lora, output = (
|
||||
float(sys.argv[2]),
|
||||
sys.argv[3],
|
||||
sys.argv[4],
|
||||
sys.argv[5],
|
||||
)
|
||||
else:
|
||||
device = "cpu"
|
||||
lora_alpha, base_model, lora, output = (
|
||||
float(sys.argv[1]),
|
||||
sys.argv[2],
|
||||
sys.argv[3],
|
||||
sys.argv[4],
|
||||
)
|
||||
|
||||
with torch.no_grad():
|
||||
w: Dict[str, torch.Tensor] = torch.load(base_model, map_location="cpu")
|
||||
# merge LoRA-only slim checkpoint into the main weights
|
||||
w_lora: Dict[str, torch.Tensor] = torch.load(lora, map_location="cpu")
|
||||
for k in w_lora.keys():
|
||||
w[k] = w_lora[k]
|
||||
output_w: typing.OrderedDict[str, torch.Tensor] = OrderedDict()
|
||||
# merge LoRA weights
|
||||
keys = list(w.keys())
|
||||
for k in keys:
|
||||
if k.endswith(".weight"):
|
||||
prefix = k[: -len(".weight")]
|
||||
lora_A = prefix + ".lora_A"
|
||||
lora_B = prefix + ".lora_B"
|
||||
if lora_A in keys:
|
||||
assert lora_B in keys
|
||||
print(f"merging {lora_A} and {lora_B} into {k}")
|
||||
assert w[lora_B].shape[1] == w[lora_A].shape[0]
|
||||
lora_r = w[lora_B].shape[1]
|
||||
w[k] = w[k].to(device=device)
|
||||
w[lora_A] = w[lora_A].to(device=device)
|
||||
w[lora_B] = w[lora_B].to(device=device)
|
||||
w[k] += w[lora_B] @ w[lora_A] * (lora_alpha / lora_r)
|
||||
output_w[k] = w[k].to(device="cpu", copy=True)
|
||||
del w[k]
|
||||
del w[lora_A]
|
||||
del w[lora_B]
|
||||
continue
|
||||
|
||||
if "lora" not in k:
|
||||
print(f"retaining {k}")
|
||||
output_w[k] = w[k].clone()
|
||||
del w[k]
|
||||
|
||||
torch.save(output_w, output)
|
||||
except Exception as e:
|
||||
with open("error.txt", "w") as f:
|
||||
f.write(str(e))
|
||||
0
finetune/lora/src/__init__.py
vendored
Normal file
0
finetune/lora/src/__init__.py
vendored
Normal file
269
finetune/lora/src/binidx.py
vendored
Normal file
269
finetune/lora/src/binidx.py
vendored
Normal file
@@ -0,0 +1,269 @@
|
||||
from lib2to3.pgen2 import token
|
||||
import os
|
||||
import torch
|
||||
import numpy as np
|
||||
import shutil
|
||||
import struct
|
||||
from functools import lru_cache
|
||||
from itertools import accumulate
|
||||
|
||||
def print_rank_0(*message):
|
||||
pass
|
||||
# """If distributed is initialized print only on rank 0."""
|
||||
# if torch.distributed.is_initialized():
|
||||
# if torch.distributed.get_rank() == 0:
|
||||
# print(*message, flush=True)
|
||||
# else:
|
||||
# print(*message, flush=True)
|
||||
|
||||
def _warmup_mmap_file(path):
|
||||
pass
|
||||
# with open(path, "rb") as stream:
|
||||
# while stream.read(100 * 1024 * 1024):
|
||||
# pass
|
||||
|
||||
dtypes = {
|
||||
1: np.uint8,
|
||||
2: np.int8,
|
||||
3: np.int16,
|
||||
4: np.int32,
|
||||
5: np.int64,
|
||||
6: float,
|
||||
7: np.double,
|
||||
8: np.uint16,
|
||||
}
|
||||
|
||||
def code(dtype):
|
||||
for k in dtypes.keys():
|
||||
if dtypes[k] == dtype:
|
||||
return k
|
||||
raise ValueError(dtype)
|
||||
|
||||
def index_file_path(prefix_path):
|
||||
return prefix_path + ".idx"
|
||||
|
||||
def data_file_path(prefix_path):
|
||||
return prefix_path + ".bin"
|
||||
|
||||
class MMapIndexedDataset(torch.utils.data.Dataset):
|
||||
class Index(object):
|
||||
_HDR_MAGIC = b"MMIDIDX\x00\x00"
|
||||
|
||||
@classmethod
|
||||
def writer(cls, path, dtype):
|
||||
class _Writer(object):
|
||||
def __enter__(self):
|
||||
self._file = open(path, "wb")
|
||||
|
||||
# Write Magic string so we can check the file format then opening it again.
|
||||
self._file.write(cls._HDR_MAGIC)
|
||||
# Write version number
|
||||
# Little endian unsigned 64 Bit integer
|
||||
self._file.write(struct.pack("<Q", 1))
|
||||
# Little endian unsigned 8 Bit integer
|
||||
self._file.write(struct.pack("<B", code(dtype)))
|
||||
|
||||
return self
|
||||
|
||||
@staticmethod
|
||||
def _get_pointers(sizes):
|
||||
dtype_size = dtype().itemsize
|
||||
address = 0
|
||||
pointers = []
|
||||
|
||||
for size in sizes:
|
||||
pointers.append(address)
|
||||
address += size * dtype_size
|
||||
|
||||
return pointers
|
||||
|
||||
def write(self, sizes, doc_idx):
|
||||
pointers = self._get_pointers(sizes)
|
||||
|
||||
# Little endian unsigned 64 Bit integer
|
||||
self._file.write(struct.pack("<Q", len(sizes)))
|
||||
# Little endian unsigned 64 Bit integer
|
||||
self._file.write(struct.pack("<Q", len(doc_idx)))
|
||||
|
||||
sizes = np.array(sizes, dtype=np.int32)
|
||||
self._file.write(sizes.tobytes(order="C"))
|
||||
del sizes
|
||||
|
||||
pointers = np.array(pointers, dtype=np.int64)
|
||||
self._file.write(pointers.tobytes(order="C"))
|
||||
del pointers
|
||||
|
||||
doc_idx = np.array(doc_idx, dtype=np.int64)
|
||||
self._file.write(doc_idx.tobytes(order="C"))
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
self._file.close()
|
||||
|
||||
return _Writer()
|
||||
|
||||
def __init__(self, path, skip_warmup=False):
|
||||
with open(path, "rb") as stream:
|
||||
magic_test = stream.read(9)
|
||||
assert self._HDR_MAGIC == magic_test, (
|
||||
"Index file doesn't match expected format. "
|
||||
"Make sure that --dataset-impl is configured properly."
|
||||
)
|
||||
# Little endian unsigned 64 Bit integer
|
||||
version = struct.unpack("<Q", stream.read(8))
|
||||
assert (1,) == version
|
||||
|
||||
# Little endian unsigned 8 Bit integer
|
||||
(dtype_code,) = struct.unpack("<B", stream.read(1))
|
||||
self._dtype = dtypes[dtype_code]
|
||||
self._dtype_size = self._dtype().itemsize
|
||||
|
||||
self._len = struct.unpack("<Q", stream.read(8))[0]
|
||||
self._doc_count = struct.unpack("<Q", stream.read(8))[0]
|
||||
offset = stream.tell()
|
||||
|
||||
if not skip_warmup:
|
||||
print_rank_0(" warming up index mmap file...")
|
||||
_warmup_mmap_file(path)
|
||||
|
||||
self._bin_buffer_mmap = np.memmap(path, mode="r", order="C")
|
||||
self._bin_buffer = memoryview(self._bin_buffer_mmap)
|
||||
print_rank_0(" reading sizes...")
|
||||
self._sizes = np.frombuffer(
|
||||
self._bin_buffer, dtype=np.int32, count=self._len, offset=offset
|
||||
)
|
||||
print_rank_0(" reading pointers...")
|
||||
self._pointers = np.frombuffer(
|
||||
self._bin_buffer,
|
||||
dtype=np.int64,
|
||||
count=self._len,
|
||||
offset=offset + self._sizes.nbytes,
|
||||
)
|
||||
print_rank_0(" reading document index...")
|
||||
self._doc_idx = np.frombuffer(
|
||||
self._bin_buffer,
|
||||
dtype=np.int64,
|
||||
count=self._doc_count,
|
||||
offset=offset + self._sizes.nbytes + self._pointers.nbytes,
|
||||
)
|
||||
|
||||
def __del__(self):
|
||||
self._bin_buffer_mmap._mmap.close()
|
||||
del self._bin_buffer_mmap
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
return self._dtype
|
||||
|
||||
@property
|
||||
def sizes(self):
|
||||
return self._sizes
|
||||
|
||||
@property
|
||||
def doc_idx(self):
|
||||
return self._doc_idx
|
||||
|
||||
@lru_cache(maxsize=8)
|
||||
def __getitem__(self, i):
|
||||
return self._pointers[i], self._sizes[i]
|
||||
|
||||
def __len__(self):
|
||||
return self._len
|
||||
|
||||
def __init__(self, path, skip_warmup=False):
|
||||
super().__init__()
|
||||
|
||||
self._path = None
|
||||
self._index = None
|
||||
self._bin_buffer = None
|
||||
|
||||
self._do_init(path, skip_warmup)
|
||||
|
||||
def __getstate__(self):
|
||||
return self._path
|
||||
|
||||
def __setstate__(self, state):
|
||||
self._do_init(state)
|
||||
|
||||
def _do_init(self, path, skip_warmup):
|
||||
self._path = path
|
||||
self._index = self.Index(index_file_path(self._path), skip_warmup)
|
||||
|
||||
if not skip_warmup:
|
||||
print_rank_0(" warming up data mmap file...")
|
||||
_warmup_mmap_file(data_file_path(self._path))
|
||||
print_rank_0(" creating numpy buffer of mmap...")
|
||||
self._bin_buffer_mmap = np.memmap(
|
||||
data_file_path(self._path), mode="r", order="C"
|
||||
)
|
||||
print_rank_0(" creating memory view of numpy buffer...")
|
||||
self._bin_buffer = memoryview(self._bin_buffer_mmap)
|
||||
|
||||
def __del__(self):
|
||||
self._bin_buffer_mmap._mmap.close()
|
||||
del self._bin_buffer_mmap
|
||||
del self._index
|
||||
|
||||
def __len__(self):
|
||||
return len(self._index)
|
||||
|
||||
# @lru_cache(maxsize=8)
|
||||
def __getitem__(self, idx):
|
||||
if isinstance(idx, int):
|
||||
ptr, size = self._index[idx]
|
||||
np_array = np.frombuffer(
|
||||
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
|
||||
)
|
||||
return np_array
|
||||
elif isinstance(idx, slice):
|
||||
start, stop, step = idx.indices(len(self))
|
||||
if step != 1:
|
||||
raise ValueError(
|
||||
"Slices into indexed_dataset must be contiguous")
|
||||
ptr = self._index._pointers[start]
|
||||
sizes = self._index._sizes[idx]
|
||||
offsets = list(accumulate(sizes))
|
||||
total_size = sum(sizes)
|
||||
np_array = np.frombuffer(
|
||||
self._bin_buffer, dtype=self._index.dtype, count=total_size, offset=ptr
|
||||
)
|
||||
sents = np.split(np_array, offsets[:-1])
|
||||
return sents
|
||||
|
||||
def get(self, idx, offset=0, length=None):
|
||||
"""Retrieves a single item from the dataset with the option to only
|
||||
return a portion of the item.
|
||||
|
||||
get(idx) is the same as [idx] but get() does not support slicing.
