Compare commits

...

451 Commits

Author SHA1 Message Date
8ad19e115c update penalty_decay 2024-06-14 23:45:34 +08:00
250752c620 fix: new OpenAi api 2024-06-12 21:46:14 +08:00
josc146
5e5f21f90e update readme img 2024-05-30 10:07:57 +08:00
github-actions[bot]
017190ccee release v1.8.4 2024-05-29 08:35:25 +00:00
josc146
c485502cb5 release v1.8.4 2024-05-29 16:34:56 +08:00
josc146
e9136d120c fix f05a4a, __init__.py is not embedded 2024-05-29 16:32:52 +08:00
github-actions[bot]
f88cd90ef3 release v1.8.3 2024-05-28 15:06:40 +00:00
josc146
b52be94d76 release v1.8.3 2024-05-28 23:06:13 +08:00
josc146
ed3c55ce9a chore 2024-05-28 22:56:38 +08:00
Beeno Tung
9ff29cd391
fix tsc error, resolve ts-ignore with type-safe version code (#339)
* patch: fix tsc error

* chore: resolve ts-ignore with type-safe version code
2024-05-28 22:49:56 +08:00
josc146
54f358c51c improve default LoRA fine-tune params 2024-05-28 22:45:01 +08:00
josc146
f05a4acb04 sync https://github.com/JL-er/RWKV-PEFT 2024-05-28 22:35:47 +08:00
josc146
3488d22d22 bump webgpu(python) (https://github.com/cryscan/web-rwkv-py) 2024-05-28 21:27:10 +08:00
josc146
6b4381ee77 fix #342, #345: cannot import name 'packaging' from 'pkg_resources' 2024-05-28 21:21:45 +08:00
josc146
1b3aa629da small fix 2024-05-28 21:19:26 +08:00
josc146
79476f66a6 deprecate rwkv-beta 2024-05-28 21:15:47 +08:00
github-actions[bot]
ef4b82a91d release v1.8.2 2024-05-16 05:54:52 +00:00
josc146
58d81f095c release v1.8.2 2024-05-16 13:54:18 +08:00
josc146
d66fd89947 improve dynamic state api 2024-05-16 13:50:48 +08:00
josc146
b24a18cd3a fix a tps error 2024-05-16 13:48:06 +08:00
github-actions[bot]
e1c12202aa release v1.8.1 2024-05-12 15:39:02 +00:00
josc146
bfbf43f45c release v1.8.1 2024-05-12 23:38:21 +08:00
josc146
cc8b22f0fb set the wails version of workflow to v2.8.0 2024-05-12 21:58:56 +08:00
josc146
a2bbbabee2 add support for dynamic state-tuned models 2024-05-12 21:51:24 +08:00
josc146
b52873cb37 revert 4f92366e 2024-05-10 22:16:24 +08:00
josc146
00d82154dc improve 2a55c825 2024-05-10 22:01:09 +08:00
josc146
440b70eb15 disable pre_ffn and head_qk 2024-05-10 16:41:26 +08:00
josc146
2a55c8256d add torch cnMirror 2024-05-10 16:37:31 +08:00
josc146
2ddcd17d23 add tps console output 2024-05-10 16:19:21 +08:00
josc146
14461930ab improve frontend details 2024-05-10 15:38:21 +08:00
josc146
79eff01b33 RWKV-x060-World-7B-v2.1-20240507-ctx4096.pth 2024-05-08 23:28:02 +08:00
josc146
b19ea95f88 chore(deps): bump jossef/action-set-json-field from 2.1 to 2.2 2024-05-08 23:27:57 +08:00
dependabot[bot]
4f92366ea5 chore(deps): bump pdfjs-dist from 4.0.189 to 4.2.67 in /frontend
Bumps [pdfjs-dist](https://github.com/mozilla/pdfjs-dist) from 4.0.189 to 4.2.67.
- [Commits](https://github.com/mozilla/pdfjs-dist/commits)

---
updated-dependencies:
- dependency-name: pdfjs-dist
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-05-08 21:35:34 +08:00
github-actions[bot]
235b587789 release v1.8.0 2024-05-03 05:14:28 +00:00
josc146
c6a4a71cf1 release v1.8.0 2024-05-03 13:13:17 +08:00
josc146
150bb089cf update state-tuned safetensors converter 2024-05-03 13:10:49 +08:00
josc146
5c8a637cf5 fix remote customApiUrl 2024-05-02 14:48:16 +08:00
github-actions[bot]
6c7b40a9c1 release v1.7.9 2024-04-30 15:06:21 +00:00
josc146
d075d6377e release v1.7.9 2024-04-30 23:05:51 +08:00
josc146
ae1d01bd0c update manifest.json 2024-04-30 22:39:06 +08:00
josc146
aae7cfe1a2 change the default value of presystem to false 2024-04-30 22:30:06 +08:00
josc146
38b33a7030 upgrade to rwkv 0.8.26 (state instruct align support) 2024-04-30 22:24:22 +08:00
josc146
70236df3d1 update defaultModelConfigs 2024-04-30 21:58:16 +08:00
josc146
40c5368deb chore 2024-04-30 21:55:24 +08:00
josc146
2d853f92b9 small fix 2024-04-30 21:52:47 +08:00
josc146
2a0ad19bc5 update manifest.json 2024-04-19 13:07:12 +08:00
github-actions[bot]
5deb115625 release v1.7.8 2024-04-03 06:56:57 +00:00
josc146
7f329702ad release v1.7.8 2024-04-03 14:56:07 +08:00
josc146
ff6240d798 chore 2024-04-03 14:54:02 +08:00
josc146
f6614ff4dc update manifest.json 2024-03-30 13:57:54 +08:00
github-actions[bot]
8633134de7 release v1.7.7 2024-03-27 02:20:53 +00:00
josc146
b24be3baec release v1.7.7 2024-03-27 10:20:27 +08:00
josc146
2818700182 avoid program lag caused by frequent triggering of read/write operations due to Linux file system notification 2024-03-27 10:19:35 +08:00
josc146
5f637dc4c7 improve styles 2024-03-27 00:05:17 +08:00
github-actions[bot]
b7aba9c8de release v1.7.6 2024-03-26 15:00:59 +00:00
josc146
e4d440404a release v1.7.6 2024-03-26 23:00:25 +08:00
josc146
e332224c24 update readme 2024-03-26 22:25:30 +08:00
josc146
288724adef proxied fetch 2024-03-26 22:25:24 +08:00
josc146
a15c4bdf63 better compatibility for custom api (ollama etc.) 2024-03-26 21:33:30 +08:00
josc146
253568ef29 improve error messages 2024-03-26 21:29:21 +08:00
josc146
0ab248c478 throttling saveConfigs 2024-03-26 21:27:26 +08:00
josc146
3cef51144f improve DialogButton 2024-03-26 21:25:13 +08:00
josc146
08bc342fd6 proxied fetch support 2024-03-26 21:23:09 +08:00
josc146
c2799c9494 add additional finish conditions to provide better ollama support 2024-03-26 15:02:27 +08:00
josc146
d6b536ace9 improve preset editor 2024-03-26 13:43:27 +08:00
josc146
edf55843e4 bump @fluentui/react-components to fix a dialog bug 2024-03-26 11:16:37 +08:00
josc146
d0ab9c7ec4 add system role support for preset 2024-03-25 16:08:29 +08:00
josc146
16f2201d9f new chat template for /chat/completions (better system support) 2024-03-25 12:52:40 +08:00
josc146
a93610e574 add rwkv version field 2024-03-24 22:29:28 +08:00
josc146
1d5d012ce4 chore 2024-03-24 22:25:02 +08:00
josc146
0e4b6cbd15 make gate and out trainable (834aea0f54) 2024-03-24 15:47:17 +08:00
github-actions[bot]
2f777f1286 release v1.7.5 2024-03-14 05:34:35 +00:00
josc146
d2f56631ee release v1.7.5 2024-03-14 13:34:07 +08:00
josc146
c5077f4ebc fix v6 lora (c03cdbbdaf) 2024-03-14 12:25:09 +08:00
josc146
acf5d02104 update global_penalty desc 2024-03-14 12:24:45 +08:00
github-actions[bot]
bf58841f00 release v1.7.4 2024-03-13 13:38:34 +00:00
josc146
e625e1f783 release v1.7.4 2024-03-13 21:37:58 +08:00
josc146
4bed070556 latex support 2024-03-13 21:37:48 +08:00
josc146
5692579f56 for Chinese users, replace Tsinghua pip mirrors with Alibaba Cloud to avoid 403 http error 2024-03-13 21:37:35 +08:00
josc146
333619839a rwkv6 lora finetune support (https://github.com/JL-er/RWKV-LORA) 2024-03-13 17:51:53 +08:00
josc146
c6024520af improve usability 2024-03-13 16:42:26 +08:00
josc146
cd40261de6 improve theme 2024-03-13 15:36:13 +08:00
josc146
3a637a973c improve markdown rendering 2024-03-13 15:36:02 +08:00
github-actions[bot]
7fbcb5e810 release v1.7.3 2024-03-11 11:08:54 +00:00
josc146
2604d3c47b release v1.7.3 2024-03-11 19:07:08 +08:00
josc146
bb1a6191b0 prevent 'torch' has no attribute 'cuda' error in torch_gc, so user can use CPU or WebGPU (#302) 2024-03-11 19:04:19 +08:00
josc146
dd89041f72 dep_check.py now ignores GPUtil 2024-03-11 18:55:37 +08:00
josc146
91eb72e515 fix the issue where penalty_decay and global_penalty are not being passed to the backend default config when running the model through client 2024-03-11 18:52:35 +08:00
josc146
1c7436c34b fix max_tokens parameter of Chat page not being passed to backend 2024-03-11 18:52:33 +08:00
Steven Hangger
8678f376e9 fix(rwkv.cpp): add build step for librwkv.so 2024-03-07 23:51:32 +09:00
Steven Hangger
050154f406 feat(docker): add Docker support 2024-03-07 23:51:32 +09:00
dependabot[bot]
b3eae8bcfa chore(deps): bump crazy-max/ghaction-chocolatey from 2 to 3
Bumps [crazy-max/ghaction-chocolatey](https://github.com/crazy-max/ghaction-chocolatey) from 2 to 3.
- [Release notes](https://github.com/crazy-max/ghaction-chocolatey/releases)
- [Commits](https://github.com/crazy-max/ghaction-chocolatey/compare/v2...v3)

---
updated-dependencies:
- dependency-name: crazy-max/ghaction-chocolatey
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-05 13:54:36 +09:00
dependabot[bot]
c720362886 chore(deps): bump actions/setup-go from 4 to 5
Bumps [actions/setup-go](https://github.com/actions/setup-go) from 4 to 5.
- [Release notes](https://github.com/actions/setup-go/releases)
- [Commits](https://github.com/actions/setup-go/compare/v4...v5)

---
updated-dependencies:
- dependency-name: actions/setup-go
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-05 13:53:10 +09:00
dependabot[bot]
93029d3f5c chore(deps): bump actions/checkout from 3 to 4
Bumps [actions/checkout](https://github.com/actions/checkout) from 3 to 4.
- [Release notes](https://github.com/actions/checkout/releases)
- [Changelog](https://github.com/actions/checkout/blob/main/CHANGELOG.md)
- [Commits](https://github.com/actions/checkout/compare/v3...v4)

---
updated-dependencies:
- dependency-name: actions/checkout
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-05 13:53:05 +09:00
dependabot[bot]
28244a57b4 chore(deps): bump actions/setup-python from 4 to 5
Bumps [actions/setup-python](https://github.com/actions/setup-python) from 4 to 5.
- [Release notes](https://github.com/actions/setup-python/releases)
- [Commits](https://github.com/actions/setup-python/compare/v4...v5)

---
updated-dependencies:
- dependency-name: actions/setup-python
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-05 13:52:59 +09:00
dependabot[bot]
f6ba9d7451 Bump fastapi from 0.104.0 to 0.109.1 in /backend-python
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.104.0 to 0.109.1.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.104.0...0.109.1)

---
updated-dependencies:
- dependency-name: fastapi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-05 13:51:37 +09:00
dependabot[bot]
96e431e06b Bump python-multipart from 0.0.6 to 0.0.7 in /backend-python
Bumps [python-multipart](https://github.com/andrew-d/python-multipart) from 0.0.6 to 0.0.7.
- [Release notes](https://github.com/andrew-d/python-multipart/releases)
- [Changelog](https://github.com/Kludex/python-multipart/blob/master/CHANGELOG.md)
- [Commits](https://github.com/andrew-d/python-multipart/compare/0.0.6...0.0.7)

---
updated-dependencies:
- dependency-name: python-multipart
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-05 13:50:47 +09:00
josc146
cb6ddb3674 add pre-release workflow 2024-03-05 12:49:17 +08:00
josc146
07d4ba0d6b fix a generation exception caused by potentially dangerous regex being passed into the stop array 2024-03-04 21:20:53 +08:00
github-actions[bot]
ac139d5bda release v1.7.2 2024-03-02 11:48:20 +00:00
josc146
14acfc1d81 release v1.7.2 2024-03-02 19:47:53 +08:00
josc146
2947162cc4 update defaultModelConfigs 2024-03-02 19:45:14 +08:00
josc146
4f14074a75 expose global_penalty 2024-03-02 17:50:41 +08:00
josc146
53a5574080 improve parameters controllable range 2024-03-02 16:52:53 +08:00
josc146
d91c3c004d allow setting tokenChunkSize of WebGPU mode 2024-03-02 16:41:29 +08:00
github-actions[bot]
c90cefc453 release v1.7.1 2024-03-01 08:03:52 +00:00
josc146
b8abd2fef3 release v1.7.1 2024-03-01 16:03:22 +08:00
josc146
887ba06bd6 allow setting quantizedLayers of WebGPU mode; chore 2024-03-01 14:23:05 +08:00
josc146
c9513822c9 fix the issue where state cache could be modified leading to inconsistent hit results 2024-03-01 13:35:16 +08:00
josc146
e3baa0da86 improve occurrence[token] condition 2024-03-01 13:18:03 +08:00
josc146
ba9aab920e hide MPS and CUDA-Beta Options 2024-03-01 13:09:09 +08:00
josc146
b0f2ef65d9 improve occurrence[token] condition 2024-02-29 17:54:33 +08:00
josc146
c13b28561d update manifest 2024-02-29 17:21:07 +08:00
josc146
5c88ccd9e6 update manifest 2024-02-28 23:48:17 +08:00
josc146
e0a6a279b3 add python3-dev to lora fine-tune dependencies 2024-02-28 23:34:49 +08:00
josc146
9bb3a90977 enable useHfMirror by default for chinese users 2024-02-28 23:28:31 +08:00
josc146
02bbd18acf fix convert_safetensors.py for rwkv6 2024-02-28 23:25:46 +08:00
josc146
18ab8b141f disable AVOID_PENALTY_TOKENS 2024-02-28 23:12:58 +08:00
github-actions[bot]
225abc5202 release v1.7.0 2024-02-21 16:10:31 +00:00
josc146
d33dff7723 release v1.7.0 2024-02-22 01:10:01 +09:00
josc146
771027211a chore 2024-02-22 01:05:52 +09:00
josc146
94fe71b49c change AVOID_PENALTY to \n only 2024-02-22 01:04:05 +09:00
josc146
fafd9f7f6e upgrade to rwkv 0.8.25 2024-02-21 23:50:05 +08:00
josc146
85b10993ec update manifest.json 2024-02-12 14:30:36 +08:00
Guillermo Marcus
11f1d66383 fix typo in requirements.txt 2024-02-06 19:59:50 +08:00
josc146
38e89aec18 update README 2024-02-06 12:21:05 +08:00
josc146
3e336830a3 chore 2024-02-06 12:19:12 +08:00
josc146
a1ae71d221 fix /update-config can make the default value of unclearly specified fields invalid by passing in None fields 2024-02-05 22:27:02 +08:00
github-actions[bot]
0703993bfd release v1.6.9 2024-02-05 04:44:24 +00:00
josc146
50a666a350 release v1.6.9 2024-02-05 12:40:23 +08:00
josc146
9ea86ee4b1 update Related Repositories 2024-02-05 12:32:07 +08:00
josc146
94580f825e chore 2024-02-05 12:31:26 +08:00
josc146
d5cca4e542 improve macos experience 2024-02-05 00:25:04 +08:00
josc146
f1986fa9d0 feat: History Message Number 2024-02-04 23:11:23 +08:00
josc146
1c025c3d29 feat: load conversation 2024-02-04 22:03:59 +08:00
josc146
4added7390 add markdown renderer switch 2024-02-04 20:21:42 +08:00
josc146
ee5cca3ff3 chore 2024-02-04 19:34:36 +08:00
josc146
0da92ec7bf improve fine-tune performance 2024-02-04 19:33:32 +08:00
josc146
e3e075e432 add parse_api_log.py, this script can extract formatted data from api.log 2024-02-04 19:30:47 +08:00
josc146
19eeeab1e1 add AVOID_PENALTY_TOKENS 2024-02-04 16:49:46 +08:00
josc146
78238c24cf update defaultPresets 2024-02-04 16:47:34 +08:00
josc146
932281db0a add Penalty Decay slider to Chat page 2024-02-03 22:40:30 +08:00
josc146
843840baa0 expose penalty_decay, top_k 2024-02-03 22:03:10 +08:00
josc146
7cba526913 update manifest.json 2024-02-03 21:35:28 +08:00
josc146
7fe70c949e update defaultPresets 2024-02-03 21:23:04 +08:00
josc146
1c1c9e2c5f update defaultModelConfigs 2024-02-03 20:39:18 +08:00
josc146
26c2954c8e web-rwkv-py 0.1.2 (Support V4, V5 and V6) https://github.com/cryscan/web-rwkv-py 2024-02-03 20:32:23 +08:00
josc146
5329537a2f improve path processing 2024-02-03 20:29:56 +08:00
josc146
e07f0fa6e3 improve path processing 2024-02-03 15:13:24 +08:00
josc146
b077f1fe42 reduce package size 2024-02-03 13:05:02 +08:00
josc146
5f94d86558 add better custom tokenizer support and tokenizer-midipiano.json 2024-02-03 13:04:13 +08:00
josc146
947e127e34 improve path processing 2024-02-02 22:00:01 +08:00
josc146
95502b900d fix WSL2 WindowsOptionalFeature: Microsoft-Windows-Subsystem-Linux -> VirtualMachinePlatform 2024-01-31 21:35:36 +08:00
josc146
16b636ef83 add EOS state cache point 2024-01-31 21:33:27 +08:00
josc146
4339ce20d5 rename manifest tag "Main" -> "Official" 2024-01-31 21:31:54 +08:00
josc146
c31fc22b6b fix finetune errorsMap ($modelInfo) 2024-01-31 21:31:03 +08:00
josc146
7f49c6025b update manifest.json 2024-01-29 19:41:45 +08:00
github-actions[bot]
2d4f436ebf release v1.6.8 2024-01-05 05:54:16 +00:00
josc146
549f32a743 release v1.6.8 2024-01-05 13:53:50 +08:00
josc146
e3b3452a73 basic abc frontend support 2024-01-05 13:47:00 +08:00
josc146
62350d975d fix finetune errorsMap ($modelInfo) 2024-01-05 12:46:14 +08:00
josc146
8d84b326b8 basic abc frontend support 2024-01-05 12:45:41 +08:00
josc146
16079a3cba abc music inference support 2024-01-05 12:44:44 +08:00
github-actions[bot]
ff330a5487 release v1.6.7 2023-12-29 04:26:57 +00:00
josc146
94b3882d30 release v1.6.7 2023-12-29 12:26:33 +08:00
josc146
81544ca8b3 rwkv5 lora finetune support (https://github.com/JL-er/RWKV-v5-lora) 2023-12-29 12:23:36 +08:00
josc146
b7f4dd835e chore 2023-12-29 00:38:33 +08:00
josc146
7e2380e4ed fix body.state 2023-12-28 23:53:58 +08:00
josc146
7f3cfd54b0 improve state cache performance 2023-12-28 22:15:31 +08:00
josc146
e083f2c629 webgpu(python) state cache 2023-12-28 20:43:57 +08:00
josc146
e33858f110 improve memory usage and speed of convert_safetensors.py 2023-12-26 23:50:51 +08:00
github-actions[bot]
da01a33152 release v1.6.6 2023-12-25 13:03:06 +00:00
josc146
8ca920a114 release v1.6.6 2023-12-25 21:02:26 +08:00
josc146
5f3d449a66 improve Models page 2023-12-25 20:37:40 +08:00
josc146
13735e7dfb chore 2023-12-25 20:35:00 +08:00
josc146
a38d5c3a25 enable web-rwkv-py turbo 2023-12-25 20:34:35 +08:00
josc146
5bae637c67 update Related Repositories 2023-12-25 20:32:54 +08:00
josc146
12e488ba80 improve strategy 2023-12-25 19:30:57 +08:00
josc146
ad30c63c69 update Writer preset params 2023-12-25 19:30:14 +08:00
josc146
a116eff7df webgpu max_buffer_size 2023-12-25 18:08:13 +08:00
josc146
01bc355dde allow manifest customTokenizer 2023-12-25 16:57:32 +08:00
josc146
8e05f3c360 chore 2023-12-25 16:56:46 +08:00
josc146
fde988dd4e update manifest.json 2023-12-25 16:08:20 +08:00
josc146
91401ad14f * text=auto eol=lf 2023-12-24 22:51:23 +08:00
josc146
280194647c improve refreshRemoteModels 2023-12-22 14:44:27 +08:00
josc146
2e0a542f33 improve train_log.txt creation 2023-12-22 13:00:13 +08:00
josc146
b988694da7 better CopyEmbed 2023-12-22 12:47:26 +08:00
josc146
512c4d0f73 improve role-playing effect 2023-12-22 10:51:09 +08:00
josc146
5525fb1470 chore 2023-12-22 10:49:28 +08:00
josc146
4db735e026 update readme 2023-12-21 13:46:51 +08:00
josc146
c8c79c39d1
Create dependabot.yml 2023-12-21 12:56:21 +08:00
josc146
bcfb76d8ca update readme 2023-12-19 14:59:02 +08:00
josc146
2d9aaf8fc9 update readme 2023-12-18 19:55:25 +08:00
josc146
8a3905c09a reduce precompiled web_rwkv_py size 2023-12-15 16:26:01 +08:00
github-actions[bot]
54cd8a46fa release v1.6.5 2023-12-14 14:09:13 +00:00
josc146
1b83bf261a release v1.6.5 2023-12-14 22:07:17 +08:00
josc146
2a7d22dab1 Composition Option: Only Auto Play Generated Content 2023-12-14 22:06:39 +08:00
josc146
f7494b0cfb update midi_filter_config.json 2023-12-14 21:18:48 +08:00
github-actions[bot]
9ca91d59ec release v1.6.4 2023-12-14 12:40:56 +00:00
josc146
11feaa6e68 release v1.6.4 2023-12-14 20:40:24 +08:00
josc146
18d4b2304e WebGPU (Python) strategy 2023-12-14 20:39:42 +08:00
github-actions[bot]
2f45e9c33a release v1.6.3 2023-12-14 10:43:36 +00:00
josc146
f7df10cb66 release v1.6.3 2023-12-14 18:42:58 +08:00
josc146
46e9a2f5b2 add precompiled web_rwkv_py 2023-12-14 18:42:00 +08:00
josc146
69b8d2e0a1 fix refreshBuiltInModels 2023-12-14 18:37:37 +08:00
josc146
0ddd2e9fea add WebGPU Python Mode (https://github.com/cryscan/web-rwkv-py) 2023-12-14 18:37:07 +08:00
josc146
01c95f5bc4 chore 2023-12-14 14:13:12 +08:00
josc146
e0bf44d82f bump MIDI-LLM-tokenizer (fix note off) 2023-12-14 13:33:27 +08:00
josc146
f328e84ea7 update Readme_Install.txt 2023-12-13 15:23:34 +08:00
github-actions[bot]
c81f5015a1 release v1.6.2 2023-12-12 15:51:23 +00:00
josc146
e2b086e2f7 release v1.6.2 2023-12-12 23:50:56 +08:00
josc146
da632565d5 fix windows cmd waiting 2023-12-12 23:48:32 +08:00
josc146
556b667cc0 improve prompts 2023-12-12 23:27:19 +08:00
josc146
82c9825da8 rwkv.cpp python38 compatibility 2023-12-12 23:19:18 +08:00
josc146
26b30f0dbe add load failed traceback 2023-12-12 23:16:48 +08:00
josc146
be3b69c65c fix v1.6.1 CmdHelper 2023-12-12 23:04:24 +08:00
github-actions[bot]
07cab6949e release v1.6.1 2023-12-12 14:38:47 +00:00
josc146
18d58ce124 release v1.6.1 2023-12-12 22:38:18 +08:00
josc146
b8f8837a8f allow overriding Core API URL 2023-12-12 22:37:36 +08:00
josc146
0c796c8cfc allow playing mid with external player 2023-12-12 22:13:09 +08:00
josc146
b14fbc29b7 rwkv.cpp(ggml) support 2023-12-12 20:29:55 +08:00
josc146
6e29f97881 update readme 2023-12-11 17:23:09 +08:00
josc146
a164939161 add crash.log 2023-12-11 12:02:24 +08:00
github-actions[bot]
09ab11ef01 release v1.6.0 2023-12-10 15:46:50 +00:00
josc146
ac34edec7f release v1.6.0 2023-12-10 23:46:25 +08:00
josc146
6dd8ffa037 bump to wails v2.7.1 2023-12-10 23:43:40 +08:00
josc146
eaed3f40a2 improve current instrument display 2023-12-10 23:37:23 +08:00
josc146
e48f39375e add midi tracks to webUI 2023-12-10 23:08:44 +08:00
josc146
9b7b651ef9 feat: import midi file 2023-12-10 22:38:31 +08:00
josc146
b5623cb9c2 fix generation instrumentType 2023-12-10 22:32:06 +08:00
josc146
144d12b463 chore 2023-12-10 21:13:36 +08:00
josc146
fa452f5518 bump to wails v2.7.0 2023-12-09 14:56:48 +08:00
josc146
a159d21d45
Update README_JA.md 2023-12-09 13:09:53 +08:00
josc146
3a00bbf44d update readme 2023-12-09 12:56:15 +08:00
github-actions[bot]
9f5e94fa8f release v1.5.9 2023-12-08 11:22:21 +00:00
josc146
87e1daa733 release v1.5.9 2023-12-08 19:22:01 +08:00
josc146
f5900179e0 model tags classifier 2023-12-08 18:17:53 +08:00
josc146
51e162970e always reset to activePreset 2023-12-08 17:10:23 +08:00
josc146
0b339ad0f6 improve ConfigSelector performance of Configs page 2023-12-08 16:36:15 +08:00
josc146
60693d6a29 improve presets interaction 2023-12-08 15:36:53 +08:00
josc146
eea53a6e9e add available tag for model downloaded configs 2023-12-08 15:34:45 +08:00
josc146
8a19181a38 chore 2023-12-08 15:30:46 +08:00
josc146
94d835c7ae better customCuda condition 2023-12-08 15:30:05 +08:00
josc146
d9e25ad69f better state cache 2023-12-08 15:28:33 +08:00
josc146
75244fbd8b disable hashed assets 2023-12-08 11:22:31 +08:00
josc146
5ce84edc3d add web-rwkv-converter (Safetensors Convert no longer depends on Python) 2023-12-07 23:26:39 +08:00
josc146
1c683087f4 update ci webgpu components 2023-12-07 23:04:56 +08:00
josc146
85a3b39cbc fix webWails undefined functions 2023-12-06 23:19:56 +08:00
josc146
cc6c24f0c3 add python-3.10.11-embed-amd64.zip cnMirror and chore 2023-12-06 23:19:22 +08:00
josc146
c733b6419c for devices that gpu is not supported, use cpu to merge lora 2023-12-06 23:17:13 +08:00
josc146
c853c5b60b chore 2023-12-06 23:09:39 +08:00
josc146
053a08f5b7 update convert_safetensors.py 2023-12-06 23:08:40 +08:00
josc146
f7227cd1c1 update ci webgpu components 2023-12-06 23:08:20 +08:00
josc146
861e245062 RWKV_RESCALE_LAYER 999 for music model 2023-12-04 17:51:21 +08:00
josc146
8f0fc7db56 update README_ZH.md 2023-11-30 22:07:16 +08:00
josc146
3dd06fa70e update README_ZH.md 2023-11-30 21:49:31 +08:00
josc146
86a855e7bc fix damaged logo 2023-11-30 21:48:14 +08:00
github-actions[bot]
b3110d4ad8 release v1.5.8 2023-11-30 05:04:31 +00:00
josc146
602004ad34 release v1.5.8 2023-11-30 13:04:02 +08:00
josc146
a8b4f0bb7e lora finetune version check 2023-11-30 13:01:38 +08:00
josc146
24cc8be085 add high loss warning 2023-11-30 12:40:16 +08:00
josc146
a96d7aef8d display mainInstrument of track 2023-11-30 12:36:03 +08:00
josc146
cbe299583b improve details of MIDI Input 2023-11-30 11:57:52 +08:00
josc146
68c70a362b darkmode of midi tracks 2023-11-30 11:56:45 +08:00
josc146
a78c346371 fix NoteOff ElapsedTime of MIDI Tracks 2023-11-30 11:55:10 +08:00
github-actions[bot]
102763b94d release v1.5.7 2023-11-29 15:01:26 +00:00
josc146
ad65765ba8 release v1.5.7 2023-11-29 22:59:47 +08:00
josc146
d04fd7cb87 fix lib 2023-11-29 22:59:42 +08:00
github-actions[bot]
b398cbb591 release v1.5.6 2023-11-29 13:22:21 +00:00
josc146
19b97e985c release v1.5.6 2023-11-29 21:21:50 +08:00
josc146
93bf74a320 fix NoteOff 2023-11-29 21:21:42 +08:00
josc146
7daae23bbb update defaultConfigs 2023-11-29 21:21:29 +08:00
josc146
0d0a3f15cc chore 2023-11-29 21:21:14 +08:00
github-actions[bot]
04fbb38861 release v1.5.5 2023-11-29 11:32:40 +00:00
josc146
d666c6032b release v1.5.5 2023-11-29 19:31:56 +08:00
josc146
93e8660d69 add instruments i18n 2023-11-29 19:31:52 +08:00
josc146
e687cf02bb try to use local soundfont by default 2023-11-29 19:17:19 +08:00
josc146
e858f1477a update locales 2023-11-29 19:10:01 +08:00
josc146
a2062ae9cc feat: save MIDI tracks to generation area; playing tracks and audio preview are still under development 2023-11-29 19:04:41 +08:00
josc146
34112c79c7 fix autoPlayed midi cannot be stopped 2023-11-29 15:28:43 +08:00
josc146
b625b8a6d1 MIDI Recording and details improvement 2023-11-29 14:05:58 +08:00
josc146
14a13d5768 basic MIDI Input Audio Tracks 2023-11-28 15:34:06 +08:00
josc146
7ce464ecda improve details 2023-11-26 22:54:59 +08:00
github-actions[bot]
2c1f89383f release v1.5.4 2023-11-24 11:22:42 +00:00
josc146
e666c50f77 release v1.5.4 2023-11-24 19:22:07 +08:00
josc146
1b441752b0 chore 2023-11-24 19:21:58 +08:00
josc146
e01897b24d improve launch flow of webgpu mode 2023-11-24 19:21:14 +08:00
josc146
6146d910b4 improve launch flow of webgpu mode 2023-11-24 18:36:44 +08:00
josc146
0063c171f3 upgrade to rwkv 0.8.22 (rwkv6 support) 2023-11-24 17:55:16 +08:00
josc146
bea3c29c1c update defaultConfigs 2023-11-24 17:13:22 +08:00
josc146
5f543c2545 update manifest 2023-11-24 16:35:21 +08:00
josc146
177b2c54d9 allow reading attachments even if the model is offline 2023-11-24 16:25:21 +08:00
josc146
645e8e2f44 chore 2023-11-24 15:58:53 +08:00
josc146
f2d0dda2ff allow safetensors converter on macOS 2023-11-21 22:32:25 +08:00
josc146
3a449e7b46 fix fs watcher of macOS 2023-11-21 22:30:42 +08:00
github-actions[bot]
18d2ecb7a7 release v1.5.3 2023-11-20 16:22:32 +00:00
josc146
bb3a93b419 release v1.5.3 2023-11-21 00:21:09 +08:00
josc146
1334f0e5ba chore 2023-11-21 00:20:54 +08:00
josc146
8781416cfb add hf-mirror for cn users 2023-11-21 00:04:23 +08:00
josc146
a9819139b8 add sidePanel for Chat page 2023-11-20 23:47:39 +08:00
josc146
66e43c9d9b display lastModelName at the top (WorkHeader) 2023-11-20 23:27:44 +08:00
josc146
41e5bd5eb8 change ValuedSlider's step to 100 2023-11-20 23:25:39 +08:00
josc146
48fef0235b add webgpu nf4 2023-11-20 21:10:10 +08:00
josc146
d435436525 improve finetune error 2023-11-20 20:39:00 +08:00
josc146
cd7a9896dc improve styles 2023-11-20 20:16:55 +08:00
josc146
bbcc6b07b6 improve precision description 2023-11-20 20:13:30 +08:00
josc146
646bcd81c0 fix webgpu permission for macos 2023-11-20 20:12:20 +08:00
josc146
dbf0dccc9d add tokenizer(/switch-model) to /docs 2023-11-20 20:11:45 +08:00
josc146
437de2be20 improve lazy loading ui 2023-11-18 13:59:37 +08:00
josc146
f739c61197 fix a finetune bug 2023-11-17 22:37:21 +08:00
josc146
01d3c89ea4 add rwkv API URL Option; update OpenAI models Option 2023-11-17 22:16:49 +08:00
josc146
d18218f21a use local API when it's working, even if a custom API URL is provided 2023-11-17 21:53:29 +08:00
josc146
c8470e77fd fix state_cache of deploy mode 2023-11-17 21:32:11 +08:00
josc146
9ede7d7c6d strict default_stop 2023-11-17 21:18:52 +08:00
josc146
a59c4436c8 macos: change default webgpu backend to aarch64-apple-darwin 2023-11-17 21:16:08 +08:00
josc146
068be2bfc4 update setup comments 2023-11-17 20:47:33 +08:00
josc146
94a5dc4fb7 update setup.sh comments 2023-11-14 17:38:24 +08:00
github-actions[bot]
9f288de951 release v1.5.2 2023-11-09 14:11:40 +00:00
josc146
3d5c3dcd31 release v1.5.2 2023-11-09 22:11:05 +08:00
josc146
0a4876a564 improve user guide 2023-11-09 22:07:01 +08:00
josc146
4f0558ae34 add client upgrade progress 2023-11-09 21:38:02 +08:00
josc146
f03c9cf25f improve mobile view 2023-11-09 12:21:01 +08:00
josc146
07797537d1 add RWKV-Runner WebUI to Server-Deploy-Examples 2023-11-09 00:21:02 +08:00
github-actions[bot]
0c3a50cb07 release v1.5.1 2023-11-08 15:41:53 +00:00
josc146
c7dcff52a1 release v1.5.1 2023-11-08 23:41:17 +08:00
josc146
c6ef32958e when client webUI enabled, set server into deployment mode 2023-11-08 23:31:13 +08:00
josc146
7235e1067b add deployment mode. If /switch-model with deploy: true, will disable /switch-model, /exit and other dangerous APIs (state cache APIs, part of midi APIs) 2023-11-08 23:29:42 +08:00
josc146
0594290b92 disable WebUI Option of WebGPU Mode (webgpu not supported yet) 2023-11-08 23:05:59 +08:00
josc146
d249a4c29a print error.txt 2023-11-08 22:57:38 +08:00
josc146
02ba37fab4 improve api url getter 2023-11-08 22:25:41 +08:00
josc146
b5a6f8a425 set deepspeed to 0.11.2 to avoid finetune error 2023-11-08 22:20:11 +08:00
josc146
1ad86d737c chore 2023-11-08 22:18:49 +08:00
josc146
cfa3669f6f fix /docs default api params (Pydantic v2) 2023-11-07 22:53:11 +08:00
josc146
26d4c9f0ed chore 2023-11-07 22:28:13 +08:00
josc146
3ddcf9f62e add webui entry 2023-11-07 22:24:06 +08:00
josc146
e734fce64f create webui assets 2023-11-07 22:23:26 +08:00
josc146
150beb578c chore 2023-11-07 22:23:00 +08:00
josc146
db6fbe8366 add python webui server 2023-11-07 22:22:29 +08:00
josc146
46f52923c3 improve webui 2023-11-07 22:21:41 +08:00
josc146
893be5cf43 webui build 2023-11-07 19:27:21 +08:00
github-actions[bot]
384e4ce4d0 release v1.5.0 2023-11-05 13:10:50 +00:00
josc146
b8712e0b89 release v1.5.0 2023-11-05 21:10:21 +08:00
josc146
37dda4333d chat attachment is now related to single message 2023-11-05 21:05:06 +08:00
josc146
64826b9af7 fix log encoding error 2023-11-05 21:00:31 +08:00
josc146
47b0c35441 update ngrok_connect 2023-11-04 20:22:28 +08:00
josc146
1dcda47013 improve startup process 2023-11-04 20:21:55 +08:00
josc146
1f81a1e5a8 upgrade to rwkv 0.8.20 2023-11-03 23:27:14 +08:00
josc146
35e92d2aef chore 2023-11-03 23:22:52 +08:00
josc146
0d99e5549e port occupied detection 2023-11-03 21:18:42 +08:00
josc146
fed1594ddc fix stop button status of Chat page 2023-10-30 21:09:23 +08:00
josc146
14b90bb36b improve dml mode performance (20% faster, https://github.com/BlinkDL/ChatRWKV/pull/181) 2023-10-30 20:24:57 +08:00
josc146
f86b7f1f08 python38 compatibility 2023-10-29 14:11:11 +08:00
josc146
54355d5a7a improve the compatibility between frontend presets and chatgpt api 2023-10-28 23:06:19 +08:00
josc146
ff7306349a improve memory usage of state cache 2023-10-28 23:04:49 +08:00
github-actions[bot]
77df56cddc release v1.4.9 2023-10-27 06:04:00 +00:00
josc146
97ae139de5 release v1.4.9 2023-10-27 14:03:28 +08:00
josc146
afd15ef2c5 base64 preset support 2023-10-27 13:35:29 +08:00
josc146
6c73eae9f6 edited chat message now is marked as Normal 2023-10-27 13:11:12 +08:00
josc146
7078f47f72 allow avatarImg to be local absolute path 2023-10-27 12:53:20 +08:00
josc146
d43954cc88 improve message interruption and retry for Chat page 2023-10-27 12:13:05 +08:00
josc146
c87de93498 allow conversation with some document (.pdf, .txt) 2023-10-27 11:36:29 +08:00
josc146
810843a5ab update manifest.json 2023-10-27 00:48:37 +08:00
josc146
f7cbd2c803 update manifest.json 2023-10-26 18:04:06 +08:00
josc146
faf1852012 update stop strategy 2023-10-26 17:47:40 +08:00
josc146
43cfab5d4b change default World series prefix to User/Assistant 2023-10-26 16:58:53 +08:00
josc146
627a20936d RWKVType now no longer relies on the file name 2023-10-26 16:55:33 +08:00
josc146
1d7f19ffaf update sample.jsonl 2023-10-26 14:08:16 +08:00
josc146
d80565d780 mark rwkv raven series as old model 2023-10-26 13:32:59 +08:00
josc146
d7ba88953d chore 2023-10-25 22:53:14 +08:00
josc146
30e1c3171e update kernel (CUDA Compute Capability 5.3) 2023-10-25 22:53:14 +08:00
josc146
1f058b16ac update kernel (CUDA Compute Capability 6.1, Previously 7.5) 2023-10-25 22:53:13 +08:00
josc146
4a192f4057 upgrade to webgpu 0.2.2 (https://github.com/josStorer/ai00_rwkv_server) 2023-10-25 21:02:44 +08:00
josc146
0331bf47f7 upgrade rwkv 0.8.16 (DirectML support; rwkv 5.2 no longer needs to ensure custom cuda kernel enabled) 2023-10-25 17:56:18 +08:00
josc146
2acdaa96b2 chore 2023-10-25 17:51:59 +08:00
josc146
1d200d53ab fix beta linux kernel 2023-10-25 17:51:13 +08:00
josc146
df9e1f408e add /file-to-text api 2023-10-25 17:14:33 +08:00
josc146
4a18696686 add pip --no-warn-script-location 2023-10-25 17:08:50 +08:00
josc146
46b3b285f5 upgrade packages 2023-10-25 17:07:40 +08:00
josc146
1d6aeab9dc fix the make command on Linux and macOS, no longer need manual operations on the wsl.go file. (#158, #173, #207) 2023-10-25 16:12:34 +08:00
josc146
ab110ba30b chore 2023-10-24 23:41:18 +08:00
josc146
2f0fa4ee56 update readme 2023-10-24 21:11:55 +08:00
josc146
0005816c1d fix linux kernel (partial revert 68228a45) 2023-10-05 00:08:18 +08:00
josc146
f70672e5a0 update .gitignore 2023-10-05 00:08:02 +08:00
github-actions[bot]
ee057071a5 release v1.4.8 2023-10-03 07:05:41 +00:00
josc146
4f26404002 release v1.4.8 2023-10-03 15:05:13 +08:00
josc146
df7652856a completion page: add format content button 2023-10-03 14:54:36 +08:00
josc146
de755463e3 improve overflow 2023-10-03 14:27:44 +08:00
josc146
2fe98d9a2c add rwkv5 cuda kernel error prompt 2023-10-03 14:25:31 +08:00
josc146
2e42039607 chore 2023-10-03 14:04:46 +08:00
josc146
71abd357a4 update startup 2023-10-03 13:50:58 +08:00
josc146
68228a4552 rwkv5 pre-compiled kernel (for windows) 2023-10-03 13:39:07 +08:00
josc146
79851433f8 upgrade rwkv pip (0.8.13) 2023-10-03 13:33:55 +08:00
github-actions[bot]
bd4de12e05 release v1.4.7 2023-09-18 15:04:47 +00:00
josc146
c0aa6aaba9 release v1.4.7 2023-09-18 23:03:54 +08:00
josc146
d7abe5f0d1 add pre-compiled beta cuda kernel (rwkv-beta==0.8.5, 40%+ faster for fp16) (thanks to #180, pre-compiled kernel of RTX 40 Series will be included later) 2023-09-18 23:02:49 +08:00
josc146
5e5e1e9651 custom tokenizer .txt support 2023-09-18 17:20:55 +08:00
github-actions[bot]
f8388a0527 release v1.4.6 2023-09-16 05:06:08 +00:00
josc146
f8b764ef8f release v1.4.6 2023-09-16 13:05:34 +08:00
josc146
fcfaa5944e frontend feature adaptation for api params (user_name, assistant_name, presystem) 2023-09-16 13:02:06 +08:00
josc146
f89e89c1c9 chore 2023-09-16 12:23:16 +08:00
josc146
a25965530c custom tokenizer (#77) 2023-09-16 00:34:11 +08:00
josc146
971124d0d7 upgrade to wails@v2.6.0 (EnableDefaultContextMenu: true) 2023-09-16 00:29:45 +08:00
josc146
d7dcc90008 chore 2023-09-15 16:31:14 +08:00
josc146
df969fcfc6 upgrade cuda-beta 2023-09-15 16:30:11 +08:00
josc146
c4042bbfd8 improve ui desc 2023-09-15 16:26:32 +08:00
josc146
4112200b4c revert(2d5456): refresh local models when download complete (for macOS) 2023-09-15 16:25:04 +08:00
Ikko Eltociear Ashimine
3f9a54e36f Update README_JA.md
add translation.
2023-09-13 16:11:43 +08:00
github-actions[bot]
3ed4456135 release v1.4.5 2023-08-27 15:57:18 +00:00
josc146
e0df9ae47b release v1.4.5 2023-08-27 23:56:37 +08:00
josc146
87b2c3ed7d fix build 2023-08-27 23:56:30 +08:00
josc146
50ff7ef6bc always use requirements.txt 2023-08-27 23:52:52 +08:00
josc146
c7a580ca8a update manifest 2023-08-27 23:16:56 +08:00
josc146
eaae7624a7 add HardwareMonitor (Windows Only) 2023-08-27 22:53:18 +08:00
josc146
fcd59de6fb correct Preset UI description 2023-08-27 21:37:32 +08:00
josc146
1bbe127209 fix webgpu_server file permissions of linux and macos 2023-08-27 21:22:26 +08:00
josc146
b868adc058 chore 2023-08-27 21:21:34 +08:00
josc146
a24b78e8c3 python-backend: extra ChatCompletionBody params (raw, presystem);
add default_stop when stop is null
2023-08-27 21:21:11 +08:00
josc146
c8025f1cff allow message content to be empty 2023-08-27 21:02:54 +08:00
josc146
fe0860dbf0 fix lora finetune max_epochs (#170) 2023-08-24 22:49:57 +08:00
josc146
02d5d641d1 chore 2023-08-24 22:48:54 +08:00
github-actions[bot]
a057bb6c5b release v1.4.4 2023-08-16 15:33:53 +00:00
josc146
c9e4ae7fa1 release v1.4.4 2023-08-16 23:33:22 +08:00
josc146
79a97b2bc4 webgpu release support 2023-08-16 23:31:04 +08:00
josc146
ef53951a16 webgpu support 2023-08-16 23:07:58 +08:00
josc146
74f1a1c033 chore 2023-08-16 21:11:58 +08:00
josc146
ce986cfc6d chore 2023-08-16 12:50:22 +08:00
josc146
61cea2a784 add misc API (/models and /dashboard/billing/credit_grants) 2023-08-14 23:37:55 +08:00
josc146
8a13bd3c1e add rwkv-cuda-beta support (faster) 2023-08-14 22:07:15 +08:00
josc146
da68926e9c chore (AddStateBody class) 2023-08-13 21:27:29 +08:00
josc146
e0b7453883 allow multiple systems 2023-08-04 22:27:55 +08:00
josc146
91e2828a95 allow completions input to be null 2023-08-04 22:22:59 +08:00
github-actions[bot]
bcf6409536 release v1.4.3 2023-07-31 14:51:01 +00:00
josc146
d7d4f87620 release v1.4.3 2023-07-31 22:50:29 +08:00
josc146
b3e35a4cdd allow custom user_name and assistant_name (/chat/completions API) 2023-07-31 22:48:54 +08:00
josc146
8764c37b03 RWKVType 2023-07-31 22:46:13 +08:00
josc146
d12a173f39 global penalty 2023-07-31 22:02:28 +08:00
josc146
64fa939c19 japanese UI chore 2023-07-29 21:44:33 +08:00
josc146
9c8e7b2f08 japanese UI 2023-07-29 21:19:45 +08:00
josc146
abfd668523 update defaultConfigs 2023-07-29 19:41:54 +08:00
github-actions[bot]
ebacf383f5 release v1.4.2 2023-07-29 11:34:18 +00:00
josc146
eb25dc6bcb release v1.4.2 2023-07-29 19:33:52 +08:00
josc146
aecacde819 remove response field of completions api 2023-07-29 19:20:43 +08:00
josc146
3ef22239eb improve default ChatCompletion stop 2023-07-29 19:19:38 +08:00
josc146
719090cc8c improve python backend startup speed 2023-07-29 19:18:01 +08:00
josc146
dbb8374d89 update defaultConfigs 2023-07-29 19:16:44 +08:00
github-actions[bot]
4d875a8c00 release v1.4.1 2023-07-28 14:16:37 +00:00
josc146
30b6d66a2d release v1.4.1 2023-07-28 22:14:53 +08:00
josc146
9d89b6f4db fix params 2023-07-28 22:13:19 +08:00
josc146
d2928e54f7 fix failed to build cyac 2023-07-28 21:40:17 +08:00
josc146
49ba5c97f7 update readme 2023-07-28 13:13:14 +08:00
github-actions[bot]
4054fac359 release v1.4.0 2023-07-28 05:06:42 +00:00
311 changed files with 185408 additions and 4330 deletions

4
.gitattributes vendored
View File

@ -1,7 +1,11 @@
* text=auto eol=lf
backend-python/rwkv_pip/** linguist-vendored
backend-python/wkv_cuda_utils/** linguist-vendored
backend-python/get-pip.py linguist-vendored
backend-python/convert_model.py linguist-vendored
backend-python/convert_safetensors.py linguist-vendored
backend-python/convert_pytorch_to_ggml.py linguist-vendored
backend-python/utils/midi.py linguist-vendored
build/** linguist-vendored
finetune/lora/** linguist-vendored

9
.github/dependabot.yml vendored Normal file
View File

@ -0,0 +1,9 @@
version: 2
updates:
- package-ecosystem: "github-actions"
directory: "/"
schedule:
interval: "weekly"
commit-message:
prefix: "chore"
include: "scope"

171
.github/workflows/docker.yml vendored Normal file
View File

@ -0,0 +1,171 @@
name: Publish Docker Image
on: [push]
concurrency:
group: ${{ github.ref }}-${{ github.workflow }}
cancel-in-progress: true
jobs:
docker_build:
name: Build ${{ matrix.arch }} Image
runs-on: ubuntu-latest
strategy:
matrix:
include:
- arch: amd64
name: amd64
# - arch: arm64
# name: arm64
steps:
- name: Free up disk spaces
run: |
sudo rm -rf /usr/share/dotnet || true
sudo rm -rf /opt/ghc || true
sudo rm -rf "/usr/local/share/boost" || true
sudo rm -rf "$AGENT_TOOLSDIRECTORY" || true
- name: Get lowercase string for the repository name
id: lowercase-repo-name
uses: ASzc/change-string-case-action@v2
with:
string: ${{ github.event.repository.name }}
- name: Checkout base
uses: actions/checkout@v2
with:
fetch-depth: 0
- name: Cache Docker layers
uses: actions/cache@v2
with:
path: /tmp/.buildx-cache
key: ${{ github.ref }}-${{ matrix.arch }}
restore-keys: |
${{ github.ref }}-${{ matrix.arch }}
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
with:
platforms: linux/${{ matrix.arch }}
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
- name: Docker login
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Get commit SHA
id: vars
run: echo "::set-output name=sha_short::$(git rev-parse --short HEAD)"
- name: Build and export
id: build
if: github.ref == 'refs/heads/master'
uses: docker/build-push-action@v3
with:
push: true
platforms: linux/${{ matrix.arch }}
tags: ${{ secrets.DOCKER_USERNAME }}/${{ steps.lowercase-repo-name.outputs.lowercase }}:${{ matrix.name }}-latest
build-args: |
SHA=${{ steps.vars.outputs.sha_short }}
outputs: type=image,push=true
cache-from: type=local,src=/tmp/.buildx-cache
cache-to: type=local,dest=/tmp/.buildx-cache
- name: Replace tag without `v`
if: startsWith(github.ref, 'refs/tags/')
uses: actions/github-script@v1
id: version
with:
script: |
return context.payload.ref.replace(/\/?refs\/tags\/v/, '')
result-encoding: string
- name: Build release and export
id: build_rel
if: startsWith(github.ref, 'refs/tags/')
uses: docker/build-push-action@v3
with:
push: true
platforms: linux/${{ matrix.arch }}
tags: ${{ secrets.DOCKER_USERNAME }}/${{ steps.lowercase-repo-name.outputs.lowercase }}:${{ matrix.name }}-${{steps.version.outputs.result}}
build-args: |
SHA=${{ steps.version.outputs.result }}
outputs: type=image,push=true
cache-from: type=local,src=/tmp/.buildx-cache
cache-to: type=local,dest=/tmp/.buildx-cache
- name: Save digest
if: github.ref == 'refs/heads/master'
run: echo ${{ steps.build.outputs.digest }} > /tmp/digest.txt
- name: Save release digest
if: startsWith(github.ref, 'refs/tags/')
run: echo ${{ steps.build_rel.outputs.digest }} > /tmp/digest.txt
- name: Upload artifact
uses: actions/upload-artifact@v3
with:
name: digest_${{ matrix.name }}
path: /tmp/digest.txt
manifests:
name: Build manifests
needs: [docker_build]
runs-on: ubuntu-latest
steps:
- name: Get lowercase string for the repository name
id: lowercase-repo-name
uses: ASzc/change-string-case-action@v2
with:
string: ${{ github.event.repository.name }}
- name: Checkout base
uses: actions/checkout@v2
with:
fetch-depth: 0
# https://github.com/docker/setup-qemu-action
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
# https://github.com/docker/setup-buildx-action
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
with:
config-inline: |
[worker.oci]
max-parallelism = 1
- name: Download artifact
uses: actions/download-artifact@v3
with:
path: /tmp/images/
- name: Docker login
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Replace tag without `v`
if: startsWith(github.ref, 'refs/tags/')
uses: actions/github-script@v1
id: version
with:
script: |
return context.payload.ref.replace(/\/?refs\/tags\/v/, '')
result-encoding: string
- name: Merge and push manifest on master branch
if: github.ref == 'refs/heads/master'
run: python scripts/merge_manifest.py "${{ secrets.DOCKER_USERNAME }}/${{ steps.lowercase-repo-name.outputs.lowercase }}"
- name: Merge and push manifest on release
if: startsWith(github.ref, 'refs/tags/')
run: python scripts/merge_manifest.py "${{ secrets.DOCKER_USERNAME }}/${{ steps.lowercase-repo-name.outputs.lowercase }}" ${{steps.version.outputs.result}}

