rwkv.cpp(ggml) support

This commit is contained in:
josc146 2023-12-12 20:29:55 +08:00
parent 6e29f97881
commit b14fbc29b7
26 changed files with 1234 additions and 102 deletions

1
.gitattributes vendored
View File

@ -3,6 +3,7 @@ backend-python/wkv_cuda_utils/** linguist-vendored
backend-python/get-pip.py linguist-vendored
backend-python/convert_model.py linguist-vendored
backend-python/convert_safetensors.py linguist-vendored
backend-python/convert_pytorch_to_ggml.py linguist-vendored
backend-python/utils/midi.py linguist-vendored
build/** linguist-vendored
finetune/lora/** linguist-vendored

View File

@ -65,6 +65,8 @@ jobs:
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../libs" -Destination "py310/libs" -Recurse
./py310/python -m pip install cyac==1.9
go install github.com/wailsapp/wails/v2/cmd/wails@latest
del ./backend-python/rwkv_pip/cpp/librwkv.dylib
del ./backend-python/rwkv_pip/cpp/librwkv.so
(Get-Content -Path ./backend-golang/app.go) -replace "//go:custom_build windows ", "" | Set-Content -Path ./backend-golang/app.go
make
Rename-Item -Path "build/bin/RWKV-Runner.exe" -NewName "RWKV-Runner_windows_x64.exe"
@ -93,6 +95,8 @@ jobs:
rm ./backend-python/rwkv_pip/rwkv6.pyd
rm ./backend-python/rwkv_pip/beta/wkv_cuda.pyd
rm ./backend-python/get-pip.py
rm ./backend-python/rwkv_pip/cpp/librwkv.dylib
rm ./backend-python/rwkv_pip/cpp/rwkv.dll
make
mv build/bin/RWKV-Runner build/bin/RWKV-Runner_linux_x64
@ -117,6 +121,8 @@ jobs:
rm ./backend-python/rwkv_pip/rwkv6.pyd
rm ./backend-python/rwkv_pip/beta/wkv_cuda.pyd
rm ./backend-python/get-pip.py
rm ./backend-python/rwkv_pip/cpp/rwkv.dll
rm ./backend-python/rwkv_pip/cpp/librwkv.so
make
cp build/darwin/Readme_Install.txt build/bin/Readme_Install.txt
cp build/bin/RWKV-Runner.app/Contents/MacOS/RWKV-Runner build/bin/RWKV-Runner_darwin_universal

View File

@ -10,7 +10,7 @@ import (
"strings"
)
func (a *App) StartServer(python string, port int, host string, webui bool, rwkvBeta bool) (string, error) {
func (a *App) StartServer(python string, port int, host string, webui bool, rwkvBeta bool, rwkvcpp bool) (string, error) {
var err error
if python == "" {
python, err = GetPython()
@ -25,6 +25,9 @@ func (a *App) StartServer(python string, port int, host string, webui bool, rwkv
if rwkvBeta {
args = append(args, "--rwkv-beta")
}
if rwkvcpp {
args = append(args, "--rwkv.cpp")
}
args = append(args, "--port", strconv.Itoa(port), "--host", host)
return Cmd(args...)
}
@ -52,6 +55,21 @@ func (a *App) ConvertSafetensors(modelPath string, outPath string) (string, erro
return Cmd(args...)
}
func (a *App) ConvertGGML(python string, modelPath string, outPath string, Q51 bool) (string, error) {
var err error
if python == "" {
python, err = GetPython()
}
if err != nil {
return "", err
}
dataType := "FP16"
if Q51 {
dataType = "Q5_1"
}
return Cmd(python, "./backend-python/convert_pytorch_to_ggml.py", modelPath, outPath, dataType)
}
func (a *App) ConvertData(python string, input string, outputPrefix string, vocab string) (string, error) {
var err error
if python == "" {

View File

@ -0,0 +1,169 @@
# Converts an RWKV model checkpoint in PyTorch format to an rwkv.cpp compatible file.
# Usage: python convert_pytorch_to_ggml.py C:\RWKV-4-Pile-169M-20220807-8023.pth C:\rwkv.cpp-169M-FP16.bin FP16
# Get model checkpoints from https://huggingface.co/BlinkDL
# See FILE_FORMAT.md for the documentation on the file format.
import argparse
import struct
import torch
from typing import Dict
def parse_args():
parser = argparse.ArgumentParser(
description="Convert an RWKV model checkpoint in PyTorch format to an rwkv.cpp compatible file"
)
parser.add_argument("src_path", help="Path to PyTorch checkpoint file")
parser.add_argument(
"dest_path", help="Path to rwkv.cpp checkpoint file, will be overwritten"
)
parser.add_argument(
"data_type",
help="Data type, FP16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0",
type=str,
choices=[
"FP16",
"Q4_0",
"Q4_1",
"Q5_0",
"Q5_1",
"Q8_0",
],
default="FP16",
)
return parser.parse_args()
def get_layer_count(state_dict: Dict[str, torch.Tensor]) -> int:
n_layer: int = 0
while f"blocks.{n_layer}.ln1.weight" in state_dict:
n_layer += 1
assert n_layer > 0
return n_layer
def write_state_dict(
state_dict: Dict[str, torch.Tensor], dest_path: str, data_type: str
) -> None:
emb_weight: torch.Tensor = state_dict["emb.weight"]
n_layer: int = get_layer_count(state_dict)
n_vocab: int = emb_weight.shape[0]
n_embed: int = emb_weight.shape[1]
is_v5_1_or_2: bool = "blocks.0.att.ln_x.weight" in state_dict
is_v5_2: bool = "blocks.0.att.gate.weight" in state_dict
if is_v5_2:
print("Detected RWKV v5.2")
elif is_v5_1_or_2:
print("Detected RWKV v5.1")
else:
print("Detected RWKV v4")
with open(dest_path, "wb") as out_file:
is_FP16: bool = data_type == "FP16" or data_type == "float16"
out_file.write(
struct.pack(
# Disable padding with '='
"=iiiiii",
# Magic: 'ggmf' in hex
0x67676D66,
101,
n_vocab,
n_embed,
n_layer,
1 if is_FP16 else 0,
)
)
for k in state_dict.keys():
tensor: torch.Tensor = state_dict[k].float()
if ".time_" in k:
tensor = tensor.squeeze()
if is_v5_1_or_2:
if ".time_decay" in k:
if is_v5_2:
tensor = torch.exp(-torch.exp(tensor)).unsqueeze(-1)
else:
tensor = torch.exp(-torch.exp(tensor)).reshape(-1, 1, 1)
if ".time_first" in k:
tensor = torch.exp(tensor).reshape(-1, 1, 1)
if ".time_faaaa" in k:
tensor = tensor.unsqueeze(-1)
else:
if ".time_decay" in k:
tensor = -torch.exp(tensor)
# Keep 1-dim vectors and small matrices in FP32
if is_FP16 and len(tensor.shape) > 1 and ".time_" not in k:
tensor = tensor.half()
shape = tensor.shape
print(f"Writing {k}, shape {shape}, type {tensor.dtype}")
k_encoded: bytes = k.encode("utf-8")
out_file.write(
struct.pack(
"=iii",
len(shape),
len(k_encoded),
1 if tensor.dtype == torch.float16 else 0,
)
)
# Dimension order is reversed here:
# * PyTorch shape is (x rows, y columns)
# * ggml shape is (y elements in a row, x elements in a column)
# Both shapes represent the same tensor.
for dim in reversed(tensor.shape):
out_file.write(struct.pack("=i", dim))
out_file.write(k_encoded)
tensor.numpy().tofile(out_file)
def main() -> None:
args = parse_args()
print(f"Reading {args.src_path}")
state_dict: Dict[str, torch.Tensor] = torch.load(args.src_path, map_location="cpu")
temp_output: str = args.dest_path
if args.data_type.startswith("Q"):
import re
temp_output = re.sub(r"Q[4,5,8]_[0,1]", "fp16", temp_output)
write_state_dict(state_dict, temp_output, "FP16")
if args.data_type.startswith("Q"):
import sys
import os
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
from rwkv_pip.cpp import rwkv_cpp_shared_library
library = rwkv_cpp_shared_library.load_rwkv_shared_library()
library.rwkv_quantize_model_file(temp_output, args.dest_path, args.data_type)
print("Done")
if __name__ == "__main__":
try:
main()
except Exception as e:
print(e)
with open("error.txt", "w") as f:
f.write(str(e))