|
||||
"""
|
||||
ptr, size = self._index[idx]
|
||||
if length is None:
|
||||
length = size - offset
|
||||
ptr += offset * np.dtype(self._index.dtype).itemsize
|
||||
np_array = np.frombuffer(
|
||||
self._bin_buffer, dtype=self._index.dtype, count=length, offset=ptr
|
||||
)
|
||||
return np_array
|
||||
|
||||
@property
|
||||
def sizes(self):
|
||||
return self._index.sizes
|
||||
|
||||
@property
|
||||
def doc_idx(self):
|
||||
return self._index.doc_idx
|
||||
|
||||
def get_doc_idx(self):
|
||||
return self._index._doc_idx
|
||||
|
||||
def set_doc_idx(self, doc_idx_):
|
||||
self._index._doc_idx = doc_idx_
|
||||
|
||||
@property
|
||||
def supports_prefetch(self):
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def exists(path):
|
||||
return os.path.exists(index_file_path(path)) and os.path.exists(
|
||||
data_file_path(path)
|
||||
)
|
||||
224
finetune/lora/src/dataset.py
vendored
Normal file
224
finetune/lora/src/dataset.py
vendored
Normal file
@@ -0,0 +1,224 @@
|
||||
########################################################################################################
|
||||
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
|
||||
########################################################################################################
|
||||
|
||||
import json, math, random, os, sys
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
from pytorch_lightning.utilities import rank_zero_info
|
||||
from .binidx import MMapIndexedDataset
|
||||
from .utils import MaybeIsPrime
|
||||
|
||||
|
||||
class MyDataset(Dataset):
|
||||
def __init__(self, args):
|
||||
self.args = args
|
||||
|
||||
if args.data_type == "binidx":
|
||||
self.vocab_size = args.vocab_size
|
||||
rank_zero_info(f"Current vocab size = {self.vocab_size} (make sure it's correct)")
|
||||
|
||||
if args.data_file.endswith('/'):
|
||||
d_all = []
|
||||
for p in os.listdir(args.data_file):
|
||||
if p.endswith(".idx"):
|
||||
d_all += [p[:-4]]
|
||||
d_all.sort()
|
||||
rank_zero_info(d_all)
|
||||
exit(0)
|
||||
else:
|
||||
self.data = MMapIndexedDataset(args.data_file)
|
||||
self.data_size = len(self.data._bin_buffer) // self.data._index._dtype_size
|
||||
rank_zero_info(f"Data has {self.data_size} tokens.")
|
||||
|
||||
if args.my_qa_mask > 0:
|
||||
self.data_pile = MMapIndexedDataset('/fsx/BlinkDL/pile/pile_20B_tokenizer_text_document')
|
||||
self.data_pile_size = len(self.data_pile._bin_buffer) // self.data._index._dtype_size
|
||||
|
||||
if args.my_pile_stage > 0:
|
||||
# assert self.data_size == 332115325534 and self.vocab_size == 50277
|
||||
self.samples_per_epoch = args.epoch_steps * args.real_bsz
|
||||
assert self.samples_per_epoch == 40320
|
||||
rank_zero_info(f"########## Pile 20b-tokenized stage {args.my_pile_stage} ##########")
|
||||
dataset_slot = self.data_size // args.ctx_len
|
||||
if args.my_pile_stage != 4:
|
||||
assert MaybeIsPrime(args.magic_prime)
|
||||
assert args.magic_prime % 3 == 2
|
||||
assert args.magic_prime / dataset_slot > 0.99 and args.magic_prime / dataset_slot <= 1
|
||||
elif args.data_type == "numpy":
|
||||
self.data = np.load(args.data_file).astype("int")
|
||||
self.vocab_size = args.vocab_size
|
||||
rank_zero_info("Current vocab size =", self.vocab_size, "(make sure it's correct)")
|
||||
self.data_size = len(self.data)
|
||||
rank_zero_info(f"Data has {self.data_size} tokens.")
|
||||
elif args.data_type == "uint16":
|
||||
self.data = np.fromfile(args.data_file, dtype=np.uint16).astype("int32").reshape(-1, args.my_sample_len)
|
||||
self.vocab_size = args.vocab_size
|
||||
rank_zero_info("Current vocab size =", self.vocab_size, "(make sure it's correct)")
|
||||
self.data_size = self.data.shape[0]
|
||||
rank_zero_info(f"Data has {self.data_size} samples.")
|
||||
elif args.data_type == "wds_img":
|
||||
self.vocab_size = -1
|
||||
self.data_size = -1
|
||||
self.data = None
|
||||
self.error_count = 0
|
||||
else:
|
||||
if args.data_type == "dummy":
|
||||
rank_zero_info("Building dummy data...")
|
||||
self.data = ""
|
||||
for i in range(100000):
|
||||
aa = (i) % 10000
|
||||
bb = (i * i) % 10000
|
||||
cc = aa + bb
|
||||
self.data += f".{aa}+{bb}={cc}."
|
||||
else:
|
||||
self.data = open(args.data_file, "r", encoding=args.data_type).read()
|
||||
rank_zero_info("Building token list...")
|
||||
unique = sorted(list(set(self.data)))
|
||||
self.vocab_size = len(unique)
|
||||
# rank_zero_info()
|
||||
# for u in unique:
|
||||
# print(u, end=' ')
|
||||
# rank_zero_info('\n\n')
|
||||
xx = 0
|
||||
xxObj = {}
|
||||
for u in unique:
|
||||
xxObj[xx] = u
|
||||
xx += 1
|
||||
with open(f"{args.proj_dir}/vocab.json", "w", encoding="utf-16le") as vocab_file:
|
||||
vocab_file.write(json.dumps(xxObj, ensure_ascii=False))
|
||||
self.data_size = len(self.data)
|
||||
rank_zero_info(f"Data has {self.data_size} tokens, {self.vocab_size} vocab size.")
|
||||
self.stoi = {ch: i for i, ch in enumerate(unique)}
|
||||
self.itos = {i: ch for i, ch in enumerate(unique)}
|
||||
|
||||
def __len__(self):
|
||||
return self.args.epoch_steps * self.args.micro_bsz
|
||||
|
||||
def __getitem__(self, idx):
|
||||
args = self.args
|
||||
rank = self.global_rank
|
||||
epoch = self.real_epoch
|
||||
world_size = self.world_size
|
||||
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size}")
|
||||
|
||||
if args.data_type == "wds_img":
|
||||
def init_wds(self, bias=0):
|
||||
def identity(x):
|
||||
return x
|
||||
import webdataset as wds
|
||||
import torchvision.transforms as transforms
|
||||
# img_transform = transforms.Compose(
|
||||
# [transforms.CenterCrop(256)]
|
||||
# )
|
||||
img_transform = transforms.Compose([
|
||||
transforms.CenterCrop(512),
|
||||
transforms.Resize((args.my_img_size))
|
||||
])
|
||||
self.data_raw = wds.WebDataset(args.data_file, resampled=True).shuffle(10000, initial=1000, rng=random.Random(epoch*100000+rank+bias*1e9)).decode("torchrgb").to_tuple("jpg", "json", "txt").map_tuple(img_transform, identity, identity)
|
||||
for pp in self.data_raw.pipeline:
|
||||
if 'Resampled' in str(pp):
|
||||
pp.deterministic = True
|
||||
def worker_seed():
|
||||
return rank*100000+epoch+bias*1e9
|
||||
pp.worker_seed = worker_seed
|
||||
self.data = iter(self.data_raw)
|
||||
# print(f"WebDataset loaded for rank {rank} epoch {epoch}")
|
||||
if self.data == None:
|
||||
init_wds(self)
|
||||
trial = 0
|
||||
while trial < 10:
|
||||
try:
|
||||
dd = next(self.data) # jpg, json, txt
|
||||
break
|
||||
except:
|
||||
print(f'[dataloader error - epoch {epoch} rank {rank} - trying a new shuffle]')
|
||||
self.error_count += 1
|
||||
init_wds(self, self.error_count)
|
||||
trial += 1
|
||||
pass
|
||||
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size} {dd[2]}")
|
||||
# with open(f"sample_{rank}.txt", "a", encoding="utf-8") as tmp:
|
||||
# tmp.write(f"epoch {epoch} idx {idx} rank {rank}/{world_size} {int(dd[1]['key'])}\n")
|
||||
return dd[0], dd[2]
|
||||
else:
|
||||
if args.data_type == "uint16":
|
||||
i = np.random.randint(0, self.data_size-1)
|
||||
dix = self.data[i]
|
||||
x = torch.tensor(dix[:-1], dtype=torch.long)
|
||||
y = torch.tensor(dix[1:], dtype=torch.long)
|
||||
else:
|
||||
ctx_len = args.ctx_len
|
||||
req_len = ctx_len + 1
|
||||
magic_prime = args.magic_prime
|
||||
data = self.data
|
||||
|
||||
if args.my_pile_stage > 0 and args.my_pile_stage != 4:
|
||||
ii = 1 + epoch * self.samples_per_epoch + (idx * world_size) + rank
|
||||
|
||||
if args.my_qa_mask > 0:
|
||||
ii_orig = ii
|
||||
if ii % 2 == 0:
|
||||
ii = (ii // 2) * args.magic_prime
|
||||
if args.ctx_len == 1024:
|
||||
magic_prime = 324331313
|
||||
elif args.ctx_len == 2048:
|
||||
magic_prime = 162165671
|
||||
elif args.ctx_len == 4096:
|
||||
magic_prime = 81082817
|
||||
data = self.data_pile
|
||||
else:
|
||||
ii = ii // 2
|
||||
|
||||
factor = (math.sqrt(5) - 1) / 2
|
||||
factor = int(magic_prime * factor)
|
||||
i = ((factor * ii * ii * ii) % magic_prime) * ctx_len
|
||||
if (args.my_qa_mask == 0) or (data == self.data_pile):
|
||||
i = i + args.my_pile_shift
|
||||
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size} ii {ii} pos {round(i / self.data_size, 3)}")
|
||||
else:
|
||||
# cheat: pick a random spot in dataset
|
||||
i = np.random.randint(0, self.data_size - req_len)
|
||||
|
||||
if args.data_type == "binidx":
|
||||
dix = data.get(idx=0, offset=i, length=req_len).astype(int)
|
||||
elif args.data_type == "numpy":
|
||||
dix = data[i : i + req_len]
|
||||
else:
|
||||
dix = [self.stoi[s] for s in data[i : i + req_len]]
|
||||
|
||||
if args.my_qa_mask == 1:
|
||||
if data == self.data_pile:
|
||||
z = [1] * ctx_len
|
||||
else:
|
||||
z = [0] * ctx_len
|
||||
z_sum = 0
|
||||
isGood = False
|
||||
for i in range(3, ctx_len):
|
||||
if dix[i] == 27 and dix[i-1] == 34 and dix[i-2] == 187 and dix[i-3] == 187:
|
||||
isGood = True
|
||||
if dix[i] == 0:
|
||||
isGood = False
|
||||
if isGood:
|
||||
z[i] = 1
|
||||
z_sum += 1
|
||||
if z_sum == 0:
|
||||
z = [1] * ctx_len
|
||||
i = np.random.randint(0, self.data_pile_size - req_len)
|
||||
dix = self.data_pile.get(idx=0, offset=i, length=req_len).astype(int)
|
||||
z = torch.tensor(z, dtype=torch.bfloat16)
|
||||
|
||||
x = torch.tensor(dix[:-1], dtype=torch.long)
|
||||
y = torch.tensor(dix[1:], dtype=torch.long)
|
||||
|
||||
# if ii_orig < 50:
|
||||
# # if rank == 1:
|
||||
# print('rank', rank, 'i', ii_orig, ii, i, 'x', x[:5], '...', x[-5:])
|
||||
# else:
|
||||
# exit(0)
|
||||
|
||||
if args.my_qa_mask == 1:
|
||||
return x, y, z
|
||||
|
||||
return x, y
|
||||
678
finetune/lora/src/model.py
vendored
Normal file
678
finetune/lora/src/model.py
vendored
Normal file
@@ -0,0 +1,678 @@
|
||||
########################################################################################################
|
||||
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
|
||||
########################################################################################################
|
||||
|
||||
import functools
|
||||
import os, math, gc, importlib
|
||||
import torch
|
||||
# torch._C._jit_set_profiling_executor(True)
|
||||
# torch._C._jit_set_profiling_mode(True)
|
||||
import torch.nn as nn
|
||||
from torch.utils.checkpoint import checkpoint as torch_checkpoint
|
||||
from torch.nn import functional as F
|
||||
import pytorch_lightning as pl
|
||||
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
|
||||
from pytorch_lightning.strategies import DeepSpeedStrategy
|
||||
if importlib.util.find_spec('deepspeed'):
|
||||
import deepspeed
|
||||
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam
|
||||
|
||||
# from deepspeed.runtime.fp16.onebit.zoadam import ZeroOneAdam
|
||||
|
||||
LORA_CONFIG = {
|
||||
"r": 0,
|
||||
"alpha": 0,
|
||||
"dropout": 0,
|
||||
"parts": {"att", "ln", "time"},
|
||||
}
|
||||
|
||||
|
||||
try:
|
||||
print('RWKV_MY_TESTING', os.environ["RWKV_MY_TESTING"])
|
||||
except:
|
||||
os.environ["RWKV_MY_TESTING"] = ''
|
||||
|
||||
def __nop(ob):
|
||||
return ob
|
||||
|
||||
|
||||
MyModule = nn.Module
|
||||
MyFunction = __nop
|
||||
if os.environ["RWKV_JIT_ON"] == "1":
|
||||
MyModule = torch.jit.ScriptModule
|
||||
MyFunction = torch.jit.script_method
|
||||
|
||||
|
||||
########################################################################################################
|
||||
# CUDA Kernel
|
||||
########################################################################################################
|
||||
|
||||
T_MAX = int(os.environ["RWKV_T_MAX"]) # TAKES LOTS OF VRAM!
