Compare commits

...

64 Commits

Author SHA1 Message Date
josc146
d66c30698c release v1.0.9 2023-05-29 00:25:22 +08:00
josc146
fecdf238c1 feat: preload preset_system 2023-05-29 00:08:13 +08:00
josc146
3e11128c9d feat: use model state cache to achieve 5x - 50x faster preparation time for generation 2023-05-28 23:52:38 +08:00
josc146
822f2d729c fix: sha256 check for model deduplication 2023-05-28 23:45:11 +08:00
josc146
a16c85b07d fix: the configs page now always displays the currently selected non-local model so that other models can be selected properly 2023-05-28 23:44:21 +08:00
josc146
4e678eff6f update about 2023-05-28 17:24:49 +08:00
josc146
94971bb666 support for rwkv-4-world 2023-05-28 12:53:14 +08:00
josc146
b7fb8ed898 improve api concurrency performance 2023-05-27 15:18:12 +08:00
josc146
2ca8f5eba9 experimental macOS/Linux support 2023-05-27 14:40:59 +08:00
josc146
2431ff68e6 update readme 2023-05-27 00:38:39 +08:00
josc146
06e21badc0 Update README.md 2023-05-26 13:54:45 +08:00
Pedro Cabral
52c3b7e9bf Add RWKV-4 World 0.1B (#25)
* Add RWKV-4 World 0.1B

* Update manifest.json

---------

Co-authored-by: josc146 <josStorer@outlook.com>
2023-05-26 12:32:29 +08:00
josc146
bd490b4fac update readme 2023-05-25 21:06:05 +08:00
josc146
48b09c4310 release v1.0.8 2023-05-25 20:59:22 +08:00
josc146
ffa90d89d1 update manifest.json 2023-05-25 20:59:03 +08:00
josc146
e0781be9a9 update presets 2023-05-25 20:54:54 +08:00
josc146
33b21a0f5c update home page 2023-05-25 20:40:50 +08:00
josc146
bf5ac7efef update presets 2023-05-25 20:36:32 +08:00
josc146
06622b79aa update rwkv_generate 2023-05-25 20:34:42 +08:00
josc146
537f11cbf1 update defaultModelConfigs 2023-05-25 11:46:38 +08:00
josc146
c6500c6b3a update readme 2023-05-25 10:02:29 +08:00
josc146
6f629dbc55 fix startup status detect 2023-05-25 00:51:45 +08:00
josc146
5729d9fc62 release v1.0.7 2023-05-25 00:22:26 +08:00
josc146
bb8af451f6 fix cuda40 kernel 2023-05-25 00:22:09 +08:00
josc146
ed330566e3 fix 2023-05-24 23:17:08 +08:00
josc146
673ecb489e release v1.0.6 2023-05-24 23:05:27 +08:00
josc146
5192e31bac improve upgrade process 2023-05-24 23:05:19 +08:00
josc146
9f080b63e0 release v1.0.5 2023-05-24 22:29:45 +08:00
josc146
77ce87d209 update cuda40 kernel 2023-05-24 22:18:14 +08:00
josc146
dc50cf84f2 improve update process 2023-05-24 22:14:40 +08:00
josc146
f439b3d382 add api host setting 2023-05-24 22:03:30 +08:00
josc146
03a494e1f1 update Preset 2023-05-24 21:48:12 +08:00
josc146
bac4582144 update readme 2023-05-24 21:45:50 +08:00
josc146
1676c5b7e6 support nvidia 16xx 2023-05-24 21:27:48 +08:00
josc146
c7ed4b07c2 Completion Page 2023-05-24 21:27:23 +08:00
josc146
bcb38d991a add role: "system" support 2023-05-24 14:01:22 +08:00
josc146
1176dba282 fix manifest programFiles version to enhance cdn real-time performance 2023-05-24 12:22:47 +08:00
josc146
c741b2a203 fix api completion_lock (#6) 2023-05-24 11:45:55 +08:00
josc146
41142f15fb release v1.0.4 2023-05-24 09:18:03 +08:00
josc146
cf55c4578b improve interaction and avoid user mistakes 2023-05-24 09:17:49 +08:00
josc146
cc06669b3e release v1.0.3 2023-05-23 22:45:47 +08:00
josc146
2468425332 update defaultModelConfigs v12 2023-05-23 22:45:39 +08:00
josc146
6cabef2d9b update manifest.json 2023-05-23 22:41:39 +08:00
josc146
5c0513a3cc fix duplicate switchModel() 2023-05-23 22:27:25 +08:00
josc146
ec7d50431e use @master/manifest.json 2023-05-23 22:18:06 +08:00
josc146
f8cb9511e1 update readme 2023-05-23 21:25:33 +08:00
josc146
4d0d0a4dee update readme 2023-05-23 20:52:18 +08:00
josc146
28874585ea update about 2023-05-23 18:09:25 +08:00
josc146
11f358c467 update readme 2023-05-23 16:45:53 +08:00
josc146
0a712da7fc Update README_ZH.md 2023-05-23 16:42:50 +08:00
josc146
89ddde9f3e update readme 2023-05-23 14:58:45 +08:00
josc146
5e4f6159be fix CopyFile api 2023-05-23 14:36:24 +08:00
josc146
89c8545528 update manifest.json 2023-05-23 14:17:19 +08:00
josc146
4eca1537a7 add customCudaFile support 2023-05-23 14:04:06 +08:00
josc146
65d92d5da1 useCustomCuda 2023-05-23 13:33:27 +08:00
josc146
3aaf16b38b global status 2023-05-23 12:50:53 +08:00
josc146
9a3657e6ea delete cache before updating 2023-05-23 12:37:13 +08:00
josc146
689c704dca update manifest.json 2023-05-23 12:35:36 +08:00
josc146
29c8a27eed scrollToBottom when opening chat page 2023-05-23 12:24:39 +08:00
josc146
1d08719645 update requirements and /status 2023-05-23 12:13:12 +08:00
josc146
524d9e78e6 SwitchModelBody.customCuda 2023-05-23 11:51:43 +08:00
josc146
7989e93afe fixed torch version; CUDA acceleration utils 2023-05-23 11:19:39 +08:00
josc146
ecb5d6c6e4 Update README_ZH.md 2023-05-22 19:43:47 +08:00
josc146
8be85b1c7e update manifest 2023-05-22 12:29:41 +08:00
40 changed files with 67956 additions and 295 deletions

5
.gitignore vendored
View File

@@ -13,4 +13,7 @@ __pycache__
/backend-python/get-pip.py
/py310
*.zip
/cmd-helper.bat
/cmd-helper.bat
/backend-python/wkv_cuda
*.exe
*.old

18
.vscode/launch.json vendored Normal file
View File

@@ -0,0 +1,18 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
//
// Use Ctrl+Shift+P to Select Interpreter
"version": "0.2.0",
"configurations": [
{
"name": "Python",
"type": "python",
"request": "launch",
"program": "./backend-python/main.py",
"console": "integratedTerminal",
"justMyCode": false,
}
]
}

View File

@@ -2,6 +2,6 @@
"[python]": {
"editor.defaultFormatter": "ms-python.black-formatter"
},
"python.formatting.provider": "black",
"python.formatting.provider": "none",
"editor.formatOnSave": true
}

View File

@@ -15,7 +15,7 @@ compatible with the OpenAI API, which means that every ChatGPT client is an RWKV
English | [简体中文](README_ZH.md)
[Preview](#Preview) | [Download][download-url]
[FAQs](https://github.com/josStorer/RWKV-Runner/wiki/FAQs) | [Preview](#Preview) | [Download][download-url]
[license-image]: http://img.shields.io/badge/license-MIT-blue.svg
@@ -25,10 +25,14 @@ English | [简体中文](README_ZH.md)
[release-url]: https://github.com/josStorer/RWKV-Runner/releases/latest
[download-url]: https://github.com/josStorer/RWKV-Runner/releases/download/v1.0.0/RWKV-Runner_windows_x64.exe
[download-url]: https://github.com/josStorer/RWKV-Runner/releases
</div>
#### Default configs do not enable custom CUDA kernel acceleration, but I strongly recommend that you enable it and run with int8 precision, which is much faster and consumes much less VRAM. Go to the Configs page and turn on `Use Custom CUDA kernel to Accelerate`.
#### For different tasks, adjusting API parameters can achieve better results. For example, for translation tasks, you can try setting Temperature to 1 and Top_P to 0.3.
## Features
- RWKV model management and one-click startup
@@ -43,12 +47,31 @@ English | [简体中文](README_ZH.md)
- Theme switching
- Automatic updates
## API Concurrency Stress Testing
```bash
ab -p body.json -T application/json -c 20 -n 100 -l http://127.0.0.1:8000/chat/completions
```
body.json:
```json
{
"messages": [
{
"role": "user",
"content": "Hello"
}
]
}
```
## Todo
- Model training functionality
- CUDA operator int8 acceleration
- macOS support
- Linux support
- [ ] Model training functionality
- [x] CUDA operator int8 acceleration
- [ ] macOS support
- [ ] Linux support
## Related Repositories:
@@ -66,6 +89,10 @@ English | [简体中文](README_ZH.md)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/6cde9c45-51bb-4dee-b1fe-746862448520)
### Completion
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/52f47f92-d21d-4cd7-b04e-d6f9af937a97)
### Configuration
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/93270a68-9d6d-4247-b6a3-e543c65a876b)

View File

@@ -14,7 +14,7 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
[English](README.md) | 简体中文
[预览](#Preview) | [下载][download-url]
[视频演示](https://www.bilibili.com/video/BV1hM4y1v76R) | [疑难解答](https://www.bilibili.com/read/cv23921171) | [预览](#Preview) | [下载][download-url]
[license-image]: http://img.shields.io/badge/license-MIT-blue.svg
@@ -24,10 +24,16 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
[release-url]: https://github.com/josStorer/RWKV-Runner/releases/latest
[download-url]: https://github.com/josStorer/RWKV-Runner/releases/download/v1.0.0/RWKV-Runner_windows_x64.exe
[download-url]: https://github.com/josStorer/RWKV-Runner/releases
</div>
#### 注意 目前RWKV中文模型质量一般推荐使用英文模型体验实际RWKV能力
#### 预设配置没有开启自定义CUDA算子加速但我强烈建议你开启它并使用int8量化运行速度非常快且显存消耗少得多。前往配置页面打开`使用自定义CUDA算子加速`
#### 对于不同的任务调整API参数会获得更好的效果例如对于翻译任务你可以尝试设置Temperature为1Top_P为0.3
## 功能
- RWKV模型管理一键启动
@@ -41,12 +47,31 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
- 主题切换
- 自动更新
## API并发压力测试
```bash
ab -p body.json -T application/json -c 20 -n 100 -l http://127.0.0.1:8000/chat/completions
```
body.json:
```json
{
"messages": [
{
"role": "user",
"content": "Hello"
}
]
}
```
## Todo
- 模型训练功能
- CUDA算子int8提速
- macOS支持
- linux支持
- [ ] 模型训练功能
- [x] CUDA算子int8提速
- [ ] macOS支持
- [ ] linux支持
## 相关仓库:
@@ -64,6 +89,10 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/0e66d5fa-f34a-409f-9cd4-d880815733f3)
### 补全
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/d4178ee9-a188-4878-9777-25c916872c29)
### 配置
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/ad9921fc-7248-40a3-9e18-03445b86e4bf)

View File

@@ -3,6 +3,7 @@ package backend_golang
import (
"encoding/json"
"fmt"
"io"
"os"
"os/exec"
"path/filepath"
@@ -92,6 +93,26 @@ func (a *App) DeleteFile(path string) error {
return nil
}
func (a *App) CopyFile(src string, dst string) error {
sourceFile, err := os.Open(src)
if err != nil {
return err
}
defer sourceFile.Close()
destFile, err := os.Create(dst)
if err != nil {
return err
}
defer destFile.Close()
_, err = io.Copy(destFile, sourceFile)
if err != nil {
return err
}
return nil
}
func (a *App) OpenFileFolder(path string) error {
absPath, err := filepath.Abs(path)
if err != nil {

View File

@@ -3,15 +3,16 @@ package backend_golang
import (
"errors"
"os/exec"
"runtime"
"strconv"
)
func (a *App) StartServer(port int) (string, error) {
func (a *App) StartServer(port int, host string) (string, error) {
python, err := GetPython()
if err != nil {
return "", err
}
return Cmd(python, "./backend-python/main.py", strconv.Itoa(port))
return Cmd(python, "./backend-python/main.py", strconv.Itoa(port), host)
}
func (a *App) ConvertModel(modelPath string, strategy string, outPath string) (string, error) {
@@ -39,6 +40,9 @@ func (a *App) InstallPyDep(cnMirror bool) (string, error) {
if err != nil {
return "", err
}
if runtime.GOOS == "windows" {
ChangeFileLine("./py310/python310._pth", 3, "Lib\\site-packages")
}
if cnMirror {
_, err = Cmd(python, "./backend-python/get-pip.py", "-i", "https://pypi.tuna.tsinghua.edu.cn/simple")
} else {
@@ -47,8 +51,7 @@ func (a *App) InstallPyDep(cnMirror bool) (string, error) {
if err != nil {
return "", err
}
ChangeFileLine("./py310/python310._pth", 3, "Lib\\site-packages")
_, err = Cmd(python, "-m", "pip", "install", "torch", "torchvision", "torchaudio", "--index-url", "https://download.pytorch.org/whl/cu117")
_, err = Cmd(python, "-m", "pip", "install", "torch==1.13.1", "torchvision==0.14.1", "torchaudio==0.13.1", "--index-url", "https://download.pytorch.org/whl/cu117")
if err != nil {
return "", err
}

View File

@@ -13,22 +13,32 @@ import (
)
func Cmd(args ...string) (string, error) {
_, err := os.Stat("cmd-helper.bat")
if err != nil {
if err := os.WriteFile("./cmd-helper.bat", []byte("start %*"), 0644); err != nil {
if runtime.GOOS == "windows" {
_, err := os.Stat("cmd-helper.bat")
if err != nil {
if err := os.WriteFile("./cmd-helper.bat", []byte("start %*"), 0644); err != nil {
return "", err
}
}
cmdHelper, err := filepath.Abs("./cmd-helper")
if err != nil {
return "", err
}
cmd := exec.Command(cmdHelper, args...)
out, err := cmd.CombinedOutput()
if err != nil {
return "", err
}
return string(out), nil
} else {
cmd := exec.Command(args[0], args[1:]...)
err := cmd.Start()
if err != nil {
return "", err
}
cmd.Wait()
return "", nil
}
cmdHelper, err := filepath.Abs("./cmd-helper")
if err != nil {
return "", err
}
cmd := exec.Command(cmdHelper, args...)
out, err := cmd.CombinedOutput()
if err != nil {
return "", err
}
return string(out), nil
}
func GetPython() (string, error) {

View File

@@ -1,3 +1,5 @@
import cyac
import GPUtil
import torch
import rwkv
import langchain

View File

@@ -11,10 +11,9 @@ import uvicorn
from utils.rwkv import *
from utils.torch import *
from utils.ngrok import *
from routes import completion, config
from routes import completion, config, state_cache
import global_var
app = FastAPI()
app.add_middleware(
@@ -27,11 +26,13 @@ app.add_middleware(
app.include_router(completion.router)
app.include_router(config.router)
app.include_router(state_cache.router)
@app.on_event("startup")
def init():
global_var.init()
state_cache.init()
set_torch()
@@ -64,5 +65,9 @@ def debug():
if __name__ == "__main__":
uvicorn.run("main:app", port=8000 if len(sys.argv) == 1 else int(sys.argv[1]))
uvicorn.run(
"main:app",
port=8000 if len(sys.argv) < 2 else int(sys.argv[1]),
host="127.0.0.1" if len(sys.argv) < 3 else sys.argv[2],
)
# debug()

Binary file not shown.

