upgrade rwkv pip (0.8.13)
This commit is contained in:
		
							parent
							
								
									bd4de12e05
								
							
						
					
					
						commit
						79851433f8
					
				
										
											Binary file not shown.
										
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										124
									
								
								backend-python/rwkv_pip/cuda/att_one.cu
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										124
									
								
								backend-python/rwkv_pip/cuda/att_one.cu
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@ -0,0 +1,124 @@
 | 
			
		||||
#include "ATen/ATen.h"
 | 
			
		||||
#include <cuda_fp16.h>
 | 
			
		||||
#include <cuda_runtime.h>
 | 
			
		||||
#include <torch/extension.h>
 | 
			
		||||
 | 
			
		||||
#include "element_wise.h"
 | 
			
		||||
#include "util.h"
 | 
			
		||||
 | 
			
		||||
// Equivalent Python code:
 | 
			
		||||
// ww = t_first + k
 | 
			
		||||
// p = torch.maximum(pp, ww)
 | 
			
		||||
// e1 = torch.exp(pp - p)
 | 
			
		||||
// e2 = torch.exp(ww - p)
 | 
			
		||||
// wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
 | 
			
		||||
// ww = t_decay + pp
 | 
			
		||||
// p = torch.maximum(ww, k)
 | 
			
		||||
// e1 = torch.exp(ww - p)
 | 
			
		||||
// e2 = torch.exp(k - p)
 | 
			
		||||
// t1 = e1 * aa + e2 * v
 | 
			
		||||
// t2 = e1 * bb + e2
 | 
			
		||||
// r = r * wkv
 | 
			
		||||
// return t1, t2, p, r
 | 
			
		||||
struct WkvForwardOne {
 | 
			
		||||
  const float *t_first;
 | 
			
		||||
  const float *k;
 | 
			
		||||
  const float *pp;
 | 
			
		||||
  const float *aa;
 | 
			
		||||
  const float *bb;
 | 
			
		||||
  const float *t_decay;
 | 
			
		||||
  const float *v;
 | 
			
		||||
  /* out */ float *t1;
 | 
			
		||||
  /* out */ float *t2;
 | 
			
		||||
  /* out */ float *p;
 | 
			
		||||
  /* in & out */ half *r;
 | 
			
		||||
 | 
			
		||||
  __device__ void operator()(int i) const {
 | 
			
		||||
    float ww = t_first[i] + k[i];
 | 
			
		||||
    float pp_ = pp[i];
 | 
			
		||||
    float p_ = (pp_ > ww) ? pp_ : ww;
 | 
			
		||||
    float e1 = expf(pp_ - p_);
 | 
			
		||||
    float e2 = expf(ww - p_);
 | 
			
		||||
    float aa_ = aa[i];
 | 
			
		||||
    float bb_ = bb[i];
 | 
			
		||||
    float v_ = v[i];
 | 
			
		||||
    r[i] = __hmul(r[i], __float2half(((e1 * aa_ + e2 * v_) / (e1 * bb_ + e2))));
 | 
			
		||||
    ww = t_decay[i] + pp_;
 | 
			
		||||
    float k_ = k[i];
 | 
			
		||||
    p_ = (ww > k_) ? ww : k_;
 | 
			
		||||
    e1 = expf(ww - p_);
 | 
			
		||||
    e2 = expf(k_ - p_);
 | 
			
		||||
    t1[i] = e1 * aa_ + e2 * v_;
 | 
			
		||||
    t2[i] = e1 * bb_ + e2;
 | 
			
		||||
    p[i] = p_;
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
   Equivalent Python code:
 | 
			
		||||
   kx = xx * k_mix + sx * (1 - k_mix)
 | 
			
		||||
   vx = xx * v_mix + sx * (1 - v_mix)
 | 
			
		||||
   rx = xx * r_mix + sx * (1 - r_mix)
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
struct Mix {
 | 
			
		||||
  const half *xx;
 | 
			
		||||
  const half *sx;
 | 
			
		||||
  const half *k_mix;
 | 
			
		||||
  const half *v_mix;
 | 
			
		||||
  const half *r_mix;
 | 
			
		||||
  /* out */ half *kx;
 | 
			
		||||
  /* out */ half *vx;
 | 
			
		||||
  /* out */ half *rx;
 | 
			
		||||
 | 
			
		||||
  __device__ void operator()(int i) const {
 | 
			
		||||
    half xx_ = xx[i];
 | 
			
		||||
    half sx_ = sx[i];
 | 
			
		||||
    half k_mix_ = k_mix[i];
 | 
			
		||||
    half v_mix_ = v_mix[i];
 | 
			
		||||
    half r_mix_ = r_mix[i];
 | 
			
		||||
    kx[i] = __hadd(__hmul(xx_, k_mix_),
 | 
			
		||||
                   __hmul(sx_, __hsub(__float2half(1), k_mix_)));
 | 
			
		||||
    vx[i] = __hadd(__hmul(xx_, v_mix_),
 | 
			
		||||
                   __hmul(sx_, __hsub(__float2half(1), v_mix_)));
 | 
			
		||||
    rx[i] = __hadd(__hmul(xx_, r_mix_),
 | 
			
		||||
                   __hmul(sx_, __hsub(__float2half(1), r_mix_)));
 | 
			
		||||
  }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
using torch::Tensor;
 | 
			
		||||
 | 
			
		||||
void gemm_fp16_cublas(Tensor a, Tensor b, Tensor c);
 | 
			
		||||
 | 
			
		||||
Tensor att_one(Tensor x, Tensor ln_w, Tensor ln_b, Tensor sx, Tensor k_mix,
 | 
			
		||||
             Tensor v_mix, Tensor r_mix, Tensor kw,
 | 
			
		||||
             /* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx, Tensor rw,
 | 
			
		||||
             /* imm */ Tensor rx, Tensor ow, Tensor t_first,
 | 
			
		||||
             /* imm */ Tensor k, Tensor pp, Tensor ww, Tensor aa, Tensor bb,
 | 
			
		||||
             Tensor t_decay, /* imm */ Tensor v, /* in & out */ Tensor r,
 | 
			
		||||
             /* out */ Tensor x_plus_out, /* out */ Tensor t1,
 | 
			
		||||
             /* out */ Tensor t2, /* out */ Tensor p) {
 | 
			
		||||
  Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
 | 
			
		||||
  element_wise(Mix{data_ptr<half>(xx), data_ptr<half>(sx),
 | 
			
		||||
                   data_ptr<half>(k_mix), data_ptr<half>(v_mix),
 | 
			
		||||
                   data_ptr<half>(r_mix), data_ptr<half>(kx),
 | 
			
		||||
                   data_ptr<half>(vx), data_ptr<half>(rx)},
 | 
			
		||||
               x.numel());
 | 
			
		||||
 | 
			
		||||
  gemm_fp16_cublas(kx, kw, k);
 | 
			
		||||
  gemm_fp16_cublas(vx, vw, v);
 | 
			
		||||
  gemm_fp16_cublas(rx, rw, r);
 | 
			
		||||
  at::sigmoid_(r);
 | 
			
		||||
 | 
			
		||||
  element_wise(WkvForwardOne{data_ptr<float>(t_first), data_ptr<float>(k),
 | 
			
		||||
                             data_ptr<float>(pp), data_ptr<float>(aa),
 | 
			
		||||
                             data_ptr<float>(bb), data_ptr<float>(t_decay),
 | 
			
		||||
                             data_ptr<float>(v), data_ptr<float>(t1),
 | 
			
		||||
                             data_ptr<float>(t2), data_ptr<float>(p),
 | 
			
		||||
                             data_ptr<half>(r)},
 | 
			
		||||
               x.numel());
 | 
			
		||||
 | 
			
		||||
  gemm_fp16_cublas(r, ow, x_plus_out);
 | 
			
		||||
  x_plus_out += x;
 | 
			
		||||
  return xx;
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										179
									
								
								backend-python/rwkv_pip/cuda/att_seq.cu
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										179
									
								
								backend-python/rwkv_pip/cuda/att_seq.cu
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@ -0,0 +1,179 @@
 | 
			
		||||
#include "ATen/ATen.h"
 | 
			
		||||
#include <cuda_fp16.h>
 | 
			
		||||
#include <cuda_runtime.h>
 | 
			
		||||
#include <torch/extension.h>
 | 
			
		||||
 | 
			
		||||
#include "util.h"
 | 
			
		||||
#include "element_wise.h"
 | 
			
		||||
 | 
			
		||||
using torch::Tensor;
 | 
			
		||||
 | 
			
		||||
void gemm_fp16_cublas(Tensor a, Tensor b, Tensor c);
 | 
			
		||||
void gemm_fp16_cublas(const void *a, const void *b, void *c, int m,
 | 
			
		||||
                      int n, int k, bool output_fp32);
 | 
			
		||||
 | 
			
		||||
// based on `kernel_wkv_forward`, fusing more operations
 | 
			
		||||
__global__ void kernel_wkv_forward_new(
 | 
			
		||||
    const int B, const int T, const int C, const float *__restrict__ const _w,
 | 
			
		||||
    const float *__restrict__ const _u, const float *__restrict__ const _k,
 | 
			
		||||
    const float *__restrict__ const _v, const half *__restrict__ const r,
 | 
			
		||||
    half *__restrict__ const _y, float *__restrict__ const _aa,
 | 
			
		||||
    float *__restrict__ const _bb, float *__restrict__ const _pp) {
 | 
			
		||||
  const int idx = blockIdx.x * blockDim.x + threadIdx.x;
 | 
			
		||||
  const int _b = idx / C;
 | 
			
		||||
  const int _c = idx % C;
 | 
			
		||||
  const int _offset = _b * T * C + _c;
 | 
			
		||||
  const int _state_offset = _b * C + _c;
 | 
			
		||||
 | 
			
		||||
  float u = _u[_c];
 | 
			
		||||
  float w = _w[_c];
 | 
			
		||||
  const float *__restrict__ const k = _k + _offset;
 | 
			
		||||
  const float *__restrict__ const v = _v + _offset;
 | 
			
		||||
  half *__restrict__ const y = _y + _offset;
 | 
			
		||||
 | 
			
		||||
  float aa = _aa[_state_offset];
 | 
			
		||||
  float bb = _bb[_state_offset];
 | 
			
		||||
  float pp = _pp[_state_offset];
 | 
			
		||||
  for (int i = 0; i < T; i++) {
 | 
			
		||||
    const int ii = i * C;
 | 
			
		||||
    const float kk = k[ii];
 | 
			
		||||
    const float vv = v[ii];
 | 
			
		||||
    float ww = u + kk;
 | 
			
		||||
    float p = max(pp, ww);
 | 
			
		||||
    float e1 = exp(pp - p);
 | 
			
		||||
    float e2 = exp(ww - p);
 | 
			
		||||
    y[ii] = __float2half((e1 * aa + e2 * vv) / (e1 * bb + e2));
 | 
			
		||||
    ww = w + pp;
 | 
			
		||||
    p = max(ww, kk);
 | 
			
		||||
    e1 = exp(ww - p);
 | 
			
		||||
    e2 = exp(kk - p);
 | 
			
		||||
    aa = e1 * aa + e2 * vv;
 | 
			
		||||
    bb = e1 * bb + e2;
 | 
			
		||||
    pp = p;
 | 
			
		||||
  }
 | 
			
		||||
  _aa[_state_offset] = aa;
 | 
			
		||||
  _bb[_state_offset] = bb;
 | 
			
		||||
  _pp[_state_offset] = pp;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cuda_wkv_forward_new(int B, int T, int C, float *w, float *u, float *k,
 | 
			
		||||
                          float *v, half *r, half *y, float *aa, float *bb,
 | 
			
		||||
                          float *pp) {
 | 
			
		||||
  dim3 threadsPerBlock(min(C, 32));
 | 
			
		||||
  assert(B * C % threadsPerBlock.x == 0);
 | 
			
		||||
  dim3 numBlocks(B * C / threadsPerBlock.x);
 | 
			
		||||
  kernel_wkv_forward_new<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, r,
 | 
			
		||||
                                                         y, aa, bb, pp);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
__global__ void _att_mix(const half *xx, const half *sx, const half *k_mix,
 | 
			
		||||
                        const half *v_mix, const half *r_mix,
 | 
			
		||||
                        const int outer_size, const int inner_size, half *kx,
 | 
			
		||||
                        half *vx, half *rx) {
 | 
			
		||||
  for (int idx2 = blockIdx.x * blockDim.x + threadIdx.x; idx2 < inner_size;
 | 
			
		||||
       idx2 += blockDim.x * gridDim.x) {
 | 
			
		||||
    half k_mix_ = k_mix[idx2];
 | 
			
		||||
    half v_mix_ = v_mix[idx2];
 | 
			
		||||
    half r_mix_ = r_mix[idx2];
 | 
			
		||||
    for (int row = 0; row < outer_size; ++row) {
 | 
			
		||||
      int idx1 = row * inner_size + idx2;
 | 
			
		||||
      half xx_ = xx[idx1];
 | 
			
		||||
      half sx_ = sx[idx1];
 | 
			
		||||
      kx[idx1] = __hadd(__hmul(xx_, k_mix_),
 | 
			
		||||
                        __hmul(sx_, __hsub(__float2half(1), k_mix_)));
 | 
			
		||||
      vx[idx1] = __hadd(__hmul(xx_, v_mix_),
 | 
			
		||||
                        __hmul(sx_, __hsub(__float2half(1), v_mix_)));
 | 
			
		||||
      rx[idx1] = __hadd(__hmul(xx_, r_mix_),
 | 
			
		||||
                        __hmul(sx_, __hsub(__float2half(1), r_mix_)));
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void att_mix(const half *xx, const half *sx, const half *k_mix,
 | 
			
		||||
            const half *v_mix, const half *r_mix, const int outer_size,
 | 
			
		||||
            const int inner_size, half *kx, half *vx, half *rx) {
 | 
			
		||||
  // 256 is good enough on most GPUs
 | 
			
		||||
  const int32_t BLOCK_SIZE = 256;
 | 
			
		||||
  assert(inner_size % BLOCK_SIZE == 0);
 | 
			
		||||
  _att_mix<<<inner_size / BLOCK_SIZE, BLOCK_SIZE>>>(
 | 
			
		||||
      xx, sx, k_mix, v_mix, r_mix, outer_size, inner_size, kx, vx, rx);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
struct InplaceSigmoid {
 | 
			
		||||
  __device__ __forceinline__ half operator()(int i) const {
 | 
			
		||||
    ptr[i] = __float2half(1.0 / (1.0 + exp(-__half2float(ptr[i]))));
 | 
			
		||||
  }
 | 
			
		||||
  half *ptr;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct InplaceMul {
 | 
			
		||||
  __device__ __forceinline__ half operator()(int i) const {
 | 
			
		||||
    y[i] = __hmul(x[i], y[i]);
 | 
			
		||||
  }
 | 
			
		||||
  half *y;
 | 
			
		||||
  half *x;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
   Equivalent Python code:
 | 
			