|
||||
# it's possible to go beyond CUDA limitations if you slice the ctx and pass the hidden state in each slice
|
||||
|
||||
from torch.utils.cpp_extension import load
|
||||
|
||||
if os.environ["RWKV_FLOAT_MODE"] == "bf16":
|
||||
wkv_cuda = load(name=f"wkv_{T_MAX}_bf16", sources=["finetune/lora/cuda/wkv_op_bf16.cpp", "finetune/lora/cuda/wkv_cuda_bf16.cu"], verbose=True, extra_cuda_cflags=["-t 4", "-std=c++17", "-res-usage", "--maxrregcount 60", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-DTmax={T_MAX}"])
|
||||
class WKV(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, B, T, C, w, u, k, v):
|
||||
ctx.B = B
|
||||
ctx.T = T
|
||||
ctx.C = C
|
||||
assert T <= T_MAX
|
||||
assert B * C % min(C, 32) == 0
|
||||
w = -torch.exp(w.float().contiguous())
|
||||
u = u.contiguous()
|
||||
k = k.contiguous()
|
||||
v = v.contiguous()
|
||||
y = torch.empty((B, T, C), device=w.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
|
||||
wkv_cuda.forward(B, T, C, w, u, k, v, y)
|
||||
ctx.save_for_backward(w, u, k, v, y)
|
||||
return y
|
||||
@staticmethod
|
||||
def backward(ctx, gy):
|
||||
B = ctx.B
|
||||
T = ctx.T
|
||||
C = ctx.C
|
||||
assert T <= T_MAX
|
||||
assert B * C % min(C, 32) == 0
|
||||
w, u, k, v, y = ctx.saved_tensors
|
||||
gw = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
|
||||
gu = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
|
||||
gk = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
|
||||
gv = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
|
||||
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.contiguous(), gw, gu, gk, gv)
|
||||
gw = torch.sum(gw, dim=0)
|
||||
gu = torch.sum(gu, dim=0)
|
||||
return (None, None, None, gw, gu, gk, gv)
|
||||
else:
|
||||
wkv_cuda = load(name=f"wkv_{T_MAX}", sources=["finetune/lora/cuda/wkv_op.cpp", "finetune/lora/cuda/wkv_cuda.cu"], verbose=True, extra_cuda_cflags=["-res-usage", "--maxrregcount 60", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-DTmax={T_MAX}"])
|
||||
class WKV(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, B, T, C, w, u, k, v):
|
||||
ctx.B = B
|
||||
ctx.T = T
|
||||
ctx.C = C
|
||||
assert T <= T_MAX
|
||||
assert B * C % min(C, 32) == 0
|
||||
if "32" in os.environ["RWKV_FLOAT_MODE"]:
|
||||
w = -torch.exp(w.contiguous())
|
||||
u = u.contiguous()
|
||||
k = k.contiguous()
|
||||
v = v.contiguous()
|
||||
else:
|
||||
w = -torch.exp(w.float().contiguous())
|
||||
u = u.float().contiguous()
|
||||
k = k.float().contiguous()
|
||||
v = v.float().contiguous()
|
||||
y = torch.empty((B, T, C), device=w.device, memory_format=torch.contiguous_format)
|
||||
wkv_cuda.forward(B, T, C, w, u, k, v, y)
|
||||
ctx.save_for_backward(w, u, k, v, y)
|
||||
if "32" in os.environ["RWKV_FLOAT_MODE"]:
|
||||
return y
|
||||
elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
|
||||
return y.half()
|
||||
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
|
||||
return y.bfloat16()
|
||||
@staticmethod
|
||||
def backward(ctx, gy):
|
||||
B = ctx.B
|
||||
T = ctx.T
|
||||
C = ctx.C
|
||||
assert T <= T_MAX
|
||||
assert B * C % min(C, 32) == 0
|
||||
w, u, k, v, y = ctx.saved_tensors
|
||||
gw = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format)
|
||||
gu = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format)
|
||||
gk = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format)
|
||||
gv = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format)
|
||||
if "32" in os.environ["RWKV_FLOAT_MODE"]:
|
||||
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.contiguous(), gw, gu, gk, gv)
|
||||
else:
|
||||
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.float().contiguous(), gw, gu, gk, gv)
|
||||
gw = torch.sum(gw, dim=0)
|
||||
gu = torch.sum(gu, dim=0)
|
||||
if "32" in os.environ["RWKV_FLOAT_MODE"]:
|
||||
return (None, None, None, gw, gu, gk, gv)
|
||||
elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
|
||||
return (None, None, None, gw.half(), gu.half(), gk.half(), gv.half())
|
||||
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
|
||||
return (None, None, None, gw.bfloat16(), gu.bfloat16(), gk.bfloat16(), gv.bfloat16())
|
||||
|
||||
|
||||
def RUN_CUDA(B, T, C, w, u, k, v):
|
||||
return WKV.apply(B, T, C, w, u, k, v)
|
||||
|
||||
|
||||
########################################################################################################
|
||||
# LoRA
|
||||
########################################################################################################
|
||||
|
||||
|
||||
class LoraLinear(nn.Module):
|
||||
|
||||
def __init__(self, in_features: int, out_features: int, bias: bool):
|
||||
super().__init__()
|
||||
|
||||
self.weight = nn.Parameter(torch.empty((out_features, in_features)))
|
||||
assert bias == False, "Biased LoraLinear not supported"
|
||||
|
||||
r, alpha, dropout = LORA_CONFIG["r"], LORA_CONFIG[
|
||||
"alpha"], LORA_CONFIG["dropout"]
|
||||
self.lora_A = nn.Parameter(torch.empty(r, in_features))
|
||||
self.lora_B = nn.Parameter(torch.empty(out_features, r))
|
||||
self.lora_dropout = nn.Dropout(dropout)
|
||||
self.scaling = alpha / r
|
||||
|
||||
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
||||
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
|
||||
nn.init.zeros_(self.lora_B)
|
||||
|
||||
def forward(self, x):
|
||||
return (
|
||||
F.linear(x, self.weight) + self.scaling *
|
||||
F.linear(F.linear(self.lora_dropout(x), self.lora_A), self.lora_B))
|
||||
|
||||
|
||||
@functools.wraps(LoraLinear)
|
||||
def make_linear_att(*args, **kwargs):
|
||||
if "att" in LORA_CONFIG["parts"] and LORA_CONFIG["r"] > 0:
|
||||
return LoraLinear(*args, **kwargs)
|
||||
else:
|
||||
return nn.Linear(*args, **kwargs)
|
||||
|
||||
|
||||
@functools.wraps(LoraLinear)
|
||||
def make_linear_ffn(*args, **kwargs):
|
||||
if "ffn" in LORA_CONFIG["parts"] and LORA_CONFIG["r"] > 0:
|
||||
return LoraLinear(*args, **kwargs)
|
||||
else:
|
||||
return nn.Linear(*args, **kwargs)
|
||||
|
||||
|
||||
########################################################################################################
|
||||
# RWKV: RWKV Time-mix + RWKV Channel-mix
|
||||
########################################################################################################
|
||||
|
||||
|
||||
class RWKV_TimeMix(MyModule):
|
||||
def __init__(self, args, layer_id):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.layer_id = layer_id
|
||||
self.ctx_len = args.ctx_len
|
||||
self.n_embd = args.n_embd
|
||||
|
||||
with torch.no_grad(): # fancy init
|
||||
ratio_0_to_1 = layer_id / (args.n_layer - 1) # 0 to 1
|
||||
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer) # 1 to ~0
|
||||
ddd = torch.ones(1, 1, args.n_embd)
|
||||
for i in range(args.n_embd):
|
||||
ddd[0, 0, i] = i / args.n_embd
|
||||
|
||||
# fancy time_decay
|
||||
decay_speed = torch.ones(args.dim_att)
|
||||
for h in range(args.dim_att):
|
||||
decay_speed[h] = -5 + 8 * (h / (args.dim_att - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
|
||||
self.time_decay = nn.Parameter(decay_speed)
|
||||
# print(layer_id, self.time_decay.flatten()[:3].cpu().numpy(), '...', self.time_decay.flatten()[-3:].cpu().numpy())
|
||||
|
||||
# fancy time_first
|
||||
zigzag = torch.tensor([(i + 1) % 3 - 1 for i in range(args.dim_att)]) * 0.5
|
||||
self.time_first = nn.Parameter(torch.ones(args.dim_att) * math.log(0.3) + zigzag)
|
||||
|
||||
# fancy time_mix
|
||||
self.time_mix_k = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
|
||||
self.time_mix_v = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
|
||||
self.time_mix_r = nn.Parameter(torch.pow(ddd, 0.5 * ratio_1_to_almost0))
|
||||
|
||||
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
||||
|
||||
self.key = make_linear_att(args.n_embd, args.dim_att, bias=False)
|
||||
self.value = make_linear_att(args.n_embd, args.dim_att, bias=False)
|
||||
self.receptance = make_linear_att(args.n_embd, args.dim_att, bias=False)
|
||||
|
||||
self.output = nn.Linear(args.dim_att, args.n_embd, bias=False)
|
||||
|
||||
if 'a' in os.environ["RWKV_MY_TESTING"]:
|
||||
self.register_buffer("att_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
|
||||
d_qkv = args.n_embd // 16
|
||||
self.qq = nn.Linear(args.n_embd, d_qkv, bias=False)
|
||||
self.kk = nn.Linear(args.n_embd, d_qkv, bias=False)
|
||||
self.vv = nn.Linear(args.n_embd, d_qkv, bias=False)
|
||||
self.oo = nn.Linear(d_qkv, args.n_embd, bias=False)
|
||||
with torch.no_grad():
|
||||
self.time_mix_qq = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
|
||||
self.time_mix_kk = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
|
||||
self.time_mix_vv = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
|
||||
|
||||
if 'a' not in os.environ["RWKV_MY_TESTING"]:
|
||||
@MyFunction
|
||||
def jit_func(self, x):
|
||||
xx = self.time_shift(x) # Mix x with the previous timestep to produce xk, xv, xr
|
||||
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
|
||||
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
|
||||
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
|
||||
k = self.key(xk)
|
||||
v = self.value(xv)
|
||||
r = self.receptance(xr)
|
||||
sr = torch.sigmoid(r)
|
||||
return sr, k, v
|
||||
|
||||
def forward(self, x):
|
||||
B, T, C = x.size() # x = (Batch,Time,Channel)
|
||||
sr, k, v = self.jit_func(x)
|
||||
rwkv = sr * RUN_CUDA(B, T, self.args.dim_att, self.time_decay, self.time_first, k, v)
|
||||
return self.output(rwkv)
|
||||
|
||||
if 'a' in os.environ["RWKV_MY_TESTING"]:
|
||||
@MyFunction
|
||||
def QKV(self, q, k, v):
|
||||
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
||||
att = att.masked_fill(self.att_mask == 0, float('-inf'))
|
||||
att = F.softmax(att, dim = -1)
|
||||
x = att @ v
|
||||
return x
|
||||
|
||||
@MyFunction
|
||||