114
.github/workflows/pre-release.yml vendored Normal file
View File

@ -0,0 +1,114 @@
name: pre-release
on:
workflow_dispatch:
push:
branches:
- master
paths:
- "backend-python/**"
tags-ignore:
- "v*"
jobs:
windows:
runs-on: windows-2022
steps:
- uses: actions/checkout@v4
with:
ref: master
- uses: actions/setup-go@v5
with:
go-version: "1.20.5"
- uses: actions/setup-python@v5
id: cp310
with:
python-version: "3.10"
- uses: crazy-max/ghaction-chocolatey@v3
with:
args: install upx
- run: |
Start-BitsTransfer https://github.com/josStorer/ai00_rwkv_server/releases/latest/download/webgpu_server_windows_x86_64.exe ./backend-rust/webgpu_server.exe
Start-BitsTransfer https://github.com/josStorer/web-rwkv-converter/releases/latest/download/web-rwkv-converter_windows_x86_64.exe ./backend-rust/web-rwkv-converter.exe
Start-BitsTransfer https://github.com/josStorer/LibreHardwareMonitor.Console/releases/latest/download/LibreHardwareMonitor.Console.zip ./LibreHardwareMonitor.Console.zip
Expand-Archive ./LibreHardwareMonitor.Console.zip -DestinationPath ./components/LibreHardwareMonitor.Console
Start-BitsTransfer https://www.python.org/ftp/python/3.10.11/python-3.10.11-embed-amd64.zip ./python-3.10.11-embed-amd64.zip
Expand-Archive ./python-3.10.11-embed-amd64.zip -DestinationPath ./py310
$content=Get-Content "./py310/python310._pth"; $content | ForEach-Object {if ($_.ReadCount -eq 3) {"Lib\\site-packages"} else {$_}} | Set-Content ./py310/python310._pth
./py310/python ./backend-python/get-pip.py
./py310/python -m pip install Cython==3.0.4
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../include" -Destination "py310/include" -Recurse
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../libs" -Destination "py310/libs" -Recurse
./py310/python -m pip install cyac==1.9
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
del ./backend-python/rwkv_pip/cpp/librwkv.dylib
del ./backend-python/rwkv_pip/cpp/librwkv.so
(Get-Content -Path ./backend-golang/app.go) -replace "//go:custom_build windows ", "" | Set-Content -Path ./backend-golang/app.go
(Get-Content -Path ./backend-golang/utils.go) -replace "//go:custom_build windows ", "" | Set-Content -Path ./backend-golang/utils.go
make
Rename-Item -Path "build/bin/RWKV-Runner.exe" -NewName "RWKV-Runner_windows_x64.exe"
- uses: actions/upload-artifact@v4
with:
name: RWKV-Runner_windows_x64.exe
path: build/bin/RWKV-Runner_windows_x64.exe
linux:
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v4
with:
ref: master
- uses: actions/setup-go@v5
with:
go-version: "1.20.5"
- run: |
wget https://github.com/josStorer/ai00_rwkv_server/releases/latest/download/webgpu_server_linux_x86_64 -O ./backend-rust/webgpu_server
wget https://github.com/josStorer/web-rwkv-converter/releases/latest/download/web-rwkv-converter_linux_x86_64 -O ./backend-rust/web-rwkv-converter
sudo apt-get update
sudo apt-get install upx
sudo apt-get install build-essential libgtk-3-dev libwebkit2gtk-4.0-dev libasound2-dev
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
rm ./backend-python/rwkv_pip/wkv_cuda.pyd
rm ./backend-python/rwkv_pip/rwkv5.pyd
rm ./backend-python/rwkv_pip/rwkv6.pyd
rm ./backend-python/get-pip.py
rm ./backend-python/rwkv_pip/cpp/librwkv.dylib
rm ./backend-python/rwkv_pip/cpp/rwkv.dll
rm ./backend-python/rwkv_pip/webgpu/web_rwkv_py.cp310-win_amd64.pyd
make
mv build/bin/RWKV-Runner build/bin/RWKV-Runner_linux_x64
- uses: actions/upload-artifact@v4
with:
name: RWKV-Runner_linux_x64
path: build/bin/RWKV-Runner_linux_x64
macos:
runs-on: macos-13
steps:
- uses: actions/checkout@v4
with:
ref: master
- uses: actions/setup-go@v5
with:
go-version: "1.20.5"
- run: |
wget https://github.com/josStorer/ai00_rwkv_server/releases/latest/download/webgpu_server_darwin_aarch64 -O ./backend-rust/webgpu_server
wget https://github.com/josStorer/web-rwkv-converter/releases/latest/download/web-rwkv-converter_darwin_aarch64 -O ./backend-rust/web-rwkv-converter
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
rm ./backend-python/rwkv_pip/wkv_cuda.pyd
rm ./backend-python/rwkv_pip/rwkv5.pyd
rm ./backend-python/rwkv_pip/rwkv6.pyd
rm ./backend-python/get-pip.py
rm ./backend-python/rwkv_pip/cpp/rwkv.dll
rm ./backend-python/rwkv_pip/cpp/librwkv.so
rm ./backend-python/rwkv_pip/webgpu/web_rwkv_py.cp310-win_amd64.pyd
make
cp build/darwin/Readme_Install.txt build/bin/Readme_Install.txt
cp build/bin/RWKV-Runner.app/Contents/MacOS/RWKV-Runner build/bin/RWKV-Runner_darwin_universal
cd build/bin && zip -r RWKV-Runner_macos_universal.zip RWKV-Runner.app Readme_Install.txt
- uses: actions/upload-artifact@v4
with:
name: RWKV-Runner_macos_universal.zip
path: build/bin/RWKV-Runner_macos_universal.zip

View File

@ -11,14 +11,14 @@ env:
jobs:
create-draft:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
ref: master
- uses: jossef/action-set-json-field@v2.1
- uses: jossef/action-set-json-field@v2.2
with:
file: manifest.json
field: version
@ -35,32 +35,40 @@ jobs:
gh release create ${{github.ref_name}} -d -F CURRENT_CHANGE.md -t ${{github.ref_name}}
windows:
runs-on: windows-latest
runs-on: windows-2022
needs: create-draft
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
ref: master
- uses: actions/setup-go@v4
- uses: actions/setup-go@v5
with:
go-version: '1.20.5'
- uses: actions/setup-python@v4
go-version: "1.20.5"
- uses: actions/setup-python@v5
id: cp310
with:
python-version: '3.10'
- uses: crazy-max/ghaction-chocolatey@v2
python-version: "3.10"
- uses: crazy-max/ghaction-chocolatey@v3
with:
args: install upx
- run: |
Start-BitsTransfer https://github.com/josStorer/ai00_rwkv_server/releases/latest/download/webgpu_server_windows_x86_64.exe ./backend-rust/webgpu_server.exe
Start-BitsTransfer https://github.com/josStorer/web-rwkv-converter/releases/latest/download/web-rwkv-converter_windows_x86_64.exe ./backend-rust/web-rwkv-converter.exe
Start-BitsTransfer https://github.com/josStorer/LibreHardwareMonitor.Console/releases/latest/download/LibreHardwareMonitor.Console.zip ./LibreHardwareMonitor.Console.zip
Expand-Archive ./LibreHardwareMonitor.Console.zip -DestinationPath ./components/LibreHardwareMonitor.Console
Start-BitsTransfer https://www.python.org/ftp/python/3.10.11/python-3.10.11-embed-amd64.zip ./python-3.10.11-embed-amd64.zip
Expand-Archive ./python-3.10.11-embed-amd64.zip -DestinationPath ./py310
$content=Get-Content "./py310/python310._pth"; $content | ForEach-Object {if ($_.ReadCount -eq 3) {"Lib\\site-packages"} else {$_}} | Set-Content ./py310/python310._pth
./py310/python ./backend-python/get-pip.py
./py310/python -m pip install Cython
./py310/python -m pip install Cython==3.0.4
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../include" -Destination "py310/include" -Recurse
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../libs" -Destination "py310/libs" -Recurse
./py310/python -m pip install cyac
go install github.com/wailsapp/wails/v2/cmd/wails@latest
./py310/python -m pip install cyac==1.9
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
del ./backend-python/rwkv_pip/cpp/librwkv.dylib
del ./backend-python/rwkv_pip/cpp/librwkv.so
(Get-Content -Path ./backend-golang/app.go) -replace "//go:custom_build windows ", "" | Set-Content -Path ./backend-golang/app.go
(Get-Content -Path ./backend-golang/utils.go) -replace "//go:custom_build windows ", "" | Set-Content -Path ./backend-golang/utils.go
make
Rename-Item -Path "build/bin/RWKV-Runner.exe" -NewName "RWKV-Runner_windows_x64.exe"
@ -70,22 +78,26 @@ jobs:
runs-on: ubuntu-20.04
needs: create-draft
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
ref: master
- uses: actions/setup-go@v4
- uses: actions/setup-go@v5
with:
go-version: '1.20.5'
go-version: "1.20.5"
- run: |
wget https://github.com/josStorer/ai00_rwkv_server/releases/latest/download/webgpu_server_linux_x86_64 -O ./backend-rust/webgpu_server
wget https://github.com/josStorer/web-rwkv-converter/releases/latest/download/web-rwkv-converter_linux_x86_64 -O ./backend-rust/web-rwkv-converter
sudo apt-get update
sudo apt-get install upx
sudo apt-get install build-essential libgtk-3-dev libwebkit2gtk-4.0-dev
go install github.com/wailsapp/wails/v2/cmd/wails@latest
rm -rf ./backend-python/wkv_cuda_utils
sudo apt-get install build-essential libgtk-3-dev libwebkit2gtk-4.0-dev libasound2-dev
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
rm ./backend-python/rwkv_pip/wkv_cuda.pyd
rm ./backend-python/rwkv_pip/rwkv5.pyd
rm ./backend-python/rwkv_pip/rwkv6.pyd
rm ./backend-python/get-pip.py
sed -i '1,2d' ./backend-golang/wsl_not_windows.go
rm ./backend-golang/wsl.go
mv ./backend-golang/wsl_not_windows.go ./backend-golang/wsl.go
rm ./backend-python/rwkv_pip/cpp/librwkv.dylib
rm ./backend-python/rwkv_pip/cpp/rwkv.dll
rm ./backend-python/rwkv_pip/webgpu/web_rwkv_py.cp310-win_amd64.pyd
make
mv build/bin/RWKV-Runner build/bin/RWKV-Runner_linux_x64
@ -95,19 +107,23 @@ jobs:
runs-on: macos-13
needs: create-draft
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
ref: master
- uses: actions/setup-go@v4
- uses: actions/setup-go@v5
with:
go-version: '1.20.5'
go-version: "1.20.5"
- run: |
go install github.com/wailsapp/wails/v2/cmd/wails@latest
rm -rf ./backend-python/wkv_cuda_utils
wget https://github.com/josStorer/ai00_rwkv_server/releases/latest/download/webgpu_server_darwin_aarch64 -O ./backend-rust/webgpu_server
wget https://github.com/josStorer/web-rwkv-converter/releases/latest/download/web-rwkv-converter_darwin_aarch64 -O ./backend-rust/web-rwkv-converter
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
rm ./backend-python/rwkv_pip/wkv_cuda.pyd
rm ./backend-python/rwkv_pip/rwkv5.pyd
rm ./backend-python/rwkv_pip/rwkv6.pyd
rm ./backend-python/get-pip.py
sed -i '' '1,2d' ./backend-golang/wsl_not_windows.go
rm ./backend-golang/wsl.go
mv ./backend-golang/wsl_not_windows.go ./backend-golang/wsl.go
rm ./backend-python/rwkv_pip/cpp/rwkv.dll
rm ./backend-python/rwkv_pip/cpp/librwkv.so
rm ./backend-python/rwkv_pip/webgpu/web_rwkv_py.cp310-win_amd64.pyd
make
cp build/darwin/Readme_Install.txt build/bin/Readme_Install.txt
cp build/bin/RWKV-Runner.app/Contents/MacOS/RWKV-Runner build/bin/RWKV-Runner_darwin_universal
@ -116,8 +132,8 @@ jobs:
- run: gh release upload ${{github.ref_name}} build/bin/RWKV-Runner_macos_universal.zip build/bin/RWKV-Runner_darwin_universal
publish-release:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
needs: [ windows, linux, macos ]
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- run: gh release edit ${{github.ref_name}} --draft=false

4
.gitignore vendored
View File

@ -5,7 +5,10 @@ __pycache__
.idea
.vs
*.pth
*.st
*.safetensors
*.bin
*.mid
/config.json
/cache.json
/presets.json
@ -24,3 +27,4 @@ __pycache__
train_log.txt
finetune/json2binidx_tool/data
/wsl.state
/components

View File

@ -1,21 +1,31 @@
## Changes
## v1.8.4
- add Composition Page (RWKV-Music)
- improve RunButton prompt
- support for `stop` array api params
- improve embeddings API results
- improve python backend startup speed
- add support for MIDI RWKV
- add midi api
- add CPU-120M-Music config
- improve sse fetch
- update manifest (a lot of new models)
- update presets
- remove LoraFinetunePrecision fp32
- fix f05a4a, __init__.py is not embedded
## v1.8.3
### Deprecations
- rwkv-beta is deprecated
### Upgrades
- bump webgpu(python) (https://github.com/cryscan/web-rwkv-py)
- sync https://github.com/JL-er/RWKV-PEFT (LoRA)
### Improvements
- improve default LoRA fine-tune params
### Fixes
- fix #342, #345: cannot import name 'packaging' from 'pkg_resources'
- fix the huge error prompt that pops up when running in webgpu mode
## Install
- Windows: https://github.com/josStorer/RWKV-Runner/blob/master/build/windows/Readme_Install.txt
- MacOS: https://github.com/josStorer/RWKV-Runner/blob/master/build/darwin/Readme_Install.txt
- Linux: https://github.com/josStorer/RWKV-Runner/blob/master/build/linux/Readme_Install.txt
- Server-Deploy-Examples: https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples
- Simple Deploy Example: https://github.com/josStorer/RWKV-Runner/blob/master/README.md#simple-deploy-example
- Server Deploy Examples: https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples

55
Dockerfile Normal file
View File

@ -0,0 +1,55 @@
FROM node:21-slim AS frontend
RUN echo "registry=https://registry.npmmirror.com/" > ~/.npmrc
WORKDIR /app
COPY manifest.json manifest.json
COPY frontend frontend
WORKDIR /app/frontend
RUN npm ci
RUN npm run build
FROM nvidia/cuda:11.6.1-devel-ubuntu20.04 AS runtime
ENV DEBIAN_FRONTEND=noninteractive
RUN apt update && \
apt install -yq git curl wget build-essential ninja-build aria2 jq software-properties-common
RUN add-apt-repository -y ppa:deadsnakes/ppa && \
add-apt-repository -y ppa:ubuntu-toolchain-r/test && \
apt install -y g++-11 python3.10 python3.10-distutils python3.10-dev && \
curl -sS http://mirrors.aliyun.com/pypi/get-pip.py | python3.10
RUN python3.10 -m pip install cmake
FROM runtime AS librwkv
WORKDIR /app
RUN git clone https://github.com/RWKV/rwkv.cpp.git && \
cd rwkv.cpp && \
git submodule update --init --recursive && \
mkdir -p build && \
cd build && \
cmake -G Ninja .. && \
cmake --build .
FROM runtime AS final
WORKDIR /app
COPY ./backend-python/requirements.txt ./backend-python/requirements.txt
RUN python3.10 -m pip install --quiet -r ./backend-python/requirements.txt
COPY . .
COPY --from=frontend /app/frontend/dist /app/frontend/dist
COPY --from=librwkv /app/rwkv.cpp/build/librwkv.so /app/backend-python/rwkv_pip/cpp/librwkv.so
EXPOSE 27777
CMD ["python3.10", "./backend-python/main.py", "--port", "27777", "--host", "0.0.0.0", "--webui"]

View File

@ -8,16 +8,28 @@ endif
build-windows:
@echo ---- build for windows
wails build -upx -ldflags "-s -w" -platform windows/amd64
wails build -ldflags '-s -w -extldflags "-static"' -platform windows/amd64
upx -9 --lzma ./build/bin/RWKV-Runner.exe
build-macos:
@echo ---- build for macos
wails build -ldflags "-s -w" -platform darwin/universal
wails build -ldflags '-s -w' -platform darwin/universal
build-linux:
@echo ---- build for linux
wails build -upx -ldflags "-s -w" -platform linux/amd64
wails build -ldflags '-s -w' -platform linux/amd64
upx -9 --lzma ./build/bin/RWKV-Runner
build-web:
@echo ---- build for web
cd frontend && npm run build
dev:
wails dev
dev-web:
cd frontend && npm run dev
preview:
cd frontend && npm run preview