		||||
 | 
			
		||||
   xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
 | 
			
		||||
   sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
 | 
			
		||||
   kx = xx * k_mix + sx * (1 - k_mix)
 | 
			
		||||
   vx = xx * v_mix + sx * (1 - v_mix)
 | 
			
		||||
   rx = xx * r_mix + sx * (1 - r_mix)
 | 
			
		||||
 | 
			
		||||
   r = torch.sigmoid(gemm(rx, rw))
 | 
			
		||||
   k = gemm(kx, kw, output_dtype=torch.float32)
 | 
			
		||||
   v = gemm(vx, vw, output_dtype=torch.float32)
 | 
			
		||||
 | 
			
		||||
   T = x.shape[0]
 | 
			
		||||
   for t in range(T):
 | 
			
		||||
       kk = k[t]
 | 
			
		||||
       vv = v[t]
 | 
			
		||||
       ww = t_first + kk
 | 
			
		||||
       p = torch.maximum(pp, ww)
 | 
			
		||||
       e1 = torch.exp(pp - p)
 | 
			
		||||
       e2 = torch.exp(ww - p)
 | 
			
		||||
       sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
 | 
			
		||||
       ww = t_decay + pp
 | 
			
		||||
       p = torch.maximum(ww, kk)
 | 
			
		||||
       e1 = torch.exp(ww - p)
 | 
			
		||||
       e2 = torch.exp(kk - p)
 | 
			
		||||
       aa = e1 * aa + e2 * vv
 | 
			
		||||
       bb = e1 * bb + e2
 | 
			
		||||
       pp = p
 | 
			
		||||
   out = gemm(r * sx, ow)
 | 
			
		||||
   return x + out, xx[-1,:], aa, bb, pp
 | 
			
		||||
*/
 | 
			
		||||
Tensor att_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
 | 
			
		||||
               Tensor v_mix, Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
 | 
			
		||||
               Tensor ow, Tensor t_first, Tensor pp, Tensor aa, Tensor bb,
 | 
			
		||||
               Tensor t_decay, /* imm */ Tensor buf, /* out */ Tensor x_plus_out) {
 | 
			
		||||
  Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
 | 
			
		||||
  sx = at::cat({sx.unsqueeze(0), xx.slice(0, 0, -1)}, 0);
 | 
			
		||||
  char* buf_ptr = (char*)buf.data_ptr();
 | 
			
		||||
  half* kx = (half*)buf_ptr;
 | 
			
		||||
  half* vx = kx + x.numel();
 | 
			
		||||
  half* rx = vx + x.numel();
 | 
			
		||||
  half* wkv_y = rx + x.numel();
 | 
			
		||||
  att_mix(data_ptr<half>(xx), data_ptr<half>(sx), data_ptr<half>(k_mix),
 | 
			
		||||
         data_ptr<half>(v_mix), data_ptr<half>(r_mix), xx.size(0), xx.size(1),
 | 
			
		||||
         kx, vx, rx);
 | 
			
		||||
  float* k = reinterpret_cast<float*>(wkv_y + x.numel());
 | 
			
		||||
  float* v = k + x.size(0) * kw.size(1);
 | 
			
		||||
  half* r = reinterpret_cast<half*>(v + x.size(0) * vw.size(1));
 | 
			
		||||
 | 
			
		||||
  gemm_fp16_cublas(kx, kw.data_ptr(), k, x.size(0), kw.size(1), kw.size(0), true);
 | 
			
		||||
  gemm_fp16_cublas(vx, vw.data_ptr(), v, x.size(0), vw.size(1), vw.size(0), true);
 | 
			
		||||
  gemm_fp16_cublas(rx, rw.data_ptr(), r, x.size(0), rw.size(1), rw.size(0), false);
 | 
			
		||||
  element_wise(InplaceSigmoid{r}, x.size(0) * rw.size(1));
 | 
			
		||||
  cuda_wkv_forward_new(1, x.size(0), x.size(1), data_ptr<float>(t_decay),
 | 
			
		||||
                       data_ptr<float>(t_first), k, v, r,
 | 
			
		||||
                       wkv_y, data_ptr<float>(aa),
 | 
			
		||||
                       data_ptr<float>(bb), data_ptr<float>(pp));
 | 
			
		||||
  element_wise(InplaceMul{wkv_y, r}, x.numel());
 | 
			
		||||
  gemm_fp16_cublas(wkv_y, ow.data_ptr(), x_plus_out.data_ptr(), x.size(0), ow.size(1), ow.size(0), false);
 | 
			
		||||
  x_plus_out += x;
 | 
			
		||||
  return xx;
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										21
									
								
								backend-python/rwkv_pip/cuda/element_wise.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										21
									
								
								backend-python/rwkv_pip/cuda/element_wise.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@ -0,0 +1,21 @@
 | 
			
		||||
#include <cassert>
 | 
			
		||||
#include <cstddef>
 | 
			
		||||
#include <cstdint>
 | 
			
		||||
 | 
			
		||||
template <typename Func> __global__ void _element_wise(Func func, int n) {
 | 
			
		||||
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n;
 | 
			
		||||
       i += blockDim.x * gridDim.x) {
 | 
			
		||||
    func(i);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// NOTE: packed data type (e.g. float4) is a overkill for current sizes
 | 
			
		||||
// (4096 in 7B model and 768 in 0.1B model),
 | 
			
		||||
// and is not faster than the plain float version.
 | 
			
		||||
template <typename Func>
 | 
			
		||||
void element_wise(Func func, int n) {
 | 
			
		||||
  // 256 is good enough on most GPUs
 | 
			
		||||
  const int32_t BLOCK_SIZE = 256;
 | 
			
		||||
  assert(n % BLOCK_SIZE == 0);
 | 
			
		||||
  _element_wise<<<n / BLOCK_SIZE, BLOCK_SIZE>>>(func, n);
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										165
									
								
								backend-python/rwkv_pip/cuda/ffn.cu
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										165
									
								
								backend-python/rwkv_pip/cuda/ffn.cu
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@ -0,0 +1,165 @@
 | 
			
		||||
#include "ATen/ATen.h"
 | 
			
		||||
#include <cuda_fp16.h>
 | 
			
		||||
#include <cuda_runtime.h>
 | 
			
		||||
#include <torch/extension.h>
 | 
			
		||||
 | 
			
		||||
#include "element_wise.h"
 | 
			
		||||
#include "util.h"
 | 
			
		||||
 | 
			
		||||
using torch::Tensor;
 | 
			
		||||
 | 
			
		||||
void gemm_fp16_cublas(const void *a, const void *b, void *c, int ori_m,
 | 
			
		||||
                      int ori_n, int ori_k, bool output_fp32);
 | 
			
		||||
 | 
			
		||||
__global__ void _ffn_seq_mix(const half *xx, const half *sx, const half *k_mix,
 | 
			
		||||
                             const half *r_mix, const int outer_size,
 | 
			
		||||
                             const int inner_size, half *kx, half *rx) {
 | 
			
		||||
  for (int idx2 = blockIdx.x * blockDim.x + threadIdx.x; idx2 < inner_size;
 | 
			
		||||
       idx2 += blockDim.x * gridDim.x) {
 | 
			
		||||
    half k_mix_ = k_mix[idx2];
 | 
			
		||||
    half r_mix_ = r_mix[idx2];
 | 
			
		||||
    for (int row = 0; row < outer_size; ++row) {
 | 
			
		||||
      int idx1 = row * inner_size + idx2;
 | 
			
		||||
      half xx_ = xx[idx1];
 | 
			
		||||
      half sx_ = sx[idx1];
 | 
			
		||||
      kx[idx1] = __hadd(__hmul(xx_, k_mix_),
 | 
			
		||||
                        __hmul(sx_, __hsub(__float2half(1), k_mix_)));
 | 
			
		||||
      rx[idx1] = __hadd(__hmul(xx_, r_mix_),
 | 
			
		||||
                        __hmul(sx_, __hsub(__float2half(1), r_mix_)));
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void ffn_seq_mix(const half *xx, const half *sx, const half *k_mix,
 | 
			
		||||
                 const half *r_mix, const int outer_size, const int inner_size,
 | 
			
		||||
                 half *kx, half *rx) {
 | 
			
		||||
  // 256 is good enough on most GPUs
 | 
			
		||||
  const int32_t BLOCK_SIZE = 256;
 | 
			
		||||
  assert(inner_size % BLOCK_SIZE == 0);
 | 
			
		||||
  _ffn_seq_mix<<<inner_size / BLOCK_SIZE, BLOCK_SIZE>>>(
 | 
			
		||||
      xx, sx, k_mix, r_mix, outer_size, inner_size, kx, rx);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
struct InplaceSigmoid {
 | 
			
		||||
  __device__ __forceinline__ void operator()(int i) const {
 | 
			
		||||
    ptr[i] = __float2half(1.0 / (1.0 + exp(-__half2float(ptr[i]))));
 | 
			
		||||
  }
 | 
			
		||||
  half *ptr;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct InplaceReLUAndSquare {
 | 
			
		||||
  __device__ __forceinline__ void operator()(int i) const {
 | 
			
		||||
    // __hmax is not defined in old cuda
 | 
			
		||||
    if (__hgt(ptr[i], __float2half(0))) {
 | 
			
		||||
      ptr[i] = __hmul(ptr[i], ptr[i]);
 | 
			
		||||
    } else {
 | 
			
		||||
      ptr[i] = __float2half(0);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
  half *ptr;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
struct InplaceFma {
 | 
			
		||||
  __device__ __forceinline__ void operator()(int i) const {
 | 
			
		||||
    a[i] = __hfma(a[i], b[i], c[i]);
 | 
			
		||||
  }
 | 
			
		||||
  half *a;
 | 
			
		||||
  const half *b;
 | 
			
		||||
  const half *c;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
   Equivalent Python code:
 | 
			
		||||
 | 
			
		||||
   xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
 | 
			
		||||
   sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
 | 
			
		||||
   kx = xx * k_mix + sx * (1 - k_mix)
 | 
			
		||||
   rx = xx * r_mix + sx * (1 - r_mix)
 | 
			
		||||
 | 
			
		||||
   r = torch.sigmoid(gemm(rx, rw))
 | 
			
		||||
   vx = torch.square(torch.relu(gemm(kx, kw)))
 | 
			
		||||
   out = r * gemm(vx, vw)
 | 
			
		||||
   return x + out, xx[-1,:]
 | 
			
		||||
*/
 | 
			
		||||
Tensor ffn_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
 | 
			
		||||
               Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
 | 
			
		||||
               /* imm */ Tensor buf,
 | 
			
		||||
               /* out */ Tensor x_plus_out) {
 | 
			
		||||
  Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
 | 
			
		||||
  sx = at::cat({sx.unsqueeze(0), xx.slice(0, 0, -1)}, 0);
 | 
			
		||||
  char *buf_ptr = (char *)buf.data_ptr();
 | 
			
		||||
  half *kx = (half *)buf_ptr;
 | 
			
		||||
  half *rx = kx + x.numel();
 | 
			
		||||
  half *vx = rx + x.numel();
 | 
			
		||||
  half *r = vx + x.size(0) * kw.size(1);
 | 
			
		||||
  ffn_seq_mix(data_ptr<half>(xx), data_ptr<half>(sx), data_ptr<half>(k_mix),
 | 
			
		||||
              data_ptr<half>(r_mix), xx.size(0), xx.size(1), kx, rx);
 | 
			
		||||
 | 
			
		||||
  gemm_fp16_cublas(rx, rw.data_ptr(), r, x.size(0), rw.size(1), x.size(1),
 | 
			
		||||
                   false);
 | 
			
		||||
  element_wise(InplaceSigmoid{r}, x.size(0) * rw.size(1));
 | 
			
		||||
  gemm_fp16_cublas(kx, kw.data_ptr(), vx, x.size(0), kw.size(1), x.size(1),
 | 
			
		||||
                   false);
 | 
			
		||||
  element_wise(InplaceReLUAndSquare{vx}, x.size(0) * kw.size(1));
 | 
			
		||||
  gemm_fp16_cublas(vx, vw.data_ptr(), x_plus_out.data_ptr(), x.size(0),
 | 
			
		||||
                   vw.size(1), vw.size(0), false);
 | 
			
		||||
  element_wise(InplaceFma{data_ptr<half>(x_plus_out), r, data_ptr<half>(x)},
 | 
			
		||||
               x_plus_out.numel());
 | 
			
		||||
  return xx;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
struct FfnOneMix {
 | 
			
		||||
  __device__ __forceinline__ void operator()(int idx) {
 | 
			
		||||
    half k_mix_ = k_mix[idx];
 | 
			
		||||
    half r_mix_ = r_mix[idx];
 | 
			
		||||
    half xx_ = xx[idx];
 | 
			
		||||
    half sx_ = sx[idx];
 | 
			
		||||
    kx[idx] = __hadd(__hmul(xx_, k_mix_),
 | 
			
		||||
                     __hmul(sx_, __hsub(__float2half(1), k_mix_)));
 | 
			
		||||
    rx[idx] = __hadd(__hmul(xx_, r_mix_),
 | 
			
		||||
                     __hmul(sx_, __hsub(__float2half(1), r_mix_)));
 | 
			
		||||
  }
 | 
			
		||||
  half *k_mix;
 | 
			
		||||
  half *r_mix;
 | 
			
		||||
  half *xx;
 | 
			
		||||
  half *sx;
 | 
			
		||||
  half *kx;
 | 
			
		||||
  half *rx;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
  Equivalent Python code:
 | 
			
		||||
 | 
			
		||||
  xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
 | 
			
		||||
  kx = xx * k_mix + sx * (1 - k_mix)
 | 
			
		||||
  rx = xx * r_mix + sx * (1 - r_mix)
 | 
			
		||||
 | 
			
		||||
  r = torch.sigmoid(gemm(rx, rw))
 | 
			
		||||
  vx = torch.square(torch.relu(gemm(kx, kw)))
 | 
			
		||||
  out = r * gemm(vx, vw)
 | 
			
		||||
  return x + out, xx
 | 
			
		||||
*/
 | 
			
		||||
Tensor ffn_one(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
 | 
			
		||||
               Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
 | 
			
		||||
               /* imm */ Tensor buf,
 | 
			
		||||
               /* out */ Tensor x_plus_out) {
 | 
			
		||||
  Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
 | 
			
		||||
  char *buf_ptr = (char *)buf.data_ptr();
 | 
			
		||||
  half *kx = (half *)buf_ptr;
 | 
			
		||||
  half *rx = kx + x.numel();
 | 
			
		||||
  half *vx = rx + x.numel();
 | 
			
		||||
  half *r = vx + x.size(0) * kw.size(1);
 | 
			
		||||
  element_wise(FfnOneMix{data_ptr<half>(k_mix), data_ptr<half>(r_mix),
 | 
			
		||||
                         data_ptr<half>(xx), data_ptr<half>(sx), kx, rx},
 | 
			
		||||
               x.numel());
 | 
			
		||||
  // vector * matrix, so m = 1
 | 
			
		||||
  gemm_fp16_cublas(rx, rw.data_ptr(), r, 1, rw.size(1), rw.size(0), false);
 | 
			
		||||
  element_wise(InplaceSigmoid{r}, rw.size(1));
 | 
			
		||||
  gemm_fp16_cublas(kx, kw.data_ptr(), vx, 1, kw.size(1), kw.size(0), false);
 | 
			