View File

@@ -40,11 +40,46 @@ async def chat_completions(body: ChatCompletionBody, request: Request):
else:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "no question found")
completion_text = ""
interface = model.interface
user = model.user
bot = model.bot
completion_text = (
f"""
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
{bot} is very intelligent, creative and friendly. \
{bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \
{bot} likes to tell {user} a lot about herself and her opinions. \
{bot} usually gives {user} kind, helpful and informative advices.\n
"""
if user == "Bob"
else ""
)
for message in body.messages:
if message.role == "user":
if message.role == "system":
completion_text = (
f"The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. "
if user == "Bob"
else ""
+ message.content.replace("\\n", "\n")
.replace("\r\n", "\n")
.replace("\n\n", "\n")
.replace("\n", " ")
.strip()
.replace("You are", f"{bot} is")
.replace("you are", f"{bot} is")
.replace("You're", f"{bot} is")
.replace("you're", f"{bot} is")
.replace("You", f"{bot}")
.replace("you", f"{bot}")
.replace("Your", f"{bot}'s")
.replace("your", f"{bot}'s")
.replace("", f"{bot}")
+ "\n\n"
)
elif message.role == "user":
completion_text += (
"Bob: "
f"{user}{interface} "
+ message.content.replace("\\n", "\n")
.replace("\r\n", "\n")
.replace("\n\n", "\n")
@@ -53,27 +88,28 @@ async def chat_completions(body: ChatCompletionBody, request: Request):
)
elif message.role == "assistant":
completion_text += (
"Alice: "
f"{bot}{interface} "
+ message.content.replace("\\n", "\n")
.replace("\r\n", "\n")
.replace("\n\n", "\n")
.strip()
+ "\n\n"
)
completion_text += "Alice:"
completion_text += f"{bot}{interface}"
async def eval_rwkv():
while completion_lock.locked():
if await request.is_disconnected():
return
await asyncio.sleep(0.1)
else:
completion_lock.acquire()
set_rwkv_config(model, global_var.get(global_var.Model_Config))
set_rwkv_config(model, body)
if body.stream:
for response, delta in rwkv_generate(
model,
for response, delta in model.generate(
completion_text,
stop="\n\nBob" if body.stop is None else body.stop,
stop=f"\n\n{user}" if body.stop is None else body.stop,
):
if await request.is_disconnected():
break
@@ -90,8 +126,9 @@ async def chat_completions(body: ChatCompletionBody, request: Request):
],
}
)
# torch_gc()
completion_lock.release()
if await request.is_disconnected():
completion_lock.release()
return
yield json.dumps(
{
@@ -109,15 +146,15 @@ async def chat_completions(body: ChatCompletionBody, request: Request):
yield "[DONE]"
else:
response = None
for response, delta in rwkv_generate(
model,
for response, delta in model.generate(
completion_text,
stop="\n\nBob" if body.stop is None else body.stop,
stop=f"\n\n{user}" if body.stop is None else body.stop,
):
if await request.is_disconnected():
break
# torch_gc()
completion_lock.release()
if await request.is_disconnected():
completion_lock.release()
return
yield {
"response": response,
@@ -133,8 +170,6 @@ async def chat_completions(body: ChatCompletionBody, request: Request):
}
],
}
# torch_gc()
completion_lock.release()
if body.stream:
return EventSourceResponse(eval_rwkv())
@@ -156,17 +191,20 @@ async def completions(body: CompletionBody, request: Request):
if model is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "model not loaded")
if body.prompt is None or body.prompt == "":
raise HTTPException(status.HTTP_400_BAD_REQUEST, "prompt not found")
async def eval_rwkv():
while completion_lock.locked():
if await request.is_disconnected():
return
await asyncio.sleep(0.1)
else:
completion_lock.acquire()
set_rwkv_config(model, global_var.get(global_var.Model_Config))
set_rwkv_config(model, body)
if body.stream:
for response, delta in rwkv_generate(
model, body.prompt, stop=body.stop
):
for response, delta in model.generate(body.prompt, stop=body.stop):
if await request.is_disconnected():
break
yield json.dumps(
@@ -182,8 +220,9 @@ async def completions(body: CompletionBody, request: Request):
],
}
)
# torch_gc()
completion_lock.release()
if await request.is_disconnected():
completion_lock.release()
return
yield json.dumps(
{
@@ -201,13 +240,12 @@ async def completions(body: CompletionBody, request: Request):
yield "[DONE]"
else:
response = None
for response, delta in rwkv_generate(
model, body.prompt, stop=body.stop
):
for response, delta in model.generate(body.prompt, stop=body.stop):
if await request.is_disconnected():
break
# torch_gc()
completion_lock.release()
if await request.is_disconnected():
completion_lock.release()
return
yield {
"response": response,
@@ -220,8 +258,6 @@ async def completions(body: CompletionBody, request: Request):
}
],
}
# torch_gc()
completion_lock.release()
if body.stream:
return EventSourceResponse(eval_rwkv())

View File

@@ -6,13 +6,28 @@ from langchain.llms import RWKV
from utils.rwkv import *
from utils.torch import *
import global_var
import GPUtil
router = APIRouter()
def get_tokens_path(model_path: str):
model_path = model_path.lower()
default_tokens_path = (
f"{pathlib.Path(__file__).parent.parent.resolve()}/rwkv_pip/20B_tokenizer.json"
)
if "raven" in model_path:
return default_tokens_path
elif "world" in model_path:
return "rwkv_vocab_v20230424"
else:
return default_tokens_path
class SwitchModelBody(BaseModel):
model: str
strategy: str
customCuda: bool = False
@router.post("/switch-model")
@@ -25,6 +40,8 @@ def switch_model(body: SwitchModelBody, response: Response):
global_var.set(global_var.Model, None)
torch_gc()
os.environ["RWKV_CUDA_ON"] = "1" if body.customCuda else "0"
global_var.set(global_var.Model_Status, global_var.ModelStatus.Loading)
try:
global_var.set(
@@ -32,7 +49,7 @@ def switch_model(body: SwitchModelBody, response: Response):
RWKV(
model=body.model,
strategy=body.strategy,
tokens_path=f"{pathlib.Path(__file__).parent.parent.resolve()}/20B_tokenizer.json",
tokens_path=get_tokens_path(body.model),
),
)
except Exception as e:
@@ -63,4 +80,13 @@ def update_config(body: ModelConfigBody):
@router.get("/status")
def status():
return {"status": global_var.get(global_var.Model_Status)}
gpus = GPUtil.getGPUs()
if len(gpus) == 0:
device_name = "CPU"
else:
device_name = gpus[0].name
return {
"status": global_var.get(global_var.Model_Status),
"pid": os.getpid(),
"device_name": device_name,
}

View File

@@ -0,0 +1,98 @@
from typing import Any, Dict
from fastapi import APIRouter, HTTPException, Response, status
from pydantic import BaseModel
import gc
import copy
router = APIRouter()
trie = None
dtrie: Dict = {}
def init():
global trie
try:
import cyac
import mmap
import os
if os.path.exists("state_cache.trie"):
with open("state_cache.trie", "r") as bf:
buff_object = mmap.mmap(bf.fileno(), 0, access=mmap.ACCESS_READ)
trie = cyac.Trie.from_buff(buff_object, copy=False)
else:
trie = cyac.Trie()
except ModuleNotFoundError:
print("cyac not found")
class AddStateBody(BaseModel):
prompt: str
tokens: list[str]
state: Any
logits: Any
@router.post("/add-state")
def add_state(body: AddStateBody):
global trie, dtrie
if trie is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
id = trie.insert(body.prompt)
dtrie[id] = {
"tokens": copy.deepcopy(body.tokens),
"state": copy.deepcopy(body.state),
"logits": copy.deepcopy(body.logits),
}
return "success"
@router.post("/reset-state")
def reset_state():
global trie
if trie is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
trie = cyac.Trie()
gc.collect()
return "success"
class LongestPrefixStateBody(BaseModel):
prompt: str
@router.post("/longest-prefix-state")
def longest_prefix_state(body: LongestPrefixStateBody):
global trie
if trie is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
id = -1
for id, len in trie.prefix(body.prompt):
pass
if id != -1:
v = dtrie[id]
return {
"prompt": trie[id],
"tokens": v["tokens"],
"state": v["state"],
"logits": v["logits"],
}
else:
return {"prompt": "", "tokens": [], "state": None, "logits": None}
@router.post("/save-state")
def save_state():
global trie
if trie is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
trie.save("state_cache.trie")
return "success"

View File

@@ -0,0 +1,106 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
class TRIE:
__slots__ = tuple("ch,to,values,front".split(","))
to: list
values: set
def __init__(self, front=None, ch=None):
self.ch = ch
self.to = [None for ch in range(256)]
self.values = set()
self.front = front
def __repr__(self):
fr = self
ret = []
while fr != None:
if fr.ch != None:
ret.append(fr.ch)
fr = fr.front
return "<TRIE %s %s>" % (ret[::-1], self.values)
def add(self, key: bytes, idx: int = 0, val=None):
if idx == len(key):
if val is None:
val = key
self.values.add(val)
return self
ch = key[idx]
if self.to[ch] is None:
self.to[ch] = TRIE(front=self, ch=ch)
return self.to[ch].add(key, idx=idx + 1, val=val)
def find_longest(self, key: bytes, idx: int = 0):
u: TRIE = self
ch: int = key[idx]
while u.to[ch] is not None:
u = u.to[ch]
idx += 1
if u.values:
ret = idx, u, u.values
if idx == len(key):
break
ch = key[idx]
return ret
class TRIE_TOKENIZER:
def __init__(self, file_name):
self.idx2token = {}
sorted = [] # must be already sorted
with open(file_name, "r", encoding="utf-8") as f:
lines = f.readlines()
for l in lines:
idx = int(l[: l.index(" ")])
x = eval(l[l.index(" ") : l.rindex(" ")])
x = x.encode("utf-8") if isinstance(x, str) else x
assert isinstance(x, bytes)
assert len(x) == int(l[l.rindex(" ") :])
sorted += [x]
self.idx2token[idx] = x
self.token2idx = {}
for k, v in self.idx2token.items():
self.token2idx[v] = int(k)
self.root = TRIE()
for t, i in self.token2idx.items():
_ = self.root.add(t, val=(t, i))
def encodeBytes(self, src: bytes) -> list[int]:
idx: int = 0
tokens: list[int] = []
while idx < len(src):
_idx: int = idx
idx, _, values = self.root.find_longest(src, idx)
assert idx != _idx
_, token = next(iter(values))
tokens.append(token)
return tokens
def decodeBytes(self, tokens):
return b"".join(map(lambda i: self.idx2token[i], tokens))
def encode(self, src):
return self.encodeBytes(src.encode("utf-8"))
def decode(self, tokens):
try:
return self.decodeBytes(tokens).decode("utf-8")
except:
return "\ufffd" # bad utf-8
def printTokens(self, tokens):
for i in tokens:
s = self.idx2token[i]
try:
s = s.decode("utf-8")
except:
pass
print(f"{repr(s)}{i}", end=" ")
print()