def jit_funcQKV(self, x):
|
||||
xx = self.time_shift(x) # Mix x with the previous timestep to produce xk, xv, xr
|
||||
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
|
||||
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
|
||||
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
|
||||
xqq = x * self.time_mix_qq + xx * (1 - self.time_mix_qq)
|
||||
xkk = x * self.time_mix_kk + xx * (1 - self.time_mix_kk)
|
||||
xvv = x * self.time_mix_vv + xx * (1 - self.time_mix_vv)
|
||||
k = self.key(xk)
|
||||
v = self.value(xv)
|
||||
r = self.receptance(xr)
|
||||
sr = torch.sigmoid(r)
|
||||
qq = self.qq(xqq)
|
||||
kk = self.kk(xkk)
|
||||
vv = self.vv(xvv)
|
||||
return sr, k, v, qq, kk, vv
|
||||
|
||||
def forward(self, x):
|
||||
B, T, C = x.size() # x = (Batch,Time,Channel)
|
||||
sr, k, v, qq, kk, vv = self.jit_funcQKV(x)
|
||||
rwkv = sr * RUN_CUDA(B, T, self.args.dim_att, self.time_decay, self.time_first, k, v)
|
||||
rwkv = self.output(rwkv) + self.oo(self.QKV(qq, kk, vv))
|
||||
return rwkv
|
||||
|
||||
########################################################################################################
|
||||
|
||||
class RWKV_ChannelMix(MyModule):
|
||||
def __init__(self, args, layer_id):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.layer_id = layer_id
|
||||
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
||||
|
||||
with torch.no_grad(): # fancy init of time_mix
|
||||
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer) # 1 to ~0
|
||||
ddd = torch.ones(1, 1, args.n_embd)
|
||||
for i in range(args.n_embd):
|
||||
ddd[0, 0, i] = i / args.n_embd
|
||||
self.time_mix_k = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
|
||||
self.time_mix_r = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
|
||||
|
||||
self.key = make_linear_ffn(args.n_embd, args.dim_ffn, bias=False)
|
||||
self.receptance = make_linear_ffn(args.n_embd, args.n_embd, bias=False)
|
||||
self.value = make_linear_ffn(args.dim_ffn, args.n_embd, bias=False)
|
||||
|
||||
@MyFunction
|
||||
def forward(self, x):
|
||||
xx = self.time_shift(x)
|
||||
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
|
||||
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
|
||||
k = self.key(xk)
|
||||
k = torch.square(torch.relu(k))
|
||||
kv = self.value(k)
|
||||
return torch.sigmoid(self.receptance(xr)) * kv
|
||||
|
||||
class MishGLU(MyModule):
|
||||
def __init__(self, args, layer_id):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.layer_id = layer_id
|
||||
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
||||
|
||||
with torch.no_grad():
|
||||
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer)
|
||||
|
||||
x = torch.ones(1, 1, args.n_embd)
|
||||
for i in range(args.n_embd):
|
||||
x[0, 0, i] = i / args.n_embd
|
||||
|
||||
self.time_mix_k = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
|
||||
self.time_mix_r = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
|
||||
self.aa = nn.Linear(args.n_embd, args.dim_ffn, bias=False)
|
||||
self.bb = nn.Linear(args.n_embd, args.dim_ffn, bias=False)
|
||||
self.value = nn.Linear(args.dim_ffn, args.n_embd, bias=False)
|
||||
|
||||
@MyFunction
|
||||
def forward(self, x):
|
||||
xx = self.time_shift(x)
|
||||
xa = x * self.time_mix_k + xx * (1 - self.time_mix_k)
|
||||
xb = x * self.time_mix_r + xx * (1 - self.time_mix_r)
|
||||
a = self.aa(xa)
|
||||
b = self.bb(xb)
|
||||
return self.value(a * F.mish(b))
|
||||
|
||||
########################################################################################################
|
||||
# The RWKV Model with our blocks
|
||||
########################################################################################################
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
def __init__(self, args, layer_id):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.layer_id = layer_id
|
||||
|
||||
self.ln1 = nn.LayerNorm(args.n_embd)
|
||||
self.ln2 = nn.LayerNorm(args.n_embd)
|
||||
|
||||
if self.layer_id == 0:
|
||||
self.ln0 = nn.LayerNorm(args.n_embd)
|
||||
if args.my_pos_emb > 0:
|
||||
self.pos_emb_x = nn.Parameter(torch.zeros((1,args.my_pos_emb,args.n_embd)))
|
||||
self.pos_emb_y = nn.Parameter(torch.zeros((args.my_pos_emb,1,args.n_embd)))
|
||||
|
||||
if self.layer_id == 0 and self.args.pre_ffn > 0:
|
||||
self.ffnPre = RWKV_ChannelMix(args, 0)
|
||||
else:
|
||||
self.att = RWKV_TimeMix(args, layer_id)
|
||||
|
||||
if 'g' in os.environ["RWKV_MY_TESTING"]:
|
||||
self.ffn = MishGLU(args, layer_id)
|
||||
else:
|
||||
self.ffn = RWKV_ChannelMix(args, layer_id)
|
||||
|
||||
if args.tiny_att_dim > 0 and self.layer_id == args.tiny_att_layer:
|
||||
self.tiny_ln = nn.LayerNorm(args.n_embd)
|
||||
self.tiny_q = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
|
||||
self.tiny_k = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
|
||||
self.tiny_v = nn.Linear(args.n_embd, args.n_embd, bias=False)
|
||||
self.register_buffer("tiny_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
|
||||
|
||||
def forward(self, x, x_emb=None):
|
||||
args = self.args
|
||||
B, T, C = x.size()
|
||||
if self.layer_id == 0:
|
||||
x = self.ln0(x)
|
||||
if args.my_pos_emb > 0:
|
||||
pos_emb = (self.pos_emb_x + self.pos_emb_y).reshape(T+1, -1)[:-1,:]
|
||||
x = x + pos_emb
|
||||
|
||||
if self.layer_id == 0 and args.pre_ffn > 0:
|
||||
x = x + self.ffnPre(self.ln1(x))
|
||||
else:
|
||||
x = x + self.att(self.ln1(x))
|
||||
x = x + self.ffn(self.ln2(x))
|
||||
|
||||
if args.tiny_att_dim > 0 and self.layer_id == args.tiny_att_layer:
|
||||
xx = self.tiny_ln(x)
|
||||
q = self.tiny_q(xx)[:, :T, :]
|
||||
k = self.tiny_k(xx)[:, :T, :]
|
||||
c = (q @ k.transpose(-2, -1)) * (args.tiny_att_dim ** (-0.5))
|
||||
c = c.masked_fill(self.tiny_mask[:T, :T] == 0, 0)
|
||||
x = x + c @ self.tiny_v(x_emb)
|
||||
return x
|
||||
|
||||
|
||||
class L2Wrap(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, loss, y):
|
||||
ctx.save_for_backward(y)
|
||||
return loss
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
y = ctx.saved_tensors[0]
|
||||
# to encourage the logits to be close to 0
|
||||
factor = 1e-4 / (y.shape[0] * y.shape[1])
|
||||
maxx, ids = torch.max(y, -1, keepdim=True)
|
||||
gy = torch.zeros_like(y)
|
||||
gy.scatter_(-1, ids, maxx * factor)
|
||||
return (grad_output, gy)
|
||||
|
||||
|
||||
class RWKV(pl.LightningModule):
|
||||
def __init__(self, args):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
if not hasattr(args, 'dim_att'):
|
||||
args.dim_att = args.n_embd
|
||||
if not hasattr(args, 'dim_ffn'):
|
||||
args.dim_ffn = args.n_embd * 4
|
||||
if not hasattr(args, 'tiny_att_layer'):
|
||||
args.tiny_att_layer = -1
|
||||
if not hasattr(args, 'tiny_att_dim'):
|
||||
args.tiny_att_dim = -1
|
||||
|
||||
self.emb = nn.Embedding(args.vocab_size, args.n_embd)
|
||||
|
||||
self.blocks = nn.ModuleList([Block(args, i) for i in range(args.n_layer)])
|
||||
|
||||
self.ln_out = nn.LayerNorm(args.n_embd)
|
||||
self.head = nn.Linear(args.n_embd, args.vocab_size, bias=False)
|
||||
|
||||
if args.head_qk > 0:
|
||||
self.head_q = nn.Linear(args.n_embd, args.head_qk, bias=False)
|
||||
self.head_k = nn.Linear(args.n_embd, args.head_qk, bias=False)
|
||||
self.register_buffer("copy_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
|
||||
|
||||
def configure_optimizers(self):
|
||||
args = self.args
|
||||
if args.layerwise_lr > 0:
|
||||
lr_1x = set()
|
||||
lr_2x = set()
|
||||
lr_3x = set()
|
||||
for n, p in self.named_parameters():
|
||||
if "time_mix" in n:
|
||||
if args.my_pile_stage == 2:
|
||||
lr_2x.add(n)
|
||||
else:
|
||||
lr_1x.add(n)
|
||||
elif "time_decay" in n:
|
||||
if args.my_pile_stage == 2:
|
||||
lr_3x.add(n)
|
||||
else:
|
||||
lr_2x.add(n)
|
||||
elif "time_first" in n:
|
||||
lr_3x.add(n)
|
||||
else:
|
||||
lr_1x.add(n)
|
||||
lr_1x = sorted(list(lr_1x))
|
||||
lr_2x = sorted(list(lr_2x))
|
||||
lr_3x = sorted(list(lr_3x))
|
||||
# print('1x', lr_1x)
|
||||
# print('2x', lr_2x)
|
||||
# print('3x', lr_3x)
|
||||
param_dict = {n: p for n, p in self.named_parameters()}
|
||||
if args.my_pile_stage == 2:
|
||||
optim_groups = [
|
||||
{"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
|
||||
{"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 2e-3 / args.lr_init},
|
||||
{"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 3e-3 / args.lr_init},
|
||||
]
|
||||
else:
|
||||
optim_groups = [
|
||||
{"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
|
||||
{"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 2.0},
|
||||
{"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 3.0},
|
||||
]
|
||||
else:
|
||||
optim_groups = [
|
||||
{"params": [p for n, p in self.named_parameters()], "weight_decay": 0.0},
|
||||
]
|
||||
|
||||
for g in optim_groups:
|
||||
g["params"] = [p for p in g["params"] if p.requires_grad]
|
||||
optim_groups = [g for g in optim_groups if len(g["params"]) > 0]
|
||||
|
||||
if self.deepspeed_offload:
|
||||
return DeepSpeedCPUAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adamw_mode=False, weight_decay=0, amsgrad=False)
|
||||
return FusedAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adam_w_mode=False, weight_decay=0, amsgrad=False)
|
||||
# return ZeroOneAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, weight_decay=0, amsgrad=False, cuda_aware=False)
|
||||
|
||||
@property
|
||||
def deepspeed_offload(self) -> bool:
|
||||
strategy = self.trainer.strategy
|
||||
if isinstance(strategy, DeepSpeedStrategy):
|
||||
cfg = strategy.config["zero_optimization"]
|
||||
return cfg.get("offload_optimizer") or cfg.get("offload_param")
|
||||
return False
|
||||
|
||||
def forward(self, idx):
|
||||
args = self.args
|
||||
B, T = idx.size()
|
||||
assert T <= args.ctx_len, "Cannot forward, model ctx_len is exhausted."