158
README.md
View File

@ -1,5 +1,5 @@
<p align="center">
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/d24834b0-265d-45f5-93c0-fac1e19562af">
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/65c46133-7506-4b54-b64f-fe49f188afa7">
</p>
<h1 align="center">RWKV Runner</h1>
@ -12,6 +12,7 @@ compatible with the OpenAI API, which means that every ChatGPT client is an RWKV
[![license][license-image]][license-url]
[![release][release-image]][release-url]
[![py-version][py-version-image]][py-version-url]
English | [简体中文](README_ZH.md) | [日本語](README_JA.md)
@ -21,7 +22,7 @@ English | [简体中文](README_ZH.md) | [日本語](README_JA.md)
[![MacOS][MacOS-image]][MacOS-url]
[![Linux][Linux-image]][Linux-url]
[FAQs](https://github.com/josStorer/RWKV-Runner/wiki/FAQs) | [Preview](#Preview) | [Download][download-url] | [Server-Deploy-Examples](https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples)
[FAQs](https://github.com/josStorer/RWKV-Runner/wiki/FAQs) | [Preview](#Preview) | [Download][download-url] | [Simple Deploy Example](#Simple-Deploy-Example) | [Server Deploy Examples](https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples) | [MIDI Hardware Input](#MIDI-Input)
[license-image]: http://img.shields.io/badge/license-MIT-blue.svg
@ -31,6 +32,10 @@ English | [简体中文](README_ZH.md) | [日本語](README_JA.md)
[release-url]: https://github.com/josStorer/RWKV-Runner/releases/latest
[py-version-image]: https://img.shields.io/pypi/pyversions/fastapi.svg
[py-version-url]: https://github.com/josStorer/RWKV-Runner/tree/master/backend-python
[download-url]: https://github.com/josStorer/RWKV-Runner/releases
[Windows-image]: https://img.shields.io/badge/-Windows-blue?logo=windows
@ -47,28 +52,75 @@ English | [简体中文](README_ZH.md) | [日本語](README_JA.md)
</div>
#### Default configs has enabled custom CUDA kernel acceleration, which is much faster and consumes much less VRAM. If you encounter possible compatibility issues, go to the Configs page and turn off `Use Custom CUDA kernel to Accelerate`.
## Tips
#### If Windows Defender claims this is a virus, you can try downloading [v1.3.7_win.zip](https://github.com/josStorer/RWKV-Runner/releases/download/v1.3.7/RWKV-Runner_win.zip) and letting it update automatically to the latest version, or add it to the trusted list (`Windows Security` -> `Virus & threat protection` -> `Manage settings` -> `Exclusions` -> `Add or remove exclusions` -> `Add an exclusion` -> `Folder` -> `RWKV-Runner`).
- You can deploy [backend-python](./backend-python/) on a server and use this program as a client only. Fill in
your server address in the Settings `API URL`.
#### For different tasks, adjusting API parameters can achieve better results. For example, for translation tasks, you can try setting Temperature to 1 and Top_P to 0.3.
- If you are deploying and providing public services, please limit the request size through API gateway to prevent
excessive resource usage caused by submitting overly long prompts. Additionally, please restrict the upper limit of
requests' max_tokens based on your actual
situation: https://github.com/josStorer/RWKV-Runner/blob/master/backend-python/utils/rwkv.py#L567, the default is set
as le=102400, which may result in significant resource consumption for individual responses in extreme cases.
- Default configs has enabled custom CUDA kernel acceleration, which is much faster and consumes much less VRAM. If you
encounter possible compatibility issues (output garbled), go to the Configs page and turn
off `Use Custom CUDA kernel to Accelerate`, or try to upgrade your gpu driver.
- If Windows Defender claims this is a virus, you can try
downloading [v1.3.7_win.zip](https://github.com/josStorer/RWKV-Runner/releases/download/v1.3.7/RWKV-Runner_win.zip)
and letting it update automatically to the latest version, or add it to the trusted
list (`Windows Security` -> `Virus & threat protection` -> `Manage settings` -> `Exclusions` -> `Add or remove exclusions` -> `Add an exclusion` -> `Folder` -> `RWKV-Runner`).
- For different tasks, adjusting API parameters can achieve better results. For example, for translation tasks, you can
try setting Temperature to 1 and Top_P to 0.3.
## Features
- RWKV model management and one-click startup
- Fully compatible with the OpenAI API, making every ChatGPT client an RWKV client. After starting the model,
- RWKV model management and one-click startup.
- Front-end and back-end separation, if you don't want to use the client, also allows for separately deploying the
front-end service, or the back-end inference service, or the back-end inference service with a WebUI.
[Simple Deploy Example](#Simple-Deploy-Example) | [Server Deploy Examples](https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples)
- Compatible with the OpenAI API, making every ChatGPT client an RWKV client. After starting the model,
open http://127.0.0.1:8000/docs to view more details.
- Automatic dependency installation, requiring only a lightweight executable program
- Configs with 2G to 32G VRAM are included, works well on almost all computers
- User-friendly chat and completion interaction interface included
- Easy-to-understand and operate parameter configuration
- Built-in model conversion tool
- Built-in download management and remote model inspection
- Built-in one-click LoRA Finetune
- Can also be used as an OpenAI ChatGPT and GPT-Playground client
- Multilingual localization
- Theme switching
- Automatic updates
- Automatic dependency installation, requiring only a lightweight executable program.
- Pre-set multi-level VRAM configs, works well on almost all computers. In Configs page, switch Strategy to WebGPU, it
can also run on AMD, Intel, and other graphics cards.
- User-friendly chat, completion, and composition interaction interface included. Also supports chat presets, attachment
uploads, MIDI hardware input, and track editing.
[Preview](#Preview) | [MIDI Hardware Input](#MIDI-Input)
- Built-in WebUI option, one-click start of Web service, sharing your hardware resources.
- Easy-to-understand and operate parameter configuration, along with various operation guidance prompts.
- Built-in model conversion tool.
- Built-in download management and remote model inspection.
- Built-in one-click LoRA Finetune. (Windows Only)
- Can also be used as an OpenAI ChatGPT, GPT-Playground, Ollama and more clients. (Fill in the API URL and API Key in
Settings page)
- Multilingual localization.
- Theme switching.
- Automatic updates.
## Simple Deploy Example
```bash
git clone https://github.com/josStorer/RWKV-Runner
# Then
cd RWKV-Runner
python ./backend-python/main.py #The backend inference service has been started, request /switch-model API to load the model, refer to the API documentation: http://127.0.0.1:8000/docs
# Or
cd RWKV-Runner/frontend
npm ci
npm run build #Compile the frontend
cd ..
python ./backend-python/webui_server.py #Start the frontend service separately
# Or
python ./backend-python/main.py --webui #Start the frontend and backend service at the same time
# Help Info
python ./backend-python/main.py -h
```
## API Concurrency Stress Testing
@ -131,36 +183,100 @@ for i in np.argsort(embeddings_cos_sim)[::-1]:
print(f"{embeddings_cos_sim[i]:.10f} - {values[i]}")
```
## MIDI Input
Tip: You can download https://github.com/josStorer/sgm_plus and unzip it to the program's `assets/sound-font` directory
to use it as an offline sound source. Please note that if you are compiling the program from source code, do not place
it in the source code directory.
If you don't have a MIDI keyboard, you can use virtual MIDI input software like `Virtual Midi Controller 3 LE`, along
with [loopMIDI](https://www.tobias-erichsen.de/wp-content/uploads/2020/01/loopMIDISetup_1_0_16_27.zip), to use a regular
computer keyboard as MIDI input.
### USB MIDI Connection
- USB MIDI devices are plug-and-play, and you can select your input device in the Composition page
- ![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/13bb92c3-4504-482d-ab82-026ac6c31095)
### Mac MIDI Bluetooth Connection
- For Mac users who want to use Bluetooth input,
please install [Bluetooth MIDI Connect](https://apps.apple.com/us/app/bluetooth-midi-connect/id1108321791), then click
the tray icon to connect after launching,
afterwards, you can select your input device in the Composition page.
- ![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/c079a109-1e3d-45c1-bbf5-eed85da1550e)
### Windows MIDI Bluetooth Connection
- Windows seems to have implemented Bluetooth MIDI support only for UWP (Universal Windows Platform) apps. Therefore, it
requires multiple steps to establish a connection. We need to create a local virtual MIDI device and then launch a UWP
application. Through this UWP application, we will redirect Bluetooth MIDI input to the virtual MIDI device, and then
this software will listen to the input from the virtual MIDI device.
- So, first, you need to
download [loopMIDI](https://www.tobias-erichsen.de/wp-content/uploads/2020/01/loopMIDISetup_1_0_16_27.zip)
to create a virtual MIDI device. Click the plus sign in the bottom left corner to create the device.
- ![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/b75998ff-115c-4ddd-b97c-deeb5c106255)
- Next, you need to download [Bluetooth LE Explorer](https://apps.microsoft.com/detail/9N0ZTKF1QD98) to discover and
connect to Bluetooth MIDI devices. Click "Start" to search for devices, and then click "Pair" to bind the MIDI device.
- ![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/c142c3ea-a973-4531-9807-4c385d640a2b)
- Finally, you need to install [MIDIberry](https://apps.microsoft.com/detail/9N39720H2M05),
This UWP application can redirect Bluetooth MIDI input to the virtual MIDI device. After launching it, double-click
your actual Bluetooth MIDI device name in the input field, and in the output field, double-click the virtual MIDI
device name we created earlier.
- ![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/5ad6a1d9-4f68-4d95-ae17-4296107d1669)
- Now, you can select the virtual MIDI device as the input in the Composition page. Bluetooth LE Explorer no longer
needs to run, and you can also close the loopMIDI window, it will run automatically in the background. Just keep
MIDIberry open.
- ![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/1c371821-c7b7-4c18-8e42-9e315efbe427)
## Related Repositories:
- RWKV-5-World: https://huggingface.co/BlinkDL/rwkv-5-world/tree/main
- RWKV-4-World: https://huggingface.co/BlinkDL/rwkv-4-world/tree/main
- RWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main
- ChatRWKV: https://github.com/BlinkDL/ChatRWKV
- RWKV-LM: https://github.com/BlinkDL/RWKV-LM
- RWKV-LM-LoRA: https://github.com/Blealtan/RWKV-LM-LoRA
- RWKV-v5-lora: https://github.com/JL-er/RWKV-v5-lora
- MIDI-LLM-tokenizer: https://github.com/briansemrau/MIDI-LLM-tokenizer
- ai00_rwkv_server: https://github.com/cgisky1980/ai00_rwkv_server
- rwkv.cpp: https://github.com/saharNooby/rwkv.cpp
- web-rwkv-py: https://github.com/cryscan/web-rwkv-py
- web-rwkv: https://github.com/cryscan/web-rwkv
## Preview
### Homepage
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/d7f24d80-f382-428d-8b28-edf87e1549e2)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/c1923ed8-22f7-48b4-a274-e215e27a8e01)
### Chat
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/80009872-528f-4932-aeb2-f724fa892e7c)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/de8d3fa7-c31f-4941-a22b-ded785427ac0)
### Completion
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/bf49de8e-3b89-4543-b1ef-7cd4b19a1836)
### Composition
Tip: You can download https://github.com/josStorer/sgm_plus and unzip it to the program's `assets/sound-font` directory
to use it as an offline sound source. Please note that if you are compiling the program from source code, do not place
it in the source code directory.
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/e8ad908d-3fd2-4e92-bcdb-96815cb836ee)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/b2ce4761-9e75-477e-a182-d0255fb8ac76)
### Configuration
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/48befdc6-e03c-4851-9bee-22f77ee2640e)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/f41060dc-5517-44af-bb3f-8ef71720016d)
### Model Management
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/367fe4f8-cc12-475f-9371-3cf62cdbf293)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/b1581147-a6ce-4493-8010-e33c0ddeca0a)
### Download Management

View File

@ -1,5 +1,5 @@
<p align="center">
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/d24834b0-265d-45f5-93c0-fac1e19562af">
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/65c46133-7506-4b54-b64f-fe49f188afa7">
</p>
<h1 align="center">RWKV Runner</h1>
@ -12,6 +12,7 @@
[![license][license-image]][license-url]
[![release][release-image]][release-url]
[![py-version][py-version-image]][py-version-url]
[English](README.md) | [简体中文](README_ZH.md) | 日本語
@ -21,7 +22,7 @@
[![MacOS][MacOS-image]][MacOS-url]
[![Linux][Linux-image]][Linux-url]
[FAQs](https://github.com/josStorer/RWKV-Runner/wiki/FAQs) | [プレビュー](#Preview) | [ダウンロード][download-url] | [サーバーデプロイ例](https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples)
[FAQs](https://github.com/josStorer/RWKV-Runner/wiki/FAQs) | [プレビュー](#Preview) | [ダウンロード][download-url] | [シンプルなデプロイの例](#Simple-Deploy-Example) | [サーバーデプロイ例](https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples) | [MIDIハードウェア入力](#MIDI-Input)
[license-image]: http://img.shields.io/badge/license-MIT-blue.svg
@ -31,6 +32,10 @@
[release-url]: https://github.com/josStorer/RWKV-Runner/releases/latest
[py-version-image]: https://img.shields.io/pypi/pyversions/fastapi.svg
[py-version-url]: https://github.com/josStorer/RWKV-Runner/tree/master/backend-python
[download-url]: https://github.com/josStorer/RWKV-Runner/releases
[Windows-image]: https://img.shields.io/badge/-Windows-blue?logo=windows
@ -47,29 +52,71 @@
</div>
#### デフォルトの設定はカスタム CUDA カーネルアクセラレーションを有効にしています。互換性の問題が発生する可能性がある場合は、コンフィグページに移動し、`Use Custom CUDA kernel to Accelerate` をオフにしてください。
## ヒント
#### Windows Defender がこれをウイルスだと主張する場合は、[v1.3.7_win.zip](https://github.com/josStorer/RWKV-Runner/releases/download/v1.3.7/RWKV-Runner_win.zip) をダウンロードして最新版に自動更新させるか、信頼済みリストに追加してみてください (`Windows Security` -> `Virus & threat protection` -> `Manage settings` -> `Exclusions` -> `Add or remove exclusions` -> `Add an exclusion` -> `Folder` -> `RWKV-Runner`)。
- サーバーに [backend-python](./backend-python/)
をデプロイし、このプログラムをクライアントとして使用することができます。設定された`API URL`にサーバーアドレスを入力してください。
#### 異なるタスクについては、API パラメータを調整することで、より良い結果を得ることができます。例えば、翻訳タスクの場合、Temperature を 1 に、Top_P を 0.3 に設定してみてください。
- もし、あなたがデプロイし、外部に公開するサービスを提供している場合、APIゲートウェイを使用してリクエストのサイズを制限し、
長すぎるプロンプトの提出がリソースを占有しないようにしてください。さらに、実際の状況に応じて、リクエストの max_tokens
の上限を制限してくださいhttps://github.com/josStorer/RWKV-Runner/blob/master/backend-python/utils/rwkv.py#L567
、デフォルトは le=102400 ですが、極端な場合には単一の応答が大量のリソースを消費する可能性があります。
- デフォルトの設定はカスタム CUDA カーネルアクセラレーションを有効にしています。互換性の問題 (文字化けを出力する)
が発生する可能性がある場合は、コンフィグページに移動し、`Use Custom CUDA kernel to Accelerate`
をオフにしてください、あるいは、GPUドライバーをアップグレードしてみてください。
- Windows Defender
がこれをウイルスだと主張する場合は、[v1.3.7_win.zip](https://github.com/josStorer/RWKV-Runner/releases/download/v1.3.7/RWKV-Runner_win.zip)
をダウンロードして最新版に自動更新させるか、信頼済みリストに追加してみてください (`Windows Security` -> `Virus & threat protection` -> `Manage settings` -> `Exclusions` -> `Add or remove exclusions` -> `Add an exclusion` -> `Folder` -> `RWKV-Runner`)。
- 異なるタスクについては、API パラメータを調整することで、より良い結果を得ることができます。例えば、翻訳タスクの場合、Temperature
を 1 に、Top_P を 0.3 に設定してみてください。
## 特徴
- RWKV モデル管理とワンクリック起動
- OpenAI API と完全に互換性があり、すべての ChatGPT クライアントを RWKV クライアントにします。モデル起動後、
- フロントエンドとバックエンドの分離は、クライアントを使用しない場合でも、フロントエンドサービス、またはバックエンド推論サービス、またはWebUIを備えたバックエンド推論サービスを個別に展開することを可能にします。
[シンプルなデプロイの例](#Simple-Deploy-Example) | [サーバーデプロイ例](https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples)
- OpenAI API と互換性があり、すべての ChatGPT クライアントを RWKV クライアントにします。モデル起動後、
http://127.0.0.1:8000/docs を開いて詳細をご覧ください。
- 依存関係の自動インストールにより、軽量な実行プログラムのみを必要とします
- 2G から 32G の VRAM のコンフィグが含まれており、ほとんどのコンピュータで動作します
- ユーザーフレンドリーなチャットと完成インタラクションインターフェースを搭載
- 分かりやすく操作しやすいパラメータ設定
- 事前設定された多段階のVRAM設定、ほとんどのコンピュータで動作します。配置ページで、ストラテジーをWebGPUに切り替えると、AMD、インテル、その他のグラフィックカードでも動作します
- ユーザーフレンドリーなチャット、完成、および作曲インターフェイスが含まれています。また、チャットプリセット、添付ファイルのアップロード、MIDIハードウェア入力、トラック編集もサポートしています。
[プレビュー](#Preview) | [MIDIハードウェア入力](#MIDI-Input)
- 内蔵WebUIオプション、Webサービスのワンクリック開始、ハードウェアリソースの共有
- 分かりやすく操作しやすいパラメータ設定、各種操作ガイダンスプロンプトとともに
- 内蔵モデル変換ツール
- ダウンロード管理とリモートモデル検査機能内蔵
- 内蔵のLoRA微調整機能を搭載しています
- このプログラムは、OpenAI ChatGPTとGPT Playgroundのクライアントとしても使用できます
- 内蔵のLoRA微調整機能を搭載しています (Windowsのみ)
- このプログラムは、OpenAI ChatGPT、GPT Playground、Ollama などのクライアントとしても使用できます(設定ページで `API URL`
`API Key` を入力してください)
- 多言語ローカライズ
- テーマ切り替え
- 自動アップデート
## Simple Deploy Example
```bash
git clone https://github.com/josStorer/RWKV-Runner
# Then
cd RWKV-Runner
python ./backend-python/main.py #The backend inference service has been started, request /switch-model API to load the model, refer to the API documentation: http://127.0.0.1:8000/docs
# Or
cd RWKV-Runner/frontend
npm ci
npm run build #Compile the frontend
cd ..
python ./backend-python/webui_server.py #Start the frontend service separately
# Or
python ./backend-python/main.py --webui #Start the frontend and backend service at the same time
# Help Info
python ./backend-python/main.py -h
```
## API 同時実行ストレステスト
```bash
@ -91,8 +138,8 @@ body.json:
## 埋め込み API の例
Note: v1.4.0 has improved the quality of embeddings API. The generated results are not compatible
with previous versions. If you are using embeddings API to generate knowledge bases or similar, please regenerate.
注意: v1.4.0 では、埋め込み API の品質が向上しました。生成される結果は、以前のバージョンとは互換性がありません。
もし、embeddings API を使って知識ベースなどを生成している場合は、再生成してください。
LangChain を使用している場合は、`OpenAIEmbeddings(openai_api_base="http://127.0.0.1:8000", openai_api_key="sk-")`
を使用してください
@ -132,36 +179,100 @@ for i in np.argsort(embeddings_cos_sim)[::-1]:
print(f"{embeddings_cos_sim[i]:.10f} - {values[i]}")
```
## MIDI Input
Tip: You can download https://github.com/josStorer/sgm_plus and unzip it to the program's `assets/sound-font` directory
to use it as an offline sound source. Please note that if you are compiling the program from source code, do not place
it in the source code directory.
MIDIキーボードをお持ちでない場合、`Virtual Midi Controller 3 LE`
などの仮想MIDI入力ソフトウェアを使用することができます。[loopMIDI](https://www.tobias-erichsen.de/wp-content/uploads/2020/01/loopMIDISetup_1_0_16_27.zip)
を組み合わせて、通常のコンピュータキーボードをMIDI入力として使用できます。
### USB MIDI Connection
- USB MIDI devices are plug-and-play, and you can select your input device in the Composition page
- ![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/13bb92c3-4504-482d-ab82-026ac6c31095)
### Mac MIDI Bluetooth Connection
- For Mac users who want to use Bluetooth input,
please install [Bluetooth MIDI Connect](https://apps.apple.com/us/app/bluetooth-midi-connect/id1108321791), then click
the tray icon to connect after launching,
afterwards, you can select your input device in the Composition page.
- ![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/c079a109-1e3d-45c1-bbf5-eed85da1550e)
### Windows MIDI Bluetooth Connection
- Windows seems to have implemented Bluetooth MIDI support only for UWP (Universal Windows Platform) apps. Therefore, it
requires multiple steps to establish a connection. We need to create a local virtual MIDI device and then launch a UWP
application. Through this UWP application, we will redirect Bluetooth MIDI input to the virtual MIDI device, and then
this software will listen to the input from the virtual MIDI device.
- So, first, you need to
download [loopMIDI](https://www.tobias-erichsen.de/wp-content/uploads/2020/01/loopMIDISetup_1_0_16_27.zip)
to create a virtual MIDI device. Click the plus sign in the bottom left corner to create the device.
- ![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/b75998ff-115c-4ddd-b97c-deeb5c106255)
- Next, you need to download [Bluetooth LE Explorer](https://apps.microsoft.com/detail/9N0ZTKF1QD98) to discover and
connect to Bluetooth MIDI devices. Click "Start" to search for devices, and then click "Pair" to bind the MIDI device.
- ![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/c142c3ea-a973-4531-9807-4c385d640a2b)
- Finally, you need to install [MIDIberry](https://apps.microsoft.com/detail/9N39720H2M05),
This UWP application can redirect Bluetooth MIDI input to the virtual MIDI device. After launching it, double-click
your actual Bluetooth MIDI device name in the input field, and in the output field, double-click the virtual MIDI
device name we created earlier.
- ![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/5ad6a1d9-4f68-4d95-ae17-4296107d1669)
- Now, you can select the virtual MIDI device as the input in the Composition page. Bluetooth LE Explorer no longer
needs to run, and you can also close the loopMIDI window, it will run automatically in the background. Just keep
MIDIberry open.
- ![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/1c371821-c7b7-4c18-8e42-9e315efbe427)
## 関連リポジトリ:
- RWKV-5-World: https://huggingface.co/BlinkDL/rwkv-5-world/tree/main
- RWKV-4-World: https://huggingface.co/BlinkDL/rwkv-4-world/tree/main
- RWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main
- ChatRWKV: https://github.com/BlinkDL/ChatRWKV
- RWKV-LM: https://github.com/BlinkDL/RWKV-LM
- RWKV-LM-LoRA: https://github.com/Blealtan/RWKV-LM-LoRA
- RWKV-v5-lora: https://github.com/JL-er/RWKV-v5-lora
- MIDI-LLM-tokenizer: https://github.com/briansemrau/MIDI-LLM-tokenizer
- ai00_rwkv_server: https://github.com/cgisky1980/ai00_rwkv_server
- rwkv.cpp: https://github.com/saharNooby/rwkv.cpp
- web-rwkv-py: https://github.com/cryscan/web-rwkv-py
- web-rwkv: https://github.com/cryscan/web-rwkv
## プレビュー
## Preview
### ホームページ
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/d7f24d80-f382-428d-8b28-edf87e1549e2)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/c1923ed8-22f7-48b4-a274-e215e27a8e01)
### チャット
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/80009872-528f-4932-aeb2-f724fa892e7c)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/de8d3fa7-c31f-4941-a22b-ded785427ac0)
### 補完
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/bf49de8e-3b89-4543-b1ef-7cd4b19a1836)
### 作曲
Tip: You can download https://github.com/josStorer/sgm_plus and unzip it to the program's `assets/sound-font` directory
to use it as an offline sound source. Please note that if you are compiling the program from source code, do not place
it in the source code directory.
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/e8ad908d-3fd2-4e92-bcdb-96815cb836ee)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/b2ce4761-9e75-477e-a182-d0255fb8ac76)
### コンフィグ
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/48befdc6-e03c-4851-9bee-22f77ee2640e)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/f41060dc-5517-44af-bb3f-8ef71720016d)
### モデル管理
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/367fe4f8-cc12-475f-9371-3cf62cdbf293)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/b1581147-a6ce-4493-8010-e33c0ddeca0a)
### ダウンロード管理

View File

@ -1,5 +1,5 @@
<p align="center">
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/d24834b0-265d-45f5-93c0-fac1e19562af">
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/65c46133-7506-4b54-b64f-fe49f188afa7">
</p>
<h1 align="center">RWKV Runner</h1>
@ -11,6 +11,7 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
[![license][license-image]][license-url]
[![release][release-image]][release-url]
[![py-version][py-version-image]][py-version-url]
[English](README.md) | 简体中文 | [日本語](README_JA.md)
@ -20,7 +21,7 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
[![MacOS][MacOS-image]][MacOS-url]
[![Linux][Linux-image]][Linux-url]
[视频演示](https://www.bilibili.com/video/BV1hM4y1v76R) | [疑难解答](https://www.bilibili.com/read/cv23921171) | [预览](#Preview) | [下载][download-url] | [懒人包](https://pan.baidu.com/s/1zdzZ_a0uM3gDqi6pXIZVAA?pwd=1111) | [服务器部署示例](https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples)
[视频演示](https://www.bilibili.com/video/BV1hM4y1v76R) | [疑难解答](https://www.bilibili.com/read/cv23921171) | [预览](#Preview) | [下载][download-url] | [懒人包](https://pan.baidu.com/s/1zdzZ_a0uM3gDqi6pXIZVAA?pwd=1111) | [简明服务部署示例](#Simple-Deploy-Example) | [服务器部署示例](https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples) | [MIDI硬件输入](#MIDI-Input)
[license-image]: http://img.shields.io/badge/license-MIT-blue.svg
@ -30,6 +31,10 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
[release-url]: https://github.com/josStorer/RWKV-Runner/releases/latest
[py-version-image]: https://img.shields.io/pypi/pyversions/fastapi.svg
[py-version-url]: https://github.com/josStorer/RWKV-Runner/tree/master/backend-python
[download-url]: https://github.com/josStorer/RWKV-Runner/releases
[Windows-image]: https://img.shields.io/badge/-Windows-blue?logo=windows
@ -46,28 +51,65 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
</div>
#### 预设配置已经开启自定义CUDA算子加速速度更快且显存消耗更少。如果你遇到可能的兼容性问题前往配置页面关闭`使用自定义CUDA算子加速`
## 小贴士
#### 如果Windows Defender说这是一个病毒你可以尝试下载[v1.3.7_win.zip](https://github.com/josStorer/RWKV-Runner/releases/download/v1.3.7/RWKV-Runner_win.zip),然后让其自动更新到最新版,或添加信任 (`Windows Security` -> `Virus & threat protection` -> `Manage settings` -> `Exclusions` -> `Add or remove exclusions` -> `Add an exclusion` -> `Folder` -> `RWKV-Runner`)
- 你可以在服务器部署[backend-python](./backend-python/),然后将此程序仅用作客户端,在设置的`API URL`中填入你的服务器地址
#### 对于不同的任务调整API参数会获得更好的效果例如对于翻译任务你可以尝试设置Temperature为1Top_P为0.3
- 如果你正在部署并对外提供公开服务请通过API网关限制请求大小避免过长的prompt提交占用资源。此外请根据你的实际情况限制请求的
max_tokens 上限: https://github.com/josStorer/RWKV-Runner/blob/master/backend-python/utils/rwkv.py#L567,
默认le=102400, 这可能导致极端情况下单个响应消耗大量资源
- 预设配置已经开启自定义CUDA算子加速速度更快且显存消耗更少。如果你遇到可能的兼容性(输出乱码)
问题,前往配置页面,关闭`使用自定义CUDA算子加速`,或更新你的显卡驱动
- 如果 Windows Defender
说这是一个病毒,你可以尝试下载[v1.3.7_win.zip](https://github.com/josStorer/RWKV-Runner/releases/download/v1.3.7/RWKV-Runner_win.zip)
然后让其自动更新到最新版,或添加信任 (`Windows Security` -> `Virus & threat protection` -> `Manage settings` -> `Exclusions` -> `Add or remove exclusions` -> `Add an exclusion` -> `Folder` -> `RWKV-Runner`)
- 对于不同的任务调整API参数会获得更好的效果例如对于翻译任务你可以尝试设置Temperature为1Top_P为0.3
## 功能
- RWKV模型管理一键启动
- 与OpenAI API完全兼容一切ChatGPT客户端都是RWKV客户端。启动模型后打开 http://127.0.0.1:8000/docs 查看详细内容
- 前后端分离如果你不想使用客户端也允许单独部署前端服务或后端推理服务或具有WebUI的后端推理服务。
[简明服务部署示例](#Simple-Deploy-Example) | [服务器部署示例](https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples)
- 与OpenAI API兼容一切ChatGPT客户端都是RWKV客户端。启动模型后打开 http://127.0.0.1:8000/docs 查看API文档
- 全自动依赖安装,你只需要一个轻巧的可执行程序
- 预设了2G至32G显存的配置几乎在各种电脑上工作良好
- 自带用户友好的聊天和续写交互页面
- 易于理解和操作的参数配置
- 预设多级显存配置几乎在各种电脑上工作良好。通过配置页面切换Strategy到WebGPU还可以在AMDIntel等显卡上运行
- 自带用户友好的聊天续写作曲交互页面。支持聊天预设附件上传MIDI硬件输入及音轨编辑。
[预览](#Preview) | [MIDI硬件输入](#MIDI-Input)
- 内置WebUI选项一键启动Web服务共享硬件资源
- 易于理解和操作的参数配置,及各类操作引导提示
- 内置模型转换工具
- 内置下载管理和远程模型检视
- 内置一键LoRA微调
- 也可用作 OpenAI ChatGPT 和 GPT Playground 客户端
- 内置一键LoRA微调 (仅限Windows)
- 也可用作 OpenAI ChatGPT, GPT Playground, Ollama 等服务的客户端 (在设置内填写API URL和API Key)
- 多语言本地化
- 主题切换
- 自动更新
## Simple Deploy Example
```bash
git clone https://github.com/josStorer/RWKV-Runner
# 然后
cd RWKV-Runner
python ./backend-python/main.py #后端推理服务已启动, 调用/switch-model载入模型, 参考API文档: http://127.0.0.1:8000/docs
# 或者
cd RWKV-Runner/frontend
npm ci
npm run build #编译前端
cd ..
python ./backend-python/webui_server.py #单独启动前端服务
# 或者
python ./backend-python/main.py --webui #同时启动前后端服务
# 帮助参数
python ./backend-python/main.py -h
```
## API并发压力测试
```bash
@ -128,36 +170,90 @@ for i in np.argsort(embeddings_cos_sim)[::-1]:
print(f"{embeddings_cos_sim[i]:.10f} - {values[i]}")
```
## MIDI Input
小贴士: 你可以下载 https://github.com/josStorer/sgm_plus, 并解压到程序的`assets/sound-font`目录, 以使用离线音源. 注意,
如果你正在从源码编译程序, 请不要将其放置在源码目录中
如果你没有MIDI键盘, 你可以使用像 `Virtual Midi Controller 3 LE` 这样的虚拟MIDI输入软件,
配合[loopMIDI](https://www.tobias-erichsen.de/wp-content/uploads/2020/01/loopMIDISetup_1_0_16_27.zip), 使用普通电脑键盘作为MIDI输入
### USB MIDI 连接
- USB MIDI设备是即插即用的, 你能够在作曲页面选择你的输入设备
- ![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/a448c34a-56d8-46eb-8dc2-dd11e8e0c4ce)
### Mac MIDI 蓝牙连接
- 对于想要使用蓝牙输入的Mac用户,
请安装[Bluetooth MIDI Connect](https://apps.apple.com/us/app/bluetooth-midi-connect/id1108321791), 启动后点击托盘连接,
之后你可以在作曲页面选择你的输入设备
- ![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/c079a109-1e3d-45c1-bbf5-eed85da1550e)
### Windows MIDI 蓝牙连接
- Windows似乎只为UWP实现了蓝牙MIDI支持, 因此需要多个步骤进行连接, 我们需要创建一个本地的虚拟MIDI设备, 然后启动一个UWP应用,
通过此UWP应用将蓝牙MIDI输入重定向到虚拟MIDI设备, 然后本软件监听虚拟MIDI设备的输入
- 因此, 首先你需要下载[loopMIDI](https://www.tobias-erichsen.de/wp-content/uploads/2020/01/loopMIDISetup_1_0_16_27.zip),
用于创建虚拟MIDI设备, 点击左下角的加号创建设备
- ![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/b75998ff-115c-4ddd-b97c-deeb5c106255)
- 然后, 你需要下载[Bluetooth LE Explorer](https://apps.microsoft.com/detail/9N0ZTKF1QD98), 以发现并连接蓝牙MIDI设备,
点击Start搜索设备, 然后点击Pair绑定MIDI设备
- ![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/c142c3ea-a973-4531-9807-4c385d640a2b)
- 最后, 你需要安装[MIDIberry](https://apps.microsoft.com/detail/9N39720H2M05), 这个UWP应用能将MIDI蓝牙输入重定向到虚拟MIDI设备,
启动后, 在输入栏, 双击你实际的蓝牙MIDI设备名称, 在输出栏, 双击我们先前创建的虚拟MIDI设备名称
- ![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/5ad6a1d9-4f68-4d95-ae17-4296107d1669)
- 现在, 你可以在作曲页面选择虚拟MIDI设备作为输入. Bluetooth LE Explorer不再需要运行, loopMIDI窗口也可以退出, 它会自动在后台运行,
仅保持MIDIberry打开即可
- ![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/6460c355-884e-4b28-a2eb-8ab7a2e3a01a)
## 相关仓库:
- RWKV-5-World: https://huggingface.co/BlinkDL/rwkv-5-world/tree/main
- RWKV-4-World: https://huggingface.co/BlinkDL/rwkv-4-world/tree/main
- RWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main
- ChatRWKV: https://github.com/BlinkDL/ChatRWKV
- RWKV-LM: https://github.com/BlinkDL/RWKV-LM
- RWKV-LM-LoRA: https://github.com/Blealtan/RWKV-LM-LoRA
- RWKV-v5-lora: https://github.com/JL-er/RWKV-v5-lora
- MIDI-LLM-tokenizer: https://github.com/briansemrau/MIDI-LLM-tokenizer
- ai00_rwkv_server: https://github.com/cgisky1980/ai00_rwkv_server
- rwkv.cpp: https://github.com/saharNooby/rwkv.cpp
- web-rwkv-py: https://github.com/cryscan/web-rwkv-py
- web-rwkv: https://github.com/cryscan/web-rwkv
## Preview
### 主页
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/ff2b1eef-dd3b-4cbf-98fb-b5a1ecee43e1)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/3265b11a-ab19-4e19-bfea-fc687f59aaf9)
### 聊天
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/9570e73b-dca2-4316-9e92-09961f3c48c4)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/162fce43-8568-4850-a6af-ab60af988da6)
### 续写
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/69f9ba7a-2fe8-4a5e-94cb-aa655aa409e2)
### 作曲
小贴士: 你可以下载 https://github.com/josStorer/sgm_plus, 并解压到程序的`assets/sound-font`目录, 以使用离线音源. 注意,
如果你正在从源码编译程序, 请不要将其放置在源码目录中
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/95b34893-80c2-4706-87f9-bc141032ed4b)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/3cb31ca8-d708-42f1-8768-1605fb0b2174)
### 配置
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/59460f69-b172-4c7a-86cb-573262543076)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/0f4d4f21-8abe-4f4d-8c4f-cd7d5607f20e)
### 模型管理
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/551121ee-1bfe-421b-a9d1-24125126ab4b)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/871f2d2a-7e41-4be7-9b32-be1b3e00dc3e)
### 下载管理

View File

@ -1,13 +1,24 @@
package backend_golang
import (
"archive/zip"
"bufio"
"bytes"
"context"
"errors"
"io"
"log"
"net"
"net/http"
"net/http/httputil"
"net/url"
"os"
"os/exec"
"path/filepath"
"runtime"
"strings"
"syscall"
"time"
"github.com/fsnotify/fsnotify"
"github.com/minio/selfupdate"
@ -19,6 +30,8 @@ type App struct {
ctx context.Context
HasConfigData bool
ConfigData map[string]any
Dev bool
proxyPort int
exDir string
cmdPrefix string
}
@ -28,6 +41,63 @@ func NewApp() *App {
return &App{}
}
func (a *App) newFetchProxy() {
go func() {
handler := func(w http.ResponseWriter, r *http.Request) {
if r.Method == "OPTIONS" {
w.Header().Set("Access-Control-Allow-Methods", "GET, POST, OPTIONS")
w.Header().Set("Access-Control-Allow-Headers", "*")
w.Header().Set("Access-Control-Allow-Origin", "*")
return
}
proxy := &httputil.ReverseProxy{
ModifyResponse: func(res *http.Response) error {
res.Header.Set("Access-Control-Allow-Origin", "*")
return nil
},
Director: func(req *http.Request) {
realTarget := req.Header.Get("Real-Target")
if realTarget != "" {
realTarget, err := url.PathUnescape(realTarget)
if err != nil {
log.Printf("Error decoding target URL: %v\n", err)
return
}
target, err := url.Parse(realTarget)
if err != nil {
log.Printf("Error parsing target URL: %v\n", err)
return
}
req.Header.Set("Accept", "*/*")
req.Header.Del("Origin")
req.Header.Del("Referer")
req.Header.Del("Real-Target")
req.Header.Del("Sec-Fetch-Dest")
req.Header.Del("Sec-Fetch-Mode")
req.Header.Del("Sec-Fetch-Site")
req.URL.Scheme = target.Scheme
req.URL.Host = target.Host
req.URL.Path = target.Path
req.URL.RawQuery = url.PathEscape(target.RawQuery)
log.Println("Proxying to", realTarget)
} else {
log.Println("Real-Target header is missing")
}
},
}
proxy.ServeHTTP(w, r)
}
http.HandleFunc("/", handler)
listener, err := net.Listen("tcp", "127.0.0.1:0")
if err != nil {
return
}
a.proxyPort = listener.Addr().(*net.TCPAddr).Port
http.Serve(listener, nil)
}()
}
// startup is called when the app starts. The context is saved
// so we can call the runtime methods
func (a *App) OnStartup(ctx context.Context) {
@ -35,26 +105,56 @@ func (a *App) OnStartup(ctx context.Context) {
a.exDir = ""
a.cmdPrefix = ""
if runtime.GOOS == "darwin" {
ex, _ := os.Executable()
a.exDir = filepath.Dir(ex) + "/../../../"
a.cmdPrefix = "cd " + a.exDir + " && "
ex, err := os.Executable()
if err == nil {
if runtime.GOOS == "darwin" {
a.exDir = filepath.Dir(ex) + "/../../../"
a.cmdPrefix = "cd " + a.exDir + " && "
} else {
a.exDir = filepath.Dir(ex) + "/"
a.cmdPrefix = "cd " + a.exDir + " && "
}
if a.Dev {
a.exDir = ""
} else {
os.Chdir(a.exDir)
}
}
os.Chmod(a.exDir+"backend-rust/webgpu_server", 0777)
os.Chmod(a.exDir+"backend-rust/web-rwkv-converter", 0777)
os.Mkdir(a.exDir+"models", os.ModePerm)
os.Mkdir(a.exDir+"lora-models", os.ModePerm)
os.Mkdir(a.exDir+"state-models", os.ModePerm)
os.Mkdir(a.exDir+"finetune/json2binidx_tool/data", os.ModePerm)
f, err := os.Create(a.exDir + "lora-models/train_log.txt")
if err == nil {
f.Close()
trainLogPath := "lora-models/train_log.txt"
if !a.FileExists(trainLogPath) {
f, err := os.Create(a.exDir + trainLogPath)
if err == nil {
f.Close()
}
}
a.downloadLoop()
a.midiLoop()
a.watchFs()
a.monitorHardware()
a.newFetchProxy()
}
func (a *App) OnBeforeClose(ctx context.Context) bool {
if monitor != nil {
monitor.Process.Kill()
}
return false
}
func (a *App) watchFs() {
watcher, err := fsnotify.NewWatcher()
if err == nil {
watcher.Add("./lora-models")
watcher.Add("./models")
watcher.Add(a.exDir + "./models")
watcher.Add(a.exDir + "./lora-models")
watcher.Add(a.exDir + "./state-models")
go func() {
for {
select {
@ -62,7 +162,7 @@ func (a *App) OnStartup(ctx context.Context) {
if !ok {
return
}
wruntime.EventsEmit(ctx, "fsnotify", event.Name)
wruntime.EventsEmit(a.ctx, "fsnotify", event.Name)
case _, ok := <-watcher.Errors:
if !ok {
return
@ -73,19 +173,110 @@ func (a *App) OnStartup(ctx context.Context) {
}
}
var monitor *exec.Cmd
func (a *App) monitorHardware() {
if runtime.GOOS != "windows" {
return
}
monitor = exec.Command("./components/LibreHardwareMonitor.Console/LibreHardwareMonitor.Console.exe")
stdout, err := monitor.StdoutPipe()
if err != nil {
monitor = nil
return
}
go func() {
reader := bufio.NewReader(stdout)
for {
line, _, err := reader.ReadLine()
if err != nil {
wruntime.EventsEmit(a.ctx, "monitorerr", err.Error())
break
}
wruntime.EventsEmit(a.ctx, "monitor", string(line))
}
}()
monitor.SysProcAttr = &syscall.SysProcAttr{}
//go:custom_build windows monitor.SysProcAttr.HideWindow = true
monitor.Start()
}
type ProgressReader struct {
reader io.Reader
total int64
err error
}
func (pr *ProgressReader) Read(p []byte) (n int, err error) {
n, err = pr.reader.Read(p)
pr.err = err
pr.total += int64(n)
return
}
func (a *App) UpdateApp(url string) (broken bool, err error) {
resp, err := http.Get(url)
if err != nil {
return false, err
}
defer resp.Body.Close()
err = selfupdate.Apply(resp.Body, selfupdate.Options{})
pr := &ProgressReader{reader: resp.Body}
ticker := time.NewTicker(250 * time.Millisecond)
defer ticker.Stop()
// update progress
go func() {
for {
<-ticker.C
wruntime.EventsEmit(a.ctx, "updateApp", &DownloadStatus{
Name: filepath.Base(url),
Path: "",
Url: url,
Transferred: pr.total,
Size: resp.ContentLength,
Speed: 0,
Progress: 100 * (float64(pr.total) / float64(resp.ContentLength)),
Downloading: pr.err == nil && pr.total < resp.ContentLength,
Done: pr.total == resp.ContentLength,
})
if pr.err != nil || pr.total == resp.ContentLength {
break
}
}
}()
var updateFile io.Reader = pr
// extract macos binary from zip
if strings.HasSuffix(url, ".zip") && runtime.GOOS == "darwin" {
zipBytes, err := io.ReadAll(pr)
if err != nil {
return false, err
}
archive, err := zip.NewReader(bytes.NewReader(zipBytes), int64(len(zipBytes)))
if err != nil {
return false, err
}
file, err := archive.Open("RWKV-Runner.app/Contents/MacOS/RWKV-Runner")
if err != nil {
return false, err
}
defer file.Close()
updateFile = file
}
// apply update
err = selfupdate.Apply(updateFile, selfupdate.Options{})
if err != nil {
if rerr := selfupdate.RollbackError(err); rerr != nil {
return true, rerr
}
return false, err
}
// restart app
if runtime.GOOS == "windows" {
name, err := os.Executable()
if err != nil {
@ -113,3 +304,7 @@ func (a *App) RestartApp() error {
func (a *App) GetPlatform() string {
return runtime.GOOS
}
func (a *App) GetProxyPort() int {
return a.proxyPort
}

View File

@ -10,7 +10,11 @@ import (
)
func (a *App) DownloadFile(path string, url string) error {
_, err := grab.Get(a.exDir+path, url)
absPath, err := a.GetAbsPath(path)
if err != nil {
return err
}
_, err = grab.Get(absPath, url)
if err != nil {
return err
}
@ -33,9 +37,9 @@ type DownloadStatus struct {
var downloadList []*DownloadStatus
func existsInDownloadList(url string) bool {
func existsInDownloadList(path string, url string) bool {
for _, ds := range downloadList {
if ds.Url == url {
if ds.Path == path || ds.Url == url {
return true
}
}
@ -88,11 +92,15 @@ func (a *App) ContinueDownload(url string) {
}
func (a *App) AddToDownloadList(path string, url string) {
if !existsInDownloadList(url) {
absPath, err := a.GetAbsPath(path)
if err != nil {
return
}
if !existsInDownloadList(absPath, url) {
downloadList = append(downloadList, &DownloadStatus{
resp: nil,
Name: filepath.Base(path),
Path: a.exDir + path,
Path: absPath,
Url: url,
Downloading: false,
})

View File

@ -14,20 +14,55 @@ import (
wruntime "github.com/wailsapp/wails/v2/pkg/runtime"
)
func (a *App) SaveJson(fileName string, jsonData any) error {
text, err := json.MarshalIndent(jsonData, "", " ")
func (a *App) GetAbsPath(path string) (string, error) {
var absPath string
var err error
if filepath.IsAbs(path) {
absPath = filepath.Clean(path)
} else {
absPath, err = filepath.Abs(filepath.Join(a.exDir, path))
if err != nil {
return "", err
}
}
absPath = strings.ReplaceAll(absPath, "/", string(os.PathSeparator))
println("GetAbsPath:", absPath)
return absPath, nil
}
func (a *App) SaveFile(path string, savedContent []byte) error {
absPath, err := a.GetAbsPath(path)
if err != nil {
return err
}
if err := os.WriteFile(a.exDir+fileName, text, 0644); err != nil {
if err := os.WriteFile(absPath, savedContent, 0644); err != nil {
return err
}
return nil
}
func (a *App) ReadJson(fileName string) (any, error) {
file, err := os.ReadFile(a.exDir + fileName)
func (a *App) SaveJson(path string, jsonData any) error {
text, err := json.MarshalIndent(jsonData, "", " ")
if err != nil {
return err
}
absPath, err := a.GetAbsPath(path)
if err != nil {
return err
}
if err := os.WriteFile(absPath, text, 0644); err != nil {
return err
}
return nil
}
func (a *App) ReadJson(path string) (any, error) {
absPath, err := a.GetAbsPath(path)
if err != nil {
return nil, err
}
file, err := os.ReadFile(absPath)
if err != nil {
return nil, err
}
@ -41,8 +76,12 @@ func (a *App) ReadJson(fileName string) (any, error) {
return data, nil
}
func (a *App) FileExists(fileName string) bool {
_, err := os.Stat(a.exDir + fileName)
func (a *App) FileExists(path string) bool {
absPath, err := a.GetAbsPath(path)
if err != nil {
return false
}
_, err = os.Stat(absPath)
return err == nil
}
@ -53,12 +92,16 @@ type FileInfo struct {
ModTime string `json:"modTime"`
}
func (a *App) ReadFileInfo(fileName string) (FileInfo, error) {
info, err := os.Stat(a.exDir + fileName)
func (a *App) ReadFileInfo(path string) (*FileInfo, error) {
absPath, err := a.GetAbsPath(path)
if err != nil {
return FileInfo{}, err
return nil, err
}
return FileInfo{
info, err := os.Stat(absPath)
if err != nil {
return nil, err
}
return &FileInfo{
Name: info.Name(),
Size: info.Size(),
IsDir: info.IsDir(),
@ -67,7 +110,11 @@ func (a *App) ReadFileInfo(fileName string) (FileInfo, error) {
}
func (a *App) ListDirFiles(dirPath string) ([]FileInfo, error) {
files, err := os.ReadDir(a.exDir + dirPath)
absDirPath, err := a.GetAbsPath(dirPath)
if err != nil {
return nil, err
}
files, err := os.ReadDir(absDirPath)
if err != nil {
return nil, err
}
@ -89,7 +136,11 @@ func (a *App) ListDirFiles(dirPath string) ([]FileInfo, error) {
}
func (a *App) DeleteFile(path string) error {
err := os.Remove(a.exDir + path)
absPath, err := a.GetAbsPath(path)
if err != nil {
return err
}
err = os.Remove(absPath)
if err != nil {
return err
}
@ -97,18 +148,27 @@ func (a *App) DeleteFile(path string) error {
}
func (a *App) CopyFile(src string, dst string) error {
sourceFile, err := os.Open(a.exDir + src)
absSrc, err := a.GetAbsPath(src)
if err != nil {
return err
}
absDst, err := a.GetAbsPath(dst)
if err != nil {
return err
}
sourceFile, err := os.Open(absSrc)
if err != nil {
return err
}
defer sourceFile.Close()
err = os.MkdirAll(a.exDir+dst[:strings.LastIndex(dst, "/")], 0755)
err = os.MkdirAll(filepath.Dir(absDst), 0755)
if err != nil {
return err
}
destFile, err := os.Create(a.exDir + dst)
destFile, err := os.Create(absDst)
if err != nil {
return err
}
@ -145,14 +205,22 @@ func (a *App) OpenSaveFileDialogBytes(filterPattern string, defaultFileName stri
return path, nil
}
func (a *App) OpenFileFolder(path string, relative bool) error {
var absPath string
var err error
if relative {
absPath, err = filepath.Abs(a.exDir + path)
} else {
absPath, err = filepath.Abs(path)
// Only return the path of the selected file, because communication between frontend and backend is slow. Use AssetServer Handler to read the file.
func (a *App) OpenOpenFileDialog(filterPattern string) (string, error) {
path, err := wruntime.OpenFileDialog(a.ctx, wruntime.OpenDialogOptions{
Filters: []wruntime.FileFilter{{Pattern: filterPattern}},
})
if err != nil {
return "", err
}
if path == "" {
return "", nil
}
return path, nil
}
func (a *App) OpenFileFolder(path string) error {
absPath, err := a.GetAbsPath(path)
if err != nil {
return err
}
@ -181,3 +249,12 @@ func (a *App) OpenFileFolder(path string, relative bool) error {
}
return errors.New("unsupported OS")
}
func (a *App) StartFile(path string) error {
cmd, err := CmdHelper(true, path)
if err != nil {
return err
}
err = cmd.Start()
return err
}

170
backend-golang/midi.go Normal file
View File

@ -0,0 +1,170 @@
package backend_golang
import (
"errors"
"fmt"
"time"
"github.com/mattrtaylor/go-rtmidi"
"github.com/wailsapp/wails/v2/pkg/runtime"
)
type Port struct {
Name string `json:"name"`
}
type MIDIMessage struct {
MessageType string `json:"messageType"`
Channel int `json:"channel"`
Note int `json:"note"`
Velocity int `json:"velocity"`
Control int `json:"control"`
Value int `json:"value"`
}
var ports []Port
var input rtmidi.MIDIIn
var out rtmidi.MIDIOut
var activeIndex int = -1
var lastNoteTime time.Time
func (a *App) midiLoop() {
var err error
input, err = rtmidi.NewMIDIInDefault()
if err != nil {
runtime.EventsEmit(a.ctx, "midiError", err.Error())
return
}
out, err = rtmidi.NewMIDIOutDefault()
if err != nil {
runtime.EventsEmit(a.ctx, "midiError", err.Error())
}
err = out.OpenPort(0, "")
if err != nil {
runtime.EventsEmit(a.ctx, "midiError", err.Error())
}
ticker := time.NewTicker(500 * time.Millisecond)
go func() {
for {
<-ticker.C
count, err := input.PortCount()
if err != nil {
continue
}
ports = make([]Port, count)
for i := 0; i < count; i++ {
name, err := input.PortName(i)
if err == nil {
ports[i].Name = name
}
}
runtime.EventsEmit(a.ctx, "midiPorts", &ports)
}
}()
}
func (a *App) OpenMidiPort(index int) error {
if input == nil {
return errors.New("failed to initialize MIDI input")
}
if activeIndex == index {
return nil
}
input.Destroy()
var err error
input, err = rtmidi.NewMIDIInDefault()
if err != nil {
return err
}
err = input.SetCallback(func(msg rtmidi.MIDIIn, bytes []byte, t float64) {
// https://www.midi.org/specifications-old/item/table-1-summary-of-midi-message
// https://www.rfc-editor.org/rfc/rfc6295.html
//
// msgType channel
// 1001 0000
//
msgType := bytes[0] >> 4
channel := bytes[0] & 0x0f
switch msgType {
case 0x8:
elapsed := time.Since(lastNoteTime)
lastNoteTime = time.Now()
runtime.EventsEmit(a.ctx, "midiMessage", &MIDIMessage{
MessageType: "ElapsedTime",
Value: int(elapsed.Milliseconds()),
})
note := bytes[1]
runtime.EventsEmit(a.ctx, "midiMessage", &MIDIMessage{
MessageType: "NoteOff",
Channel: int(channel),
Note: int(note),
})
case 0x9:
elapsed := time.Since(lastNoteTime)
lastNoteTime = time.Now()
runtime.EventsEmit(a.ctx, "midiMessage", &MIDIMessage{
MessageType: "ElapsedTime",
Value: int(elapsed.Milliseconds()),
})
note := bytes[1]
velocity := bytes[2]
runtime.EventsEmit(a.ctx, "midiMessage", &MIDIMessage{
MessageType: "NoteOn",
Channel: int(channel),
Note: int(note),
Velocity: int(velocity),
})
case 0xb:
// control 12 => K1 knob, control 13 => K2 knob
control := bytes[1]
value := bytes[2]
runtime.EventsEmit(a.ctx, "midiMessage", &MIDIMessage{
MessageType: "ControlChange",
Channel: int(channel),
Control: int(control),
Value: int(value),
})
default:
fmt.Printf("Unknown midi message: %v\n", bytes)
}
})
if err != nil {
return err
}
err = input.OpenPort(index, "")
if err != nil {
return err
}
activeIndex = index
lastNoteTime = time.Now()
return nil
}
func (a *App) CloseMidiPort() error {
if input == nil {
return errors.New("failed to initialize MIDI input")
}
if activeIndex == -1 {
return nil
}
activeIndex = -1
input.Destroy()
var err error
input, err = rtmidi.NewMIDIInDefault()
if err != nil {
return err
}
return nil
}
func (a *App) PlayNote(msg MIDIMessage) error {
if out == nil {
return errors.New("failed to initialize MIDI output")
}
channelByte := byte(msg.Channel)
if msg.MessageType == "NoteOn" {
out.SendMessage([]byte{0x90 | channelByte, byte(msg.Note), byte(msg.Velocity)})
} else if msg.MessageType == "NoteOff" {
out.SendMessage([]byte{0x80 | channelByte, byte(msg.Note), byte(msg.Velocity)})
}
return nil
}

View File

@ -1,3 +1,4 @@
// Considering some whitespace and multilingual support, the functions in rwkv.go should always be executed with cwd as RWKV-Runner, and never use a.GetAbsPath() here.
package backend_golang
import (
@ -10,30 +11,126 @@ import (
"strings"
)
func (a *App) StartServer(python string, port int, host string) (string, error) {
var err error
func (a *App) StartServer(python string, port int, host string, webui bool, rwkvBeta bool, rwkvcpp bool, webgpu bool) (string, error) {
execFile := "./backend-python/main.py"
_, err := os.Stat(execFile)
if err != nil {
return "", err
}
if python == "" {
python, err = GetPython()
}
if err != nil {
return "", err
}
return Cmd(python, "./backend-python/main.py", strconv.Itoa(port), host)
args := []string{python, execFile}
if webui {
args = append(args, "--webui")
}
if rwkvBeta {
// args = append(args, "--rwkv-beta")
}
if rwkvcpp {
args = append(args, "--rwkv.cpp")
}
if webgpu {
args = append(args, "--webgpu")
}
args = append(args, "--port", strconv.Itoa(port), "--host", host)
return Cmd(args...)
}
func (a *App) StartWebGPUServer(port int, host string) (string, error) {
var execFile string
execFiles := []string{"./backend-rust/webgpu_server", "./backend-rust/webgpu_server.exe"}
for _, file := range execFiles {
_, err := os.Stat(file)
if err == nil {
execFile = file
break
}
}
if execFile == "" {
return "", errors.New(execFiles[0] + " not found")
}
args := []string{execFile}
args = append(args, "--port", strconv.Itoa(port), "--ip", host)
return Cmd(args...)
}
func (a *App) ConvertModel(python string, modelPath string, strategy string, outPath string) (string, error) {
var err error
execFile := "./backend-python/convert_model.py"
_, err := os.Stat(execFile)
if err != nil {
return "", err
}
if python == "" {
python, err = GetPython()
}
if err != nil {
return "", err
}
return Cmd(python, "./backend-python/convert_model.py", "--in", modelPath, "--out", outPath, "--strategy", strategy)
return Cmd(python, execFile, "--in", modelPath, "--out", outPath, "--strategy", strategy)
}
func (a *App) ConvertSafetensors(modelPath string, outPath string) (string, error) {
var execFile string
execFiles := []string{"./backend-rust/web-rwkv-converter", "./backend-rust/web-rwkv-converter.exe"}
for _, file := range execFiles {
_, err := os.Stat(file)
if err == nil {
execFile = file
break
}
}
if execFile == "" {
return "", errors.New(execFiles[0] + " not found")
}
args := []string{execFile}
args = append(args, "--input", modelPath, "--output", outPath)
return Cmd(args...)
}
func (a *App) ConvertSafetensorsWithPython(python string, modelPath string, outPath string) (string, error) {
execFile := "./backend-python/convert_safetensors.py"
_, err := os.Stat(execFile)
if err != nil {
return "", err
}
if python == "" {
python, err = GetPython()
}
if err != nil {
return "", err
}
return Cmd(python, execFile, "--input", modelPath, "--output", outPath)
}
func (a *App) ConvertGGML(python string, modelPath string, outPath string, Q51 bool) (string, error) {
execFile := "./backend-python/convert_pytorch_to_ggml.py"
_, err := os.Stat(execFile)
if err != nil {
return "", err
}
if python == "" {
python, err = GetPython()
}
if err != nil {
return "", err
}
dataType := "FP16"
if Q51 {
dataType = "Q5_1"
}
return Cmd(python, execFile, modelPath, outPath, dataType)
}
func (a *App) ConvertData(python string, input string, outputPrefix string, vocab string) (string, error) {
var err error
execFile := "./finetune/json2binidx_tool/tools/preprocess_data.py"
_, err := os.Stat(execFile)
if err != nil {
return "", err
}
if python == "" {
python, err = GetPython()
}
@ -77,19 +174,23 @@ func (a *App) ConvertData(python string, input string, outputPrefix string, voca
return "", err
}
return Cmd(python, "./finetune/json2binidx_tool/tools/preprocess_data.py", "--input", input, "--output-prefix", outputPrefix, "--vocab", vocab,
return Cmd(python, execFile, "--input", input, "--output-prefix", outputPrefix, "--vocab", vocab,
"--tokenizer-type", tokenizerType, "--dataset-impl", "mmap", "--append-eod")
}
func (a *App) MergeLora(python string, useGpu bool, loraAlpha int, baseModel string, loraPath string, outputPath string) (string, error) {
var err error
execFile := "./finetune/lora/merge_lora.py"
_, err := os.Stat(execFile)
if err != nil {
return "", err
}
if python == "" {