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,142 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import os, sys
import numpy as np
import torch
from torch.nn import functional as F
class PIPELINE_ARGS:
def __init__(
self,
temperature=1.0,
top_p=0.85,
top_k=0,
alpha_frequency=0.2,
alpha_presence=0.2,
token_ban=[],
token_stop=[],
chunk_len=256,
):
self.temperature = temperature
self.top_p = top_p
self.top_k = top_k
self.alpha_frequency = alpha_frequency # Frequency Penalty (as in GPT-3)
self.alpha_presence = alpha_presence # Presence Penalty (as in GPT-3)
self.token_ban = token_ban # ban the generation of some tokens
self.token_stop = token_stop # stop generation whenever you see any token here
self.chunk_len = (
chunk_len # split input into chunks to save VRAM (shorter -> slower)
)
class PIPELINE:
def __init__(self, model, WORD_NAME):
self.model = model
if WORD_NAME == "cl100k_base":
import tiktoken
self.tokenizer = tiktoken.get_encoding(WORD_NAME)
elif WORD_NAME == "rwkv_vocab_v20230424":
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
from rwkv_tokenizer import TRIE_TOKENIZER
self.tokenizer = TRIE_TOKENIZER(
os.path.dirname(os.path.abspath(__file__)) + "/rwkv_vocab_v20230424.txt"
)
else:
from tokenizers import Tokenizer
self.tokenizer = Tokenizer.from_file(WORD_NAME)
def refine_context(self, context):
context = context.strip().split("\n")
for c in range(len(context)):
context[c] = context[c].strip().strip("\u3000").strip("\r")
context = list(filter(lambda c: c != "", context))
context = "\n" + ("\n".join(context)).strip()
if context == "":
context = "\n"
return context
def encode(self, x):
if "Tokenizer" in str(type(self.tokenizer)):
return self.tokenizer.encode(x).ids
else:
return self.tokenizer.encode(x)
def decode(self, x):
return self.tokenizer.decode(x)
def sample_logits(self, logits, temperature=1.0, top_p=0.85, top_k=0):
probs = F.softmax(logits.float(), dim=-1)
top_k = int(top_k)
if probs.device == torch.device("cpu"):
probs = probs.numpy()
sorted_ids = np.argsort(probs)
sorted_probs = probs[sorted_ids][::-1]
cumulative_probs = np.cumsum(sorted_probs)
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
probs[probs < cutoff] = 0
if top_k < len(probs) and top_k > 0:
probs[sorted_ids[:-top_k]] = 0
if temperature != 1.0:
probs = probs ** (1.0 / temperature)
probs = probs / np.sum(probs)
out = np.random.choice(a=len(probs), p=probs)
return int(out)
else:
sorted_ids = torch.argsort(probs)
sorted_probs = probs[sorted_ids]
sorted_probs = torch.flip(sorted_probs, dims=(0,))
cumulative_probs = torch.cumsum(sorted_probs, dim=-1).cpu().numpy()
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
probs[probs < cutoff] = 0
if top_k < len(probs) and top_k > 0:
probs[sorted_ids[:-top_k]] = 0
if temperature != 1.0:
probs = probs ** (1.0 / temperature)
out = torch.multinomial(probs, num_samples=1)[0]
return int(out)
def generate(
self, ctx, token_count=100, args=PIPELINE_ARGS(), callback=None, state=None
):
all_tokens = []
out_last = 0
out_str = ""
occurrence = {}
for i in range(token_count):
# forward & adjust prob.
tokens = self.encode(ctx) if i == 0 else [token]
while len(tokens) > 0:
out, state = self.model.forward(tokens[: args.chunk_len], state)
tokens = tokens[args.chunk_len :]
for n in args.token_ban:
out[n] = -float("inf")
for n in occurrence:
out[n] -= args.alpha_presence + occurrence[n] * args.alpha_frequency
# sampler
token = self.sample_logits(
out, temperature=args.temperature, top_p=args.top_p, top_k=args.top_k
)
if token in args.token_stop:
break
all_tokens += [token]
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
# output
tmp = self.decode(all_tokens[out_last:])
if "\ufffd" not in tmp: # is valid utf-8 string?
if callback:
callback(tmp)
out_str += tmp
out_last = i + 1
return out_str

View File

@@ -1,6 +1,183 @@
from typing import Dict
from langchain.llms import RWKV
import os
import pathlib
import copy
from typing import Dict, List
from fastapi import HTTPException
from pydantic import BaseModel
from rwkv_pip.utils import PIPELINE
from routes import state_cache
END_OF_TEXT = 0
END_OF_LINE = 187
os.environ["TORCH_EXTENSIONS_DIR"] = f"{pathlib.Path(__file__).parent.parent.resolve()}"
class RWKV:
def __init__(self, model: str, strategy: str, tokens_path: str) -> None:
from rwkv.model import RWKV as Model # dynamic import to make RWKV_CUDA_ON work
self.model = Model(model, strategy)
self.pipeline = PIPELINE(self.model, tokens_path)
self.model_state = None
self.model_tokens = []
self.CHUNK_LEN = 256
self.max_tokens_per_generation = 500
self.temperature = 1
self.top_p = 0.5
self.penalty_alpha_presence = 0.4
self.penalty_alpha_frequency = 0.4
self.interface = ":"
if "rwkv_vocab" in tokens_path:
self.user = "Human"
self.bot = "Bot"
else:
self.user = "Bob"
self.bot = "Alice"
self.AVOID_REPEAT_TOKENS = []
AVOID_REPEAT = ""
for i in AVOID_REPEAT:
dd = self.pipeline.encode(i)
assert len(dd) == 1
self.AVOID_REPEAT_TOKENS += dd
self.preload()
def preload(self):
if self.user == "Bob":
bot = self.bot
user = self.user
preset_system = f"""
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
{bot} is very intelligent, creative and friendly. \
{bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \
{bot} likes to tell {user} a lot about herself and her opinions. \
{bot} usually gives {user} kind, helpful and informative advices.\n
"""
logits = self.run_rnn(self.pipeline.encode(preset_system))
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=preset_system,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
def run_rnn(self, _tokens: List[str], newline_adj: int = 0):
tokens = [int(x) for x in _tokens]
self.model_tokens += tokens
while len(tokens) > 0:
out, self.model_state = self.model.forward(
tokens[: self.CHUNK_LEN], self.model_state
)
tokens = tokens[self.CHUNK_LEN :]
out[END_OF_LINE] += newline_adj # adjust \n probability
if self.model_tokens[-1] in self.AVOID_REPEAT_TOKENS:
out[self.model_tokens[-1]] = -999999999
return out
def generate(self, prompt: str, stop: str = None):
cache = None
delta_prompt = prompt
try:
cache = state_cache.longest_prefix_state(
state_cache.LongestPrefixStateBody(prompt=prompt)
)
except HTTPException:
pass
if cache is None or cache["prompt"] == "":
self.model_state = None
self.model_tokens = []
else:
delta_prompt = prompt[len(cache["prompt"]) :]
self.model_state = copy.deepcopy(cache["state"])
self.model_tokens = copy.deepcopy(cache["tokens"])
logits = copy.deepcopy(cache["logits"])
if delta_prompt != "":
logits = self.run_rnn(self.pipeline.encode(delta_prompt))
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
begin = len(self.model_tokens)
out_last = begin
occurrence: Dict = {}
response = ""
for i in range(self.max_tokens_per_generation):
for n in occurrence:
logits[n] -= (
self.penalty_alpha_presence
+ occurrence[n] * self.penalty_alpha_frequency
)
token = self.pipeline.sample_logits(
logits, temperature=self.temperature, top_p=self.top_p
)
if token == END_OF_TEXT:
break
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
logits = self.run_rnn([token])
delta: str = self.pipeline.decode(self.model_tokens[out_last:])
if "\ufffd" not in delta: # avoid utf-8 display issues
response += delta
if stop is not None:
if stop in response:
response = response.split(stop)[0]
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
yield response, ""
break
out_last = begin + i + 1
if i == self.max_tokens_per_generation - 1:
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
yield response, delta
class ModelConfigBody(BaseModel):
@@ -32,46 +209,3 @@ def get_rwkv_config(model: RWKV) -> ModelConfigBody:
presence_penalty=model.penalty_alpha_presence,
frequency_penalty=model.penalty_alpha_frequency,
)
def rwkv_generate(model: RWKV, prompt: str, stop: str = None):
model.model_state = None
model.model_tokens = []
logits = model.run_rnn(model.tokenizer.encode(prompt).ids)
begin = len(model.model_tokens)
out_last = begin
occurrence: Dict = {}
response = ""
for i in range(model.max_tokens_per_generation):
for n in occurrence:
logits[n] -= (
model.penalty_alpha_presence
+ occurrence[n] * model.penalty_alpha_frequency
)
token = model.pipeline.sample_logits(
logits, temperature=model.temperature, top_p=model.top_p
)
END_OF_TEXT = 0
if token == END_OF_TEXT:
break
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
logits = model.run_rnn([token])
delta: str = model.tokenizer.decode(model.model_tokens[out_last:])
if "\ufffd" not in delta: # avoid utf-8 display issues
response += delta
if stop is not None:
if stop in response:
response = response.split(stop)[0]
yield response, ""
break
yield response, delta
out_last = begin + i + 1
if i >= model.max_tokens_per_generation - 100:
break