		||||
  element_wise(InplaceReLUAndSquare{vx}, kw.size(1));
 | 
			
		||||
  gemm_fp16_cublas(vx, vw.data_ptr(), x_plus_out.data_ptr(), 1, vw.size(1),
 | 
			
		||||
                   vw.size(0), false);
 | 
			
		||||
  element_wise(InplaceFma{data_ptr<half>(x_plus_out), r, data_ptr<half>(x)},
 | 
			
		||||
               x_plus_out.numel());
 | 
			
		||||
  return xx;
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										86
									
								
								backend-python/rwkv_pip/cuda/gemm_fp16_cublas.cpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										86
									
								
								backend-python/rwkv_pip/cuda/gemm_fp16_cublas.cpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@ -0,0 +1,86 @@
 | 
			
		||||
#include <cublas_v2.h>
 | 
			
		||||
#include <cuda.h>
 | 
			
		||||
#include <cuda_fp16.h>
 | 
			
		||||
#include <cuda_runtime.h>
 | 
			
		||||
#include <torch/extension.h>
 | 
			
		||||
 | 
			
		||||
#define CUBLAS_CHECK(condition)                                                \
 | 
			
		||||
  for (cublasStatus_t _cublas_check_status = (condition);                      \
 | 
			
		||||
       _cublas_check_status != CUBLAS_STATUS_SUCCESS;)                         \
 | 
			
		||||
    throw std::runtime_error("cuBLAS error " +                                 \
 | 
			
		||||
                             std::to_string(_cublas_check_status) + " at " +   \
 | 
			
		||||
                             std::to_string(__LINE__));
 | 
			
		||||
 | 
			
		||||
#define CUDA_CHECK(condition)                                                  \
 | 
			
		||||
  for (cudaError_t _cuda_check_status = (condition);                           \
 | 
			
		||||
       _cuda_check_status != cudaSuccess;)                                     \
 | 
			
		||||
    throw std::runtime_error(                                                  \
 | 
			
		||||
        "CUDA error " + std::string(cudaGetErrorString(_cuda_check_status)) +  \
 | 
			
		||||
        " at " + std::to_string(__LINE__));
 | 
			
		||||
 | 
			
		||||
cublasHandle_t get_cublas_handle() {
 | 
			
		||||
  static cublasHandle_t cublas_handle = []() {
 | 
			
		||||
    cublasHandle_t handle = nullptr;
 | 
			
		||||
    CUBLAS_CHECK(cublasCreate(&handle));
 | 
			
		||||
#if CUDA_VERSION < 11000
 | 
			
		||||
    CUBLAS_CHECK(cublasSetMathMode(handle, CUBLAS_TENSOR_OP_MATH));
 | 
			
		||||
#else
 | 
			
		||||
    CUBLAS_CHECK(cublasSetMathMode(handle, CUBLAS_DEFAULT_MATH));
 | 
			
		||||
#endif // CUDA_VERSION < 11000
 | 
			
		||||
    return handle;
 | 
			
		||||
  }();
 | 
			
		||||
  return cublas_handle;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/*
 | 
			
		||||
  NOTE: blas gemm is column-major by default, but we need row-major output.
 | 
			
		||||
  The data of row-major, transposed matrix is exactly the same as the
 | 
			
		||||
  column-major, non-transposed matrix, and C = A * B ---> C^T = B^T * A^T
 | 
			
		||||
 */
 | 
			
		||||
void gemm_fp16_cublas(torch::Tensor a, torch::Tensor b, torch::Tensor c) {
 | 
			
		||||
  const auto cuda_data_type = CUDA_R_16F;
 | 
			
		||||
  const auto cuda_c_data_type =
 | 
			
		||||
      c.dtype() == torch::kFloat32 ? CUDA_R_32F : CUDA_R_16F;
 | 
			
		||||
  const auto compute_type = CUDA_R_32F;
 | 
			
		||||
  const float sp_alpha = 1.f;
 | 
			
		||||
  // swap a and b, and use CUBLAS_OP_N. see the notes above
 | 
			
		||||
  std::swap(a, b);
 | 
			
		||||
  const cublasOperation_t cublas_trans_a = CUBLAS_OP_N;
 | 
			
		||||
  const cublasOperation_t cublas_trans_b = CUBLAS_OP_N;
 | 
			
		||||
  // m = (B^T).size(0) = B.size(1), and = A.size(1) after swap,
 | 
			
		||||
  // negative axis is used because of the existence of batch matmul.
 | 
			
		||||
  const int m = a.size(-1);
 | 
			
		||||
  const int k = a.size(-2);
 | 
			
		||||
  const int n = b.size(-2);
 | 
			
		||||
  const int cublas_lda = m;
 | 
			
		||||
  const int cublas_ldb = k;
 | 
			
		||||
  const int cublas_ldc = m;
 | 
			
		||||
  cublasHandle_t cublas_handle = get_cublas_handle();
 | 
			
		||||
 | 
			
		||||
#if CUDA_VERSION >= 11000
 | 
			
		||||
  cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT;
 | 
			
		||||
#else
 | 
			
		||||
  cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
 | 
			
		||||
#endif
 | 
			
		||||
  const float sp_beta = 0.f;
 | 
			
		||||
  if (a.sizes().size() == 2 && b.sizes().size() == 2) {
 | 
			
		||||
    CUBLAS_CHECK(cublasGemmEx(
 | 
			
		||||
        cublas_handle, cublas_trans_a, cublas_trans_b, m, n, k, &sp_alpha,
 | 
			
		||||
        a.data_ptr(), cuda_data_type, cublas_lda, b.data_ptr(), cuda_data_type,
 | 
			
		||||
        cublas_ldb, &sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc,
 | 
			
		||||
        compute_type, algo));
 | 
			
		||||
  } else {
 | 
			
		||||
    // batch matmul
 | 
			
		||||
    assert(a.sizes().size() == 3 && b.sizes().size() == 3);
 | 
			
		||||
 | 
			
		||||
    const long long int cublas_stride_a = m * k;
 | 
			
		||||
    const long long int cublas_stride_b = k * n;
 | 
			
		||||
    const long long int cublas_stride_c = m * n;
 | 
			
		||||
    CUBLAS_CHECK(cublasGemmStridedBatchedEx(
 | 
			
		||||
        cublas_handle, cublas_trans_a, cublas_trans_b, m,
 | 
			
		||||
        n, k, &sp_alpha, a.data_ptr(), cuda_data_type, cublas_lda,
 | 
			
		||||
        cublas_stride_a, b.data_ptr(), cuda_data_type, cublas_ldb, cublas_stride_b,
 | 
			
		||||
        &sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc, cublas_stride_c,
 | 
			
		||||
        a.size(0), compute_type, algo));
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										246
									
								
								backend-python/rwkv_pip/cuda/operators.cu
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										246
									
								
								backend-python/rwkv_pip/cuda/operators.cu
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@ -0,0 +1,246 @@
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include <assert.h>
 | 
			
		||||
#include "ATen/ATen.h"
 | 
			
		||||
#include <cuda_fp16.h>
 | 
			
		||||
#define MIN_VALUE (-1e38)
 | 
			
		||||
typedef at::Half fp16;
 | 
			
		||||
__half *cast(fp16 *ptr) {
 | 
			
		||||
    return reinterpret_cast<__half *>(ptr);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename F>
 | 
			
		||||
__global__ void kernel_wkv_forward(const int B, const int T, const int C,
 | 
			
		||||
                               const float *__restrict__ const _w, const float *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
 | 
			
		||||
                               F *__restrict__ const _y, float *__restrict__ const _aa, float *__restrict__ const _bb, float *__restrict__ const _pp) {
 | 
			
		||||
    const int idx = blockIdx.x * blockDim.x + threadIdx.x;
 | 
			
		||||
    const int _b = idx / C;
 | 
			
		||||
    const int _c = idx % C;
 | 
			
		||||
    const int _offset = _b * T * C + _c;
 | 
			
		||||
    const int _state_offset = _b * C + _c;
 | 
			
		||||
 | 
			
		||||
    float u = _u[_c];
 | 
			
		||||
    float w = _w[_c];
 | 
			
		||||
    const F *__restrict__ const k = _k + _offset;
 | 
			
		||||
    const F *__restrict__ const v = _v + _offset;
 | 
			
		||||
    F *__restrict__ const y = _y + _offset;
 | 
			
		||||
 | 
			
		||||
    float aa = _aa[_state_offset];
 | 
			
		||||
    float bb = _bb[_state_offset];
 | 
			
		||||
    float pp = _pp[_state_offset];
 | 
			
		||||
    for (int i = 0; i < T; i++) {
 | 
			
		||||
        const int ii = i * C;
 | 
			
		||||
        const float kk = float(k[ii]);
 | 
			
		||||
        const float vv = float(v[ii]);
 | 
			
		||||
        float ww = u + kk;
 | 
			
		||||
        float p = max(pp, ww);
 | 
			
		||||
        float e1 = exp(pp - p);
 | 
			
		||||
        float e2 = exp(ww - p);
 | 
			
		||||
        y[ii] = F((e1 * aa + e2 * vv) / (e1 * bb + e2));
 | 
			
		||||
        ww = w + pp;
 | 
			
		||||
        p = max(ww, kk);
 | 
			
		||||
        e1 = exp(ww - p);
 | 
			
		||||
        e2 = exp(kk - p);
 | 
			
		||||
        aa = e1 * aa + e2 * vv;
 | 
			
		||||
        bb = e1 * bb + e2;
 | 
			
		||||
        pp = p;
 | 
			
		||||
    }
 | 
			
		||||
    _aa[_state_offset] = aa;
 | 
			
		||||
    _bb[_state_offset] = bb;
 | 
			
		||||
    _pp[_state_offset] = pp;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename F>
 | 
			
		||||
void cuda_wkv_forward(int B, int T, int C, float *w, float *u, F *k, F *v, F *y, float *aa, float *bb, float *pp) {
 | 
			
		||||
    dim3 threadsPerBlock( min(C, 32) );
 | 
			
		||||
    assert(B * C % threadsPerBlock.x == 0);
 | 
			
		||||
    dim3 numBlocks(B * C / threadsPerBlock.x);
 | 
			
		||||
    kernel_wkv_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, aa, bb, pp);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template void cuda_wkv_forward<fp16>(
 | 
			
		||||
    int B, int T, int C,
 | 
			
		||||
    float *w, float *u, fp16 *k, fp16 *v, fp16 *y,
 | 
			
		||||
    float *aa, float *bb, float *pp);
 | 
			
		||||
template void cuda_wkv_forward<float>(
 | 
			
		||||
    int B, int T, int C,
 | 
			
		||||
    float *w, float *u, float *k, float *v, float *y,
 | 
			
		||||
    float *aa, float *bb, float *pp);
 | 
			
		||||
 | 
			
		||||
__global__ void kernel_mm_seq_fp32i8(
 | 
			
		||||
    const int B, const int N, const int M,
 | 
			
		||||
    const float *__restrict__ const x, const int x_stride,
 | 
			
		||||
    const uint8_t *__restrict__ const w, const int w_stride,
 | 
			
		||||
    const float *__restrict__ const mx,
 | 
			
		||||
    const float *__restrict__ const rx,
 | 
			
		||||
    const float *__restrict__ const my,
 | 
			
		||||
    const float *__restrict__ const ry,
 | 
			
		||||
    float *__restrict__ const y, const int y_stride) {
 | 
			
		||||
 | 
			
		||||
    const int i = blockIdx.x * blockDim.x + threadIdx.x;
 | 
			
		||||
    const int k = blockIdx.y * blockDim.y + threadIdx.y;
 | 
			
		||||
 | 
			
		||||
    if (i < B && k < M) {
 | 
			
		||||
        float y_local = 0;
 | 
			
		||||
        for (int j = 0; j < N; ++j) {
 | 
			
		||||
            y_local += x[i * x_stride + j] * (
 | 
			
		||||
                (float(w[j * w_stride + k]) + 0.5f)
 | 
			
		||||
                * rx[k] * ry[j] + mx[k] + my[j]
 | 
			
		||||
            );
 | 
			
		||||
        }
 | 
			
		||||
        y[i * y_stride + k] = y_local;
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename F>
 | 
			
		||||
void cuda_mm8_seq(int B, int N, int M,
 | 
			
		||||
                  F *x, int x_stride,
 | 
			
		||||
                  uint8_t *w, int w_stride,
 | 
			
		||||
                  F *mx, F *rx,
 | 
			
		||||
                  F *my, F *ry,
 | 
			
		||||
                  F *y, int y_stride);
 | 
			
		||||
 | 
			
		||||
template <>
 | 
			
		||||
void cuda_mm8_seq<float>(int B, int N, int M,
 | 
			
		||||
                         float *x, int x_stride,
 | 
			
		||||
                         uint8_t *w, int w_stride,
 | 
			
		||||
                         float *mx, float *rx,
 | 
			
		||||
                         float *my, float *ry,
 | 
			
		||||
                         float *y, int y_stride) {
 | 
			
		||||
    dim3 blockSize(1, 128);
 | 
			
		||||
    dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
 | 
			
		||||
    kernel_mm_seq_fp32i8<<<gridSize, blockSize>>>(
 | 
			
		||||
        B, N, M, x, x_stride, w, w_stride,
 | 
			
		||||
        mx, rx, my, ry, y, y_stride);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
__global__ void kernel_mm_seq_fp16i8(
 | 
			
		||||
    const int B, const int N, const int M,
 | 
			
		||||
    const __half *__restrict__ const x, const int x_stride,
 | 
			
		||||
    const uint8_t *__restrict__ const w, const int w_stride,
 | 
			
		||||
    const __half *__restrict__ const mx,
 | 
			
		||||
    const __half *__restrict__ const rx,
 | 
			
		||||
    const __half *__restrict__ const my,
 | 
			
		||||
    const __half *__restrict__ const ry,
 | 
			
		||||
    __half *__restrict__ const y, const int y_stride) {
 | 
			
		||||
 | 
			
		||||
    const int i = blockIdx.x * blockDim.x + threadIdx.x;
 | 
			
		||||
    const int k = blockIdx.y * blockDim.y + threadIdx.y;
 | 
			
		||||
 | 
			
		||||
    if (i < B && k < M) {
 | 
			
		||||
        float y_local = 0;
 | 
			
		||||
        for (int j = 0; j < N; ++j) {
 | 
			
		||||
            y_local += __half2float(x[i * x_stride + j]) * (
 | 
			
		||||
                (float(w[j * w_stride + k]) + 0.5f)
 | 
			
		||||
                * __half2float(rx[k]) * __half2float(ry[j])
 | 
			
		||||
                + __half2float(mx[k]) + __half2float(my[j])
 | 
			
		||||
            );
 | 
			
		||||
        }
 | 
			
		||||
        y[i * y_stride + k] = __float2half(y_local);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <>
 | 
			