python, err = GetPython()
}
if err != nil {
return "", err
}
args := []string{python, "./finetune/lora/merge_lora.py"}
args := []string{python, execFile}
if useGpu {
args = append(args, "--use-gpu")
}
@ -105,17 +206,21 @@ func (a *App) DepCheck(python string) error {
if err != nil {
return err
}
out, err := exec.Command(python, a.exDir+"./backend-python/dep_check.py").CombinedOutput()
out, err := exec.Command(python, a.exDir+"backend-python/dep_check.py").CombinedOutput()
if err != nil {
return errors.New("DepCheck Error: " + string(out))
return errors.New("DepCheck Error: " + string(out) + " GError: " + err.Error())
}
return nil
}
func (a *App) InstallPyDep(python string, cnMirror bool) (string, error) {
var err error
torchWhlUrl := "torch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 --index-url https://download.pytorch.org/whl/cu117"
if python == "" {
python, err = GetPython()
if cnMirror && python == "py310/python.exe" {
torchWhlUrl = "https://mirrors.aliyun.com/pytorch-wheels/cu117/torch-1.13.1+cu117-cp310-cp310-win_amd64.whl"
}
if runtime.GOOS == "windows" {
python = `"%CD%/` + python + `"`
}
@ -126,15 +231,14 @@ func (a *App) InstallPyDep(python string, cnMirror bool) (string, error) {
if runtime.GOOS == "windows" {
ChangeFileLine("./py310/python310._pth", 3, "Lib\\site-packages")
installScript := python + " ./backend-python/get-pip.py -i https://pypi.tuna.tsinghua.edu.cn/simple\n" +
python + " -m pip install torch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 --index-url https://download.pytorch.org/whl/cu117\n" +
python + " -m pip install -r ./backend-python/requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple\n" +
installScript := python + " ./backend-python/get-pip.py -i https://mirrors.aliyun.com/pypi/simple --no-warn-script-location\n" +
python + " -m pip install " + torchWhlUrl + " --no-warn-script-location\n" +
python + " -m pip install -r ./backend-python/requirements.txt -i https://mirrors.aliyun.com/pypi/simple --no-warn-script-location\n" +
"exit"
if !cnMirror {
installScript = strings.Replace(installScript, " -i https://pypi.tuna.tsinghua.edu.cn/simple", "", -1)
installScript = strings.Replace(installScript, "requirements.txt", "requirements_versions.txt", -1)
installScript = strings.Replace(installScript, " -i https://mirrors.aliyun.com/pypi/simple", "", -1)
}
err = os.WriteFile("./install-py-dep.bat", []byte(installScript), 0644)
err = os.WriteFile(a.exDir+"install-py-dep.bat", []byte(installScript), 0644)
if err != nil {
return "", err
}
@ -142,7 +246,7 @@ func (a *App) InstallPyDep(python string, cnMirror bool) (string, error) {
}
if cnMirror {
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_without_cyac.txt", "-i", "https://pypi.tuna.tsinghua.edu.cn/simple")
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_without_cyac.txt", "-i", "https://mirrors.aliyun.com/pypi/simple")
} else {
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_without_cyac.txt")
}

View File

@ -3,42 +3,68 @@ package backend_golang
import (
"archive/zip"
"bufio"
"crypto/sha256"
"embed"
"errors"
"fmt"
"io"
"io/fs"
"net"
"os"
"os/exec"
"path/filepath"
"runtime"
"strconv"
"strings"
"syscall"
)
func CmdHelper(hideWindow bool, args ...string) (*exec.Cmd, error) {
if runtime.GOOS != "windows" {
return nil, errors.New("unsupported OS")
}
ex, err := os.Executable()
if err != nil {
return nil, err
}
exDir := filepath.Dir(ex) + "/"
path := exDir + "cmd-helper.bat"
_, err = os.Stat(path)
if err != nil {
if err := os.WriteFile(path, []byte("start %*"), 0644); err != nil {
return nil, err
}
}
cmdHelper, err := filepath.Abs(path)
if err != nil {
return nil, err
}
if strings.Contains(cmdHelper, " ") {
for _, arg := range args {
if strings.Contains(arg, " ") {
return nil, errors.New("path contains space") // golang bug https://github.com/golang/go/issues/17149#issuecomment-473976818
}
}
}
cmd := exec.Command(cmdHelper, args...)
cmd.SysProcAttr = &syscall.SysProcAttr{}
//go:custom_build windows cmd.SysProcAttr.HideWindow = hideWindow
return cmd, nil
}
func Cmd(args ...string) (string, error) {
switch platform := runtime.GOOS; platform {
case "windows":
if err := os.WriteFile("./cmd-helper.bat", []byte("start %*"), 0644); err != nil {
return "", err
}
cmdHelper, err := filepath.Abs("./cmd-helper")
cmd, err := CmdHelper(true, args...)
if err != nil {
return "", err
}
if strings.Contains(cmdHelper, " ") {
for _, arg := range args {
if strings.Contains(arg, " ") {
return "", errors.New("path contains space") // golang bug https://github.com/golang/go/issues/17149#issuecomment-473976818
}
}
}
cmd := exec.Command(cmdHelper, args...)
out, err := cmd.CombinedOutput()
_, err = cmd.CombinedOutput()
if err != nil {
return "", err
}
return string(out), nil
return "", nil
case "darwin":
ex, err := os.Executable()
if err != nil {
@ -65,16 +91,18 @@ func Cmd(args ...string) (string, error) {
}
func CopyEmbed(efs embed.FS) error {
prefix := ""
ex, err := os.Executable()
if err != nil {
return err
}
var prefix string
if runtime.GOOS == "darwin" {
ex, err := os.Executable()
if err != nil {
return err
}
prefix = filepath.Dir(ex) + "/../../../"
} else {
prefix = filepath.Dir(ex) + "/"
}
err := fs.WalkDir(efs, ".", func(path string, d fs.DirEntry, err error) error {
err = fs.WalkDir(efs, ".", func(path string, d fs.DirEntry, err error) error {
if d.IsDir() {
return nil
}
@ -92,9 +120,19 @@ func CopyEmbed(efs embed.FS) error {
return err
}
err = os.WriteFile(path, content, 0644)
if err != nil {
return err
executeWrite := true
existedContent, err := os.ReadFile(path)
if err == nil {
if fmt.Sprintf("%x", sha256.Sum256(existedContent)) == fmt.Sprintf("%x", sha256.Sum256(content)) {
executeWrite = false
}
}
if executeWrite {
err = os.WriteFile(path, content, 0644)
if err != nil {
return err
}
}
return nil
@ -105,13 +143,19 @@ func CopyEmbed(efs embed.FS) error {
func GetPython() (string, error) {
switch platform := runtime.GOOS; platform {
case "windows":
_, err := os.Stat("py310/python.exe")
ex, err := os.Executable()
if err != nil {
_, err := os.Stat("python-3.10.11-embed-amd64.zip")
return "", err
}
exDir := filepath.Dir(ex) + "/"
pyexe := exDir + "py310/python.exe"
_, err = os.Stat(pyexe)
if err != nil {
_, err := os.Stat(exDir + "python-3.10.11-embed-amd64.zip")
if err != nil {
return "", errors.New("python zip not found")
} else {
err := Unzip("python-3.10.11-embed-amd64.zip", "py310")
err := Unzip(exDir+"python-3.10.11-embed-amd64.zip", exDir+"py310")
if err != nil {
return "", errors.New("failed to unzip python")
} else {
@ -205,3 +249,12 @@ func Unzip(source, destination string) error {
}
return nil
}
func (a *App) IsPortAvailable(port int) bool {
l, err := net.Listen("tcp", fmt.Sprintf("127.0.0.1:%s", strconv.Itoa(port)))
if err != nil {
return false
}
defer l.Close()
return true
}

View File

@ -9,7 +9,6 @@ import (
"io"
"os"
"os/exec"
"path/filepath"
"strings"
"time"
@ -133,26 +132,20 @@ func (a *App) WslStop() error {
}
func (a *App) WslIsEnabled() error {
ex, err := os.Executable()
if err != nil {
return err
}
exDir := filepath.Dir(ex)
data, err := os.ReadFile(exDir + "/wsl.state")
data, err := os.ReadFile(a.exDir + "wsl.state")
if err == nil {
if strings.Contains(string(data), "Enabled") {
return nil
}
}
cmd := `-Command (Get-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Linux).State | Out-File -Encoding utf8 -FilePath ` + exDir + "/wsl.state"
_, err = su.ShellExecute(su.RUNAS, "powershell", cmd, exDir)
cmd := `-Command (Get-WindowsOptionalFeature -Online -FeatureName VirtualMachinePlatform).State | Out-File -Encoding utf8 -FilePath ` + a.exDir + "wsl.state"
_, err = su.ShellExecute(su.RUNAS, "powershell", cmd, a.exDir)
if err != nil {
return err
}
time.Sleep(2 * time.Second)
data, err = os.ReadFile(exDir + "/wsl.state")
data, err = os.ReadFile(a.exDir + "wsl.state")
if err != nil {
return err
}
@ -164,13 +157,13 @@ func (a *App) WslIsEnabled() error {
}
func (a *App) WslEnable(forceMode bool) error {
cmd := `/online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux`
cmd := `/online /enable-feature /featurename:VirtualMachinePlatform`
_, err := su.ShellExecute(su.RUNAS, "dism", cmd, `C:\`)
if err != nil {
return err
}
if forceMode {
os.WriteFile("./wsl.state", []byte("Enabled"), 0644)
os.WriteFile(a.exDir+"wsl.state", []byte("Enabled"), 0644)
}
return nil
}

View File

@ -231,5 +231,6 @@ try:
convert_and_save_and_exit=args.out,
)
except Exception as e:
print(e)
with open("error.txt", "w") as f:
f.write(str(e))

View File

@ -0,0 +1,169 @@
# Converts an RWKV model checkpoint in PyTorch format to an rwkv.cpp compatible file.
# Usage: python convert_pytorch_to_ggml.py C:\RWKV-4-Pile-169M-20220807-8023.pth C:\rwkv.cpp-169M-FP16.bin FP16
# Get model checkpoints from https://huggingface.co/BlinkDL
# See FILE_FORMAT.md for the documentation on the file format.
import argparse
import struct
import torch
from typing import Dict
def parse_args():
parser = argparse.ArgumentParser(
description="Convert an RWKV model checkpoint in PyTorch format to an rwkv.cpp compatible file"
)
parser.add_argument("src_path", help="Path to PyTorch checkpoint file")
parser.add_argument(
"dest_path", help="Path to rwkv.cpp checkpoint file, will be overwritten"
)
parser.add_argument(
"data_type",
help="Data type, FP16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0",
type=str,
choices=[
"FP16",
"Q4_0",
"Q4_1",
"Q5_0",
"Q5_1",
"Q8_0",
],
default="FP16",
)
return parser.parse_args()
def get_layer_count(state_dict: Dict[str, torch.Tensor]) -> int:
n_layer: int = 0
while f"blocks.{n_layer}.ln1.weight" in state_dict:
n_layer += 1
assert n_layer > 0
return n_layer
def write_state_dict(
state_dict: Dict[str, torch.Tensor], dest_path: str, data_type: str
) -> None:
emb_weight: torch.Tensor = state_dict["emb.weight"]
n_layer: int = get_layer_count(state_dict)
n_vocab: int = emb_weight.shape[0]
n_embed: int = emb_weight.shape[1]
is_v5_1_or_2: bool = "blocks.0.att.ln_x.weight" in state_dict
is_v5_2: bool = "blocks.0.att.gate.weight" in state_dict
if is_v5_2:
print("Detected RWKV v5.2")
elif is_v5_1_or_2:
print("Detected RWKV v5.1")
else:
print("Detected RWKV v4")
with open(dest_path, "wb") as out_file:
is_FP16: bool = data_type == "FP16" or data_type == "float16"
out_file.write(
struct.pack(
# Disable padding with '='
"=iiiiii",
# Magic: 'ggmf' in hex
0x67676D66,
101,
n_vocab,
n_embed,
n_layer,
1 if is_FP16 else 0,
)
)
for k in state_dict.keys():
tensor: torch.Tensor = state_dict[k].float()
if ".time_" in k:
tensor = tensor.squeeze()
if is_v5_1_or_2:
if ".time_decay" in k:
if is_v5_2:
tensor = torch.exp(-torch.exp(tensor)).unsqueeze(-1)
else:
tensor = torch.exp(-torch.exp(tensor)).reshape(-1, 1, 1)
if ".time_first" in k:
tensor = torch.exp(tensor).reshape(-1, 1, 1)
if ".time_faaaa" in k:
tensor = tensor.unsqueeze(-1)
else:
if ".time_decay" in k:
tensor = -torch.exp(tensor)
# Keep 1-dim vectors and small matrices in FP32
if is_FP16 and len(tensor.shape) > 1 and ".time_" not in k:
tensor = tensor.half()
shape = tensor.shape
print(f"Writing {k}, shape {shape}, type {tensor.dtype}")
k_encoded: bytes = k.encode("utf-8")
out_file.write(
struct.pack(
"=iii",
len(shape),
len(k_encoded),
1 if tensor.dtype == torch.float16 else 0,
)
)
# Dimension order is reversed here:
# * PyTorch shape is (x rows, y columns)
# * ggml shape is (y elements in a row, x elements in a column)
# Both shapes represent the same tensor.
for dim in reversed(tensor.shape):
out_file.write(struct.pack("=i", dim))
out_file.write(k_encoded)
tensor.numpy().tofile(out_file)
def main() -> None:
args = parse_args()
print(f"Reading {args.src_path}")
state_dict: Dict[str, torch.Tensor] = torch.load(args.src_path, map_location="cpu")
temp_output: str = args.dest_path
if args.data_type.startswith("Q"):
import re
temp_output = re.sub(r"Q[4,5,8]_[0,1]", "fp16", temp_output)
write_state_dict(state_dict, temp_output, "FP16")
if args.data_type.startswith("Q"):
import sys
import os
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
from rwkv_pip.cpp import rwkv_cpp_shared_library
library = rwkv_cpp_shared_library.load_rwkv_shared_library()
library.rwkv_quantize_model_file(temp_output, args.dest_path, args.data_type)
print("Done")
if __name__ == "__main__":
try:
main()
except Exception as e:
print(e)
with open("error.txt", "w") as f:
f.write(str(e))

113
backend-python/convert_safetensors.py vendored Normal file
View File

@ -0,0 +1,113 @@
import collections
import numpy
import os
import torch
from safetensors.torch import serialize_file, load_file
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--input", type=str, help="Path to input pth model")
parser.add_argument(
"--output",
type=str,
default="./converted.st",
help="Path to output safetensors model",
)
args = parser.parse_args()
def rename_key(rename, name):
for k, v in rename.items():
if k in name:
name = name.replace(k, v)
return name
def convert_file(pt_filename: str, sf_filename: str, rename={}, transpose_names=[]):
loaded: collections.OrderedDict = torch.load(pt_filename, map_location="cpu")
if "state_dict" in loaded:
loaded = loaded["state_dict"]
kk = list(loaded.keys())
version = 4
for x in kk:
if "ln_x" in x:
version = max(5, version)
if "gate.weight" in x:
version = max(5.1, version)
if int(version) == 5 and "att.time_decay" in x:
if len(loaded[x].shape) > 1:
if loaded[x].shape[1] > 1:
version = max(5.2, version)
if "time_maa" in x:
version = max(6, version)
print(f"Model detected: v{version:.1f}")
if version == 5.1:
_, n_emb = loaded["emb.weight"].shape
for k in kk:
if "time_decay" in k or "time_faaaa" in k:
# print(k, mm[k].shape)
loaded[k] = (
loaded[k].unsqueeze(1).repeat(1, n_emb // loaded[k].shape[0])
)
with torch.no_grad():
for k in kk:
new_k = rename_key(rename, k).lower()
v = loaded[k].half()
del loaded[k]
for transpose_name in transpose_names:
if transpose_name in new_k:
dims = len(v.shape)
v = v.transpose(dims - 2, dims - 1)
print(f"{new_k}\t{v.shape}\t{v.dtype}")
loaded[new_k] = {
"dtype": str(v.dtype).split(".")[-1],
"shape": v.shape,
"data": v.numpy().tobytes(),
}
dirname = os.path.dirname(sf_filename)
os.makedirs(dirname, exist_ok=True)
serialize_file(loaded, sf_filename, metadata={"format": "pt"})
# reloaded = load_file(sf_filename)
# for k in loaded:
# pt_tensor = torch.Tensor(
# numpy.frombuffer(
# bytearray(loaded[k]["data"]),
# dtype=getattr(numpy, loaded[k]["dtype"]),
# ).reshape(loaded[k]["shape"])
# )
# sf_tensor = reloaded[k]
# if not torch.equal(pt_tensor, sf_tensor):
# raise RuntimeError(f"The output tensors do not match for key {k}")
if __name__ == "__main__":
try:
convert_file(
args.input,
args.output,
rename={
"time_faaaa": "time_first",
"time_maa": "time_mix",
"lora_A": "lora.0",
"lora_B": "lora.1",
},
transpose_names=[
"time_mix_w1",
"time_mix_w2",
"time_decay_w1",
"time_decay_w2",
"time_state",
"lora.0",
],
)
print(f"Saved to {args.output}")
except Exception as e:
print(e)
with open("error.txt", "w") as f:
f.write(str(e))

View File

@ -1,13 +1,21 @@
import setuptools
if setuptools.__version__ >= "70.0.0":
raise ImportError("setuptools>=70.0.0 is not supported")
import multipart
import fitz
import safetensors
import midi2audio
import mido
import lm_dataformat
import ftfy
import tqdm
import tiktoken
import GPUtil
import torch
import rwkv
import langchain
import numpy
import tokenizers
import fastapi

View File

@ -1,8 +1,11 @@
from enum import Enum, auto
Args = "args"
Model = "model"
Model_Status = "model_status"
Model_Config = "model_config"
Deploy_Mode = "deploy_mode"
Midi_Vocab_Config_Type = "midi_vocab_config_type"
class ModelStatus(Enum):
@ -11,10 +14,17 @@ class ModelStatus(Enum):
Working = 3
class MidiVocabConfig(Enum):
Default = auto()
Piano = auto()
def init():
global GLOBALS
GLOBALS = {}
set(Model_Status, ModelStatus.Offline)
set(Deploy_Mode, False)
set(Midi_Vocab_Config_Type, MidiVocabConfig.Default)
def set(key, value):

View File

@ -1,10 +1,59 @@
import time
start_time = time.time()
import argparse
from typing import Union, Sequence
def get_args(args: Union[Sequence[str], None] = None):
parser = argparse.ArgumentParser()
group = parser.add_argument_group(title="server arguments")
group.add_argument(
"--port",
type=int,
default=8000,
help="port to run the server on (default: 8000)",
)
group.add_argument(
"--host",
type=str,
default="127.0.0.1",
help="host to run the server on (default: 127.0.0.1)",
)
group = parser.add_argument_group(title="mode arguments")
group.add_argument(
"--webui",
action="store_true",
help="whether to enable WebUI (default: False)",
)
group.add_argument(
"--rwkv.cpp",
action="store_true",
help="whether to use rwkv.cpp (default: False)",
)
group.add_argument(
"--webgpu",
action="store_true",
help="whether to use webgpu (default: False)",
)
args = parser.parse_args(args)
return args
if __name__ == "__main__":
args = get_args()
import os
import sys
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
import psutil
from fastapi import Depends, FastAPI
from contextlib import asynccontextmanager
from fastapi import Depends, FastAPI, status
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
@ -12,10 +61,17 @@ from utils.rwkv import *
from utils.torch import *
from utils.ngrok import *
from utils.log import log_middleware
from routes import completion, config, state_cache, midi
from routes import completion, config, state_cache, midi, misc, file_process
import global_var
app = FastAPI(dependencies=[Depends(log_middleware)])
@asynccontextmanager
async def lifespan(app: FastAPI):
init()
yield
app = FastAPI(lifespan=lifespan, dependencies=[Depends(log_middleware)])
app.add_middleware(
CORSMiddleware,
@ -28,12 +84,47 @@ app.add_middleware(
app.include_router(completion.router)
app.include_router(config.router)
app.include_router(midi.router)
app.include_router(file_process.router)
app.include_router(misc.router)
app.include_router(state_cache.router)
@app.on_event("startup")
@app.post("/exit", tags=["Root"])
def exit():
if global_var.get(global_var.Deploy_Mode) is True:
raise HTTPException(status.HTTP_403_FORBIDDEN)
parent_pid = os.getpid()
parent = psutil.Process(parent_pid)
for child in parent.children(recursive=True):
child.kill()
parent.kill()
try:
if (
"RWKV_RUNNER_PARAMS" in os.environ
and "--webui" in os.environ["RWKV_RUNNER_PARAMS"].split(" ")
) or args.webui:
from webui_server import webui_server
app.mount("/", webui_server)
except NameError:
pass
@app.get("/", tags=["Root"])
def read_root():
return {"Hello": "World!"}
def init():
global_var.init()
cmd_params = os.environ["RWKV_RUNNER_PARAMS"]
global_var.set(
global_var.Args, get_args(cmd_params.split(" ") if cmd_params else None)
)
state_cache.init()
set_torch()
@ -42,23 +133,7 @@ def init():
ngrok_connect()
@app.get("/", tags=["Root"])
def read_root():
return {"Hello": "World!"}
@app.post("/exit", tags=["Root"])
def exit():
parent_pid = os.getpid()
parent = psutil.Process(parent_pid)
for child in parent.children(recursive=True):
child.kill()
parent.kill()
if __name__ == "__main__":
uvicorn.run(
"main:app",
port=8000 if len(sys.argv) < 2 else int(sys.argv[1]),
host="127.0.0.1" if len(sys.argv) < 3 else sys.argv[2],
)
os.environ["RWKV_RUNNER_PARAMS"] = " ".join(sys.argv[1:])
print("--- %s seconds ---" % (time.time() - start_time))
uvicorn.run("main:app", port=args.port, host=args.host, workers=1)

Binary file not shown.

View File

@ -2,12 +2,13 @@ import asyncio
import json
from threading import Lock
from typing import List, Union
from enum import Enum
import base64
import time
from fastapi import APIRouter, Request, status, HTTPException
from sse_starlette.sse import EventSourceResponse
from pydantic import BaseModel
import numpy as np
from pydantic import BaseModel, Field
import tiktoken
from utils.rwkv import *
from utils.log import quick_log
@ -16,41 +17,81 @@ import global_var
router = APIRouter()
class Role(Enum):
User = "user"
Assistant = "assistant"
System = "system"
class Message(BaseModel):
role: str
content: str
role: Role
content: str = Field(min_length=0)
raw: bool = Field(False, description="Whether to treat content as raw text")
default_stop = [
"\n\nUser",
"\n\nQuestion",
"\n\nQ",
"\n\nHuman",
"\n\nBob",
"\n\nAssistant",
"\n\nAnswer",
"\n\nA",
"\n\nBot",
"\n\nAlice",
]
class ChatCompletionBody(ModelConfigBody):
messages: List[Message]
model: str = "rwkv"
messages: Union[List[Message], None]
model: Union[str, None] = "rwkv"
stream: bool = False
stop: str | List[str] = None
stop: Union[str, List[str], None] = default_stop
user_name: Union[str, None] = Field(
None, description="Internal user name", min_length=1
)
assistant_name: Union[str, None] = Field(
None, description="Internal assistant name", min_length=1
)
system_name: Union[str, None] = Field(
None, description="Internal system name", min_length=1
)
presystem: bool = Field(
False, description="Whether to insert default system prompt at the beginning"
)
class Config:
schema_extra = {
model_config = {
"json_schema_extra": {
"example": {
"messages": [{"role": "user", "content": "hello"}],
"messages": [
{"role": Role.User.value, "content": "hello", "raw": False}
],
"model": "rwkv",
"stream": False,
"stop": None,
"user_name": None,
"assistant_name": None,
"system_name": None,
"presystem": True,
"max_tokens": 1000,
"temperature": 1.2,
"top_p": 0.5,
"presence_penalty": 0.4,
"frequency_penalty": 0.4,
"temperature": 1,
"top_p": 0.3,
"presence_penalty": 0,
"frequency_penalty": 1,
}
}
}
class CompletionBody(ModelConfigBody):
prompt: Union[str, List[str]]
model: str = "rwkv"
prompt: Union[str, List[str], None]
model: Union[str, None] = "rwkv"
stream: bool = False
stop: str | List[str] = None
stop: Union[str, List[str], None] = None
class Config:
schema_extra = {
model_config = {
"json_schema_extra": {
"example": {
"prompt": "The following is an epic science fiction masterpiece that is immortalized, "
+ "with delicate descriptions and grand depictions of interstellar civilization wars.\nChapter 1.\n",
@ -58,12 +99,13 @@ class CompletionBody(ModelConfigBody):
"stream": False,
"stop": None,
"max_tokens": 100,
"temperature": 1.2,
"top_p": 0.5,
"presence_penalty": 0.4,
"frequency_penalty": 0.4,
"temperature": 1,
"top_p": 0.3,
"presence_penalty": 0,
"frequency_penalty": 1,
}
}
}
completion_lock = Lock()
@ -77,7 +119,7 @@ async def eval_rwkv(
body: ModelConfigBody,
prompt: str,
stream: bool,
stop: str,
stop: Union[str, List[str], None],
chat_mode: bool,
):
global requests_num
@ -107,39 +149,57 @@ async def eval_rwkv(
return
set_rwkv_config(model, global_var.get(global_var.Model_Config))
set_rwkv_config(model, body)
print(get_rwkv_config(model))
response, prompt_tokens, completion_tokens = "", 0, 0
completion_start_time = None
for response, delta, prompt_tokens, completion_tokens in model.generate(
prompt,
stop=stop,
):
if not completion_start_time:
completion_start_time = time.time()
if await request.is_disconnected():
break
if stream:
yield json.dumps(
{
"object": "chat.completion.chunk"
if chat_mode
else "text_completion",
"response": response,
"model": model.name,
"choices": [
{
"delta": {"content": delta},
"index": 0,
"finish_reason": None,
}
"object": (
"chat.completion.chunk"
if chat_mode
else {
"text": delta,
"index": 0,
"finish_reason": None,
}
else "text_completion"
),
# "response": response,
"model": model.name,
"id": "chatcmpl-123",
"system_fingerprint": "fp_44709d6fcb",
"choices": [
(
{
"delta": {"role":Role.Assistant.value,"content": delta},
"index": 0,
"finish_reason": None,
"logprobs":None
}
if chat_mode
else {
"text": delta,
"index": 0,
"finish_reason": None,
}
)
],
}
)
# torch_gc()
requests_num = requests_num - 1
completion_end_time = time.time()
completion_interval = completion_end_time - completion_start_time
tps = 0
if completion_interval > 0:
tps = completion_tokens / completion_interval
print(f"Generation TPS: {tps:.2f}")
if await request.is_disconnected():
print(f"{request.client} Stop Waiting")
quick_log(
@ -156,23 +216,28 @@ async def eval_rwkv(
if stream:
yield json.dumps(
{
"object": "chat.completion.chunk"
if chat_mode
else "text_completion",
"response": response,
"object": (
"chat.completion.chunk" if chat_mode else "text_completion"
),
# "response": response,
"model": model.name,
"id": "chatcmpl-123",
"system_fingerprint": "fp_44709d6fcb",
"choices": [
{
"delta": {},
"index": 0,
"finish_reason": "stop",
}
if chat_mode
else {
"text": "",
"index": 0,
"finish_reason": "stop",
}
(
{
"delta": {},
"index": 0,
"logprobs": None,
"finish_reason": "stop",
}
if chat_mode
else {
"text": "",
"index": 0,
"finish_reason": "stop",
}
)
],
}
)
@ -180,7 +245,7 @@ async def eval_rwkv(
else:
yield {
"object": "chat.completion" if chat_mode else "text_completion",
"response": response,
# "response": response,
"model": model.name,
"usage": {
"prompt_tokens": prompt_tokens,
@ -188,24 +253,125 @@ async def eval_rwkv(
"total_tokens": prompt_tokens + completion_tokens,
},
"choices": [
{
"message": {
"role": "assistant",
"content": response,
},
"index": 0,
"finish_reason": "stop",
}
if chat_mode
else {
"text": response,
"index": 0,
"finish_reason": "stop",
}
(
{
"message": {
"role": Role.Assistant.value,
"content": response,
},
"index": 0,
"finish_reason": "stop",
}
if chat_mode
else {
"text": response,
"index": 0,
"finish_reason": "stop",
}
)
],
}
def chat_template_old(
model: TextRWKV, body: ChatCompletionBody, interface: str, user: str, bot: str
):
is_raven = model.rwkv_type == RWKVType.Raven
completion_text: str = ""
basic_system: Union[str, None] = None
if body.presystem:
if body.messages[0].role == Role.System:
basic_system = body.messages[0].content
if basic_system is None:
completion_text = (
f"""
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
{bot} is very intelligent, creative and friendly. \
{bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \
{bot} likes to tell {user} a lot about herself and her opinions. \
{bot} usually gives {user} kind, helpful and informative advices.\n
"""
if is_raven
else (
f"{user}{interface} hi\n\n{bot}{interface} Hi. "
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
)
)
else:
if not body.messages[0].raw:
basic_system = (
basic_system.replace("\r\n", "\n")
.replace("\r", "\n")
.replace("\n\n", "\n")
.replace("\n", " ")
.strip()
)
completion_text = (
(
f"The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. "
if is_raven
else f"{user}{interface} hi\n\n{bot}{interface} Hi. "
)
+ basic_system.replace("You are", f"{bot} is" if is_raven else "I am")
.replace("you are", f"{bot} is" if is_raven else "I am")
.replace("You're", f"{bot} is" if is_raven else "I'm")
.replace("you're", f"{bot} is" if is_raven else "I'm")
.replace("You", f"{bot}" if is_raven else "I")
.replace("you", f"{bot}" if is_raven else "I")
.replace("Your", f"{bot}'s" if is_raven else "My")
.replace("your", f"{bot}'s" if is_raven else "my")
.replace("", f"{bot}" if is_raven else "")
+ "\n\n"
)
for message in body.messages[(0 if basic_system is None else 1) :]:
append_message: str = ""
if message.role == Role.User:
append_message = f"{user}{interface} " + message.content
elif message.role == Role.Assistant:
append_message = f"{bot}{interface} " + message.content
elif message.role == Role.System:
append_message = message.content
if not message.raw:
append_message = (
append_message.replace("\r\n", "\n")
.replace("\r", "\n")
.replace("\n\n", "\n")
.strip()
)
completion_text += append_message + "\n\n"
completion_text += f"{bot}{interface}"
return completion_text
def chat_template(
model: TextRWKV, body: ChatCompletionBody, interface: str, user: str, bot: str
):
completion_text: str = ""
if body.presystem:
completion_text = (
f"{user}{interface} hi\n\n{bot}{interface} Hi. "
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
)
system = "System" if body.system_name is None else body.system_name
for message in body.messages:
append_message: str = ""
if message.role == Role.User:
append_message = f"{user}{interface} " + message.content
elif message.role == Role.Assistant:
append_message = f"{bot}{interface} " + message.content
elif message.role == Role.System:
append_message = f"{system}{interface} " + message.content
completion_text += append_message + "\n\n"
completion_text += f"{bot}{interface}"
return completion_text
@router.post("/v1/chat/completions", tags=["Completions"])
@router.post("/chat/completions", tags=["Completions"])
async def chat_completions(body: ChatCompletionBody, request: Request):
@ -213,87 +379,40 @@ async def chat_completions(body: ChatCompletionBody, request: Request):
if model is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "model not loaded")
question = body.messages[-1]
if question.role == "user":
question = question.content
elif question.role == "system":
question = body.messages[-2]
if question.role == "user":
question = question.content
else:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "no question found")
else:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "no question found")
if body.messages is None or body.messages == []:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "messages not found")
interface = model.interface
user = model.user
bot = model.bot
user = model.user if body.user_name is None else body.user_name
bot = model.bot if body.assistant_name is None else body.assistant_name
completion_text = (
f"""
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
{bot} is very intelligent, creative and friendly. \
{bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \
{bot} likes to tell {user} a lot about herself and her opinions. \
{bot} usually gives {user} kind, helpful and informative advices.\n
"""
if user == "Bob"
else f"{user}{interface} hi\n\n{bot}{interface} Hi. "
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
)
for message in body.messages:
if message.role == "system":
completion_text = (
f"The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. "
if user == "Bob"
else f"{user}{interface} hi\n\n{bot}{interface} Hi. "
+ message.content.replace("\\n", "\n")
.replace("\r\n", "\n")
.replace("\n\n", "\n")
.replace("\n", " ")
.strip()
.replace("You are", f"{bot} is" if user == "Bob" else "I am")
.replace("you are", f"{bot} is" if user == "Bob" else "I am")
.replace("You're", f"{bot} is" if user == "Bob" else "I'm")
.replace("you're", f"{bot} is" if user == "Bob" else "I'm")
.replace("You", f"{bot}" if user == "Bob" else "I")
.replace("you", f"{bot}" if user == "Bob" else "I")
.replace("Your", f"{bot}'s" if user == "Bob" else "My")
.replace("your", f"{bot}'s" if user == "Bob" else "my")
.replace("", f"{bot}" if user == "Bob" else "")
+ "\n\n"
)
break
for message in body.messages:
if message.role == "user":
completion_text += (
f"{user}{interface} "
+ message.content.replace("\\n", "\n")
.replace("\r\n", "\n")
.replace("\n\n", "\n")
.strip()
+ "\n\n"
)
elif message.role == "assistant":
completion_text += (
f"{bot}{interface} "
+ message.content.replace("\\n", "\n")
.replace("\r\n", "\n")
.replace("\n\n", "\n")
.strip()
+ "\n\n"
)
completion_text += f"{bot}{interface}"
if model.version < 5:
completion_text = chat_template_old(model, body, interface, user, bot)
else:
completion_text = chat_template(model, body, interface, user, bot)
user_code = model.pipeline.decode([model.pipeline.encode(user)[0]])
bot_code = model.pipeline.decode([model.pipeline.encode(bot)[0]])
if type(body.stop) == str:
body.stop = [body.stop, f"\n\n{user_code}", f"\n\n{bot_code}"]
elif type(body.stop) == list:
body.stop.append(f"\n\n{user_code}")
body.stop.append(f"\n\n{bot_code}")
elif body.stop is None:
body.stop = default_stop + [f"\n\n{user_code}", f"\n\n{bot_code}"]
# if not body.presystem:
# body.stop.append("\n\n")
stop = f"\n\n{user}" if body.stop is None else body.stop
if body.stream:
return EventSourceResponse(
eval_rwkv(model, request, body, completion_text, body.stream, stop, True)
eval_rwkv(
model, request, body, completion_text, body.stream, body.stop, True
)
)
else:
try:
return await eval_rwkv(
model, request, body, completion_text, body.stream, stop, True
model, request, body, completion_text, body.stream, body.stop, True
).__anext__()
except StopAsyncIteration:
return None
@ -326,13 +445,13 @@ async def completions(body: CompletionBody, request: Request):
class EmbeddingsBody(BaseModel):
input: Union[str, List[str], List[List[int]]]
model: str = "rwkv"
input: Union[str, List[str], List[List[int]], None]
model: Union[str, None] = "rwkv"
encoding_format: str = None
fast_mode: bool = False
class Config:
schema_extra = {
model_config = {
"json_schema_extra": {
"example": {
"input": "a big apple",
"model": "rwkv",
@ -340,9 +459,12 @@ class EmbeddingsBody(BaseModel):
"fast_mode": False,
}
}
}
def embedding_base64(embedding: List[float]) -> str:
import numpy as np
return base64.b64encode(np.array(embedding).astype(np.float32)).decode("utf-8")

View File

@ -6,44 +6,38 @@ from pydantic import BaseModel
from utils.rwkv import *
from utils.torch import *
import global_var
import GPUtil
router = APIRouter()
def get_tokens_path(model_path: str):
model_path = model_path.lower()
tokenizer_dir = f"{pathlib.Path(__file__).parent.parent.resolve()}/rwkv_pip/"
default_tokens_path = tokenizer_dir + "20B_tokenizer.json"
if "raven" in model_path:
return default_tokens_path
elif "world" in model_path:
return "rwkv_vocab_v20230424"
elif "midi" in model_path:
return tokenizer_dir + "tokenizer-midi.json"
else:
return default_tokens_path
class SwitchModelBody(BaseModel):
model: str
strategy: str
tokenizer: Union[str, None] = None
customCuda: bool = False
deploy: bool = Field(
False,
description="Deploy mode. If success, will disable /switch-model, /exit and other dangerous APIs (state cache APIs, part of midi APIs)",
)
class Config:
schema_extra = {
model_config = {
"json_schema_extra": {
"example": {
"model": "models/RWKV-4-World-3B-v1-20230619-ctx4096.pth",
"strategy": "cuda fp16",
"tokenizer": "",
"customCuda": False,
"deploy": False,
}
}
}
@router.post("/switch-model", tags=["Configs"])
def switch_model(body: SwitchModelBody, response: Response, request: Request):
if global_var.get(global_var.Deploy_Mode) is True:
raise HTTPException(Status.HTTP_403_FORBIDDEN)
if global_var.get(global_var.Model_Status) is global_var.ModelStatus.Loading:
response.status_code = Status.HTTP_304_NOT_MODIFIED
return
@ -55,13 +49,20 @@ def switch_model(body: SwitchModelBody, response: Response, request: Request):
if body.model == "":
return "success"
if "->" in body.strategy:
state_cache.disable_state_cache()
else:
try:
state_cache.enable_state_cache()
except HTTPException:
pass
devices = set(
[
x.strip().split(" ")[0].replace("cuda:0", "cuda")
for x in body.strategy.split("->")
]
)
print(f"Strategy Devices: {devices}")
# if len(devices) > 1:
# state_cache.disable_state_cache()
# else:
try:
state_cache.enable_state_cache()
except HTTPException:
pass
os.environ["RWKV_CUDA_ON"] = "1" if body.customCuda else "0"
@ -69,50 +70,74 @@ def switch_model(body: SwitchModelBody, response: Response, request: Request):
try:
global_var.set(
global_var.Model,
TextRWKV(
model=body.model,
strategy=body.strategy,
tokens_path=get_tokens_path(body.model),
)
if "midi" not in body.model.lower()
else MusicRWKV(
model=body.model,
strategy=body.strategy,
tokens_path=get_tokens_path(body.model),
),
RWKV(model=body.model, strategy=body.strategy, tokenizer=body.tokenizer),
)
except Exception as e:
print(e)
import traceback
print(traceback.format_exc())
quick_log(request, body, f"Exception: {e}")
global_var.set(global_var.Model_Status, global_var.ModelStatus.Offline)
raise HTTPException(
Status.HTTP_500_INTERNAL_SERVER_ERROR, f"failed to load: {e}"
)
if global_var.get(global_var.Model_Config) is None:
global_var.set(
global_var.Model_Config, get_rwkv_config(global_var.get(global_var.Model))
)
if body.deploy:
global_var.set(global_var.Deploy_Mode, True)
saved_model_config = global_var.get(global_var.Model_Config)
init_model_config = get_rwkv_config(global_var.get(global_var.Model))
if saved_model_config is not None:
merge_model(init_model_config, saved_model_config)
global_var.set(global_var.Model_Config, init_model_config)
global_var.set(global_var.Model_Status, global_var.ModelStatus.Working)
return "success"
def merge_model(to_model: BaseModel, from_model: BaseModel):
from_model_fields = [x for x in from_model.dict().keys()]
to_model_fields = [x for x in to_model.dict().keys()]
for field_name in from_model_fields:
if field_name in to_model_fields:
from_value = getattr(from_model, field_name)
if from_value is not None:
setattr(to_model, field_name, from_value)
@router.post("/update-config", tags=["Configs"])
def update_config(body: ModelConfigBody):
"""
Will not update the model config immediately, but set it when completion called to avoid modifications during generation
"""
print(body)
global_var.set(global_var.Model_Config, body)
model_config = global_var.get(global_var.Model_Config)
if model_config is None:
model_config = ModelConfigBody()
global_var.set(global_var.Model_Config, model_config)
merge_model(model_config, body)
exception = load_rwkv_state(
global_var.get(global_var.Model), model_config.state, True
)
if exception is not None:
raise exception
print("Updated Model Config:", model_config)
return "success"
@router.get("/status", tags=["Configs"])
def status():
gpus = GPUtil.getGPUs()
try:
import GPUtil
gpus = GPUtil.getGPUs()
except:
gpus = []
if len(gpus) == 0:
device_name = "CPU"
else:

View File

@ -0,0 +1,79 @@
import os
from fastapi import (
APIRouter,
HTTPException,
status,
Depends,
File,
UploadFile,
)
from pydantic import BaseModel
from typing import Iterator
router = APIRouter()
class FileToTextParams(BaseModel):
file_name: str
file_encoding: str = "utf-8"
@router.post("/file-to-text", tags=["File Process"])
async def file_to_text(
params: FileToTextParams = Depends(), file_data: UploadFile = File(...)
):
from langchain.schema import Document
from langchain.document_loaders.blob_loaders import Blob
# from langchain
def parse_text(blob: Blob) -> Iterator[Document]:
yield Document(page_content=blob.as_string(), metadata={"source": blob.source})
# from langchain
def parse_pdf(blob: Blob) -> Iterator[Document]:
import fitz
with blob.as_bytes_io() as stream:
doc = fitz.Document(stream=stream)
yield from [
Document(
page_content=page.get_text(),
metadata=dict(
{
"source": blob.source,
"file_path": blob.source,
"page": page.number,
"total_pages": len(doc),
},
**{
k: doc.metadata[k]
for k in doc.metadata
if type(doc.metadata[k]) in [str, int]
},
),
)
for page in doc
]
file_parsers = {".txt": parse_text, ".pdf": parse_pdf}
file_name = file_data.filename or params.file_name
file_ext = os.path.splitext(file_name)[-1]
if file_ext not in file_parsers:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "file type not supported")
try:
pages: Iterator[Document] = file_parsers[file_ext](
Blob.from_data(
await file_data.read(),
encoding=params.file_encoding,
path=file_name,
)
)
pages = list(pages)
except Exception as e:
raise HTTPException(status.HTTP_400_BAD_REQUEST, f"{e}")
return {"pages": pages}

View File

@ -1,5 +1,6 @@
import io
from fastapi import APIRouter, HTTPException, status
import global_var
from fastapi import APIRouter, HTTPException, UploadFile, status
from starlette.responses import StreamingResponse
from pydantic import BaseModel
from utils.midi import *
@ -11,17 +12,22 @@ router = APIRouter()
class TextToMidiBody(BaseModel):
text: str
class Config:
schema_extra = {
model_config = {
"json_schema_extra": {
"example": {
"text": "p:24:a p:2a:a p:31:a p:39:a p:3b:a p:45:a b:26:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:24:0 p:2a:0 p:31:0 p:39:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:26:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:2e:a p:3b:a p:45:a b:26:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:2e:0 p:3b:0 p:45:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:2e:a p:3b:a p:45:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:2e:0 p:3b:0 p:45:0 b:26:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:26:a p:2a:a p:3b:a p:45:a t14 p:26:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a b:26:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:2a:0 p:3b:0 p:45:0 b:26:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:2d:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 b:2d:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:24:a p:2e:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:24:0 p:2e:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:26:a p:2a:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:26:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:26:a p:2e:a p:31:a p:39:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:26:0 p:2e:0 p:31:0 p:39:0 p:3b:0 p:45:0 b:21:0 t2 p:26:a p:2e:a p:31:a p:39:a p:3b:a p:45:a b:21:a t14 p:26:0 p:2e:0 p:31:0 p:39:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:24:a p:2a:a p:31:a p:39:a p:3b:a p:45:a b:1f:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:24:0 p:2a:0 p:31:0 p:39:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:1f:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:2e:a p:3b:a p:45:a b:1f:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:2e:0 p:3b:0 p:45:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:2e:a p:3b:a p:45:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:2e:0 p:3b:0 p:45:0 b:1f:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:26:a p:2a:a p:3b:a p:45:a t14 p:26:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a b:1f:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:2a:0 p:3b:0 p:45:0 b:1f:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:1f:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 b:1f:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:24:a p:2e:a p:3b:a p:45:a b:26:a g:39:a g:39:a g:3e:a g:3e:a g:42:a g:42:a pi:39:a pi:3e:a pi:42:a t14 p:24:0 p:2e:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0",
}
}
}
@router.post("/text-to-midi", tags=["MIDI"])
def text_to_midi(body: TextToMidiBody):
vocab_config = "backend-python/utils/midi_vocab_config.json"
vocab_config_type = global_var.get(global_var.Midi_Vocab_Config_Type)
if vocab_config_type == global_var.MidiVocabConfig.Piano:
vocab_config = "backend-python/utils/vocab_config_piano.json"
else:
vocab_config = "backend-python/utils/midi_vocab_config.json"
cfg = VocabConfig.from_json(vocab_config)
mid = convert_str_to_midi(cfg, body.text.strip())
mid_data = io.BytesIO()
@ -31,25 +37,51 @@ def text_to_midi(body: TextToMidiBody):
return StreamingResponse(mid_data, media_type="audio/midi")
@router.post("/midi-to-text", tags=["MIDI"])
async def midi_to_text(file_data: UploadFile):
vocab_config_type = global_var.get(global_var.Midi_Vocab_Config_Type)
if vocab_config_type == global_var.MidiVocabConfig.Piano:
vocab_config = "backend-python/utils/vocab_config_piano.json"
else:
vocab_config = "backend-python/utils/midi_vocab_config.json"
cfg = VocabConfig.from_json(vocab_config)
filter_config = "backend-python/utils/midi_filter_config.json"
filter_cfg = FilterConfig.from_json(filter_config)
mid = mido.MidiFile(file=file_data.file)
output_list = convert_midi_to_str(cfg, filter_cfg, mid)
if len(output_list) == 0:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "bad midi file")
return {"text": output_list[0]}
class TxtToMidiBody(BaseModel):
txt_path: str
midi_path: str
class Config:
schema_extra = {
model_config = {
"json_schema_extra": {
"example": {
"txt_path": "midi/sample.txt",
"midi_path": "midi/sample.mid",
}
}
}
@router.post("/txt-to-midi", tags=["MIDI"])
def txt_to_midi(body: TxtToMidiBody):
if global_var.get(global_var.Deploy_Mode) is True:
raise HTTPException(status.HTTP_403_FORBIDDEN)
if not body.midi_path.startswith("midi/"):
raise HTTPException(status.HTTP_400_BAD_REQUEST, "bad output path")
vocab_config = "backend-python/utils/midi_vocab_config.json"
vocab_config_type = global_var.get(global_var.Midi_Vocab_Config_Type)
if vocab_config_type == global_var.MidiVocabConfig.Piano:
vocab_config = "backend-python/utils/vocab_config_piano.json"
else:
vocab_config = "backend-python/utils/midi_vocab_config.json"
cfg = VocabConfig.from_json(vocab_config)
with open(body.txt_path, "r") as f:
text = f.read()
@ -65,14 +97,15 @@ class MidiToWavBody(BaseModel):
wav_path: str
sound_font_path: str = "assets/default_sound_font.sf2"
class Config:
schema_extra = {
model_config = {
"json_schema_extra": {
"example": {
"midi_path": "midi/sample.mid",
"wav_path": "midi/sample.wav",
"sound_font_path": "assets/default_sound_font.sf2",
}
}
}
@router.post("/midi-to-wav", tags=["MIDI"])
@ -81,6 +114,9 @@ def midi_to_wav(body: MidiToWavBody):
Install fluidsynth first, see more: https://github.com/FluidSynth/fluidsynth/wiki/Download#distributions
"""
if global_var.get(global_var.Deploy_Mode) is True:
raise HTTPException(status.HTTP_403_FORBIDDEN)
if not body.wav_path.startswith("midi/"):
raise HTTPException(status.HTTP_400_BAD_REQUEST, "bad output path")
@ -95,14 +131,15 @@ class TextToWavBody(BaseModel):
wav_name: str
sound_font_path: str = "assets/default_sound_font.sf2"
class Config:
schema_extra = {
model_config = {
"json_schema_extra": {
"example": {
"text": "p:24:a p:2a:a p:31:a p:39:a p:3b:a p:45:a b:26:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:24:0 p:2a:0 p:31:0 p:39:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:26:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:2e:a p:3b:a p:45:a b:26:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:2e:0 p:3b:0 p:45:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:2e:a p:3b:a p:45:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:2e:0 p:3b:0 p:45:0 b:26:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:26:a p:2a:a p:3b:a p:45:a t14 p:26:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a b:26:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:2a:0 p:3b:0 p:45:0 b:26:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:2d:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 b:2d:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:24:a p:2e:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:24:0 p:2e:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:26:a p:2a:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:26:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:26:a p:2e:a p:31:a p:39:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:26:0 p:2e:0 p:31:0 p:39:0 p:3b:0 p:45:0 b:21:0 t2 p:26:a p:2e:a p:31:a p:39:a p:3b:a p:45:a b:21:a t14 p:26:0 p:2e:0 p:31:0 p:39:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:24:a p:2a:a p:31:a p:39:a p:3b:a p:45:a b:1f:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:24:0 p:2a:0 p:31:0 p:39:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:1f:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:2e:a p:3b:a p:45:a b:1f:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:2e:0 p:3b:0 p:45:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:2e:a p:3b:a p:45:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:2e:0 p:3b:0 p:45:0 b:1f:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:26:a p:2a:a p:3b:a p:45:a t14 p:26:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a b:1f:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:2a:0 p:3b:0 p:45:0 b:1f:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:1f:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 b:1f:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:24:a p:2e:a p:3b:a p:45:a b:26:a g:39:a g:39:a g:3e:a g:3e:a g:42:a g:42:a pi:39:a pi:3e:a pi:42:a t14 p:24:0 p:2e:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0",
"wav_name": "sample",
"sound_font_path": "assets/default_sound_font.sf2",
}
}
}
@router.post("/text-to-wav", tags=["MIDI"])
@ -111,6 +148,9 @@ def text_to_wav(body: TextToWavBody):
Install fluidsynth first, see more: https://github.com/FluidSynth/fluidsynth/wiki/Download#distributions
"""
if global_var.get(global_var.Deploy_Mode) is True:
raise HTTPException(status.HTTP_403_FORBIDDEN)
text = body.text.strip()
if not text.startswith("<start>"):
text = "<start> " + text

View File

@ -0,0 +1,131 @@
from fastapi import APIRouter, HTTPException, status
from utils.rwkv import AbstractRWKV
import global_var
router = APIRouter()
@router.get("/dashboard/billing/credit_grants", tags=["MISC"])
def credit_grants():
return {
"object": "credit_summary",
"total_granted": 10000,
"total_used": 0,
"total_available": 10000,
"grants": {
"object": "list",
"data": [
{
"object": "credit_grant",
"grant_amount": 10000,
"used_amount": 0,
"effective_at": 1672531200,
"expires_at": 33229440000,
}
],
},
}
fake_models = [
{
"id": "gpt-3.5-turbo",
"object": "model",
"created": 1677610602,
"owned_by": "openai",
"permission": [
{
"id": "modelperm-zy5TOjnE2zVaicIcKO9bQDgX",
"object": "model_permission",
"created": 1690864883,
"allow_create_engine": False,
"allow_sampling": True,
"allow_logprobs": True,
"allow_search_indices": False,
"allow_view": True,
"allow_fine_tuning": False,
"organization": "*",
"group": None,
"is_blocking": False,
}
],
"root": "gpt-3.5-turbo",
"parent": None,
},
{
"id": "text-davinci-003",
"object": "model",
"created": 1669599635,
"owned_by": "openai-internal",
"permission": [
{
"id": "modelperm-a6niqBmW2JaGmo0fDO7FEt1n",
"object": "model_permission",
"created": 1690930172,
"allow_create_engine": False,
"allow_sampling": True,
"allow_logprobs": True,
"allow_search_indices": False,
"allow_view": True,
"allow_fine_tuning": False,
"organization": "*",
"group": None,
"is_blocking": False,
}
],
"root": "text-davinci-003",
"parent": None,
},
]
@router.get("/v1/models", tags=["MISC"])
@router.get("/models", tags=["MISC"])
def models():
model: AbstractRWKV = global_var.get(global_var.Model)
model_name = model.name if model else "rwkv"
return {
"object": "list",
"data": [
{
"id": model_name,
"object": "model",
"owned_by": "rwkv",
"root": model_name,
"parent": None,
},
*fake_models,
],
}
@router.get("/v1/models/{model_id}", tags=["MISC"])
@router.get("/models/{model_id}", tags=["MISC"])
def model(model_id: str):
for fake_model in fake_models:
if fake_model["id"] == model_id:
return fake_model
if "rwkv" in model_id.lower():
model: AbstractRWKV = global_var.get(global_var.Model)
model_name = model.name if model else "rwkv"
return {
"id": model_name,
"object": "model",
"owned_by": "rwkv",
"root": model_name,
"parent": None,
}
raise HTTPException(
status.HTTP_404_NOT_FOUND,
{
"error": {
"message": f"The model '{model_id}' does not exist",
"type": "invalid_request_error",
"param": "model",
"code": "model_not_found",
}
},
)

View File

@ -1,15 +1,16 @@
from typing import Any, Dict, List
from typing import Any, Dict, List, Union
from utils.log import quick_log
from fastapi import APIRouter, HTTPException, Request, Response, status
from pydantic import BaseModel
import gc
import copy
import global_var
router = APIRouter()
trie = None
dtrie: Dict = {}
max_trie_len = 3000
max_trie_len = 300
loop_start_id = 1 # to prevent preloaded prompts from being deleted
loop_del_trie_id = loop_start_id
@ -36,16 +37,24 @@ def init():
def disable_state_cache():
global trie, dtrie
if global_var.get(global_var.Deploy_Mode) is True:
raise HTTPException(status.HTTP_403_FORBIDDEN)
trie = None
dtrie = {}
gc.collect()
print("state cache disabled")
return "success"
@router.post("/enable-state-cache", tags=["State Cache"])
def enable_state_cache():
global trie, dtrie
if global_var.get(global_var.Deploy_Mode) is True:
raise HTTPException(status.HTTP_403_FORBIDDEN)
try:
import cyac
@ -53,36 +62,80 @@ def enable_state_cache():
dtrie = {}