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1,734 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import types, gc, os, time, re
import torch
from torch.nn import functional as F
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
current_path = os.path.dirname(os.path.abspath(__file__))
# https://zhuanlan.zhihu.com/p/612879065
def LoadPreCompileLibrary(file):
import importlib
import os
import torch
# load the custom_op_library and register the custom ops
lib_dir = os.path.dirname(__file__)
if os.name == "nt":
# Register the main torchvision library location on the default DLL path
import ctypes
import sys
kernel32 = ctypes.WinDLL("kernel32.dll", use_last_error=True)
with_load_library_flags = hasattr(kernel32, "AddDllDirectory")
prev_error_mode = kernel32.SetErrorMode(0x0001)
if with_load_library_flags:
kernel32.AddDllDirectory.restype = ctypes.c_void_p
if sys.version_info >= (3, 8):
os.add_dll_directory(lib_dir)
elif with_load_library_flags:
res = kernel32.AddDllDirectory(lib_dir)
if res is None:
err = ctypes.WinError(ctypes.get_last_error())
err.strerror += f' Error adding "{lib_dir}" to the DLL directories.'
raise ValueError(err)
kernel32.SetErrorMode(prev_error_mode)
loader_details = (
importlib.machinery.ExtensionFileLoader,
importlib.machinery.EXTENSION_SUFFIXES,
)
extfinder = importlib.machinery.FileFinder(lib_dir, loader_details)
ext_specs = extfinder.find_spec(file)
if ext_specs is None:
return False
try:
torch.ops.load_library(ext_specs.origin)
except OSError as exc:
return False
return True
########################################################################################################
if os.environ.get('RWKV_JIT_ON') != '0':
os.environ["RWKV_JIT_ON"] = '1'
MyModule = torch.jit.ScriptModule
MyFunction = torch.jit.script_method
MyStatic = torch.jit.script
else:
MyModule = torch.nn.Module
def __nop(ob):
return ob
MyFunction = __nop
MyStatic = __nop
if os.environ.get('RWKV_CUDA_ON') == '1':
if LoadPreCompileLibrary('wkv_cuda') is False:
from torch.utils.cpp_extension import load
load(
name=f"wkv_cuda",
sources=[f"{current_path}/cuda/wrapper.cpp", f"{current_path}/cuda/operators.cu"],
verbose=True,
extra_cuda_cflags=["-t 4", "-std=c++17", "--use_fast_math", "-O3", "--extra-device-vectorization"],
is_python_module=False)
@MyStatic
def cuda_wkv(T: int, C: int, w, u, k, v, aa, bb, pp):
assert 1 * C % min(C, 32) == 0
assert k.dtype == v.dtype == torch.float16 or k.dtype == v.dtype == torch.float32
assert w.dtype == u.dtype == aa.dtype == bb.dtype == pp.dtype == torch.float32
w = w.contiguous()
u = u.contiguous()
k = k.contiguous()
v = v.contiguous()
y = torch.empty((T, C), device=w.device, memory_format=torch.contiguous_format, dtype=k.dtype)
torch.ops.rwkv.wkv_forward(1, T, C, w, u, k, v, y, aa, bb, pp)
return y, aa, bb, pp
@MyStatic
def cuda_mm8_seq(B: int, N: int, M: int, x, w, mx, rx, my, ry):
assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
assert x.dtype == torch.float32 or x.dtype == torch.float16
assert w.dtype == torch.uint8
assert x.shape == [B, N]
assert w.shape == [N, M]
assert rx.shape == mx.shape == [M]
assert ry.shape == my.shape == [N, 1]
y = torch.empty((B, M), device=w.device, dtype=x.dtype)
torch.ops.rwkv.mm8_seq(B, N, M, x, w, mx, rx, my, ry, y)
return y
@MyStatic
def cuda_mm8_one(N: int, M: int, x, w, mx, rx, my, ry):
assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
assert x.dtype == torch.float32 or x.dtype == torch.float16
assert w.dtype == torch.uint8
assert x.shape == [N]
assert w.shape == [N, M]
assert rx.shape == mx.shape == [M]
assert ry.shape == my.shape == [N, 1]
y = torch.zeros((M,), device=w.device, dtype=torch.float32)
torch.ops.rwkv.mm8_one(N, M, x, w, mx, rx, my, ry, y)
return y.to(dtype=x.dtype)
else:
os.environ["RWKV_CUDA_ON"] = '0'
########################################################################################################
class RWKV(MyModule):
def __init__(self, model, strategy, verbose = True, convert_and_save_and_exit = None):
super().__init__()
if verbose:
prxxx = lambda *args, **kwargs: print(*args, **kwargs)
else:
prxxx = lambda *args, **kwargs: None
STRATEGY_REGEX = r"^(?:(?:^|->) *(?:cuda(?::[\d]+)?|cpu|mps) (?:fp(?:16|32)|bf16)(?:i8|i4|i3)?(?: \*[\d]+\+?)? *)+$"
if not re.match(STRATEGY_REGEX, strategy):
raise ValueError("Invalid strategy. Please read https://pypi.org/project/rwkv/")
strategy = ('->'.join([x.strip() for x in strategy.split('->')])).replace('->', ' -> ')
self.args = types.SimpleNamespace()
args = self.args
args.MODEL_NAME = model
args.strategy_string = strategy
# Rescale for fp16 mode: set x = x/2 every X layer (to avoid fp16 overflow)
self.RESCALE_LAYER = 6 if 'fp16' in strategy else 0
prxxx(f'RWKV_JIT_ON {os.environ["RWKV_JIT_ON"]} RWKV_CUDA_ON {os.environ["RWKV_CUDA_ON"]} RESCALE_LAYER {self.RESCALE_LAYER}\n')
args.MODEL_NAME = args.MODEL_NAME.strip()
if not args.MODEL_NAME.endswith('.pth'):
args.MODEL_NAME += '.pth'
prxxx(f'Loading {args.MODEL_NAME} ...')
with torch.no_grad():
self.w = torch.load(args.MODEL_NAME, map_location='cpu') # load model to CPU first
gc.collect()
w = self.w
ALREADY_CONVERTED = False
if '_strategy' in w:
ALREADY_CONVERTED = True
assert convert_and_save_and_exit == None # you should only convert a raw model
prxxx(f"Converted model: strategy {w['_strategy']}, version {w['_version']}\n")
assert w['_strategy'] == args.strategy_string # if you are using a new strategy, re-convert the model
assert float(w['_version']) >= 0.7 # sometimes you should re-convert using latest convert_model.py
assert w['_rescale_layer'] == self.RESCALE_LAYER
del w['_strategy']
del w['_version']
del w['_rescale_layer']
args.n_embd = w['emb.weight'].shape[1]
args.n_layer = 0
keys = list(w.keys())
for x in keys:
layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
args.n_layer = max(args.n_layer, layer_id+1)
####################### Compute strategy
s = [x.strip().split(' ') for x in strategy.split('->')]
plan = [0] * len(s)
stream_i = -1
stream_count = 0
to_allocate = args.n_layer + 1
allocated = 0
free_slots = 0
for i in range(len(s)):
si = s[i]
si1 = si[1]
if si1.startswith('fp32'): si[1] = [torch.float]
elif si1.startswith('fp16'): si[1] = [torch.float16]
elif si1.startswith('bf16'): si[1] = [torch.bfloat16]
if si1.endswith('i8'): si[1] += [torch.uint8]
else: si[1] += [si[1][0]]
if len(si) > 2:
ss = si[2]
assert ss.startswith('*')
if ss.endswith('+'):
plan[i] = int(ss[1:-1])
stream_i = i
else:
plan[i] = int(ss[1:])
allocated += plan[i]
if allocated >= to_allocate:
plan[i] += to_allocate - allocated
break
else:
free_slots += 1
if stream_i < 0:
if free_slots > 0 and to_allocate > allocated:
for i in range(len(s)):
if plan[i] == 0:
plan[i] = (to_allocate - allocated) // free_slots
allocated += plan[i]
free_slots -= 1
if to_allocate > allocated:
plan[len(s)-1] += to_allocate - allocated
else:
if to_allocate > allocated:
stream_count = to_allocate - allocated
plan[stream_i] += stream_count
prxxx(f'Strategy: (total {args.n_layer}+1={args.n_layer+1} layers)')
for i in range(len(s)):
ss = s[i]
if i != stream_i:
prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]} layers')
else:
prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]-stream_count} layers, stream {stream_count} layers')
plan[i] += (0 if i == 0 else plan[i-1])
self.strategy = [None] * (args.n_layer + 1)
strategy = self.strategy
for n in range(args.n_layer + 1):
for i in range(len(s)):
if n < plan[i]:
strategy[n] = types.SimpleNamespace()
strategy[n].device = s[i][0]
strategy[n].atype = s[i][1][0]
strategy[n].wtype = s[i][1][1]
strategy[n].stream = False
if i == stream_i and n >= (plan[i] - stream_count):
strategy[n].stream = True
break
prxxx(f"{n}-{strategy[n].device}-{str(strategy[n].atype).replace('torch.','')}-{str(strategy[n].wtype).replace('torch.','')}{'-stream' if strategy[n].stream else ''}",end=' ')
prxxx()
####################### Load weights to self.w
if not ALREADY_CONVERTED:
try: # precompute embedding
w['emb.weight'] = F.layer_norm(w['emb.weight'], (args.n_embd,), weight=w['blocks.0.ln0.weight'], bias=w['blocks.0.ln0.bias'])
except:
w['emb.weight'] = F.layer_norm(w['emb.weight'].float(), (args.n_embd,), weight=w['blocks.0.ln0.weight'].float(), bias=w['blocks.0.ln0.bias'].float())
del w['blocks.0.ln0.weight']
del w['blocks.0.ln0.bias']
print_need_newline = False
keys = list(w.keys())
for x in keys:
w[x].requires_grad = False
layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
if ('ln_out.' in x) or ('head.' in x):
layer_id = args.n_layer
dd = strategy[layer_id]
DEVICE = dd.device
ATYPE = dd.atype
WTYPE = dd.wtype
if not ALREADY_CONVERTED:
if self.RESCALE_LAYER > 0:
if 'att.output.weight' in x:
w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
if 'ffn.value.weight' in x:
w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
if '.time_' in x:
w[x] = w[x].squeeze()
if 'key.weight' in x or 'value.weight' in x or 'receptance.weight' in x or 'output.weight' in x or 'head.weight' in x:
w[x] = w[x].t()
if '.time_decay' in x: # need fp32 for this
w[x] = -torch.exp(w[x].float())
elif '.time_first' in x: # need fp32 for this
w[x] = w[x].float()
else:
if (len(w[x].shape) == 2) and ('emb' not in x):
if WTYPE != torch.uint8:
w[x] = w[x].to(dtype=WTYPE)
else:
w[x] = w[x].float()
if w[x].shape[0] > w[x].shape[1]:
w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
w[x] = w[x] - w[x+'_my']
w[x+'_mx'] = torch.amin(w[x], dim=0)
w[x] = w[x] - w[x+'_mx']
w[x+'_rx'] = torch.amax(w[x], dim=0)
w[x] = w[x] / w[x+'_rx']
w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
w[x] = w[x] / w[x+'_ry']
else:
w[x+'_mx'] = torch.amin(w[x], dim=0)
w[x] = w[x] - w[x+'_mx']
w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
w[x] = w[x] - w[x+'_my']
w[x+'_rx'] = torch.amax(w[x], dim=0)
w[x] = w[x] / w[x+'_rx']
w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
w[x] = w[x] / w[x+'_ry']
w[x] = torch.clip(torch.floor(w[x] * 256), min=0, max=255).to(dtype=torch.uint8)
w[x+'_mx'] = w[x+'_mx'].to(dtype=ATYPE).contiguous()
w[x+'_rx'] = (w[x+'_rx'] / 16).to(dtype=ATYPE).contiguous()
w[x+'_my'] = w[x+'_my'].to(dtype=ATYPE).contiguous()
w[x+'_ry'] = (w[x+'_ry'] / 16).to(dtype=ATYPE).contiguous()
else:
w[x] = w[x].to(dtype=ATYPE)
if convert_and_save_and_exit == None:
if 'emb.' in x:
w[x] = w[x].contiguous()
elif (dd.stream) and (x.endswith('key.weight') or x.endswith('value.weight') or x.endswith('receptance.weight') or x.endswith('output.weight')):
try:
w[x] = w[x].contiguous().pin_memory() # if you see "CUDA error: out of memory" here, that's out of CPU RAM, not VRAM. Get more RAM :)
except:
print('Note: You are running out of RAM. Get more CPU RAM. Now this will run much slower.')
elif DEVICE != 'cpu':
w[x] = w[x].to(device=DEVICE).contiguous()
if (dd.stream) or (DEVICE != 'cpu'):
try:
w[x+'_mx'] = w[x+'_mx'].to(device=DEVICE).contiguous()
w[x+'_rx'] = w[x+'_rx'].to(device=DEVICE).contiguous()
w[x+'_my'] = w[x+'_my'].to(device=DEVICE).contiguous()
w[x+'_ry'] = w[x+'_ry'].to(device=DEVICE).contiguous()
except:
pass
if 'ffn.value.weight' in x:
gc.collect()
if 'cuda' in args.strategy_string:
torch.cuda.empty_cache()
shape = [i for i in w[x].shape if i != 1]
if len(shape) > 1:
shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)}"
else:
shape = f" {str(shape[0]).rjust(5)} "
if layer_id == 0 or layer_id >= args.n_layer-1:
if print_need_newline:
prxxx('\n', end = '')
print_need_newline = False
dt = str(w[x].dtype).replace('torch.', '')
dt = dt.replace('float32', 'f32').replace('bfloat16', 'bf16').replace('float16', 'f16').replace('uint8', 'i8')
prxxx(x.ljust(32), dt.rjust(4), str(w[x].device).rjust(8), shape, ' (pinned)' if w[x].is_pinned() else '')
else:
print_need_newline = True
prxxx('.', end = '', flush = True)
if convert_and_save_and_exit:
w['_strategy'] = args.strategy_string
w['_rescale_layer'] = self.RESCALE_LAYER
w['_version'] = '0.7'
if not convert_and_save_and_exit.endswith('.pth'):
convert_and_save_and_exit += '.pth'
prxxx(f'Saving to {convert_and_save_and_exit}...')
torch.save(w, convert_and_save_and_exit)
prxxx(f'Converted and saved. Now this will exit.')
exit(0)
gc.collect()
if 'cuda' in args.strategy_string:
torch.cuda.empty_cache()
@MyFunction
def torch_mm8_seq(self, x, w, mx, rx, my, ry):
return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)
@MyFunction
def torch_mm8_one(self, x, w, mx, rx, my, ry):
return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)
if os.environ.get('RWKV_CUDA_ON') == '1':
@MyFunction
def mm8_seq(self, x, w, mx, rx, my, ry):
if w.device.type == 'cuda' and x.dtype == torch.float16:
B, N, M = x.shape[0], w.shape[0], w.shape[1]
return cuda_mm8_seq(B, N, M, x, w, mx, rx, my, ry)
else:
return self.torch_mm8_seq(x, w, mx, rx, my, ry)
@MyFunction
def mm8_one(self, x, w, mx, rx, my, ry):
if w.device.type == 'cuda':
N, M = w.shape[0], w.shape[1]
return cuda_mm8_one(N, M, x, w, mx, rx, my, ry)
else:
return self.torch_mm8_one(x, w, mx, rx, my, ry)
else:
@MyFunction
def mm8_seq(self, x, w, mx, rx, my, ry):
return self.torch_mm8_seq(x, w, mx, rx, my, ry)
@MyFunction
def mm8_one(self, x, w, mx, rx, my, ry):
return self.torch_mm8_one(x, w, mx, rx, my, ry)
########################################################################################################
@MyFunction
def ffn_one(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(rx @ rw)
vx = torch.square(torch.relu(kx @ kw))
out = r * (vx @ vw)
return x + out, xx
@MyFunction
def ffn_one_i8(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(self.mm8_one(rx, rw, rmx, rrx, rmy, rry))
vx = torch.square(torch.relu(self.mm8_one(kx, kw, kmx, krx, kmy, kry)))
out = r * (self.mm8_one(vx, vw, vmx, vrx, vmy, vry))
return x + out, xx
########################################################################################################
@MyFunction
def ffn_seq(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
kx = xx * k_mix + sx * (1 - k_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(rx @ rw)
vx = torch.square(torch.relu(kx @ kw))
out = r * (vx @ vw)
return x + out, xx[-1,:]
@MyFunction
def ffn_seq_i8(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
kx = xx * k_mix + sx * (1 - k_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
vx = torch.square(torch.relu(self.mm8_seq(kx, kw, kmx, krx, kmy, kry)))
out = r * (self.mm8_seq(vx, vw, vmx, vrx, vmy, vry))
return x + out, xx[-1,:]
########################################################################################################
@MyFunction
def att_one(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(rx @ rw)
k = (kx @ kw).float()
v = (vx @ vw).float()
ww = t_first + k
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
ww = t_decay + pp
p = torch.maximum(ww, k)
e1 = torch.exp(ww - p)
e2 = torch.exp(k - p)
out = (r * wkv) @ ow
return x + out, xx, e1 * aa + e2 * v, e1 * bb + e2, p
@MyFunction
def att_one_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(self.mm8_one(rx, rw, rmx, rrx, rmy, rry))
k = (self.mm8_one(kx, kw, kmx, krx, kmy, kry)).float()
v = (self.mm8_one(vx, vw, vmx, vrx, vmy, vry)).float()
ww = t_first + k
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
ww = t_decay + pp
p = torch.maximum(ww, k)
e1 = torch.exp(ww - p)
e2 = torch.exp(k - p)
out = self.mm8_one(r * wkv, ow, omx, orx, omy, ory)
return x + out, xx, e1 * aa + e2 * v, e1 * bb + e2, p
########################################################################################################
@MyFunction
def att_seq(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(rx @ rw)
k = (kx @ kw).float()
v = (vx @ vw).float()
T = x.shape[0]
for t in range(T):
kk = k[t]
vv = v[t]
ww = t_first + kk
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
ww = t_decay + pp
p = torch.maximum(ww, kk)
e1 = torch.exp(ww - p)
e2 = torch.exp(kk - p)
aa = e1 * aa + e2 * vv
bb = e1 * bb + e2
pp = p
out = (r * sx) @ ow
return x + out, xx[-1,:], aa, bb, pp
@MyFunction
def att_seq_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
k = self.mm8_seq(kx, kw, kmx, krx, kmy, kry).float()
v = self.mm8_seq(vx, vw, vmx, vrx, vmy, vry).float()
T = x.shape[0]
for t in range(T):
kk = k[t]
vv = v[t]
ww = t_first + kk
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
ww = t_decay + pp
p = torch.maximum(ww, kk)
e1 = torch.exp(ww - p)
e2 = torch.exp(kk - p)
aa = e1 * aa + e2 * vv
bb = e1 * bb + e2
pp = p
out = self.mm8_seq(r * sx, ow, omx, orx, omy, ory)
return x + out, xx[-1,:], aa, bb, pp
########################################################################################################
if os.environ["RWKV_CUDA_ON"] == '1':
@MyFunction
def cuda_att_seq(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
T, C = x.size()
xx = F.layer_norm(x, (C,), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(rx @ rw)
k = kx @ kw
v = vx @ vw
y, aa, bb, pp = cuda_wkv(T, C, t_decay, t_first, k, v, aa, bb, pp)
out = (r * y) @ ow
return x + out, xx[-1,:], aa, bb, pp
@MyFunction
def cuda_att_seq_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
T, C = x.size()
xx = F.layer_norm(x, (C,), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
k = self.mm8_seq(kx, kw, kmx, krx, kmy, kry)
v = self.mm8_seq(vx, vw, vmx, vrx, vmy, vry)
y, aa, bb, pp = cuda_wkv(T, C, t_decay, t_first, k, v, aa, bb, pp)
out = self.mm8_seq(r * y, ow, omx, orx, omy, ory)
return x + out, xx[-1,:], aa, bb, pp
########################################################################################################
def forward(self, tokens, state, full_output=False):
with torch.no_grad():
w = self.w
args = self.args
if state == None:
state = [None] * args.n_layer * 5
for i in range(args.n_layer): # state: 0=att_xx 1=att_aa 2=att_bb 3=att_pp 4=ffn_xx
dd = self.strategy[i]
dev = dd.device
atype = dd.atype
state[i*5+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
state[i*5+1] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous()
state[i*5+2] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous()
state[i*5+3] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous() - 1e30
state[i*5+4] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
seq_mode = len(tokens) > 1
x = w['emb.weight'][tokens if seq_mode else tokens[0]]
for i in range(args.n_layer):
bbb = f'blocks.{i}.'
att = f'blocks.{i}.att.'
ffn = f'blocks.{i}.ffn.'
dd = self.strategy[i]
dev = dd.device
atype = dd.atype
wtype = dd.wtype
if seq_mode:
if 'cuda' in str(dev) and os.environ["RWKV_CUDA_ON"] == '1':
ATT = self.cuda_att_seq if wtype != torch.uint8 else self.cuda_att_seq_i8
else:
ATT = self.att_seq if wtype != torch.uint8 else self.att_seq_i8
FFN = self.ffn_seq if wtype != torch.uint8 else self.ffn_seq_i8
else:
ATT = self.att_one if wtype != torch.uint8 else self.att_one_i8
FFN = self.ffn_one if wtype != torch.uint8 else self.ffn_one_i8
x = x.to(dtype=atype, device=dev)
kw = w[f'{att}key.weight']
vw = w[f'{att}value.weight']
rw = w[f'{att}receptance.weight']
ow = w[f'{att}output.weight']
if dd.stream:
kw = kw.to(device=dev, non_blocking=True)
vw = vw.to(device=dev, non_blocking=True)
rw = rw.to(device=dev, non_blocking=True)
ow = ow.to(device=dev, non_blocking=True)
kmx = w[f'{att}key.weight_mx'] if wtype == torch.uint8 else x
krx = w[f'{att}key.weight_rx'] if wtype == torch.uint8 else x
kmy = w[f'{att}key.weight_my'] if wtype == torch.uint8 else x
kry = w[f'{att}key.weight_ry'] if wtype == torch.uint8 else x
vmx = w[f'{att}value.weight_mx'] if wtype == torch.uint8 else x
vrx = w[f'{att}value.weight_rx'] if wtype == torch.uint8 else x
vmy = w[f'{att}value.weight_my'] if wtype == torch.uint8 else x
vry = w[f'{att}value.weight_ry'] if wtype == torch.uint8 else x
rmx = w[f'{att}receptance.weight_mx'] if wtype == torch.uint8 else x
rrx = w[f'{att}receptance.weight_rx'] if wtype == torch.uint8 else x
rmy = w[f'{att}receptance.weight_my'] if wtype == torch.uint8 else x
rry = w[f'{att}receptance.weight_ry'] if wtype == torch.uint8 else x
omx = w[f'{att}output.weight_mx'] if wtype == torch.uint8 else x
orx = w[f'{att}output.weight_rx'] if wtype == torch.uint8 else x
omy = w[f'{att}output.weight_my'] if wtype == torch.uint8 else x
ory = w[f'{att}output.weight_ry'] if wtype == torch.uint8 else x
x, state[i*5+0], state[i*5+1], state[i*5+2], state[i*5+3] = ATT(
x, state[i*5+0], state[i*5+1], state[i*5+2], state[i*5+3],
w[f'{bbb}ln1.weight'], w[f'{bbb}ln1.bias'],
w[f'{att}time_mix_k'], w[f'{att}time_mix_v'], w[f'{att}time_mix_r'],
w[f'{att}time_decay'], w[f'{att}time_first'],
kw, vw, rw, ow,
kmx, krx, kmy, kry,
vmx, vrx, vmy, vry,
rmx, rrx, rmy, rry,
omx, orx, omy, ory,
)
if dd.stream:
del kw, vw, rw, ow
kw = w[f'{ffn}key.weight']
vw = w[f'{ffn}value.weight']
rw = w[f'{ffn}receptance.weight']
if dd.stream:
kw = kw.to(device=dev, non_blocking=True)
vw = vw.to(device=dev, non_blocking=True)
rw = rw.to(device=dev, non_blocking=True)
kmx = w[f'{ffn}key.weight_mx'] if wtype == torch.uint8 else x
krx = w[f'{ffn}key.weight_rx'] if wtype == torch.uint8 else x
kmy = w[f'{ffn}key.weight_my'] if wtype == torch.uint8 else x
kry = w[f'{ffn}key.weight_ry'] if wtype == torch.uint8 else x
vmx = w[f'{ffn}value.weight_mx'] if wtype == torch.uint8 else x
vrx = w[f'{ffn}value.weight_rx'] if wtype == torch.uint8 else x
vmy = w[f'{ffn}value.weight_my'] if wtype == torch.uint8 else x
vry = w[f'{ffn}value.weight_ry'] if wtype == torch.uint8 else x
rmx = w[f'{ffn}receptance.weight_mx'] if wtype == torch.uint8 else x
rrx = w[f'{ffn}receptance.weight_rx'] if wtype == torch.uint8 else x
rmy = w[f'{ffn}receptance.weight_my'] if wtype == torch.uint8 else x
rry = w[f'{ffn}receptance.weight_ry'] if wtype == torch.uint8 else x
x, state[i*5+4] = FFN(
x, state[i*5+4],
w[f'{bbb}ln2.weight'], w[f'{bbb}ln2.bias'],
w[f'{ffn}time_mix_k'], w[f'{ffn}time_mix_r'],
kw, vw, rw,
kmx, krx, kmy, kry,
vmx, vrx, vmy, vry,
rmx, rrx, rmy, rry,
)
if dd.stream:
del kw, vw, rw
if self.RESCALE_LAYER > 0:
if (i+1) % self.RESCALE_LAYER == 0:
x = x / 2
dd = self.strategy[args.n_layer]
x = x[-1,:] if (seq_mode and (not full_output)) else x
x = x.to(dtype=dd.atype, device=dd.device)
x = F.layer_norm(x, (args.n_embd,), weight=w['ln_out.weight'], bias=w['ln_out.bias'])
if w['head.weight'].dtype != torch.uint8:
x = x @ w['head.weight']
else:
if seq_mode and full_output:
x = self.mm8_seq(x, w['head.weight'], w['head.weight_mx'], w['head.weight_rx'], w['head.weight_my'], w['head.weight_ry'])
else:
x = self.mm8_one(x, w['head.weight'], w['head.weight_mx'], w['head.weight_rx'], w['head.weight_my'], w['head.weight_ry'])
return x.float(), state