View File

@ -32,6 +32,11 @@ def get_args(args: Union[Sequence[str], None] = None):
action="store_true",
help="whether to use rwkv-beta (default: False)",
)
group.add_argument(
"--rwkv.cpp",
action="store_true",
help="whether to use rwkv.cpp (default: False)",
)
args = parser.parse_args(args)
return args

View File

@ -49,19 +49,13 @@ def switch_model(body: SwitchModelBody, response: Response, request: Request):
if body.model == "":
return "success"
STRATEGY_REGEX = r"^(?:(?:^|->) *(?:cuda(?::[\d]+)?|cpu|mps|dml) (?:fp(?:16|32)|bf16)(?:i8|i4|i3)?(?: \*[\d]+\+?)? *)+$"
if not re.match(STRATEGY_REGEX, body.strategy):
raise HTTPException(
Status.HTTP_400_BAD_REQUEST,
"Invalid strategy. Please read https://pypi.org/project/rwkv/",
)
devices = set(
[
x.strip().split(" ")[0].replace("cuda:0", "cuda")
for x in body.strategy.split("->")
]
)
print(f"Devices: {devices}")
print(f"Strategy Devices: {devices}")
# if len(devices) > 1:
# state_cache.disable_state_cache()
# else:

View File

@ -90,10 +90,15 @@ def add_state(body: AddStateBody):
try:
id: int = trie.insert(body.prompt)
devices: List[torch.device] = [tensor.device for tensor in body.state]
devices: List[torch.device] = [
(tensor.device if hasattr(tensor, "device") else torch.device("cpu"))
for tensor in body.state
]
dtrie[id] = {
"tokens": copy.deepcopy(body.tokens),
"state": [tensor.cpu() for tensor in body.state],
"state": [tensor.cpu() for tensor in body.state]
if hasattr(body.state[0], "device")
else copy.deepcopy(body.state),
"logits": copy.deepcopy(body.logits),
"devices": devices,
}
@ -185,7 +190,9 @@ def longest_prefix_state(body: LongestPrefixStateBody, request: Request):
return {
"prompt": prompt,
"tokens": v["tokens"],
"state": [tensor.to(devices[i]) for i, tensor in enumerate(v["state"])],
"state": [tensor.to(devices[i]) for i, tensor in enumerate(v["state"])]
if hasattr(v["state"][0], "device")
else v["state"],
"logits": v["logits"],
}
else:

Binary file not shown.

BIN
backend-python/rwkv_pip/cpp/librwkv.so vendored Normal file

Binary file not shown.

14
backend-python/rwkv_pip/cpp/model.py vendored Normal file
View File

@ -0,0 +1,14 @@
from typing import Any, List
from . import rwkv_cpp_model
from . import rwkv_cpp_shared_library
class RWKV:
def __init__(self, model_path: str, strategy=None):
self.library = rwkv_cpp_shared_library.load_rwkv_shared_library()
self.model = rwkv_cpp_model.RWKVModel(self.library, model_path)
self.w = {} # fake weight
self.w["emb.weight"] = [0] * self.model.n_vocab
def forward(self, tokens: List[int], state: Any | None):
return self.model.eval_sequence_in_chunks(tokens, state, use_numpy=True)

BIN
backend-python/rwkv_pip/cpp/rwkv.dll vendored Normal file

Binary file not shown.