gc.collect()
print("state cache enabled")
return "success"
except ModuleNotFoundError:
print("state cache disabled")
raise HTTPException(status.HTTP_400_BAD_REQUEST, "cyac not found")
class AddStateBody(BaseModel):
prompt: str
tokens: List[str]
tokens: List[Union[str, int]]
state: Any
logits: Any
@router.post("/add-state", tags=["State Cache"])
def copy_tensor_to_cpu(tensors):
import torch
import numpy as np
devices: List[torch.device] = []
copied: Union[Any, None] = None
tensors_type = type(tensors)
if tensors_type == list:
if hasattr(tensors[0], "device"): # torch state
devices = [tensor.device for tensor in tensors]
copied = [tensor.cpu() for tensor in tensors]
else: # WebGPU logits
copied = tensors
elif tensors_type == torch.Tensor: # torch logits
devices = [tensors.device]
copied = tensors.cpu()
elif tensors_type == np.ndarray: # rwkv.cpp
copied = tensors
else: # WebGPU state
model = global_var.get(global_var.Model)
if model:
copied = model.model.model.back_state()
return copied, devices
# @router.post("/add-state", tags=["State Cache"])
def add_state(body: AddStateBody):
global trie, dtrie, loop_del_trie_id
# if global_var.get(global_var.Deploy_Mode) is True:
# raise HTTPException(status.HTTP_403_FORBIDDEN)
if trie is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
import torch
import numpy as np
try:
devices: List[torch.device] = []
logits_device: Union[torch.device, None] = None
state: Union[Any, None] = None
logits: Union[Any, None] = None
if body.state is not None:
state, devices = copy_tensor_to_cpu(body.state)
if body.logits is not None:
logits, logits_devices = copy_tensor_to_cpu(body.logits)
if len(logits_devices) > 0:
logits_device = logits_devices[0]
id: int = trie.insert(body.prompt)
device: torch.device = body.state[0].device
dtrie[id] = {
"tokens": copy.deepcopy(body.tokens),
"state": [tensor.cpu() for tensor in body.state]
if device != torch.device("cpu")
else copy.deepcopy(body.state),
"logits": copy.deepcopy(body.logits),
"device": device,
"tokens": body.tokens,
"state": state,
"logits": logits,
"devices": devices,
"logits_device": logits_device,
}
if len(trie) >= max_trie_len:
@ -96,10 +149,11 @@ def add_state(body: AddStateBody):
quick_log(
None,
None,
f"New Trie Id: {id}\nTrie Len: {len(trie)}\nTrie Buff Size: {trie.buff_size()}\nDtrie Buff Size Of Id: {_get_a_dtrie_buff_size(dtrie[id])}",
f"New Trie Id: {id}\nTrie Len: {len(trie)}\nTrie Buff Size: {trie.buff_size()}\nDtrie Buff Size Of Id: {__get_a_dtrie_buff_size(dtrie[id])}",
)
return "success"
except Exception as e:
print(e) # should not happen
raise HTTPException(
status.HTTP_400_BAD_REQUEST, f"insert failed, bad prompt.\n{e}"
)
@ -108,6 +162,10 @@ def add_state(body: AddStateBody):
@router.post("/reset-state", tags=["State Cache"])
def reset_state():
global trie, dtrie
if global_var.get(global_var.Deploy_Mode) is True:
raise HTTPException(status.HTTP_403_FORBIDDEN)
if trie is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
@ -120,11 +178,24 @@ def reset_state():
return "success"
def force_reset_state():
global trie, dtrie
if trie is None:
return
import cyac
trie = cyac.Trie()
dtrie = {}
gc.collect()
class LongestPrefixStateBody(BaseModel):
prompt: str
def _get_a_dtrie_buff_size(dtrie_v):
def __get_a_dtrie_buff_size(dtrie_v):
# print(sys.getsizeof(dtrie_v["tokens"][0])) # str
# print(sys.getsizeof(dtrie_v["tokens"][0]) * len(dtrie_v["tokens"]))
# print(dtrie_v["state"][0][0].element_size())
@ -141,13 +212,18 @@ def _get_a_dtrie_buff_size(dtrie_v):
return 54 * len(dtrie_v["tokens"]) + 491520 + 262144 + 28 # TODO
@router.post("/longest-prefix-state", tags=["State Cache"])
# @router.post("/longest-prefix-state", tags=["State Cache"])
def longest_prefix_state(body: LongestPrefixStateBody, request: Request):
global trie
# if global_var.get(global_var.Deploy_Mode) is True:
# raise HTTPException(status.HTTP_403_FORBIDDEN)
if trie is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
import torch
import numpy as np
id = -1
try:
@ -156,33 +232,52 @@ def longest_prefix_state(body: LongestPrefixStateBody, request: Request):
except:
pass
if id != -1:
v = dtrie[id]
device: torch.device = v["device"]
prompt: str = trie[id]
v = dtrie[id]
tokens: List[Union[str, int]] = copy.deepcopy(v["tokens"])
devices: List[torch.device] = v["devices"]
logits_device: Union[torch.device, None] = v["logits_device"]
state: Union[Any, None] = v["state"]
logits: Union[Any, None] = v["logits"]
state_type = type(state)
if state_type == list and hasattr(state[0], "device"): # torch
state = [
(
tensor.to(devices[i])
if devices[i] != torch.device("cpu")
else tensor.clone()
)
for i, tensor in enumerate(state)
]
logits = (
logits.to(logits_device)
if logits_device != torch.device("cpu")
else logits.clone()
)
elif state_type == np.ndarray: # rwkv.cpp
logits = np.copy(logits)
else: # WebGPU
logits = np.copy(logits)
quick_log(request, body, "Hit:\n" + prompt)
return {
"prompt": prompt,
"tokens": v["tokens"],
"state": [tensor.to(device) for tensor in v["state"]]
if device != torch.device("cpu")
else v["state"],
"logits": v["logits"],
"device": device.type,
"tokens": tokens,
"state": state,
"logits": logits,
}
else:
return {
"prompt": "",
"tokens": [],
"state": None,
"logits": None,
"device": None,
}
return {"prompt": "", "tokens": [], "state": None, "logits": None}
@router.post("/save-state", tags=["State Cache"])
# @router.post("/save-state", tags=["State Cache"])
def save_state():
global trie
# if global_var.get(global_var.Deploy_Mode) is True:
# raise HTTPException(status.HTTP_403_FORBIDDEN)
if trie is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")

Binary file not shown.

BIN
backend-python/rwkv_pip/cpp/librwkv.so vendored Normal file

Binary file not shown.

17
backend-python/rwkv_pip/cpp/model.py vendored Normal file
View File

@ -0,0 +1,17 @@
from typing import Any, List, Union
from . import rwkv_cpp_model
from . import rwkv_cpp_shared_library
class RWKV:
def __init__(self, model_path: str, strategy=None):
self.library = rwkv_cpp_shared_library.load_rwkv_shared_library()
self.model = rwkv_cpp_model.RWKVModel(self.library, model_path)
self.w = {} # fake weight
self.w["emb.weight"] = [0] * self.model.n_vocab
self.version = (
self.model.arch_version_major + self.model.arch_version_minor / 10
)
def forward(self, tokens: List[int], state: Union[Any, None] = None):
return self.model.eval_sequence_in_chunks(tokens, state, use_numpy=True)

BIN
backend-python/rwkv_pip/cpp/rwkv.dll vendored Normal file

Binary file not shown.

View File

@ -0,0 +1,396 @@
import os
import multiprocessing
# Pre-import PyTorch, if available.
# This fixes "OSError: [WinError 127] The specified procedure could not be found".
try:
import torch
except ModuleNotFoundError:
pass
# I'm sure this is not strictly correct, but let's keep this crutch for now.
try:
import rwkv_cpp_shared_library
except ModuleNotFoundError:
from . import rwkv_cpp_shared_library
from typing import TypeVar, Optional, Tuple, List
# A value of this type is either a numpy's ndarray or a PyTorch's Tensor.
NumpyArrayOrPyTorchTensor: TypeVar = TypeVar('NumpyArrayOrPyTorchTensor')
class RWKVModel:
"""
An RWKV model managed by rwkv.cpp library.
"""
def __init__(
self,
shared_library: rwkv_cpp_shared_library.RWKVSharedLibrary,
model_path: str,
thread_count: int = max(1, multiprocessing.cpu_count() // 2),
gpu_layer_count: int = 0,
**kwargs
) -> None:
"""
Loads the model and prepares it for inference.
In case of any error, this method will throw an exception.
Parameters
----------
shared_library : RWKVSharedLibrary
rwkv.cpp shared library.
model_path : str
Path to RWKV model file in ggml format.
thread_count : int
Thread count to use. If not set, defaults to CPU count / 2.
gpu_layer_count : int
Count of layers to offload onto the GPU, must be >= 0.
See documentation of `gpu_offload_layers` for details about layer offloading.
"""
if 'gpu_layers_count' in kwargs:
gpu_layer_count = kwargs['gpu_layers_count']
if not os.path.isfile(model_path):
raise ValueError(f'{model_path} is not a file')
if not (thread_count > 0):
raise ValueError('Thread count must be > 0')
if not (gpu_layer_count >= 0):
raise ValueError('GPU layer count must be >= 0')
self._library: rwkv_cpp_shared_library.RWKVSharedLibrary = shared_library
self._ctx: rwkv_cpp_shared_library.RWKVContext = self._library.rwkv_init_from_file(model_path, thread_count)
if gpu_layer_count > 0:
self.gpu_offload_layers(gpu_layer_count)
self._state_buffer_element_count: int = self._library.rwkv_get_state_buffer_element_count(self._ctx)
self._logits_buffer_element_count: int = self._library.rwkv_get_logits_buffer_element_count(self._ctx)
self._valid: bool = True
def gpu_offload_layers(self, layer_count: int) -> bool:
"""
Offloads specified count of model layers onto the GPU. Offloaded layers are evaluated using cuBLAS or CLBlast.
For the purposes of this function, model head (unembedding matrix) is treated as an additional layer:
- pass `model.n_layer` to offload all layers except model head
- pass `model.n_layer + 1` to offload all layers, including model head
Returns true if at least one layer was offloaded.
If rwkv.cpp was compiled without cuBLAS and CLBlast support, this function is a no-op and always returns false.
Parameters
----------
layer_count : int
Count of layers to offload onto the GPU, must be >= 0.
"""
if not (layer_count >= 0):
raise ValueError('Layer count must be >= 0')
return self._library.rwkv_gpu_offload_layers(self._ctx, layer_count)
@property
def arch_version_major(self) -> int:
return self._library.rwkv_get_arch_version_major(self._ctx)
@property
def arch_version_minor(self) -> int:
return self._library.rwkv_get_arch_version_minor(self._ctx)
@property
def n_vocab(self) -> int:
return self._library.rwkv_get_n_vocab(self._ctx)
@property
def n_embed(self) -> int:
return self._library.rwkv_get_n_embed(self._ctx)
@property
def n_layer(self) -> int:
return self._library.rwkv_get_n_layer(self._ctx)
def eval(
self,
token: int,
state_in: Optional[NumpyArrayOrPyTorchTensor],
state_out: Optional[NumpyArrayOrPyTorchTensor] = None,
logits_out: Optional[NumpyArrayOrPyTorchTensor] = None,
use_numpy: bool = False
) -> Tuple[NumpyArrayOrPyTorchTensor, NumpyArrayOrPyTorchTensor]:
"""
Evaluates the model for a single token.
In case of any error, this method will throw an exception.
Parameters
----------
token : int
Index of next token to be seen by the model. Must be in range 0 <= token < n_vocab.
state_in : Optional[NumpyArrayOrTorchTensor]
State from previous call of this method. If this is a first pass, set it to None.
state_out : Optional[NumpyArrayOrTorchTensor]
Optional output tensor for state. If provided, must be of type float32, contiguous and of shape (state_buffer_element_count).
logits_out : Optional[NumpyArrayOrTorchTensor]
Optional output tensor for logits. If provided, must be of type float32, contiguous and of shape (logits_buffer_element_count).
use_numpy : bool
If set to True, numpy's ndarrays will be created instead of PyTorch's Tensors.
This parameter is ignored if any tensor parameter is not None; in such case,
type of returned tensors will match the type of received tensors.
Returns
-------
logits, state
Logits vector of shape (n_vocab); state for the next step.
"""
if not self._valid:
raise ValueError('Model was freed')
use_numpy = self._detect_numpy_usage([state_in, state_out, logits_out], use_numpy)
if state_in is not None:
self._validate_tensor(state_in, 'state_in', self._state_buffer_element_count)
state_in_ptr = self._get_data_ptr(state_in)
else:
state_in_ptr = 0
if state_out is not None:
self._validate_tensor(state_out, 'state_out', self._state_buffer_element_count)
else:
state_out = self._zeros_float32(self._state_buffer_element_count, use_numpy)
if logits_out is not None:
self._validate_tensor(logits_out, 'logits_out', self._logits_buffer_element_count)
else:
logits_out = self._zeros_float32(self._logits_buffer_element_count, use_numpy)
self._library.rwkv_eval(
self._ctx,
token,
state_in_ptr,
self._get_data_ptr(state_out),
self._get_data_ptr(logits_out)
)
return logits_out, state_out
def eval_sequence(
self,
tokens: List[int],
state_in: Optional[NumpyArrayOrPyTorchTensor],
state_out: Optional[NumpyArrayOrPyTorchTensor] = None,
logits_out: Optional[NumpyArrayOrPyTorchTensor] = None,
use_numpy: bool = False
) -> Tuple[NumpyArrayOrPyTorchTensor, NumpyArrayOrPyTorchTensor]:
"""
Evaluates the model for a sequence of tokens.
NOTE ON GGML NODE LIMIT
ggml has a hard-coded limit on max amount of nodes in a computation graph. The sequence graph is built in a way that quickly exceedes
this limit when using large models and/or large sequence lengths.
Fortunately, rwkv.cpp's fork of ggml has increased limit which was tested to work for sequence lengths up to 64 for 14B models.
If you get `GGML_ASSERT: ...\\ggml.c:16941: cgraph->n_nodes < GGML_MAX_NODES`, this means you've exceeded the limit.
To get rid of the assertion failure, reduce the model size and/or sequence length.
In case of any error, this method will throw an exception.
Parameters
----------
tokens : List[int]
Indices of the next tokens to be seen by the model. Must be in range 0 <= token < n_vocab.
state_in : Optional[NumpyArrayOrTorchTensor]
State from previous call of this method. If this is a first pass, set it to None.
state_out : Optional[NumpyArrayOrTorchTensor]
Optional output tensor for state. If provided, must be of type float32, contiguous and of shape (state_buffer_element_count).
logits_out : Optional[NumpyArrayOrTorchTensor]
Optional output tensor for logits. If provided, must be of type float32, contiguous and of shape (logits_buffer_element_count).
use_numpy : bool
If set to True, numpy's ndarrays will be created instead of PyTorch's Tensors.
This parameter is ignored if any tensor parameter is not None; in such case,
type of returned tensors will match the type of received tensors.
Returns
-------
logits, state
Logits vector of shape (n_vocab); state for the next step.
"""
if not self._valid:
raise ValueError('Model was freed')
use_numpy = self._detect_numpy_usage([state_in, state_out, logits_out], use_numpy)
if state_in is not None:
self._validate_tensor(state_in, 'state_in', self._state_buffer_element_count)
state_in_ptr = self._get_data_ptr(state_in)
else:
state_in_ptr = 0
if state_out is not None:
self._validate_tensor(state_out, 'state_out', self._state_buffer_element_count)
else:
state_out = self._zeros_float32(self._state_buffer_element_count, use_numpy)
if logits_out is not None:
self._validate_tensor(logits_out, 'logits_out', self._logits_buffer_element_count)
else:
logits_out = self._zeros_float32(self._logits_buffer_element_count, use_numpy)
self._library.rwkv_eval_sequence(
self._ctx,
tokens,
state_in_ptr,
self._get_data_ptr(state_out),
self._get_data_ptr(logits_out)
)
return logits_out, state_out
def eval_sequence_in_chunks(
self,
tokens: List[int],
state_in: Optional[NumpyArrayOrPyTorchTensor],
state_out: Optional[NumpyArrayOrPyTorchTensor] = None,
logits_out: Optional[NumpyArrayOrPyTorchTensor] = None,
chunk_size: int = 16,
use_numpy: bool = False
) -> Tuple[NumpyArrayOrPyTorchTensor, NumpyArrayOrPyTorchTensor]:
"""
Evaluates the model for a sequence of tokens using `eval_sequence`, splitting a potentially long sequence into fixed-length chunks.
This function is useful for processing complete prompts and user input in chat & role-playing use-cases.
It is recommended to use this function instead of `eval_sequence` to avoid mistakes and get maximum performance.
Chunking allows processing sequences of thousands of tokens, while not reaching the ggml's node limit and not consuming too much memory.
A reasonable and recommended value of chunk size is 16. If you want maximum performance, try different chunk sizes in range [2..64]
and choose one that works the best in your use case.
In case of any error, this method will throw an exception.
Parameters
----------
tokens : List[int]
Indices of the next tokens to be seen by the model. Must be in range 0 <= token < n_vocab.
chunk_size : int
Size of each chunk in tokens, must be positive.
state_in : Optional[NumpyArrayOrTorchTensor]
State from previous call of this method. If this is a first pass, set it to None.
state_out : Optional[NumpyArrayOrTorchTensor]
Optional output tensor for state. If provided, must be of type float32, contiguous and of shape (state_buffer_element_count).
logits_out : Optional[NumpyArrayOrTorchTensor]
Optional output tensor for logits. If provided, must be of type float32, contiguous and of shape (logits_buffer_element_count).
use_numpy : bool
If set to True, numpy's ndarrays will be created instead of PyTorch's Tensors.
This parameter is ignored if any tensor parameter is not None; in such case,
type of returned tensors will match the type of received tensors.
Returns
-------
logits, state
Logits vector of shape (n_vocab); state for the next step.
"""
if not self._valid:
raise ValueError('Model was freed')
use_numpy = self._detect_numpy_usage([state_in, state_out, logits_out], use_numpy)
if state_in is not None:
self._validate_tensor(state_in, 'state_in', self._state_buffer_element_count)
state_in_ptr = self._get_data_ptr(state_in)
else:
state_in_ptr = 0
if state_out is not None:
self._validate_tensor(state_out, 'state_out', self._state_buffer_element_count)
else:
state_out = self._zeros_float32(self._state_buffer_element_count, use_numpy)
if logits_out is not None:
self._validate_tensor(logits_out, 'logits_out', self._logits_buffer_element_count)
else:
logits_out = self._zeros_float32(self._logits_buffer_element_count, use_numpy)
self._library.rwkv_eval_sequence_in_chunks(
self._ctx,
tokens,
chunk_size,
state_in_ptr,
self._get_data_ptr(state_out),
self._get_data_ptr(logits_out)
)
return logits_out, state_out
def free(self) -> None:
"""
Frees all allocated resources.
In case of any error, this method will throw an exception.
The object must not be used anymore after calling this method.
"""
if not self._valid:
raise ValueError('Already freed')
self._valid = False
self._library.rwkv_free(self._ctx)
def __del__(self) -> None:
# Free the context on GC in case user forgot to call free() explicitly.
if hasattr(self, '_valid') and self._valid:
self.free()
def _is_pytorch_tensor(self, tensor: NumpyArrayOrPyTorchTensor) -> bool:
return hasattr(tensor, '__module__') and tensor.__module__ == 'torch'
def _detect_numpy_usage(self, tensors: List[Optional[NumpyArrayOrPyTorchTensor]], use_numpy_by_default: bool) -> bool:
for tensor in tensors:
if tensor is not None:
return False if self._is_pytorch_tensor(tensor) else True
return use_numpy_by_default
def _validate_tensor(self, tensor: NumpyArrayOrPyTorchTensor, name: str, size: int) -> None:
if self._is_pytorch_tensor(tensor):
tensor: torch.Tensor = tensor
if tensor.device != torch.device('cpu'):
raise ValueError(f'{name} is not on CPU')
if tensor.dtype != torch.float32:
raise ValueError(f'{name} is not of type float32')
if tensor.shape != (size,):
raise ValueError(f'{name} has invalid shape {tensor.shape}, expected ({size})')
if not tensor.is_contiguous():
raise ValueError(f'{name} is not contiguous')
else:
import numpy as np
tensor: np.ndarray = tensor
if tensor.dtype != np.float32:
raise ValueError(f'{name} is not of type float32')
if tensor.shape != (size,):
raise ValueError(f'{name} has invalid shape {tensor.shape}, expected ({size})')
if not tensor.data.contiguous:
raise ValueError(f'{name} is not contiguous')
def _get_data_ptr(self, tensor: NumpyArrayOrPyTorchTensor):
if self._is_pytorch_tensor(tensor):
return tensor.data_ptr()
else:
return tensor.ctypes.data
def _zeros_float32(self, element_count: int, use_numpy: bool) -> NumpyArrayOrPyTorchTensor:
if use_numpy:
import numpy as np
return np.zeros(element_count, dtype=np.float32)
else:
return torch.zeros(element_count, dtype=torch.float32, device='cpu')

View File

@ -0,0 +1,502 @@
import os
import sys
import ctypes
import pathlib
import platform
from typing import Optional, List, Tuple, Callable
QUANTIZED_FORMAT_NAMES: Tuple[str, str, str, str, str] = (
"Q4_0",
"Q4_1",
"Q5_0",
"Q5_1",
"Q8_0",
)
P_FLOAT = ctypes.POINTER(ctypes.c_float)
P_INT = ctypes.POINTER(ctypes.c_int32)
class RWKVContext:
def __init__(self, ptr: ctypes.pointer) -> None:
self.ptr: ctypes.pointer = ptr
class RWKVSharedLibrary:
"""
Python wrapper around rwkv.cpp shared library.
"""
def __init__(self, shared_library_path: str) -> None:
"""
Loads the shared library from specified file.
In case of any error, this method will throw an exception.
Parameters
----------
shared_library_path : str
Path to rwkv.cpp shared library. On Windows, it would look like 'rwkv.dll'. On UNIX, 'rwkv.so'.
"""
# When Python is greater than 3.8, we need to reprocess the custom dll
# according to the documentation to prevent loading failure errors.
# https://docs.python.org/3/whatsnew/3.8.html#ctypes
if platform.system().lower() == "windows":
self.library = ctypes.CDLL(shared_library_path, winmode=0)
else:
self.library = ctypes.cdll.LoadLibrary(shared_library_path)
self.library.rwkv_init_from_file.argtypes = [ctypes.c_char_p, ctypes.c_uint32]
self.library.rwkv_init_from_file.restype = ctypes.c_void_p
self.library.rwkv_gpu_offload_layers.argtypes = [
ctypes.c_void_p,
ctypes.c_uint32,
]
self.library.rwkv_gpu_offload_layers.restype = ctypes.c_bool
self.library.rwkv_eval.argtypes = [
ctypes.c_void_p, # ctx
ctypes.c_int32, # token
P_FLOAT, # state_in
P_FLOAT, # state_out
P_FLOAT, # logits_out
]
self.library.rwkv_eval.restype = ctypes.c_bool
self.library.rwkv_eval_sequence.argtypes = [
ctypes.c_void_p, # ctx
P_INT, # tokens
ctypes.c_size_t, # token count
P_FLOAT, # state_in
P_FLOAT, # state_out
P_FLOAT, # logits_out
]
self.library.rwkv_eval_sequence.restype = ctypes.c_bool
self.library.rwkv_eval_sequence_in_chunks.argtypes = [
ctypes.c_void_p, # ctx
P_INT, # tokens
ctypes.c_size_t, # token count
ctypes.c_size_t, # chunk size
P_FLOAT, # state_in
P_FLOAT, # state_out
P_FLOAT, # logits_out
]
self.library.rwkv_eval_sequence_in_chunks.restype = ctypes.c_bool
self.library.rwkv_get_arch_version_major.argtypes = [ctypes.c_void_p]
self.library.rwkv_get_arch_version_major.restype = ctypes.c_uint32
self.library.rwkv_get_arch_version_minor.argtypes = [ctypes.c_void_p]
self.library.rwkv_get_arch_version_minor.restype = ctypes.c_uint32
self.library.rwkv_get_n_vocab.argtypes = [ctypes.c_void_p]
self.library.rwkv_get_n_vocab.restype = ctypes.c_size_t
self.library.rwkv_get_n_embed.argtypes = [ctypes.c_void_p]
self.library.rwkv_get_n_embed.restype = ctypes.c_size_t
self.library.rwkv_get_n_layer.argtypes = [ctypes.c_void_p]
self.library.rwkv_get_n_layer.restype = ctypes.c_size_t
self.library.rwkv_get_state_buffer_element_count.argtypes = [ctypes.c_void_p]
self.library.rwkv_get_state_buffer_element_count.restype = ctypes.c_uint32
self.library.rwkv_get_logits_buffer_element_count.argtypes = [ctypes.c_void_p]
self.library.rwkv_get_logits_buffer_element_count.restype = ctypes.c_uint32
self.library.rwkv_free.argtypes = [ctypes.c_void_p]
self.library.rwkv_free.restype = None
self.library.rwkv_free.argtypes = [ctypes.c_void_p]
self.library.rwkv_free.restype = None
self.library.rwkv_quantize_model_file.argtypes = [
ctypes.c_char_p,
ctypes.c_char_p,
ctypes.c_char_p,
]
self.library.rwkv_quantize_model_file.restype = ctypes.c_bool
self.library.rwkv_get_system_info_string.argtypes = []
self.library.rwkv_get_system_info_string.restype = ctypes.c_char_p
self.nullptr = ctypes.cast(0, ctypes.c_void_p)
def rwkv_init_from_file(
self, model_file_path: str, thread_count: int
) -> RWKVContext:
"""
Loads the model from a file and prepares it for inference.
Throws an exception in case of any error. Error messages would be printed to stderr.
Parameters
----------
model_file_path : str
Path to model file in ggml format.
thread_count : int
Count of threads to use, must be positive.
"""
ptr = self.library.rwkv_init_from_file(
model_file_path.encode("utf-8"), ctypes.c_uint32(thread_count)
)
if ptr is None:
raise ValueError("rwkv_init_from_file failed, check stderr")
return RWKVContext(ptr)
def rwkv_gpu_offload_layers(self, ctx: RWKVContext, layer_count: int) -> bool:
"""
Offloads specified count of model layers onto the GPU. Offloaded layers are evaluated using cuBLAS or CLBlast.
For the purposes of this function, model head (unembedding matrix) is treated as an additional layer:
- pass `rwkv_get_n_layer(ctx)` to offload all layers except model head
- pass `rwkv_get_n_layer(ctx) + 1` to offload all layers, including model head
Returns true if at least one layer was offloaded.
If rwkv.cpp was compiled without cuBLAS and CLBlast support, this function is a no-op and always returns false.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
layer_count : int
Count of layers to offload onto the GPU, must be >= 0.
"""
if not (layer_count >= 0):
raise ValueError("Layer count must be >= 0")
return self.library.rwkv_gpu_offload_layers(
ctx.ptr, ctypes.c_uint32(layer_count)
)
def rwkv_eval(
self,
ctx: RWKVContext,
token: int,
state_in_address: Optional[int],
state_out_address: int,
logits_out_address: int,
) -> None:
"""
Evaluates the model for a single token.
Throws an exception in case of any error. Error messages would be printed to stderr.
Not thread-safe. For parallel inference, call rwkv_clone_context to create one rwkv_context for each thread.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
token : int
Next token index, in range 0 <= token < n_vocab.
state_in_address : int
Address of the first element of a FP32 buffer of size rwkv_get_state_buffer_element_count; or None, if this is a first pass.
state_out_address : int
Address of the first element of a FP32 buffer of size rwkv_get_state_buffer_element_count. This buffer will be written to.
logits_out_address : int
Address of the first element of a FP32 buffer of size rwkv_get_logits_buffer_element_count. This buffer will be written to.
"""
if not self.library.rwkv_eval(
ctx.ptr,
ctypes.c_int32(token),
ctypes.cast(0 if state_in_address is None else state_in_address, P_FLOAT),
ctypes.cast(state_out_address, P_FLOAT),
ctypes.cast(logits_out_address, P_FLOAT),
):
raise ValueError("rwkv_eval failed, check stderr")
def rwkv_eval_sequence(
self,
ctx: RWKVContext,
tokens: List[int],
state_in_address: Optional[int],
state_out_address: int,
logits_out_address: int,
) -> None:
"""
Evaluates the model for a sequence of tokens.
Uses a faster algorithm than `rwkv_eval` if you do not need the state and logits for every token. Best used with sequence lengths of 64 or so.
Has to build a computation graph on the first call for a given sequence, but will use this cached graph for subsequent calls of the same sequence length.
NOTE ON GGML NODE LIMIT
ggml has a hard-coded limit on max amount of nodes in a computation graph. The sequence graph is built in a way that quickly exceedes
this limit when using large models and/or large sequence lengths.
Fortunately, rwkv.cpp's fork of ggml has increased limit which was tested to work for sequence lengths up to 64 for 14B models.
If you get `GGML_ASSERT: ...\\ggml.c:16941: cgraph->n_nodes < GGML_MAX_NODES`, this means you've exceeded the limit.
To get rid of the assertion failure, reduce the model size and/or sequence length.
Not thread-safe. For parallel inference, call `rwkv_clone_context` to create one rwkv_context for each thread.
Throws an exception in case of any error. Error messages would be printed to stderr.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
tokens : List[int]
Next token indices, in range 0 <= token < n_vocab.
state_in_address : int
Address of the first element of a FP32 buffer of size rwkv_get_state_buffer_element_count; or None, if this is a first pass.
state_out_address : int
Address of the first element of a FP32 buffer of size rwkv_get_state_buffer_element_count. This buffer will be written to.
logits_out_address : int
Address of the first element of a FP32 buffer of size rwkv_get_logits_buffer_element_count. This buffer will be written to.
"""
if not self.library.rwkv_eval_sequence(
ctx.ptr,
ctypes.cast((ctypes.c_int32 * len(tokens))(*tokens), P_INT),
ctypes.c_size_t(len(tokens)),
ctypes.cast(0 if state_in_address is None else state_in_address, P_FLOAT),
ctypes.cast(state_out_address, P_FLOAT),
ctypes.cast(logits_out_address, P_FLOAT),
):
raise ValueError("rwkv_eval_sequence failed, check stderr")
def rwkv_eval_sequence_in_chunks(
self,
ctx: RWKVContext,
tokens: List[int],
chunk_size: int,
state_in_address: Optional[int],
state_out_address: int,
logits_out_address: int,
) -> None:
"""
Evaluates the model for a sequence of tokens using `rwkv_eval_sequence`, splitting a potentially long sequence into fixed-length chunks.
This function is useful for processing complete prompts and user input in chat & role-playing use-cases.
It is recommended to use this function instead of `rwkv_eval_sequence` to avoid mistakes and get maximum performance.
Chunking allows processing sequences of thousands of tokens, while not reaching the ggml's node limit and not consuming too much memory.
A reasonable and recommended value of chunk size is 16. If you want maximum performance, try different chunk sizes in range [2..64]
and choose one that works the best in your use case.
Not thread-safe. For parallel inference, call `rwkv_clone_context` to create one rwkv_context for each thread.
Throws an exception in case of any error. Error messages would be printed to stderr.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
tokens : List[int]
Next token indices, in range 0 <= token < n_vocab.
chunk_size : int
Size of each chunk in tokens, must be positive.
state_in_address : int
Address of the first element of a FP32 buffer of size rwkv_get_state_buffer_element_count; or None, if this is a first pass.
state_out_address : int
Address of the first element of a FP32 buffer of size rwkv_get_state_buffer_element_count. This buffer will be written to.
logits_out_address : int
Address of the first element of a FP32 buffer of size rwkv_get_logits_buffer_element_count. This buffer will be written to.
"""
if not self.library.rwkv_eval_sequence_in_chunks(
ctx.ptr,
ctypes.cast((ctypes.c_int32 * len(tokens))(*tokens), P_INT),
ctypes.c_size_t(len(tokens)),
ctypes.c_size_t(chunk_size),
ctypes.cast(0 if state_in_address is None else state_in_address, P_FLOAT),
ctypes.cast(state_out_address, P_FLOAT),
ctypes.cast(logits_out_address, P_FLOAT),
):
raise ValueError("rwkv_eval_sequence_in_chunks failed, check stderr")
def rwkv_get_arch_version_major(self, ctx: RWKVContext) -> int:
"""
Returns the major version used by the given model.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
"""
return self.library.rwkv_get_arch_version_major(ctx.ptr)
def rwkv_get_arch_version_minor(self, ctx: RWKVContext) -> int:
"""
Returns the minor version used by the given model.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
"""
return self.library.rwkv_get_arch_version_minor(ctx.ptr)
def rwkv_get_n_vocab(self, ctx: RWKVContext) -> int:
"""
Returns the number of tokens in the given model's vocabulary.
Useful for telling 20B_tokenizer models (n_vocab = 50277) apart from World models (n_vocab = 65536).
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
"""
return self.library.rwkv_get_n_vocab(ctx.ptr)
def rwkv_get_n_embed(self, ctx: RWKVContext) -> int:
"""
Returns the number of elements in the given model's embedding.
Useful for reading individual fields of a model's hidden state.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
"""
return self.library.rwkv_get_n_embed(ctx.ptr)
def rwkv_get_n_layer(self, ctx: RWKVContext) -> int:
"""
Returns the number of layers in the given model.
A layer is a pair of RWKV and FFN operations, stacked multiple times throughout the model.
Embedding matrix and model head (unembedding matrix) are NOT counted in `n_layer`.
Useful for always offloading the entire model to GPU.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
"""
return self.library.rwkv_get_n_layer(ctx.ptr)
def rwkv_get_state_buffer_element_count(self, ctx: RWKVContext) -> int:
"""
Returns count of FP32 elements in state buffer.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
"""
return self.library.rwkv_get_state_buffer_element_count(ctx.ptr)
def rwkv_get_logits_buffer_element_count(self, ctx: RWKVContext) -> int:
"""
Returns count of FP32 elements in logits buffer.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
"""
return self.library.rwkv_get_logits_buffer_element_count(ctx.ptr)
def rwkv_free(self, ctx: RWKVContext) -> None:
"""
Frees all allocated memory and the context.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
"""
self.library.rwkv_free(ctx.ptr)
ctx.ptr = self.nullptr
def rwkv_quantize_model_file(
self, model_file_path_in: str, model_file_path_out: str, format_name: str
) -> None:
"""
Quantizes FP32 or FP16 model to one of INT4 formats.
Throws an exception in case of any error. Error messages would be printed to stderr.
Parameters
----------
model_file_path_in : str
Path to model file in ggml format, must be either FP32 or FP16.
model_file_path_out : str
Quantized model will be written here.
format_name : str
One of QUANTIZED_FORMAT_NAMES.
"""
if format_name not in QUANTIZED_FORMAT_NAMES:
raise ValueError(
f"Unknown format name {format_name}, use one of {QUANTIZED_FORMAT_NAMES}"
)
if not self.library.rwkv_quantize_model_file(
model_file_path_in.encode("utf-8"),
model_file_path_out.encode("utf-8"),
format_name.encode("utf-8"),
):
raise ValueError("rwkv_quantize_model_file failed, check stderr")
def rwkv_get_system_info_string(self) -> str:
"""
Returns system information string.
"""
return self.library.rwkv_get_system_info_string().decode("utf-8")
def load_rwkv_shared_library() -> RWKVSharedLibrary:
"""
Attempts to find rwkv.cpp shared library and load it.
To specify exact path to the library, create an instance of RWKVSharedLibrary explicitly.
"""
file_name: str
if "win32" in sys.platform or "cygwin" in sys.platform:
file_name = "rwkv.dll"
elif "darwin" in sys.platform:
file_name = "librwkv.dylib"
else:
file_name = "librwkv.so"
# Possible sub-paths to the library relative to the repo dir.
child_paths: List[Callable[[pathlib.Path], pathlib.Path]] = [
# No lookup for Debug config here.
# I assume that if a user wants to debug the library,
# they will be able to find the library and set the exact path explicitly.
lambda p: p / "backend-python" / "rwkv_pip" / "cpp" / file_name,
lambda p: p / "bin" / "Release" / file_name,
lambda p: p / "bin" / file_name,
# Some people prefer to build in the "build" subdirectory.
lambda p: p / "build" / "bin" / "Release" / file_name,
lambda p: p / "build" / "bin" / file_name,
lambda p: p / "build" / file_name,
# Fallback.
lambda p: p / file_name,
]
working_dir: pathlib.Path = pathlib.Path(os.path.abspath(os.getcwd()))
parent_paths: List[pathlib.Path] = [
# Possible repo dirs relative to the working dir.
# ./python/rwkv_cpp
working_dir.parent.parent,
# ./python
working_dir.parent,
# .
working_dir,
# Repo dir relative to this Python file.
pathlib.Path(os.path.abspath(__file__)).parent.parent.parent,
]
for parent_path in parent_paths:
for child_path in child_paths:
full_path: pathlib.Path = child_path(parent_path)
if os.path.isfile(full_path):
return RWKVSharedLibrary(str(full_path))
raise ValueError(
f"Failed to find {file_name} automatically; "
f"you need to find the library and create RWKVSharedLibrary specifying the path to it"
)

View File

@ -0,0 +1,75 @@
#include <cublas_v2.h>
#include <cuda.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <torch/extension.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/cuda/CUDAContext.h>
#define CUBLAS_CHECK(condition) \
for (cublasStatus_t _cublas_check_status = (condition); \
_cublas_check_status != CUBLAS_STATUS_SUCCESS;) \
throw std::runtime_error("cuBLAS error " + \
std::to_string(_cublas_check_status) + " at " + \
std::to_string(__LINE__));
#define CUDA_CHECK(condition) \
for (cudaError_t _cuda_check_status = (condition); \
_cuda_check_status != cudaSuccess;) \
throw std::runtime_error( \
"CUDA error " + std::string(cudaGetErrorString(_cuda_check_status)) + \
" at " + std::to_string(__LINE__));
/*
NOTE: blas gemm is column-major by default, but we need row-major output.
The data of row-major, transposed matrix is exactly the same as the
column-major, non-transposed matrix, and C = A * B ---> C^T = B^T * A^T
*/
void gemm_fp16_cublas(torch::Tensor a, torch::Tensor b, torch::Tensor c) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(a));
const auto cuda_data_type = CUDA_R_16F;
const auto cuda_c_data_type =
c.dtype() == torch::kFloat32 ? CUDA_R_32F : CUDA_R_16F;
const auto compute_type = CUDA_R_32F;
const float sp_alpha = 1.f;
// swap a and b, and use CUBLAS_OP_N. see the notes above
std::swap(a, b);
const cublasOperation_t cublas_trans_a = CUBLAS_OP_N;
const cublasOperation_t cublas_trans_b = CUBLAS_OP_N;
// m = (B^T).size(0) = B.size(1), and = A.size(1) after swap,
// negative axis is used because of the existence of batch matmul.
const int m = a.size(-1);
const int k = a.size(-2);
const int n = b.size(-2);
const int cublas_lda = m;
const int cublas_ldb = k;
const int cublas_ldc = m;
cublasHandle_t cublas_handle = at::cuda::getCurrentCUDABlasHandle();
#if CUDA_VERSION >= 11000
cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT;
#else
cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
#endif
const float sp_beta = 0.f;
if (a.sizes().size() == 2 && b.sizes().size() == 2) {
CUBLAS_CHECK(cublasGemmEx(
cublas_handle, cublas_trans_a, cublas_trans_b, m, n, k, &sp_alpha,
a.data_ptr(), cuda_data_type, cublas_lda, b.data_ptr(), cuda_data_type,
cublas_ldb, &sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc,
compute_type, algo));
} else {
// batch matmul
assert(a.sizes().size() == 3 && b.sizes().size() == 3);
const long long int cublas_stride_a = m * k;
const long long int cublas_stride_b = k * n;
const long long int cublas_stride_c = m * n;
CUBLAS_CHECK(cublasGemmStridedBatchedEx(
cublas_handle, cublas_trans_a, cublas_trans_b, m,
n, k, &sp_alpha, a.data_ptr(), cuda_data_type, cublas_lda,
cublas_stride_a, b.data_ptr(), cuda_data_type, cublas_ldb, cublas_stride_b,
&sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc, cublas_stride_c,
a.size(0), compute_type, algo));
}
}

View File

@ -0,0 +1,246 @@
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
#include <cuda_fp16.h>
#define MIN_VALUE (-1e38)
typedef at::Half fp16;
__half *cast(fp16 *ptr) {
return reinterpret_cast<__half *>(ptr);
}
template <typename F>
__global__ void kernel_wkv_forward(const int B, const int T, const int C,
const float *__restrict__ const _w, const float *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
F *__restrict__ const _y, float *__restrict__ const _aa, float *__restrict__ const _bb, float *__restrict__ const _pp) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
const int _state_offset = _b * C + _c;
float u = _u[_c];
float w = _w[_c];
const F *__restrict__ const k = _k + _offset;
const F *__restrict__ const v = _v + _offset;
F *__restrict__ const y = _y + _offset;
float aa = _aa[_state_offset];
float bb = _bb[_state_offset];
float pp = _pp[_state_offset];
for (int i = 0; i < T; i++) {
const int ii = i * C;
const float kk = float(k[ii]);
const float vv = float(v[ii]);
float ww = u + kk;
float p = max(pp, ww);
float e1 = exp(pp - p);
float e2 = exp(ww - p);
y[ii] = F((e1 * aa + e2 * vv) / (e1 * bb + e2));
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
_aa[_state_offset] = aa;
_bb[_state_offset] = bb;
_pp[_state_offset] = pp;
}
template <typename F>
void cuda_wkv_forward(int B, int T, int C, float *w, float *u, F *k, F *v, F *y, float *aa, float *bb, float *pp) {
dim3 threadsPerBlock( min(C, 32) );
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_wkv_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, aa, bb, pp);
}
template void cuda_wkv_forward<fp16>(
int B, int T, int C,
float *w, float *u, fp16 *k, fp16 *v, fp16 *y,
float *aa, float *bb, float *pp);
template void cuda_wkv_forward<float>(
int B, int T, int C,
float *w, float *u, float *k, float *v, float *y,
float *aa, float *bb, float *pp);
__global__ void kernel_mm_seq_fp32i8(
const int B, const int N, const int M,
const float *__restrict__ const x, const int x_stride,
const uint8_t *__restrict__ const w, const int w_stride,
const float *__restrict__ const mx,
const float *__restrict__ const rx,
const float *__restrict__ const my,
const float *__restrict__ const ry,
float *__restrict__ const y, const int y_stride) {
const int i = blockIdx.x * blockDim.x + threadIdx.x;
const int k = blockIdx.y * blockDim.y + threadIdx.y;
if (i < B && k < M) {
float y_local = 0;
for (int j = 0; j < N; ++j) {
y_local += x[i * x_stride + j] * (
(float(w[j * w_stride + k]) + 0.5f)
* rx[k] * ry[j] + mx[k] + my[j]
);
}
y[i * y_stride + k] = y_local;
}
}
template <typename F>
void cuda_mm8_seq(int B, int N, int M,
F *x, int x_stride,
uint8_t *w, int w_stride,
F *mx, F *rx,
F *my, F *ry,
F *y, int y_stride);
template <>
void cuda_mm8_seq<float>(int B, int N, int M,
float *x, int x_stride,
uint8_t *w, int w_stride,
float *mx, float *rx,
float *my, float *ry,
float *y, int y_stride) {
dim3 blockSize(1, 128);
dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
kernel_mm_seq_fp32i8<<<gridSize, blockSize>>>(
B, N, M, x, x_stride, w, w_stride,
mx, rx, my, ry, y, y_stride);
}
__global__ void kernel_mm_seq_fp16i8(
const int B, const int N, const int M,
const __half *__restrict__ const x, const int x_stride,
const uint8_t *__restrict__ const w, const int w_stride,
const __half *__restrict__ const mx,
const __half *__restrict__ const rx,
const __half *__restrict__ const my,
const __half *__restrict__ const ry,
__half *__restrict__ const y, const int y_stride) {
const int i = blockIdx.x * blockDim.x + threadIdx.x;
const int k = blockIdx.y * blockDim.y + threadIdx.y;
if (i < B && k < M) {
float y_local = 0;
for (int j = 0; j < N; ++j) {
y_local += __half2float(x[i * x_stride + j]) * (
(float(w[j * w_stride + k]) + 0.5f)
* __half2float(rx[k]) * __half2float(ry[j])
+ __half2float(mx[k]) + __half2float(my[j])
);
}
y[i * y_stride + k] = __float2half(y_local);
}
}
template <>
void cuda_mm8_seq<fp16>(int B, int N, int M,
fp16 *x, int x_stride,
uint8_t *w, int w_stride,
fp16 *mx, fp16 *rx,
fp16 *my, fp16 *ry,
fp16 *y, int y_stride) {
dim3 blockSize(1, 128);
dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
kernel_mm_seq_fp16i8<<<gridSize, blockSize>>>(
B, N, M, cast(x), x_stride, w, w_stride,
cast(mx), cast(rx), cast(my), cast(ry), cast(y), y_stride);
}
#define MM8_ONE_JSPLIT 24
#define MM8_ONE_TILE 1024
__global__ void kernel_mm_one_fp32i8(
const int N, const int M,
const float *__restrict__ const x,
const uint8_t *__restrict__ const w, const int w_stride,
const float *__restrict__ const mx,
const float *__restrict__ const rx,
const float *__restrict__ const my,
const float *__restrict__ const ry,
float *__restrict__ const y) {
const int k = blockIdx.y * blockDim.y + threadIdx.y;
const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
if (k < M) {
float y_local = 0;
for (int j = j0; j < j1; ++j) {
y_local += x[j] * (
(float(w[j * w_stride + k]) + 0.5f)
* rx[k] * ry[j] + mx[k] + my[j]
);
}
atomicAdd(&y[k], y_local);
}
}
template <typename F>
void cuda_mm8_one(int N, int M,
F *x,
uint8_t *w, int w_stride,
F *mx, F *rx,
F *my, F *ry,
float *y);
template <>
void cuda_mm8_one<float>(int N, int M,
float *x,
uint8_t *w, int w_stride,
float *mx, float *rx,
float *my, float *ry,
float *y) {
dim3 blockSize(1, MM8_ONE_TILE);
dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
kernel_mm_one_fp32i8<<<gridSize, blockSize>>>(
N, M, x, w, w_stride,
mx, rx, my, ry, y);
}
__global__ void kernel_mm_one_fp16i8(
const int N, const int M,
const __half *__restrict__ const x,
const uint8_t *__restrict__ const w, const int w_stride,
const __half *__restrict__ const mx,
const __half *__restrict__ const rx,
const __half *__restrict__ const my,
const __half *__restrict__ const ry,
float *__restrict__ const y) {
const int k = blockIdx.y * blockDim.y + threadIdx.y;
const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
if (k < M) {
float y_local = 0;
for (int j = j0; j < j1; ++j) {
y_local += __half2float(x[j]) * (
(float(w[j * w_stride + k]) + 0.5f)
* __half2float(rx[k]) * __half2float(ry[j])
+ __half2float(mx[k]) + __half2float(my[j])
);
}
atomicAdd(&y[k], y_local);
}
}
template <>
void cuda_mm8_one<fp16>(int N, int M,
fp16 *x,
uint8_t *w, int w_stride,
fp16 *mx, fp16 *rx,
fp16 *my, fp16 *ry,
float *y) {
dim3 blockSize(1, MM8_ONE_TILE);
dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
kernel_mm_one_fp16i8<<<gridSize, blockSize>>>(
N, M, cast(x), w, w_stride,
cast(mx), cast(rx), cast(my), cast(ry), y);
}

88
backend-python/rwkv_pip/cuda/rwkv5.cu vendored Normal file
View File

@ -0,0 +1,88 @@
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
typedef at::Half fp16;
typedef float fp32;
template <typename F>
__global__ void kernel_forward(const int B, const int T, const int C, const int H, float *__restrict__ _state,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u,
F *__restrict__ const _y)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_w += h*_N_;
_u += h*_N_;
_state += h*_N_*_N_ + i*_N_; // wrong if B > 1 !!!
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
float state[_N_];
#pragma unroll
for (int j = 0; j < _N_; j++)
state[j] = _state[j];
__syncthreads();
u[i] = float(_u[i]);
w[i] = _w[i];
__syncthreads();
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
{
__syncthreads();
r[i] = float(_r[t]);
k[i] = float(_k[t]);
__syncthreads();
const float v = float(_v[t]);
float y = 0;
#pragma unroll
for (int j = 0; j < _N_; j+=4)
{
const float4& r_ = (float4&)(r[j]);
const float4& k_ = (float4&)(k[j]);
const float4& w_ = (float4&)(w[j]);
const float4& u_ = (float4&)(u[j]);
float4& s = (float4&)(state[j]);
float4 x;
x.x = k_.x * v;
x.y = k_.y * v;
x.z = k_.z * v;
x.w = k_.w * v;
y += r_.x * (u_.x * x.x + s.x);
y += r_.y * (u_.y * x.y + s.y);
y += r_.z * (u_.z * x.z + s.z);
y += r_.w * (u_.w * x.w + s.w);
s.x = s.x * w_.x + x.x;
s.y = s.y * w_.y + x.y;
s.z = s.z * w_.z + x.z;
s.w = s.w * w_.w + x.w;
}
_y[t] = F(y);
}
#pragma unroll
for (int j = 0; j < _N_; j++)
_state[j] = state[j];
}
void cuda_forward_bf16(int B, int T, int C, int H, float *state, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y)
{
assert(H*_N_ == C);
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
}
void cuda_forward_fp16(int B, int T, int C, int H, float *state, fp16 *r, fp16 *k, fp16 *v, float *w, fp16 *u, fp16 *y)
{
assert(H*_N_ == C);
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
}
void cuda_forward_fp32(int B, int T, int C, int H, float *state, fp32 *r, fp32 *k, fp32 *v, float *w, fp32 *u, fp32 *y)
{
assert(H*_N_ == C);
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
}

View File

@ -0,0 +1,34 @@
#include <torch/extension.h>
#include "ATen/ATen.h"
#include <c10/cuda/CUDAGuard.h>
typedef at::BFloat16 bf16;
typedef at::Half fp16;
typedef float fp32;
void cuda_forward_bf16(int B, int T, int C, int H, float *state, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y);
void cuda_forward_fp16(int B, int T, int C, int H, float *state, fp16 *r, fp16 *k, fp16 *v, float *w, fp16 *u, fp16 *y);
void cuda_forward_fp32(int B, int T, int C, int H, float *state, fp32 *r, fp32 *k, fp32 *v, float *w, fp32 *u, fp32 *y);
void forward_bf16(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(state));
cuda_forward_bf16(B, T, C, H, state.data_ptr<float>(), r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), y.data_ptr<bf16>());
}
void forward_fp16(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(state));
cuda_forward_fp16(B, T, C, H, state.data_ptr<float>(), r.data_ptr<fp16>(), k.data_ptr<fp16>(), v.data_ptr<fp16>(), w.data_ptr<float>(), u.data_ptr<fp16>(), y.data_ptr<fp16>());
}
void forward_fp32(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(state));
cuda_forward_fp32(B, T, C, H, state.data_ptr<float>(), r.data_ptr<fp32>(), k.data_ptr<fp32>(), v.data_ptr<fp32>(), w.data_ptr<float>(), u.data_ptr<fp32>(), y.data_ptr<fp32>());
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward_bf16", &forward_bf16, "rwkv5 forward_bf16");
m.def("forward_fp16", &forward_fp16, "rwkv5 forward_fp16");
m.def("forward_fp32", &forward_fp32, "rwkv5 forward_fp32");
}
TORCH_LIBRARY(rwkv5, m) {
m.def("forward_bf16", forward_bf16);
m.def("forward_fp16", forward_fp16);
m.def("forward_fp32", forward_fp32);
}

87
backend-python/rwkv_pip/cuda/rwkv6.cu vendored Normal file
View File

@ -0,0 +1,87 @@
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
typedef at::Half fp16;
typedef float fp32;
template <typename F>
__global__ void kernel_forward(const int B, const int T, const int C, const int H, float *__restrict__ _state,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u,
F *__restrict__ const _y)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_u += h*_N_;
_state += h*_N_*_N_ + i*_N_; // wrong if B > 1 !!!
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
float state[_N_];
#pragma unroll
for (int j = 0; j < _N_; j++)
state[j] = _state[j];
__syncthreads();
u[i] = float(_u[i]);
__syncthreads();
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
{
__syncthreads();
w[i] = _w[t];
r[i] = float(_r[t]);
k[i] = float(_k[t]);
__syncthreads();
const float v = float(_v[t]);
float y = 0;
#pragma unroll
for (int j = 0; j < _N_; j+=4)
{
const float4& r_ = (float4&)(r[j]);
const float4& k_ = (float4&)(k[j]);
const float4& w_ = (float4&)(w[j]);
const float4& u_ = (float4&)(u[j]);
float4& s = (float4&)(state[j]);
float4 x;
x.x = k_.x * v;
x.y = k_.y * v;
x.z = k_.z * v;
x.w = k_.w * v;
y += r_.x * (u_.x * x.x + s.x);
y += r_.y * (u_.y * x.y + s.y);
y += r_.z * (u_.z * x.z + s.z);
y += r_.w * (u_.w * x.w + s.w);
s.x = s.x * w_.x + x.x;
s.y = s.y * w_.y + x.y;
s.z = s.z * w_.z + x.z;
s.w = s.w * w_.w + x.w;
}
_y[t] = F(y);
}
#pragma unroll
for (int j = 0; j < _N_; j++)
_state[j] = state[j];
}
void cuda_forward_bf16(int B, int T, int C, int H, float *state, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y)
{
assert(H*_N_ == C);
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
}
void cuda_forward_fp16(int B, int T, int C, int H, float *state, fp16 *r, fp16 *k, fp16 *v, float *w, fp16 *u, fp16 *y)
{
assert(H*_N_ == C);
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
}
void cuda_forward_fp32(int B, int T, int C, int H, float *state, fp32 *r, fp32 *k, fp32 *v, float *w, fp32 *u, fp32 *y)
{
assert(H*_N_ == C);
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, state, r, k, v, w, u, y);
}

View File

@ -0,0 +1,34 @@
#include <torch/extension.h>
#include "ATen/ATen.h"
#include <c10/cuda/CUDAGuard.h>
typedef at::BFloat16 bf16;
typedef at::Half fp16;
typedef float fp32;
void cuda_forward_bf16(int B, int T, int C, int H, float *state, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y);
void cuda_forward_fp16(int B, int T, int C, int H, float *state, fp16 *r, fp16 *k, fp16 *v, float *w, fp16 *u, fp16 *y);
void cuda_forward_fp32(int B, int T, int C, int H, float *state, fp32 *r, fp32 *k, fp32 *v, float *w, fp32 *u, fp32 *y);
void forward_bf16(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(state));
cuda_forward_bf16(B, T, C, H, state.data_ptr<float>(), r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), y.data_ptr<bf16>());
}
void forward_fp16(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(state));