View File

@@ -20,11 +20,11 @@
"Manage Models": "管理模型",
"Model": "模型",
"Model Parameters": "模型参数",
"Frequency Penalty *": "Frequency Penalty *",
"Presence Penalty *": "Presence Penalty *",
"Top_P *": "Top_P *",
"Temperature *": "Temperature *",
"Max Response Token *": "最大响应 Token *",
"Frequency Penalty": "Frequency Penalty",
"Presence Penalty": "Presence Penalty",
"Top_P": "Top_P",
"Temperature": "Temperature",
"Max Response Token": "最大响应 Token",
"API Port": "API 端口",
"Hover your mouse over the text to view a detailed description. Settings marked with * will take effect immediately after being saved.": "把鼠标悬停在文本上查看详细描述. 标记了星号 * 的设置在保存后会立即生效.",
"Default API Parameters": "默认 API 参数",
@@ -75,14 +75,14 @@
"New Version Available": "新版本可用",
"Update": "更新",
"Please click the button in the top right corner to start the model": "请点击右上角的按钮启动模型",
"Update Error, Please restart this program": "更新出错, 请重启本程序",
"Update Error": "更新出错",
"Open the following URL with your browser to view the API documentation": "使用浏览器打开以下地址查看API文档",
"By default, the maximum number of tokens that can be answered in a single response, it can be changed by the user by specifying API parameters.": "默认情况下, 单个回复最多回答的token数目, 用户可以通过自行指定API参数改变这个值",
"Sampling temperature, the higher the stronger the randomness and creativity, while the lower, the more focused and deterministic it will be.": "采样温度, 越大随机性越强, 更具创造力, 越小则越保守稳定",
"Consider the results of the top n% probability mass, 0.1 considers the top 10%, with higher quality but more conservative, 1 considers all results, with lower quality but more diverse.": "考虑前 n% 概率质量的结果, 0.1 考虑前 10%, 质量更高, 但更保守, 1 考虑所有质量结果, 质量降低, 但更多样",
"Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.": "存在惩罚. 正值根据新token在至今的文本中是否出现过, 来对其进行惩罚, 从而增加了模型涉及新话题的可能性",
"Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.": "频率惩罚. 正值根据新token在至今的文本中出现的频率/次数, 来对其进行惩罚, 从而减少模型原封不动地重复相同句子的可能性",
"int8 uses less VRAM, and is faster, but has slightly lower quality. fp16 has higher quality, and fp32 has the best quality.": "int8占用显存更低, 速度更快, 但质量略微下降. fp16质量更好, fp32质量最好",
"int8 uses less VRAM, but has slightly lower quality. fp16 has higher quality, and fp32 has the best quality.": "int8占用显存更低, 但质量略微下降. fp16质量更好, fp32质量最好",
"Number of the neural network layers loaded into VRAM, the more you load, the faster the speed, but it consumes more VRAM.": "载入显存的神经网络层数, 载入越多, 速度越快, 但显存消耗越大",
"Whether to use CPU to calculate the last output layer of the neural network with FP32 precision to obtain better quality.": "是否使用cpu以fp32精度计算神经网络的最后一层输出层, 以获得更好的质量",
"Downloads": "下载",
@@ -97,5 +97,32 @@
"This is the latest version": "已是最新版",
"Use Tsinghua Pip Mirrors": "使用清华大学Pip镜像源",
"Model Config Exception": "模型配置异常",
"Use Gitee Updates Source": "使用Gitee更新源"
"Use Gitee Updates Source": "使用Gitee更新源",
"Use Custom CUDA kernel to Accelerate": "使用自定义CUDA算子加速",
"Enabling this option can greatly improve inference speed, but there may be compatibility issues. If it fails to start, please turn off this option.": "开启这个选项能大大提升推理速度,但可能存在兼容性问题,如果启动失败,请关闭此选项",
"Supported custom cuda file not found": "没有找到支持的自定义cuda文件",
"Failed to copy custom cuda file": "自定义cuda文件复制失败",
"Downloading update, please wait. If it is not completed, please manually download the program from GitHub and replace the original program.": "正在下载更新请等待。如果一直未完成请从Github手动下载并覆盖原程序",
"Completion": "补全",
"Parameters": "参数",
"Stop Sequences": "停止词",
"When this content appears in the response result, the generation will end.": "响应结果出现该内容时就结束生成",
"Reset": "重置",
"Generate": "生成",
"Writer": "写作",
"Translator": "翻译",
"Catgirl": "猫娘",
"Explain Code": "代码解释",
"Werewolf": "狼人杀",
"Blank": "空白",
"The following is an epic science fiction masterpiece that is immortalized, with delicate descriptions and grand depictions of interstellar civilization wars.\nChapter 1.\n": "以下是不朽的科幻史诗巨著,描写细腻,刻画了宏大的星际文明战争。\n第一章\n",
"API Host": "API主机",
"The following is a conversation between a cat girl and her owner. The cat girl is a humanized creature that behaves like a cat but is humanoid. At the end of each sentence in the dialogue, she will add \"Meow~\". In the following content, Bob represents the owner and Alice represents the cat girl.\n\nBob: Hello.\n\nAlice: I'm here, meow~.\n\nBob: Can you tell jokes?": "以下是一位猫娘的主人和猫娘的对话内容,猫娘是一种拟人化的生物,其行为似猫但类人,在每一句对话末尾都会加上\"喵~\"。以下内容中Bob代表主人Alice代表猫娘。\n\nBob: 你好\n\nAlice: 主人我在哦,喵~\n\nBob: 你会讲笑话吗?",
"When response finished, inject this content.": "响应结束时,插入此内容到末尾",
"Inject start text": "起始注入文本",
"Inject end text": "结尾注入文本",
"Before the response starts, inject this content.": "响应开始前,在开头插入此内容",
"There is currently a game of Werewolf with six players, including a Seer (who can check identities at night), two Werewolves (who can choose someone to kill at night), a Bodyguard (who can choose someone to protect at night), two Villagers (with no special abilities), and a game host. Bob will play as Player 1, Alice will play as Players 2-6 and the game host, and they will begin playing together. Every night, the host will ask Bob for his action and simulate the actions of the other players. During the day, the host will oversee the voting process and ask Bob for his vote. \n\nAlice: Next, I will act as the game host and assign everyone their roles, including randomly assigning yours. Then, I will simulate the actions of Players 2-6 and let you know what happens each day. Based on your assigned role, you can tell me your actions and I will let you know the corresponding results each day.\n\nBob: Okay, I understand. Let's begin. Please assign me a role. Am I the Seer, Werewolf, Villager, or Bodyguard?\n\nAlice: You are the Seer. Now that night has fallen, please choose a player to check his identity.\n\nBob: Tonight, I want to check Player 2 and find out his role.": "现在有一场六人狼人杀游戏,包括一名预言家(可以在夜晚查验身份),两名狼人(可以在夜晚选择杀人),一名守卫(可以在夜晚选择要守护的人),两名平民(无技能)一名主持人以下内容中Bob将扮演其中的1号玩家Alice来扮演2-6号玩家以及主持人并开始与Bob进行游戏主持人每晚都会询问Bob的行动并模拟其他人的行动在白天则要主持投票并同样询问Bob投票对象公布投票结果。\n\nAlice: 接下来我将首先作为主持人进行角色分配并给你赋予随机的角色之后我将模拟2-6号玩家进行行动告知你每天的动态根据你被分配的角色你可以回复我你做的行动我会告诉你每天对应的结果\n\nBob: 好的,我明白了,那么开始吧。请先给我一个角色身份。我是预言家,狼人,平民,守卫中的哪一个呢?\n\nAlice: 你的身份是预言家。现在夜晚降临,请选择你要查验的玩家。\n\nBob: 今晚我要验2号玩家他是什么身份",
"Writer, Translator, Role-playing": "写作,翻译,角色扮演",
"Chinese Kongfu": "情境冒险"
}

View File

@@ -1,4 +1,4 @@
import commonStore, { ModelStatus } from '../stores/commonStore';
import commonStore, { Status } from '../stores/commonStore';
export const readRoot = async () => {
const port = commonStore.getCurrentModelConfig().apiParameters.apiPort;
@@ -36,15 +36,15 @@ export const updateConfig = async (body: any) => {
});
};
export const getStatus = async (timeout?: number): Promise<ModelStatus | undefined> => {
export const getStatus = async (timeout?: number): Promise<Status | undefined> => {
const controller = new AbortController();
if (timeout)
setTimeout(() => controller.abort(), timeout);
const port = commonStore.getCurrentModelConfig().apiParameters.apiPort;
let ret: ModelStatus | undefined;
let ret: Status | undefined;
await fetch(`http://127.0.0.1:${port}/status`, { signal: controller.signal }).then(r => r.json()).then(data => {
ret = data.status;
ret = data;
}).catch(() => {
});
return ret;

View File

@@ -3,18 +3,25 @@ import { Label, Tooltip } from '@fluentui/react-components';
import classnames from 'classnames';
export const Labeled: FC<{
label: string; desc?: string | null, content: ReactElement, flex?: boolean, spaceBetween?: boolean
label: string;
desc?: string | null,
content: ReactElement,
flex?: boolean,
spaceBetween?: boolean,
breakline?: boolean
}> = ({
label,
desc,
content,
flex,
spaceBetween
spaceBetween,
breakline
}) => {
return (
<div className={classnames(
'items-center',
!breakline ? 'items-center' : '',
flex ? 'flex' : 'grid grid-cols-2',
breakline ? 'flex-col' : '',
spaceBetween && 'justify-between')
}>
{desc ?