View File

@ -0,0 +1,369 @@
import os
import multiprocessing
# Pre-import PyTorch, if available.
# This fixes "OSError: [WinError 127] The specified procedure could not be found".
try:
import torch
except ModuleNotFoundError:
pass
# I'm sure this is not strictly correct, but let's keep this crutch for now.
try:
import rwkv_cpp_shared_library
except ModuleNotFoundError:
from . import rwkv_cpp_shared_library
from typing import TypeVar, Optional, Tuple, List
# A value of this type is either a numpy's ndarray or a PyTorch's Tensor.
NumpyArrayOrPyTorchTensor: TypeVar = TypeVar('NumpyArrayOrPyTorchTensor')
class RWKVModel:
"""
An RWKV model managed by rwkv.cpp library.
"""
def __init__(
self,
shared_library: rwkv_cpp_shared_library.RWKVSharedLibrary,
model_path: str,
thread_count: int = max(1, multiprocessing.cpu_count() // 2),
gpu_layer_count: int = 0,
**kwargs
) -> None:
"""
Loads the model and prepares it for inference.
In case of any error, this method will throw an exception.
Parameters
----------
shared_library : RWKVSharedLibrary
rwkv.cpp shared library.
model_path : str
Path to RWKV model file in ggml format.
thread_count : int
Thread count to use. If not set, defaults to CPU count / 2.
gpu_layer_count : int
Count of layers to offload onto the GPU, must be >= 0.
See documentation of `gpu_offload_layers` for details about layer offloading.
"""
if 'gpu_layers_count' in kwargs:
gpu_layer_count = kwargs['gpu_layers_count']
assert os.path.isfile(model_path), f'{model_path} is not a file'
assert thread_count > 0, 'Thread count must be > 0'
assert gpu_layer_count >= 0, 'GPU layer count must be >= 0'
self._library: rwkv_cpp_shared_library.RWKVSharedLibrary = shared_library
self._ctx: rwkv_cpp_shared_library.RWKVContext = self._library.rwkv_init_from_file(model_path, thread_count)
if gpu_layer_count > 0:
self.gpu_offload_layers(gpu_layer_count)
self._state_buffer_element_count: int = self._library.rwkv_get_state_buffer_element_count(self._ctx)
self._logits_buffer_element_count: int = self._library.rwkv_get_logits_buffer_element_count(self._ctx)
self._valid: bool = True
def gpu_offload_layers(self, layer_count: int) -> bool:
"""
Offloads specified count of model layers onto the GPU. Offloaded layers are evaluated using cuBLAS or CLBlast.
For the purposes of this function, model head (unembedding matrix) is treated as an additional layer:
- pass `model.n_layer` to offload all layers except model head
- pass `model.n_layer + 1` to offload all layers, including model head
Returns true if at least one layer was offloaded.
If rwkv.cpp was compiled without cuBLAS and CLBlast support, this function is a no-op and always returns false.
Parameters
----------
layer_count : int
Count of layers to offload onto the GPU, must be >= 0.
"""
assert layer_count >= 0, 'Layer count must be >= 0'
return self._library.rwkv_gpu_offload_layers(self._ctx, layer_count)
@property
def n_vocab(self) -> int:
return self._library.rwkv_get_n_vocab(self._ctx)
@property
def n_embed(self) -> int:
return self._library.rwkv_get_n_embed(self._ctx)
@property
def n_layer(self) -> int:
return self._library.rwkv_get_n_layer(self._ctx)
def eval(
self,
token: int,
state_in: Optional[NumpyArrayOrPyTorchTensor],
state_out: Optional[NumpyArrayOrPyTorchTensor] = None,
logits_out: Optional[NumpyArrayOrPyTorchTensor] = None,
use_numpy: bool = False
) -> Tuple[NumpyArrayOrPyTorchTensor, NumpyArrayOrPyTorchTensor]:
"""
Evaluates the model for a single token.
In case of any error, this method will throw an exception.
Parameters
----------
token : int
Index of next token to be seen by the model. Must be in range 0 <= token < n_vocab.
state_in : Optional[NumpyArrayOrTorchTensor]
State from previous call of this method. If this is a first pass, set it to None.
state_out : Optional[NumpyArrayOrTorchTensor]
Optional output tensor for state. If provided, must be of type float32, contiguous and of shape (state_buffer_element_count).
logits_out : Optional[NumpyArrayOrTorchTensor]
Optional output tensor for logits. If provided, must be of type float32, contiguous and of shape (logits_buffer_element_count).
use_numpy : bool
If set to True, numpy's ndarrays will be created instead of PyTorch's Tensors.
This parameter is ignored if any tensor parameter is not None; in such case,
type of returned tensors will match the type of received tensors.
Returns
-------
logits, state
Logits vector of shape (n_vocab); state for the next step.
"""
assert self._valid, 'Model was freed'
use_numpy = self._detect_numpy_usage([state_in, state_out, logits_out], use_numpy)
if state_in is not None:
self._validate_tensor(state_in, 'state_in', self._state_buffer_element_count)
state_in_ptr = self._get_data_ptr(state_in)
else:
state_in_ptr = 0
if state_out is not None:
self._validate_tensor(state_out, 'state_out', self._state_buffer_element_count)
else:
state_out = self._zeros_float32(self._state_buffer_element_count, use_numpy)
if logits_out is not None:
self._validate_tensor(logits_out, 'logits_out', self._logits_buffer_element_count)
else:
logits_out = self._zeros_float32(self._logits_buffer_element_count, use_numpy)
self._library.rwkv_eval(
self._ctx,
token,
state_in_ptr,
self._get_data_ptr(state_out),
self._get_data_ptr(logits_out)
)
return logits_out, state_out
def eval_sequence(
self,
tokens: List[int],
state_in: Optional[NumpyArrayOrPyTorchTensor],
state_out: Optional[NumpyArrayOrPyTorchTensor] = None,
logits_out: Optional[NumpyArrayOrPyTorchTensor] = None,
use_numpy: bool = False
) -> Tuple[NumpyArrayOrPyTorchTensor, NumpyArrayOrPyTorchTensor]:
"""
Evaluates the model for a sequence of tokens.
NOTE ON GGML NODE LIMIT
ggml has a hard-coded limit on max amount of nodes in a computation graph. The sequence graph is built in a way that quickly exceedes
this limit when using large models and/or large sequence lengths.
Fortunately, rwkv.cpp's fork of ggml has increased limit which was tested to work for sequence lengths up to 64 for 14B models.
If you get `GGML_ASSERT: ...\\ggml.c:16941: cgraph->n_nodes < GGML_MAX_NODES`, this means you've exceeded the limit.
To get rid of the assertion failure, reduce the model size and/or sequence length.
In case of any error, this method will throw an exception.
Parameters
----------
tokens : List[int]
Indices of the next tokens to be seen by the model. Must be in range 0 <= token < n_vocab.
state_in : Optional[NumpyArrayOrTorchTensor]
State from previous call of this method. If this is a first pass, set it to None.
state_out : Optional[NumpyArrayOrTorchTensor]
Optional output tensor for state. If provided, must be of type float32, contiguous and of shape (state_buffer_element_count).
logits_out : Optional[NumpyArrayOrTorchTensor]
Optional output tensor for logits. If provided, must be of type float32, contiguous and of shape (logits_buffer_element_count).
use_numpy : bool
If set to True, numpy's ndarrays will be created instead of PyTorch's Tensors.
This parameter is ignored if any tensor parameter is not None; in such case,
type of returned tensors will match the type of received tensors.
Returns
-------
logits, state
Logits vector of shape (n_vocab); state for the next step.
"""
assert self._valid, 'Model was freed'
use_numpy = self._detect_numpy_usage([state_in, state_out, logits_out], use_numpy)
if state_in is not None:
self._validate_tensor(state_in, 'state_in', self._state_buffer_element_count)
state_in_ptr = self._get_data_ptr(state_in)
else:
state_in_ptr = 0
if state_out is not None:
self._validate_tensor(state_out, 'state_out', self._state_buffer_element_count)
else:
state_out = self._zeros_float32(self._state_buffer_element_count, use_numpy)
if logits_out is not None:
self._validate_tensor(logits_out, 'logits_out', self._logits_buffer_element_count)
else:
logits_out = self._zeros_float32(self._logits_buffer_element_count, use_numpy)
self._library.rwkv_eval_sequence(
self._ctx,
tokens,
state_in_ptr,
self._get_data_ptr(state_out),
self._get_data_ptr(logits_out)
)
return logits_out, state_out
def eval_sequence_in_chunks(
self,
tokens: List[int],
state_in: Optional[NumpyArrayOrPyTorchTensor],
state_out: Optional[NumpyArrayOrPyTorchTensor] = None,
logits_out: Optional[NumpyArrayOrPyTorchTensor] = None,
chunk_size: int = 16,
use_numpy: bool = False
) -> Tuple[NumpyArrayOrPyTorchTensor, NumpyArrayOrPyTorchTensor]:
"""
Evaluates the model for a sequence of tokens using `eval_sequence`, splitting a potentially long sequence into fixed-length chunks.
This function is useful for processing complete prompts and user input in chat & role-playing use-cases.
It is recommended to use this function instead of `eval_sequence` to avoid mistakes and get maximum performance.
Chunking allows processing sequences of thousands of tokens, while not reaching the ggml's node limit and not consuming too much memory.
A reasonable and recommended value of chunk size is 16. If you want maximum performance, try different chunk sizes in range [2..64]
and choose one that works the best in your use case.
In case of any error, this method will throw an exception.
Parameters
----------
tokens : List[int]
Indices of the next tokens to be seen by the model. Must be in range 0 <= token < n_vocab.
chunk_size : int
Size of each chunk in tokens, must be positive.
state_in : Optional[NumpyArrayOrTorchTensor]
State from previous call of this method. If this is a first pass, set it to None.
state_out : Optional[NumpyArrayOrTorchTensor]
Optional output tensor for state. If provided, must be of type float32, contiguous and of shape (state_buffer_element_count).
logits_out : Optional[NumpyArrayOrTorchTensor]
Optional output tensor for logits. If provided, must be of type float32, contiguous and of shape (logits_buffer_element_count).
use_numpy : bool
If set to True, numpy's ndarrays will be created instead of PyTorch's Tensors.
This parameter is ignored if any tensor parameter is not None; in such case,
type of returned tensors will match the type of received tensors.
Returns
-------
logits, state
Logits vector of shape (n_vocab); state for the next step.
"""
assert self._valid, 'Model was freed'
use_numpy = self._detect_numpy_usage([state_in, state_out, logits_out], use_numpy)
if state_in is not None:
self._validate_tensor(state_in, 'state_in', self._state_buffer_element_count)
state_in_ptr = self._get_data_ptr(state_in)
else:
state_in_ptr = 0
if state_out is not None:
self._validate_tensor(state_out, 'state_out', self._state_buffer_element_count)
else:
state_out = self._zeros_float32(self._state_buffer_element_count, use_numpy)
if logits_out is not None:
self._validate_tensor(logits_out, 'logits_out', self._logits_buffer_element_count)
else:
logits_out = self._zeros_float32(self._logits_buffer_element_count, use_numpy)
self._library.rwkv_eval_sequence_in_chunks(
self._ctx,
tokens,
chunk_size,
state_in_ptr,
self._get_data_ptr(state_out),
self._get_data_ptr(logits_out)
)
return logits_out, state_out
def free(self) -> None:
"""
Frees all allocated resources.
In case of any error, this method will throw an exception.
The object must not be used anymore after calling this method.
"""
assert self._valid, 'Already freed'
self._valid = False
self._library.rwkv_free(self._ctx)
def __del__(self) -> None:
# Free the context on GC in case user forgot to call free() explicitly.
if hasattr(self, '_valid') and self._valid:
self.free()
def _is_pytorch_tensor(self, tensor: NumpyArrayOrPyTorchTensor) -> bool:
return hasattr(tensor, '__module__') and tensor.__module__ == 'torch'
def _detect_numpy_usage(self, tensors: List[Optional[NumpyArrayOrPyTorchTensor]], use_numpy_by_default: bool) -> bool:
for tensor in tensors:
if tensor is not None:
return False if self._is_pytorch_tensor(tensor) else True
return use_numpy_by_default
def _validate_tensor(self, tensor: NumpyArrayOrPyTorchTensor, name: str, size: int) -> None:
if self._is_pytorch_tensor(tensor):
tensor: torch.Tensor = tensor
assert tensor.device == torch.device('cpu'), f'{name} is not on CPU'
assert tensor.dtype == torch.float32, f'{name} is not of type float32'
assert tensor.shape == (size,), f'{name} has invalid shape {tensor.shape}, expected ({size})'
assert tensor.is_contiguous(), f'{name} is not contiguous'
else:
import numpy as np
tensor: np.ndarray = tensor
assert tensor.dtype == np.float32, f'{name} is not of type float32'
assert tensor.shape == (size,), f'{name} has invalid shape {tensor.shape}, expected ({size})'
assert tensor.data.contiguous, f'{name} is not contiguous'
def _get_data_ptr(self, tensor: NumpyArrayOrPyTorchTensor):
if self._is_pytorch_tensor(tensor):
return tensor.data_ptr()
else:
return tensor.ctypes.data
def _zeros_float32(self, element_count: int, use_numpy: bool) -> NumpyArrayOrPyTorchTensor:
if use_numpy:
import numpy as np
return np.zeros(element_count, dtype=np.float32)
else:
return torch.zeros(element_count, dtype=torch.float32, device='cpu')