cuda_forward_fp16(B, T, C, H, state.data_ptr<float>(), r.data_ptr<fp16>(), k.data_ptr<fp16>(), v.data_ptr<fp16>(), w.data_ptr<float>(), u.data_ptr<fp16>(), y.data_ptr<fp16>());
}
void forward_fp32(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &state, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(state));
cuda_forward_fp32(B, T, C, H, state.data_ptr<float>(), r.data_ptr<fp32>(), k.data_ptr<fp32>(), v.data_ptr<fp32>(), w.data_ptr<float>(), u.data_ptr<fp32>(), y.data_ptr<fp32>());
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward_bf16", &forward_bf16, "rwkv6 forward_bf16");
m.def("forward_fp16", &forward_fp16, "rwkv6 forward_fp16");
m.def("forward_fp32", &forward_fp32, "rwkv6 forward_fp32");
}
TORCH_LIBRARY(rwkv6, m) {
m.def("forward_bf16", forward_bf16);
m.def("forward_fp16", forward_fp16);
m.def("forward_fp32", forward_fp32);
}

141
backend-python/rwkv_pip/cuda/wrapper.cpp vendored Normal file
View File

@ -0,0 +1,141 @@
#include <torch/extension.h>
#include "ATen/ATen.h"
#include <iostream>
#include <c10/cuda/CUDAGuard.h>
typedef at::Half fp16;
template <typename F>
void cuda_wkv_forward(int B, int T, int C,
float *w, float *u, F *k, F *v, F *y,
float *aa, float *bb, float *pp);
template <typename F>
void cuda_mm8_seq(int B, int N, int M,
F *x, int x_stride,
uint8_t *w, int w_stride,
F *mx, F *rx,
F *my, F *ry,
F *y, int y_stride);
template <typename F>
void cuda_mm8_one(int N, int M,
F *x,
uint8_t *w, int w_stride,
F *mx, F *rx,
F *my, F *ry,
float *y);
void wkv_forward(int64_t B, int64_t T, int64_t C,
torch::Tensor &w, torch::Tensor &u,
torch::Tensor &k, torch::Tensor &v, torch::Tensor &y,
torch::Tensor &aa, torch::Tensor &bb, torch::Tensor &pp) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
switch (k.scalar_type()) {
case c10::ScalarType::Half:
cuda_wkv_forward(B, T, C,
w.data_ptr<float>(), u.data_ptr<float>(),
k.data_ptr<fp16>(), v.data_ptr<fp16>(), y.data_ptr<fp16>(),
aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
break;
case c10::ScalarType::Float:
cuda_wkv_forward(B, T, C,
w.data_ptr<float>(), u.data_ptr<float>(),
k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>(),
aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
break;
default:
assert(false && "Only FP16 and FP32 are currently supported");
}
}
void mm8_seq(int64_t B, int64_t N, int64_t M,
torch::Tensor &x, torch::Tensor &w,
torch::Tensor &mx, torch::Tensor &rx,
torch::Tensor &my, torch::Tensor &ry,
torch::Tensor &y) {
assert(x.stride(1) == 1);
assert(w.stride(1) == 1);
assert(mx.stride(0) == 1 && rx.stride(0) == 1);
assert(my.stride(0) == 1 && ry.stride(0) == 1);
assert(y.stride(1) == 1);
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
switch (x.scalar_type()) {
case c10::ScalarType::Half:
cuda_mm8_seq(
B, N, M,
x.data_ptr<fp16>(), x.stride(0),
w.data_ptr<uint8_t>(), w.stride(0),
mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
y.data_ptr<fp16>(), y.stride(0));
break;
case c10::ScalarType::Float:
cuda_mm8_seq(
B, N, M,
x.data_ptr<float>(), x.stride(0),
w.data_ptr<uint8_t>(), w.stride(0),
mx.data_ptr<float>(), rx.data_ptr<float>(),
my.data_ptr<float>(), ry.data_ptr<float>(),
y.data_ptr<float>(), y.stride(0));
break;
default:
assert(false && "Only FP16 and FP32 are currently supported");
}
}
void mm8_one(int64_t N, int64_t M,
torch::Tensor &x, torch::Tensor &w,
torch::Tensor &mx, torch::Tensor &rx,
torch::Tensor &my, torch::Tensor &ry,
torch::Tensor &y) {
assert(x.stride(0) == 1);
assert(w.stride(1) == 1);
assert(mx.stride(0) == 1 && rx.stride(0) == 1);
assert(my.stride(0) == 1 && ry.stride(0) == 1);
assert(y.stride(0) == 1);
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
switch (x.scalar_type()) {
case c10::ScalarType::Half:
cuda_mm8_one(
N, M,
x.data_ptr<fp16>(),
w.data_ptr<uint8_t>(), w.stride(0),
mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
y.data_ptr<float>());
break;
case c10::ScalarType::Float:
cuda_mm8_one(
N, M,
x.data_ptr<float>(),
w.data_ptr<uint8_t>(), w.stride(0),
mx.data_ptr<float>(), rx.data_ptr<float>(),
my.data_ptr<float>(), ry.data_ptr<float>(),
y.data_ptr<float>());
break;
default:
assert(false && "Only FP16 and FP32 are currently supported");
}
}
using torch::Tensor;
#ifndef DISABLE_CUBLAS_GEMM
void gemm_fp16_cublas(Tensor a, Tensor b, Tensor c);
#endif
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("wkv_forward", &wkv_forward, "wkv forward");
m.def("mm8_seq", &mm8_seq, "mm8 seq");
m.def("mm8_one", &mm8_one, "mm8 one");
#ifndef DISABLE_CUBLAS_GEMM
m.def("gemm_fp16_cublas", &gemm_fp16_cublas, "gemv fp16 cublas");
#endif
}
TORCH_LIBRARY(rwkv, m) {
m.def("wkv_forward", wkv_forward);
m.def("mm8_seq", mm8_seq);
m.def("mm8_one", mm8_one);
#ifndef DISABLE_CUBLAS_GEMM
m.def("gemm_fp16_cublas", gemm_fp16_cublas);
#endif
}

2501
backend-python/rwkv_pip/model.py vendored Normal file

File diff suppressed because it is too large Load Diff

BIN
backend-python/rwkv_pip/rwkv5.pyd vendored Normal file

Binary file not shown.

BIN
backend-python/rwkv_pip/rwkv6.pyd vendored Normal file

Binary file not shown.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -16,6 +16,7 @@ class PIPELINE_ARGS:
top_k=0,
alpha_frequency=0.2,
alpha_presence=0.2,
alpha_decay=0.996,
token_ban=[],
token_stop=[],
chunk_len=256,
@ -25,6 +26,7 @@ class PIPELINE_ARGS:
self.top_k = top_k
self.alpha_frequency = alpha_frequency # Frequency Penalty (as in GPT-3)
self.alpha_presence = alpha_presence # Presence Penalty (as in GPT-3)
self.alpha_decay = alpha_decay # gradually decay the penalty
self.token_ban = token_ban # ban the generation of some tokens
self.token_stop = token_stop # stop generation whenever you see any token here
self.chunk_len = (
@ -32,8 +34,27 @@ class PIPELINE_ARGS:
)
class ABC_TOKENIZER:
def __init__(self):
self.pad_token_id = 0
self.bos_token_id = 2
self.eos_token_id = 3
def encode(self, text):
ids = [ord(c) for c in text]
return ids
def decode(self, ids):
txt = "".join(
chr(idx) if idx > self.eos_token_id else ""
for idx in ids
if idx != self.eos_token_id
)
return txt
class PIPELINE:
def __init__(self, model, WORD_NAME):
def __init__(self, model, WORD_NAME: str):
self.model = model
if WORD_NAME == "cl100k_base":
import tiktoken
@ -46,10 +67,18 @@ class PIPELINE:
self.tokenizer = TRIE_TOKENIZER(
os.path.dirname(os.path.abspath(__file__)) + "/rwkv_vocab_v20230424.txt"
)
elif WORD_NAME == "abc_tokenizer":
self.tokenizer = ABC_TOKENIZER()
else:
from tokenizers import Tokenizer
if WORD_NAME.endswith(".txt"):
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
from rwkv_tokenizer import TRIE_TOKENIZER
self.tokenizer = Tokenizer.from_file(WORD_NAME)
self.tokenizer = TRIE_TOKENIZER(WORD_NAME)
else:
from tokenizers import Tokenizer
self.tokenizer = Tokenizer.from_file(WORD_NAME)
def refine_context(self, context):
context = context.strip().split("\n")
@ -70,15 +99,28 @@ class PIPELINE:
def decode(self, x):
return self.tokenizer.decode(x)
def np_softmax(self, x: np.ndarray, axis: int):
x -= x.max(axis=axis, keepdims=True)
e: np.ndarray = np.exp(x)
return e / e.sum(axis=axis, keepdims=True)
def sample_logits(self, logits, temperature=1.0, top_p=0.85, top_k=0):
probs = F.softmax(logits.float(), dim=-1)
if type(logits) == list:
logits = np.array(logits)
np_logits = type(logits) == np.ndarray
if np_logits:
probs = self.np_softmax(logits, axis=-1)
else:
probs = F.softmax(logits.float(), dim=-1)
top_k = int(top_k)
if probs.device == torch.device("cpu"):
probs = probs.numpy()
# 'privateuseone' is the type of custom devices like `torch_directml.device()`
if np_logits or probs.device.type in ["cpu", "privateuseone"]:
if not np_logits:
probs = probs.cpu().numpy()
sorted_ids = np.argsort(probs)
sorted_probs = probs[sorted_ids][::-1]
cumulative_probs = np.cumsum(sorted_probs)
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
cutoff = float(sorted_probs[np.argmax(cumulative_probs >= top_p)])
probs[probs < cutoff] = 0
if top_k < len(probs) and top_k > 0:
probs[sorted_ids[:-top_k]] = 0
@ -92,7 +134,7 @@ class PIPELINE:
sorted_probs = probs[sorted_ids]
sorted_probs = torch.flip(sorted_probs, dims=(0,))
cumulative_probs = torch.cumsum(sorted_probs, dim=-1).cpu().numpy()
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
cutoff = float(sorted_probs[np.argmax(cumulative_probs >= top_p)])
probs[probs < cutoff] = 0
if top_k < len(probs) and top_k > 0:
probs[sorted_ids[:-top_k]] = 0
@ -127,10 +169,20 @@ class PIPELINE:
if token in args.token_stop:
break
all_tokens += [token]
for xxx in occurrence:
occurrence[xxx] *= args.alpha_decay
ttt = self.decode([token])
www = 1
if ttt in " \t0123456789":
www = 0
# elif ttt in '\r\n,.;?!"\':+-*/=#@$%^&_`~|<>\\()[]{},。;“”:?!()【】':
# www = 0.5
if token not in occurrence:
occurrence[token] = 1
occurrence[token] = www
else:
occurrence[token] += 1
occurrence[token] += www
# print(occurrence) # debug
# output
tmp = self.decode(all_tokens[out_last:])

50
backend-python/rwkv_pip/webgpu/model.py vendored Normal file
View File

@ -0,0 +1,50 @@
from typing import Any, List, Union
try:
import web_rwkv_py as wrp
except ModuleNotFoundError:
try:
from . import web_rwkv_py as wrp
except ImportError:
raise ModuleNotFoundError(
"web_rwkv_py not found, install it from https://github.com/cryscan/web-rwkv-py"
)
class RWKV:
def __init__(self, model_path: str, strategy: str = None):
layer = (
int(s.lstrip("layer"))
for s in strategy.split()
for s in s.split(",")
if s.startswith("layer")
)
chunk_size = (
int(s.lstrip("chunk"))
for s in strategy.split()
for s in s.split(",")
if s.startswith("chunk")
)
self.token_chunk_size = next(chunk_size, 32)
args = {
"path": model_path,
"quant": next(layer, 31) if "i8" in strategy else 0,
"quant_nf4": next(layer, 26) if "i4" in strategy else 0,
}
self.model = wrp.Model(**args)
self.info = self.model.info()
self.w = {} # fake weight
self.w["emb.weight"] = [0] * self.info.num_vocab
self.version = str(self.info.version).lower()
self.version = float(self.version.lower().replace("v", ""))
def forward(self, tokens: List[int], state: Union[Any, None] = None):
if state is None:
self.model.clear_state()
elif type(state).__name__ == "State_Cpu":
self.model.load_state(state)
logits = self.model.run(tokens, self.token_chunk_size)
ret_state = "State_Gpu"
return logits, ret_state

Binary file not shown.

BIN
backend-python/rwkv_pip/wkv_cuda.pyd vendored Normal file

Binary file not shown.

View File

@ -2,24 +2,35 @@ import json
import logging
from typing import Any
from fastapi import Request
from pydantic import BaseModel
from enum import Enum
logger = logging.getLogger()
logger.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s - %(levelname)s\n%(message)s")
fh = logging.handlers.RotatingFileHandler(
"api.log", mode="a", maxBytes=3 * 1024 * 1024, backupCount=3
"api.log", mode="a", maxBytes=3 * 1024 * 1024, backupCount=3, encoding="utf-8"
)
fh.setFormatter(formatter)
logger.addHandler(fh)
class ClsEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, BaseModel):
return obj.dict()
if isinstance(obj, Enum):
return obj.value
return super().default(obj)
def quick_log(request: Request, body: Any, response: str):
try:
logger.info(
f"Client: {request.client if request else ''}\nUrl: {request.url if request else ''}\n"
+ (
f"Body: {json.dumps(body.__dict__, default=vars, ensure_ascii=False)}\n"
f"Body: {json.dumps(body.__dict__, ensure_ascii=False, cls=ClsEncoder)}\n"
if body
else ""
)

View File

@ -52,6 +52,8 @@ class VocabConfig:
bin_name_to_program_name: Dict[str, str]
# Mapping from program number to instrument name.
instrument_names: Dict[str, str]
# Manual override for velocity bins. Each element is the max velocity value for that bin by index.
velocity_bins_override: Optional[List[int]] = None
def __post_init__(self):
self.validate()
@ -116,6 +118,12 @@ class VocabConfig:
raise ValueError("velocity_bins must be at least 2")
if len(self.bin_instrument_names) > 16:
raise ValueError("bin_instruments must have at most 16 values")
if self.velocity_bins_override:
print("VocabConfig is using velocity_bins_override. Ignoring velocity_exp.")
if len(self.velocity_bins_override) != self.velocity_bins:
raise ValueError(
"velocity_bins_override must have same length as velocity_bins"
)
if (
self.ch10_instrument_bin_name
and self.ch10_instrument_bin_name not in self.bin_instrument_names
@ -156,6 +164,11 @@ class VocabUtils:
def velocity_to_bin(self, velocity: float) -> int:
velocity = max(0, min(velocity, self.cfg.velocity_events - 1))
if self.cfg.velocity_bins_override:
for i, v in enumerate(self.cfg.velocity_bins_override):
if velocity <= v:
return i
return 0
binsize = self.cfg.velocity_events / (self.cfg.velocity_bins - 1)
if self.cfg.velocity_exp == 1.0:
return ceil(velocity / binsize)
@ -176,6 +189,8 @@ class VocabUtils:
)
def bin_to_velocity(self, bin: int) -> int:
if self.cfg.velocity_bins_override:
return self.cfg.velocity_bins_override[bin]
binsize = self.cfg.velocity_events / (self.cfg.velocity_bins - 1)
if self.cfg.velocity_exp == 1.0:
return max(0, ceil(bin * binsize - 1))
@ -358,13 +373,32 @@ class AugmentConfig:
)
@dataclass
class FilterConfig:
# Whether to filter out MIDI files with duplicate MD5 hashes.
deduplicate_md5: bool
# Minimum time delay between notes in a file before splitting into multiple documents.
piece_split_delay: float
# Minimum length of a piece in milliseconds.
min_piece_length: float
@classmethod
def from_json(cls, path: str):
with open(path, "r") as f:
config = json.load(f)
return cls(**config)
def mix_volume(velocity: int, volume: int, expression: int) -> float:
return velocity * (volume / 127.0) * (expression / 127.0)
def convert_midi_to_str(
cfg: VocabConfig, mid: mido.MidiFile, augment: AugmentValues = None
) -> str:
cfg: VocabConfig,
filter_cfg: FilterConfig,
mid: mido.MidiFile,
augment: AugmentValues = None,
) -> List[str]:
utils = VocabUtils(cfg)
if augment is None:
augment = AugmentValues.default()
@ -390,7 +424,9 @@ def convert_midi_to_str(
} # {channel: {(note, program) -> True}}
started_flag = False
output_list = []
output = ["<start>"]
output_length_ms = 0.0
token_data_buffer: List[
Tuple[int, int, int, float]
] = [] # need to sort notes between wait tokens
@ -432,16 +468,33 @@ def convert_midi_to_str(
token_data_buffer = []
def consume_note_program_data(prog: int, chan: int, note: int, vel: float):
nonlocal output, started_flag, delta_time_ms, cfg, utils, token_data_buffer
nonlocal output, output_length_ms, started_flag, delta_time_ms, cfg, utils, token_data_buffer
is_token_valid = (
utils.prog_data_to_token_data(prog, chan, note, vel) is not None
)
if not is_token_valid:
return
if delta_time_ms > filter_cfg.piece_split_delay * 1000.0:
# check if any notes are still held
silent = True
for channel in channel_notes.keys():
if len(channel_notes[channel]) > 0:
silent = False
break
if silent:
flush_token_data_buffer()
output.append("<end>")
if output_length_ms > filter_cfg.min_piece_length * 1000.0:
output_list.append(" ".join(output))
output = ["<start>"]
output_length_ms = 0.0
started_flag = False
if started_flag:
wait_tokens = utils.data_to_wait_tokens(delta_time_ms)
if len(wait_tokens) > 0:
flush_token_data_buffer()
output_length_ms += delta_time_ms
output += wait_tokens
delta_time_ms = 0.0
token_data_buffer.append((prog, chan, note, vel * augment.velocity_mod_factor))
@ -510,7 +563,9 @@ def convert_midi_to_str(
flush_token_data_buffer()
output.append("<end>")
return " ".join(output)
if output_length_ms > filter_cfg.min_piece_length * 1000.0:
output_list.append(" ".join(output))
return output_list
def generate_program_change_messages(cfg: VocabConfig):
@ -633,10 +688,10 @@ def token_to_midi_message(
if utils.cfg.decode_fix_repeated_notes:
if (channel, note) in state.active_notes:
del state.active_notes[(channel, note)]
yield mido.Message(
"note_off", note=note, time=ticks, channel=channel
), state
ticks = 0
yield mido.Message(
"note_off", note=note, time=ticks, channel=channel
), state
ticks = 0
state.active_notes[(channel, note)] = state.total_time
yield mido.Message(
"note_on", note=note, velocity=velocity, time=ticks, channel=channel

View File

@ -0,0 +1,5 @@
{
"deduplicate_md5": true,
"piece_split_delay": 10000,
"min_piece_length": 0
}

View File

@ -1,11 +1,13 @@
import os
import sys
import global_var
def ngrok_connect():
from pyngrok import ngrok, conf
conf.set_default(conf.PyngrokConfig(ngrok_path="./ngrok"))
conf.set_default(
conf.PyngrokConfig(ngrok_path="./ngrok.exe" if os.name == "nt" else "./ngrok")
)
ngrok.set_auth_token(os.environ["ngrok_token"])
http_tunnel = ngrok.connect(8000 if len(sys.argv) == 1 else int(sys.argv[1]))
print(http_tunnel.public_url)
http_tunnel = ngrok.connect(global_var.get(global_var.Args).port)
print(f"ngrok url: {http_tunnel.public_url}")

View File

@ -1,34 +1,40 @@
from abc import ABC, abstractmethod
from enum import Enum, auto
import os
import pathlib
import copy
import re
from typing import Dict, Iterable, List, Tuple
import time
from typing import Dict, Iterable, List, Tuple, Union, Type, Callable
from utils.log import quick_log
from fastapi import HTTPException
from fastapi import HTTPException, status
from pydantic import BaseModel, Field
import numpy as np
from routes import state_cache
END_OF_TEXT = 0
END_OF_LINE_DOUBLE = 535
import global_var
os.environ["TORCH_EXTENSIONS_DIR"] = f"{pathlib.Path(__file__).parent.parent.resolve()}"
class AbstractRWKV(ABC):
def __init__(self, model: str, strategy: str, tokens_path: str):
from rwkv.model import RWKV as Model # dynamic import to make RWKV_CUDA_ON work
from rwkv_pip.utils import PIPELINE
class RWKVType(Enum):
NoneType = auto()
Raven = auto()
World = auto()
Music = auto()
filename, _ = os.path.splitext(os.path.basename(model))
self.name = filename
self.model = Model(model, strategy)
self.pipeline = PIPELINE(self.model, tokens_path)
class AbstractRWKV(ABC):
def __init__(self, model, pipeline):
self.EOS_ID = 0
self.name = "rwkv"
self.model_path = ""
self.version = 4
self.model = model
self.pipeline = pipeline
self.model_state = None
self.model_tokens = []
self.rwkv_type: RWKVType = RWKVType.NoneType
self.tokenizer_len = len(model.w["emb.weight"])
self.max_tokens_per_generation = 500
self.temperature = 1
@ -36,6 +42,10 @@ class AbstractRWKV(ABC):
self.top_k = 0
self.penalty_alpha_presence = 0
self.penalty_alpha_frequency = 1
self.penalty_decay = 0.99
self.global_penalty = False
self.state_path = ""
self.state_tuned = None
@abstractmethod
def adjust_occurrence(self, occurrence: Dict, token: int):
@ -61,6 +71,8 @@ class AbstractRWKV(ABC):
pass
def get_embedding(self, input: str, fast_mode: bool) -> Tuple[List[float], int]:
import numpy as np
if fast_mode:
embedding, token_len = self.__fast_embedding(
self.fix_tokens(self.pipeline.encode(input)), None
@ -213,8 +225,10 @@ class AbstractRWKV(ABC):
return state[0].tolist(), token_len
def generate(
self, prompt: str, stop: str | List[str] = None
self, prompt: str, stop: Union[str, List[str], None] = None
) -> Iterable[Tuple[str, str, int, int]]:
import numpy as np
quick_log(None, None, "Generation Prompt:\n" + prompt)
cache = None
delta_prompt = prompt
@ -224,20 +238,30 @@ class AbstractRWKV(ABC):
)
except HTTPException:
pass
if cache is None or cache["prompt"] == "":
self.model_state = None
if cache is None or cache["prompt"] == "" or cache["state"] is None:
if self.state_path:
self.model_state = copy.deepcopy(self.state_tuned)
else:
self.model_state = None
self.model_tokens = []
else:
delta_prompt = prompt[len(cache["prompt"]) :]
self.model_state = copy.deepcopy(cache["state"])
self.model_tokens = copy.deepcopy(cache["tokens"])
logits = copy.deepcopy(cache["logits"])
self.model_state = cache["state"]
self.model_tokens = cache["tokens"]
logits = cache["logits"]
prompt_token_len = 0
if delta_prompt != "":
prompt_start_time = time.time()
logits, prompt_token_len = self.run_rnn(
self.fix_tokens(self.pipeline.encode(delta_prompt))
)
prompt_end_time = time.time()
prompt_interval = prompt_end_time - prompt_start_time
tps = 0
if prompt_interval > 0:
tps = prompt_token_len / prompt_interval
print(f"Prompt Prefill TPS: {tps:.2f}", end=" ", flush=True)
try:
state_cache.add_state(
state_cache.AddStateBody(
@ -264,7 +288,18 @@ class AbstractRWKV(ABC):
logits, temperature=self.temperature, top_p=self.top_p, top_k=self.top_k
)
if token == END_OF_TEXT:
if token == self.EOS_ID:
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
yield response, "", prompt_token_len, completion_token_len
break
@ -295,22 +330,25 @@ class AbstractRWKV(ABC):
yield response, "", prompt_token_len, completion_token_len
break
elif type(stop) == list:
stop_exist_regex = "|".join(stop)
matched = re.search(stop_exist_regex, response)
if matched:
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
exit_flag = False
for s in stop:
if s in response:
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
)
except HTTPException:
pass
response = response.split(matched.group())[0]
yield response, "", prompt_token_len, completion_token_len
except HTTPException:
pass
exit_flag = True
response = response.split(s)[0]
yield response, "", prompt_token_len, completion_token_len
break
if exit_flag:
break
out_last = begin + i + 1
if i == self.max_tokens_per_generation - 1:
@ -329,8 +367,8 @@ class AbstractRWKV(ABC):
class TextRWKV(AbstractRWKV):
def __init__(self, model: str, strategy: str, tokens_path: str) -> None:
super().__init__(model, strategy, tokens_path)
def __init__(self, model, pipeline) -> None:
super().__init__(model, pipeline)
self.CHUNK_LEN = 256
@ -342,27 +380,35 @@ class TextRWKV(AbstractRWKV):
self.penalty_alpha_frequency = 1
self.interface = ":"
if "world" in self.name.lower():
self.user = "Question"
self.bot = "Answer"
self.END_OF_LINE = 11
else:
if self.tokenizer_len < 65536:
self.rwkv_type = RWKVType.Raven
self.user = "Bob"
self.bot = "Alice"
self.END_OF_LINE = 187
else:
self.rwkv_type = RWKVType.World
self.user = "User"
self.bot = "Assistant"
self.END_OF_LINE = 11
self.AVOID_REPEAT_TOKENS = []
self.AVOID_REPEAT_TOKENS = set()
AVOID_REPEAT = ""
for i in AVOID_REPEAT:
dd = self.pipeline.encode(i)
assert len(dd) == 1
self.AVOID_REPEAT_TOKENS += dd
self.AVOID_REPEAT_TOKENS.add(dd[0])
self.AVOID_PENALTY_TOKENS = set()
AVOID_PENALTY = '\n,.:?!,。:?!"“”<>[]{}/\\|;~`@#$%^&*()_+-=0123456789 '
for i in AVOID_PENALTY:
dd = self.pipeline.encode(i)
if len(dd) == 1:
self.AVOID_PENALTY_TOKENS.add(dd[0])
self.__preload()
def adjust_occurrence(self, occurrence: Dict, token: int):
for xxx in occurrence:
occurrence[xxx] *= 0.996
occurrence[xxx] *= self.penalty_decay
if token not in occurrence:
occurrence[token] = 1
else:
@ -370,16 +416,24 @@ class TextRWKV(AbstractRWKV):
def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int):
for n in occurrence:
# if n not in self.AVOID_PENALTY_TOKENS:
logits[n] -= (
self.penalty_alpha_presence
+ occurrence[n] * self.penalty_alpha_frequency
)
# set global_penalty to False to get the same generated results as the official RWKV Gradio
if self.global_penalty and i == 0:
for token in self.model_tokens:
token = int(token)
if token not in self.AVOID_PENALTY_TOKENS:
self.adjust_occurrence(occurrence, token)
# Model only saw '\n\n' as [187, 187] before, but the tokenizer outputs [535] for it at the end
def fix_tokens(self, tokens) -> List[int]:
if "world" in self.name.lower():
if self.rwkv_type == RWKVType.World:
return tokens
if len(tokens) > 0 and tokens[-1] == END_OF_LINE_DOUBLE:
if len(tokens) > 0 and tokens[-1] == 535:
tokens = tokens[:-1] + [self.END_OF_LINE, self.END_OF_LINE]
return tokens
@ -417,9 +471,11 @@ The following is a coherent verbose detailed conversation between a girl named {
{bot} likes to tell {user} a lot about herself and her opinions. \
{bot} usually gives {user} kind, helpful and informative advices.\n
"""
if self.user == "Bob"
else f"{user}{interface} hi\n\n{bot}{interface} Hi. "
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
if self.rwkv_type == RWKVType.Raven
else (
f"{user}{interface} hi\n\n{bot}{interface} Hi. "
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
)
)
logits, _ = self.run_rnn(self.fix_tokens(self.pipeline.encode(preset_system)))
try:
@ -435,15 +491,17 @@ The following is a coherent verbose detailed conversation between a girl named {
pass
class MusicRWKV(AbstractRWKV):
def __init__(self, model: str, strategy: str, tokens_path: str):
super().__init__(model, strategy, tokens_path)
class MusicMidiRWKV(AbstractRWKV):
def __init__(self, model, pipeline):
super().__init__(model, pipeline)
self.max_tokens_per_generation = 500
self.temperature = 1
self.top_p = 0.8
self.top_k = 8
self.rwkv_type = RWKVType.Music
def adjust_occurrence(self, occurrence: Dict, token: int):
for n in occurrence:
occurrence[n] *= 0.997 #### decay repetition penalty
@ -475,23 +533,266 @@ class MusicRWKV(AbstractRWKV):
return " " + delta
class MusicAbcRWKV(AbstractRWKV):
def __init__(self, model, pipeline):
super().__init__(model, pipeline)
self.EOS_ID = 3
self.max_tokens_per_generation = 500
self.temperature = 1
self.top_p = 0.8
self.top_k = 8
self.rwkv_type = RWKVType.Music
def adjust_occurrence(self, occurrence: Dict, token: int):
pass
def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int):
pass
def fix_tokens(self, tokens) -> List[int]:
return tokens
def run_rnn(
self, _tokens: List[str], newline_adj: int = 0
) -> Tuple[List[float], int]:
tokens = [int(x) for x in _tokens]
token_len = len(tokens)
self.model_tokens += tokens
out, self.model_state = self.model.forward(tokens, self.model_state)
return out, token_len
def delta_postprocess(self, delta: str) -> str:
return delta
def get_tokenizer(tokenizer_len: int):
tokenizer_dir = f"{pathlib.Path(__file__).parent.parent.resolve()}/rwkv_pip/"
if tokenizer_len < 2176:
return "abc_tokenizer"
if tokenizer_len < 20096:
return tokenizer_dir + "tokenizer-midipiano.json"
if tokenizer_len < 50277:
return tokenizer_dir + "tokenizer-midi.json"
elif tokenizer_len < 65536:
return tokenizer_dir + "20B_tokenizer.json"
else:
return "rwkv_vocab_v20230424"
def get_model_path(model_path: str) -> str:
if os.path.isabs(model_path):
return model_path
working_dir: pathlib.Path = pathlib.Path(os.path.abspath(os.getcwd()))
parent_paths: List[pathlib.Path] = [
working_dir, # [cwd](RWKV-Runner)/models/xxx
working_dir.parent, # [cwd](backend-python)/../models/xxx
pathlib.Path(
os.path.abspath(__file__)
).parent.parent, # backend-python/models/xxx
pathlib.Path(
os.path.abspath(__file__)
).parent.parent.parent, # RWKV-Runner/models/xxx
]
child_paths: List[Callable[[pathlib.Path], pathlib.Path]] = [
lambda p: p / model_path,
lambda p: p / "build" / "bin" / model_path, # for dev
]
for parent_path in parent_paths:
for child_path in child_paths:
full_path: pathlib.Path = child_path(parent_path)
if os.path.isfile(full_path):
return str(full_path)
return model_path
def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV:
model_path = get_model_path(model)
rwkv_cpp = getattr(global_var.get(global_var.Args), "rwkv.cpp")
webgpu = global_var.get(global_var.Args).webgpu
if "midi" in model_path.lower() or "abc" in model_path.lower():
os.environ["RWKV_RESCALE_LAYER"] = "999"
# dynamic import to make RWKV_CUDA_ON work
if rwkv_cpp:
print("Using rwkv.cpp, strategy is ignored")
from rwkv_pip.cpp.model import (
RWKV as Model,
)
elif webgpu:
print("Using webgpu")
from rwkv_pip.webgpu.model import (
RWKV as Model,
)
else:
from rwkv_pip.model import (
RWKV as Model,
)
from rwkv_pip.utils import PIPELINE
filename, _ = os.path.splitext(os.path.basename(model_path))
model = Model(model_path, strategy)
if not tokenizer:
tokenizer = get_tokenizer(len(model.w["emb.weight"]))
pipeline = PIPELINE(model, tokenizer)
rwkv_map: dict[str, Type[AbstractRWKV]] = {
"20B_tokenizer": TextRWKV,
"rwkv_vocab_v20230424": TextRWKV,
"tokenizer-midi": MusicMidiRWKV,
"tokenizer-midipiano": MusicMidiRWKV,
"abc_tokenizer": MusicAbcRWKV,
}
tokenizer_name = os.path.splitext(os.path.basename(tokenizer))[0]
global_var.set(
global_var.Midi_Vocab_Config_Type,
(
global_var.MidiVocabConfig.Piano
if tokenizer_name == "tokenizer-midipiano"
else global_var.MidiVocabConfig.Default
),
)
rwkv: AbstractRWKV
if tokenizer_name in rwkv_map:
rwkv = rwkv_map[tokenizer_name](model, pipeline)
else:
tokenizer_name = tokenizer_name.lower()
if "music" in tokenizer_name or "midi" in tokenizer_name:
rwkv = MusicMidiRWKV(model, pipeline)
elif "abc" in tokenizer_name:
rwkv = MusicAbcRWKV(model, pipeline)
else:
rwkv = TextRWKV(model, pipeline)
rwkv.name = filename
rwkv.model_path = model_path
rwkv.version = model.version
return rwkv
class ModelConfigBody(BaseModel):
max_tokens: int = Field(default=None, gt=0, le=102400)
temperature: float = Field(default=None, ge=0, le=2)
temperature: float = Field(default=None, ge=0, le=3)
top_p: float = Field(default=None, ge=0, le=1)
presence_penalty: float = Field(default=None, ge=-2, le=2)
frequency_penalty: float = Field(default=None, ge=-2, le=2)
penalty_decay: float = Field(default=None, ge=0.99, le=0.999)
top_k: int = Field(default=None, ge=0, le=25)
global_penalty: bool = Field(
default=None,
description="When generating a response, whether to include the submitted prompt as a penalty factor. By turning this off, you will get the same generated results as official RWKV Gradio. If you find duplicate results in the generated results, turning this on can help avoid generating duplicates.",
)
state: str = Field(default=None, description="state-tuned file path")
class Config:
schema_extra = {
model_config = {
"json_schema_extra": {
"example": {
"max_tokens": 1000,
"temperature": 1.2,
"top_p": 0.5,
"presence_penalty": 0.4,
"frequency_penalty": 0.4,
"temperature": 1,
"top_p": 0.3,
"presence_penalty": 0,
"frequency_penalty": 1,
"penalty_decay": 0.996,
"global_penalty": False,
"state": "",
}
}
}
def load_rwkv_state(
model: AbstractRWKV, state_path: str, print_log: bool = True
) -> HTTPException:
if model:
if state_path:
if model.model_path.endswith(".pth") and state_path.endswith(".pth"):
import torch
state_path = get_model_path(state_path)
if model.state_path == state_path:
return
if not os.path.isfile(state_path):
return HTTPException(
status.HTTP_400_BAD_REQUEST, "state file not found"
)
try:
state_raw = torch.load(state_path, map_location="cpu")
except Exception as e:
print(e)
return HTTPException(
status.HTTP_400_BAD_REQUEST, "state file failed to load"
)
state_raw_shape = next(iter(state_raw.values())).shape
args = model.model.args
if (
len(state_raw) != args.n_layer
or state_raw_shape[0] * state_raw_shape[1] != args.n_embd
):
if model.state_path:
pass
elif print_log:
print("state failed to load")
return HTTPException(
status.HTTP_400_BAD_REQUEST, "state shape mismatch"
)
strategy = model.model.strategy
model.state_tuned = [None] * args.n_layer * 3
for i in range(args.n_layer):
dd = strategy[i]
dev = dd.device
atype = dd.atype
model.state_tuned[i * 3 + 0] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()
model.state_tuned[i * 3 + 1] = (
state_raw[f"blocks.{i}.att.time_state"]
.transpose(1, 2)
.to(dtype=torch.float, device=dev)
.requires_grad_(False)
.contiguous()
)
model.state_tuned[i * 3 + 2] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()
state_cache.force_reset_state()
model.state_path = state_path
if print_log:
print("state loaded")
else:
if model.state_path:
pass
elif print_log:
print("state failed to load")
return HTTPException(
status.HTTP_400_BAD_REQUEST,
"file format of the model or state model not supported",
)
else:
if state_path == "" and model.state_path != "":
state_cache.force_reset_state()
model.state_path = ""
model.state_tuned = None # TODO cached
if print_log:
print("state unloaded")
else:
if print_log:
print("state not loaded")
def set_rwkv_config(model: AbstractRWKV, body: ModelConfigBody):
@ -508,6 +809,14 @@ def set_rwkv_config(model: AbstractRWKV, body: ModelConfigBody):
model.penalty_alpha_presence = body.presence_penalty
if body.frequency_penalty is not None:
model.penalty_alpha_frequency = body.frequency_penalty
if body.penalty_decay is not None:
model.penalty_decay = body.penalty_decay
if body.top_k is not None:
model.top_k = body.top_k
if body.global_penalty is not None:
model.global_penalty = body.global_penalty
if body.state is not None:
load_rwkv_state(model, body.state, False)
def get_rwkv_config(model: AbstractRWKV) -> ModelConfigBody:
@ -517,4 +826,8 @@ def get_rwkv_config(model: AbstractRWKV) -> ModelConfigBody:
top_p=model.top_p,
presence_penalty=model.penalty_alpha_presence,
frequency_penalty=model.penalty_alpha_frequency,
penalty_decay=model.penalty_decay,
top_k=model.top_k,
global_penalty=model.global_penalty,
state=model.state_path,
)

View File

@ -19,9 +19,12 @@ def set_torch():
def torch_gc():
import torch
try:
import torch
if torch.cuda.is_available():
with torch.cuda.device(0):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
if torch.cuda.is_available():
with torch.cuda.device(0):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
except:
pass # prevent 'torch' has no attribute 'cuda' error, so user can use CPU or WebGPU

View File

@ -0,0 +1,279 @@
{
"note_events": 128,
"wait_events": 125,
"max_wait_time": 1000,
"velocity_events": 128,
"velocity_bins": 16,
"velocity_exp": 0.33,
"do_token_sorting": true,
"unrolled_tokens": false,
"decode_end_held_note_delay": 5.0,
"decode_fix_repeated_notes": true,
"bin_instrument_names": [
"piano"
],
"ch10_instrument_bin_name": "",
"program_name_to_bin_name": {
"Acoustic Grand Piano": "piano",
"Bright Acoustic Piano": "piano",
"Electric Grand Piano": "piano",
"Honky-tonk Piano": "piano",
"Electric Piano 1 (Rhodes Piano)": "piano",
"Electric Piano 2 (Chorused Piano)": "piano",
"Harpsichord": "piano",
"Clavinet": "piano",
"Celesta": "",
"Glockenspiel": "",
"Music Box": "",
"Vibraphone": "",
"Marimba": "",
"Xylophone": "",
"Tubular Bells": "",
"Dulcimer (Santur)": "",
"Drawbar Organ (Hammond)": "",
"Percussive Organ": "piano",
"Rock Organ": "piano",
"Church Organ": "piano",
"Reed Organ": "piano",
"Accordion (French)": "piano",
"Harmonica": "piano",
"Tango Accordion (Band neon)": "piano",
"Acoustic Guitar (nylon)": "",
"Acoustic Guitar (steel)": "",
"Electric Guitar (jazz)": "",
"Electric Guitar (clean)": "",
"Electric Guitar (muted)": "",
"Overdriven Guitar": "",
"Distortion Guitar": "",
"Guitar harmonics": "",
"Acoustic Bass": "",
"Electric Bass (fingered)": "",
"Electric Bass (picked)": "",
"Fretless Bass": "",
"Slap Bass 1": "",
"Slap Bass 2": "",
"Synth Bass 1": "",
"Synth Bass 2": "",
"Violin": "",
"Viola": "",
"Cello": "",
"Contrabass": "",
"Tremolo Strings": "",
"Pizzicato Strings": "",
"Orchestral Harp": "",
"Timpani": "",
"String Ensemble 1 (strings)": "",
"String Ensemble 2 (slow strings)": "",
"SynthStrings 1": "",
"SynthStrings 2": "",
"Choir Aahs": "",
"Voice Oohs": "",
"Synth Voice": "",
"Orchestra Hit": "",
"Trumpet": "",
"Trombone": "",
"Tuba": "",
"Muted Trumpet": "",
"French Horn": "",
"Brass Section": "",
"SynthBrass 1": "",
"SynthBrass 2": "",
"Soprano Sax": "",
"Alto Sax": "",
"Tenor Sax": "",
"Baritone Sax": "",
"Oboe": "",
"English Horn": "",
"Bassoon": "",
"Clarinet": "",
"Piccolo": "",
"Flute": "",
"Recorder": "",
"Pan Flute": "",
"Blown Bottle": "",
"Shakuhachi": "",
"Whistle": "",
"Ocarina": "",
"Lead 1 (square wave)": "",
"Lead 2 (sawtooth wave)": "",
"Lead 3 (calliope)": "",
"Lead 4 (chiffer)": "",
"Lead 5 (charang)": "",
"Lead 6 (voice solo)": "",
"Lead 7 (fifths)": "",
"Lead 8 (bass + lead)": "",
"Pad 1 (new age Fantasia)": "",
"Pad 2 (warm)": "",
"Pad 3 (polysynth)": "",
"Pad 4 (choir space voice)": "",
"Pad 5 (bowed glass)": "",
"Pad 6 (metallic pro)": "",
"Pad 7 (halo)": "",
"Pad 8 (sweep)": "",
"FX 1 (rain)": "",
"FX 2 (soundtrack)": "",
"FX 3 (crystal)": "",
"FX 4 (atmosphere)": "",
"FX 5 (brightness)": "",
"FX 6 (goblins)": "",
"FX 7 (echoes, drops)": "",
"FX 8 (sci-fi, star theme)": "",
"Sitar": "",
"Banjo": "",
"Shamisen": "",
"Koto": "",
"Kalimba": "",
"Bag pipe": "",
"Fiddle": "",
"Shanai": "",
"Tinkle Bell": "",
"Agogo": "",
"Steel Drums": "",
"Woodblock": "",
"Taiko Drum": "",
"Melodic Tom": "",
"Synth Drum": "",
"Reverse Cymbal": "",
"Guitar Fret Noise": "",
"Breath Noise": "",
"Seashore": "",
"Bird Tweet": "",
"Telephone Ring": "",
"Helicopter": "",
"Applause": "",
"Gunshot": ""
},
"bin_name_to_program_name": {
"piano": "Acoustic Grand Piano"
},
"instrument_names": {
"0": "Acoustic Grand Piano",
"1": "Bright Acoustic Piano",
"2": "Electric Grand Piano",
"3": "Honky-tonk Piano",
"4": "Electric Piano 1 (Rhodes Piano)",
"5": "Electric Piano 2 (Chorused Piano)",
"6": "Harpsichord",
"7": "Clavinet",
"8": "Celesta",
"9": "Glockenspiel",
"10": "Music Box",
"11": "Vibraphone",
"12": "Marimba",
"13": "Xylophone",
"14": "Tubular Bells",
"15": "Dulcimer (Santur)",
"16": "Drawbar Organ (Hammond)",
"17": "Percussive Organ",
"18": "Rock Organ",
"19": "Church Organ",
"20": "Reed Organ",
"21": "Accordion (French)",
"22": "Harmonica",
"23": "Tango Accordion (Band neon)",
"24": "Acoustic Guitar (nylon)",
"25": "Acoustic Guitar (steel)",
"26": "Electric Guitar (jazz)",
"27": "Electric Guitar (clean)",
"28": "Electric Guitar (muted)",
"29": "Overdriven Guitar",
"30": "Distortion Guitar",
"31": "Guitar harmonics",
"32": "Acoustic Bass",
"33": "Electric Bass (fingered)",
"34": "Electric Bass (picked)",
"35": "Fretless Bass",
"36": "Slap Bass 1",
"37": "Slap Bass 2",
"38": "Synth Bass 1",
"39": "Synth Bass 2",
"40": "Violin",
"41": "Viola",
"42": "Cello",
"43": "Contrabass",
"44": "Tremolo Strings",
"45": "Pizzicato Strings",
"46": "Orchestral Harp",
"47": "Timpani",
"48": "String Ensemble 1 (strings)",
"49": "String Ensemble 2 (slow strings)",
"50": "SynthStrings 1",
"51": "SynthStrings 2",
"52": "Choir Aahs",
"53": "Voice Oohs",
"54": "Synth Voice",
"55": "Orchestra Hit",
"56": "Trumpet",
"57": "Trombone",
"58": "Tuba",
"59": "Muted Trumpet",
"60": "French Horn",
"61": "Brass Section",
"62": "SynthBrass 1",
"63": "SynthBrass 2",
"64": "Soprano Sax",
"65": "Alto Sax",
"66": "Tenor Sax",
"67": "Baritone Sax",
"68": "Oboe",
"69": "English Horn",
"70": "Bassoon",
"71": "Clarinet",
"72": "Piccolo",
"73": "Flute",
"74": "Recorder",
"75": "Pan Flute",
"76": "Blown Bottle",
"77": "Shakuhachi",
"78": "Whistle",
"79": "Ocarina",
"80": "Lead 1 (square wave)",
"81": "Lead 2 (sawtooth wave)",
"82": "Lead 3 (calliope)",
"83": "Lead 4 (chiffer)",
"84": "Lead 5 (charang)",
"85": "Lead 6 (voice solo)",
"86": "Lead 7 (fifths)",
"87": "Lead 8 (bass + lead)",
"88": "Pad 1 (new age Fantasia)",
"89": "Pad 2 (warm)",
"90": "Pad 3 (polysynth)",
"91": "Pad 4 (choir space voice)",
"92": "Pad 5 (bowed glass)",
"93": "Pad 6 (metallic pro)",
"94": "Pad 7 (halo)",
"95": "Pad 8 (sweep)",
"96": "FX 1 (rain)",
"97": "FX 2 (soundtrack)",
"98": "FX 3 (crystal)",
"99": "FX 4 (atmosphere)",
"100": "FX 5 (brightness)",
"101": "FX 6 (goblins)",
"102": "FX 7 (echoes, drops)",
"103": "FX 8 (sci-fi, star theme)",
"104": "Sitar",
"105": "Banjo",
"106": "Shamisen",
"107": "Koto",
"108": "Kalimba",
"109": "Bag pipe",
"110": "Fiddle",
"111": "Shanai",
"112": "Tinkle Bell",
"113": "Agogo",
"114": "Steel Drums",
"115": "Woodblock",
"116": "Taiko Drum",
"117": "Melodic Tom",
"118": "Synth Drum",
"119": "Reverse Cymbal",
"120": "Guitar Fret Noise",
"121": "Breath Noise",
"122": "Seashore",
"123": "Bird Tweet",
"124": "Telephone Ring",
"125": "Helicopter",
"126": "Applause",
"127": "Gunshot"
}
}

View File

@ -0,0 +1,14 @@
from fastapi import FastAPI
from fastapi.middleware.gzip import GZipMiddleware
from fastapi.staticfiles import StaticFiles
import uvicorn
webui_server = FastAPI()
webui_server.add_middleware(GZipMiddleware, minimum_size=1000)
webui_server.mount(
"/", StaticFiles(directory="frontend/dist", html=True), name="static"
)
if __name__ == "__main__":
uvicorn.run("webui_server:webui_server")

Binary file not shown.

Binary file not shown.

View File

@ -1,734 +0,0 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import types, gc, os, time, re
import torch
from torch.nn import functional as F
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
current_path = os.path.dirname(os.path.abspath(__file__))
# https://zhuanlan.zhihu.com/p/612879065
def LoadPreCompileLibrary(file):
import importlib
import os
import torch
# load the custom_op_library and register the custom ops
lib_dir = os.path.dirname(__file__)
if os.name == "nt":
# Register the main torchvision library location on the default DLL path
import ctypes
import sys
kernel32 = ctypes.WinDLL("kernel32.dll", use_last_error=True)
with_load_library_flags = hasattr(kernel32, "AddDllDirectory")
prev_error_mode = kernel32.SetErrorMode(0x0001)
if with_load_library_flags:
kernel32.AddDllDirectory.restype = ctypes.c_void_p
if sys.version_info >= (3, 8):
os.add_dll_directory(lib_dir)
elif with_load_library_flags:
res = kernel32.AddDllDirectory(lib_dir)
if res is None:
err = ctypes.WinError(ctypes.get_last_error())
err.strerror += f' Error adding "{lib_dir}" to the DLL directories.'
raise ValueError(err)
kernel32.SetErrorMode(prev_error_mode)
loader_details = (
importlib.machinery.ExtensionFileLoader,
importlib.machinery.EXTENSION_SUFFIXES,
)
extfinder = importlib.machinery.FileFinder(lib_dir, loader_details)
ext_specs = extfinder.find_spec(file)
if ext_specs is None:
return False
try:
torch.ops.load_library(ext_specs.origin)
except OSError as exc:
return False
return True
########################################################################################################
if os.environ.get('RWKV_JIT_ON') != '0':
os.environ["RWKV_JIT_ON"] = '1'
MyModule = torch.jit.ScriptModule
MyFunction = torch.jit.script_method
MyStatic = torch.jit.script
else:
MyModule = torch.nn.Module
def __nop(ob):
return ob
MyFunction = __nop
MyStatic = __nop
if os.environ.get('RWKV_CUDA_ON') == '1':
if LoadPreCompileLibrary('wkv_cuda') is False:
from torch.utils.cpp_extension import load
load(
name=f"wkv_cuda",
sources=[f"{current_path}/cuda/wrapper.cpp", f"{current_path}/cuda/operators.cu"],
verbose=True,
extra_cuda_cflags=["-t 4", "-std=c++17", "--use_fast_math", "-O3", "--extra-device-vectorization"],
is_python_module=False)
@MyStatic
def cuda_wkv(T: int, C: int, w, u, k, v, aa, bb, pp):
assert 1 * C % min(C, 32) == 0
assert k.dtype == v.dtype == torch.float16 or k.dtype == v.dtype == torch.float32
assert w.dtype == u.dtype == aa.dtype == bb.dtype == pp.dtype == torch.float32
w = w.contiguous()
u = u.contiguous()
k = k.contiguous()
v = v.contiguous()
y = torch.empty((T, C), device=w.device, memory_format=torch.contiguous_format, dtype=k.dtype)
torch.ops.rwkv.wkv_forward(1, T, C, w, u, k, v, y, aa, bb, pp)
return y, aa, bb, pp
@MyStatic
def cuda_mm8_seq(B: int, N: int, M: int, x, w, mx, rx, my, ry):
assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
assert x.dtype == torch.float32 or x.dtype == torch.float16
assert w.dtype == torch.uint8
assert x.shape == [B, N]
assert w.shape == [N, M]
assert rx.shape == mx.shape == [M]
assert ry.shape == my.shape == [N, 1]
y = torch.empty((B, M), device=w.device, dtype=x.dtype)
torch.ops.rwkv.mm8_seq(B, N, M, x, w, mx, rx, my, ry, y)
return y
@MyStatic
def cuda_mm8_one(N: int, M: int, x, w, mx, rx, my, ry):
assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
assert x.dtype == torch.float32 or x.dtype == torch.float16
assert w.dtype == torch.uint8
assert x.shape == [N]
assert w.shape == [N, M]
assert rx.shape == mx.shape == [M]
assert ry.shape == my.shape == [N, 1]
y = torch.zeros((M,), device=w.device, dtype=torch.float32)
torch.ops.rwkv.mm8_one(N, M, x, w, mx, rx, my, ry, y)
return y.to(dtype=x.dtype)
else:
os.environ["RWKV_CUDA_ON"] = '0'
########################################################################################################
class RWKV(MyModule):
def __init__(self, model, strategy, verbose = True, convert_and_save_and_exit = None):
super().__init__()
if verbose:
prxxx = lambda *args, **kwargs: print(*args, **kwargs)
else:
prxxx = lambda *args, **kwargs: None
STRATEGY_REGEX = r"^(?:(?:^|->) *(?:cuda(?::[\d]+)?|cpu|mps) (?:fp(?:16|32)|bf16)(?:i8|i4|i3)?(?: \*[\d]+\+?)? *)+$"
if not re.match(STRATEGY_REGEX, strategy):
raise ValueError("Invalid strategy. Please read https://pypi.org/project/rwkv/")
strategy = ('->'.join([x.strip() for x in strategy.split('->')])).replace('->', ' -> ')
self.args = types.SimpleNamespace()
args = self.args
args.MODEL_NAME = model
args.strategy_string = strategy
# Rescale for fp16 mode: set x = x/2 every X layer (to avoid fp16 overflow)
self.RESCALE_LAYER = 6 if 'fp16' in strategy else 0
prxxx(f'RWKV_JIT_ON {os.environ["RWKV_JIT_ON"]} RWKV_CUDA_ON {os.environ["RWKV_CUDA_ON"]} RESCALE_LAYER {self.RESCALE_LAYER}\n')
args.MODEL_NAME = args.MODEL_NAME.strip()
if not args.MODEL_NAME.endswith('.pth'):
args.MODEL_NAME += '.pth'
prxxx(f'Loading {args.MODEL_NAME} ...')
with torch.no_grad():
self.w = torch.load(args.MODEL_NAME, map_location='cpu') # load model to CPU first
gc.collect()
w = self.w
ALREADY_CONVERTED = False
if '_strategy' in w:
ALREADY_CONVERTED = True
assert convert_and_save_and_exit == None # you should only convert a raw model
prxxx(f"Converted model: strategy {w['_strategy']}, version {w['_version']}\n")
assert w['_strategy'] == args.strategy_string # if you are using a new strategy, re-convert the model
assert float(w['_version']) >= 0.7 # sometimes you should re-convert using latest convert_model.py
assert w['_rescale_layer'] == self.RESCALE_LAYER
del w['_strategy']
del w['_version']
del w['_rescale_layer']
args.n_embd = w['emb.weight'].shape[1]
args.n_layer = 0
keys = list(w.keys())
for x in keys:
layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
args.n_layer = max(args.n_layer, layer_id+1)
####################### Compute strategy
s = [x.strip().split(' ') for x in strategy.split('->')]
plan = [0] * len(s)
stream_i = -1
stream_count = 0
to_allocate = args.n_layer + 1
allocated = 0
free_slots = 0
for i in range(len(s)):
si = s[i]
si1 = si[1]
if si1.startswith('fp32'): si[1] = [torch.float]
elif si1.startswith('fp16'): si[1] = [torch.float16]
elif si1.startswith('bf16'): si[1] = [torch.bfloat16]
if si1.endswith('i8'): si[1] += [torch.uint8]
else: si[1] += [si[1][0]]
if len(si) > 2:
ss = si[2]
assert ss.startswith('*')
if ss.endswith('+'):
plan[i] = int(ss[1:-1])
stream_i = i
else:
plan[i] = int(ss[1:])
allocated += plan[i]
if allocated >= to_allocate:
plan[i] += to_allocate - allocated
break
else:
free_slots += 1
if stream_i < 0:
if free_slots > 0 and to_allocate > allocated:
for i in range(len(s)):
if plan[i] == 0:
plan[i] = (to_allocate - allocated) // free_slots
allocated += plan[i]
free_slots -= 1
if to_allocate > allocated:
plan[len(s)-1] += to_allocate - allocated
else:
if to_allocate > allocated:
stream_count = to_allocate - allocated
plan[stream_i] += stream_count
prxxx(f'Strategy: (total {args.n_layer}+1={args.n_layer+1} layers)')
for i in range(len(s)):
ss = s[i]
if i != stream_i:
prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]} layers')
else:
prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]-stream_count} layers, stream {stream_count} layers')
plan[i] += (0 if i == 0 else plan[i-1])
self.strategy = [None] * (args.n_layer + 1)
strategy = self.strategy
for n in range(args.n_layer + 1):
for i in range(len(s)):
if n < plan[i]:
strategy[n] = types.SimpleNamespace()
strategy[n].device = s[i][0]
strategy[n].atype = s[i][1][0]
strategy[n].wtype = s[i][1][1]
strategy[n].stream = False
if i == stream_i and n >= (plan[i] - stream_count):
strategy[n].stream = True
break
prxxx(f"{n}-{strategy[n].device}-{str(strategy[n].atype).replace('torch.','')}-{str(strategy[n].wtype).replace('torch.','')}{'-stream' if strategy[n].stream else ''}",end=' ')
prxxx()
####################### Load weights to self.w
if not ALREADY_CONVERTED:
try: # precompute embedding
w['emb.weight'] = F.layer_norm(w['emb.weight'], (args.n_embd,), weight=w['blocks.0.ln0.weight'], bias=w['blocks.0.ln0.bias'])
except:
w['emb.weight'] = F.layer_norm(w['emb.weight'].float(), (args.n_embd,), weight=w['blocks.0.ln0.weight'].float(), bias=w['blocks.0.ln0.bias'].float())
del w['blocks.0.ln0.weight']
del w['blocks.0.ln0.bias']
print_need_newline = False
keys = list(w.keys())
for x in keys:
w[x].requires_grad = False
layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
if ('ln_out.' in x) or ('head.' in x):
layer_id = args.n_layer
dd = strategy[layer_id]
DEVICE = dd.device
ATYPE = dd.atype
WTYPE = dd.wtype
if not ALREADY_CONVERTED:
if self.RESCALE_LAYER > 0:
if 'att.output.weight' in x:
w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
if 'ffn.value.weight' in x:
w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
if '.time_' in x:
w[x] = w[x].squeeze()
if 'key.weight' in x or 'value.weight' in x or 'receptance.weight' in x or 'output.weight' in x or 'head.weight' in x:
w[x] = w[x].t()
if '.time_decay' in x: # need fp32 for this
w[x] = -torch.exp(w[x].float())
elif '.time_first' in x: # need fp32 for this
w[x] = w[x].float()
else:
if (len(w[x].shape) == 2) and ('emb' not in x):
if WTYPE != torch.uint8:
w[x] = w[x].to(dtype=WTYPE)
else:
w[x] = w[x].float()
if w[x].shape[0] > w[x].shape[1]:
w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
w[x] = w[x] - w[x+'_my']
w[x+'_mx'] = torch.amin(w[x], dim=0)
w[x] = w[x] - w[x+'_mx']
w[x+'_rx'] = torch.amax(w[x], dim=0)
w[x] = w[x] / w[x+'_rx']
w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
w[x] = w[x] / w[x+'_ry']
else:
w[x+'_mx'] = torch.amin(w[x], dim=0)
w[x] = w[x] - w[x+'_mx']
w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
w[x] = w[x] - w[x+'_my']
w[x+'_rx'] = torch.amax(w[x], dim=0)
w[x] = w[x] / w[x+'_rx']
w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
w[x] = w[x] / w[x+'_ry']
w[x] = torch.clip(torch.floor(w[x] * 256), min=0, max=255).to(dtype=torch.uint8)
w[x+'_mx'] = w[x+'_mx'].to(dtype=ATYPE).contiguous()
w[x+'_rx'] = (w[x+'_rx'] / 16).to(dtype=ATYPE).contiguous()
w[x+'_my'] = w[x+'_my'].to(dtype=ATYPE).contiguous()
w[x+'_ry'] = (w[x+'_ry'] / 16).to(dtype=ATYPE).contiguous()
else:
w[x] = w[x].to(dtype=ATYPE)
if convert_and_save_and_exit == None:
if 'emb.' in x:
w[x] = w[x].contiguous()
elif (dd.stream) and (x.endswith('key.weight') or x.endswith('value.weight') or x.endswith('receptance.weight') or x.endswith('output.weight')):
try:
w[x] = w[x].contiguous().pin_memory() # if you see "CUDA error: out of memory" here, that's out of CPU RAM, not VRAM. Get more RAM :)
except:
print('Note: You are running out of RAM. Get more CPU RAM. Now this will run much slower.')
elif DEVICE != 'cpu':
w[x] = w[x].to(device=DEVICE).contiguous()
if (dd.stream) or (DEVICE != 'cpu'):
try:
w[x+'_mx'] = w[x+'_mx'].to(device=DEVICE).contiguous()
w[x+'_rx'] = w[x+'_rx'].to(device=DEVICE).contiguous()
w[x+'_my'] = w[x+'_my'].to(device=DEVICE).contiguous()
w[x+'_ry'] = w[x+'_ry'].to(device=DEVICE).contiguous()
except:
pass
if 'ffn.value.weight' in x:
gc.collect()
if 'cuda' in args.strategy_string:
torch.cuda.empty_cache()
shape = [i for i in w[x].shape if i != 1]
if len(shape) > 1:
shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)}"
else:
shape = f" {str(shape[0]).rjust(5)} "
if layer_id == 0 or layer_id >= args.n_layer-1:
if print_need_newline:
prxxx('\n', end = '')
print_need_newline = False
dt = str(w[x].dtype).replace('torch.', '')
dt = dt.replace('float32', 'f32').replace('bfloat16', 'bf16').replace('float16', 'f16').replace('uint8', 'i8')
prxxx(x.ljust(32), dt.rjust(4), str(w[x].device).rjust(8), shape, ' (pinned)' if w[x].is_pinned() else '')
else:
print_need_newline = True
prxxx('.', end = '', flush = True)
if convert_and_save_and_exit:
w['_strategy'] = args.strategy_string
w['_rescale_layer'] = self.RESCALE_LAYER
w['_version'] = '0.7'
if not convert_and_save_and_exit.endswith('.pth'):
convert_and_save_and_exit += '.pth'
prxxx(f'Saving to {convert_and_save_and_exit}...')
torch.save(w, convert_and_save_and_exit)
prxxx(f'Converted and saved. Now this will exit.')
exit(0)
gc.collect()
if 'cuda' in args.strategy_string:
torch.cuda.empty_cache()
@MyFunction
def torch_mm8_seq(self, x, w, mx, rx, my, ry):
return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)
@MyFunction
def torch_mm8_one(self, x, w, mx, rx, my, ry):
return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)
if os.environ.get('RWKV_CUDA_ON') == '1':
@MyFunction
def mm8_seq(self, x, w, mx, rx, my, ry):
if w.device.type == 'cuda' and x.dtype == torch.float16:
B, N, M = x.shape[0], w.shape[0], w.shape[1]
return cuda_mm8_seq(B, N, M, x, w, mx, rx, my, ry)
else:
return self.torch_mm8_seq(x, w, mx, rx, my, ry)
@MyFunction
def mm8_one(self, x, w, mx, rx, my, ry):
if w.device.type == 'cuda':
N, M = w.shape[0], w.shape[1]
return cuda_mm8_one(N, M, x, w, mx, rx, my, ry)
else:
return self.torch_mm8_one(x, w, mx, rx, my, ry)
else:
@MyFunction
def mm8_seq(self, x, w, mx, rx, my, ry):
return self.torch_mm8_seq(x, w, mx, rx, my, ry)
@MyFunction
def mm8_one(self, x, w, mx, rx, my, ry):
return self.torch_mm8_one(x, w, mx, rx, my, ry)
########################################################################################################
@MyFunction
def ffn_one(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(rx @ rw)
vx = torch.square(torch.relu(kx @ kw))
out = r * (vx @ vw)
return x + out, xx
@MyFunction
def ffn_one_i8(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(self.mm8_one(rx, rw, rmx, rrx, rmy, rry))
vx = torch.square(torch.relu(self.mm8_one(kx, kw, kmx, krx, kmy, kry)))
out = r * (self.mm8_one(vx, vw, vmx, vrx, vmy, vry))
return x + out, xx
########################################################################################################
@MyFunction
def ffn_seq(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
kx = xx * k_mix + sx * (1 - k_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(rx @ rw)
vx = torch.square(torch.relu(kx @ kw))
out = r * (vx @ vw)
return x + out, xx[-1,:]
@MyFunction
def ffn_seq_i8(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
kx = xx * k_mix + sx * (1 - k_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
vx = torch.square(torch.relu(self.mm8_seq(kx, kw, kmx, krx, kmy, kry)))
out = r * (self.mm8_seq(vx, vw, vmx, vrx, vmy, vry))
return x + out, xx[-1,:]
########################################################################################################
@MyFunction
def att_one(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(rx @ rw)
k = (kx @ kw).float()
v = (vx @ vw).float()
ww = t_first + k
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
ww = t_decay + pp
p = torch.maximum(ww, k)
e1 = torch.exp(ww - p)
e2 = torch.exp(k - p)
out = (r * wkv) @ ow
return x + out, xx, e1 * aa + e2 * v, e1 * bb + e2, p
@MyFunction
def att_one_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(self.mm8_one(rx, rw, rmx, rrx, rmy, rry))
k = (self.mm8_one(kx, kw, kmx, krx, kmy, kry)).float()
v = (self.mm8_one(vx, vw, vmx, vrx, vmy, vry)).float()
ww = t_first + k
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
ww = t_decay + pp
p = torch.maximum(ww, k)
e1 = torch.exp(ww - p)
e2 = torch.exp(k - p)
out = self.mm8_one(r * wkv, ow, omx, orx, omy, ory)
return x + out, xx, e1 * aa + e2 * v, e1 * bb + e2, p
########################################################################################################
@MyFunction
def att_seq(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(rx @ rw)
k = (kx @ kw).float()
v = (vx @ vw).float()
T = x.shape[0]
for t in range(T):
kk = k[t]
vv = v[t]
ww = t_first + kk
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
ww = t_decay + pp
p = torch.maximum(ww, kk)
e1 = torch.exp(ww - p)
e2 = torch.exp(kk - p)
aa = e1 * aa + e2 * vv
bb = e1 * bb + e2
pp = p
out = (r * sx) @ ow
return x + out, xx[-1,:], aa, bb, pp
@MyFunction
def att_seq_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
k = self.mm8_seq(kx, kw, kmx, krx, kmy, kry).float()
v = self.mm8_seq(vx, vw, vmx, vrx, vmy, vry).float()
T = x.shape[0]
for t in range(T):
kk = k[t]
vv = v[t]
ww = t_first + kk
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
ww = t_decay + pp
p = torch.maximum(ww, kk)
e1 = torch.exp(ww - p)
e2 = torch.exp(kk - p)
aa = e1 * aa + e2 * vv
bb = e1 * bb + e2
pp = p
out = self.mm8_seq(r * sx, ow, omx, orx, omy, ory)
return x + out, xx[-1,:], aa, bb, pp
########################################################################################################
if os.environ["RWKV_CUDA_ON"] == '1':
@MyFunction
def cuda_att_seq(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
T, C = x.size()
xx = F.layer_norm(x, (C,), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(rx @ rw)
k = kx @ kw
v = vx @ vw
y, aa, bb, pp = cuda_wkv(T, C, t_decay, t_first, k, v, aa, bb, pp)
out = (r * y) @ ow
return x + out, xx[-1,:], aa, bb, pp
@MyFunction
def cuda_att_seq_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
T, C = x.size()
xx = F.layer_norm(x, (C,), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
k = self.mm8_seq(kx, kw, kmx, krx, kmy, kry)
v = self.mm8_seq(vx, vw, vmx, vrx, vmy, vry)
y, aa, bb, pp = cuda_wkv(T, C, t_decay, t_first, k, v, aa, bb, pp)
out = self.mm8_seq(r * y, ow, omx, orx, omy, ory)
return x + out, xx[-1,:], aa, bb, pp
########################################################################################################
def forward(self, tokens, state, full_output=False):
with torch.no_grad():
w = self.w
args = self.args
if state == None:
state = [None] * args.n_layer * 5
for i in range(args.n_layer): # state: 0=att_xx 1=att_aa 2=att_bb 3=att_pp 4=ffn_xx
dd = self.strategy[i]
dev = dd.device
atype = dd.atype
state[i*5+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
state[i*5+1] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous()
state[i*5+2] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous()
state[i*5+3] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous() - 1e30
state[i*5+4] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
seq_mode = len(tokens) > 1
x = w['emb.weight'][tokens if seq_mode else tokens[0]]
for i in range(args.n_layer):
bbb = f'blocks.{i}.'
att = f'blocks.{i}.att.'
ffn = f'blocks.{i}.ffn.'
dd = self.strategy[i]
dev = dd.device
atype = dd.atype
wtype = dd.wtype
if seq_mode:
if 'cuda' in str(dev) and os.environ["RWKV_CUDA_ON"] == '1':
ATT = self.cuda_att_seq if wtype != torch.uint8 else self.cuda_att_seq_i8
else:
ATT = self.att_seq if wtype != torch.uint8 else self.att_seq_i8
FFN = self.ffn_seq if wtype != torch.uint8 else self.ffn_seq_i8
else:
ATT = self.att_one if wtype != torch.uint8 else self.att_one_i8
FFN = self.ffn_one if wtype != torch.uint8 else self.ffn_one_i8
x = x.to(dtype=atype, device=dev)
kw = w[f'{att}key.weight']
vw = w[f'{att}value.weight']
rw = w[f'{att}receptance.weight']
ow = w[f'{att}output.weight']
if dd.stream:
kw = kw.to(device=dev, non_blocking=True)
vw = vw.to(device=dev, non_blocking=True)
rw = rw.to(device=dev, non_blocking=True)
ow = ow.to(device=dev, non_blocking=True)
kmx = w[f'{att}key.weight_mx'] if wtype == torch.uint8 else x
krx = w[f'{att}key.weight_rx'] if wtype == torch.uint8 else x
kmy = w[f'{att}key.weight_my'] if wtype == torch.uint8 else x
kry = w[f'{att}key.weight_ry'] if wtype == torch.uint8 else x
vmx = w[f'{att}value.weight_mx'] if wtype == torch.uint8 else x
vrx = w[f'{att}value.weight_rx'] if wtype == torch.uint8 else x
vmy = w[f'{att}value.weight_my'] if wtype == torch.uint8 else x
vry = w[f'{att}value.weight_ry'] if wtype == torch.uint8 else x
rmx = w[f'{att}receptance.weight_mx'] if wtype == torch.uint8 else x
rrx = w[f'{att}receptance.weight_rx'] if wtype == torch.uint8 else x
rmy = w[f'{att}receptance.weight_my'] if wtype == torch.uint8 else x
rry = w[f'{att}receptance.weight_ry'] if wtype == torch.uint8 else x
omx = w[f'{att}output.weight_mx'] if wtype == torch.uint8 else x
orx = w[f'{att}output.weight_rx'] if wtype == torch.uint8 else x
omy = w[f'{att}output.weight_my'] if wtype == torch.uint8 else x
ory = w[f'{att}output.weight_ry'] if wtype == torch.uint8 else x
x, state[i*5+0], state[i*5+1], state[i*5+2], state[i*5+3] = ATT(
x, state[i*5+0], state[i*5+1], state[i*5+2], state[i*5+3],
w[f'{bbb}ln1.weight'], w[f'{bbb}ln1.bias'],
w[f'{att}time_mix_k'], w[f'{att}time_mix_v'], w[f'{att}time_mix_r'],
w[f'{att}time_decay'], w[f'{att}time_first'],
kw, vw, rw, ow,
kmx, krx, kmy, kry,
vmx, vrx, vmy, vry,
rmx, rrx, rmy, rry,
omx, orx, omy, ory,
)
if dd.stream:
del kw, vw, rw, ow
kw = w[f'{ffn}key.weight']
vw = w[f'{ffn}value.weight']
rw = w[f'{ffn}receptance.weight']
if dd.stream:
kw = kw.to(device=dev, non_blocking=True)
vw = vw.to(device=dev, non_blocking=True)
rw = rw.to(device=dev, non_blocking=True)
kmx = w[f'{ffn}key.weight_mx'] if wtype == torch.uint8 else x
krx = w[f'{ffn}key.weight_rx'] if wtype == torch.uint8 else x
kmy = w[f'{ffn}key.weight_my'] if wtype == torch.uint8 else x
kry = w[f'{ffn}key.weight_ry'] if wtype == torch.uint8 else x
vmx = w[f'{ffn}value.weight_mx'] if wtype == torch.uint8 else x
vrx = w[f'{ffn}value.weight_rx'] if wtype == torch.uint8 else x
vmy = w[f'{ffn}value.weight_my'] if wtype == torch.uint8 else x
vry = w[f'{ffn}value.weight_ry'] if wtype == torch.uint8 else x
rmx = w[f'{ffn}receptance.weight_mx'] if wtype == torch.uint8 else x
rrx = w[f'{ffn}receptance.weight_rx'] if wtype == torch.uint8 else x
rmy = w[f'{ffn}receptance.weight_my'] if wtype == torch.uint8 else x
rry = w[f'{ffn}receptance.weight_ry'] if wtype == torch.uint8 else x
x, state[i*5+4] = FFN(
x, state[i*5+4],
w[f'{bbb}ln2.weight'], w[f'{bbb}ln2.bias'],
w[f'{ffn}time_mix_k'], w[f'{ffn}time_mix_r'],
kw, vw, rw,
kmx, krx, kmy, kry,
vmx, vrx, vmy, vry,
rmx, rrx, rmy, rry,
)
if dd.stream:
del kw, vw, rw
if self.RESCALE_LAYER > 0:
if (i+1) % self.RESCALE_LAYER == 0:
x = x / 2
dd = self.strategy[args.n_layer]
x = x[-1,:] if (seq_mode and (not full_output)) else x
x = x.to(dtype=dd.atype, device=dd.device)
x = F.layer_norm(x, (args.n_embd,), weight=w['ln_out.weight'], bias=w['ln_out.bias'])
if w['head.weight'].dtype != torch.uint8:
x = x @ w['head.weight']
else:
if seq_mode and full_output:
x = self.mm8_seq(x, w['head.weight'], w['head.weight_mx'], w['head.weight_rx'], w['head.weight_my'], w['head.weight_ry'])
else:
x = self.mm8_one(x, w['head.weight'], w['head.weight_mx'], w['head.weight_rx'], w['head.weight_my'], w['head.weight_ry'])
return x.float(), state

File diff suppressed because it is too large Load Diff

View File

@ -1,6 +1,11 @@
For Mac and Linux users, please manually install Python 3.10 (usually the latest systems come with it built-in). You can specify the Python interpreter to use in Settings.
对于Mac和Linux用户请手动安装 Python3.10 (通常最新的系统已经内置了). 你可以在设置中指定使用的Python解释器.
MacおよびLinuxのユーザーの方は、Python3.10を手動でインストールしてください(通常、最新のシステムには既に組み込まれています)。 設定メニューで使用するPythonインタプリタを指定することができます。
Client Download URL:
客户端下载地址:
クライアントのダウンロードURL:
https://github.com/josStorer/RWKV-Runner/releases/latest/download/RWKV-Runner_macos_universal.zip
For Mac and Linux users, please manually install Python 3.10 (usually the latest systems come with it built-in). You can specify the Python interpreter to use in Settings. (which python3)
对于Mac和Linux用户请手动安装 Python3.10 (通常最新的系统已经内置了). 你可以在设置中指定使用的Python解释器. (which python3)
MacおよびLinuxのユーザーの方は、Python3.10を手動でインストールしてください(通常、最新のシステムには既に組み込まれています)。 設定メニューで使用するPythonインタプリタを指定することができます。 (which python3)
Please execute this program in an empty directory. All related dependencies will be placed in this directory.
请将本程序放在一个空目录内执行, 所有相关依赖均会放置于此目录.

View File

@ -1,3 +1,8 @@
Client Download URL:
客户端下载地址:
クライアントのダウンロードURL:
https://github.com/josStorer/RWKV-Runner/releases/latest/download/RWKV-Runner_linux_x64
For Mac and Linux users, please manually install Python 3.10 (usually the latest systems come with it built-in). You can specify the Python interpreter to use in Settings.
对于Mac和Linux用户请手动安装 Python3.10 (通常最新的系统已经内置了). 你可以在设置中指定使用的Python解释器.
MacおよびLinuxのユーザーの方は、Python3.10を手動でインストールしてください(通常、最新のシステムには既に組み込まれています)。 設定メニューで使用するPythonインタプリタを指定することができます。

View File

@ -1,3 +1,8 @@
Client Download URL:
客户端下载地址:
クライアントのダウンロードURL:
https://github.com/josStorer/RWKV-Runner/releases/latest/download/RWKV-Runner_windows_x64.exe
Please execute this program in an empty directory. All related dependencies will be placed in this directory.
请将本程序放在一个空目录内执行, 所有相关依赖均会放置于此目录.
このプログラムを空のディレクトリで実行してください。関連するすべての依存関係は、このディレクトリに配置されます。

View File

@ -9,7 +9,7 @@ cd RWKV-Next-Web
git clone https://github.com/josStorer/RWKV-Runner --depth=1
python3 -m pip install torch torchvision torchaudio
python3 -m pip install -r RWKV-Runner/backend-python/requirements.txt
python3 ./RWKV-Runner/backend-python/main.py > log.txt &
python3 ./RWKV-Runner/backend-python/main.py > log.txt & # this is only an example, you should use screen or other tools to run it in background
if [ ! -d RWKV-Runner/models ]; then
mkdir RWKV-Runner/models
@ -22,6 +22,6 @@ yarn install
yarn build
export PROXY_URL=""
export BASE_URL=http://127.0.0.1:8000
yarn start &
yarn start & # this is only an example, you should use screen or other tools to run it in background
curl http://127.0.0.1:8000/switch-model -X POST -H "Content-Type: application/json" -d '{"model":"./RWKV-Runner/models/RWKV-4-World-0.1B-v1-20230520-ctx4096.pth","strategy":"cpu fp32"}'

View File

@ -0,0 +1,19 @@
: install git python3.10 npm by yourself
: change model and strategy according to your hardware
git clone https://github.com/josStorer/RWKV-Runner --depth=1
python -m pip install torch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 --index-url https://download.pytorch.org/whl/cu117
python -m pip install -r RWKV-Runner/backend-python/requirements.txt
cd RWKV-Runner/frontend
call npm ci
call npm run build
cd ..
: optional: set ngrok_token=YOUR_NGROK_TOKEN
start python ./backend-python/main.py --webui
start "C:\Program Files (x86)\Microsoft\Edge\Application\msedge.exe" "http://127.0.0.1:8000"
powershell -Command "(Test-Path ./models) -or (mkdir models)"
powershell -Command "Import-Module BitsTransfer"
powershell -Command "(Test-Path ./models/RWKV-4-World-1.5B-v1-fixed-20230612-ctx4096.pth) -or (Start-BitsTransfer https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-1.5B-v1-fixed-20230612-ctx4096.pth ./models/RWKV-4-World-1.5B-v1-fixed-20230612-ctx4096.pth)"
powershell -Command "Invoke-WebRequest http://127.0.0.1:8000/switch-model -Method POST -ContentType 'application/json' -Body '{\"model\":\"./models/RWKV-4-World-1.5B-v1-fixed-20230612-ctx4096.pth\",\"strategy\":\"cuda fp32 *20+\",\"deploy\":\"true\"}'"

View File

@ -0,0 +1,22 @@
# install git python3.10 npm by yourself
# change model and strategy according to your hardware
sudo apt install python3-dev
git clone https://github.com/josStorer/RWKV-Runner --depth=1
python3 -m pip install torch torchvision torchaudio
python3 -m pip install -r RWKV-Runner/backend-python/requirements.txt
cd RWKV-Runner/frontend
npm ci
npm run build
cd ..
# optional: export ngrok_token=YOUR_NGROK_TOKEN
python3 ./backend-python/main.py --webui > log.txt & # this is only an example, you should use screen or other tools to run it in background
if [ ! -d models ]; then
mkdir models
fi
wget -N https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-0.1B-v1-20230520-ctx4096.pth -P models/
curl http://127.0.0.1:8000/switch-model -X POST -H "Content-Type: application/json" -d '{"model":"./models/RWKV-4-World-0.1B-v1-20230520-ctx4096.pth","strategy":"cpu fp32","deploy":"true"}'

18
docker-compose.yml Normal file
View File

@ -0,0 +1,18 @@
services:
rmkv_runner:
image: rwkv-runner:latest
build: .
# Append "--rwkv.cpp" parameter to use rwkv.cpp
# command: python3.10 ./backend-python/main.py --port 27777 --host 0.0.0.0 --webui --rwkv.cpp
volumes:
- /mnt:/mnt
ports:
- "27777:27777"
# Comment the following lines if use rwkv.cpp
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]

View File

@ -19,14 +19,15 @@ document.querySelectorAll('.grid.h-10.grid-cols-12.place-content-center.gap-x-3.
if (!data.name.endsWith('.bin') && !data.name.endsWith('.pth'))
return
data.desc = {en: '', zh: ''}
data.desc = { en: '', zh: '', ja: '' }
const rawText = await (await fetch(e.children[1].href.replace('/resolve/', '/raw/'))).text()
data.size = parseInt(extractValue(rawText, 'size'))
data.SHA256 = extractValue(rawText, 'oid sha256:')
data.lastUpdated = e.children[3].children[0].getAttribute('datetime')
data.url = e.children[1].href.replace('/resolve/', '/blob/')
data.downloadUrl = e.children[1].href
data.url = e.children[1].href.replace('/resolve/', '/blob/').replace('?download=true', '')
data.downloadUrl = e.children[1].href.replace('?download=true', '')
data.tags = []
modelsJson.push(data)
})

View File

@ -1,7 +1,5 @@
{"text": "1:This is the first document."}
{"text": "2:Hello\nWorld"}
{"text": "3:1+1=2\n1+2=3\n2+2=4"}
{"text": "4:You will be training the GPT version because it's paralleziable and faster to train."}
{"text": "5:Read the inference code in src/model.py and try using the final hidden state(.xx .aa .bb)"}
{"text": "6:You can fine-tune the model with longer ctxLen and it can quickly adapt to longer ctxLens."}
{"text": "7:Consider RWKV 14B. The state has 200 vectors, that is, 5 vectors for each block: fp16 (xx), fp32 (aa), fp32 (bb), fp32 (pp), fp16 (xx)."}
{"text": "The following is an epic science fiction masterpiece that is immortalized, with delicate descriptions and grand depictions of interstellar civilization wars.\nChapter 1.\nAs I sit down to write here amidst the shadows of vine-leaves under the blue sky of southern Italy, it comes to me with a certain quality of astonishment that my participation in these amazing adventures of Mr. Cavor was, after all, the outcome of the purest accident. It might have been any one. I fell into these things at a time when I thought myself removed from the slightest possibility of disturbing experiences. I had gone to Lympne because I had imagined it the most uneventful place in the world. “Here, at any rate,” said I, “I shall find peace and a chance to work!”"}
{"text": "Translate the following into Chinese.\n\nEnglish: What rooms do you have available?\nChinese: 你们有哪些房间可以提供"}
{"text": "User: Hello.\n\nAssistant: I'm here, meow~.\n\nUser: Can you tell some jokes?\n\nAssistant: Of course, master. What kind of jokes would you like to hear?"}
{"text": "Instruction: Write a story using the following information\n\nInput: A man named Alex chops a tree down\n\nResponse: Once upon a time, there was a man named Alex who lived in the heart of the forest. He had always been fascinated by trees and spent most of his days exploring the forest and learning about its many wonders. One day, while wandering through the woods, he stumbled upon an old oak tree that stood tall and proud in the middle of a clearing."}
{"text": "def get_args(args: Union[Sequence[str], None] = None):\n parser = argparse.ArgumentParser()\n group = parser.add_argument_group(title=\"server arguments\")\n group.add_argument(\n \"--port\",\n type=int,\n default=8000,\n help=\"port to run the server on (default: 8000)\",\n )\n group.add_argument(\n \"--host\",\n type=str,\n default=\"127.0.0.1\",\n help=\"host to run the server on (default: 127.0.0.1)\",\n )"}

View File

@ -23,6 +23,7 @@ def file_cleaner(file):
return cleaner
expected_max_version = float(sys.argv[2]) if len(sys.argv) > 2 else 100
model_file = open(sys.argv[1], "rb")
cleaner = file_cleaner(model_file)
cleaner_thread = threading.Thread(target=cleaner, daemon=True)
@ -31,11 +32,34 @@ cleaner_thread.start()
w = torch.load(model_file, map_location="cpu")
gc.collect()
vocab_size = w["emb.weight"].shape[0]
n_embd = w["emb.weight"].shape[1]
n_layer = 0
keys = list(w.keys())
version = 4
for x in keys:
layer_id = int(x.split(".")[1]) if ("blocks." in x) else 0
n_layer = max(n_layer, layer_id + 1)
print(f"--n_layer {n_layer} --n_embd {n_embd}", end="")
if "ln_x" in x:
version = max(5, version)
if "gate.weight" in x:
version = max(5.1, version)
if int(version) == 5 and "att.time_decay" in x:
if len(w[x].shape) > 1:
if w[x].shape[1] > 1:
version = max(5.2, version)
if "time_maa" in x:
version = max(6, version)
params = f"--vocab_size {vocab_size} --n_layer {n_layer} --n_embd {n_embd}"
if version <= expected_max_version:
if version == 6:
params += ' --my_testing "x060"'
print(
f"v{int(version)}/train.py {params}",
end="",
)
else:
raise Exception(f"RWKV{version} is not supported")

View File

@ -1,5 +1,7 @@
echo $@
if [[ ${cnMirror} == 1 ]]; then
export PIP_INDEX_URL="https://pypi.tuna.tsinghua.edu.cn/simple"
export PIP_INDEX_URL="https://mirrors.aliyun.com/pypi/simple"
if grep -q "mirrors.aliyun.com" /etc/apt/sources.list; then
echo "apt cnMirror already set"
else
@ -20,6 +22,12 @@ else
sudo apt -y install python3-pip
fi
if dpkg -s "python3-dev" >/dev/null 2>&1; then
echo "python3-dev installed"
else
sudo apt -y install python3-dev
fi
if dpkg -s "ninja-build" >/dev/null 2>&1; then
echo "ninja installed"
else
@ -45,8 +53,13 @@ else
fi
echo "loading $loadModel"
modelInfo=$(python3 ./finetune/get_layer_and_embd.py $loadModel)
modelInfo=$(python3 ./finetune/get_layer_and_embd.py $loadModel 6.0)
echo $modelInfo
python3 ./finetune/lora/train.py $modelInfo $@ --proj_dir lora-models --data_type binidx --lora \
--lora_parts=att,ffn,time,ln --strategy deepspeed_stage_2 --accelerator gpu
if [[ $modelInfo =~ "--n_layer" ]]; then
sudo rm -rf /root/.cache/torch_extensions
python3 ./finetune/lora/$modelInfo $@ --proj_dir lora-models --data_type binidx --lora \
--lora_parts=att,ffn,time,ln --strategy deepspeed_stage_2 --accelerator gpu --ds_bucket_mb 2
else
echo "modelInfo is invalid"
exit 1
fi

View File

@ -246,5 +246,6 @@ if __name__ == "__main__":
try:
main()
except Exception as e:
print(e)
with open("error.txt", "w") as f:
f.write(str(e))

View File

@ -64,5 +64,6 @@ try:
torch.save(output_w, output)
except Exception as e:
print(e)
with open("error.txt", "w") as f:
f.write(str(e))

View File

@ -7,6 +7,7 @@ import struct
from functools import lru_cache
from itertools import accumulate
def print_rank_0(*message):
pass
# """If distributed is initialized print only on rank 0."""
@ -16,12 +17,14 @@ def print_rank_0(*message):
# else:
# print(*message, flush=True)
def _warmup_mmap_file(path):
pass
# with open(path, "rb") as stream:
# while stream.read(100 * 1024 * 1024):
# pass
dtypes = {
1: np.uint8,
2: np.int8,
@ -33,18 +36,22 @@ dtypes = {
8: np.uint16,
}
def code(dtype):
for k in dtypes.keys():
if dtypes[k] == dtype:
return k
raise ValueError(dtype)
def index_file_path(prefix_path):
return prefix_path + ".idx"
def data_file_path(prefix_path):
return prefix_path + ".bin"
class MMapIndexedDataset(torch.utils.data.Dataset):
class Index(object):
_HDR_MAGIC = b"MMIDIDX\x00\x00"
@ -100,7 +107,7 @@ class MMapIndexedDataset(torch.utils.data.Dataset):
self._file.close()
return _Writer()
def __init__(self, path, skip_warmup=False):
with open(path, "rb") as stream:
magic_test = stream.read(9)
@ -217,8 +224,7 @@ class MMapIndexedDataset(torch.utils.data.Dataset):
elif isinstance(idx, slice):
start, stop, step = idx.indices(len(self))
if step != 1:
raise ValueError(
"Slices into indexed_dataset must be contiguous")
raise ValueError("Slices into indexed_dataset must be contiguous")
ptr = self._index._pointers[start]
sizes = self._index._sizes[idx]
offsets = list(accumulate(sizes))

View File

@ -17,9 +17,11 @@ class MyDataset(Dataset):
if args.data_type == "binidx":
self.vocab_size = args.vocab_size
rank_zero_info(f"Current vocab size = {self.vocab_size} (make sure it's correct)")
rank_zero_info(
f"Current vocab size = {self.vocab_size} (make sure it's correct)"
)
if args.data_file.endswith('/'):
if args.data_file.endswith("/"):
d_all = []
for p in os.listdir(args.data_file):
if p.endswith(".idx"):
@ -29,33 +31,52 @@ class MyDataset(Dataset):
exit(0)
else:
self.data = MMapIndexedDataset(args.data_file)
self.data_size = len(self.data._bin_buffer) // self.data._index._dtype_size
self.data_size = (
len(self.data._bin_buffer) // self.data._index._dtype_size
)
rank_zero_info(f"Data has {self.data_size} tokens.")
if args.my_qa_mask > 0:
self.data_pile = MMapIndexedDataset('/fsx/BlinkDL/pile/pile_20B_tokenizer_text_document')
self.data_pile_size = len(self.data_pile._bin_buffer) // self.data._index._dtype_size
self.data_pile = MMapIndexedDataset(
"/fsx/BlinkDL/pile/pile_20B_tokenizer_text_document"
)
self.data_pile_size = (
len(self.data_pile._bin_buffer) // self.data._index._dtype_size
)
if args.my_pile_stage > 0:
# assert self.data_size == 332115325534 and self.vocab_size == 50277
self.samples_per_epoch = args.epoch_steps * args.real_bsz
assert self.samples_per_epoch == 40320
rank_zero_info(f"########## Pile 20b-tokenized stage {args.my_pile_stage} ##########")
rank_zero_info(
f"########## Pile 20b-tokenized stage {args.my_pile_stage} ##########"
)
dataset_slot = self.data_size // args.ctx_len
if args.my_pile_stage != 4:
assert MaybeIsPrime(args.magic_prime)
assert args.magic_prime % 3 == 2
assert args.magic_prime / dataset_slot > 0.99 and args.magic_prime / dataset_slot <= 1
assert (
args.magic_prime / dataset_slot > 0.99
and args.magic_prime / dataset_slot <= 1
)
elif args.data_type == "numpy":
self.data = np.load(args.data_file).astype("int")
self.vocab_size = args.vocab_size
rank_zero_info("Current vocab size =", self.vocab_size, "(make sure it's correct)")
rank_zero_info(
"Current vocab size =", self.vocab_size, "(make sure it's correct)"
)
self.data_size = len(self.data)
rank_zero_info(f"Data has {self.data_size} tokens.")
elif args.data_type == "uint16":
self.data = np.fromfile(args.data_file, dtype=np.uint16).astype("int32").reshape(-1, args.my_sample_len)
self.data = (
np.fromfile(args.data_file, dtype=np.uint16)
.astype("int32")
.reshape(-1, args.my_sample_len)
)
self.vocab_size = args.vocab_size
rank_zero_info("Current vocab size =", self.vocab_size, "(make sure it's correct)")
rank_zero_info(
"Current vocab size =", self.vocab_size, "(make sure it's correct)"
)
self.data_size = self.data.shape[0]
rank_zero_info(f"Data has {self.data_size} samples.")
elif args.data_type == "wds_img":
@ -86,10 +107,14 @@ class MyDataset(Dataset):
for u in unique:
xxObj[xx] = u
xx += 1
with open(f"{args.proj_dir}/vocab.json", "w", encoding="utf-16le") as vocab_file:
with open(
f"{args.proj_dir}/vocab.json", "w", encoding="utf-16le"
) as vocab_file:
vocab_file.write(json.dumps(xxObj, ensure_ascii=False))
self.data_size = len(self.data)
rank_zero_info(f"Data has {self.data_size} tokens, {self.vocab_size} vocab size.")
rank_zero_info(
f"Data has {self.data_size} tokens, {self.vocab_size} vocab size."
)
self.stoi = {ch: i for i, ch in enumerate(unique)}
self.itos = {i: ch for i, ch in enumerate(unique)}
@ -104,36 +129,53 @@ class MyDataset(Dataset):
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size}")
if args.data_type == "wds_img":
def init_wds(self, bias=0):
def identity(x):
return x
return x
import webdataset as wds
import torchvision.transforms as transforms
# img_transform = transforms.Compose(
# [transforms.CenterCrop(256)]
# )
img_transform = transforms.Compose([
transforms.CenterCrop(512),
transforms.Resize((args.my_img_size))
])
self.data_raw = wds.WebDataset(args.data_file, resampled=True).shuffle(10000, initial=1000, rng=random.Random(epoch*100000+rank+bias*1e9)).decode("torchrgb").to_tuple("jpg", "json", "txt").map_tuple(img_transform, identity, identity)
img_transform = transforms.Compose(
[transforms.CenterCrop(512), transforms.Resize((args.my_img_size))]
)
self.data_raw = (
wds.WebDataset(args.data_file, resampled=True)
.shuffle(
10000,
initial=1000,
rng=random.Random(epoch * 100000 + rank + bias * 1e9),
)
.decode("torchrgb")
.to_tuple("jpg", "json", "txt")
.map_tuple(img_transform, identity, identity)
)
for pp in self.data_raw.pipeline:
if 'Resampled' in str(pp):
if "Resampled" in str(pp):
pp.deterministic = True
def worker_seed():
return rank*100000+epoch+bias*1e9
return rank * 100000 + epoch + bias * 1e9
pp.worker_seed = worker_seed
self.data = iter(self.data_raw)
# print(f"WebDataset loaded for rank {rank} epoch {epoch}")
if self.data == None:
init_wds(self)
trial = 0
while trial < 10:
try:
dd = next(self.data) # jpg, json, txt
dd = next(self.data) # jpg, json, txt
break
except:
print(f'[dataloader error - epoch {epoch} rank {rank} - trying a new shuffle]')
print(
f"[dataloader error - epoch {epoch} rank {rank} - trying a new shuffle]"
)
self.error_count += 1
init_wds(self, self.error_count)
trial += 1
@ -144,7 +186,7 @@ class MyDataset(Dataset):
return dd[0], dd[2]
else:
if args.data_type == "uint16":
i = np.random.randint(0, self.data_size-1)
i = np.random.randint(0, self.data_size - 1)
dix = self.data[i]
x = torch.tensor(dix[:-1], dtype=torch.long)
y = torch.tensor(dix[1:], dtype=torch.long)
@ -196,7 +238,12 @@ class MyDataset(Dataset):
z_sum = 0
isGood = False
for i in range(3, ctx_len):
if dix[i] == 27 and dix[i-1] == 34 and dix[i-2] == 187 and dix[i-3] == 187:
if (
dix[i] == 27
and dix[i - 1] == 34
and dix[i - 2] == 187
and dix[i - 3] == 187
):
isGood = True
if dix[i] == 0:
isGood = False
@ -206,7 +253,9 @@ class MyDataset(Dataset):
if z_sum == 0:
z = [1] * ctx_len
i = np.random.randint(0, self.data_pile_size - req_len)
dix = self.data_pile.get(idx=0, offset=i, length=req_len).astype(int)
dix = self.data_pile.get(
idx=0, offset=i, length=req_len
).astype(int)
z = torch.tensor(z, dtype=torch.bfloat16)
x = torch.tensor(dix[:-1], dtype=torch.long)

View File

@ -5,6 +5,7 @@
import functools
import os, math, gc, importlib
import torch
# torch._C._jit_set_profiling_executor(True)
# torch._C._jit_set_profiling_mode(True)
import torch.nn as nn
@ -13,7 +14,8 @@ from torch.nn import functional as F
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
from pytorch_lightning.strategies import DeepSpeedStrategy
if importlib.util.find_spec('deepspeed'):
if importlib.util.find_spec("deepspeed"):
import deepspeed
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam
@ -28,9 +30,10 @@ LORA_CONFIG = {
try:
print('RWKV_MY_TESTING', os.environ["RWKV_MY_TESTING"])
print("RWKV_MY_TESTING", os.environ["RWKV_MY_TESTING"])
except:
os.environ["RWKV_MY_TESTING"] = ''
os.environ["RWKV_MY_TESTING"] = ""
def __nop(ob):
return ob
@ -53,7 +56,26 @@ T_MAX = int(os.environ["RWKV_T_MAX"]) # TAKES LOTS OF VRAM!
from torch.utils.cpp_extension import load
if os.environ["RWKV_FLOAT_MODE"] == "bf16":
wkv_cuda = load(name=f"wkv_{T_MAX}_bf16", sources=["finetune/lora/cuda/wkv_op_bf16.cpp", "finetune/lora/cuda/wkv_cuda_bf16.cu"], verbose=True, extra_cuda_cflags=["-t 4", "-std=c++17", "-res-usage", "--maxrregcount 60", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-DTmax={T_MAX}"])
wkv_cuda = load(
name=f"wkv_{T_MAX}_bf16",
sources=[
"finetune/lora/v4/cuda/wkv_op_bf16.cpp",
"finetune/lora/v4/cuda/wkv_cuda_bf16.cu",
],
verbose=True,
extra_cuda_cflags=[
"-t 4",
"-std=c++17",
"-res-usage",
"--maxrregcount 60",
"--use_fast_math",
"-O3",
"-Xptxas -O3",
"--extra-device-vectorization",
f"-DTmax={T_MAX}",
],
)
class WKV(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, w, u, k, v):
@ -66,10 +88,16 @@ if os.environ["RWKV_FLOAT_MODE"] == "bf16":
u = u.contiguous()
k = k.contiguous()
v = v.contiguous()
y = torch.empty((B, T, C), device=w.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
y = torch.empty(
(B, T, C),
device=w.device,
memory_format=torch.contiguous_format,
dtype=torch.bfloat16,
)
wkv_cuda.forward(B, T, C, w, u, k, v, y)
ctx.save_for_backward(w, u, k, v, y)
return y
@staticmethod
def backward(ctx, gy):
B = ctx.B
@ -78,16 +106,54 @@ if os.environ["RWKV_FLOAT_MODE"] == "bf16":
assert T <= T_MAX
assert B * C % min(C, 32) == 0
w, u, k, v, y = ctx.saved_tensors
gw = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gu = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gk = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gv = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gw = torch.empty(
(B, C),
device=gy.device,
memory_format=torch.contiguous_format,
dtype=torch.bfloat16,
)
gu = torch.empty(
(B, C),
device=gy.device,
memory_format=torch.contiguous_format,
dtype=torch.bfloat16,
)
gk = torch.empty(
(B, T, C),
device=gy.device,
memory_format=torch.contiguous_format,
dtype=torch.bfloat16,
)
gv = torch.empty(
(B, T, C),
device=gy.device,
memory_format=torch.contiguous_format,
dtype=torch.bfloat16,
)
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.contiguous(), gw, gu, gk, gv)
gw = torch.sum(gw, dim=0)
gu = torch.sum(gu, dim=0)
return (None, None, None, gw, gu, gk, gv)
else:
wkv_cuda = load(name=f"wkv_{T_MAX}", sources=["finetune/lora/cuda/wkv_op.cpp", "finetune/lora/cuda/wkv_cuda.cu"], verbose=True, extra_cuda_cflags=["-res-usage", "--maxrregcount 60", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-DTmax={T_MAX}"])
wkv_cuda = load(
name=f"wkv_{T_MAX}",
sources=[
"finetune/lora/v4/cuda/wkv_op.cpp",
"finetune/lora/v4/cuda/wkv_cuda.cu",
],
verbose=True,
extra_cuda_cflags=[
"-res-usage",
"--maxrregcount 60",
"--use_fast_math",
"-O3",
"-Xptxas -O3",
"--extra-device-vectorization",
f"-DTmax={T_MAX}",
],
)
class WKV(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, w, u, k, v):
@ -106,7 +172,9 @@ else:
u = u.float().contiguous()
k = k.float().contiguous()
v = v.float().contiguous()
y = torch.empty((B, T, C), device=w.device, memory_format=torch.contiguous_format)
y = torch.empty(
(B, T, C), device=w.device, memory_format=torch.contiguous_format
)
wkv_cuda.forward(B, T, C, w, u, k, v, y)
ctx.save_for_backward(w, u, k, v, y)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
@ -115,6 +183,7 @@ else:
return y.half()
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
return y.bfloat16()
@staticmethod
def backward(ctx, gy):
B = ctx.B
@ -123,14 +192,26 @@ else:
assert T <= T_MAX
assert B * C % min(C, 32) == 0
w, u, k, v, y = ctx.saved_tensors
gw = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format)
gu = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format)
gk = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format)
gv = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format)
gw = torch.empty(
(B, C), device=gy.device, memory_format=torch.contiguous_format
)
gu = torch.empty(
(B, C), device=gy.device, memory_format=torch.contiguous_format
)
gk = torch.empty(
(B, T, C), device=gy.device, memory_format=torch.contiguous_format
)
gv = torch.empty(
(B, T, C), device=gy.device, memory_format=torch.contiguous_format
)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.contiguous(), gw, gu, gk, gv)
wkv_cuda.backward(
B, T, C, w, u, k, v, y, gy.contiguous(), gw, gu, gk, gv
)
else:
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.float().contiguous(), gw, gu, gk, gv)
wkv_cuda.backward(
B, T, C, w, u, k, v, y, gy.float().contiguous(), gw, gu, gk, gv
)
gw = torch.sum(gw, dim=0)
gu = torch.sum(gu, dim=0)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
@ -138,7 +219,15 @@ else:
elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
return (None, None, None, gw.half(), gu.half(), gk.half(), gv.half())
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
return (None, None, None, gw.bfloat16(), gu.bfloat16(), gk.bfloat16(), gv.bfloat16())
return (
None,
None,
None,
gw.bfloat16(),
gu.bfloat16(),
gk.bfloat16(),
gv.bfloat16(),
)
def RUN_CUDA(B, T, C, w, u, k, v):
@ -151,15 +240,17 @@ def RUN_CUDA(B, T, C, w, u, k, v):
class LoraLinear(nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool):
super().__init__()
self.weight = nn.Parameter(torch.empty((out_features, in_features)))
assert bias == False, "Biased LoraLinear not supported"
r, alpha, dropout = LORA_CONFIG["r"], LORA_CONFIG[
"alpha"], LORA_CONFIG["dropout"]
r, alpha, dropout = (
LORA_CONFIG["r"],
LORA_CONFIG["alpha"],
LORA_CONFIG["dropout"],
)
self.lora_A = nn.Parameter(torch.empty(r, in_features))
self.lora_B = nn.Parameter(torch.empty(out_features, r))
self.lora_dropout = nn.Dropout(dropout)
@ -170,9 +261,9 @@ class LoraLinear(nn.Module):
nn.init.zeros_(self.lora_B)
def forward(self, x):
return (
F.linear(x, self.weight) + self.scaling *
F.linear(F.linear(self.lora_dropout(x), self.lora_A), self.lora_B))
return F.linear(x, self.weight) + self.scaling * F.linear(
F.linear(self.lora_dropout(x), self.lora_A), self.lora_B
)
@functools.wraps(LoraLinear)
@ -214,17 +305,23 @@ class RWKV_TimeMix(MyModule):
# fancy time_decay
decay_speed = torch.ones(args.dim_att)
for h in range(args.dim_att):
decay_speed[h] = -5 + 8 * (h / (args.dim_att - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
decay_speed[h] = -5 + 8 * (h / (args.dim_att - 1)) ** (
0.7 + 1.3 * ratio_0_to_1
)
self.time_decay = nn.Parameter(decay_speed)
# print(layer_id, self.time_decay.flatten()[:3].cpu().numpy(), '...', self.time_decay.flatten()[-3:].cpu().numpy())
# fancy time_first
zigzag = torch.tensor([(i + 1) % 3 - 1 for i in range(args.dim_att)]) * 0.5
self.time_first = nn.Parameter(torch.ones(args.dim_att) * math.log(0.3) + zigzag)
self.time_first = nn.Parameter(
torch.ones(args.dim_att) * math.log(0.3) + zigzag
)
# fancy time_mix
self.time_mix_k = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_v = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
self.time_mix_v = nn.Parameter(
torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1
)
self.time_mix_r = nn.Parameter(torch.pow(ddd, 0.5 * ratio_1_to_almost0))
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
@ -235,8 +332,10 @@ class RWKV_TimeMix(MyModule):
self.output = nn.Linear(args.dim_att, args.n_embd, bias=False)
if 'a' in os.environ["RWKV_MY_TESTING"]:
self.register_buffer("att_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
if "a" in os.environ["RWKV_MY_TESTING"]:
self.register_buffer(
"att_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len))
)
d_qkv = args.n_embd // 16
self.qq = nn.Linear(args.n_embd, d_qkv, bias=False)
self.kk = nn.Linear(args.n_embd, d_qkv, bias=False)
@ -245,12 +344,17 @@ class RWKV_TimeMix(MyModule):
with torch.no_grad():
self.time_mix_qq = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_kk = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_vv = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
self.time_mix_vv = nn.Parameter(
torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1
)
if "a" not in os.environ["RWKV_MY_TESTING"]:
if 'a' not in os.environ["RWKV_MY_TESTING"]:
@MyFunction
def jit_func(self, x):
xx = self.time_shift(x) # Mix x with the previous timestep to produce xk, xv, xr
xx = self.time_shift(
x
) # Mix x with the previous timestep to produce xk, xv, xr
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
@ -263,21 +367,26 @@ class RWKV_TimeMix(MyModule):
def forward(self, x):
B, T, C = x.size() # x = (Batch,Time,Channel)
sr, k, v = self.jit_func(x)
rwkv = sr * RUN_CUDA(B, T, self.args.dim_att, self.time_decay, self.time_first, k, v)
rwkv = sr * RUN_CUDA(
B, T, self.args.dim_att, self.time_decay, self.time_first, k, v
)
return self.output(rwkv)
if 'a' in os.environ["RWKV_MY_TESTING"]:
if "a" in os.environ["RWKV_MY_TESTING"]:
@MyFunction
def QKV(self, q, k, v):
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.att_mask == 0, float('-inf'))
att = F.softmax(att, dim = -1)
att = att.masked_fill(self.att_mask == 0, float("-inf"))
att = F.softmax(att, dim=-1)
x = att @ v
return x
@MyFunction
def jit_funcQKV(self, x):
xx = self.time_shift(x) # Mix x with the previous timestep to produce xk, xv, xr
xx = self.time_shift(
x
) # Mix x with the previous timestep to produce xk, xv, xr
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
@ -296,12 +405,16 @@ class RWKV_TimeMix(MyModule):
def forward(self, x):
B, T, C = x.size() # x = (Batch,Time,Channel)
sr, k, v, qq, kk, vv = self.jit_funcQKV(x)
rwkv = sr * RUN_CUDA(B, T, self.args.dim_att, self.time_decay, self.time_first, k, v)
rwkv = sr * RUN_CUDA(
B, T, self.args.dim_att, self.time_decay, self.time_first, k, v
)
rwkv = self.output(rwkv) + self.oo(self.QKV(qq, kk, vv))
return rwkv
########################################################################################################
class RWKV_ChannelMix(MyModule):
def __init__(self, args, layer_id):
super().__init__()
@ -331,6 +444,7 @@ class RWKV_ChannelMix(MyModule):
kv = self.value(k)
return torch.sigmoid(self.receptance(xr)) * kv
class MishGLU(MyModule):
def __init__(self, args, layer_id):
super().__init__()
@ -360,6 +474,7 @@ class MishGLU(MyModule):
b = self.bb(xb)
return self.value(a * F.mish(b))
########################################################################################################
# The RWKV Model with our blocks
########################################################################################################
@ -377,15 +492,19 @@ class Block(nn.Module):
if self.layer_id == 0:
self.ln0 = nn.LayerNorm(args.n_embd)
if args.my_pos_emb > 0:
self.pos_emb_x = nn.Parameter(torch.zeros((1,args.my_pos_emb,args.n_embd)))
self.pos_emb_y = nn.Parameter(torch.zeros((args.my_pos_emb,1,args.n_embd)))
self.pos_emb_x = nn.Parameter(
torch.zeros((1, args.my_pos_emb, args.n_embd))
)
self.pos_emb_y = nn.Parameter(
torch.zeros((args.my_pos_emb, 1, args.n_embd))
)
if self.layer_id == 0 and self.args.pre_ffn > 0:
self.ffnPre = RWKV_ChannelMix(args, 0)
else:
self.att = RWKV_TimeMix(args, layer_id)
if 'g' in os.environ["RWKV_MY_TESTING"]:
if "g" in os.environ["RWKV_MY_TESTING"]:
self.ffn = MishGLU(args, layer_id)
else:
self.ffn = RWKV_ChannelMix(args, layer_id)
@ -395,7 +514,9 @@ class Block(nn.Module):
self.tiny_q = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
self.tiny_k = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
self.tiny_v = nn.Linear(args.n_embd, args.n_embd, bias=False)
self.register_buffer("tiny_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
self.register_buffer(
"tiny_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len))
)
def forward(self, x, x_emb=None):
args = self.args
@ -403,7 +524,7 @@ class Block(nn.Module):
if self.layer_id == 0:
x = self.ln0(x)
if args.my_pos_emb > 0:
pos_emb = (self.pos_emb_x + self.pos_emb_y).reshape(T+1, -1)[:-1,:]
pos_emb = (self.pos_emb_x + self.pos_emb_y).reshape(T + 1, -1)[:-1, :]
x = x + pos_emb
if self.layer_id == 0 and args.pre_ffn > 0:
@ -443,13 +564,13 @@ class RWKV(pl.LightningModule):
def __init__(self, args):
super().__init__()
self.args = args
if not hasattr(args, 'dim_att'):
if not hasattr(args, "dim_att"):
args.dim_att = args.n_embd
if not hasattr(args, 'dim_ffn'):
if not hasattr(args, "dim_ffn"):
args.dim_ffn = args.n_embd * 4
if not hasattr(args, 'tiny_att_layer'):
if not hasattr(args, "tiny_att_layer"):
args.tiny_att_layer = -1
if not hasattr(args, 'tiny_att_dim'):
if not hasattr(args, "tiny_att_dim"):
args.tiny_att_dim = -1
self.emb = nn.Embedding(args.vocab_size, args.n_embd)
@ -462,7 +583,9 @@ class RWKV(pl.LightningModule):
if args.head_qk > 0:
self.head_q = nn.Linear(args.n_embd, args.head_qk, bias=False)
self.head_k = nn.Linear(args.n_embd, args.head_qk, bias=False)
self.register_buffer("copy_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
self.register_buffer(
"copy_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len))
)
def configure_optimizers(self):
args = self.args
@ -494,19 +617,46 @@ class RWKV(pl.LightningModule):
param_dict = {n: p for n, p in self.named_parameters()}
if args.my_pile_stage == 2:
optim_groups = [
{"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
{"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 2e-3 / args.lr_init},
{"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 3e-3 / args.lr_init},
{
"params": [param_dict[n] for n in lr_1x],
"weight_decay": 0.0,
"my_lr_scale": 1.0,
},
{
"params": [param_dict[n] for n in lr_2x],
"weight_decay": 0.0,
"my_lr_scale": 5.0,
}, # test: 2e-3 / args.lr_init},
{
"params": [param_dict[n] for n in lr_3x],
"weight_decay": 0.0,
"my_lr_scale": 5.0,
}, # test: 3e-3 / args.lr_init},
]
else:
optim_groups = [
{"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
{"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 2.0},
{"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 3.0},
{
"params": [param_dict[n] for n in lr_1x],
"weight_decay": 0.0,
"my_lr_scale": 1.0,
},
{
"params": [param_dict[n] for n in lr_2x],
"weight_decay": 0.0,
"my_lr_scale": 2.0,
},
{
"params": [param_dict[n] for n in lr_3x],
"weight_decay": 0.0,
"my_lr_scale": 3.0,
},
]
else:
optim_groups = [
{"params": [p for n, p in self.named_parameters()], "weight_decay": 0.0},
{
"params": [p for n, p in self.named_parameters()],
"weight_decay": 0.0,
},
]
for g in optim_groups:
@ -514,8 +664,26 @@ class RWKV(pl.LightningModule):
optim_groups = [g for g in optim_groups if len(g["params"]) > 0]
if self.deepspeed_offload:
return DeepSpeedCPUAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adamw_mode=False, weight_decay=0, amsgrad=False)
return FusedAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adam_w_mode=False, weight_decay=0, amsgrad=False)
return DeepSpeedCPUAdam(
optim_groups,
lr=self.args.lr_init,
betas=self.args.betas,
eps=self.args.adam_eps,
bias_correction=True,
adamw_mode=False,
weight_decay=0,
amsgrad=False,
)
return FusedAdam(
optim_groups,
lr=self.args.lr_init,
betas=self.args.betas,
eps=self.args.adam_eps,
bias_correction=True,
adam_w_mode=False,
weight_decay=0,
amsgrad=False,
)
# return ZeroOneAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, weight_decay=0, amsgrad=False, cuda_aware=False)
@property
@ -589,10 +757,14 @@ class RWKV(pl.LightningModule):
logits = self(idx)
if sum_mask == mask.shape[0]:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1)
)
# print('rank', self.global_rank, 'loss', loss.item())
else:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), reduction='none')
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1), reduction="none"
)
# loss_raw = loss
loss = torch.sum(loss * mask) / sum_mask
@ -632,7 +804,14 @@ class RWKV(pl.LightningModule):
gain = 1.0
scale = 1.0
if "ln_" in n or ".ln" in n or "time_" in n or "_mask" in n or "pos_emb" in n or '.mask.' in n:
if (
"ln_" in n
or ".ln" in n
or "time_" in n
or "_mask" in n
or "pos_emb" in n
or ".mask." in n
):
m[n] = p
else:
if n == "emb.weight":
@ -640,7 +819,19 @@ class RWKV(pl.LightningModule):
else:
if shape[0] > shape[1]:
gain = math.sqrt(shape[0] / shape[1])
for kk in [".att.key.", ".att.receptance.", ".att.output.", ".att.key.", ".ffn.value.", ".ffn.receptance.", ".ffnPre.value.", ".ffnPre.receptance.", "head_q.", '.oo.', '.rr.']:
for kk in [
".att.key.",
".att.receptance.",
".att.output.",
".att.key.",
".ffn.value.",
".ffn.receptance.",
".ffnPre.value.",
".ffnPre.receptance.",
"head_q.",
".oo.",
".rr.",
]:
if kk in n:
scale = 0
if n == "head.weight":
@ -650,7 +841,9 @@ class RWKV(pl.LightningModule):
if "head_q." in n:
scale = 0
print(f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {str(scale).ljust(4)} {n}")
print(
f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {str(scale).ljust(4)} {n}"
)
if self.args.accelerator.upper() == "GPU":
m[n] = torch.empty((shape[0], shape[1]), device="cuda")

View File

@ -5,15 +5,17 @@ import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
from .model import LORA_CONFIG
def my_save(dd, ff):
if '14b-run1' not in ff:
if "14b-run1" not in ff:
torch.save(dd, ff)
else:
fn = ff.split('/')[-1]
fff = '/dev/shm/' + fn
fn = ff.split("/")[-1]
fff = "/dev/shm/" + fn
torch.save(dd, fff)
subprocess.Popen(f" aws s3 mv {fff} s3://rwkv-14b-4k/{fn} --quiet", shell=True)
class train_callback(pl.Callback):
def __init__(self, args):
super().__init__()
@ -38,7 +40,9 @@ class train_callback(pl.Callback):
if args.lr_final == 0 or args.lr_init == 0: # linear decay
lr = args.lr_init + (args.lr_final - args.lr_init) * progress
else: # exp decay
lr = args.lr_init * math.exp(math.log(args.lr_final / args.lr_init) * pow(progress, 1))
lr = args.lr_init * math.exp(
math.log(args.lr_final / args.lr_init) * pow(progress, 1)
)
if trainer.global_step < w_step:
lr = lr * (0.2 + 0.8 * trainer.global_step / w_step)
@ -60,7 +64,9 @@ class train_callback(pl.Callback):
trainer.my_loss_sum = 0
trainer.my_loss_count = 0
trainer.my_log = open(args.proj_dir + "/train_log.txt", "a")
trainer.my_log.write(f"NEW RUN {args.my_timestamp}\n{vars(self.args)}\n")
trainer.my_log.write(
f"NEW RUN {args.my_timestamp}\n{vars(self.args)}\n"
)
try:
print(f"\n{trainer.strategy.config}\n")
trainer.my_log.write(f"{trainer.strategy.config}\n")
@ -70,6 +76,7 @@ class train_callback(pl.Callback):
if len(args.wandb) > 0:
print("Login to wandb...")
import wandb
wandb.init(
project=args.wandb,
name=args.run_name + " " + args.my_timestamp,
@ -102,20 +109,26 @@ class train_callback(pl.Callback):
# self.log("s", real_step, prog_bar=True, on_step=True)
if len(args.wandb) > 0:
lll = {"loss": trainer.my_loss, "lr": trainer.my_lr, "Gtokens": real_step * token_per_step / 1e9}
lll = {
"loss": trainer.my_loss,
"lr": trainer.my_lr,
"Gtokens": real_step * token_per_step / 1e9,
}
if kt_s > 0:
lll["kt/s"] = kt_s
trainer.my_wandb.log(lll, step=int(real_step))
if args.magic_prime > 0:
expand_factor = 2 if args.my_qa_mask > 0 else 1
if int(real_step) == int(args.magic_prime * expand_factor // args.real_bsz) - 1:
if (
int(real_step)
== int(args.magic_prime * expand_factor // args.real_bsz) - 1
):
to_save_dict = pl_module.state_dict()
my_save(
to_save_dict,
f"{args.proj_dir}/rwkv-final.pth",
)
def on_train_epoch_start(self, trainer, pl_module):
args = self.args
dataset = trainer.train_dataloader.dataset.datasets
@ -128,24 +141,28 @@ class train_callback(pl.Callback):
def on_train_epoch_end(self, trainer, pl_module):
args = self.args
if trainer.is_global_zero: # logging & save state_dict
if (args.epoch_save > 0 and trainer.current_epoch % args.epoch_save == 0) or trainer.current_epoch == args.epoch_count - 1:
if args.data_type == 'wds_img':
if (
args.epoch_save > 0 and trainer.current_epoch % args.epoch_save == 0
) or trainer.current_epoch == args.epoch_count - 1:
if args.data_type == "wds_img":
raw_dict = pl_module.state_dict()
to_save_dict = {}
for k in raw_dict:
if k.startswith('encoder.') or k.startswith('decoder.'):
if k.startswith("encoder.") or k.startswith("decoder."):
to_save_dict[k] = raw_dict[k]
else:
to_save_dict = pl_module.state_dict()
if args.lora:
enable_time_finetune = 'time' in LORA_CONFIG["parts"]
enable_ln_finetune = 'ln' in LORA_CONFIG["parts"]
enable_time_finetune = "time" in LORA_CONFIG["parts"]
enable_ln_finetune = "ln" in LORA_CONFIG["parts"]
lora_dict = {}
for name, state in to_save_dict.items():
if ('.lora_' in name
or (enable_time_finetune and '.time_' in name)
or (enable_ln_finetune and '.ln' in name)):
if (
".lora_" in name
or (enable_time_finetune and ".time_" in name)
or (enable_ln_finetune and ".ln" in name)
):
lora_dict[name] = state
to_save_dict = lora_dict
@ -155,8 +172,10 @@ class train_callback(pl.Callback):
f"{args.proj_dir}/rwkv-{args.epoch_begin + trainer.current_epoch}.pth",
)
except Exception as e:
print('Error\n\n', e, '\n\n')
trainer.my_log.write(f"{args.epoch_begin + trainer.current_epoch} {trainer.my_epoch_loss:.6f} {math.exp(trainer.my_epoch_loss):.4f} {trainer.my_lr:.8f} {datetime.datetime.now()} {trainer.current_epoch}\n")
print("Error\n\n", e, "\n\n")
trainer.my_log.write(