		||||
void cuda_mm8_seq<fp16>(int B, int N, int M,
 | 
			
		||||
                        fp16 *x, int x_stride,
 | 
			
		||||
                        uint8_t *w, int w_stride,
 | 
			
		||||
                        fp16 *mx, fp16 *rx,
 | 
			
		||||
                        fp16 *my, fp16 *ry,
 | 
			
		||||
                        fp16 *y, int y_stride) {
 | 
			
		||||
    dim3 blockSize(1, 128);
 | 
			
		||||
    dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
 | 
			
		||||
    kernel_mm_seq_fp16i8<<<gridSize, blockSize>>>(
 | 
			
		||||
        B, N, M, cast(x), x_stride, w, w_stride,
 | 
			
		||||
        cast(mx), cast(rx), cast(my), cast(ry), cast(y), y_stride);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#define MM8_ONE_JSPLIT 24
 | 
			
		||||
#define MM8_ONE_TILE 1024
 | 
			
		||||
 | 
			
		||||
__global__ void kernel_mm_one_fp32i8(
 | 
			
		||||
    const int N, const int M,
 | 
			
		||||
    const float *__restrict__ const x,
 | 
			
		||||
    const uint8_t *__restrict__ const w, const int w_stride,
 | 
			
		||||
    const float *__restrict__ const mx,
 | 
			
		||||
    const float *__restrict__ const rx,
 | 
			
		||||
    const float *__restrict__ const my,
 | 
			
		||||
    const float *__restrict__ const ry,
 | 
			
		||||
    float *__restrict__ const y) {
 | 
			
		||||
 | 
			
		||||
    const int k = blockIdx.y * blockDim.y + threadIdx.y;
 | 
			
		||||
    const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
 | 
			
		||||
    const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
 | 
			
		||||
 | 
			
		||||
    if (k < M) {
 | 
			
		||||
        float y_local = 0;
 | 
			
		||||
        for (int j = j0; j < j1; ++j) {
 | 
			
		||||
            y_local += x[j] * (
 | 
			
		||||
                (float(w[j * w_stride + k]) + 0.5f)
 | 
			
		||||
                * rx[k] * ry[j] + mx[k] + my[j]
 | 
			
		||||
            );
 | 
			
		||||
        }
 | 
			
		||||
        atomicAdd(&y[k], y_local);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <typename F>
 | 
			
		||||
void cuda_mm8_one(int N, int M,
 | 
			
		||||
                  F *x,
 | 
			
		||||
                  uint8_t *w, int w_stride,
 | 
			
		||||
                  F *mx, F *rx,
 | 
			
		||||
                  F *my, F *ry,
 | 
			
		||||
                  float *y);
 | 
			
		||||
 | 
			
		||||
template <>
 | 
			
		||||
void cuda_mm8_one<float>(int N, int M,
 | 
			
		||||
                        float *x,
 | 
			
		||||
                        uint8_t *w, int w_stride,
 | 
			
		||||
                        float *mx, float *rx,
 | 
			
		||||
                        float *my, float *ry,
 | 
			
		||||
                        float *y) {
 | 
			
		||||
    dim3 blockSize(1, MM8_ONE_TILE);
 | 
			
		||||
    dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
 | 
			
		||||
    kernel_mm_one_fp32i8<<<gridSize, blockSize>>>(
 | 
			
		||||
        N, M, x, w, w_stride,
 | 
			
		||||
        mx, rx, my, ry, y);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
__global__ void kernel_mm_one_fp16i8(
 | 
			
		||||
    const int N, const int M,
 | 
			
		||||
    const __half *__restrict__ const x,
 | 
			
		||||
    const uint8_t *__restrict__ const w, const int w_stride,
 | 
			
		||||
    const __half *__restrict__ const mx,
 | 
			
		||||
    const __half *__restrict__ const rx,
 | 
			
		||||
    const __half *__restrict__ const my,
 | 
			
		||||
    const __half *__restrict__ const ry,
 | 
			
		||||
    float *__restrict__ const y) {
 | 
			
		||||
 | 
			
		||||
    const int k = blockIdx.y * blockDim.y + threadIdx.y;
 | 
			
		||||
    const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
 | 
			
		||||
    const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
 | 
			
		||||
 | 
			
		||||
    if (k < M) {
 | 
			
		||||
        float y_local = 0;
 | 
			
		||||
        for (int j = j0; j < j1; ++j) {
 | 
			
		||||
            y_local += __half2float(x[j]) * (
 | 
			
		||||
                (float(w[j * w_stride + k]) + 0.5f)
 | 
			
		||||
                * __half2float(rx[k]) * __half2float(ry[j])
 | 
			
		||||
                + __half2float(mx[k]) + __half2float(my[j])
 | 
			
		||||
            );
 | 
			
		||||
        }
 | 
			
		||||
        atomicAdd(&y[k], y_local);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
template <>
 | 
			
		||||
void cuda_mm8_one<fp16>(int N, int M,
 | 
			
		||||
                        fp16 *x,
 | 
			
		||||
                        uint8_t *w, int w_stride,
 | 
			
		||||
                        fp16 *mx, fp16 *rx,
 | 
			
		||||
                        fp16 *my, fp16 *ry,
 | 
			
		||||
                        float *y) {
 | 
			
		||||
    dim3 blockSize(1, MM8_ONE_TILE);
 | 
			
		||||
    dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
 | 
			
		||||
    kernel_mm_one_fp16i8<<<gridSize, blockSize>>>(
 | 
			
		||||
        N, M, cast(x), w, w_stride,
 | 
			
		||||
        cast(mx), cast(rx), cast(my), cast(ry), y);
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										88
									
								
								backend-python/rwkv_pip/cuda/rwkv5.cu
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										88
									
								
								backend-python/rwkv_pip/cuda/rwkv5.cu
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@ -0,0 +1,88 @@
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
#include <assert.h>
 | 
			
		||||
#include "ATen/ATen.h"
 | 
			
		||||
typedef at::BFloat16 bf16;
 | 
			
		||||
typedef at::Half fp16;
 | 
			
		||||
typedef float fp32;
 | 
			
		||||
 | 
			
		||||
template <typename F>
 | 
			
		||||
__global__ void kernel_forward(const int B, const int T, const int C, const int H, float *__restrict__ _state,
 | 
			
		||||
                               const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u,
 | 
			
		||||
                               F *__restrict__ const _y)
 | 
			
		||||
{
 | 
			
		||||
    const int b = blockIdx.x / H;
 | 
			
		||||
    const int h = blockIdx.x % H;
 | 
			
		||||
    const int i = threadIdx.x;
 | 
			
		||||
    _w += h*_N_;
 | 
			
		||||
    _u += h*_N_;
 | 
			
		||||
    _state += h*_N_*_N_ + i*_N_; // wrong if B > 1 !!!
 | 
			
		||||
 | 
			
		||||
    __shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
 | 
			
		||||
    
 | 
			
		||||
    float state[_N_];
 | 
			
		||||
    #pragma unroll
 | 
			
		||||
    for (int j = 0; j < _N_; j++)
 | 
			
		||||
        state[j] = _state[j];
 | 
			
		||||
    
 | 
			
		||||
    __syncthreads();
 | 
			
		||||
    u[i] = float(_u[i]);
 | 
			
		||||
    w[i] = _w[i];
 | 
			
		||||
    __syncthreads();
 | 
			
		||||
 | 
			
		||||
    for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
 | 
			
		||||
    {
 | 
			
		||||
        __syncthreads();
 | 
			
		||||
        r[i] = float(_r[t]);
 | 
			
		||||
        k[i] = float(_k[t]);
 | 
			
		||||
        __syncthreads();
 | 
			
		||||
 | 
			
		||||
        const float v = float(_v[t]);
 | 
			
		||||
        float y = 0;
 | 
			
		||||
 | 
			
		||||
        #pragma unroll
 | 
			
		||||
        for (int j = 0; j < _N_; j+=4)
 | 
			
		||||
        {
 | 
			
		||||
            const float4& r_ = (float4&)(r[j]);
 | 
			
		||||
            const float4& k_ = (float4&)(k[j]);
 | 
			
		||||
            const float4& w_ = (float4&)(w[j]);
 | 
			
		||||
            const float4& u_ = (float4&)(u[j]);
 | 
			
		||||
            float4& s = (float4&)(state[j]);
 | 
			
		||||
            float4 x;
 | 
			
		||||
 | 
			
		||||
            x.x = k_.x * v;
 | 
			
		||||
            x.y = k_.y * v;
 | 
			
		||||
            x.z = k_.z * v;
 | 
			
		||||
            x.w = k_.w * v;
 | 
			
		||||
 | 
			
		||||
            y += r_.x * (u_.x * x.x + s.x);
 | 
			
		||||
            y += r_.y * (u_.y * x.y + s.y);
 | 
			
		||||
            y += r_.z * (u_.z * x.z + s.z);
 | 
			
		||||
            y += r_.w * (u_.w * x.w + s.w);
 | 
			
		||||
 | 
			
		||||
            s.x = s.x * w_.x + x.x;
 | 
			
		||||
            s.y = s.y * w_.y + x.y;
 | 
			
		||||
            s.z = s.z * w_.z + x.z;
 | 
			
		||||
            s.w = s.w * w_.w + x.w;
 | 
			
		||||
        }
 | 
			
		||||
        _y[t] = F(y);
 | 
			
		||||
    }
 | 
			
		||||
    #pragma unroll
 | 
			
		||||
    for (int j = 0; j < _N_; j++)
 | 
			
		||||
        _state[j] = state[j];
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void cuda_forward_bf16(int B, int T, int C, int H, float *state, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y)
 | 
			
		||||
{
 | 
			
		||||
    assert(H*_N_ == C);
 | 
			
		||||
    kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
 | 
			
		||||
}
 | 
			
		||||
void cuda_forward_fp16(int B, int T, int C, int H, float *state, fp16 *r, fp16 *k, fp16 *v, float *w, fp16 *u, fp16 *y)
 | 
			
		||||
{
 | 
			
		||||
    assert(H*_N_ == C);
 | 
			
		||||
    kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
 | 
			
		||||
}
 | 
			
		||||
void cuda_forward_fp32(int B, int T, int C, int H, float *state, fp32 *r, fp32 *k, fp32 *v, float *w, fp32 *u, fp32 *y)
 | 
			
		||||
{
 | 
			
		||||
    assert(H*_N_ == C);
 | 
			
		||||
    kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										30
									
								
								backend-python/rwkv_pip/cuda/rwkv5_op.cpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										30
									
								
								backend-python/rwkv_pip/cuda/rwkv5_op.cpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@ -0,0 +1,30 @@
 | 
			
		||||
#include <torch/extension.h>
 | 
			
		||||
#include "ATen/ATen.h"
 | 
			
		||||
typedef at::BFloat16 bf16;
 | 
			
		||||
typedef at::Half fp16;
 | 
			
		||||
typedef float fp32;
 | 
			
		||||
 | 
			
		||||
void cuda_forward_bf16(int B, int T, int C, int H, float *state, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y);
 | 
			
		||||
void cuda_forward_fp16(int B, int T, int C, int H, float *state, fp16 *r, fp16 *k, fp16 *v, float *w, fp16 *u, fp16 *y);
 | 
			
		||||
void cuda_forward_fp32(int B, int T, int C, int H, float *state, fp32 *r, fp32 *k, fp32 *v, float *w, fp32 *u, fp32 *y);
 | 
			
		||||
 | 
			
		||||
void forward_bf16(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
 | 
			
		||||
    cuda_forward_bf16(B, T, C, H, state.data_ptr<float>(), r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), y.data_ptr<bf16>());
 | 
			
		||||
}
 | 
			
		||||
void forward_fp16(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
 | 
			
		||||
    cuda_forward_fp16(B, T, C, H, state.data_ptr<float>(), r.data_ptr<fp16>(), k.data_ptr<fp16>(), v.data_ptr<fp16>(), w.data_ptr<float>(), u.data_ptr<fp16>(), y.data_ptr<fp16>());
 | 
			
		||||
}
 | 
			
		||||
void forward_fp32(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
 | 
			
		||||
    cuda_forward_fp32(B, T, C, H, state.data_ptr<float>(), r.data_ptr<fp32>(), k.data_ptr<fp32>(), v.data_ptr<fp32>(), w.data_ptr<float>(), u.data_ptr<fp32>(), y.data_ptr<fp32>());
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
 | 
			
		||||
    m.def("forward_bf16", &forward_bf16, "rwkv5 forward_bf16");
 | 
			
		||||
    m.def("forward_fp16", &forward_fp16, "rwkv5 forward_fp16");
 | 
			
		||||
    m.def("forward_fp32", &forward_fp32, "rwkv5 forward_fp32");
 | 
			
		||||
}
 | 
			
		||||
TORCH_LIBRARY(rwkv5, m) {
 | 
			
		||||
    m.def("forward_bf16", forward_bf16);
 | 
			
		||||
    m.def("forward_fp16", forward_fp16);
 | 
			
		||||
    m.def("forward_fp32", forward_fp32);
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										7
									
								
								backend-python/rwkv_pip/cuda/util.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										7
									
								
								backend-python/rwkv_pip/cuda/util.h
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@ -0,0 +1,7 @@
 | 
			
		||||
#include "ATen/ATen.h"
 | 
			
		||||
#include <cuda_fp16.h>
 | 
			
		||||
 | 
			
		||||
template <typename T> T *data_ptr(torch::Tensor x) { return x.data_ptr<T>(); }
 | 
			
		||||
template <> inline half *data_ptr(torch::Tensor x) {
 | 
			
		||||
  return reinterpret_cast<half *>(x.data_ptr<at::Half>());
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										141
									
								
								backend-python/rwkv_pip/cuda/wrapper.cpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										141
									
								
								backend-python/rwkv_pip/cuda/wrapper.cpp
									
									
									
									
										vendored
									
									
										Normal file
									
								
							@ -0,0 +1,141 @@
 | 
			
		||||
#include <torch/extension.h>
 | 
			
		||||
#include "ATen/ATen.h"
 | 
			
		||||
#include <iostream>
 | 
			
		||||
#include <c10/cuda/CUDAGuard.h>
 | 
			
		||||
 | 
			
		||||
typedef at::Half fp16;
 | 
			
		||||
 | 
			
		||||
template <typename F>
 | 
			
		||||
void cuda_wkv_forward(int B, int T, int C,
 | 
			
		||||
                      float *w, float *u, F *k, F *v, F *y,
 | 
			
		||||
                      float *aa, float *bb, float *pp);
 | 
			
		||||
template <typename F>
 | 
			
		||||
void cuda_mm8_seq(int B, int N, int M,
 | 
			
		||||
                  F *x, int x_stride,
 | 
			
		||||
                  uint8_t *w, int w_stride,
 | 
			
		||||
                  F *mx, F *rx,
 | 
			
		||||
                  F *my, F *ry,
 | 
			
		||||
                  F *y, int y_stride);
 | 
			
		||||
template <typename F>
 | 
			
		||||
void cuda_mm8_one(int N, int M,
 | 
			
		||||
                  F *x,
 | 
			
		||||
                  uint8_t *w, int w_stride,
 | 
			
		||||
                  F *mx, F *rx,
 | 
			
		||||
                  F *my, F *ry,
 | 
			
		||||
                  float *y);
 | 
			
		||||
 | 
			
		||||
void wkv_forward(int64_t B, int64_t T, int64_t C,
 | 
			
		||||
                 torch::Tensor &w, torch::Tensor &u,
 | 
			
		||||
                 torch::Tensor &k, torch::Tensor &v, torch::Tensor &y,
 | 
			
		||||
                 torch::Tensor &aa, torch::Tensor &bb, torch::Tensor &pp) {
 | 
			