|
||||
|
||||
x = self.emb(idx)
|
||||
x_emb = x
|
||||
|
||||
if args.tiny_att_dim > 0:
|
||||
for block in self.blocks:
|
||||
if args.grad_cp == 1:
|
||||
if args.lora:
|
||||
x = torch_checkpoint(block, x, x_emb, use_reentrant=False)
|
||||
else:
|
||||
x = deepspeed.checkpointing.checkpoint(block, x, x_emb)
|
||||
else:
|
||||
x = block(x, x_emb)
|
||||
else:
|
||||
for block in self.blocks:
|
||||
if args.grad_cp == 1:
|
||||
if args.lora:
|
||||
x = torch_checkpoint(block, x, x_emb, use_reentrant=False)
|
||||
else:
|
||||
x = deepspeed.checkpointing.checkpoint(block, x)
|
||||
else:
|
||||
x = block(x)
|
||||
|
||||
x = self.ln_out(x)
|
||||
|
||||
if args.head_qk > 0:
|
||||
q = self.head_q(x)[:, :T, :]
|
||||
k = self.head_k(x)[:, :T, :]
|
||||
c = (q @ k.transpose(-2, -1)) * (1.0 / args.head_qk)
|
||||
c = c.masked_fill(self.copy_mask[:T, :T] == 0, 0)
|
||||
|
||||
if "32" in os.environ["RWKV_FLOAT_MODE"]:
|
||||
c = c @ F.one_hot(idx, num_classes=args.vocab_size)
|
||||
elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
|
||||
c = c @ F.one_hot(idx, num_classes=args.vocab_size).half()
|
||||
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
|
||||
c = c @ F.one_hot(idx, num_classes=args.vocab_size).bfloat16()
|
||||
|
||||
x = self.head(x) + c
|
||||
else:
|
||||
x = self.head(x)
|
||||
|
||||
return x
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
args = self.args
|
||||
if args.my_qa_mask != 1:
|
||||
idx, targets = batch
|
||||
logits = self(idx)
|
||||
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
||||
else:
|
||||
idx, targets, mask = batch
|
||||
mask = mask.view(-1)
|
||||
sum_mask = torch.sum(mask).item()
|
||||
# if sum_mask == 0:
|
||||
# return torch.tensor([0.0], requires_grad=True)
|
||||
|
||||
logits = self(idx)
|
||||
if sum_mask == mask.shape[0]:
|
||||
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
||||
# print('rank', self.global_rank, 'loss', loss.item())
|
||||
else:
|
||||
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), reduction='none')
|
||||
# loss_raw = loss
|
||||
loss = torch.sum(loss * mask) / sum_mask
|
||||
|
||||
# torch.set_printoptions(threshold=10000)
|
||||
# if True: #self.global_rank == 1:
|
||||
# tmp = ''
|
||||
# sss = 0
|
||||
# ccc = 0
|
||||
# for i in range(mask.shape[0]):
|
||||
# if mask[i] > 0:
|
||||
# tmp += str(idx.view(-1)[i].item()) + ','
|
||||
# sss += loss_raw.view(-1)[i].float().item()
|
||||
# ccc += 1
|
||||
# print('rank', self.global_rank, 'loss', loss.item(), 'lavg', sss / ccc)#, 'tmp', tmp, 'input', idx)
|
||||
|
||||
return L2Wrap.apply(loss, logits)
|
||||
|
||||
def training_step_end(self, batch_parts):
|
||||
all = self.all_gather(batch_parts)
|
||||
if self.trainer.is_global_zero:
|
||||
self.trainer.my_loss_all = all
|
||||
|
||||
def generate_init_weight(self):
|
||||
print(
|
||||
f"""
|
||||
############################################################################
|
||||
#
|
||||
# Init model weight (slow for large models)...
|
||||
#
|
||||
############################################################################
|
||||
"""
|
||||
)
|
||||
m = {}
|
||||
for n in self.state_dict():
|
||||
p = self.state_dict()[n]
|
||||
shape = p.shape
|
||||
|
||||
gain = 1.0
|
||||
scale = 1.0
|
||||
if "ln_" in n or ".ln" in n or "time_" in n or "_mask" in n or "pos_emb" in n or '.mask.' in n:
|
||||
m[n] = p
|
||||
else:
|
||||
if n == "emb.weight":
|
||||
scale = -1 * self.args.lr_init
|
||||
else:
|
||||
if shape[0] > shape[1]:
|
||||
gain = math.sqrt(shape[0] / shape[1])
|
||||
for kk in [".att.key.", ".att.receptance.", ".att.output.", ".att.key.", ".ffn.value.", ".ffn.receptance.", ".ffnPre.value.", ".ffnPre.receptance.", "head_q.", '.oo.', '.rr.']:
|
||||
if kk in n:
|
||||
scale = 0
|
||||
if n == "head.weight":
|
||||
scale = 0.5
|
||||
if "head_k." in n:
|
||||
scale = 0.1
|
||||
if "head_q." in n:
|
||||
scale = 0
|
||||
|
||||
print(f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {str(scale).ljust(4)} {n}")
|
||||
|
||||
if self.args.accelerator.upper() == "GPU":
|
||||
m[n] = torch.empty((shape[0], shape[1]), device="cuda")
|
||||
else:
|
||||
m[n] = torch.empty((shape[0], shape[1]))
|
||||
|
||||
if scale == 0:
|
||||
nn.init.zeros_(m[n])
|
||||
elif scale < 0:
|
||||
nn.init.uniform_(m[n], a=scale, b=-scale)
|
||||
else:
|
||||
nn.init.orthogonal_(m[n], gain=gain * scale)
|
||||
|
||||
m[n] = m[n].cpu()
|
||||
if os.environ["RWKV_FLOAT_MODE"] == "fp16":
|
||||
m[n] = m[n].half()
|
||||
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
|
||||
m[n] = m[n].bfloat16()
|
||||
|
||||
# if n == "emb.weight":
|
||||
# print(m[n])
|
||||
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
return m
|
||||
203
finetune/lora/src/trainer.py
vendored
Normal file
203
finetune/lora/src/trainer.py
vendored
Normal file
@@ -0,0 +1,203 @@
|
||||
import os, math, time, datetime, subprocess
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
import pytorch_lightning as pl
|
||||
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
|
||||
from .model import LORA_CONFIG
|
||||
|
||||
def my_save(dd, ff):
|
||||
if '14b-run1' not in ff:
|
||||
torch.save(dd, ff)
|
||||
else:
|
||||
fn = ff.split('/')[-1]
|
||||
fff = '/dev/shm/' + fn
|
||||
torch.save(dd, fff)
|
||||
subprocess.Popen(f" aws s3 mv {fff} s3://rwkv-14b-4k/{fn} --quiet", shell=True)
|
||||
|
||||
class train_callback(pl.Callback):
|
||||
def __init__(self, args):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
|
||||
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx):
|
||||
args = self.args
|
||||
# if args.cuda_cleanup > 0:
|
||||
# torch.cuda.empty_cache()
|
||||
real_step = trainer.global_step + args.epoch_begin * args.epoch_steps
|
||||
|
||||
# LR schedule
|
||||
w_step = args.warmup_steps
|
||||
if args.lr_final == args.lr_init or args.epoch_count == 0:
|
||||
lr = args.lr_init
|
||||
else:
|
||||
decay_step = real_step - args.my_pile_edecay * args.epoch_steps
|
||||
decay_total = (args.epoch_count - args.my_pile_edecay) * args.epoch_steps
|
||||
progress = (decay_step - w_step + 1) / (decay_total - w_step)
|
||||
progress = min(1, max(0, progress))
|
||||
|
||||
if args.lr_final == 0 or args.lr_init == 0: # linear decay
|
||||
lr = args.lr_init + (args.lr_final - args.lr_init) * progress
|
||||
else: # exp decay
|
||||
lr = args.lr_init * math.exp(math.log(args.lr_final / args.lr_init) * pow(progress, 1))
|
||||
|
||||
if trainer.global_step < w_step:
|
||||
lr = lr * (0.2 + 0.8 * trainer.global_step / w_step)
|
||||
# if trainer.is_global_zero:
|
||||
# print(trainer.global_step, decay_step, decay_total, w_step, progress, lr)
|
||||
|
||||
for param_group in trainer.optimizers[0].param_groups:
|
||||
if args.layerwise_lr > 0:
|
||||
param_group["lr"] = lr * param_group["my_lr_scale"]
|
||||
# print(param_group["lr"], param_group["my_lr_scale"])
|
||||
else:
|
||||
param_group["lr"] = lr
|
||||
|
||||
trainer.my_lr = lr
|
||||
# rank_zero_info(f"{real_step} {lr}")
|
||||
|
||||
if trainer.global_step == 0:
|
||||
if trainer.is_global_zero: # logging
|
||||
trainer.my_loss_sum = 0
|
||||
trainer.my_loss_count = 0
|
||||
trainer.my_log = open(args.proj_dir + "/train_log.txt", "a")
|
||||
trainer.my_log.write(f"NEW RUN {args.my_timestamp}\n{vars(self.args)}\n")
|
||||
try:
|
||||
print(f"\n{trainer.strategy.config}\n")
|
||||
trainer.my_log.write(f"{trainer.strategy.config}\n")
|
||||
except:
|
||||
pass
|
||||
trainer.my_log.flush()
|
||||
if len(args.wandb) > 0:
|
||||
print("Login to wandb...")