View File

@ -0,0 +1,444 @@
import os
import sys
import ctypes
import pathlib
import platform
from typing import Optional, List, Tuple, Callable
QUANTIZED_FORMAT_NAMES: Tuple[str, str, str, str, str] = (
'Q4_0',
'Q4_1',
'Q5_0',
'Q5_1',
'Q8_0'
)
P_FLOAT = ctypes.POINTER(ctypes.c_float)
P_INT = ctypes.POINTER(ctypes.c_int32)
class RWKVContext:
def __init__(self, ptr: ctypes.pointer) -> None:
self.ptr: ctypes.pointer = ptr
class RWKVSharedLibrary:
"""
Python wrapper around rwkv.cpp shared library.
"""
def __init__(self, shared_library_path: str) -> None:
"""
Loads the shared library from specified file.
In case of any error, this method will throw an exception.
Parameters
----------
shared_library_path : str
Path to rwkv.cpp shared library. On Windows, it would look like 'rwkv.dll'. On UNIX, 'rwkv.so'.
"""
# When Python is greater than 3.8, we need to reprocess the custom dll
# according to the documentation to prevent loading failure errors.
# https://docs.python.org/3/whatsnew/3.8.html#ctypes
if platform.system().lower() == 'windows':
self.library = ctypes.CDLL(shared_library_path, winmode=0)
else:
self.library = ctypes.cdll.LoadLibrary(shared_library_path)
self.library.rwkv_init_from_file.argtypes = [ctypes.c_char_p, ctypes.c_uint32]
self.library.rwkv_init_from_file.restype = ctypes.c_void_p
self.library.rwkv_gpu_offload_layers.argtypes = [ctypes.c_void_p, ctypes.c_uint32]
self.library.rwkv_gpu_offload_layers.restype = ctypes.c_bool
self.library.rwkv_eval.argtypes = [
ctypes.c_void_p, # ctx
ctypes.c_int32, # token
P_FLOAT, # state_in
P_FLOAT, # state_out
P_FLOAT # logits_out
]
self.library.rwkv_eval.restype = ctypes.c_bool
self.library.rwkv_eval_sequence.argtypes = [
ctypes.c_void_p, # ctx
P_INT, # tokens
ctypes.c_size_t, # token count
P_FLOAT, # state_in
P_FLOAT, # state_out
P_FLOAT # logits_out
]
self.library.rwkv_eval_sequence.restype = ctypes.c_bool
self.library.rwkv_eval_sequence_in_chunks.argtypes = [
ctypes.c_void_p, # ctx
P_INT, # tokens
ctypes.c_size_t, # token count
ctypes.c_size_t, # chunk size
P_FLOAT, # state_in
P_FLOAT, # state_out
P_FLOAT # logits_out
]
self.library.rwkv_eval_sequence_in_chunks.restype = ctypes.c_bool
self.library.rwkv_get_n_vocab.argtypes = [ctypes.c_void_p]
self.library.rwkv_get_n_vocab.restype = ctypes.c_size_t
self.library.rwkv_get_n_embed.argtypes = [ctypes.c_void_p]
self.library.rwkv_get_n_embed.restype = ctypes.c_size_t
self.library.rwkv_get_n_layer.argtypes = [ctypes.c_void_p]
self.library.rwkv_get_n_layer.restype = ctypes.c_size_t
self.library.rwkv_get_state_buffer_element_count.argtypes = [ctypes.c_void_p]
self.library.rwkv_get_state_buffer_element_count.restype = ctypes.c_uint32
self.library.rwkv_get_logits_buffer_element_count.argtypes = [ctypes.c_void_p]
self.library.rwkv_get_logits_buffer_element_count.restype = ctypes.c_uint32
self.library.rwkv_free.argtypes = [ctypes.c_void_p]
self.library.rwkv_free.restype = None
self.library.rwkv_free.argtypes = [ctypes.c_void_p]
self.library.rwkv_free.restype = None
self.library.rwkv_quantize_model_file.argtypes = [ctypes.c_char_p, ctypes.c_char_p, ctypes.c_char_p]
self.library.rwkv_quantize_model_file.restype = ctypes.c_bool
self.library.rwkv_get_system_info_string.argtypes = []
self.library.rwkv_get_system_info_string.restype = ctypes.c_char_p
self.nullptr = ctypes.cast(0, ctypes.c_void_p)
def rwkv_init_from_file(self, model_file_path: str, thread_count: int) -> RWKVContext:
"""
Loads the model from a file and prepares it for inference.
Throws an exception in case of any error. Error messages would be printed to stderr.
Parameters
----------
model_file_path : str
Path to model file in ggml format.
thread_count : int
Count of threads to use, must be positive.
"""
ptr = self.library.rwkv_init_from_file(model_file_path.encode('utf-8'), ctypes.c_uint32(thread_count))
assert ptr is not None, 'rwkv_init_from_file failed, check stderr'
return RWKVContext(ptr)
def rwkv_gpu_offload_layers(self, ctx: RWKVContext, layer_count: int) -> bool:
"""
Offloads specified count of model layers onto the GPU. Offloaded layers are evaluated using cuBLAS or CLBlast.
For the purposes of this function, model head (unembedding matrix) is treated as an additional layer:
- pass `rwkv_get_n_layer(ctx)` to offload all layers except model head
- pass `rwkv_get_n_layer(ctx) + 1` to offload all layers, including model head
Returns true if at least one layer was offloaded.
If rwkv.cpp was compiled without cuBLAS and CLBlast support, this function is a no-op and always returns false.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
layer_count : int
Count of layers to offload onto the GPU, must be >= 0.
"""
assert layer_count >= 0, 'Layer count must be >= 0'
return self.library.rwkv_gpu_offload_layers(ctx.ptr, ctypes.c_uint32(layer_count))
def rwkv_eval(
self,
ctx: RWKVContext,
token: int,
state_in_address: Optional[int],
state_out_address: int,
logits_out_address: int
) -> None:
"""
Evaluates the model for a single token.
Throws an exception in case of any error. Error messages would be printed to stderr.
Not thread-safe. For parallel inference, call rwkv_clone_context to create one rwkv_context for each thread.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
token : int
Next token index, in range 0 <= token < n_vocab.
state_in_address : int
Address of the first element of a FP32 buffer of size rwkv_get_state_buffer_element_count; or None, if this is a first pass.
state_out_address : int
Address of the first element of a FP32 buffer of size rwkv_get_state_buffer_element_count. This buffer will be written to.
logits_out_address : int
Address of the first element of a FP32 buffer of size rwkv_get_logits_buffer_element_count. This buffer will be written to.
"""
assert self.library.rwkv_eval(
ctx.ptr,
ctypes.c_int32(token),
ctypes.cast(0 if state_in_address is None else state_in_address, P_FLOAT),
ctypes.cast(state_out_address, P_FLOAT),
ctypes.cast(logits_out_address, P_FLOAT)
), 'rwkv_eval failed, check stderr'
def rwkv_eval_sequence(
self,
ctx: RWKVContext,
tokens: List[int],
state_in_address: Optional[int],
state_out_address: int,
logits_out_address: int
) -> None:
"""
Evaluates the model for a sequence of tokens.
Uses a faster algorithm than `rwkv_eval` if you do not need the state and logits for every token. Best used with sequence lengths of 64 or so.
Has to build a computation graph on the first call for a given sequence, but will use this cached graph for subsequent calls of the same sequence length.
NOTE ON GGML NODE LIMIT
ggml has a hard-coded limit on max amount of nodes in a computation graph. The sequence graph is built in a way that quickly exceedes
this limit when using large models and/or large sequence lengths.
Fortunately, rwkv.cpp's fork of ggml has increased limit which was tested to work for sequence lengths up to 64 for 14B models.
If you get `GGML_ASSERT: ...\\ggml.c:16941: cgraph->n_nodes < GGML_MAX_NODES`, this means you've exceeded the limit.
To get rid of the assertion failure, reduce the model size and/or sequence length.
Not thread-safe. For parallel inference, call `rwkv_clone_context` to create one rwkv_context for each thread.
Throws an exception in case of any error. Error messages would be printed to stderr.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
tokens : List[int]
Next token indices, in range 0 <= token < n_vocab.