View File

@@ -2,6 +2,7 @@ import React, { FC, MouseEventHandler, ReactElement } from 'react';
import commonStore, { ModelStatus } from '../stores/commonStore';
import {
AddToDownloadList,
CopyFile,
DepCheck,
FileExists,
InstallPyDep,
@@ -9,10 +10,10 @@ import {
} from '../../wailsjs/go/backend_golang/App';
import { Button } from '@fluentui/react-components';
import { observer } from 'mobx-react-lite';
import { exit, readRoot, switchModel, updateConfig } from '../apis';
import { exit, getStatus, readRoot, switchModel, updateConfig } from '../apis';
import { toast } from 'react-toastify';
import manifest from '../../../manifest.json';
import { getStrategy, saveCache, toastWithButton } from '../utils';
import { getStrategy, getSupportedCustomCudaFile, saveCache, toastWithButton } from '../utils';
import { useTranslation } from 'react-i18next';
import { ToolTipButton } from './ToolTipButton';
import { Play16Regular, Stop16Regular } from '@fluentui/react-icons';
@@ -42,8 +43,8 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
const navigate = useNavigate();
const onClickMainButton = async () => {
if (commonStore.modelStatus === ModelStatus.Offline) {
commonStore.setModelStatus(ModelStatus.Starting);
if (commonStore.status.status === ModelStatus.Offline) {
commonStore.setStatus({ status: ModelStatus.Starting });
const modelConfig = commonStore.getCurrentModelConfig();
let modelName = '';
@@ -53,7 +54,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
modelPath = `./${manifest.localModelDir}/${modelName}`;
} else {
toast(t('Model Config Exception'), { type: 'error' });
commonStore.setModelStatus(ModelStatus.Offline);
commonStore.setStatus({ status: ModelStatus.Offline });
return;
}
@@ -79,10 +80,11 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
}
});
if (depErrorMsg) {
commonStore.setModelStatus(ModelStatus.Offline);
commonStore.setStatus({ status: ModelStatus.Offline });
return;
}
commonStore.setDepComplete(true);
CopyFile('./backend-python/wkv_cuda_utils/wkv_cuda_model.py', './py310/Lib/site-packages/rwkv/model.py');
saveCache();
}
@@ -100,7 +102,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
}
});
commonStore.setModelStatus(ModelStatus.Offline);
commonStore.setStatus({ status: ModelStatus.Offline });
return;
}
@@ -108,18 +110,22 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
await exit(1000).catch(() => {
});
StartServer(port);
StartServer(port, commonStore.settings.host);
setTimeout(WindowShow, 1000);
let timeoutCount = 6;
let loading = false;
const intervalId = setInterval(() => {
readRoot()
.then(r => {
.then(async r => {
if (r.ok && !loading) {
clearInterval(intervalId);
commonStore.setModelStatus(ModelStatus.Loading);
loading = true;
clearInterval(intervalId);
await getStatus().then(status => {
if (status)
commonStore.setStatus(status);
});
commonStore.setStatus({ status: ModelStatus.Loading });
toast(t('Loading Model'), { type: 'info' });
updateConfig({
max_tokens: modelConfig.apiParameters.maxResponseToken,
@@ -128,56 +134,78 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
presence_penalty: modelConfig.apiParameters.presencePenalty,
frequency_penalty: modelConfig.apiParameters.frequencyPenalty
});
let customCudaFile = '';
if (modelConfig.modelParameters.useCustomCuda) {
customCudaFile = getSupportedCustomCudaFile();
if (customCudaFile) {
FileExists('./py310/Lib/site-packages/rwkv/model.py').then((exist) => {
// defensive measure. As Python has already been launched, will only take effect the next time it runs.
if (!exist) CopyFile('./backend-python/wkv_cuda_utils/wkv_cuda_model.py', './py310/Lib/site-packages/rwkv/model.py');
});
await CopyFile(customCudaFile, './py310/Lib/site-packages/rwkv/wkv_cuda.pyd').catch(() => {
FileExists('./py310/Lib/site-packages/rwkv/wkv_cuda.pyd').then((exist) => {
if (!exist) {
customCudaFile = '';
toast(t('Failed to copy custom cuda file'), { type: 'error' });
}
});
});
} else
toast(t('Supported custom cuda file not found'), { type: 'warning' });
}
switchModel({
model: `${manifest.localModelDir}/${modelConfig.modelParameters.modelName}`,
strategy: getStrategy(modelConfig)
strategy: getStrategy(modelConfig),
customCuda: customCudaFile !== ''
}).then((r) => {
if (r.ok) {
commonStore.setModelStatus(ModelStatus.Working);
commonStore.setStatus({ status: ModelStatus.Working });
toastWithButton(t('Startup Completed'), t('Chat'), () => {
navigate({ pathname: '/chat' });
}, { type: 'success', autoClose: 3000 });
} else if (r.status === 304) {
toast(t('Loading Model'), { type: 'info' });
} else {
commonStore.setModelStatus(ModelStatus.Offline);
commonStore.setStatus({ status: ModelStatus.Offline });
toast(t('Failed to switch model'), { type: 'error' });
}
}).catch(() => {
commonStore.setModelStatus(ModelStatus.Offline);
commonStore.setStatus({ status: ModelStatus.Offline });
toast(t('Failed to switch model'), { type: 'error' });
});
}
}).catch(() => {
if (timeoutCount <= 0) {
clearInterval(intervalId);
commonStore.setModelStatus(ModelStatus.Offline);
commonStore.setStatus({ status: ModelStatus.Offline });
}
});
timeoutCount--;
}, 1000);
} else {
commonStore.setModelStatus(ModelStatus.Offline);
commonStore.setStatus({ status: ModelStatus.Offline });
exit();
}
};
const onClick = async (e: any) => {
if (commonStore.modelStatus === ModelStatus.Offline)
if (commonStore.status.status === ModelStatus.Offline)
await onClickRun?.(e);
await onClickMainButton();
};
return (iconMode ?
<ToolTipButton disabled={commonStore.modelStatus === ModelStatus.Starting}
icon={iconModeButtonIcon[commonStore.modelStatus]}
desc={t(mainButtonText[commonStore.modelStatus])}
<ToolTipButton disabled={commonStore.status.status === ModelStatus.Starting}
icon={iconModeButtonIcon[commonStore.status.status]}
desc={t(mainButtonText[commonStore.status.status])}
size="small" onClick={onClick} />
:
<Button disabled={commonStore.modelStatus === ModelStatus.Starting} appearance="primary" size="large"
<Button disabled={commonStore.status.status === ModelStatus.Starting} appearance="primary" size="large"
onClick={onClick}>
{t(mainButtonText[commonStore.modelStatus])}
{t(mainButtonText[commonStore.status.status])}
</Button>
);
});

View File

@@ -0,0 +1,46 @@
import React, { FC } from 'react';
import { observer } from 'mobx-react-lite';
import { Divider, PresenceBadge, Text } from '@fluentui/react-components';
import commonStore, { ModelStatus } from '../stores/commonStore';
import { ConfigSelector } from './ConfigSelector';
import { RunButton } from './RunButton';
import { PresenceBadgeStatus } from '@fluentui/react-badge';
import { useTranslation } from 'react-i18next';
const statusText = {
[ModelStatus.Offline]: 'Offline',
[ModelStatus.Starting]: 'Starting',
[ModelStatus.Loading]: 'Loading',
[ModelStatus.Working]: 'Working'
};
const badgeStatus: { [modelStatus: number]: PresenceBadgeStatus } = {
[ModelStatus.Offline]: 'unknown',
[ModelStatus.Starting]: 'away',
[ModelStatus.Loading]: 'away',
[ModelStatus.Working]: 'available'
};
export const WorkHeader: FC = observer(() => {
const { t } = useTranslation();
const port = commonStore.getCurrentModelConfig().apiParameters.apiPort;
return (
<div className="flex flex-col gap-1">
<div className="flex justify-between items-center">
<div className="flex items-center gap-2">
<PresenceBadge status={badgeStatus[commonStore.status.status]} />
<Text size={100}>{t('Model Status') + ': ' + t(statusText[commonStore.status.status])}</Text>
</div>
<div className="flex items-center gap-2">
<ConfigSelector size="small" />
<RunButton iconMode />
</div>
</div>
<Text size={100}>
{t('This tool\'s API is compatible with OpenAI API. It can be used with any ChatGPT tool you like. Go to the settings of some ChatGPT tool, replace the \'https://api.openai.com\' part in the API address with \'') + `http://127.0.0.1:${port}` + '\'.'}
</Text>
<Divider style={{ flexGrow: 0 }} />
</div>
);
});

View File

@@ -1,11 +1,8 @@
import React, { FC, useEffect, useRef, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { RunButton } from '../components/RunButton';
import { Avatar, Divider, PresenceBadge, Text, Textarea } from '@fluentui/react-components';
import { Avatar, PresenceBadge, Textarea } from '@fluentui/react-components';
import commonStore, { ModelStatus } from '../stores/commonStore';
import { observer } from 'mobx-react-lite';
import { PresenceBadgeStatus } from '@fluentui/react-badge';
import { ConfigSelector } from '../components/ConfigSelector';
import { v4 as uuid } from 'uuid';
import classnames from 'classnames';
import { fetchEventSource } from '@microsoft/fetch-event-source';
@@ -17,6 +14,7 @@ import { ArrowCircleUp28Regular, Delete28Regular, RecordStop28Regular } from '@f
import { CopyButton } from '../components/CopyButton';
import { ReadButton } from '../components/ReadButton';
import { toast } from 'react-toastify';
import { WorkHeader } from '../components/WorkHeader';
export const userName = 'M E';
export const botName = 'A I';
@@ -65,6 +63,7 @@ const ChatPanel: FC = observer(() => {
useEffect(() => {
if (inputRef.current)
inputRef.current.style.maxHeight = '16rem';
scrollToBottom();
}, []);
useEffect(() => {
@@ -94,7 +93,7 @@ const ChatPanel: FC = observer(() => {
e.stopPropagation();
if (e.type === 'click' || (e.keyCode === 13 && !e.shiftKey)) {
e.preventDefault();
if (commonStore.modelStatus === ModelStatus.Offline) {
if (commonStore.status.status === ModelStatus.Offline) {
toast(t('Please click the button in the top right corner to start the model'), { type: 'warning' });
return;
}
@@ -292,40 +291,10 @@ const ChatPanel: FC = observer(() => {
);
});
const statusText = {
[ModelStatus.Offline]: 'Offline',
[ModelStatus.Starting]: 'Starting',
[ModelStatus.Loading]: 'Loading',
[ModelStatus.Working]: 'Working'
};
const badgeStatus: { [modelStatus: number]: PresenceBadgeStatus } = {
[ModelStatus.Offline]: 'unknown',
[ModelStatus.Starting]: 'away',
[ModelStatus.Loading]: 'away',
[ModelStatus.Working]: 'available'
};
export const Chat: FC = observer(() => {
const { t } = useTranslation();
const port = commonStore.getCurrentModelConfig().apiParameters.apiPort;
return (
<div className="flex flex-col gap-1 p-2 h-full overflow-hidden">
<div className="flex justify-between items-center">
<div className="flex items-center gap-2">
<PresenceBadge status={badgeStatus[commonStore.modelStatus]} />
<Text size={100}>{t('Model Status') + ': ' + t(statusText[commonStore.modelStatus])}</Text>
</div>
<div className="flex items-center gap-2">
<ConfigSelector size="small" />
<RunButton iconMode />
</div>
</div>
<Text size={100}>
{t('This tool\'s API is compatible with OpenAI API. It can be used with any ChatGPT tool you like. Go to the settings of some ChatGPT tool, replace the \'https://api.openai.com\' part in the API address with \'') + `http://127.0.0.1:${port}` + '\'.'}
</Text>
<Divider style={{ flexGrow: 0 }} />
<WorkHeader />
<ChatPanel />
</div>
);