|
||||
import wandb
|
||||
wandb.init(
|
||||
project=args.wandb,
|
||||
name=args.run_name + " " + args.my_timestamp,
|
||||
config=args,
|
||||
save_code=False,
|
||||
)
|
||||
trainer.my_wandb = wandb
|
||||
|
||||
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
|
||||
args = self.args
|
||||
if trainer.is_global_zero: # logging
|
||||
t_now = time.time_ns()
|
||||
token_per_step = args.ctx_len * args.real_bsz
|
||||
real_step = trainer.global_step + args.epoch_begin * args.epoch_steps
|
||||
kt_s = 0
|
||||
try:
|
||||
t_cost = (t_now - trainer.my_time_ns) / 1e9
|
||||
kt_s = token_per_step / t_cost / 1000
|
||||
self.log("REAL it/s", 1.0 / t_cost, prog_bar=True, on_step=True)
|
||||
self.log("Kt/s", kt_s, prog_bar=True, on_step=True)
|
||||
except:
|
||||
pass
|
||||
trainer.my_time_ns = t_now
|
||||
trainer.my_loss = trainer.my_loss_all.float().mean().item()
|
||||
trainer.my_loss_sum += trainer.my_loss
|
||||
trainer.my_loss_count += 1
|
||||
trainer.my_epoch_loss = trainer.my_loss_sum / trainer.my_loss_count
|
||||
self.log("lr", trainer.my_lr, prog_bar=True, on_step=True)
|
||||
self.log("loss", trainer.my_epoch_loss, prog_bar=True, on_step=True)
|
||||
# self.log("s", real_step, prog_bar=True, on_step=True)
|
||||
|
||||
if len(args.wandb) > 0:
|
||||
lll = {"loss": trainer.my_loss, "lr": trainer.my_lr, "Gtokens": real_step * token_per_step / 1e9}
|
||||
if kt_s > 0:
|
||||
lll["kt/s"] = kt_s
|
||||
trainer.my_wandb.log(lll, step=int(real_step))
|
||||
if args.magic_prime > 0:
|
||||
expand_factor = 2 if args.my_qa_mask > 0 else 1
|
||||
if int(real_step) == int(args.magic_prime * expand_factor // args.real_bsz) - 1:
|
||||
to_save_dict = pl_module.state_dict()
|
||||
my_save(
|
||||
to_save_dict,
|
||||
f"{args.proj_dir}/rwkv-final.pth",
|
||||
)
|
||||
|
||||
|
||||
def on_train_epoch_start(self, trainer, pl_module):
|
||||
args = self.args
|
||||
dataset = trainer.train_dataloader.dataset.datasets
|
||||
assert "MyDataset" in str(dataset)
|
||||
dataset.global_rank = trainer.global_rank
|
||||
dataset.real_epoch = int(args.epoch_begin + trainer.current_epoch)
|
||||
dataset.world_size = trainer.world_size
|
||||
# print(f'########## world_size {dataset.world_size} global_rank {dataset.global_rank} real_epoch {dataset.real_epoch} ##########')
|
||||
|
||||
def on_train_epoch_end(self, trainer, pl_module):
|
||||
args = self.args
|
||||
if trainer.is_global_zero: # logging & save state_dict
|
||||
if (args.epoch_save > 0 and trainer.current_epoch % args.epoch_save == 0) or trainer.current_epoch == args.epoch_count - 1:
|
||||
if args.data_type == 'wds_img':
|
||||
raw_dict = pl_module.state_dict()
|
||||
to_save_dict = {}
|
||||
for k in raw_dict:
|
||||
if k.startswith('encoder.') or k.startswith('decoder.'):
|
||||
to_save_dict[k] = raw_dict[k]
|
||||
else:
|
||||
to_save_dict = pl_module.state_dict()
|
||||
|
||||
if args.lora:
|
||||
enable_time_finetune = 'time' in LORA_CONFIG["parts"]
|
||||
enable_ln_finetune = 'ln' in LORA_CONFIG["parts"]
|
||||
lora_dict = {}
|
||||
for name, state in to_save_dict.items():
|
||||
if ('.lora_' in name
|
||||
or (enable_time_finetune and '.time_' in name)
|
||||
or (enable_ln_finetune and '.ln' in name)):
|
||||
lora_dict[name] = state
|
||||
to_save_dict = lora_dict
|
||||
|
||||
try:
|
||||
my_save(
|
||||
to_save_dict,
|
||||
f"{args.proj_dir}/rwkv-{args.epoch_begin + trainer.current_epoch}.pth",
|
||||
)
|
||||
except Exception as e:
|
||||
print('Error\n\n', e, '\n\n')
|
||||
trainer.my_log.write(f"{args.epoch_begin + trainer.current_epoch} {trainer.my_epoch_loss:.6f} {math.exp(trainer.my_epoch_loss):.4f} {trainer.my_lr:.8f} {datetime.datetime.now()} {trainer.current_epoch}\n")
|
||||
trainer.my_log.flush()
|
||||
|
||||
trainer.my_loss_sum = 0
|
||||
trainer.my_loss_count = 0
|
||||
|
||||
|
||||
@rank_zero_only
|
||||
def generate_init_weight(model, init_weight_name):
|
||||
mm = model.generate_init_weight()
|
||||
|
||||
if model.args.my_pile_stage == 1:
|
||||
if len(model.args.load_model) > 0:
|
||||
print(f"Combine weights from {model.args.load_model}...")
|
||||
load_dict = torch.load(model.args.load_model, map_location="cpu")
|
||||
for k in load_dict:
|
||||
assert k in mm
|
||||
src = load_dict[k]
|
||||
try:
|
||||
mm[k] = src.reshape(mm[k].shape)
|
||||
except:
|
||||
tmp = mm[k].squeeze().clone()
|
||||
print(k, src.shape, '-->', mm[k].shape)
|
||||
ss = src.shape[0]
|
||||
dd = tmp.shape[0]
|
||||
for i in range(dd):
|
||||
pos = i / dd * ss
|
||||
if pos >= ss - 1:
|
||||
tmp[i] = src[ss-1]
|
||||
else:
|
||||
p0 = int(math.floor(pos))
|
||||
ii = pos - p0
|
||||
tmp[i] = src[p0] * (1-ii) + src[p0+1] * (ii)
|
||||
mm[k] = tmp.reshape(mm[k].shape)
|
||||
sss = src.squeeze().float().cpu().numpy()
|
||||
print(sss[:10], '...', sss[-10:])
|
||||
mmm = mm[k].squeeze().float().cpu().numpy()
|
||||
print(mmm[:10], '...', mmm[-10:])
|
||||
|
||||
print(f"Save to {init_weight_name}...")
|
||||
torch.save(mm, init_weight_name)
|
||||
|
||||
if model.args.my_pile_stage == 1:
|
||||
print("Done. Now go for stage 2.")
|
||||
exit(0)
|
||||
130
finetune/lora/src/utils.py
vendored
Normal file
130
finetune/lora/src/utils.py
vendored
Normal file
@@ -0,0 +1,130 @@
|
||||
import json, time, random, os
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
|
||||
time_slot = {}
|
||||
time_ref = time.time_ns()
|
||||
|
||||
def record_time(name):
|
||||
if name not in time_slot:
|
||||
time_slot[name] = 1e20
|
||||
tt = (time.time_ns() - time_ref) / 1e9
|
||||
if tt < time_slot[name]:
|
||||
time_slot[name] = tt
|
||||
|
||||
class TOKENIZER():
|
||||
def __init__(self, WORD_NAME, UNKNOWN_CHAR='\ue083'):
|
||||
if 'list' in str(type(WORD_NAME)):
|
||||
self.charMode = False
|
||||
if WORD_NAME[0] == WORD_NAME[1]:
|
||||
from transformers import PreTrainedTokenizerFast
|
||||
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=WORD_NAME[0])
|
||||
else:
|
||||
from transformers import GPT2TokenizerFast
|
||||
self.tokenizer = GPT2TokenizerFast(WORD_NAME[0], WORD_NAME[1])
|
||||
self.vocab_size = len(self.tokenizer)
|
||||
else:
|
||||
self.charMode = True
|
||||
with open(WORD_NAME + '.json', "r", encoding="utf-16") as result_file:
|
||||
self.word_table = json.load(result_file)
|
||||
|
||||
self.vocab_size = len(self.word_table)
|
||||
|
||||
self.stoi = {v: int(k) for k, v in self.word_table.items()}
|
||||
self.itos = {int(k): v for k, v in self.word_table.items()}
|
||||
|
||||
self.UNKNOWN_CHAR = self.stoi[UNKNOWN_CHAR]
|
||||
|
||||
def refine_context(self, context):
|
||||
context = context.strip().split('\n')
|
||||
for c in range(len(context)):
|
||||
context[c] = context[c].strip().strip('\u3000').strip('\r')
|
||||
context = list(filter(lambda c: c != '', context))
|
||||
context = '\n' + ('\n'.join(context)).strip()
|
||||
if context == '':
|
||||
context = '\n'
|
||||
return context
|
||||
|
||||
def sample_logits(self, out, x, ctx_len, temperature=1.0, top_p_usual=None, top_p_newline=None):
|
||||
# out[self.UNKNOWN_CHAR] = -float('Inf')
|
||||
lastChar = int(x[-1])
|
||||
|
||||
probs = F.softmax(out, dim=-1)
|
||||
|
||||
if self.charMode:
|
||||
if self.itos[lastChar] == '\n':
|
||||
top_p = top_p_newline
|
||||
else:
|
||||
top_p = top_p_usual
|
||||
else:
|
||||
top_p = top_p_usual
|
||||
|
||||
if os.environ["RWKV_RUN_DEVICE"] == "cpu":
|
||||
probs = probs.numpy()
|
||||
sorted_probs = np.sort(probs)[::-1]
|
||||
cumulative_probs = np.cumsum(sorted_probs)
|
||||
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
|
||||
probs[probs < cutoff] = 0
|
||||
if temperature != 1.0:
|
||||
probs = probs.pow(1.0 / temperature)
|
||||
probs = probs / np.sum(probs)
|
||||
out = np.random.choice(a=len(probs), p=probs)
|
||||
return out
|
||||
else:
|
||||
sorted_probs = torch.sort(probs, descending=True)[0]
|
||||
cumulative_probs = torch.cumsum(sorted_probs, dim=-1).cpu().numpy()
|
||||
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
|
||||
probs[probs < cutoff] = 0
|
||||
if temperature != 1.0:
|
||||
probs = probs.pow(1.0 / temperature)
|
||||
out = torch.multinomial(probs, num_samples=1)[0]
|
||||
return out
|
||||
|
||||
def MaybeIsPrime(number):
|
||||
if FermatPrimalityTest(number) and MillerRabinPrimalityTest(number):
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
def FermatPrimalityTest(number):
|
||||
if number > 1:
|
||||
for time in range(3):
|
||||
randomNumber = random.randint(2, number) - 1
|
||||
if pow(randomNumber, number - 1, number) != 1:
|
||||
return False
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
def MillerRabinPrimalityTest(number):
|
||||
if number == 2:
|
||||
return True
|
||||
elif number == 1 or number % 2 == 0:
|
||||
return False
|
||||
oddPartOfNumber = number - 1
|
||||
timesTwoDividNumber = 0
|
||||
while oddPartOfNumber % 2 == 0:
|
||||
oddPartOfNumber = oddPartOfNumber // 2
|
||||
timesTwoDividNumber = timesTwoDividNumber + 1
|
||||
|
||||
for time in range(3):
|
||||
while True:
|
||||
randomNumber = random.randint(2, number) - 1
|
||||
if randomNumber != 0 and randomNumber != 1:
|
||||
break
|
||||
|
||||
randomNumberWithPower = pow(randomNumber, oddPartOfNumber, number)
|
||||
|
||||
if (randomNumberWithPower != 1) and (randomNumberWithPower != number - 1):
|
||||
iterationNumber = 1
|
||||
|
||||
while (iterationNumber <= timesTwoDividNumber - 1) and (randomNumberWithPower != number - 1):
|
||||
randomNumberWithPower = pow(randomNumberWithPower, 2, number)
|
||||
iterationNumber = iterationNumber + 1
|
||||
if randomNumberWithPower != (number - 1):
|
||||
return False
|
||||
|
||||
return True
|
||||
479
finetune/lora/train.py
vendored
Normal file
479
finetune/lora/train.py
vendored
Normal file
@@ -0,0 +1,479 @@
|
||||
########################################################################################################
|
||||
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
|
||||
########################################################################################################
|
||||
|
||||
if __name__ == "__main__":
|
||||
from argparse import ArgumentParser
|
||||
from pytorch_lightning import Trainer
|
||||
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
|
||||
|
||||
rank_zero_info("########## work in progress ##########")
|
||||
|
||||
########################################################################################################