state_in_address : int
Address of the first element of a FP32 buffer of size rwkv_get_state_buffer_element_count; or None, if this is a first pass.
state_out_address : int
Address of the first element of a FP32 buffer of size rwkv_get_state_buffer_element_count. This buffer will be written to.
logits_out_address : int
Address of the first element of a FP32 buffer of size rwkv_get_logits_buffer_element_count. This buffer will be written to.
"""
assert self.library.rwkv_eval_sequence(
ctx.ptr,
ctypes.cast((ctypes.c_int32 * len(tokens))(*tokens), P_INT),
ctypes.c_size_t(len(tokens)),
ctypes.cast(0 if state_in_address is None else state_in_address, P_FLOAT),
ctypes.cast(state_out_address, P_FLOAT),
ctypes.cast(logits_out_address, P_FLOAT)
), 'rwkv_eval_sequence failed, check stderr'
def rwkv_eval_sequence_in_chunks(
self,
ctx: RWKVContext,
tokens: List[int],
chunk_size: int,
state_in_address: Optional[int],
state_out_address: int,
logits_out_address: int
) -> None:
"""
Evaluates the model for a sequence of tokens using `rwkv_eval_sequence`, splitting a potentially long sequence into fixed-length chunks.
This function is useful for processing complete prompts and user input in chat & role-playing use-cases.
It is recommended to use this function instead of `rwkv_eval_sequence` to avoid mistakes and get maximum performance.
Chunking allows processing sequences of thousands of tokens, while not reaching the ggml's node limit and not consuming too much memory.
A reasonable and recommended value of chunk size is 16. If you want maximum performance, try different chunk sizes in range [2..64]
and choose one that works the best in your use case.
Not thread-safe. For parallel inference, call `rwkv_clone_context` to create one rwkv_context for each thread.
Throws an exception in case of any error. Error messages would be printed to stderr.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
tokens : List[int]
Next token indices, in range 0 <= token < n_vocab.
chunk_size : int
Size of each chunk in tokens, must be positive.
state_in_address : int
Address of the first element of a FP32 buffer of size rwkv_get_state_buffer_element_count; or None, if this is a first pass.
state_out_address : int
Address of the first element of a FP32 buffer of size rwkv_get_state_buffer_element_count. This buffer will be written to.
logits_out_address : int
Address of the first element of a FP32 buffer of size rwkv_get_logits_buffer_element_count. This buffer will be written to.
"""
assert self.library.rwkv_eval_sequence_in_chunks(
ctx.ptr,
ctypes.cast((ctypes.c_int32 * len(tokens))(*tokens), P_INT),
ctypes.c_size_t(len(tokens)),
ctypes.c_size_t(chunk_size),
ctypes.cast(0 if state_in_address is None else state_in_address, P_FLOAT),
ctypes.cast(state_out_address, P_FLOAT),
ctypes.cast(logits_out_address, P_FLOAT)
), 'rwkv_eval_sequence_in_chunks failed, check stderr'
def rwkv_get_n_vocab(self, ctx: RWKVContext) -> int:
"""
Returns the number of tokens in the given model's vocabulary.
Useful for telling 20B_tokenizer models (n_vocab = 50277) apart from World models (n_vocab = 65536).
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
"""
return self.library.rwkv_get_n_vocab(ctx.ptr)
def rwkv_get_n_embed(self, ctx: RWKVContext) -> int:
"""
Returns the number of elements in the given model's embedding.
Useful for reading individual fields of a model's hidden state.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
"""
return self.library.rwkv_get_n_embed(ctx.ptr)
def rwkv_get_n_layer(self, ctx: RWKVContext) -> int:
"""
Returns the number of layers in the given model.
A layer is a pair of RWKV and FFN operations, stacked multiple times throughout the model.
Embedding matrix and model head (unembedding matrix) are NOT counted in `n_layer`.
Useful for always offloading the entire model to GPU.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
"""
return self.library.rwkv_get_n_layer(ctx.ptr)
def rwkv_get_state_buffer_element_count(self, ctx: RWKVContext) -> int:
"""
Returns count of FP32 elements in state buffer.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
"""
return self.library.rwkv_get_state_buffer_element_count(ctx.ptr)
def rwkv_get_logits_buffer_element_count(self, ctx: RWKVContext) -> int:
"""
Returns count of FP32 elements in logits buffer.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
"""
return self.library.rwkv_get_logits_buffer_element_count(ctx.ptr)
def rwkv_free(self, ctx: RWKVContext) -> None:
"""
Frees all allocated memory and the context.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
"""
self.library.rwkv_free(ctx.ptr)
ctx.ptr = self.nullptr
def rwkv_quantize_model_file(self, model_file_path_in: str, model_file_path_out: str, format_name: str) -> None:
"""
Quantizes FP32 or FP16 model to one of INT4 formats.
Throws an exception in case of any error. Error messages would be printed to stderr.
Parameters
----------
model_file_path_in : str
Path to model file in ggml format, must be either FP32 or FP16.
model_file_path_out : str
Quantized model will be written here.
format_name : str
One of QUANTIZED_FORMAT_NAMES.
"""
assert format_name in QUANTIZED_FORMAT_NAMES, f'Unknown format name {format_name}, use one of {QUANTIZED_FORMAT_NAMES}'
assert self.library.rwkv_quantize_model_file(
model_file_path_in.encode('utf-8'),
model_file_path_out.encode('utf-8'),
format_name.encode('utf-8')
), 'rwkv_quantize_model_file failed, check stderr'
def rwkv_get_system_info_string(self) -> str:
"""
Returns system information string.
"""
return self.library.rwkv_get_system_info_string().decode('utf-8')
def load_rwkv_shared_library() -> RWKVSharedLibrary:
"""
Attempts to find rwkv.cpp shared library and load it.
To specify exact path to the library, create an instance of RWKVSharedLibrary explicitly.
"""
file_name: str
if 'win32' in sys.platform or 'cygwin' in sys.platform:
file_name = 'rwkv.dll'
elif 'darwin' in sys.platform:
file_name = 'librwkv.dylib'
else:
file_name = 'librwkv.so'
# Possible sub-paths to the library relative to the repo dir.
child_paths: List[Callable[[pathlib.Path], pathlib.Path]] = [
# No lookup for Debug config here.
# I assume that if a user wants to debug the library,
# they will be able to find the library and set the exact path explicitly.
lambda p: p / 'backend-python' / 'rwkv_pip' / 'cpp' / file_name,
lambda p: p / 'bin' / 'Release' / file_name,
lambda p: p / 'bin' / file_name,
# Some people prefer to build in the "build" subdirectory.
lambda p: p / 'build' / 'bin' / 'Release' / file_name,
lambda p: p / 'build' / 'bin' / file_name,
lambda p: p / 'build' / file_name,
# Fallback.
lambda p: p / file_name
]
working_dir: pathlib.Path = pathlib.Path(os.path.abspath(os.getcwd()))
parent_paths: List[pathlib.Path] = [
# Possible repo dirs relative to the working dir.
# ./python/rwkv_cpp
working_dir.parent.parent,
# ./python
working_dir.parent,
# .
working_dir,
# Repo dir relative to this Python file.
pathlib.Path(os.path.abspath(__file__)).parent.parent.parent
]
for parent_path in parent_paths:
for child_path in child_paths:
full_path: pathlib.Path = child_path(parent_path)
if os.path.isfile(full_path):
return RWKVSharedLibrary(str(full_path))
assert False, (f'Failed to find {file_name} automatically; '
f'you need to find the library and create RWKVSharedLibrary specifying the path to it')