		||||
    const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
 | 
			
		||||
    switch (k.scalar_type()) {
 | 
			
		||||
    case c10::ScalarType::Half:
 | 
			
		||||
        cuda_wkv_forward(B, T, C,
 | 
			
		||||
                         w.data_ptr<float>(), u.data_ptr<float>(),
 | 
			
		||||
                         k.data_ptr<fp16>(), v.data_ptr<fp16>(), y.data_ptr<fp16>(),
 | 
			
		||||
                         aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
 | 
			
		||||
        break;
 | 
			
		||||
    case c10::ScalarType::Float:
 | 
			
		||||
        cuda_wkv_forward(B, T, C,
 | 
			
		||||
                         w.data_ptr<float>(), u.data_ptr<float>(),
 | 
			
		||||
                         k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>(),
 | 
			
		||||
                         aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
 | 
			
		||||
        break;
 | 
			
		||||
    default:
 | 
			
		||||
        assert(false && "Only FP16 and FP32 are currently supported");
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void mm8_seq(int64_t B, int64_t N, int64_t M,
 | 
			
		||||
             torch::Tensor &x, torch::Tensor &w,
 | 
			
		||||
             torch::Tensor &mx, torch::Tensor &rx,
 | 
			
		||||
             torch::Tensor &my, torch::Tensor &ry,
 | 
			
		||||
             torch::Tensor &y) {
 | 
			
		||||
    assert(x.stride(1) == 1);
 | 
			
		||||
    assert(w.stride(1) == 1);
 | 
			
		||||
    assert(mx.stride(0) == 1 && rx.stride(0) == 1);
 | 
			
		||||
    assert(my.stride(0) == 1 && ry.stride(0) == 1);
 | 
			
		||||
    assert(y.stride(1) == 1);
 | 
			
		||||
    const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
 | 
			
		||||
    switch (x.scalar_type()) {
 | 
			
		||||
    case c10::ScalarType::Half:
 | 
			
		||||
        cuda_mm8_seq(
 | 
			
		||||
            B, N, M,
 | 
			
		||||
            x.data_ptr<fp16>(), x.stride(0),
 | 
			
		||||
            w.data_ptr<uint8_t>(), w.stride(0),
 | 
			
		||||
            mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
 | 
			
		||||
            my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
 | 
			
		||||
            y.data_ptr<fp16>(), y.stride(0));
 | 
			
		||||
        break;
 | 
			
		||||
    case c10::ScalarType::Float:
 | 
			
		||||
        cuda_mm8_seq(
 | 
			
		||||
            B, N, M,
 | 
			
		||||
            x.data_ptr<float>(), x.stride(0),
 | 
			
		||||
            w.data_ptr<uint8_t>(), w.stride(0),
 | 
			
		||||
            mx.data_ptr<float>(), rx.data_ptr<float>(),
 | 
			
		||||
            my.data_ptr<float>(), ry.data_ptr<float>(),
 | 
			
		||||
            y.data_ptr<float>(), y.stride(0));
 | 
			
		||||
        break;
 | 
			
		||||
    default:
 | 
			
		||||
        assert(false && "Only FP16 and FP32 are currently supported");
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
void mm8_one(int64_t N, int64_t M,
 | 
			
		||||
             torch::Tensor &x, torch::Tensor &w,
 | 
			
		||||
             torch::Tensor &mx, torch::Tensor &rx,
 | 
			
		||||
             torch::Tensor &my, torch::Tensor &ry,
 | 
			
		||||
             torch::Tensor &y) {
 | 
			
		||||
    assert(x.stride(0) == 1);
 | 
			
		||||
    assert(w.stride(1) == 1);
 | 
			
		||||
    assert(mx.stride(0) == 1 && rx.stride(0) == 1);
 | 
			
		||||
    assert(my.stride(0) == 1 && ry.stride(0) == 1);
 | 
			
		||||
    assert(y.stride(0) == 1);
 | 
			
		||||
    const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
 | 
			
		||||
    switch (x.scalar_type()) {
 | 
			
		||||
    case c10::ScalarType::Half:
 | 
			
		||||
        cuda_mm8_one(
 | 
			
		||||
            N, M,
 | 
			
		||||
            x.data_ptr<fp16>(),
 | 
			
		||||
            w.data_ptr<uint8_t>(), w.stride(0),
 | 
			
		||||
            mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
 | 
			
		||||
            my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
 | 
			
		||||
            y.data_ptr<float>());
 | 
			
		||||
        break;
 | 
			
		||||
    case c10::ScalarType::Float:
 | 
			
		||||
        cuda_mm8_one(
 | 
			
		||||
            N, M,
 | 
			
		||||
            x.data_ptr<float>(),
 | 
			
		||||
            w.data_ptr<uint8_t>(), w.stride(0),
 | 
			
		||||
            mx.data_ptr<float>(), rx.data_ptr<float>(),
 | 
			
		||||
            my.data_ptr<float>(), ry.data_ptr<float>(),
 | 
			
		||||
            y.data_ptr<float>());
 | 
			
		||||
        break;
 | 
			
		||||
    default:
 | 
			
		||||
        assert(false && "Only FP16 and FP32 are currently supported");
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
using torch::Tensor;
 | 
			
		||||
 | 
			
		||||
#ifndef DISABLE_CUBLAS_GEMM
 | 
			
		||||
void gemm_fp16_cublas(Tensor a, Tensor b, Tensor c);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
 | 
			
		||||
    m.def("wkv_forward", &wkv_forward, "wkv forward");
 | 
			
		||||
    m.def("mm8_seq", &mm8_seq, "mm8 seq");
 | 
			
		||||
    m.def("mm8_one", &mm8_one, "mm8 one");
 | 
			
		||||
#ifndef DISABLE_CUBLAS_GEMM
 | 
			
		||||
    m.def("gemm_fp16_cublas", &gemm_fp16_cublas, "gemv fp16 cublas");
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
TORCH_LIBRARY(rwkv, m) {
 | 
			
		||||
    m.def("wkv_forward", wkv_forward);
 | 
			
		||||
    m.def("mm8_seq", mm8_seq);
 | 
			
		||||
    m.def("mm8_one", mm8_one);
 | 
			
		||||
#ifndef DISABLE_CUBLAS_GEMM
 | 
			
		||||
    m.def("gemm_fp16_cublas", gemm_fp16_cublas);
 | 
			
		||||
#endif
 | 
			
		||||
}
 | 
			
		||||
							
								
								
									
										1827
									
								
								backend-python/rwkv_pip/model.py
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										1827
									
								
								backend-python/rwkv_pip/model.py
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										9
									
								
								backend-python/rwkv_pip/utils.py
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										9
									
								
								backend-python/rwkv_pip/utils.py
									
									
									
									
										vendored
									
									
								
							@ -16,6 +16,7 @@ class PIPELINE_ARGS:
 | 
			
		||||
        top_k=0,
 | 
			
		||||
        alpha_frequency=0.2,
 | 
			
		||||
        alpha_presence=0.2,
 | 
			
		||||
        alpha_decay=0.996,
 | 
			
		||||
        token_ban=[],
 | 
			
		||||
        token_stop=[],
 | 
			
		||||
        chunk_len=256,
 | 
			
		||||
@ -25,6 +26,7 @@ class PIPELINE_ARGS:
 | 
			
		||||
        self.top_k = top_k
 | 
			
		||||
        self.alpha_frequency = alpha_frequency  # Frequency Penalty (as in GPT-3)
 | 
			
		||||
        self.alpha_presence = alpha_presence  # Presence Penalty (as in GPT-3)
 | 
			
		||||
        self.alpha_decay = alpha_decay  # gradually decay the penalty
 | 
			
		||||
        self.token_ban = token_ban  # ban the generation of some tokens
 | 
			
		||||
        self.token_stop = token_stop  # stop generation whenever you see any token here
 | 
			
		||||
        self.chunk_len = (
 | 
			
		||||
@ -84,7 +86,7 @@ class PIPELINE:
 | 
			
		||||
            sorted_ids = np.argsort(probs)
 | 
			
		||||
            sorted_probs = probs[sorted_ids][::-1]
 | 
			
		||||
            cumulative_probs = np.cumsum(sorted_probs)
 | 
			
		||||
            cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
 | 
			
		||||
            cutoff = float(sorted_probs[np.argmax(cumulative_probs >= top_p)])
 | 
			
		||||
            probs[probs < cutoff] = 0
 | 
			
		||||
            if top_k < len(probs) and top_k > 0:
 | 
			
		||||
                probs[sorted_ids[:-top_k]] = 0
 | 
			
		||||
@ -98,7 +100,7 @@ class PIPELINE:
 | 
			
		||||
            sorted_probs = probs[sorted_ids]
 | 
			
		||||
            sorted_probs = torch.flip(sorted_probs, dims=(0,))
 | 
			
		||||
            cumulative_probs = torch.cumsum(sorted_probs, dim=-1).cpu().numpy()
 | 
			
		||||
            cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
 | 
			
		||||
            cutoff = float(sorted_probs[np.argmax(cumulative_probs >= top_p)])
 | 
			
		||||
            probs[probs < cutoff] = 0
 | 
			
		||||
            if top_k < len(probs) and top_k > 0:
 | 
			
		||||
                probs[sorted_ids[:-top_k]] = 0
 | 
			
		||||
@ -133,10 +135,13 @@ class PIPELINE:
 | 
			
		||||
            if token in args.token_stop:
 | 
			
		||||
                break
 | 
			
		||||
            all_tokens += [token]
 | 
			
		||||
            for xxx in occurrence:
 | 
			
		||||
                occurrence[xxx] *= args.alpha_decay
 | 
			
		||||
            if token not in occurrence:
 | 
			
		||||
                occurrence[token] = 1
 | 
			
		||||
            else:
 | 
			
		||||
                occurrence[token] += 1
 | 
			
		||||
            # print(occurrence) # debug
 | 
			
		||||
 | 
			
		||||
            # output
 | 
			
		||||
            tmp = self.decode(all_tokens[out_last:])
 | 
			
		||||
 | 
			
		||||
@ -36,7 +36,7 @@ class AbstractRWKV(ABC):
 | 
			
		||||
                RWKV as Model,
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            from rwkv.model import (
 | 
			
		||||
            from rwkv_pip.model import (
 | 
			
		||||
                RWKV as Model,
 | 
			
		||||
            )
 | 
			
		||||
        from rwkv_pip.utils import PIPELINE
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										
											BIN
										
									
								
								backend-python/wkv_cuda_utils/wkv_cuda10_30.pyd
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								backend-python/wkv_cuda_utils/wkv_cuda10_30.pyd
									
									
									
									
										vendored
									
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								backend-python/wkv_cuda_utils/wkv_cuda40.pyd
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								backend-python/wkv_cuda_utils/wkv_cuda40.pyd
									
									
									
									
										vendored
									
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										734
									
								
								backend-python/wkv_cuda_utils/wkv_cuda_model.py
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										734
									
								
								backend-python/wkv_cuda_utils/wkv_cuda_model.py
									
									
									
									
										vendored
									
									
								
							@ -1,734 +0,0 @@
 | 
			
		||||
########################################################################################################
 | 
			
		||||
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
 | 
			
		||||
########################################################################################################
 | 
			
		||||
 | 
			
		||||
import types, gc, os, time, re
 | 
			
		||||
import torch
 | 
			
		||||
from torch.nn import functional as F
 | 
			
		||||
torch.backends.cudnn.benchmark = True
 | 
			
		||||
torch.backends.cudnn.allow_tf32 = True
 | 
			
		||||
torch.backends.cuda.matmul.allow_tf32 = True
 | 
			
		||||
current_path = os.path.dirname(os.path.abspath(__file__))
 | 
			
		||||
 | 
			
		||||
# https://zhuanlan.zhihu.com/p/612879065
 | 
			
		||||
def LoadPreCompileLibrary(file):
 | 
			
		||||
    import importlib
 | 
			
		||||
    import os
 | 
			
		||||
 | 
			
		||||
    import torch
 | 
			
		||||
 | 
			
		||||
    # load the custom_op_library and register the custom ops
 | 
			
		||||
    lib_dir = os.path.dirname(__file__)
 | 
			
		||||
    if os.name == "nt":
 | 
			
		||||
        # Register the main torchvision library location on the default DLL path
 | 
			
		||||
        import ctypes
 | 
			
		||||
        import sys
 | 
			
		||||
 | 
			
		||||
        kernel32 = ctypes.WinDLL("kernel32.dll", use_last_error=True)
 | 
			
		||||
        with_load_library_flags = hasattr(kernel32, "AddDllDirectory")
 | 
			
		||||
        prev_error_mode = kernel32.SetErrorMode(0x0001)
 | 
			
		||||
 | 
			
		||||
        if with_load_library_flags:
 | 
			
		||||
            kernel32.AddDllDirectory.restype = ctypes.c_void_p
 | 
			
		||||
 | 
			
		||||
        if sys.version_info >= (3, 8):
 | 
			
		||||
            os.add_dll_directory(lib_dir)
 | 
			
		||||
        elif with_load_library_flags:
 | 
			
		||||
            res = kernel32.AddDllDirectory(lib_dir)
 | 
			
		||||
            if res is None:
 | 
			
		||||
                err = ctypes.WinError(ctypes.get_last_error())
 | 
			
		||||
                err.strerror += f' Error adding "{lib_dir}" to the DLL directories.'
 | 
			
		||||
                raise ValueError(err)
 | 
			
		||||
 | 
			
		||||
        kernel32.SetErrorMode(prev_error_mode)
 | 
			
		||||
 | 
			
		||||
    loader_details = (
 | 
			
		||||
        importlib.machinery.ExtensionFileLoader,
 | 
			
		||||
        importlib.machinery.EXTENSION_SUFFIXES,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    extfinder = importlib.machinery.FileFinder(lib_dir, loader_details)
 | 
			
		||||
    ext_specs = extfinder.find_spec(file)
 | 
			
		||||
    if ext_specs is None:
 | 
			
		||||
        return False
 | 
			
		||||
 | 
			
		||||
    try:
 | 
			
		||||
        torch.ops.load_library(ext_specs.origin)
 | 
			
		||||
    except OSError as exc:
 | 
			
		||||
        return False
 | 
			
		||||
    return True
 | 
			
		||||
 | 
			
		||||
########################################################################################################
 | 
			