View File

@@ -0,0 +1,362 @@
import React, { FC, useEffect, useRef } from 'react';
import { observer } from 'mobx-react-lite';
import { WorkHeader } from '../components/WorkHeader';
import { Button, Dropdown, Input, Option, Textarea } from '@fluentui/react-components';
import { Labeled } from '../components/Labeled';
import { ValuedSlider } from '../components/ValuedSlider';
import { useTranslation } from 'react-i18next';
import { ApiParameters } from './Configs';
import commonStore, { ModelStatus } from '../stores/commonStore';
import { fetchEventSource } from '@microsoft/fetch-event-source';
import { toast } from 'react-toastify';
export type CompletionParams = Omit<ApiParameters, 'apiPort'> & {
stop: string,
injectStart: string,
injectEnd: string
};
export type CompletionPreset = {
name: string,
prompt: string,
params: CompletionParams
}
export const defaultPresets: CompletionPreset[] = [{
name: 'Writer',
prompt: 'The following is an epic science fiction masterpiece that is immortalized, with delicate descriptions and grand depictions of interstellar civilization wars.\nChapter 1.\n',
params: {
maxResponseToken: 500,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4,
stop: '\\n\\nBob',
injectStart: '',
injectEnd: ''
}
}, {
name: 'Translator',
prompt: 'Translate this into Chinese.\n\nEnglish: What rooms do you have available?',
params: {
maxResponseToken: 500,
temperature: 1,
topP: 0.3,
presencePenalty: 0.4,
frequencyPenalty: 0.4,
stop: '\\nEnglish',
injectStart: '\\nChinese: ',
injectEnd: '\\nEnglish: '
}
}, {
name: 'Catgirl',
prompt: 'The following is a conversation between a cat girl and her owner. The cat girl is a humanized creature that behaves like a cat but is humanoid. At the end of each sentence in the dialogue, she will add \"Meow~\". In the following content, Bob represents the owner and Alice represents the cat girl.\n\nBob: Hello.\n\nAlice: I\'m here, meow~.\n\nBob: Can you tell jokes?',
params: {
maxResponseToken: 500,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4,
stop: '\\n\\nBob',
injectStart: '\\n\\nAlice: ',
injectEnd: '\\n\\nBob: '
}
}, {
name: 'Chinese Kongfu',
prompt: 'Bob: 请你扮演一个文本冒险游戏,我是游戏主角。这是一个玄幻修真世界,有四大门派。我输入我的行动,请你显示行动结果,并具体描述环境。我的第一个行动是“醒来”,请开始故事。',
params: {
maxResponseToken: 500,
temperature: 1.1,
topP: 0.7,
presencePenalty: 0.3,
frequencyPenalty: 0.3,
stop: '\\n\\nBob',
injectStart: '\\n\\nAlice: ',
injectEnd: '\\n\\nBob: '
}
}, {
// }, {
// name: 'Explain Code',
// prompt: 'export async function startup() {\n FileExists(\'cache.json\').then((exists) => {\n if (exists)\n downloadProgramFiles();\n else {\n deleteDynamicProgramFiles().then(downloadProgramFiles);\n }\n });\n EventsOn(\'downloadList\', (data) => {\n if (data)\n commonStore.setDownloadList(data);\n });\n\n initCache().then(initRemoteText);\n\n await initConfig();\n\n if (commonStore.settings.autoUpdatesCheck) // depends on config settings\n checkUpdate();\n\n getStatus(1000).then(status => { // depends on config api port\n if (status)\n commonStore.setStatus(status);\n });\n}\n\n\"\"\"\nHere\'s what the above code is doing, explained in a concise way:\n',
// params: {
// maxResponseToken: 500,
// temperature: 0.8,
// topP: 0.7,
// presencePenalty: 0.4,
// frequencyPenalty: 0.4,
// stop: '\\n\\n',
// injectStart: '',
// injectEnd: ''
// }
// }, {
name: 'Werewolf',
prompt: 'There is currently a game of Werewolf with six players, including a Seer (who can check identities at night), two Werewolves (who can choose someone to kill at night), a Bodyguard (who can choose someone to protect at night), two Villagers (with no special abilities), and a game host. Bob will play as Player 1, Alice will play as Players 2-6 and the game host, and they will begin playing together. Every night, the host will ask Bob for his action and simulate the actions of the other players. During the day, the host will oversee the voting process and ask Bob for his vote. \n\nAlice: Next, I will act as the game host and assign everyone their roles, including randomly assigning yours. Then, I will simulate the actions of Players 2-6 and let you know what happens each day. Based on your assigned role, you can tell me your actions and I will let you know the corresponding results each day.\n\nBob: Okay, I understand. Let\'s begin. Please assign me a role. Am I the Seer, Werewolf, Villager, or Bodyguard?\n\nAlice: You are the Seer. Now that night has fallen, please choose a player to check his identity.\n\nBob: Tonight, I want to check Player 2 and find out his role.',
params: {
maxResponseToken: 500,
temperature: 1.2,
topP: 0.4,
presencePenalty: 0.5,
frequencyPenalty: 0.5,
stop: '\\n\\nBob',
injectStart: '\\n\\nAlice: ',
injectEnd: '\\n\\nBob: '
}
}, {
name: 'Blank',
prompt: '',
params: {
maxResponseToken: 500,
temperature: 1,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4,
stop: '',
injectStart: '',
injectEnd: ''
}
}];
const CompletionPanel: FC = observer(() => {
const { t } = useTranslation();
const inputRef = useRef<HTMLTextAreaElement>(null);
const port = commonStore.getCurrentModelConfig().apiParameters.apiPort;
const sseControllerRef = useRef<AbortController | null>(null);
const scrollToBottom = () => {
if (inputRef.current)
inputRef.current.scrollTop = inputRef.current.scrollHeight;
};
useEffect(() => {
if (inputRef.current)
inputRef.current.style.height = '100%';
scrollToBottom();
}, []);
const setPreset = (preset: CompletionPreset) => {
commonStore.setCompletionPreset({
...preset,
prompt: t(preset.prompt)
});
};
if (!commonStore.completionPreset)
setPreset(defaultPresets[0]);
const name = commonStore.completionPreset!.name;
const prompt = commonStore.completionPreset!.prompt;
const setPrompt = (prompt: string) => {
commonStore.setCompletionPreset({
...commonStore.completionPreset!,
prompt
});
};
const params = commonStore.completionPreset!.params;
const setParams = (newParams: Partial<CompletionParams>) => {
commonStore.setCompletionPreset({
...commonStore.completionPreset!,
params: {
...commonStore.completionPreset!.params,
...newParams
}
});
};
const onSubmit = (prompt: string) => {
if (commonStore.status.status === ModelStatus.Offline) {
toast(t('Please click the button in the top right corner to start the model'), { type: 'warning' });
commonStore.setCompletionGenerating(false);
return;
}
prompt += params.injectStart.replaceAll('\\n', '\n');
let answer = '';
sseControllerRef.current = new AbortController();
fetchEventSource(`http://127.0.0.1:${port}/completions`, // https://api.openai.com/v1/completions || http://127.0.0.1:${port}/completions
{
method: 'POST',
headers: {
'Content-Type': 'application/json',
Authorization: `Bearer sk-`
},
body: JSON.stringify({
prompt,
stream: true,
model: 'text-davinci-003',
max_tokens: params.maxResponseToken,
temperature: params.temperature,
top_p: params.topP,
presence_penalty: params.presencePenalty,
frequency_penalty: params.frequencyPenalty,
stop: params.stop.replaceAll('\\n', '\n') || undefined
}),
signal: sseControllerRef.current?.signal,
onmessage(e) {
console.log('sse message', e);
scrollToBottom();
if (e.data === '[DONE]') {
commonStore.setCompletionGenerating(false);
return;
}
let data;
try {
data = JSON.parse(e.data);
} catch (error) {
console.debug('json error', error);
return;
}
if (data.choices && Array.isArray(data.choices) && data.choices.length > 0) {
answer += data.choices[0].text;
setPrompt(prompt + answer.trim() + params.injectEnd.replaceAll('\\n', '\n'));
}
},
onclose() {
console.log('Connection closed');
},
onerror(err) {
commonStore.setCompletionGenerating(false);
throw err;
}
});
};
return (
<div className="flex flex-col sm:flex-row gap-2 overflow-hidden grow">
<Textarea
ref={inputRef}
className="grow"
value={prompt}
onChange={(e) => setPrompt(e.target.value)}
/>
<div className="flex flex-col gap-1 max-h-48 sm:max-w-sm sm:max-h-full">
<Dropdown style={{ minWidth: 0 }}
value={t(commonStore.completionPreset!.name)!}
selectedOptions={[commonStore.completionPreset!.name]}
onOptionSelect={(_, data) => {
if (data.optionValue) {
setPreset(defaultPresets.find((preset) => preset.name === data.optionValue)!);
}
}}>
{
defaultPresets.map((preset) =>
<Option key={preset.name} value={preset.name}>{t(preset.name)!}</Option>)
}
</Dropdown>
<div className="flex flex-col gap-1 overflow-x-hidden overflow-y-auto">
<Labeled flex breakline label={t('Max Response Token')}
desc={t('By default, the maximum number of tokens that can be answered in a single response, it can be changed by the user by specifying API parameters.')}
content={
<ValuedSlider value={params.maxResponseToken} min={100} max={8100}
step={400}
input
onChange={(e, data) => {
setParams({
maxResponseToken: data.value
});
}} />
} />
<Labeled flex breakline label={t('Temperature')}
desc={t('Sampling temperature, the higher the stronger the randomness and creativity, while the lower, the more focused and deterministic it will be.')}
content={
<ValuedSlider value={params.temperature} min={0} max={2} step={0.1}
input
onChange={(e, data) => {
setParams({
temperature: data.value
});
}} />
} />
<Labeled flex breakline label={t('Top_P')}
desc={t('Consider the results of the top n% probability mass, 0.1 considers the top 10%, with higher quality but more conservative, 1 considers all results, with lower quality but more diverse.')}
content={
<ValuedSlider value={params.topP} min={0} max={1} step={0.1} input
onChange={(e, data) => {
setParams({
topP: data.value
});
}} />
} />
<Labeled flex breakline label={t('Presence Penalty')}
desc={t('Positive values penalize new tokens based on whether they appear in the text so far, increasing the model\'s likelihood to talk about new topics.')}
content={
<ValuedSlider value={params.presencePenalty} min={-2} max={2}
step={0.1} input
onChange={(e, data) => {
setParams({
presencePenalty: data.value
});
}} />
} />
<Labeled flex breakline label={t('Frequency Penalty')}
desc={t('Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model\'s likelihood to repeat the same line verbatim.')}
content={
<ValuedSlider value={params.frequencyPenalty} min={-2} max={2}
step={0.1} input
onChange={(e, data) => {
setParams({
frequencyPenalty: data.value
});
}} />
} />
<Labeled flex breakline label={t('Stop Sequences')}
desc={t('When this content appears in the response result, the generation will end.')}
content={
<Input value={params.stop}
onChange={(e, data) => {
setParams({
stop: data.value
});
}} />
} />
<Labeled flex breakline label={t('Inject start text')}
desc={t('Before the response starts, inject this content.')}
content={
<Input value={params.injectStart}
onChange={(e, data) => {
setParams({
injectStart: data.value
});
}} />
} />
<Labeled flex breakline label={t('Inject end text')}
desc={t('When response finished, inject this content.')}
content={
<Input value={params.injectEnd}
onChange={(e, data) => {
setParams({
injectEnd: data.value
});
}} />
} />
</div>
<div className="grow" />
<div className="flex justify-between gap-2">
<Button className="grow" onClick={() => {
setPreset(defaultPresets.find((preset) => preset.name === name)!);
}}>{t('Reset')}</Button>
<Button className="grow" appearance="primary" onClick={() => {
if (commonStore.completionGenerating) {
sseControllerRef.current?.abort();
commonStore.setCompletionGenerating(false);
} else {
commonStore.setCompletionGenerating(true);
onSubmit(prompt);
}
}}>{!commonStore.completionGenerating ? t('Generate') : t('Stop')}</Button>
</div>
</div>
</div>
);
});
export const Completion: FC = observer(() => {
return (
<div className="flex flex-col gap-1 p-2 h-full overflow-hidden">
<WorkHeader />
<CompletionPanel />
</div>
);
});