f"{args.epoch_begin + trainer.current_epoch} {trainer.my_epoch_loss:.6f} {math.exp(trainer.my_epoch_loss):.4f} {trainer.my_lr:.8f} {datetime.datetime.now()} {trainer.current_epoch}\n"
)
trainer.my_log.flush()
trainer.my_loss_sum = 0
@ -178,22 +197,22 @@ def generate_init_weight(model, init_weight_name):
mm[k] = src.reshape(mm[k].shape)
except:
tmp = mm[k].squeeze().clone()
print(k, src.shape, '-->', mm[k].shape)
print(k, src.shape, "-->", mm[k].shape)
ss = src.shape[0]
dd = tmp.shape[0]
for i in range(dd):
pos = i / dd * ss
if pos >= ss - 1:
tmp[i] = src[ss-1]
tmp[i] = src[ss - 1]
else:
p0 = int(math.floor(pos))
ii = pos - p0
tmp[i] = src[p0] * (1-ii) + src[p0+1] * (ii)
tmp[i] = src[p0] * (1 - ii) + src[p0 + 1] * (ii)
mm[k] = tmp.reshape(mm[k].shape)
sss = src.squeeze().float().cpu().numpy()
print(sss[:10], '...', sss[-10:])
print(sss[:10], "...", sss[-10:])
mmm = mm[k].squeeze().float().cpu().numpy()
print(mmm[:10], '...', mmm[-10:])
print(mmm[:10], "...", mmm[-10:])
print(f"Save to {init_weight_name}...")
torch.save(mm, init_weight_name)

View File

@ -6,6 +6,7 @@ from torch.nn import functional as F
time_slot = {}
time_ref = time.time_ns()
def record_time(name):
if name not in time_slot:
time_slot[name] = 1e20
@ -13,20 +14,23 @@ def record_time(name):
if tt < time_slot[name]:
time_slot[name] = tt
class TOKENIZER():
def __init__(self, WORD_NAME, UNKNOWN_CHAR='\ue083'):
if 'list' in str(type(WORD_NAME)):
class TOKENIZER:
def __init__(self, WORD_NAME, UNKNOWN_CHAR="\ue083"):
if "list" in str(type(WORD_NAME)):
self.charMode = False
if WORD_NAME[0] == WORD_NAME[1]:
from transformers import PreTrainedTokenizerFast
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=WORD_NAME[0])
else:
from transformers import GPT2TokenizerFast
self.tokenizer = GPT2TokenizerFast(WORD_NAME[0], WORD_NAME[1])
self.vocab_size = len(self.tokenizer)
else:
self.charMode = True
with open(WORD_NAME + '.json', "r", encoding="utf-16") as result_file:
with open(WORD_NAME + ".json", "r", encoding="utf-16") as result_file:
self.word_table = json.load(result_file)
self.vocab_size = len(self.word_table)
@ -37,23 +41,25 @@ class TOKENIZER():
self.UNKNOWN_CHAR = self.stoi[UNKNOWN_CHAR]
def refine_context(self, context):
context = context.strip().split('\n')
context = context.strip().split("\n")
for c in range(len(context)):
context[c] = context[c].strip().strip('\u3000').strip('\r')
context = list(filter(lambda c: c != '', context))
context = '\n' + ('\n'.join(context)).strip()
if context == '':
context = '\n'
context[c] = context[c].strip().strip("\u3000").strip("\r")
context = list(filter(lambda c: c != "", context))
context = "\n" + ("\n".join(context)).strip()
if context == "":
context = "\n"
return context
def sample_logits(self, out, x, ctx_len, temperature=1.0, top_p_usual=None, top_p_newline=None):
def sample_logits(
self, out, x, ctx_len, temperature=1.0, top_p_usual=None, top_p_newline=None
):
# out[self.UNKNOWN_CHAR] = -float('Inf')
lastChar = int(x[-1])
probs = F.softmax(out, dim=-1)
if self.charMode:
if self.itos[lastChar] == '\n':
if self.itos[lastChar] == "\n":
top_p = top_p_newline
else:
top_p = top_p_usual
@ -81,6 +87,7 @@ class TOKENIZER():
out = torch.multinomial(probs, num_samples=1)[0]
return out
def MaybeIsPrime(number):
if FermatPrimalityTest(number) and MillerRabinPrimalityTest(number):
return True
@ -121,7 +128,9 @@ def MillerRabinPrimalityTest(number):
if (randomNumberWithPower != 1) and (randomNumberWithPower != number - 1):
iterationNumber = 1
while (iterationNumber <= timesTwoDividNumber - 1) and (randomNumberWithPower != number - 1):
while (iterationNumber <= timesTwoDividNumber - 1) and (
randomNumberWithPower != number - 1
):
randomNumberWithPower = pow(randomNumberWithPower, 2, number)
iterationNumber = iterationNumber + 1
if randomNumberWithPower != (number - 1):

View File

@ -184,7 +184,7 @@ if __name__ == "__main__":
args.num_sanity_val_steps = 0
args.check_val_every_n_epoch = int(1e20)
args.log_every_n_steps = int(1e20)
args.max_epochs = -1 # continue forever
args.max_epochs = args.epoch_count # -1 continue forever
args.betas = (args.beta1, args.beta2)
args.real_bsz = int(args.num_nodes) * int(args.devices) * args.micro_bsz
os.environ["RWKV_T_MAX"] = str(args.ctx_len)
@ -264,7 +264,7 @@ if __name__ == "__main__":
#
# Data = {args.data_file} ({args.data_type}), ProjDir = {args.proj_dir}
#
# Epoch = {args.epoch_begin} to {args.epoch_begin + args.epoch_count - 1} (will continue afterwards), save every {args.epoch_save} epoch
# Epoch = {args.epoch_begin} to {args.epoch_begin + args.epoch_count - 1}, save every {args.epoch_save} epoch
#
# Each "epoch" = {args.epoch_steps} steps, {samples_per_epoch} samples, {tokens_per_epoch} tokens
#

202
finetune/lora/v5/cuda/wkv5_cuda.cu vendored Normal file
View File

@ -0,0 +1,202 @@
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
template <typename F>
__global__ void kernel_forward(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u,
F *__restrict__ const _y)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_w += h*_N_;
_u += h*_N_;
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
float state[_N_] = {0};
__syncthreads();
w[i] = _w[i];
u[i] = float(_u[i]);
__syncthreads();
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
{
__syncthreads();
r[i] = float(_r[t]);
k[i] = float(_k[t]);
__syncthreads();
const float v = float(_v[t]);
float y = 0;
#pragma unroll
for (int j = 0; j < _N_; j+=4)
{
const float4& r_ = (float4&)(r[j]);
const float4& k_ = (float4&)(k[j]);
const float4& w_ = (float4&)(w[j]);
const float4& u_ = (float4&)(u[j]);
float4& s = (float4&)(state[j]);
float4 x;
x.x = k_.x * v;
x.y = k_.y * v;
x.z = k_.z * v;
x.w = k_.w * v;
y += r_.x * (u_.x * x.x + s.x);
y += r_.y * (u_.y * x.y + s.y);
y += r_.z * (u_.z * x.z + s.z);
y += r_.w * (u_.w * x.w + s.w);
s.x = s.x * w_.x + x.x;
s.y = s.y * w_.y + x.y;
s.z = s.z * w_.z + x.z;
s.w = s.w * w_.w + x.w;
}
_y[t] = F(y);
}
}
template <typename F>
__global__ void kernel_backward(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const float *__restrict__ __w, const F *__restrict__ _u, const F *__restrict__ const _gy,
F *__restrict__ const _gr, F *__restrict__ const _gk, F *__restrict__ const _gv, F *__restrict__ const _gw, F *__restrict__ const _gu)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_w += h*_N_;
_u += h*_N_;
__w += h*_N_;
__shared__ float w_[_N_], u_[_N_];
__shared__ float r[_N_], k[_N_], v[_N_], gy[_N_];
__syncthreads();
w_[i] = _w[i];
u_[i] = float(_u[i]);
__syncthreads();
const float w = w_[i];
const float ww = __w[i];
const float u = u_[i];
float state[_N_] = {0}, saaaa[_N_] = {0}, sbbbb[_N_] = {0}, scccc[_N_] = {0}, sdddd[_N_] = {0};
float gw = 0, gu = 0;
const int t000 = b*T*C + h*_N_ + i;
const int t111 = (b+1)*T*C + h*_N_ + i;
const int t222 = t111 - 2*C;
for (int t = t000; t < t111; t += C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float k = float(_k[t]);
float gr = 0, gu_ = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = state[j];
float x = k * v[j];
gr += (u * x + s) * gy[j];
gu_ += x * gy[j];
s = s * w + x;
}
_gr[t] = F(gr);
gu += float(_r[t]) * gu_;
}
_gu[b*C + h*_N_ + i] = F(gu);
for (int t = t000; t < t222; t += C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t + 2*C]);
__syncthreads();
const float k = float(_k[t]);
float gw_ = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = saaaa[j];
float& s2 = sbbbb[j];
float x = k * v[j];
float tmp = w * (x + s);
s = tmp;
s2 = tmp + w * s2;
gw_ += s2 * gy[j];
}
gw += float(_r[t + 2*C]) * gw_;
}
_gw[b*C + h*_N_ + i] = F(ww * gw);
for (int t = t111 - C; t >= t000; t -= C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float rr = float(_r[t]);
float gk = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
float x = rr * gy[j];
gk += (u * x + s) * v[j];
s = x + s * w;
}
_gk[t] = F(gk);
}
for (int t = t111 - C; t >= t000; t -= C)
{
__syncthreads();
r[i] = float(_r[t]);
k[i] = float(_k[t]);
__syncthreads();
const float gyy = float(_gy[t]);
float gv = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = sdddd[j];
float x = gyy * r[j];
gv += (u_[j] * x + s) * k[j];
s = x + s * w_[j];
}
_gv[t] = F(gv);
}
}
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, y);
}
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, float *ww, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_backward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, ww, u, gy, gr, gk, gv, gw, gu);
}

22
finetune/lora/v5/cuda/wkv5_op.cpp vendored Normal file
View File

@ -0,0 +1,22 @@
#include <torch/extension.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y);
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, float *ww, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu);
void forward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
cuda_forward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), y.data_ptr<bf16>());
}
void backward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &ww, torch::Tensor &u, torch::Tensor &gy, torch::Tensor &gr, torch::Tensor &gk, torch::Tensor &gv, torch::Tensor &gw, torch::Tensor &gu) {
cuda_backward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), ww.data_ptr<float>(), u.data_ptr<bf16>(), gy.data_ptr<bf16>(), gr.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>());
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "wkv5 forward");
m.def("backward", &backward, "wkv5 backward");
}
TORCH_LIBRARY(wkv5, m) {
m.def("forward", forward);
m.def("backward", backward);
}

0
finetune/lora/v5/src/__init__.py vendored Normal file
View File

303
finetune/lora/v5/src/binidx.py vendored Normal file
View File

@ -0,0 +1,303 @@
from lib2to3.pgen2 import token
import os
import torch
import numpy as np
import shutil
import struct
from functools import lru_cache
from itertools import accumulate
def print_rank_0(*message):
pass
# """If distributed is initialized print only on rank 0."""
# if torch.distributed.is_initialized():
# if torch.distributed.get_rank() == 0:
# print(*message, flush=True)
# else:
# print(*message, flush=True)
def _warmup_mmap_file(path):
pass
# with open(path, "rb") as stream:
# while stream.read(100 * 1024 * 1024):
# pass
dtypes = {
1: np.uint8,
2: np.int8,
3: np.int16,
4: np.int32,
5: np.int64,
6: float,
7: np.double,
8: np.uint16,
}
def code(dtype):
for k in dtypes.keys():
if dtypes[k] == dtype:
return k
raise ValueError(dtype)
def index_file_path(prefix_path):
return prefix_path + ".idx"
def data_file_path(prefix_path):
return prefix_path + ".bin"
class MMapIndexedDataset(torch.utils.data.Dataset):
class Index(object):
_HDR_MAGIC = b"MMIDIDX\x00\x00"
@classmethod
def writer(cls, path, dtype):
class _Writer(object):
def __enter__(self):
self._file = open(path, "wb")
# Write Magic string so we can check the file format then opening it again.
self._file.write(cls._HDR_MAGIC)
# Write version number
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", 1))
# Little endian unsigned 8 Bit integer
self._file.write(struct.pack("<B", code(dtype)))
return self
@staticmethod
def _get_pointers(sizes):
dtype_size = dtype().itemsize
address = 0
pointers = []
for size in sizes:
pointers.append(address)
address += size * dtype_size
return pointers
def write(self, sizes, doc_idx):
pointers = self._get_pointers(sizes)
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", len(sizes)))
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", len(doc_idx)))
sizes = np.array(sizes, dtype=np.int32)
self._file.write(sizes.tobytes(order="C"))
del sizes
pointers = np.array(pointers, dtype=np.int64)
self._file.write(pointers.tobytes(order="C"))
del pointers
doc_idx = np.array(doc_idx, dtype=np.int64)
self._file.write(doc_idx.tobytes(order="C"))
def __exit__(self, exc_type, exc_val, exc_tb):
self._file.close()
return _Writer()
def __init__(self, path, skip_warmup=False):
with open(path, "rb") as stream:
magic_test = stream.read(9)
assert self._HDR_MAGIC == magic_test, (
"Index file doesn't match expected format. "
"Make sure that --dataset-impl is configured properly."
)
# Little endian unsigned 64 Bit integer
version = struct.unpack("<Q", stream.read(8))
assert (1,) == version
# Little endian unsigned 8 Bit integer
(dtype_code,) = struct.unpack("<B", stream.read(1))
self._dtype = dtypes[dtype_code]
self._dtype_size = self._dtype().itemsize
self._len = struct.unpack("<Q", stream.read(8))[0]
self._doc_count = struct.unpack("<Q", stream.read(8))[0]
offset = stream.tell()
if not skip_warmup:
print_rank_0(" warming up index mmap file...")
_warmup_mmap_file(path)
self._bin_buffer_mmap = np.memmap(path, mode="r", order="C")
self._bin_buffer = memoryview(self._bin_buffer_mmap)
print_rank_0(" reading sizes...")
self._sizes = np.frombuffer(
self._bin_buffer, dtype=np.int32, count=self._len, offset=offset
)
print_rank_0(" reading pointers...")
self._pointers = np.frombuffer(
self._bin_buffer,
dtype=np.int64,
count=self._len,
offset=offset + self._sizes.nbytes,
)
print_rank_0(" reading document index...")
self._doc_idx = np.frombuffer(
self._bin_buffer,
dtype=np.int64,
count=self._doc_count,
offset=offset + self._sizes.nbytes + self._pointers.nbytes,
)
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
@property
def dtype(self):
return self._dtype
@property
def sizes(self):
return self._sizes
@property
def doc_idx(self):
return self._doc_idx
@lru_cache(maxsize=8)
def __getitem__(self, i):
return self._pointers[i], self._sizes[i]
def __len__(self):
return self._len
def __init__(self, path, skip_warmup=False):
super().__init__()
self._path = None
self._index = None
self._bin_buffer = None
self._do_init(path, skip_warmup)
def __getstate__(self):
return self._path
def __setstate__(self, state):
self._do_init(state)
def _do_init(self, path, skip_warmup):
self._path = path
self._index = self.Index(index_file_path(self._path), skip_warmup)
if not skip_warmup:
print_rank_0(" warming up data mmap file...")
_warmup_mmap_file(data_file_path(self._path))
print_rank_0(" creating numpy buffer of mmap...")
self._bin_buffer_mmap = np.memmap(
data_file_path(self._path), mode="r", order="C"
)
print_rank_0(" creating memory view of numpy buffer...")
self._bin_buffer = memoryview(self._bin_buffer_mmap)
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
del self._index
def __len__(self):
return len(self._index)
# @lru_cache(maxsize=8)
def __getitem__(self, idx):
if isinstance(idx, int):
ptr, size = self._index[idx]
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
)
return np_array
elif isinstance(idx, slice):
start, stop, step = idx.indices(len(self))
if step != 1:
raise ValueError("Slices into indexed_dataset must be contiguous")
ptr = self._index._pointers[start]
sizes = self._index._sizes[idx]
offsets = list(accumulate(sizes))
total_size = sum(sizes)
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=total_size, offset=ptr
)
sents = np.split(np_array, offsets[:-1])
return sents
def get(self, idx, offset=0, length=None):
"""Retrieves a single item from the dataset with the option to only
return a portion of the item.
get(idx) is the same as [idx] but get() does not support slicing.
"""
ptr, size = self._index[idx]
if length is None:
length = size - offset
ptr += offset * np.dtype(self._index.dtype).itemsize
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=length, offset=ptr
)
return np_array
def pad(self, idx, length=None):
ptr, size = self._index[idx]
try:
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=length, offset=ptr
)
except:
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
)
ptr0, _ = self._index[0]
np_array0 = np.frombuffer(
self._bin_buffer,
dtype=self._index.dtype,
count=length - size,
offset=ptr0,
)
np_array = np.append(np_array, np_array0)
return np_array
def only(self, idx):
ptr, size = self._index[idx]
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
)
return np_array
@property
def sizes(self):
return self._index.sizes
@property
def doc_idx(self):
return self._index.doc_idx
def get_doc_idx(self):
return self._index._doc_idx
def set_doc_idx(self, doc_idx_):
self._index._doc_idx = doc_idx_
@property
def supports_prefetch(self):
return False
@staticmethod
def exists(path):
return os.path.exists(index_file_path(path)) and os.path.exists(
data_file_path(path)
)

241
finetune/lora/v5/src/dataset.py vendored Normal file
View File

@ -0,0 +1,241 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import json, math, random, os, sys
import numpy as np
import torch
from torch.utils.data import Dataset
from pytorch_lightning.utilities import rank_zero_info
from .binidx import MMapIndexedDataset
from .utils import MaybeIsPrime
class MyDataset(Dataset):
def __init__(self, args):
self.args = args
if args.data_type == "binidx":
self.vocab_size = args.vocab_size
rank_zero_info(
f"Current vocab size = {self.vocab_size} (make sure it's correct)"
)
if args.my_pile_version == 1:
self.data = MMapIndexedDataset(args.data_file)
self.data_size = (
len(self.data._bin_buffer) // self.data._index._dtype_size
)
rank_zero_info(f"Data has {self.data_size} tokens.")
elif args.my_pile_version == 2:
data_list = (
open(args.data_file, "r", encoding="utf-8")
.read()
.strip()
.split("\n")
)
data_list = [i.strip().split(" ") for i in data_list]
self.data = []
self.data_size = int(data_list[-1][-1])
rank_zero_info(f"Data has {self.data_size} chunks.")
for d in data_list:
data = MMapIndexedDataset(d[0])
data_size = len(data._bin_buffer) // data._index._dtype_size
assert (data_size - args.ctx_len) == int(d[1])
self.data += [[int(d[-1]), int(d[1]), data]]
# rank_zero_info(self.data)
if args.my_qa_mask > 0:
# self.data_pile = MMapIndexedDataset('/fsx/pile/pile_20B_tokenizer_text_document')
self.data_pile = MMapIndexedDataset(
"/fsx/pile_deduped/pile_0.87_deduped_text_document"
)
self.data_pile_size = (
len(self.data_pile._bin_buffer) // self.data._index._dtype_size
)
else:
self.data_pile = None
self.data_pile_size = 0
if args.my_pile_stage > 0:
# assert self.data_size == 332115325534 and self.vocab_size == 50277
self.samples_per_epoch = args.epoch_steps * args.real_bsz
assert self.samples_per_epoch == 40320
rank_zero_info(
f"########## Pile 20b-tokenized stage {args.my_pile_stage} ##########"
)
dataset_slot = self.data_size // args.ctx_len
if args.my_pile_stage != 4:
assert MaybeIsPrime(args.magic_prime)
assert args.magic_prime % 3 == 2
assert (
args.magic_prime / dataset_slot > 0.99
and args.magic_prime / dataset_slot <= 1
)
elif args.data_type == "numpy":
self.data = np.load(args.data_file).astype("int")
self.vocab_size = args.vocab_size
rank_zero_info(
f"Current vocab size = {self.vocab_size} (make sure it's correct)"
)
self.data_size = len(self.data)
rank_zero_info(f"Data has {self.data_size} tokens.")
elif args.data_type == "uint16":
self.data = (
np.fromfile(args.data_file, dtype=np.uint16)
.astype("int32")
.reshape(-1, args.my_sample_len)
)
self.vocab_size = args.vocab_size
rank_zero_info(
f"Current vocab size = {self.vocab_size} (make sure it's correct)"
)
self.data_size = self.data.shape[0]
rank_zero_info(f"Data has {self.data_size} samples.")
else:
if args.data_type == "dummy":
rank_zero_info("Building dummy data...")
self.data = ""
for i in range(100000):
aa = (i) % 10000
bb = (i * i) % 10000
cc = aa + bb
self.data += f".{aa}+{bb}={cc}."
else:
self.data = open(args.data_file, "r", encoding=args.data_type).read()
rank_zero_info("Building token list...")
unique = sorted(list(set(self.data)))
self.vocab_size = len(unique)
# rank_zero_info()
# for u in unique:
# print(u, end=' ')
# rank_zero_info('\n\n')
xx = 0
xxObj = {}
for u in unique:
xxObj[xx] = u
xx += 1
with open(
f"{args.proj_dir}/vocab.json", "w", encoding="utf-8"
) as vocab_file:
vocab_file.write(json.dumps(xxObj, ensure_ascii=False))
self.data_size = len(self.data)
rank_zero_info(
f"Data has {self.data_size} tokens, {self.vocab_size} vocab size."
)
self.stoi = {ch: i for i, ch in enumerate(unique)}
self.itos = {i: ch for i, ch in enumerate(unique)}
def __len__(self):
return self.args.epoch_steps * self.args.micro_bsz
def __getitem__(self, idx):
args = self.args
rank = self.global_rank
epoch = self.real_epoch
world_size = self.world_size
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size}")
if args.data_type == "uint16":
i = np.random.randint(0, self.data_size - 1)
dix = self.data[i]
x = torch.tensor(dix[:-1], dtype=torch.long)
y = torch.tensor(dix[1:], dtype=torch.long)
else:
ctx_len = args.ctx_len
req_len = ctx_len + 1
magic_prime = args.magic_prime
data = self.data
if args.my_pile_stage > 0:
ii = 1 + epoch * self.samples_per_epoch + (idx * world_size) + rank
if args.my_qa_mask > 0:
ii_orig = ii
if ii % 2 == 0:
ii = -1
data = self.data_pile
else:
ii = ii // 2
if data == self.data_pile:
i = np.random.randint(0, self.data_pile_size - req_len)
else:
if args.my_pile_stage == 4 or ii < args.my_random_steps:
# cheat: pick a random spot in dataset
if args.my_pile_version == 1:
i = np.random.randint(0, self.data_size - req_len)
else:
i = np.random.randint(0, self.data_size)
else:
ii = ii - args.my_random_steps
factor = (math.sqrt(5) - 1) / 2
factor = int(magic_prime * factor)
i = ((factor * ii * ii * ii) % magic_prime) * ctx_len
i = i + args.my_pile_shift
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size} ii {ii} pos {round(i / self.data_size, 3)}")
else:
# cheat: pick a random spot in dataset
i = np.random.randint(0, self.data_size - req_len)
if args.data_type == "binidx":
if args.my_pile_version == 1:
dix = data.get(idx=0, offset=i, length=req_len).astype(int)
else:
# self.data : cutoff, chunk_count, data
for j in range(len(data)):
if i < data[j][0]:
ii = i
i = (i - (data[j - 1][0] if j > 0 else 0)) % data[j][1]
dix = (
data[j][2]
.get(idx=0, offset=i, length=req_len)
.astype(int)
)
# print(ii, j, i)
break
elif args.data_type == "numpy":
dix = data[i : i + req_len]
else:
dix = [self.stoi[s] for s in data[i : i + req_len]]
if args.my_qa_mask == 1:
if data == self.data_pile:
z = [1] * ctx_len
else:
z = [0] * ctx_len
z_sum = 0
isGood = False
for i in range(3, ctx_len):
if (
dix[i] == 27
and dix[i - 1] == 34
and dix[i - 2] == 187
and dix[i - 3] == 187
):
isGood = True
if dix[i] == 0:
isGood = False
if isGood:
z[i] = 1
z_sum += 1
if z_sum == 0:
z = [1] * ctx_len
i = np.random.randint(0, self.data_pile_size - req_len)
dix = self.data_pile.get(
idx=0, offset=i, length=req_len
).astype(int)
z = torch.tensor(z, dtype=torch.bfloat16)
x = torch.tensor(dix[:-1], dtype=torch.long)
y = torch.tensor(dix[1:], dtype=torch.long)
# if ii_orig < 50:
# # if rank == 1:
# print('rank', rank, 'i', ii_orig, ii, i, 'x', x[:5], '...', x[-5:])
# else:
# exit(0)
if args.my_qa_mask == 1:
return x, y, z
return x, y

819
finetune/lora/v5/src/model.py vendored Normal file
View File

@ -0,0 +1,819 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import functools
import os, math, gc, importlib
import torch
# torch._C._jit_set_profiling_executor(True)
# torch._C._jit_set_profiling_mode(True)
import torch.nn as nn
from torch.utils.checkpoint import checkpoint as torch_checkpoint
from torch.nn import functional as F
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
from pytorch_lightning.strategies import DeepSpeedStrategy
if importlib.util.find_spec("deepspeed"):
import deepspeed
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam
# from deepspeed.runtime.fp16.onebit.zoadam import ZeroOneAdam
# lora-config
LORA_CONFIG = {
"r": 0,
"alpha": 0,
"dropout": 0,
"parts": {"att", "ln", "time"},
}
try:
print("RWKV_MY_TESTING", os.environ["RWKV_MY_TESTING"])
except:
os.environ["RWKV_MY_TESTING"] = ""
def __nop(ob):
return ob
MyModule = nn.Module
MyFunction = __nop
if os.environ["RWKV_JIT_ON"] == "1":
MyModule = torch.jit.ScriptModule
MyFunction = torch.jit.script_method
########################################################################################################
# CUDA Kernel
########################################################################################################
from torch.utils.cpp_extension import load
HEAD_SIZE = int(os.environ["RWKV_HEAD_SIZE_A"])
wkv5_cuda = load(
name="wkv5",
sources=[
"finetune/lora/v5/cuda/wkv5_op.cpp",
f"finetune/lora/v5/cuda/wkv5_cuda.cu",
],
verbose=True,
extra_cuda_cflags=[
"-res-usage",
"--use_fast_math",
"-O3",
"-Xptxas -O3",
"--extra-device-vectorization",
f"-D_N_={HEAD_SIZE}",
],
)
class WKV_5(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, H, r, k, v, w, u):
with torch.no_grad():
assert r.dtype == torch.bfloat16
assert k.dtype == torch.bfloat16
assert v.dtype == torch.bfloat16
assert w.dtype == torch.bfloat16
assert u.dtype == torch.bfloat16
assert HEAD_SIZE == C // H
ctx.B = B
ctx.T = T
ctx.C = C
ctx.H = H
assert r.is_contiguous()
assert k.is_contiguous()
assert v.is_contiguous()
assert w.is_contiguous()
assert u.is_contiguous()
ew = (-torch.exp(w.float())).contiguous()
eew = (torch.exp(ew)).contiguous()
ctx.save_for_backward(r, k, v, eew, ew, u)
y = torch.empty(
(B, T, C),
device=r.device,
dtype=torch.bfloat16,
memory_format=torch.contiguous_format,
) # .uniform_(-1, 1)
wkv5_cuda.forward(B, T, C, H, r, k, v, eew, u, y)
return y
@staticmethod
def backward(ctx, gy):
with torch.no_grad():
assert gy.dtype == torch.bfloat16
B = ctx.B
T = ctx.T
C = ctx.C
H = ctx.H
assert gy.is_contiguous()
r, k, v, eew, ew, u = ctx.saved_tensors
gr = torch.empty(
(B, T, C),
device=gy.device,
requires_grad=False,
dtype=torch.bfloat16,
memory_format=torch.contiguous_format,
) # .uniform_(-1, 1)
gk = torch.empty(
(B, T, C),
device=gy.device,
requires_grad=False,
dtype=torch.bfloat16,
memory_format=torch.contiguous_format,
) # .uniform_(-1, 1)
gv = torch.empty(
(B, T, C),
device=gy.device,
requires_grad=False,
dtype=torch.bfloat16,
memory_format=torch.contiguous_format,
) # .uniform_(-1, 1)
gw = torch.empty(
(B, C),
device=gy.device,
requires_grad=False,
dtype=torch.bfloat16,
memory_format=torch.contiguous_format,
) # .uniform_(-1, 1)
gu = torch.empty(
(B, C),
device=gy.device,
requires_grad=False,
dtype=torch.bfloat16,
memory_format=torch.contiguous_format,
) # .uniform_(-1, 1)
wkv5_cuda.backward(B, T, C, H, r, k, v, eew, ew, u, gy, gr, gk, gv, gw, gu)
gw = torch.sum(gw, 0).view(H, C // H)
gu = torch.sum(gu, 0).view(H, C // H)
return (None, None, None, None, gr, gk, gv, gw, gu)
def RUN_CUDA_RWKV5(B, T, C, H, r, k, v, w, u):
return WKV_5.apply(B, T, C, H, r, k, v, w, u)
#################################################################
class LoraLinear(nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool):
super().__init__()
self.weight = nn.Parameter(torch.empty((out_features, in_features)))
assert bias == False, "Biased LoraLinear not supported"
r, alpha, dropout = (
LORA_CONFIG["r"],
LORA_CONFIG["alpha"],
LORA_CONFIG["dropout"],
)
self.lora_A = nn.Parameter(torch.empty(r, in_features))
self.lora_B = nn.Parameter(torch.empty(out_features, r))
self.lora_dropout = nn.Dropout(dropout)
self.scaling = alpha / r
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
nn.init.zeros_(self.lora_B)
def forward(self, x):
return F.linear(x, self.weight) + self.scaling * F.linear(
F.linear(self.lora_dropout(x), self.lora_A), self.lora_B
)
@functools.wraps(LoraLinear)
def make_linear_att(*args, **kwargs):
if "att" in LORA_CONFIG["parts"] and LORA_CONFIG["r"] > 0:
return LoraLinear(*args, **kwargs)
else:
return nn.Linear(*args, **kwargs)
@functools.wraps(LoraLinear)
def make_linear_ffn(*args, **kwargs):
if "ffn" in LORA_CONFIG["parts"] and LORA_CONFIG["r"] > 0:
return LoraLinear(*args, **kwargs)
else:
return nn.Linear(*args, **kwargs)
########################################################################################################
class RWKV_TimeMix_RWKV5(MyModule):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.head_size = args.head_size_a
assert HEAD_SIZE == self.head_size # change HEAD_SIZE to match args.head_size_a
self.n_head = args.dim_att // self.head_size
assert args.dim_att % self.n_head == 0
self.head_size_divisor = args.head_size_divisor
with torch.no_grad():
ratio_0_to_1 = layer_id / (args.n_layer - 1) # 0 to 1
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer) # 1 to ~0
ddd = torch.ones(1, 1, args.n_embd)
for i in range(args.n_embd):
ddd[0, 0, i] = i / args.n_embd
# fancy time_mix
self.time_mix_k = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_v = nn.Parameter(
torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1
)
self.time_mix_r = nn.Parameter(torch.pow(ddd, 0.5 * ratio_1_to_almost0))
self.time_mix_g = nn.Parameter(torch.pow(ddd, 0.5 * ratio_1_to_almost0))
# fancy time_decay
decay_speed = torch.ones(args.dim_att)
for n in range(args.dim_att):
decay_speed[n] = -6 + 5 * (n / (args.dim_att - 1)) ** (
0.7 + 1.3 * ratio_0_to_1
)
self.time_decay = nn.Parameter(
decay_speed.reshape(self.n_head, self.head_size)
)
# print(layer_id, self.time_decay.flatten()[:3].cpu().numpy(), '...', self.time_decay.flatten()[-3:].cpu().numpy())
tmp = torch.zeros(args.dim_att)
for n in range(args.dim_att):
zigzag = ((n + 1) % 3 - 1) * 0.1
tmp[n] = ratio_0_to_1 * (1 - (n / (args.dim_att - 1))) + zigzag
self.time_faaaa = nn.Parameter(tmp.reshape(self.n_head, self.head_size))
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.receptance = make_linear_att(args.n_embd, args.dim_att, bias=False)
self.key = make_linear_att(args.n_embd, args.dim_att, bias=False)
self.value = make_linear_att(args.n_embd, args.dim_att, bias=False)
self.output = nn.Linear(args.dim_att, args.n_embd, bias=False)
self.gate = make_linear_att(args.n_embd, args.dim_att, bias=False)
self.ln_x = nn.GroupNorm(self.n_head, args.dim_att)
@MyFunction
def jit_func(self, x):
B, T, C = x.size()
xx = self.time_shift(
x
) # Mix x with the previous timestep to produce xk, xv, xr
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
xg = x * self.time_mix_g + xx * (1 - self.time_mix_g)
r = self.receptance(xr)
k = self.key(xk)
v = self.value(xv)
g = F.silu(self.gate(xg))
return r, k, v, g
@MyFunction
def jit_func_2(self, x, g):
B, T, C = x.size()
x = x.view(B * T, C)
x = self.ln_x(x / self.head_size_divisor).view(B, T, C)
x = self.output(x * g)
return x
def forward(self, x):
B, T, C = x.size()
H = self.n_head
r, k, v, g = self.jit_func(x)
x = RUN_CUDA_RWKV5(B, T, C, H, r, k, v, w=self.time_decay, u=self.time_faaaa)
return self.jit_func_2(x, g)
########################################################################################################
class RWKV_ChannelMix(MyModule):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
with torch.no_grad(): # fancy init of time_mix
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer) # 1 to ~0
ddd = torch.ones(1, 1, args.n_embd)
for i in range(args.n_embd):
ddd[0, 0, i] = i / args.n_embd
self.time_mix_k = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_r = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.key = make_linear_ffn(args.n_embd, args.dim_ffn, bias=False)
self.receptance = make_linear_ffn(args.n_embd, args.n_embd, bias=False)
self.value = make_linear_ffn(args.dim_ffn, args.n_embd, bias=False)
@MyFunction
def forward(self, x):
xx = self.time_shift(x)
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
k = self.key(xk)
k = torch.relu(k) ** 2
kv = self.value(k)
return torch.sigmoid(self.receptance(xr)) * kv
class MishGLU(MyModule):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
with torch.no_grad():
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer)
x = torch.ones(1, 1, args.n_embd)
for i in range(args.n_embd):
x[0, 0, i] = i / args.n_embd
self.time_mix_k = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
self.time_mix_r = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
self.aa = nn.Linear(args.n_embd, args.dim_ffn, bias=False)
self.bb = nn.Linear(args.n_embd, args.dim_ffn, bias=False)
self.value = nn.Linear(args.dim_ffn, args.n_embd, bias=False)
@MyFunction
def forward(self, x):
xx = self.time_shift(x)
xa = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xb = x * self.time_mix_r + xx * (1 - self.time_mix_r)
a = self.aa(xa)
b = self.bb(xb)
return self.value(a * F.mish(b))
########################################################################################################
# The RWKV Model with our blocks
########################################################################################################
class Block(nn.Module):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.ln1 = nn.LayerNorm(args.n_embd)
self.ln2 = nn.LayerNorm(args.n_embd)
if self.layer_id == 0:
self.ln0 = nn.LayerNorm(args.n_embd)
if args.my_pos_emb > 0:
self.pos_emb_x = nn.Parameter(
torch.zeros((1, args.my_pos_emb, args.n_embd))
)
self.pos_emb_y = nn.Parameter(
torch.zeros((args.my_pos_emb, 1, args.n_embd))
)
if self.layer_id == 0 and self.args.pre_ffn > 0:
self.ffnPre = RWKV_ChannelMix(args, 0)
else:
self.att = RWKV_TimeMix_RWKV5(args, layer_id)
if "g" in os.environ["RWKV_MY_TESTING"]:
self.ffn = MishGLU(args, layer_id)
else:
self.ffn = RWKV_ChannelMix(args, layer_id)
if args.tiny_att_dim > 0 and self.layer_id == args.tiny_att_layer:
self.tiny_ln = nn.LayerNorm(args.n_embd)
self.tiny_q = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
self.tiny_k = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
self.tiny_v = nn.Linear(args.n_embd, args.n_embd, bias=False)
self.register_buffer(
"tiny_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len))
)
if args.dropout > 0:
self.drop0 = nn.Dropout(p=args.dropout)
self.drop1 = nn.Dropout(p=args.dropout)
def forward(self, x, x_emb=None):
args = self.args
B, T, C = x.size()
if self.layer_id == 0:
x = self.ln0(x)
if args.my_pos_emb > 0:
pos_emb = (self.pos_emb_x + self.pos_emb_y).reshape(T + 1, -1)[:-1, :]
x = x + pos_emb
if self.args.dropout == 0:
if self.layer_id == 0 and args.pre_ffn > 0:
x = x + self.ffnPre(self.ln1(x))
else:
x = x + self.att(self.ln1(x))
x = x + self.ffn(self.ln2(x))
else:
if self.layer_id == 0 and args.pre_ffn > 0:
x = self.drop0(x + self.ffnPre(self.ln1(x)))
else:
x = self.drop0(x + self.att(self.ln1(x)))
x = self.drop1(x + self.ffn(self.ln2(x)))
if args.tiny_att_dim > 0 and self.layer_id == args.tiny_att_layer:
xx = self.tiny_ln(x)
q = self.tiny_q(xx)[:, :T, :]
k = self.tiny_k(xx)[:, :T, :]
c = (q @ k.transpose(-2, -1)) * (args.tiny_att_dim ** (-0.5))
c = c.masked_fill(self.tiny_mask[:T, :T] == 0, 0)
x = x + c @ self.tiny_v(x_emb)
return x
class L2Wrap(torch.autograd.Function):
@staticmethod
def forward(ctx, loss, y):
ctx.save_for_backward(y)
return loss
@staticmethod
def backward(ctx, grad_output):
y = ctx.saved_tensors[0]
# to encourage the logits to be close to 0
factor = 1e-4 / (y.shape[0] * y.shape[1])
maxx, ids = torch.max(y, -1, keepdim=True)
gy = torch.zeros_like(y)
gy.scatter_(-1, ids, maxx * factor)
return (grad_output, gy)
class RWKV(pl.LightningModule):
def __init__(self, args):
super().__init__()
self.args = args
if not hasattr(args, "dim_att"):
args.dim_att = args.n_embd
if not hasattr(args, "dim_ffn"):
args.dim_ffn = args.n_embd * 4
if not hasattr(args, "tiny_att_layer"):
args.tiny_att_layer = -1
if not hasattr(args, "tiny_att_dim"):
args.tiny_att_dim = -1
assert args.n_embd % 32 == 0
assert args.dim_att % 32 == 0
assert args.dim_ffn % 32 == 0
self.emb = nn.Embedding(args.vocab_size, args.n_embd)
self.blocks = nn.ModuleList([Block(args, i) for i in range(args.n_layer)])
self.ln_out = nn.LayerNorm(args.n_embd)
self.head = nn.Linear(args.n_embd, args.vocab_size, bias=False)
if args.head_qk > 0:
self.head_q = nn.Linear(args.n_embd, args.head_qk, bias=False)
self.head_k = nn.Linear(args.n_embd, args.head_qk, bias=False)
self.register_buffer(
"copy_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len))
)
if args.dropout > 0:
self.drop0 = nn.Dropout(p=args.dropout)
def configure_optimizers(self):
args = self.args
lr_decay = set()
lr_1x = set()
lr_2x = set()
lr_3x = set()
for n, p in self.named_parameters():
if ("time_mix" in n) and (args.layerwise_lr > 0):
if args.my_pile_stage == 2:
lr_2x.add(n)
else:
lr_1x.add(n)
elif ("time_decay" in n) and (args.layerwise_lr > 0):
if args.my_pile_stage == 2:
lr_3x.add(n)
else:
lr_2x.add(n)
elif ("time_faaaa" in n) and (args.layerwise_lr > 0):
if args.my_pile_stage == 2:
lr_2x.add(n)
else:
lr_1x.add(n)
elif ("time_first" in n) and (args.layerwise_lr > 0):
lr_3x.add(n)
elif (len(p.squeeze().shape) >= 2) and (args.weight_decay > 0):
lr_decay.add(n)
else:
lr_1x.add(n)
lr_decay = sorted(list(lr_decay))
lr_1x = sorted(list(lr_1x))
lr_2x = sorted(list(lr_2x))
lr_3x = sorted(list(lr_3x))
# print('decay', lr_decay)
# print('1x', lr_1x)
# print('2x', lr_2x)
# print('3x', lr_3x)
param_dict = {n: p for n, p in self.named_parameters()}
if args.layerwise_lr > 0:
if args.my_pile_stage == 2:
optim_groups = [
{
"params": [param_dict[n] for n in lr_1x],
"weight_decay": 0.0,
"my_lr_scale": 1.0,
},
{
"params": [param_dict[n] for n in lr_2x],
"weight_decay": 0.0,
"my_lr_scale": 5.0,
}, # test: 2e-3 / args.lr_init},
{
"params": [param_dict[n] for n in lr_3x],
"weight_decay": 0.0,
"my_lr_scale": 5.0,
}, # test: 3e-3 / args.lr_init},
]
else:
optim_groups = [
{
"params": [param_dict[n] for n in lr_1x],
"weight_decay": 0.0,
"my_lr_scale": 1.0,
},
{
"params": [param_dict[n] for n in lr_2x],
"weight_decay": 0.0,
"my_lr_scale": 2.0,
},
{
"params": [param_dict[n] for n in lr_3x],
"weight_decay": 0.0,
"my_lr_scale": 3.0,
},
]
else:
optim_groups = [
{
"params": [param_dict[n] for n in lr_1x],
"weight_decay": 0.0,
"my_lr_scale": 1.0,
}
]
if args.weight_decay > 0:
optim_groups += [
{
"params": [param_dict[n] for n in lr_decay],
"weight_decay": args.weight_decay,
"my_lr_scale": 1.0,
}
]
if self.deepspeed_offload:
return DeepSpeedCPUAdam(
optim_groups,
lr=self.args.lr_init,
betas=self.args.betas,
eps=self.args.adam_eps,
bias_correction=True,
adamw_mode=True,
amsgrad=False,
)
return FusedAdam(
optim_groups,
lr=self.args.lr_init,
betas=self.args.betas,
eps=self.args.adam_eps,
bias_correction=True,
adam_w_mode=True,
amsgrad=False,
)
else:
if self.deepspeed_offload:
return DeepSpeedCPUAdam(
optim_groups,
lr=self.args.lr_init,
betas=self.args.betas,
eps=self.args.adam_eps,
bias_correction=True,
adamw_mode=False,
weight_decay=0,
amsgrad=False,
)
return FusedAdam(
optim_groups,
lr=self.args.lr_init,
betas=self.args.betas,
eps=self.args.adam_eps,
bias_correction=True,
adam_w_mode=False,
weight_decay=0,
amsgrad=False,
)
# return ZeroOneAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, weight_decay=0, amsgrad=False, cuda_aware=False)
@property
def deepspeed_offload(self) -> bool:
strategy = self.trainer.strategy
if isinstance(strategy, DeepSpeedStrategy):
cfg = strategy.config["zero_optimization"]
return cfg.get("offload_optimizer") or cfg.get("offload_param")
return False
def forward(self, idx):
args = self.args
B, T = idx.size()
assert T <= args.ctx_len, "Cannot forward, model ctx_len is exhausted."
x = self.emb(idx)
x_emb = x
if args.dropout > 0:
x = self.drop0(x)
if args.tiny_att_dim > 0:
for block in self.blocks:
if args.grad_cp == 1:
if args.lora:
x = torch_checkpoint(block, x, x_emb, use_reentrant=False)
else:
x = deepspeed.checkpointing.checkpoint(block, x, x_emb)
else:
x = block(x, x_emb)
else:
for block in self.blocks:
if args.grad_cp == 1:
if args.lora:
x = torch_checkpoint(block, x, x_emb, use_reentrant=False)
else:
x = deepspeed.checkpointing.checkpoint(block, x)
else:
x = block(x)
x = self.ln_out(x)
if args.head_qk > 0:
q = self.head_q(x)[:, :T, :]
k = self.head_k(x)[:, :T, :]
c = (q @ k.transpose(-2, -1)) * (1.0 / args.head_qk)
c = c.masked_fill(self.copy_mask[:T, :T] == 0, 0)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
c = c @ F.one_hot(idx, num_classes=args.vocab_size)
elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
c = c @ F.one_hot(idx, num_classes=args.vocab_size).half()
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
c = c @ F.one_hot(idx, num_classes=args.vocab_size).bfloat16()
x = self.head(x) + c
else:
x = self.head(x)
return x
def training_step(self, batch, batch_idx):
args = self.args
if args.my_qa_mask != 1:
idx, targets = batch
logits = self(idx)
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
# if '0' in os.environ["RWKV_MY_TESTING"]:
# print('logits', logits)
# torch.set_printoptions(threshold=10000)
# print('idx', idx)
# exit(0)
else:
idx, targets, mask = batch
mask = mask.view(-1)
sum_mask = torch.sum(mask).item()
# if sum_mask == 0:
# return torch.tensor([0.0], requires_grad=True)
logits = self(idx)
if sum_mask == mask.shape[0]:
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1)
)
# print('rank', self.global_rank, 'loss', loss.item())
else:
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1), reduction="none"
)
# loss_raw = loss
loss = torch.sum(loss * mask) / sum_mask
# torch.set_printoptions(threshold=10000)
# if True: #self.global_rank == 1:
# tmp = ''
# sss = 0
# ccc = 0
# for i in range(mask.shape[0]):
# if mask[i] > 0:
# tmp += str(idx.view(-1)[i].item()) + ','
# sss += loss_raw.view(-1)[i].float().item()
# ccc += 1
# print('rank', self.global_rank, 'loss', loss.item(), 'lavg', sss / ccc)#, 'tmp', tmp, 'input', idx)
return L2Wrap.apply(loss, logits)
def training_step_end(self, batch_parts):
if pl.__version__[0] != "2":
all = self.all_gather(batch_parts)
if self.trainer.is_global_zero:
self.trainer.my_loss_all = all
def generate_init_weight(self):
print(
f"""
############################################################################
#
# Init model weight (slow for large models)...
#
############################################################################
"""
)
m = {}
for n in self.state_dict():
p = self.state_dict()[n]
shape = p.shape
gain = 1.0
scale = 1.0
if (
"ln_" in n
or ".ln" in n
or "time_" in n
or "_mask" in n
or "pos_emb" in n
or ".mask." in n
):
if "ln_x.weight" in n:
layer_scale = (1 + int(n.split(".")[1])) / self.args.n_layer
m[n] = (p * 0.0) + (layer_scale**0.7)
else:
m[n] = p
else:
if n == "emb.weight":
scale = -1 * self.args.lr_init
else:
if shape[0] > shape[1]:
gain = math.sqrt(shape[0] / shape[1])
zero = [
".att.output.",
".ffn.value.",
".ffn.receptance.",
".ffnPre.value.",
".ffnPre.receptance.",
"head_q.",
".oo.",
".rr.",
]
for kk in zero:
if kk in n:
scale = 0
if n == "head.weight":
scale = 0.5
if "head_k." in n:
scale = 0.1
if "head_q." in n:
scale = 0
print(
f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {str(scale).ljust(4)} {n}"
)
if self.args.accelerator.upper() == "GPU":
m[n] = torch.empty((shape[0], shape[1]), device="cuda")
else:
m[n] = torch.empty((shape[0], shape[1]))
if scale == 0:
nn.init.zeros_(m[n])
elif scale < 0:
nn.init.uniform_(m[n], a=scale, b=-scale)
else:
nn.init.orthogonal_(m[n], gain=gain * scale)
m[n] = m[n].cpu()
if os.environ["RWKV_FLOAT_MODE"] == "fp16":
m[n] = m[n].half()
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
m[n] = m[n].bfloat16()
# if n == "emb.weight":
# print(m[n])
gc.collect()
torch.cuda.empty_cache()
return m

310
finetune/lora/v5/src/trainer.py vendored Normal file
View File

@ -0,0 +1,310 @@
import os, math, time, datetime, subprocess
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
from .model import LORA_CONFIG
def my_save(args, trainer, dd, ff):
if "14b-run1" in ff:
fn = ff.split("/")[-1]
fff = "/dev/shm/" + fn
torch.save(dd, fff)
subprocess.Popen(f" aws s3 mv {fff} s3://rwkv-14b-4k/{fn} --quiet", shell=True)
elif ("world/14b" in ff) or ("world/7b" in ff):
aa = ff.split("/")[1]
fn = ff.split("/")[-1]
fff = f"/dev/shm/{aa}-{fn}"
torch.save(dd, fff)
subprocess.Popen(
f" aws s3 mv {fff} s3://rwkv-world/{aa}-{fn} --quiet", shell=True
)
else:
if "deepspeed_stage_3" in args.strategy:
trainer.save_checkpoint(ff, weights_only=True)
else:
torch.save(dd, ff)
class train_callback(pl.Callback):
def __init__(self, args):
super().__init__()
self.args = args
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx):
args = self.args
# if args.cuda_cleanup > 0:
# torch.cuda.empty_cache()
real_step = trainer.global_step + args.epoch_begin * args.epoch_steps
# LR schedule
w_step = args.warmup_steps
if args.lr_final == args.lr_init or args.epoch_count == 0:
lr = args.lr_init
else:
decay_step = real_step - args.my_pile_edecay * args.epoch_steps
decay_total = (args.epoch_count - args.my_pile_edecay) * args.epoch_steps
progress = (decay_step - w_step + 1) / (decay_total - w_step)
progress = min(1, max(0, progress))
if args.lr_final == 0 or args.lr_init == 0: # linear decay
lr = args.lr_init + (args.lr_final - args.lr_init) * progress
else: # exp decay
lr = args.lr_init * math.exp(
math.log(args.lr_final / args.lr_init) * pow(progress, 1)
)
# if trainer.is_global_zero:
# print(trainer.global_step, decay_step, decay_total, w_step, progress, lr)
if args.my_exit_tokens != 0: # cosine decay
real_tokens = real_step * args.ctx_len * args.real_bsz
warmup_tokens = w_step * args.ctx_len * args.real_bsz
progress = (real_tokens - warmup_tokens) / (
abs(args.my_exit_tokens) - warmup_tokens
)
progress = max(0, min(1, progress))
lr_final_factor = args.lr_final / args.lr_init
lr_mult = (0.5 + lr_final_factor / 2) + (
0.5 - lr_final_factor / 2
) * math.cos(math.pi * progress)
if args.my_exit_tokens > 0:
lr = args.lr_init * lr_mult
else:
lr = (lr + args.lr_init * lr_mult) / 2
if progress >= 1:
if (trainer.is_global_zero) or ("deepspeed_stage_3" in args.strategy):
my_save(
args,
trainer,
pl_module.state_dict(),
f"{args.proj_dir}/rwkv-final.pth",
)
exit(0)
if trainer.global_step < w_step:
lr = lr * (0.2 + 0.8 * trainer.global_step / w_step)
if args.weight_decay_final > 0:
wd_now = args.weight_decay * math.exp(
math.log(args.weight_decay_final / args.weight_decay) * progress
)
else:
wd_now = args.weight_decay
for param_group in trainer.optimizers[0].param_groups:
if param_group["weight_decay"] > 0:
param_group["weight_decay"] = wd_now
if args.layerwise_lr > 0:
param_group["lr"] = lr * param_group["my_lr_scale"]
# print(param_group["lr"], param_group["my_lr_scale"])
else:
param_group["lr"] = lr
trainer.my_lr = lr
trainer.my_wd = wd_now
# rank_zero_info(f"{real_step} {lr}")
if trainer.global_step == 0:
if trainer.is_global_zero: # logging
trainer.my_loss_sum = 0
trainer.my_loss_count = 0
trainer.my_log = open(args.proj_dir + "/train_log.txt", "a")
trainer.my_log.write(
f"NEW RUN {args.my_timestamp}\n{vars(self.args)}\n"
)
try:
print(f"\n{trainer.strategy.config}\n")
trainer.my_log.write(f"{trainer.strategy.config}\n")
except:
pass
trainer.my_log.flush()
if len(args.wandb) > 0:
print("Login to wandb...")
import wandb
wandb.init(
project=args.wandb,
name=args.run_name + " " + args.my_timestamp,
config=args,
save_code=False,
)
trainer.my_wandb = wandb
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
args = self.args
token_per_step = args.ctx_len * args.real_bsz
real_step = trainer.global_step + args.epoch_begin * args.epoch_steps
if trainer.is_global_zero: # logging
t_now = time.time_ns()
kt_s = 0
try:
t_cost = (t_now - trainer.my_time_ns) / 1e9
kt_s = token_per_step / t_cost / 1000
self.log("REAL it/s", 1.0 / t_cost, prog_bar=True, on_step=True)
self.log("Kt/s", kt_s, prog_bar=True, on_step=True)
except:
pass
trainer.my_time_ns = t_now
if pl.__version__[0] == "2":
trainer.my_loss = outputs["loss"]
else:
trainer.my_loss = trainer.my_loss_all.float().mean().item()
trainer.my_loss_sum += trainer.my_loss
trainer.my_loss_count += 1
trainer.my_epoch_loss = trainer.my_loss_sum / trainer.my_loss_count
self.log("lr", trainer.my_lr, prog_bar=True, on_step=True)
self.log("loss", trainer.my_epoch_loss, prog_bar=True, on_step=True)
# self.log("s", real_step, prog_bar=True, on_step=True)
if len(args.wandb) > 0:
lll = {
"loss": trainer.my_loss,
"lr": trainer.my_lr,
"wd": trainer.my_wd,
"Gtokens": real_step * token_per_step / 1e9,
}
if kt_s > 0:
lll["kt/s"] = kt_s
trainer.my_wandb.log(lll, step=int(real_step))
if (trainer.is_global_zero) or (
"deepspeed_stage_3" in args.strategy
): # save pth
if args.magic_prime > 0:
expand_factor = 2 if args.my_qa_mask > 0 else 1
if int(real_step) == int(
args.magic_prime * expand_factor // args.real_bsz
) - 1 + int(args.my_random_steps):
to_save_dict = pl_module.state_dict()
my_save(
args,
trainer,
to_save_dict,
f"{args.proj_dir}/rwkv-final.pth",
)
# if args.batch_save==batch_idx :
# to_save_dict = pl_module.state_dict()
# for name, state in to_save_dict.items():
# if 'img' in name:
# to_save_dict[name] = state
# try:
# my_save(
# args, trainer,
# to_save_dict,
# f"{args.proj_dir}/rwkv-{args.epoch_begin + trainer.current_epoch}-{batch_idx}.pth",
# )
# except Exception as e:
# print('Error\n\n', e, '\n\n')
def on_train_epoch_start(self, trainer, pl_module):
args = self.args
if pl.__version__[0] == "2":
dataset = trainer.train_dataloader.dataset
else:
dataset = trainer.train_dataloader.dataset.datasets
assert "MyDataset" in str(dataset)
dataset.global_rank = trainer.global_rank
dataset.real_epoch = int(args.epoch_begin + trainer.current_epoch)
dataset.world_size = trainer.world_size
# print(f'########## world_size {dataset.world_size} global_rank {dataset.global_rank} real_epoch {dataset.real_epoch} ##########')
def on_train_epoch_end(self, trainer, pl_module):
args = self.args
to_save_dict = {}
if (trainer.is_global_zero) or (
"deepspeed_stage_3" in args.strategy
): # save pth
if (
args.epoch_save > 0 and trainer.current_epoch % args.epoch_save == 0
) or (trainer.current_epoch == args.epoch_count - 1):
if args.data_type == "wds_img":
raw_dict = pl_module.state_dict()
for k in raw_dict:
if k.startswith("encoder.") or k.startswith("decoder."):
to_save_dict[k] = raw_dict[k]
else:
to_save_dict = pl_module.state_dict()
if args.data_type == "img" and not args.lora:
for name, state in to_save_dict.items():
if "img" in name:
to_save_dict[name] = state
if args.lora:
enable_time_finetune = "time" in LORA_CONFIG["parts"]
enable_ln_finetune = "ln" in LORA_CONFIG["parts"]
lora_dict = {}
for name, state in to_save_dict.items():
if "img" in name:
lora_dict[name] = state
if (
".lora_" in name
or (enable_time_finetune and ".time_" in name)
or (enable_ln_finetune and ".ln" in name)
):
lora_dict[name] = state
to_save_dict = lora_dict
try:
my_save(
args,
trainer,
to_save_dict,
f"{args.proj_dir}/rwkv-{args.epoch_begin + trainer.current_epoch}.pth",
)
except Exception as e:
print("Error\n\n", e, "\n\n")
if trainer.is_global_zero: # logging
trainer.my_log.write(
f"{args.epoch_begin + trainer.current_epoch} {trainer.my_epoch_loss:.6f} {math.exp(trainer.my_epoch_loss):.4f} {trainer.my_lr:.8f} {datetime.datetime.now()} {trainer.current_epoch}\n"
)
trainer.my_log.flush()
trainer.my_loss_sum = 0
trainer.my_loss_count = 0
if (args.epoch_begin + trainer.current_epoch) >= args.my_exit:
exit(0)
@rank_zero_only
def generate_init_weight(model, init_weight_name):
mm = model.generate_init_weight()
if model.args.my_pile_stage == 1:
if len(model.args.load_model) > 0:
print(f"Combine weights from {model.args.load_model}...")
load_dict = torch.load(model.args.load_model, map_location="cpu")
for k in load_dict:
try:
assert k in mm
except:
print("missing", k)
exit(0)
src = load_dict[k]
try:
mm[k] = src.reshape(mm[k].shape)
except:
tmp = mm[k].squeeze().clone()
print(k, src.shape, "-->", mm[k].shape)
ss = src.shape[0]
dd = tmp.shape[0]
for i in range(dd):
pos = i / dd * ss
if pos >= ss - 1:
tmp[i] = src[ss - 1]
else:
p0 = int(math.floor(pos))
ii = pos - p0
tmp[i] = src[p0] * (1 - ii) + src[p0 + 1] * (ii)
mm[k] = tmp.reshape(mm[k].shape)
sss = src.squeeze().float().cpu().numpy()
print(sss[:10], "...", sss[-10:])
mmm = mm[k].squeeze().float().cpu().numpy()
print(mmm[:10], "...", mmm[-10:])
print(f"Save to {init_weight_name}...")
torch.save(mm, init_weight_name)
if model.args.my_pile_stage == 1:
print("Done. Now go for stage 2.")
exit(0)

Some files were not shown because too many files have changed in this diff Show More