		||||
 | 
			
		||||
if os.environ.get('RWKV_JIT_ON') != '0':
 | 
			
		||||
    os.environ["RWKV_JIT_ON"] = '1'
 | 
			
		||||
    MyModule = torch.jit.ScriptModule
 | 
			
		||||
    MyFunction = torch.jit.script_method
 | 
			
		||||
    MyStatic = torch.jit.script
 | 
			
		||||
else:
 | 
			
		||||
    MyModule = torch.nn.Module
 | 
			
		||||
    def __nop(ob):
 | 
			
		||||
        return ob
 | 
			
		||||
    MyFunction = __nop
 | 
			
		||||
    MyStatic = __nop
 | 
			
		||||
 | 
			
		||||
if os.environ.get('RWKV_CUDA_ON') == '1':
 | 
			
		||||
    if LoadPreCompileLibrary('wkv_cuda') is False:
 | 
			
		||||
        from torch.utils.cpp_extension import load
 | 
			
		||||
        load(
 | 
			
		||||
            name=f"wkv_cuda",
 | 
			
		||||
            sources=[f"{current_path}/cuda/wrapper.cpp", f"{current_path}/cuda/operators.cu"],
 | 
			
		||||
            verbose=True,
 | 
			
		||||
            extra_cuda_cflags=["-t 4", "-std=c++17", "--use_fast_math", "-O3", "--extra-device-vectorization"],
 | 
			
		||||
            is_python_module=False)
 | 
			
		||||
 | 
			
		||||
    @MyStatic
 | 
			
		||||
    def cuda_wkv(T: int, C: int, w, u, k, v, aa, bb, pp):
 | 
			
		||||
        assert 1 * C % min(C, 32) == 0
 | 
			
		||||
        assert k.dtype == v.dtype == torch.float16 or k.dtype == v.dtype == torch.float32
 | 
			
		||||
        assert w.dtype == u.dtype == aa.dtype == bb.dtype == pp.dtype == torch.float32
 | 
			
		||||
        w = w.contiguous()
 | 
			
		||||
        u = u.contiguous()
 | 
			
		||||
        k = k.contiguous()
 | 
			
		||||
        v = v.contiguous()
 | 
			
		||||
        y = torch.empty((T, C), device=w.device, memory_format=torch.contiguous_format, dtype=k.dtype)
 | 
			
		||||
        torch.ops.rwkv.wkv_forward(1, T, C, w, u, k, v, y, aa, bb, pp)
 | 
			
		||||
        return y, aa, bb, pp
 | 
			
		||||
    @MyStatic
 | 
			
		||||
    def cuda_mm8_seq(B: int, N: int, M: int, x, w, mx, rx, my, ry):
 | 
			
		||||
        assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
 | 
			
		||||
        assert x.dtype == torch.float32 or x.dtype == torch.float16
 | 
			
		||||
        assert w.dtype == torch.uint8
 | 
			
		||||
        assert x.shape == [B, N]
 | 
			
		||||
        assert w.shape == [N, M]
 | 
			
		||||
        assert rx.shape == mx.shape == [M]
 | 
			
		||||
        assert ry.shape == my.shape == [N, 1]
 | 
			
		||||
        y = torch.empty((B, M), device=w.device, dtype=x.dtype)
 | 
			
		||||
        torch.ops.rwkv.mm8_seq(B, N, M, x, w, mx, rx, my, ry, y)
 | 
			
		||||
        return y
 | 
			
		||||
    @MyStatic
 | 
			
		||||
    def cuda_mm8_one(N: int, M: int, x, w, mx, rx, my, ry):
 | 
			
		||||
        assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
 | 
			
		||||
        assert x.dtype == torch.float32 or x.dtype == torch.float16
 | 
			
		||||
        assert w.dtype == torch.uint8
 | 
			
		||||
        assert x.shape == [N]
 | 
			
		||||
        assert w.shape == [N, M]
 | 
			
		||||
        assert rx.shape == mx.shape == [M]
 | 
			
		||||
        assert ry.shape == my.shape == [N, 1]
 | 
			
		||||
        y = torch.zeros((M,), device=w.device, dtype=torch.float32)
 | 
			
		||||
        torch.ops.rwkv.mm8_one(N, M, x, w, mx, rx, my, ry, y)
 | 
			
		||||
        return y.to(dtype=x.dtype)
 | 
			
		||||
else:
 | 
			
		||||
    os.environ["RWKV_CUDA_ON"] = '0'
 | 
			
		||||
 | 
			
		||||
########################################################################################################
 | 
			
		||||
 | 
			
		||||
class RWKV(MyModule):
 | 
			
		||||
    def __init__(self, model, strategy, verbose = True, convert_and_save_and_exit = None):
 | 
			
		||||
        super().__init__()
 | 
			
		||||
        if verbose:
 | 
			
		||||
            prxxx = lambda *args, **kwargs: print(*args, **kwargs)
 | 
			
		||||
        else:
 | 
			
		||||
            prxxx = lambda *args, **kwargs: None
 | 
			
		||||
 | 
			
		||||
        STRATEGY_REGEX = r"^(?:(?:^|->) *(?:cuda(?::[\d]+)?|cpu|mps) (?:fp(?:16|32)|bf16)(?:i8|i4|i3)?(?: \*[\d]+\+?)? *)+$"
 | 
			
		||||
        if not re.match(STRATEGY_REGEX, strategy):
 | 
			
		||||
            raise ValueError("Invalid strategy. Please read https://pypi.org/project/rwkv/")
 | 
			
		||||
 | 
			
		||||
        strategy = ('->'.join([x.strip() for x in strategy.split('->')])).replace('->', ' -> ')
 | 
			
		||||
        self.args = types.SimpleNamespace()
 | 
			
		||||
        args = self.args
 | 
			
		||||
        args.MODEL_NAME = model
 | 
			
		||||
        args.strategy_string = strategy
 | 
			
		||||
 | 
			
		||||
        # Rescale for fp16 mode: set x = x/2 every X layer (to avoid fp16 overflow)
 | 
			
		||||
        self.RESCALE_LAYER = 6 if 'fp16' in strategy else 0
 | 
			
		||||
        prxxx(f'RWKV_JIT_ON {os.environ["RWKV_JIT_ON"]} RWKV_CUDA_ON {os.environ["RWKV_CUDA_ON"]} RESCALE_LAYER {self.RESCALE_LAYER}\n')
 | 
			
		||||
 | 
			
		||||
        args.MODEL_NAME = args.MODEL_NAME.strip()
 | 
			
		||||
        if not args.MODEL_NAME.endswith('.pth'):
 | 
			
		||||
            args.MODEL_NAME += '.pth'
 | 
			
		||||
        prxxx(f'Loading {args.MODEL_NAME} ...')
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            self.w = torch.load(args.MODEL_NAME, map_location='cpu') # load model to CPU first
 | 
			
		||||
            gc.collect()
 | 
			
		||||
            w = self.w
 | 
			
		||||
 | 
			
		||||
            ALREADY_CONVERTED = False
 | 
			
		||||
            if '_strategy' in w:
 | 
			
		||||
                ALREADY_CONVERTED = True
 | 
			
		||||
                assert convert_and_save_and_exit == None # you should only convert a raw model
 | 
			
		||||
                prxxx(f"Converted model: strategy {w['_strategy']}, version {w['_version']}\n")
 | 
			
		||||
                assert w['_strategy'] == args.strategy_string # if you are using a new strategy, re-convert the model
 | 
			
		||||
                assert float(w['_version']) >= 0.7 # sometimes you should re-convert using latest convert_model.py
 | 
			
		||||
                assert w['_rescale_layer'] == self.RESCALE_LAYER
 | 
			
		||||
                del w['_strategy']
 | 
			
		||||
                del w['_version']
 | 
			
		||||
                del w['_rescale_layer']
 | 
			
		||||
            
 | 
			
		||||
            args.n_embd = w['emb.weight'].shape[1]
 | 
			
		||||
            args.n_layer = 0
 | 
			
		||||
            keys = list(w.keys())
 | 
			
		||||
            for x in keys:
 | 
			
		||||
                layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
 | 
			
		||||
                args.n_layer = max(args.n_layer, layer_id+1)
 | 
			
		||||
 | 
			
		||||
            ####################### Compute strategy
 | 
			
		||||
 | 
			
		||||
            s = [x.strip().split(' ') for x in strategy.split('->')]
 | 
			
		||||
            plan = [0] * len(s)
 | 
			
		||||
            stream_i = -1
 | 
			
		||||
            stream_count = 0
 | 
			
		||||
            to_allocate = args.n_layer + 1
 | 
			
		||||
            allocated = 0
 | 
			
		||||
            free_slots = 0
 | 
			
		||||
            for i in range(len(s)):
 | 
			
		||||
                si = s[i]
 | 
			
		||||
                si1 = si[1]
 | 
			
		||||
                if si1.startswith('fp32'): si[1] = [torch.float]
 | 
			
		||||
                elif si1.startswith('fp16'): si[1] = [torch.float16]
 | 
			
		||||
                elif si1.startswith('bf16'): si[1] = [torch.bfloat16]
 | 
			
		||||
                if si1.endswith('i8'): si[1] += [torch.uint8]
 | 
			
		||||
                else: si[1] += [si[1][0]]
 | 
			
		||||
                if len(si) > 2:
 | 
			
		||||
                    ss = si[2]
 | 
			
		||||
                    assert ss.startswith('*')
 | 
			
		||||
                    if ss.endswith('+'):
 | 
			
		||||
                        plan[i] = int(ss[1:-1])
 | 
			
		||||
                        stream_i = i
 | 
			
		||||
                    else:
 | 
			
		||||
                        plan[i] = int(ss[1:])
 | 
			
		||||
                    allocated += plan[i]
 | 
			
		||||
                    if allocated >= to_allocate:
 | 
			
		||||
                        plan[i] += to_allocate - allocated
 | 
			
		||||
                        break
 | 
			
		||||
                else:
 | 
			
		||||
                    free_slots += 1
 | 
			
		||||
            if stream_i < 0:
 | 
			
		||||
                if free_slots > 0 and to_allocate > allocated:
 | 
			
		||||
                    for i in range(len(s)):
 | 
			
		||||
                        if plan[i] == 0:
 | 
			
		||||
                            plan[i] = (to_allocate - allocated) // free_slots
 | 
			
		||||
                            allocated += plan[i]
 | 
			
		||||
                            free_slots -= 1
 | 
			
		||||
                if to_allocate > allocated:
 | 
			
		||||
                    plan[len(s)-1] += to_allocate - allocated
 | 
			
		||||
            else:
 | 
			
		||||
                if to_allocate > allocated:
 | 
			
		||||
                    stream_count = to_allocate - allocated
 | 
			
		||||
                    plan[stream_i] += stream_count
 | 
			
		||||
            prxxx(f'Strategy: (total {args.n_layer}+1={args.n_layer+1} layers)')
 | 
			
		||||
            for i in range(len(s)):
 | 
			
		||||
                ss = s[i]
 | 
			
		||||
                if i != stream_i:
 | 
			
		||||
                    prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]} layers')
 | 
			
		||||
                else:
 | 
			
		||||
                    prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]-stream_count} layers, stream {stream_count} layers')
 | 
			
		||||
                plan[i] += (0 if i == 0 else plan[i-1])
 | 
			
		||||
            self.strategy = [None] * (args.n_layer + 1)
 | 
			
		||||
            strategy = self.strategy
 | 
			
		||||
            for n in range(args.n_layer + 1):
 | 
			
		||||
                for i in range(len(s)):
 | 
			
		||||
                    if n < plan[i]:
 | 
			
		||||
                        strategy[n] = types.SimpleNamespace()
 | 
			
		||||
                        strategy[n].device = s[i][0]
 | 
			
		||||
                        strategy[n].atype = s[i][1][0]
 | 
			
		||||
                        strategy[n].wtype = s[i][1][1]
 | 
			
		||||
                        strategy[n].stream = False
 | 
			
		||||
                        if i == stream_i and n >= (plan[i] - stream_count):
 | 
			
		||||
                            strategy[n].stream = True
 | 
			
		||||
                        break
 | 
			
		||||
                prxxx(f"{n}-{strategy[n].device}-{str(strategy[n].atype).replace('torch.','')}-{str(strategy[n].wtype).replace('torch.','')}{'-stream' if strategy[n].stream else ''}",end=' ')
 | 
			
		||||
            prxxx()
 | 
			
		||||
 | 
			
		||||
            ####################### Load weights to self.w
 | 
			
		||||
 | 
			
		||||
            if not ALREADY_CONVERTED:
 | 
			
		||||
                try: # precompute embedding
 | 
			
		||||
                    w['emb.weight'] = F.layer_norm(w['emb.weight'], (args.n_embd,), weight=w['blocks.0.ln0.weight'], bias=w['blocks.0.ln0.bias'])
 | 
			
		||||
                except:
 | 
			
		||||
                    w['emb.weight'] = F.layer_norm(w['emb.weight'].float(), (args.n_embd,), weight=w['blocks.0.ln0.weight'].float(), bias=w['blocks.0.ln0.bias'].float())
 | 
			
		||||
                del w['blocks.0.ln0.weight']
 | 
			
		||||
                del w['blocks.0.ln0.bias']
 | 
			
		||||
 | 
			
		||||
            print_need_newline = False
 | 
			
		||||
            keys = list(w.keys())
 | 
			
		||||
            for x in keys:
 | 
			
		||||
                w[x].requires_grad = False
 | 
			
		||||
                layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
 | 
			
		||||
                if ('ln_out.' in x) or ('head.' in x):
 | 
			
		||||
                    layer_id = args.n_layer
 | 
			
		||||
                dd = strategy[layer_id]
 | 
			
		||||
                DEVICE = dd.device
 | 
			
		||||
                ATYPE = dd.atype
 | 
			
		||||
                WTYPE = dd.wtype
 | 
			
		||||
 | 
			
		||||
                if not ALREADY_CONVERTED:
 | 
			
		||||
                    if self.RESCALE_LAYER > 0:
 | 
			
		||||
                        if 'att.output.weight' in x:
 | 
			
		||||
                            w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
 | 
			
		||||
                        if 'ffn.value.weight' in x:
 | 
			
		||||
                            w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
 | 
			
		||||
 | 
			
		||||
                    if '.time_' in x:
 | 
			
		||||
                        w[x] = w[x].squeeze()
 | 
			
		||||
                    if 'key.weight' in x or 'value.weight' in x or 'receptance.weight' in x or 'output.weight' in x or 'head.weight' in x:
 | 
			
		||||
                        w[x] = w[x].t()
 | 
			
		||||
 | 
			
		||||
                    if '.time_decay' in x: # need fp32 for this
 | 
			
		||||
                        w[x] = -torch.exp(w[x].float())
 | 
			
		||||
                    elif '.time_first' in x: # need fp32 for this
 | 
			
		||||
                        w[x] = w[x].float()
 | 
			
		||||
                    else:
 | 
			
		||||
                        if (len(w[x].shape) == 2) and ('emb' not in x):
 | 
			
		||||
                            if WTYPE != torch.uint8:
 | 
			
		||||
                                w[x] = w[x].to(dtype=WTYPE)
 | 
			
		||||
                            else:
 | 
			
		||||
                                w[x] = w[x].float()
 | 
			
		||||
 | 
			
		||||
                                if w[x].shape[0] > w[x].shape[1]:
 | 
			
		||||
                                    w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
 | 
			