View File

@ -78,12 +78,22 @@ class PIPELINE:
def decode(self, x):
return self.tokenizer.decode(x)
def np_softmax(self, x: np.ndarray, axis: int):
x -= x.max(axis=axis, keepdims=True)
e: np.ndarray = np.exp(x)
return e / e.sum(axis=axis, keepdims=True)
def sample_logits(self, logits, temperature=1.0, top_p=0.85, top_k=0):
probs = F.softmax(logits.float(), dim=-1)
np_logits = type(logits) == np.ndarray
if np_logits:
probs = self.np_softmax(logits, axis=-1)
else:
probs = F.softmax(logits.float(), dim=-1)
top_k = int(top_k)
# 'privateuseone' is the type of custom devices like `torch_directml.device()`
if probs.device.type in ["cpu", "privateuseone"]:
probs = probs.cpu().numpy()
if np_logits or probs.device.type in ["cpu", "privateuseone"]:
if not np_logits:
probs = probs.cpu().numpy()
sorted_ids = np.argsort(probs)
sorted_probs = probs[sorted_ids][::-1]
cumulative_probs = np.cumsum(sorted_probs)

View File

@ -510,15 +510,22 @@ def get_tokenizer(tokenizer_len: int):
def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV:
rwkv_beta = global_var.get(global_var.Args).rwkv_beta
rwkv_cpp = getattr(global_var.get(global_var.Args), "rwkv.cpp")
if "midi" in model.lower() or "abc" in model.lower():
os.environ["RWKV_RESCALE_LAYER"] = "999"
# dynamic import to make RWKV_CUDA_ON work
if rwkv_beta:
print("Using rwkv-beta")
from rwkv_pip.beta.model import (
RWKV as Model,
)
elif rwkv_cpp:
print("Using rwkv.cpp, strategy is ignored")
from rwkv_pip.cpp.model import (
RWKV as Model,
)
else:
from rwkv_pip.model import (
RWKV as Model,

View File

@ -128,7 +128,7 @@
"Chinese Kongfu": "中国武術",
"Allow external access to the API (service must be restarted)": "APIへの外部アクセスを許可する (サービスを再起動する必要があります)",
"Custom": "カスタム",
"CUDA (Beta, Faster)": "CUDA (ベータ、高速)",
"CUDA (Beta, Faster)": "CUDA (Beta, 高速)",
"Reset All Configs": "すべての設定をリセット",
"Cancel": "キャンセル",
"Confirm": "確認",
@ -313,5 +313,8 @@
"Music": "音楽",
"Other": "その他",
"Import MIDI": "MIDIをインポート",
"Current Instrument": "現在の楽器"
"Current Instrument": "現在の楽器",
"Please convert model to GGML format first": "モデルをGGML形式に変換してください",
"Convert To GGML Format": "GGML形式に変換",
"CPU (rwkv.cpp, Faster)": "CPU (rwkv.cpp, 高速)"
}

View File

@ -313,5 +313,8 @@
"Music": "音乐",
"Other": "其他",
"Import MIDI": "导入MIDI",
"Current Instrument": "当前乐器"
"Current Instrument": "当前乐器",
"Please convert model to GGML format first": "请先将模型转换为GGML格式",
"Convert To GGML Format": "转换为GGML格式",
"CPU (rwkv.cpp, Faster)": "CPU (rwkv.cpp, 更快)"
}

View File

@ -17,7 +17,8 @@ import { ToolTipButton } from './ToolTipButton';
import { Play16Regular, Stop16Regular } from '@fluentui/react-icons';
import { useNavigate } from 'react-router';
import { WindowShow } from '../../wailsjs/runtime';
import { convertToSt } from '../utils/convert-to-st';
import { convertToGGML, convertToSt } from '../utils/convert-model';
import { Precision } from '../types/configs';
const mainButtonText = {
[ModelStatus.Offline]: 'Run',
@ -47,6 +48,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
const modelConfig = commonStore.getCurrentModelConfig();
const webgpu = modelConfig.modelParameters.device === 'WebGPU';
const cpp = modelConfig.modelParameters.device === 'CPU (rwkv.cpp)';
let modelName = '';
let modelPath = '';
if (modelConfig && modelConfig.modelParameters) {
@ -112,6 +114,30 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
return;
}
if (cpp) {
if (!['.bin'].some(ext => modelPath.endsWith(ext))) {
const precision: Precision = modelConfig.modelParameters.precision === 'Q5_1' ? 'Q5_1' : 'fp16';
const ggmlModelPath = modelPath.replace(/\.pth$/, `-${precision}.bin`);
if (await FileExists(ggmlModelPath)) {
modelPath = ggmlModelPath;
} else if (!await FileExists(modelPath)) {
showDownloadPrompt(t('Model file not found'), modelName);
commonStore.setStatus({ status: ModelStatus.Offline });
return;
} else if (!currentModelSource?.isComplete) {
showDownloadPrompt(t('Model file download is not complete'), modelName);
commonStore.setStatus({ status: ModelStatus.Offline });
return;
} else {
toastWithButton(t('Please convert model to GGML format first'), t('Convert'), () => {
convertToGGML(modelConfig, navigate);
});
commonStore.setStatus({ status: ModelStatus.Offline });
return;
}
}
}
if (!await FileExists(modelPath)) {
showDownloadPrompt(t('Model file not found'), modelName);
commonStore.setStatus({ status: ModelStatus.Offline });
@ -142,7 +168,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
const isUsingCudaBeta = modelConfig.modelParameters.device === 'CUDA-Beta';
startServer(commonStore.settings.customPythonPath, port, commonStore.settings.host !== '127.0.0.1' ? '0.0.0.0' : '127.0.0.1',
!!modelConfig.enableWebUI, isUsingCudaBeta
!!modelConfig.enableWebUI, isUsingCudaBeta, cpp
).catch((e) => {
const errMsg = e.message || e;
if (errMsg.includes('path contains space'))

