A RWKV management and startup tool, full automation, only 8MB. And provides an interface compatible with the OpenAI API. RWKV is a large language model that is fully open source and available for commercial use.
Go to file
2023-07-25 16:37:06 +08:00
.github/workflows fix build for macos and linux 2023-07-07 13:54:07 +08:00
.vscode dev config 2023-06-05 22:57:01 +08:00
assets add midi api 2023-07-25 16:11:17 +08:00
backend-golang training: fix data EOL format 2023-07-11 12:19:39 +08:00
backend-python chore 2023-07-25 16:37:06 +08:00
build update logo 2023-07-09 11:59:23 +08:00
deploy-examples/ChatGPT-Next-Web improve api docs 2023-06-15 21:52:22 +08:00
finetune fix load_state_dict crash 2023-07-09 12:33:29 +08:00
frontend improve sse fetch 2023-07-25 15:59:37 +08:00
midi add midi api 2023-07-25 16:11:17 +08:00
.gitattributes lora finetune (need to be refactored) 2023-07-03 17:41:47 +08:00
.gitignore lora finetune (need to be refactored) 2023-07-03 17:41:47 +08:00
CURRENT_CHANGE.md release v1.3.9 2023-07-17 13:03:32 +08:00
exportModelsJson.js update manifest.json 2023-05-07 16:09:16 +08:00
go.mod lora finetune (need to be refactored) 2023-07-03 17:41:47 +08:00
go.sum lora finetune (need to be refactored) 2023-07-03 17:41:47 +08:00
LICENSE navigate card 2023-05-05 13:41:54 +08:00
main.go chore 2023-07-09 12:10:14 +08:00
Makefile dev config 2023-06-05 22:57:01 +08:00
manifest.json chore 2023-07-25 16:37:06 +08:00
README_JA.md chore 2023-07-25 16:37:06 +08:00
README_ZH.md chore 2023-07-25 16:37:06 +08:00
README.md chore 2023-07-25 16:37:06 +08:00
vendor.yml upload vendor.yml 2023-05-30 10:35:24 +08:00
wails.json init 2023-05-03 23:38:54 +08:00

RWKV Runner

This project aims to eliminate the barriers of using large language models by automating everything for you. All you need is a lightweight executable program of just a few megabytes. Additionally, this project provides an interface compatible with the OpenAI API, which means that every ChatGPT client is an RWKV client.

license release

English | 简体中文 | 日本語

Install

Windows MacOS Linux

FAQs | Preview | Download | Server-Deploy-Examples

Default configs has enabled custom CUDA kernel acceleration, which is much faster and consumes much less VRAM. If you encounter possible compatibility issues, go to the Configs page and turn off Use Custom CUDA kernel to Accelerate.

If Windows Defender claims this is a virus, you can try downloading v1.3.7_win.zip and letting it update automatically to the latest version, or add it to the trusted list (Windows Security -> Virus & threat protection -> Manage settings -> Exclusions -> Add or remove exclusions -> Add an exclusion -> Folder -> RWKV-Runner).

For different tasks, adjusting API parameters can achieve better results. For example, for translation tasks, you can try setting Temperature to 1 and Top_P to 0.3.

Features

  • RWKV model management and one-click startup
  • Fully compatible with the OpenAI API, making every ChatGPT client an RWKV client. After starting the model, open http://127.0.0.1:8000/docs to view more details.
  • Automatic dependency installation, requiring only a lightweight executable program
  • Configs with 2G to 32G VRAM are included, works well on almost all computers
  • User-friendly chat and completion interaction interface included
  • Easy-to-understand and operate parameter configuration
  • Built-in model conversion tool
  • Built-in download management and remote model inspection
  • Built-in one-click LoRA Finetune
  • Can also be used as an OpenAI ChatGPT and GPT-Playground client
  • Multilingual localization
  • Theme switching
  • Automatic updates

API Concurrency Stress Testing

ab -p body.json -T application/json -c 20 -n 100 -l http://127.0.0.1:8000/chat/completions

body.json:

{
  "messages": [
    {
      "role": "user",
      "content": "Hello"
    }
  ]
}

Embeddings API Example

If you are using langchain, just use OpenAIEmbeddings(openai_api_base="http://127.0.0.1:8000", openai_api_key="sk-")

import numpy as np
import requests


def cosine_similarity(a, b):
    return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))


values = [
    "I am a girl",
    "我是个女孩",
    "私は女の子です",
    "广东人爱吃福建人",
    "我是个人类",
    "I am a human",
    "that dog is so cute",
    "私はねこむすめです、にゃん♪",
    "宇宙级特大事件!号外号外!"
]

embeddings = []
for v in values:
    r = requests.post("http://127.0.0.1:8000/embeddings", json={"input": v})
    embedding = r.json()["data"][0]["embedding"]
    embeddings.append(embedding)

compared_embedding = embeddings[0]

embeddings_cos_sim = [cosine_similarity(compared_embedding, e) for e in embeddings]

for i in np.argsort(embeddings_cos_sim)[::-1]:
    print(f"{embeddings_cos_sim[i]:.10f} - {values[i]}")

Preview

Homepage

image

Chat

image

Completion

image

Configuration

image

Model Management

image

Download Management

image

LoRA Finetune

image

Settings

image