		||||
                                    w[x] = w[x] - w[x+'_my']
 | 
			
		||||
                                    w[x+'_mx'] = torch.amin(w[x], dim=0)
 | 
			
		||||
                                    w[x] = w[x] - w[x+'_mx']
 | 
			
		||||
                                    w[x+'_rx'] = torch.amax(w[x], dim=0)
 | 
			
		||||
                                    w[x] = w[x] / w[x+'_rx']
 | 
			
		||||
                                    w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
 | 
			
		||||
                                    w[x] = w[x] / w[x+'_ry']
 | 
			
		||||
                                else:
 | 
			
		||||
                                    w[x+'_mx'] = torch.amin(w[x], dim=0)
 | 
			
		||||
                                    w[x] = w[x] - w[x+'_mx']
 | 
			
		||||
                                    w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
 | 
			
		||||
                                    w[x] = w[x] - w[x+'_my']
 | 
			
		||||
                                    w[x+'_rx'] = torch.amax(w[x], dim=0)
 | 
			
		||||
                                    w[x] = w[x] / w[x+'_rx']
 | 
			
		||||
                                    w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
 | 
			
		||||
                                    w[x] = w[x] / w[x+'_ry']
 | 
			
		||||
 | 
			
		||||
                                w[x] = torch.clip(torch.floor(w[x] * 256), min=0, max=255).to(dtype=torch.uint8)
 | 
			
		||||
                                w[x+'_mx'] = w[x+'_mx'].to(dtype=ATYPE).contiguous()
 | 
			
		||||
                                w[x+'_rx'] = (w[x+'_rx'] / 16).to(dtype=ATYPE).contiguous()
 | 
			
		||||
                                w[x+'_my'] = w[x+'_my'].to(dtype=ATYPE).contiguous()
 | 
			
		||||
                                w[x+'_ry'] = (w[x+'_ry'] / 16).to(dtype=ATYPE).contiguous()
 | 
			
		||||
                        else:
 | 
			
		||||
                            w[x] = w[x].to(dtype=ATYPE)
 | 
			
		||||
                
 | 
			
		||||
                if convert_and_save_and_exit == None:
 | 
			
		||||
                    if 'emb.' in x:
 | 
			
		||||
                        w[x] = w[x].contiguous()
 | 
			
		||||
                    elif (dd.stream) and (x.endswith('key.weight') or x.endswith('value.weight') or x.endswith('receptance.weight') or x.endswith('output.weight')):
 | 
			
		||||
                        try:
 | 
			
		||||
                            w[x] = w[x].contiguous().pin_memory() # if you see "CUDA error: out of memory" here, that's out of CPU RAM, not VRAM. Get more RAM :)
 | 
			
		||||
                        except:
 | 
			
		||||
                            print('Note: You are running out of RAM. Get more CPU RAM. Now this will run much slower.')
 | 
			
		||||
                    elif DEVICE != 'cpu':
 | 
			
		||||
                        w[x] = w[x].to(device=DEVICE).contiguous()
 | 
			
		||||
                    
 | 
			
		||||
                    if (dd.stream) or (DEVICE != 'cpu'):
 | 
			
		||||
                        try:
 | 
			
		||||
                            w[x+'_mx'] = w[x+'_mx'].to(device=DEVICE).contiguous()
 | 
			
		||||
                            w[x+'_rx'] = w[x+'_rx'].to(device=DEVICE).contiguous()
 | 
			
		||||
                            w[x+'_my'] = w[x+'_my'].to(device=DEVICE).contiguous()
 | 
			
		||||
                            w[x+'_ry'] = w[x+'_ry'].to(device=DEVICE).contiguous()
 | 
			
		||||
                        except:
 | 
			
		||||
                            pass
 | 
			
		||||
 | 
			
		||||
                if 'ffn.value.weight' in x:
 | 
			
		||||
                    gc.collect()
 | 
			
		||||
                    if 'cuda' in args.strategy_string:
 | 
			
		||||
                        torch.cuda.empty_cache()
 | 
			
		||||
 | 
			
		||||
                shape = [i for i in w[x].shape if i != 1]
 | 
			
		||||
                if len(shape) > 1:
 | 
			
		||||
                    shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)}"
 | 
			
		||||
                else:
 | 
			
		||||
                    shape = f" {str(shape[0]).rjust(5)}      "
 | 
			
		||||
                if layer_id == 0 or layer_id >= args.n_layer-1:
 | 
			
		||||
                    if print_need_newline:
 | 
			
		||||
                        prxxx('\n', end = '')
 | 
			
		||||
                        print_need_newline = False
 | 
			
		||||
                    dt = str(w[x].dtype).replace('torch.', '')
 | 
			
		||||
                    dt = dt.replace('float32', 'f32').replace('bfloat16', 'bf16').replace('float16', 'f16').replace('uint8', 'i8')
 | 
			
		||||
                    prxxx(x.ljust(32), dt.rjust(4), str(w[x].device).rjust(8), shape, ' (pinned)' if w[x].is_pinned() else '')
 | 
			
		||||
                else:
 | 
			
		||||
                    print_need_newline = True
 | 
			
		||||
                    prxxx('.', end = '', flush = True)
 | 
			
		||||
            
 | 
			
		||||
            if convert_and_save_and_exit:
 | 
			
		||||
                w['_strategy'] = args.strategy_string
 | 
			
		||||
                w['_rescale_layer'] = self.RESCALE_LAYER
 | 
			
		||||
                w['_version'] = '0.7'
 | 
			
		||||
                if not convert_and_save_and_exit.endswith('.pth'):
 | 
			
		||||
                    convert_and_save_and_exit += '.pth'
 | 
			
		||||
                prxxx(f'Saving to {convert_and_save_and_exit}...')
 | 
			
		||||
                torch.save(w, convert_and_save_and_exit)
 | 
			
		||||
                prxxx(f'Converted and saved. Now this will exit.')
 | 
			
		||||
                exit(0)
 | 
			
		||||
            
 | 
			
		||||
            gc.collect()
 | 
			
		||||
            if 'cuda' in args.strategy_string:
 | 
			
		||||
                torch.cuda.empty_cache()
 | 
			
		||||
 | 
			
		||||
    @MyFunction
 | 
			
		||||
    def torch_mm8_seq(self, x, w, mx, rx, my, ry):
 | 
			
		||||
        return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)
 | 
			
		||||
 | 
			
		||||
    @MyFunction
 | 
			
		||||
    def torch_mm8_one(self, x, w, mx, rx, my, ry):
 | 
			
		||||
        return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)
 | 
			
		||||
 | 
			
		||||
    if os.environ.get('RWKV_CUDA_ON') == '1':
 | 
			
		||||
        @MyFunction
 | 
			
		||||
        def mm8_seq(self, x, w, mx, rx, my, ry):
 | 
			
		||||
            if w.device.type == 'cuda' and x.dtype == torch.float16:
 | 
			
		||||
                B, N, M = x.shape[0], w.shape[0], w.shape[1]
 | 
			
		||||
                return cuda_mm8_seq(B, N, M, x, w, mx, rx, my, ry)
 | 
			
		||||
            else:
 | 
			
		||||
                return self.torch_mm8_seq(x, w, mx, rx, my, ry)
 | 
			
		||||
        @MyFunction
 | 
			
		||||
        def mm8_one(self, x, w, mx, rx, my, ry):
 | 
			
		||||
            if w.device.type == 'cuda':
 | 
			
		||||
                N, M = w.shape[0], w.shape[1]
 | 
			
		||||
                return cuda_mm8_one(N, M, x, w, mx, rx, my, ry)
 | 
			
		||||
            else:
 | 
			
		||||
                return self.torch_mm8_one(x, w, mx, rx, my, ry)
 | 
			
		||||
    else:
 | 
			
		||||
        @MyFunction
 | 
			
		||||
        def mm8_seq(self, x, w, mx, rx, my, ry):
 | 
			
		||||
            return self.torch_mm8_seq(x, w, mx, rx, my, ry)
 | 
			
		||||
        @MyFunction
 | 
			
		||||
        def mm8_one(self, x, w, mx, rx, my, ry):
 | 
			
		||||
            return self.torch_mm8_one(x, w, mx, rx, my, ry)
 | 
			
		||||
 | 
			
		||||
    ########################################################################################################
 | 
			
		||||
 | 
			
		||||
    @MyFunction
 | 
			
		||||
    def ffn_one(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
 | 
			
		||||
        xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
 | 
			
		||||
        kx = xx * k_mix + sx * (1 - k_mix)
 | 
			
		||||
        rx = xx * r_mix + sx * (1 - r_mix)
 | 
			
		||||
 | 
			
		||||
        r = torch.sigmoid(rx @ rw)
 | 
			
		||||
        vx = torch.square(torch.relu(kx @ kw))
 | 
			
		||||
        out = r * (vx @ vw)
 | 
			
		||||
        return x + out, xx
 | 
			
		||||
 | 
			
		||||
    @MyFunction
 | 
			
		||||
    def ffn_one_i8(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
 | 
			
		||||
        xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
 | 
			
		||||
        kx = xx * k_mix + sx * (1 - k_mix)
 | 
			
		||||
        rx = xx * r_mix + sx * (1 - r_mix)
 | 
			
		||||
 | 
			
		||||
        r = torch.sigmoid(self.mm8_one(rx, rw, rmx, rrx, rmy, rry))
 | 
			
		||||
        vx = torch.square(torch.relu(self.mm8_one(kx, kw, kmx, krx, kmy, kry)))
 | 
			
		||||
        out = r * (self.mm8_one(vx, vw, vmx, vrx, vmy, vry))
 | 
			
		||||
        return x + out, xx
 | 
			
		||||
    
 | 
			
		||||
    ########################################################################################################
 | 
			
		||||
 | 
			
		||||
    @MyFunction
 | 
			
		||||
    def ffn_seq(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
 | 
			
		||||
        xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
 | 
			
		||||
        sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
 | 
			
		||||
        kx = xx * k_mix + sx * (1 - k_mix)
 | 
			
		||||
        rx = xx * r_mix + sx * (1 - r_mix)
 | 
			
		||||
 | 
			
		||||
        r = torch.sigmoid(rx @ rw)
 | 
			
		||||
        vx = torch.square(torch.relu(kx @ kw))
 | 
			
		||||
        out = r * (vx @ vw)
 | 
			
		||||
        return x + out, xx[-1,:]
 | 
			
		||||
 | 
			
		||||
    @MyFunction
 | 
			
		||||
    def ffn_seq_i8(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
 | 
			
		||||
        xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
 | 
			
		||||
        sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
 | 
			
		||||
        kx = xx * k_mix + sx * (1 - k_mix)
 | 
			
		||||
        rx = xx * r_mix + sx * (1 - r_mix)
 | 
			
		||||
 | 
			
		||||
        r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
 | 
			
		||||
        vx = torch.square(torch.relu(self.mm8_seq(kx, kw, kmx, krx, kmy, kry)))
 | 
			
		||||
        out = r * (self.mm8_seq(vx, vw, vmx, vrx, vmy, vry))
 | 
			
		||||
        return x + out, xx[-1,:]
 | 
			
		||||
 | 
			
		||||
    ########################################################################################################
 | 
			
		||||
 | 
			
		||||
    @MyFunction
 | 
			
		||||
    def att_one(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
 | 
			
		||||
        xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
 | 
			
		||||
        kx = xx * k_mix + sx * (1 - k_mix)
 | 
			
		||||
        vx = xx * v_mix + sx * (1 - v_mix)
 | 
			
		||||
        rx = xx * r_mix + sx * (1 - r_mix)
 | 
			
		||||
 | 
			
		||||
        r = torch.sigmoid(rx @ rw)
 | 
			
		||||
        k = (kx @ kw).float()
 | 
			
		||||
        v = (vx @ vw).float()
 | 
			
		||||
 | 
			
		||||
        ww = t_first + k
 | 
			
		||||
        p = torch.maximum(pp, ww)
 | 
			
		||||
        e1 = torch.exp(pp - p)
 | 
			
		||||
        e2 = torch.exp(ww - p)
 | 
			
		||||
        wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
 | 
			
		||||
        ww = t_decay + pp
 | 
			
		||||
        p = torch.maximum(ww, k)
 | 
			
		||||
        e1 = torch.exp(ww - p)
 | 
			
		||||
        e2 = torch.exp(k - p)
 | 
			
		||||
 | 
			
		||||
        out = (r * wkv) @ ow
 | 
			
		||||
        return x + out, xx, e1 * aa + e2 * v, e1 * bb + e2, p
 | 
			
		||||
 | 
			
		||||
    @MyFunction
 | 
			
		||||
    def att_one_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
 | 
			
		||||
        xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
 | 
			
		||||
        kx = xx * k_mix + sx * (1 - k_mix)
 | 
			
		||||
        vx = xx * v_mix + sx * (1 - v_mix)
 | 
			
		||||
        rx = xx * r_mix + sx * (1 - r_mix)
 | 
			
		||||
 | 
			
		||||
        r = torch.sigmoid(self.mm8_one(rx, rw, rmx, rrx, rmy, rry))
 | 
			
		||||
        k = (self.mm8_one(kx, kw, kmx, krx, kmy, kry)).float()
 | 
			
		||||
        v = (self.mm8_one(vx, vw, vmx, vrx, vmy, vry)).float()
 | 
			
		||||
 | 
			
		||||
        ww = t_first + k
 | 
			
		||||
        p = torch.maximum(pp, ww)
 | 
			
		||||
        e1 = torch.exp(pp - p)
 | 
			
		||||
        e2 = torch.exp(ww - p)
 | 
			
		||||
        wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
 | 
			
		||||
        ww = t_decay + pp
 | 
			
		||||
        p = torch.maximum(ww, k)
 | 
			
		||||
        e1 = torch.exp(ww - p)
 | 
			
		||||
        e2 = torch.exp(k - p)
 | 
			
		||||
 | 
			
		||||
        out = self.mm8_one(r * wkv, ow, omx, orx, omy, ory)
 | 
			
		||||
        return x + out, xx, e1 * aa + e2 * v, e1 * bb + e2, p
 | 
			
		||||
 | 
			
		||||
    ########################################################################################################
 | 
			