View File

@ -27,18 +27,19 @@ import { Page } from '../components/Page';
import { useNavigate } from 'react-router';
import { RunButton } from '../components/RunButton';
import { updateConfig } from '../apis';
import { ConvertModel, FileExists, GetPyError } from '../../wailsjs/go/backend_golang/App';
import { checkDependencies, getStrategy } from '../utils';
import { getStrategy } from '../utils';
import { useTranslation } from 'react-i18next';
import { WindowShow } from '../../wailsjs/runtime';
import strategyImg from '../assets/images/strategy.jpg';
import strategyZhImg from '../assets/images/strategy_zh.jpg';
import { ResetConfigsButton } from '../components/ResetConfigsButton';
import { useMediaQuery } from 'usehooks-ts';
import { ApiParameters, Device, ModelParameters, Precision } from '../types/configs';
import { convertToSt } from '../utils/convert-to-st';
import { convertModel, convertToGGML, convertToSt } from '../utils/convert-model';
const ConfigSelector: FC<{ selectedIndex: number, updateSelectedIndex: (i: number) => void }> = observer(({ selectedIndex, updateSelectedIndex }) => {
const ConfigSelector: FC<{
selectedIndex: number,
updateSelectedIndex: (i: number) => void
}> = observer(({ selectedIndex, updateSelectedIndex }) => {
return (
<Dropdown style={{ minWidth: 0 }} className="grow" value={commonStore.modelConfigs[selectedIndex].name}
selectedOptions={[selectedIndex.toString()]}
@ -246,45 +247,14 @@ const Configs: FC = observer(() => {
} />
{
selectedConfig.modelParameters.device !== 'WebGPU' ?
<ToolTipButton text={t('Convert')}
desc={t('Convert model with these configs. Using a converted model will greatly improve the loading speed, but model parameters of the converted model cannot be modified.')}
onClick={async () => {
if (commonStore.platform === 'darwin') {
toast(t('MacOS is not yet supported for performing this operation, please do it manually.') + ' (backend-python/convert_model.py)', { type: 'info' });
return;
} else if (commonStore.platform === 'linux') {
toast(t('Linux is not yet supported for performing this operation, please do it manually.') + ' (backend-python/convert_model.py)', { type: 'info' });
return;
}
const ok = await checkDependencies(navigate);
if (!ok)
return;
const modelPath = `${commonStore.settings.customModelsPath}/${selectedConfig.modelParameters.modelName}`;
if (await FileExists(modelPath)) {
const strategy = getStrategy(selectedConfig);
const newModelPath = modelPath + '-' + strategy.replace(/[:> *+]/g, '-');
toast(t('Start Converting'), { autoClose: 1000, type: 'info' });
ConvertModel(commonStore.settings.customPythonPath, modelPath, strategy, newModelPath).then(async () => {
if (!await FileExists(newModelPath + '.pth')) {
toast(t('Convert Failed') + ' - ' + await GetPyError(), { type: 'error' });
} else {
toast(`${t('Convert Success')} - ${newModelPath}`, { type: 'success' });
}
}).catch(e => {
const errMsg = e.message || e;
if (errMsg.includes('path contains space'))
toast(`${t('Convert Failed')} - ${t('File Path Cannot Contain Space')}`, { type: 'error' });
else
toast(`${t('Convert Failed')} - ${e.message || e}`, { type: 'error' });
});
setTimeout(WindowShow, 1000);
} else {
toast(`${t('Model Not Found')} - ${modelPath}`, { type: 'error' });
}
}} /> :
<ToolTipButton text={t('Convert To Safe Tensors Format')}
(selectedConfig.modelParameters.device !== 'CPU (rwkv.cpp)' ?
<ToolTipButton text={t('Convert')}
desc={t('Convert model with these configs. Using a converted model will greatly improve the loading speed, but model parameters of the converted model cannot be modified.')}
onClick={() => convertModel(selectedConfig, navigate)} /> :
<ToolTipButton text={t('Convert To GGML Format')}
desc=""
onClick={() => convertToGGML(selectedConfig, navigate)} />)
: <ToolTipButton text={t('Convert To Safe Tensors Format')}
desc=""
onClick={() => convertToSt(selectedConfig)} />
}
@ -299,6 +269,7 @@ const Configs: FC = observer(() => {
}
}}>
<Option value="CPU">CPU</Option>
<Option value="CPU (rwkv.cpp)">{t('CPU (rwkv.cpp, Faster)')!}</Option>
{commonStore.platform === 'darwin' && <Option value="MPS">MPS</Option>}
<Option value="CUDA">CUDA</Option>
<Option value="CUDA-Beta">{t('CUDA (Beta, Faster)')!}</Option>
@ -322,9 +293,11 @@ const Configs: FC = observer(() => {
}}>
{selectedConfig.modelParameters.device !== 'CPU' && selectedConfig.modelParameters.device !== 'MPS' &&
<Option>fp16</Option>}
<Option>int8</Option>
{selectedConfig.modelParameters.device !== 'CPU (rwkv.cpp)' && <Option>int8</Option>}
{selectedConfig.modelParameters.device === 'WebGPU' && <Option>nf4</Option>}
{selectedConfig.modelParameters.device !== 'WebGPU' && <Option>fp32</Option>}
{selectedConfig.modelParameters.device !== 'CPU (rwkv.cpp)' && selectedConfig.modelParameters.device !== 'WebGPU' &&
<Option>fp32</Option>}
{selectedConfig.modelParameters.device === 'CPU (rwkv.cpp)' && <Option>Q5_1</Option>}
</Dropdown>
} />
}

View File

@ -6,8 +6,8 @@ export type ApiParameters = {
presencePenalty: number;
frequencyPenalty: number;
}
export type Device = 'CPU' | 'CUDA' | 'CUDA-Beta' | 'WebGPU' | 'MPS' | 'Custom';
export type Precision = 'fp16' | 'int8' | 'fp32' | 'nf4';
export type Device = 'CPU' | 'CPU (rwkv.cpp)' | 'CUDA' | 'CUDA-Beta' | 'WebGPU' | 'MPS' | 'Custom';
export type Precision = 'fp16' | 'int8' | 'fp32' | 'nf4' | 'Q5_1';
export type ModelParameters = {
// different models can not have the same name
modelName: string;