|
||||
#
|
||||
# example: train a simple L12-D768 RWKV on dummy data
|
||||
#
|
||||
# python train.py --load_model "" --wandb "" --proj_dir "out" \
|
||||
# --data_file "" --data_type "dummy" --vocab_size 0 \
|
||||
# --ctx_len 128 --epoch_steps 1000 --epoch_count 20 --epoch_begin 0 --epoch_save 10 \
|
||||
# --micro_bsz 16 --n_layer 12 --n_embd 768 --pre_ffn 0 --head_qk 0 \
|
||||
# --lr_init 6e-4 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
|
||||
# --accelerator gpu --devices 1 --precision bf16 --strategy ddp_find_unused_parameters_false --grad_cp 0
|
||||
|
||||
# example: train a simple L6-D512 RWKV from scratch on enwik8
|
||||
#
|
||||
# python train.py --load_model "" --wandb "" --proj_dir "out" \
|
||||
# --data_file "../data/enwik8" --data_type "utf-8" --vocab_size 0 \
|
||||
# --ctx_len 512 --epoch_steps 5000 --epoch_count 500 --epoch_begin 0 --epoch_save 5 \
|
||||
# --micro_bsz 12 --n_layer 6 --n_embd 512 --pre_ffn 0 --head_qk 0 \
|
||||
# --lr_init 8e-4 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
|
||||
# --accelerator gpu --devices 1 --precision bf16 --strategy ddp_find_unused_parameters_false --grad_cp 0
|
||||
|
||||
# example: fine-tune RWKV 1.5B using 8xA100 40G = 1.76it/s = 115k token/s, VRAM 37477M
|
||||
#
|
||||
# python train.py --load_model "/fsx/BlinkDL/CODE/FP16/out_1b2/all-8040.pth" --wandb "" --proj_dir "out" \
|
||||
# --data_file "../data/train.npy" --data_type "numpy" --vocab_size 50277 \
|
||||
# --ctx_len 1024 --epoch_steps 1000 --epoch_count 1000 --epoch_begin 0 --epoch_save 5 \
|
||||
# --micro_bsz 8 --n_layer 24 --n_embd 2048 --pre_ffn 0 --head_qk 0 \
|
||||
# --lr_init 1e-5 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.999 --adam_eps 1e-8 \
|
||||
# --accelerator gpu --devices 8 --precision bf16 --strategy deepspeed_stage_2 --grad_cp 0
|
||||
|
||||
# example: fine-tune RWKV 1.5B using 1 GPU fp16 (VRAM 16G) NOTE: fp16 might overflow
|
||||
#
|
||||
# python train.py --load_model "/fsx/BlinkDL/CODE/FP16/out_1b2/all-8040.pth" --wandb "" --proj_dir "out" \
|
||||
# --data_file "../data/train.npy" --data_type "numpy" --vocab_size 50277 \
|
||||
# --ctx_len 1024 --epoch_steps 200 --epoch_count 1000 --epoch_begin 0 --epoch_save 1 \
|
||||
# --micro_bsz 11 --n_layer 24 --n_embd 2048 --pre_ffn 0 --head_qk 0 \
|
||||
# --lr_init 1e-5 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.999 --adam_eps 1e-8 \
|
||||
# --accelerator gpu --devices 1 --precision fp16 --strategy deepspeed_stage_2_offload --grad_cp 1
|
||||
|
||||
parser = ArgumentParser()
|
||||
|
||||
parser.add_argument("--load_model", default="", type=str) # full path, with .pth
|
||||
parser.add_argument(
|
||||
"--wandb", default="", type=str
|
||||
) # wandb project name. if "" then don't use wandb
|
||||
parser.add_argument("--proj_dir", default="out", type=str)
|
||||
parser.add_argument("--random_seed", default="-1", type=int)
|
||||
|
||||
parser.add_argument("--data_file", default="", type=str)
|
||||
parser.add_argument("--data_type", default="utf-8", type=str)
|
||||
parser.add_argument(
|
||||
"--vocab_size", default=0, type=int
|
||||
) # vocab_size = 0 means auto (for char-level LM and .txt data)
|
||||
|
||||
parser.add_argument("--ctx_len", default=1024, type=int)
|
||||
parser.add_argument(
|
||||
"--epoch_steps", default=1000, type=int
|
||||
) # a mini "epoch" has [epoch_steps] steps
|
||||
parser.add_argument(
|
||||
"--epoch_count", default=500, type=int
|
||||
) # train for this many "epochs". will continue afterwards with lr = lr_final
|
||||
parser.add_argument(
|
||||
"--epoch_begin", default=0, type=int
|
||||
) # if you load a model trained for x "epochs", set epoch_begin = x
|
||||
parser.add_argument(
|
||||
"--epoch_save", default=5, type=int
|
||||
) # save the model every [epoch_save] "epochs"
|
||||
|
||||
parser.add_argument(
|
||||
"--micro_bsz", default=12, type=int
|
||||
) # micro batch size (batch size per GPU)
|
||||
parser.add_argument("--n_layer", default=6, type=int)
|
||||
parser.add_argument("--n_embd", default=512, type=int)
|
||||
parser.add_argument("--dim_att", default=0, type=int)
|
||||
parser.add_argument("--dim_ffn", default=0, type=int)
|
||||
parser.add_argument(
|
||||
"--pre_ffn", default=0, type=int
|
||||
) # replace first att layer by ffn (sometimes better)
|
||||
parser.add_argument("--head_qk", default=0, type=int) # my headQK trick
|
||||
parser.add_argument("--tiny_att_dim", default=0, type=int) # tiny attention dim
|
||||
parser.add_argument(
|
||||
"--tiny_att_layer", default=-999, type=int
|
||||
) # tiny attention @ which layer
|
||||
|
||||
parser.add_argument(
|
||||
"--lr_init", default=6e-4, type=float
|
||||
) # 6e-4 for L12-D768, 4e-4 for L24-D1024, 3e-4 for L24-D2048
|
||||
parser.add_argument("--lr_final", default=1e-5, type=float)
|
||||
parser.add_argument(
|
||||
"--warmup_steps", default=0, type=int
|
||||
) # try 50 if you load a model
|
||||
parser.add_argument("--beta1", default=0.9, type=float)
|
||||
parser.add_argument(
|
||||
"--beta2", default=0.99, type=float
|
||||
) # use 0.999 when your model is close to convergence
|
||||
parser.add_argument("--adam_eps", default=1e-8, type=float)
|
||||
|
||||
parser.add_argument(
|
||||
"--grad_cp", default=0, type=int
|
||||
) # gradient checkpt: saves VRAM, but slower
|
||||
parser.add_argument("--my_pile_stage", default=0, type=int) # my special pile mode
|
||||
parser.add_argument(
|
||||
"--my_pile_shift", default=-1, type=int
|
||||
) # my special pile mode - text shift
|
||||
parser.add_argument("--my_pile_edecay", default=0, type=int)
|
||||
parser.add_argument(
|
||||
"--layerwise_lr", default=1, type=int
|
||||
) # layerwise lr for faster convergence (but slower it/s)
|
||||
parser.add_argument(
|
||||
"--ds_bucket_mb", default=200, type=int
|
||||
) # deepspeed bucket size in MB. 200 seems enough
|
||||
# parser.add_argument("--cuda_cleanup", default=0, type=int) # extra cuda cleanup (sometimes helpful)
|
||||
|
||||
parser.add_argument("--my_img_version", default=0, type=str)
|
||||
parser.add_argument("--my_img_size", default=0, type=int)
|
||||
parser.add_argument("--my_img_bit", default=0, type=int)
|
||||
parser.add_argument("--my_img_clip", default="x", type=str)
|
||||
parser.add_argument("--my_img_clip_scale", default=1, type=float)
|
||||
parser.add_argument("--my_img_l1_scale", default=0, type=float)
|
||||
parser.add_argument("--my_img_encoder", default="x", type=str)
|
||||
# parser.add_argument("--my_img_noise_scale", default=0, type=float)
|
||||
parser.add_argument("--my_sample_len", default=0, type=int)
|
||||
parser.add_argument("--my_ffn_shift", default=1, type=int)
|
||||
parser.add_argument("--my_att_shift", default=1, type=int)
|
||||
parser.add_argument("--my_pos_emb", default=0, type=int)
|
||||
parser.add_argument("--load_partial", default=0, type=int)
|
||||
parser.add_argument("--magic_prime", default=0, type=int)
|
||||
parser.add_argument("--my_qa_mask", default=0, type=int)
|
||||
parser.add_argument("--my_testing", default="", type=str)
|
||||
|
||||
parser.add_argument("--lora", action="store_true")
|
||||
parser.add_argument("--lora_load", default="", type=str)
|
||||
parser.add_argument("--lora_r", default=8, type=int)
|
||||
parser.add_argument("--lora_alpha", default=32, type=float)
|
||||
parser.add_argument("--lora_dropout", default=0.01, type=float)
|
||||
parser.add_argument("--lora_parts", default="att,ln,time", type=str)
|
||||
|
||||
parser = Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
########################################################################################################
|
||||
|
||||
import os, warnings, math, datetime, sys, time, importlib
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
if "deepspeed" in args.strategy:
|
||||
import deepspeed
|
||||
import pytorch_lightning as pl
|
||||
from pytorch_lightning import seed_everything
|
||||
|
||||
if args.random_seed >= 0:
|
||||
print(
|
||||
f"########## WARNING: GLOBAL SEED {args.random_seed} THIS WILL AFFECT MULTIGPU SAMPLING ##########\n"
|
||||
* 3
|
||||
)
|
||||
seed_everything(args.random_seed)
|
||||
|
||||
np.set_printoptions(precision=4, suppress=True, linewidth=200)
|
||||
warnings.filterwarnings(
|
||||
"ignore", ".*Consider increasing the value of the `num_workers` argument*"
|
||||
)
|
||||
warnings.filterwarnings(
|
||||
"ignore", ".*The progress bar already tracks a metric with the*"
|
||||
)
|
||||
# os.environ["WDS_SHOW_SEED"] = "1"
|
||||
|
||||
args.my_timestamp = datetime.datetime.today().strftime("%Y-%m-%d-%H-%M-%S")
|
||||
args.enable_checkpointing = False
|
||||
args.replace_sampler_ddp = False
|
||||
args.logger = False
|
||||
args.gradient_clip_val = 1.0
|
||||
args.num_sanity_val_steps = 0
|
||||
args.check_val_every_n_epoch = int(1e20)
|
||||
args.log_every_n_steps = int(1e20)
|
||||
args.max_epochs = args.epoch_count # continue forever
|
||||
args.betas = (args.beta1, args.beta2)
|
||||
args.real_bsz = int(args.num_nodes) * int(args.devices) * args.micro_bsz
|
||||
os.environ["RWKV_T_MAX"] = str(args.ctx_len)
|
||||
os.environ["RWKV_MY_TESTING"] = args.my_testing
|
||||
if args.dim_att <= 0:
|
||||
args.dim_att = args.n_embd
|
||||
if args.dim_ffn <= 0:
|
||||
args.dim_ffn = args.n_embd * 4
|
||||
|
||||
if args.data_type == "wds_img":
|
||||
args.run_name = f"v{args.my_img_version}-{args.my_img_size}-{args.my_img_bit}bit-{args.my_img_clip}x{args.my_img_clip_scale}"
|
||||
args.proj_dir = f"{args.proj_dir}-{args.run_name}"
|
||||
else:
|
||||
args.run_name = (
|
||||
f"{args.vocab_size} ctx{args.ctx_len} L{args.n_layer} D{args.n_embd}"
|
||||
)
|
||||
if not os.path.exists(args.proj_dir):
|
||||
os.makedirs(args.proj_dir)
|
||||
|
||||
if args.my_pile_stage > 0:
|
||||
magic_prime_bak = args.magic_prime
|
||||
if args.ctx_len == 1024:
|
||||
args.magic_prime = 324331313
|
||||
args.epoch_count = 8043
|
||||
elif args.ctx_len == 2048:
|
||||
args.magic_prime = 162165671
|
||||
args.epoch_count = 4021
|
||||
elif args.ctx_len == 4096:
|
||||
args.magic_prime = 81082817
|
||||
args.epoch_count = 2010
|
||||
if args.my_pile_shift < 0:
|
||||
if args.ctx_len == 1024:
|
||||
args.my_pile_shift = 0
|
||||
elif args.ctx_len == 2048:
|
||||
args.my_pile_shift = 512
|
||||
elif args.ctx_len == 4096:
|
||||
args.my_pile_shift = 768
|
||||
|
||||