		||||
 | 
			
		||||
    @MyFunction
 | 
			
		||||
    def att_seq(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
 | 
			
		||||
        xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
 | 
			
		||||
        sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
 | 
			
		||||
        kx = xx * k_mix + sx * (1 - k_mix)
 | 
			
		||||
        vx = xx * v_mix + sx * (1 - v_mix)
 | 
			
		||||
        rx = xx * r_mix + sx * (1 - r_mix)
 | 
			
		||||
 | 
			
		||||
        r = torch.sigmoid(rx @ rw)
 | 
			
		||||
        k = (kx @ kw).float()
 | 
			
		||||
        v = (vx @ vw).float()
 | 
			
		||||
 | 
			
		||||
        T = x.shape[0]
 | 
			
		||||
        for t in range(T):
 | 
			
		||||
            kk = k[t]
 | 
			
		||||
            vv = v[t]
 | 
			
		||||
            ww = t_first + kk
 | 
			
		||||
            p = torch.maximum(pp, ww)
 | 
			
		||||
            e1 = torch.exp(pp - p)
 | 
			
		||||
            e2 = torch.exp(ww - p)
 | 
			
		||||
            sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
 | 
			
		||||
            ww = t_decay + pp
 | 
			
		||||
            p = torch.maximum(ww, kk)
 | 
			
		||||
            e1 = torch.exp(ww - p)
 | 
			
		||||
            e2 = torch.exp(kk - p)
 | 
			
		||||
            aa = e1 * aa + e2 * vv
 | 
			
		||||
            bb = e1 * bb + e2
 | 
			
		||||
            pp = p
 | 
			
		||||
        out = (r * sx) @ ow
 | 
			
		||||
        return x + out, xx[-1,:], aa, bb, pp
 | 
			
		||||
 | 
			
		||||
    @MyFunction
 | 
			
		||||
    def att_seq_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
 | 
			
		||||
        xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
 | 
			
		||||
        sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
 | 
			
		||||
        kx = xx * k_mix + sx * (1 - k_mix)
 | 
			
		||||
        vx = xx * v_mix + sx * (1 - v_mix)
 | 
			
		||||
        rx = xx * r_mix + sx * (1 - r_mix)
 | 
			
		||||
 | 
			
		||||
        r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
 | 
			
		||||
        k = self.mm8_seq(kx, kw, kmx, krx, kmy, kry).float()
 | 
			
		||||
        v = self.mm8_seq(vx, vw, vmx, vrx, vmy, vry).float()
 | 
			
		||||
 | 
			
		||||
        T = x.shape[0]
 | 
			
		||||
        for t in range(T):
 | 
			
		||||
            kk = k[t]
 | 
			
		||||
            vv = v[t]
 | 
			
		||||
            ww = t_first + kk
 | 
			
		||||
            p = torch.maximum(pp, ww)
 | 
			
		||||
            e1 = torch.exp(pp - p)
 | 
			
		||||
            e2 = torch.exp(ww - p)
 | 
			
		||||
            sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
 | 
			
		||||
            ww = t_decay + pp
 | 
			
		||||
            p = torch.maximum(ww, kk)
 | 
			
		||||
            e1 = torch.exp(ww - p)
 | 
			
		||||
            e2 = torch.exp(kk - p)
 | 
			
		||||
            aa = e1 * aa + e2 * vv
 | 
			
		||||
            bb = e1 * bb + e2
 | 
			
		||||
            pp = p
 | 
			
		||||
        out = self.mm8_seq(r * sx, ow, omx, orx, omy, ory)
 | 
			
		||||
        return x + out, xx[-1,:], aa, bb, pp
 | 
			
		||||
 | 
			
		||||
    ########################################################################################################
 | 
			
		||||
 | 
			
		||||
    if os.environ["RWKV_CUDA_ON"] == '1':
 | 
			
		||||
        @MyFunction
 | 
			
		||||
        def cuda_att_seq(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
 | 
			
		||||
            T, C = x.size()
 | 
			
		||||
            xx = F.layer_norm(x, (C,), weight=ln_w, bias=ln_b)
 | 
			
		||||
            sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
 | 
			
		||||
            kx = xx * k_mix + sx * (1 - k_mix)
 | 
			
		||||
            vx = xx * v_mix + sx * (1 - v_mix)
 | 
			
		||||
            rx = xx * r_mix + sx * (1 - r_mix)
 | 
			
		||||
 | 
			
		||||
            r = torch.sigmoid(rx @ rw)
 | 
			
		||||
            k = kx @ kw
 | 
			
		||||
            v = vx @ vw
 | 
			
		||||
            y, aa, bb, pp = cuda_wkv(T, C, t_decay, t_first, k, v, aa, bb, pp)
 | 
			
		||||
            
 | 
			
		||||
            out = (r * y) @ ow
 | 
			
		||||
            return x + out, xx[-1,:], aa, bb, pp
 | 
			
		||||
 | 
			
		||||
        @MyFunction
 | 
			
		||||
        def cuda_att_seq_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
 | 
			
		||||
            T, C = x.size()
 | 
			
		||||
            xx = F.layer_norm(x, (C,), weight=ln_w, bias=ln_b)
 | 
			
		||||
            sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
 | 
			
		||||
            kx = xx * k_mix + sx * (1 - k_mix)
 | 
			
		||||
            vx = xx * v_mix + sx * (1 - v_mix)
 | 
			
		||||
            rx = xx * r_mix + sx * (1 - r_mix)
 | 
			
		||||
 | 
			
		||||
            r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
 | 
			
		||||
            k = self.mm8_seq(kx, kw, kmx, krx, kmy, kry)
 | 
			
		||||
            v = self.mm8_seq(vx, vw, vmx, vrx, vmy, vry)
 | 
			
		||||
            y, aa, bb, pp = cuda_wkv(T, C, t_decay, t_first, k, v, aa, bb, pp)
 | 
			
		||||
 | 
			
		||||
            out = self.mm8_seq(r * y, ow, omx, orx, omy, ory)
 | 
			
		||||
            return x + out, xx[-1,:], aa, bb, pp
 | 
			
		||||
 | 
			
		||||
    ########################################################################################################
 | 
			
		||||
 | 
			
		||||
    def forward(self, tokens, state, full_output=False):
 | 
			
		||||
        with torch.no_grad():
 | 
			
		||||
            w = self.w
 | 
			
		||||
            args = self.args
 | 
			
		||||
 | 
			
		||||
            if state == None:
 | 
			
		||||
                state = [None] * args.n_layer * 5
 | 
			
		||||
                for i in range(args.n_layer): # state: 0=att_xx 1=att_aa 2=att_bb 3=att_pp 4=ffn_xx
 | 
			
		||||
                    dd = self.strategy[i]
 | 
			
		||||
                    dev = dd.device
 | 
			
		||||
                    atype = dd.atype
 | 
			
		||||
                    state[i*5+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
 | 
			
		||||
                    state[i*5+1] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous()
 | 
			
		||||
                    state[i*5+2] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous()
 | 
			
		||||
                    state[i*5+3] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous() - 1e30
 | 
			
		||||
                    state[i*5+4] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
 | 
			
		||||
 | 
			
		||||
            seq_mode = len(tokens) > 1
 | 
			
		||||
 | 
			
		||||
            x = w['emb.weight'][tokens if seq_mode else tokens[0]]
 | 
			
		||||
 | 
			
		||||
            for i in range(args.n_layer):
 | 
			
		||||
                bbb = f'blocks.{i}.'
 | 
			
		||||
                att = f'blocks.{i}.att.'
 | 
			
		||||
                ffn = f'blocks.{i}.ffn.'
 | 
			
		||||
                dd = self.strategy[i]
 | 
			
		||||
                dev = dd.device
 | 
			
		||||
                atype = dd.atype
 | 
			
		||||
                wtype = dd.wtype
 | 
			
		||||
                if seq_mode:
 | 
			
		||||
                    if 'cuda' in str(dev) and os.environ["RWKV_CUDA_ON"] == '1':
 | 
			
		||||
                        ATT = self.cuda_att_seq if wtype != torch.uint8 else self.cuda_att_seq_i8
 | 
			
		||||
                    else:
 | 
			
		||||
                        ATT = self.att_seq if wtype != torch.uint8 else self.att_seq_i8
 | 
			
		||||
                    FFN = self.ffn_seq if wtype != torch.uint8 else self.ffn_seq_i8
 | 
			
		||||
                else:
 | 
			
		||||
                    ATT = self.att_one if wtype != torch.uint8 else self.att_one_i8
 | 
			
		||||
                    FFN = self.ffn_one if wtype != torch.uint8 else self.ffn_one_i8
 | 
			
		||||
 | 
			
		||||
                x = x.to(dtype=atype, device=dev)
 | 
			
		||||
 | 
			
		||||
                kw = w[f'{att}key.weight']
 | 
			
		||||
                vw = w[f'{att}value.weight']
 | 
			
		||||
                rw = w[f'{att}receptance.weight']
 | 
			
		||||
                ow = w[f'{att}output.weight']
 | 
			
		||||
                if dd.stream:
 | 
			
		||||
                    kw = kw.to(device=dev, non_blocking=True)
 | 
			
		||||
                    vw = vw.to(device=dev, non_blocking=True)
 | 
			
		||||
                    rw = rw.to(device=dev, non_blocking=True)
 | 
			
		||||
                    ow = ow.to(device=dev, non_blocking=True)
 | 
			
		||||
                kmx = w[f'{att}key.weight_mx'] if wtype == torch.uint8 else x
 | 
			
		||||
                krx = w[f'{att}key.weight_rx'] if wtype == torch.uint8 else x
 | 
			
		||||
                kmy = w[f'{att}key.weight_my'] if wtype == torch.uint8 else x
 | 
			
		||||
                kry = w[f'{att}key.weight_ry'] if wtype == torch.uint8 else x
 | 
			
		||||
                vmx = w[f'{att}value.weight_mx'] if wtype == torch.uint8 else x
 | 
			
		||||
                vrx = w[f'{att}value.weight_rx'] if wtype == torch.uint8 else x
 | 
			
		||||
                vmy = w[f'{att}value.weight_my'] if wtype == torch.uint8 else x
 | 
			
		||||
                vry = w[f'{att}value.weight_ry'] if wtype == torch.uint8 else x
 | 
			
		||||
                rmx = w[f'{att}receptance.weight_mx'] if wtype == torch.uint8 else x
 | 
			
		||||
                rrx = w[f'{att}receptance.weight_rx'] if wtype == torch.uint8 else x
 | 
			
		||||
                rmy = w[f'{att}receptance.weight_my'] if wtype == torch.uint8 else x
 | 
			
		||||
                rry = w[f'{att}receptance.weight_ry'] if wtype == torch.uint8 else x
 | 
			
		||||
                omx = w[f'{att}output.weight_mx'] if wtype == torch.uint8 else x
 | 
			
		||||
                orx = w[f'{att}output.weight_rx'] if wtype == torch.uint8 else x
 | 
			
		||||
                omy = w[f'{att}output.weight_my'] if wtype == torch.uint8 else x
 | 
			
		||||
                ory = w[f'{att}output.weight_ry'] if wtype == torch.uint8 else x
 | 
			
		||||
                x, state[i*5+0], state[i*5+1], state[i*5+2], state[i*5+3] = ATT(
 | 
			
		||||
                    x, state[i*5+0], state[i*5+1], state[i*5+2], state[i*5+3],
 | 
			
		||||
                    w[f'{bbb}ln1.weight'], w[f'{bbb}ln1.bias'],
 | 
			
		||||
                    w[f'{att}time_mix_k'], w[f'{att}time_mix_v'], w[f'{att}time_mix_r'],
 | 
			
		||||
                    w[f'{att}time_decay'], w[f'{att}time_first'],
 | 
			
		||||
                    kw, vw, rw, ow,
 | 
			
		||||
                    kmx, krx, kmy, kry,
 | 
			
		||||
                    vmx, vrx, vmy, vry,
 | 
			
		||||
                    rmx, rrx, rmy, rry,
 | 
			
		||||
                    omx, orx, omy, ory,
 | 
			
		||||
                    )
 | 
			
		||||
                if dd.stream:
 | 
			
		||||
                    del kw, vw, rw, ow
 | 
			
		||||
 | 
			
		||||
                kw = w[f'{ffn}key.weight']
 | 
			
		||||
                vw = w[f'{ffn}value.weight']
 | 
			
		||||
                rw = w[f'{ffn}receptance.weight']
 | 
			
		||||
                if dd.stream:
 | 
			
		||||
                    kw = kw.to(device=dev, non_blocking=True)
 | 
			
		||||
                    vw = vw.to(device=dev, non_blocking=True)
 | 
			
		||||
                    rw = rw.to(device=dev, non_blocking=True)
 | 
			
		||||
                kmx = w[f'{ffn}key.weight_mx'] if wtype == torch.uint8 else x
 | 
			
		||||
                krx = w[f'{ffn}key.weight_rx'] if wtype == torch.uint8 else x
 | 
			
		||||
                kmy = w[f'{ffn}key.weight_my'] if wtype == torch.uint8 else x
 | 
			
		||||
                kry = w[f'{ffn}key.weight_ry'] if wtype == torch.uint8 else x
 | 
			
		||||
                vmx = w[f'{ffn}value.weight_mx'] if wtype == torch.uint8 else x
 | 
			
		||||
                vrx = w[f'{ffn}value.weight_rx'] if wtype == torch.uint8 else x
 | 
			
		||||
                vmy = w[f'{ffn}value.weight_my'] if wtype == torch.uint8 else x
 | 
			
		||||
                vry = w[f'{ffn}value.weight_ry'] if wtype == torch.uint8 else x
 | 
			
		||||
                rmx = w[f'{ffn}receptance.weight_mx'] if wtype == torch.uint8 else x
 | 
			
		||||
                rrx = w[f'{ffn}receptance.weight_rx'] if wtype == torch.uint8 else x
 | 
			
		||||
                rmy = w[f'{ffn}receptance.weight_my'] if wtype == torch.uint8 else x
 | 
			
		||||
                rry = w[f'{ffn}receptance.weight_ry'] if wtype == torch.uint8 else x                    
 | 
			
		||||
                x, state[i*5+4] = FFN(
 | 
			
		||||
                    x, state[i*5+4],
 | 
			
		||||
                    w[f'{bbb}ln2.weight'], w[f'{bbb}ln2.bias'],
 | 
			
		||||
                    w[f'{ffn}time_mix_k'], w[f'{ffn}time_mix_r'],
 | 
			
		||||
                    kw, vw, rw,
 | 
			
		||||
                    kmx, krx, kmy, kry,
 | 
			
		||||
                    vmx, vrx, vmy, vry,
 | 
			
		||||
                    rmx, rrx, rmy, rry,                    
 | 
			
		||||
                    )
 | 
			
		||||
                if dd.stream:                
 | 
			
		||||
                    del kw, vw, rw
 | 
			
		||||
                
 | 
			
		||||
                if self.RESCALE_LAYER > 0:
 | 
			
		||||
                    if (i+1) % self.RESCALE_LAYER == 0:
 | 
			
		||||
                        x = x / 2
 | 
			
		||||
            
 | 
			
		||||
            dd = self.strategy[args.n_layer]
 | 
			
		||||
            x = x[-1,:] if (seq_mode and (not full_output)) else x
 | 
			
		||||
            x = x.to(dtype=dd.atype, device=dd.device)
 | 
			
		||||
            
 | 
			
		||||
            x = F.layer_norm(x, (args.n_embd,), weight=w['ln_out.weight'], bias=w['ln_out.bias'])
 | 
			
		||||
            if w['head.weight'].dtype != torch.uint8:
 | 
			
		||||
                x = x @ w['head.weight']
 | 
			
		||||
            else:
 | 
			
		||||
                if seq_mode and full_output:
 | 
			
		||||
                    x = self.mm8_seq(x, w['head.weight'], w['head.weight_mx'], w['head.weight_rx'], w['head.weight_my'], w['head.weight_ry'])
 | 
			
		||||
                else:
 | 
			
		||||
                    x = self.mm8_one(x, w['head.weight'], w['head.weight_mx'], w['head.weight_rx'], w['head.weight_my'], w['head.weight_ry'])
 | 
			
		||||
 | 
			
		||||
            return x.float(), state
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user