View File

@ -0,0 +1,107 @@
import { toast } from 'react-toastify';
import commonStore from '../stores/commonStore';
import { t } from 'i18next';
import {
ConvertGGML,
ConvertModel,
ConvertSafetensors,
FileExists,
GetPyError
} from '../../wailsjs/go/backend_golang/App';
import { WindowShow } from '../../wailsjs/runtime';
import { ModelConfig, Precision } from '../types/configs';
import { checkDependencies, getStrategy } from './index';
import { NavigateFunction } from 'react-router';
export const convertModel = async (selectedConfig: ModelConfig, navigate: NavigateFunction) => {
if (commonStore.platform === 'darwin') {
toast(t('MacOS is not yet supported for performing this operation, please do it manually.') + ' (backend-python/convert_model.py)', { type: 'info' });
return;
} else if (commonStore.platform === 'linux') {
toast(t('Linux is not yet supported for performing this operation, please do it manually.') + ' (backend-python/convert_model.py)', { type: 'info' });
return;
}
const ok = await checkDependencies(navigate);
if (!ok)
return;
const modelPath = `${commonStore.settings.customModelsPath}/${selectedConfig.modelParameters.modelName}`;
if (await FileExists(modelPath)) {
const strategy = getStrategy(selectedConfig);
const newModelPath = modelPath + '-' + strategy.replace(/[:> *+]/g, '-');
toast(t('Start Converting'), { autoClose: 2000, type: 'info' });
ConvertModel(commonStore.settings.customPythonPath, modelPath, strategy, newModelPath).then(async () => {
if (!await FileExists(newModelPath + '.pth')) {
toast(t('Convert Failed') + ' - ' + await GetPyError(), { type: 'error' });
} else {
toast(`${t('Convert Success')} - ${newModelPath}`, { type: 'success' });
}
}).catch(e => {
const errMsg = e.message || e;
if (errMsg.includes('path contains space'))
toast(`${t('Convert Failed')} - ${t('File Path Cannot Contain Space')}`, { type: 'error' });
else
toast(`${t('Convert Failed')} - ${e.message || e}`, { type: 'error' });
});
setTimeout(WindowShow, 1000);
} else {
toast(`${t('Model Not Found')} - ${modelPath}`, { type: 'error' });
}
};
export const convertToSt = async (selectedConfig: ModelConfig) => {
const modelPath = `${commonStore.settings.customModelsPath}/${selectedConfig.modelParameters.modelName}`;
if (await FileExists(modelPath)) {
toast(t('Start Converting'), { autoClose: 2000, type: 'info' });
const newModelPath = modelPath.replace(/\.pth$/, '.st');
ConvertSafetensors(modelPath, newModelPath).then(async () => {
if (!await FileExists(newModelPath)) {
if (commonStore.platform === 'windows' || commonStore.platform === 'linux')
toast(t('Convert Failed') + ' - ' + await GetPyError(), { type: 'error' });
} else {
toast(`${t('Convert Success')} - ${newModelPath}`, { type: 'success' });
}
}).catch(e => {
const errMsg = e.message || e;
if (errMsg.includes('path contains space'))
toast(`${t('Convert Failed')} - ${t('File Path Cannot Contain Space')}`, { type: 'error' });
else
toast(`${t('Convert Failed')} - ${e.message || e}`, { type: 'error' });
});
setTimeout(WindowShow, 1000);
} else {
toast(`${t('Model Not Found')} - ${modelPath}`, { type: 'error' });
}
};
export const convertToGGML = async (selectedConfig: ModelConfig, navigate: NavigateFunction) => {
const ok = await checkDependencies(navigate);
if (!ok)
return;
const modelPath = `${commonStore.settings.customModelsPath}/${selectedConfig.modelParameters.modelName}`;
if (await FileExists(modelPath)) {
toast(t('Start Converting'), { autoClose: 2000, type: 'info' });
const precision: Precision = selectedConfig.modelParameters.precision === 'Q5_1' ? 'Q5_1' : 'fp16';
const newModelPath = modelPath.replace(/\.pth$/, `-${precision}.bin`);
ConvertGGML(commonStore.settings.customPythonPath, modelPath, newModelPath, precision === 'Q5_1').then(async () => {
if (!await FileExists(newModelPath)) {
if (commonStore.platform === 'windows' || commonStore.platform === 'linux')
toast(t('Convert Failed') + ' - ' + await GetPyError(), { type: 'error' });
} else {
toast(`${t('Convert Success')} - ${newModelPath}`, { type: 'success' });
}
}).catch(e => {
const errMsg = e.message || e;
if (errMsg.includes('path contains space'))
toast(`${t('Convert Failed')} - ${t('File Path Cannot Contain Space')}`, { type: 'error' });
else
toast(`${t('Convert Failed')} - ${e.message || e}`, { type: 'error' });
});
setTimeout(WindowShow, 1000);
} else {
toast(`${t('Model Not Found')} - ${modelPath}`, { type: 'error' });
}
};

View File

@ -1,31 +0,0 @@
import { toast } from 'react-toastify';
import commonStore from '../stores/commonStore';
import { t } from 'i18next';
import { ConvertSafetensors, FileExists, GetPyError } from '../../wailsjs/go/backend_golang/App';
import { WindowShow } from '../../wailsjs/runtime';
import { ModelConfig } from '../types/configs';
export const convertToSt = async (selectedConfig: ModelConfig) => {
const modelPath = `${commonStore.settings.customModelsPath}/${selectedConfig.modelParameters.modelName}`;
if (await FileExists(modelPath)) {
toast(t('Start Converting'), { autoClose: 2000, type: 'info' });
const newModelPath = modelPath.replace(/\.pth$/, '.st');
ConvertSafetensors(modelPath, newModelPath).then(async () => {
if (!await FileExists(newModelPath)) {
if (commonStore.platform === 'windows' || commonStore.platform === 'linux')
toast(t('Convert Failed') + ' - ' + await GetPyError(), { type: 'error' });
} else {
toast(`${t('Convert Success')} - ${newModelPath}`, { type: 'success' });
}
}).catch(e => {
const errMsg = e.message || e;
if (errMsg.includes('path contains space'))
toast(`${t('Convert Failed')} - ${t('File Path Cannot Contain Space')}`, { type: 'error' });
else
toast(`${t('Convert Failed')} - ${e.message || e}`, { type: 'error' });
});
setTimeout(WindowShow, 1000);
} else {
toast(`${t('Model Not Found')} - ${modelPath}`, { type: 'error' });
}
};

View File

@ -63,7 +63,7 @@ export async function refreshBuiltInModels(readCache: boolean = false) {
return cache;
}
const modelSuffix = ['.pth', '.st', '.safetensors'];
const modelSuffix = ['.pth', '.st', '.safetensors', '.bin'];
export async function refreshLocalModels(cache: {
models: ModelSourceItem[]

View File

@ -10,6 +10,8 @@ export function ContinueDownload(arg1:string):Promise<void>;
export function ConvertData(arg1:string,arg2:string,arg3:string,arg4:string):Promise<string>;
export function ConvertGGML(arg1:string,arg2:string,arg3:string,arg4:boolean):Promise<string>;
export function ConvertModel(arg1:string,arg2:string,arg3:string,arg4:string):Promise<string>;
export function ConvertSafetensors(arg1:string,arg2:string):Promise<string>;
@ -58,7 +60,7 @@ export function RestartApp():Promise<void>;
export function SaveJson(arg1:string,arg2:any):Promise<void>;
export function StartServer(arg1:string,arg2:number,arg3:string,arg4:boolean,arg5:boolean):Promise<string>;
export function StartServer(arg1:string,arg2:number,arg3:string,arg4:boolean,arg5:boolean,arg6:boolean):Promise<string>;
export function StartWebGPUServer(arg1:number,arg2:string):Promise<string>;

View File

@ -18,6 +18,10 @@ export function ConvertData(arg1, arg2, arg3, arg4) {
return window['go']['backend_golang']['App']['ConvertData'](arg1, arg2, arg3, arg4);
}
export function ConvertGGML(arg1, arg2, arg3, arg4) {
return window['go']['backend_golang']['App']['ConvertGGML'](arg1, arg2, arg3, arg4);
}
export function ConvertModel(arg1, arg2, arg3, arg4) {
return window['go']['backend_golang']['App']['ConvertModel'](arg1, arg2, arg3, arg4);
}
@ -114,8 +118,8 @@ export function SaveJson(arg1, arg2) {
return window['go']['backend_golang']['App']['SaveJson'](arg1, arg2);
}
export function StartServer(arg1, arg2, arg3, arg4, arg5) {
return window['go']['backend_golang']['App']['StartServer'](arg1, arg2, arg3, arg4, arg5);
export function StartServer(arg1, arg2, arg3, arg4, arg5, arg6) {
return window['go']['backend_golang']['App']['StartServer'](arg1, arg2, arg3, arg4, arg5, arg6);
}
export function StartWebGPUServer(arg1, arg2) {

View File

@ -3,6 +3,7 @@
- ^backend-python/get-pip\.py
- ^backend-python/convert_model\.py
- ^backend-python/convert_safetensors\.py
- ^backend-python/convert_pytorch_to_ggml\.py linguist-vendored
- ^backend-python/utils/midi\.py
- ^build/
- ^finetune/lora/