if magic_prime_bak > 0:
|
||||
args.magic_prime = magic_prime_bak
|
||||
|
||||
args.epoch_steps = 40320 // args.real_bsz
|
||||
assert args.epoch_steps * args.real_bsz == 40320
|
||||
if args.my_pile_stage == 2:
|
||||
assert args.lr_final == args.lr_init
|
||||
if args.my_pile_stage >= 2: # find latest saved model
|
||||
list_p = []
|
||||
for p in os.listdir(args.proj_dir):
|
||||
if p.startswith("rwkv") and p.endswith(".pth"):
|
||||
p = ((p.split("-"))[1].split("."))[0]
|
||||
if p == "init":
|
||||
p = -1
|
||||
else:
|
||||
p = int(p)
|
||||
list_p += [p]
|
||||
list_p.sort()
|
||||
max_p = list_p[-1]
|
||||
if len(list_p) > 1:
|
||||
args.my_pile_prev_p = list_p[-2] # in case max_p is corrupted
|
||||
if max_p == -1:
|
||||
args.load_model = f"{args.proj_dir}/rwkv-init.pth"
|
||||
else:
|
||||
args.load_model = f"{args.proj_dir}/rwkv-{max_p}.pth"
|
||||
if args.my_pile_stage == 2:
|
||||
args.warmup_steps = 10
|
||||
else:
|
||||
args.warmup_steps = 30
|
||||
args.epoch_begin = max_p + 1
|
||||
|
||||
samples_per_epoch = args.epoch_steps * args.real_bsz
|
||||
tokens_per_epoch = samples_per_epoch * args.ctx_len
|
||||
rank_zero_info(
|
||||
f"""
|
||||
############################################################################
|
||||
#
|
||||
# RWKV-4 {args.precision.upper()} on {args.num_nodes}x{args.devices} {args.accelerator.upper()}, bsz {args.num_nodes}x{args.devices}x{args.micro_bsz}={args.real_bsz}, {args.strategy} {'with grad_cp' if args.grad_cp > 0 else ''}
|
||||
#
|
||||
# Data = {args.data_file} ({args.data_type}), ProjDir = {args.proj_dir}
|
||||
#
|
||||
# Epoch = {args.epoch_begin} to {args.epoch_begin + args.epoch_count - 1} (will continue afterwards), save every {args.epoch_save} epoch
|
||||
#
|
||||
# Each "epoch" = {args.epoch_steps} steps, {samples_per_epoch} samples, {tokens_per_epoch} tokens
|
||||
#
|
||||
# Model = {args.n_layer} n_layer, {args.n_embd} n_embd, {args.ctx_len} ctx_len
|
||||
# LoRA = {f'enabled, {args.lora_r} r, {args.lora_alpha} alpha, {args.lora_dropout} dropout, on {args.lora_parts}' if args.lora else 'disabled'}
|
||||
#
|
||||
# Adam = lr {args.lr_init} to {args.lr_final}, warmup {args.warmup_steps} steps, beta {args.betas}, eps {args.adam_eps}
|
||||
#
|
||||
# Found torch {torch.__version__}, recommend 1.13.1+cu117 or newer
|
||||
# Found deepspeed {deepspeed.__version__ if importlib.util.find_spec('deepspeed') else 'None'}, recommend 0.7.0 (faster than newer versions)
|
||||
# Found pytorch_lightning {pl.__version__}, recommend 1.9.1 or newer
|
||||
#
|
||||
############################################################################
|
||||
"""
|
||||
)
|
||||
rank_zero_info(str(vars(args)) + "\n")
|
||||
|
||||
assert args.data_type in [
|
||||
"utf-8",
|
||||
"utf-16le",
|
||||
"numpy",
|
||||
"binidx",
|
||||
"dummy",
|
||||
"wds_img",
|
||||
"uint16",
|
||||
]
|
||||
|
||||
if args.lr_final == 0 or args.lr_init == 0:
|
||||
rank_zero_info(
|
||||
"\n\nNote: lr_final = 0 or lr_init = 0. Using linear LR schedule instead.\n\n"
|
||||
)
|
||||
|
||||
assert args.precision in ["fp32", "tf32", "fp16", "bf16"]
|
||||
os.environ["RWKV_FLOAT_MODE"] = args.precision
|
||||
if args.precision == "fp32":
|
||||
for i in range(10):
|
||||
rank_zero_info(
|
||||
"\n\nNote: you are using fp32 (very slow). Try bf16 / tf32 for faster training.\n\n"
|
||||
)
|
||||
if args.precision == "fp16":
|
||||
rank_zero_info(
|
||||
"\n\nNote: you are using fp16 (might overflow). Try bf16 / tf32 for stable training.\n\n"
|
||||
)
|
||||
|
||||
os.environ["RWKV_JIT_ON"] = "1"
|
||||
if "deepspeed_stage_3" in args.strategy:
|
||||
os.environ["RWKV_JIT_ON"] = "0"
|
||||
if args.lora and args.grad_cp == 1:
|
||||
print(
|
||||
"!!!!! LoRA Warning: Gradient Checkpointing requires JIT off, disabling it"
|
||||
)
|
||||
os.environ["RWKV_JIT_ON"] = "0"
|
||||
|
||||
torch.backends.cudnn.benchmark = True
|
||||
torch.backends.cudnn.enabled = True
|
||||
if args.precision == "fp32":
|
||||
torch.backends.cudnn.allow_tf32 = False
|
||||
torch.backends.cuda.matmul.allow_tf32 = False
|
||||
else:
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
|
||||
if "32" in args.precision:
|
||||
args.precision = 32
|
||||
elif args.precision == "fp16":
|
||||
args.precision = 16
|
||||
else:
|
||||
args.precision = "bf16"
|
||||
|
||||
########################################################################################################
|
||||
|
||||
from src.trainer import train_callback, generate_init_weight
|
||||
from src.dataset import MyDataset
|
||||
|
||||
train_data = MyDataset(args)
|
||||
args.vocab_size = train_data.vocab_size
|
||||
|
||||
if args.data_type == "wds_img":
|
||||
from src.model_img import RWKV_IMG
|
||||
|
||||
assert args.lora, "LoRA not yet supported for RWKV_IMG"
|
||||
model = RWKV_IMG(args)
|
||||
else:
|
||||
from src.model import RWKV, LORA_CONFIG, LoraLinear
|
||||
|
||||
if args.lora:
|
||||
assert args.lora_r > 0, "LoRA should have its `r` > 0"
|
||||
LORA_CONFIG["r"] = args.lora_r
|
||||
LORA_CONFIG["alpha"] = args.lora_alpha
|
||||
LORA_CONFIG["dropout"] = args.lora_dropout
|
||||
LORA_CONFIG["parts"] = set(str(args.lora_parts).split(","))
|
||||
enable_time_finetune = "time" in LORA_CONFIG["parts"]
|
||||
enable_ln_finetune = "ln" in LORA_CONFIG["parts"]
|
||||
model = RWKV(args)
|
||||
# only train lora parameters
|
||||
if args.lora:
|
||||
model.requires_grad_(False)
|
||||
for name, module in model.named_modules():
|
||||
# have to check param name since it may have been wrapped by torchscript
|
||||
if any(n.startswith("lora_") for n, _ in module.named_parameters()):
|
||||
print(f" LoRA training module {name}")
|
||||
for pname, param in module.named_parameters():
|
||||
param.requires_grad = "lora_" in pname
|
||||
elif enable_ln_finetune and ".ln" in name:
|
||||
print(f" LoRA additionally training module {name}")
|
||||
for param in module.parameters():
|
||||
param.requires_grad = True
|
||||
elif enable_time_finetune and any(
|
||||
n.startswith("time") for n, _ in module.named_parameters()
|
||||
):
|
||||
for pname, param in module.named_parameters():
|
||||
if pname.startswith("time"):
|
||||
print(f" LoRA additionally training parameter {pname}")
|
||||
param.requires_grad = True
|
||||
|
||||
if (
|
||||
len(args.load_model) == 0 or args.my_pile_stage == 1
|
||||
): # shall we build the initial weights?
|
||||
init_weight_name = f"{args.proj_dir}/rwkv-init.pth"
|
||||
generate_init_weight(model, init_weight_name) # save initial weights
|
||||
args.load_model = init_weight_name
|
||||
|
||||
rank_zero_info(f"########## Loading {args.load_model}... ##########")
|
||||
try:
|
||||
load_dict = torch.load(args.load_model, map_location="cpu")
|
||||
model.load_state_dict(load_dict, strict=(not args.lora))
|
||||
except:
|
||||
rank_zero_info(f"Bad checkpoint {args.load_model}")
|
||||
if args.my_pile_stage >= 2: # try again using another checkpoint
|
||||
max_p = args.my_pile_prev_p
|
||||
if max_p == -1:
|
||||
args.load_model = f"{args.proj_dir}/rwkv-init.pth"
|
||||
else:
|
||||
args.load_model = f"{args.proj_dir}/rwkv-{max_p}.pth"
|
||||
args.epoch_begin = max_p + 1
|
||||
rank_zero_info(f"Trying {args.load_model}")
|
||||
load_dict = torch.load(args.load_model, map_location="cpu")
|
||||
model.load_state_dict(load_dict, strict=(not args.lora))
|
||||
|
||||
if args.load_partial == 1:
|
||||
load_keys = load_dict.keys()
|
||||
for k in model.state_dict():
|
||||
if k not in load_keys:
|
||||
load_dict[k] = model.state_dict()[k]
|
||||
model.load_state_dict(load_dict, strict=(not args.lora))
|
||||
# If using LoRA, the LoRA keys might be missing in the original model
|
||||
# model.load_state_dict(load_dict, strict=(not args.lora))
|
||||
if os.path.isfile(args.lora_load):
|
||||
model.load_state_dict(
|
||||
torch.load(args.lora_load, map_location="cpu"), strict=False
|
||||
)
|
||||
|
||||
trainer: Trainer = Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[train_callback(args)],
|
||||
)
|
||||
|
||||
if (
|
||||
args.lr_init > 1e-4
|
||||
or trainer.world_size * args.micro_bsz * trainer.accumulate_grad_batches < 8
|
||||
):
|
||||
if "I_KNOW_WHAT_IM_DOING" in os.environ:
|
||||
if trainer.global_rank == 0:
|
||||
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
|
||||
print(
|
||||
f" WARNING: you are using too large LR ({args.lr_init} > 1e-4) or too small global batch size ({trainer.world_size} * {args.micro_bsz} * {trainer.accumulate_grad_batches} < 8)"
|
||||
)
|
||||
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
|
||||
else:
|
||||
if trainer.global_rank == 0:
|
||||
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
|
||||
print(
|
||||
f" ERROR: you are using too large LR ({args.lr_init} > 1e-4) or too small global batch size ({trainer.world_size} * {args.micro_bsz} * {trainer.accumulate_grad_batches} < 8)"
|
||||
)
|
||||
print(
|
||||
f" Unless you are sure this is what you want, adjust them accordingly"
|
||||
)
|
||||
print(
|
||||
f' (to suppress this, set environment variable "I_KNOW_WHAT_IM_DOING")'
|
||||
)
|
||||
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
|
||||
exit(0)
|
||||
|
||||
if trainer.global_rank == 0:
|
||||
for n in model.state_dict():
|
||||
shape = model.state_dict()[n].shape
|
||||
shape = [i for i in shape if i != 1]
|
||||
if len(shape) > 1:
|
||||
print(f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {n}")
|
||||
else:
|
||||
print(f"{str(shape[0]).ljust(5)} {n}")
|
||||
|
||||
if "deepspeed" in args.strategy:
|
||||
trainer.strategy.config["zero_optimization"]["allgather_bucket_size"] = (
|
||||
args.ds_bucket_mb * 1000 * 1000
|
||||
)
|
||||
trainer.strategy.config["zero_optimization"]["reduce_bucket_size"] = (
|
||||
args.ds_bucket_mb * 1000 * 1000
|
||||
)
|
||||
|
||||
# must set shuffle=False, persistent_workers=False (because worker is in another thread)
|
||||
data_loader = DataLoader(
|
||||
train_data,
|
||||
shuffle=False,
|
||||
pin_memory=True,
|
||||
batch_size=args.micro_bsz,
|
||||
num_workers=1,
|
||||
persistent_workers=False,
|
||||
drop_last=True,
|
||||
)
|
||||
|
||||
trainer.fit(model, data_loader)
|
||||
3
finetune/requirements.txt
Normal file
3
finetune/requirements.txt
Normal file
@@ -0,0 +1,3 @@
|
||||
torch==1.13.1
|
||||
pytorch_lightning==1.9.5
|
||||
deepspeed
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user