View File

@@ -39,6 +39,7 @@ export type ModelParameters = {
storedLayers: number;
maxStoredLayers: number;
enableHighPrecisionForLastLayer: boolean;
useCustomCuda?: boolean;
}
export type ModelConfig = {
@@ -60,12 +61,13 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-1B5-v11-Eng99%-Other1%-20230425-ctx4096.pth',
modelName: 'RWKV-4-Raven-1B5-v12-Eng98%-Other2%-20230520-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 4,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: true
enableHighPrecisionForLastLayer: true,
useCustomCuda: true
}
},
{
@@ -79,12 +81,13 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-1B5-v11-Eng99%-Other1%-20230425-ctx4096.pth',
modelName: 'RWKV-4-Raven-1B5-v12-Eng98%-Other2%-20230520-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -98,12 +101,13 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-3B-v11-Eng99%-Other1%-20230425-ctx4096.pth',
modelName: 'RWKV-4-Raven-3B-v12-Eng98%-Other2%-20230520-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 24,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: true
enableHighPrecisionForLastLayer: true,
useCustomCuda: true
}
},
{
@@ -122,7 +126,8 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'int8',
storedLayers: 24,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: true
enableHighPrecisionForLastLayer: true,
useCustomCuda: true
}
},
{
@@ -136,12 +141,13 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v11x-Eng99%-Other1%-20230429-ctx8192.pth',
modelName: 'RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 8,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: true
enableHighPrecisionForLastLayer: true,
useCustomCuda: true
}
},
{
@@ -160,7 +166,8 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'int8',
storedLayers: 8,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: true
enableHighPrecisionForLastLayer: true,
useCustomCuda: true
}
},
{
@@ -174,12 +181,13 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-1B5-v11-Eng99%-Other1%-20230425-ctx4096.pth',
modelName: 'RWKV-4-Raven-1B5-v12-Eng98%-Other2%-20230520-ctx4096.pth',
device: 'CUDA',
precision: 'fp16',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -193,12 +201,13 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-3B-v11-Eng99%-Other1%-20230425-ctx4096.pth',
modelName: 'RWKV-4-Raven-3B-v12-Eng98%-Other2%-20230520-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -217,7 +226,8 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'int8',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -231,12 +241,13 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v11x-Eng99%-Other1%-20230429-ctx8192.pth',
modelName: 'RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 18,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: true
enableHighPrecisionForLastLayer: true,
useCustomCuda: true
}
},
{
@@ -255,7 +266,8 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'int8',
storedLayers: 18,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: true
enableHighPrecisionForLastLayer: true,
useCustomCuda: true
}
},
{
@@ -269,12 +281,13 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-3B-v11-Eng99%-Other1%-20230425-ctx4096.pth',
modelName: 'RWKV-4-Raven-3B-v12-Eng98%-Other2%-20230520-ctx4096.pth',
device: 'CUDA',
precision: 'fp16',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -293,7 +306,48 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'fp16',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
name: 'GPU-8G-7B-EN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 27,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
name: 'GPU-8G-7B-CN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v11-Eng49%-Chn49%-Jpn1%-Other1%-20230430-ctx8192.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 27,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -307,12 +361,13 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v11x-Eng99%-Other1%-20230429-ctx8192.pth',
modelName: 'RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -331,11 +386,12 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'int8',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
name: 'GPU-12G-7B-EN',
name: 'GPU-12G-14B-EN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
@@ -345,31 +401,13 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v11x-Eng99%-Other1%-20230429-ctx8192.pth',
modelName: 'RWKV-4-Raven-14B-v12-Eng98%-Other2%-20230523-ctx8192.pth',
device: 'CUDA',
precision: 'fp16',
storedLayers: 22,
precision: 'int8',
storedLayers: 24,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
}
},
{
name: 'GPU-12G-7B-CN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v11-Eng49%-Chn49%-Jpn1%-Other1%-20230430-ctx8192.pth',
device: 'CUDA',
precision: 'fp16',
storedLayers: 22,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -383,12 +421,13 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v11x-Eng99%-Other1%-20230429-ctx8192.pth',
modelName: 'RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192.pth',
device: 'CUDA',
precision: 'fp16',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -407,7 +446,28 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'fp16',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
name: 'GPU-16G-14B-EN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-14B-v12-Eng98%-Other2%-20230523-ctx8192.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 37,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -421,12 +481,13 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-14B-v11x-Eng99%-Other1%-20230501-ctx8192.pth',
modelName: 'RWKV-4-Raven-14B-v12-Eng98%-Other2%-20230523-ctx8192.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -440,12 +501,13 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-14B-v11x-Eng99%-Other1%-20230501-ctx8192.pth',
modelName: 'RWKV-4-Raven-14B-v12-Eng98%-Other2%-20230523-ctx8192.pth',
device: 'CUDA',
precision: 'fp16',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -459,7 +521,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-1B5-v11-Eng99%-Other1%-20230425-ctx4096.pth',
modelName: 'RWKV-4-Raven-1B5-v12-Eng98%-Other2%-20230520-ctx4096.pth',
device: 'CPU',
precision: 'fp32',
storedLayers: 41,
@@ -478,7 +540,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-3B-v11-Eng99%-Other1%-20230425-ctx4096.pth',
modelName: 'RWKV-4-Raven-3B-v12-Eng98%-Other2%-20230520-ctx4096.pth',
device: 'CPU',
precision: 'fp32',
storedLayers: 41,
@@ -516,7 +578,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v11x-Eng99%-Other1%-20230429-ctx8192.pth',
modelName: 'RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192.pth',
device: 'CPU',
precision: 'fp32',
storedLayers: 41,
@@ -642,7 +704,7 @@ export const Configs: FC = observer(() => {
});
}} />
} />
<Labeled label={t('Max Response Token *')}
<Labeled label={t('Max Response Token') + ' *'}
desc={t('By default, the maximum number of tokens that can be answered in a single response, it can be changed by the user by specifying API parameters.')}
content={
<ValuedSlider value={selectedConfig.apiParameters.maxResponseToken} min={100} max={8100}
@@ -654,7 +716,7 @@ export const Configs: FC = observer(() => {
});
}} />
} />
<Labeled label={t('Temperature *')}
<Labeled label={t('Temperature') + ' *'}
desc={t('Sampling temperature, the higher the stronger the randomness and creativity, while the lower, the more focused and deterministic it will be.')}
content={
<ValuedSlider value={selectedConfig.apiParameters.temperature} min={0} max={2} step={0.1}
@@ -665,7 +727,7 @@ export const Configs: FC = observer(() => {
});
}} />
} />
<Labeled label={t('Top_P *')}
<Labeled label={t('Top_P') + ' *'}
desc={t('Consider the results of the top n% probability mass, 0.1 considers the top 10%, with higher quality but more conservative, 1 considers all results, with lower quality but more diverse.')}
content={
<ValuedSlider value={selectedConfig.apiParameters.topP} min={0} max={1} step={0.1} input
@@ -675,7 +737,7 @@ export const Configs: FC = observer(() => {
});
}} />
} />
<Labeled label={t('Presence Penalty *')}
<Labeled label={t('Presence Penalty') + ' *'}
desc={t('Positive values penalize new tokens based on whether they appear in the text so far, increasing the model\'s likelihood to talk about new topics.')}
content={
<ValuedSlider value={selectedConfig.apiParameters.presencePenalty} min={-2} max={2}
@@ -686,7 +748,7 @@ export const Configs: FC = observer(() => {
});
}} />
} />
<Labeled label={t('Frequency Penalty *')}
<Labeled label={t('Frequency Penalty') + ' *'}
desc={t('Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model\'s likelihood to repeat the same line verbatim.')}
content={
<ValuedSlider value={selectedConfig.apiParameters.frequencyPenalty} min={-2} max={2}
@@ -713,6 +775,10 @@ export const Configs: FC = observer(() => {
modelName: data.value
});
}}>
{!commonStore.modelSourceList.find(item => item.name === selectedConfig.modelParameters.modelName)?.isLocal
&& <option key={-1}
value={selectedConfig.modelParameters.modelName}>{selectedConfig.modelParameters.modelName}
</option>}
{commonStore.modelSourceList.map((modelItem, index) =>
modelItem.isLocal && <option key={index} value={modelItem.name}>{modelItem.name}</option>
)}
@@ -754,7 +820,7 @@ export const Configs: FC = observer(() => {
</Dropdown>
} />
<Labeled label={t('Precision')}
desc={t('int8 uses less VRAM, and is faster, but has slightly lower quality. fp16 has higher quality, and fp32 has the best quality.')}
desc={t('int8 uses less VRAM, but has slightly lower quality. fp16 has higher quality, and fp32 has the best quality.')}
content={
<Dropdown style={{ minWidth: 0 }} className="grow"
value={selectedConfig.modelParameters.precision}
@@ -771,6 +837,7 @@ export const Configs: FC = observer(() => {
<Option>fp32</Option>
</Dropdown>
} />
<div />
<Labeled label={t('Stored Layers')}
desc={t('Number of the neural network layers loaded into VRAM, the more you load, the faster the speed, but it consumes more VRAM.')}
content={
@@ -792,6 +859,16 @@ export const Configs: FC = observer(() => {
});
}} />
} />
<Labeled label={t('Use Custom CUDA kernel to Accelerate')}
desc={t('Enabling this option can greatly improve inference speed, but there may be compatibility issues. If it fails to start, please turn off this option.')}
content={
<Switch checked={selectedConfig.modelParameters.useCustomCuda}
onChange={(e, data) => {
setSelectedConfigModelParams({
useCustomCuda: data.checked
});
}} />
} />
</div>
}
/>

View File

@@ -3,9 +3,9 @@ import React, { FC, ReactElement } from 'react';
import banner from '../assets/images/banner.jpg';
import {
Chat20Regular,
ClipboardEdit20Regular,
DataUsageSettings20Regular,
DocumentSettings20Regular,
Storage20Regular
DocumentSettings20Regular
} from '@fluentui/react-icons';
import { useNavigate } from 'react-router';
import { observer } from 'mobx-react-lite';
@@ -16,6 +16,7 @@ import { useTranslation } from 'react-i18next';
import { ConfigSelector } from '../components/ConfigSelector';
import MarkdownRender from '../components/MarkdownRender';
import commonStore from '../stores/commonStore';
import { Completion } from './Completion';
export type IntroductionContent = { [lang: string]: string }
@@ -33,6 +34,12 @@ const navCards: NavCard[] = [
path: '/chat',
icon: <Chat20Regular />
},
{
label: 'Completion',
desc: 'Writer, Translator, Role-playing',
path: '/completion',
icon: <ClipboardEdit20Regular />
},
{
label: 'Configs',
desc: 'Manage your configs',
@@ -44,12 +51,6 @@ const navCards: NavCard[] = [
desc: 'Manage models',
path: '/models',
icon: <DataUsageSettings20Regular />
},
{
label: 'Train',
desc: '',
path: '/train',
icon: <Storage20Regular />
}
];

View File

@@ -1,6 +1,6 @@
import React, { FC } from 'react';
import { Page } from '../components/Page';
import { Dropdown, Option, Switch } from '@fluentui/react-components';
import { Dropdown, Input, Option, Switch } from '@fluentui/react-components';
import { Labeled } from '../components/Labeled';
import commonStore from '../stores/commonStore';
import { observer } from 'mobx-react-lite';
@@ -20,6 +20,7 @@ export type SettingsType = {
autoUpdatesCheck: boolean
giteeUpdatesSource: boolean
cnMirror: boolean
host: string
}
export const Settings: FC = observer(() => {
@@ -87,6 +88,14 @@ export const Settings: FC = observer(() => {
}} />
} />
}
<Labeled label={t('API Host')} flex spaceBetween content={
<Input value={commonStore.settings.host}
onChange={(e, data) => {
commonStore.setSettings({
host: data.value
});
}} />
} />
</div>
} />
);

View File

@@ -3,6 +3,7 @@ import { Configs } from './Configs';
import {
ArrowDownload20Regular,
Chat20Regular,
ClipboardEdit20Regular,
DataUsageSettings20Regular,
DocumentSettings20Regular,
Home20Regular,
@@ -17,6 +18,7 @@ import { Train } from './Train';
import { Settings } from './Settings';
import { About } from './About';
import { Downloads } from './Downloads';
import { Completion } from './Completion';
type NavigationItem = {
label: string;
@@ -41,6 +43,13 @@ export const pages: NavigationItem[] = [
element: <Chat />,
top: true
},
{
label: 'Completion',
path: '/completion',
icon: <ClipboardEdit20Regular />,
element: <Completion />,
top: true
},
{
label: 'Configs',
path: '/configs',

View File

@@ -1,12 +1,26 @@
import commonStore from './stores/commonStore';
import { ReadJson } from '../wailsjs/go/backend_golang/App';
import { Cache, checkUpdate, downloadProgramFiles, LocalConfig, refreshModels, saveCache } from './utils';
import { FileExists, ReadJson } from '../wailsjs/go/backend_golang/App';
import {
Cache,
checkUpdate,
deleteDynamicProgramFiles,
downloadProgramFiles,
LocalConfig,
refreshModels,
saveCache
} from './utils';
import { getStatus } from './apis';
import { EventsOn } from '../wailsjs/runtime';
import { defaultModelConfigs } from './pages/Configs';
export async function startup() {
downloadProgramFiles();
FileExists('cache.json').then((exists) => {
if (exists)
downloadProgramFiles();
else {
deleteDynamicProgramFiles().then(downloadProgramFiles);
}
});
EventsOn('downloadList', (data) => {
if (data)
commonStore.setDownloadList(data);
@@ -19,14 +33,14 @@ export async function startup() {
if (commonStore.settings.autoUpdatesCheck) // depends on config settings
checkUpdate();
getStatus(500).then(status => { // depends on config api port
getStatus(1000).then(status => { // depends on config api port
if (status)
commonStore.setModelStatus(status);
commonStore.setStatus(status);
});
}
async function initRemoteText() {
await fetch('https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/manifest.json', { cache: 'no-cache' })
await fetch('https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/manifest.json', { cache: 'no-cache' })
.then(r => r.json()).then((data) => {
if (data.introduction)
commonStore.setIntroduction(data.introduction);

View File

@@ -10,6 +10,7 @@ import { SettingsType } from '../pages/Settings';
import { IntroductionContent } from '../pages/Home';
import { AboutContent } from '../pages/About';
import i18n from 'i18next';
import { CompletionPreset } from '../pages/Completion';
export enum ModelStatus {
Offline,
@@ -18,20 +19,33 @@ export enum ModelStatus {
Working,
}
export type Status = {
status: ModelStatus;
pid: number;
device_name: string;
}
class CommonStore {
// global
modelStatus: ModelStatus = ModelStatus.Offline;
status: Status = {
status: ModelStatus.Offline,
pid: 0,
device_name: 'CPU'
};
depComplete: boolean = false;
// home
introduction: IntroductionContent = manifest.introduction;
// chat
conversations: Conversations = {};
conversationsOrder: string[] = [];
// completion
completionPreset: CompletionPreset | null = null;
completionGenerating: boolean = false;
// configs
currentModelConfigIndex: number = 0;
modelConfigs: ModelConfig[] = [];
// models
modelSourceManifestList: string = 'https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/manifest.json;';
modelSourceManifestList: string = 'https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/manifest.json;';
modelSourceList: ModelSourceItem[] = [];
// downloads
downloadList: DownloadStatus[] = [];
@@ -41,7 +55,8 @@ class CommonStore {
darkMode: !isSystemLightMode(),
autoUpdatesCheck: true,
giteeUpdatesSource: getUserLanguage() === 'zh',
cnMirror: getUserLanguage() === 'zh'
cnMirror: getUserLanguage() === 'zh',
host: '127.0.0.1'
};
// about
about: AboutContent = manifest.about;
@@ -54,8 +69,8 @@ class CommonStore {
return this.modelConfigs[this.currentModelConfigIndex];
};
setModelStatus = (status: ModelStatus) => {
this.modelStatus = status;
setStatus = (status: Partial<Status>) => {
this.status = { ...this.status, ...status };
};
setCurrentConfigIndex = (index: number, saveConfig: boolean = true) => {
@@ -145,6 +160,14 @@ class CommonStore {
setConversationsOrder = (value: string[]) => {
this.conversationsOrder = value;
};
setCompletionPreset(value: CompletionPreset) {
this.completionPreset = value;
}
setCompletionGenerating(value: boolean) {
this.completionGenerating = value;
}
}
export default new CommonStore();

View File

@@ -1,7 +1,6 @@
import {
AddToDownloadList,
DeleteFile,
DownloadFile,
FileExists,
ListDirFiles,
ReadJson,
@@ -114,7 +113,7 @@ export async function refreshRemoteModels(cache: { models: ModelSourceItem[] })
cache.models = cache.models.filter((model, index, self) => {
return model.name.endsWith('.pth')
&& index === self.findIndex(
m => m.name === model.name || (m.SHA256 === model.SHA256 && m.size === model.size));
m => m.name === model.name || (m.SHA256 && m.SHA256 === model.SHA256 && m.size === model.size));
});
commonStore.setModelSourceList(cache.models);
await saveCache().catch(() => {
@@ -178,21 +177,24 @@ export function downloadProgramFiles() {
manifest.programFiles.forEach(({ url, path }) => {
FileExists(path).then(exists => {
if (!exists)
AddToDownloadList(path, url);
AddToDownloadList(path, url.replace('@master', '@v' + manifest.version));
});
});
}
export function forceDownloadProgramFiles() {
manifest.programFiles.forEach(({ url, path }) => {
DownloadFile(path, url);
AddToDownloadList(path, url.replace('@master', '@v' + manifest.version));
});
}
export function deletePythonProgramFiles() {
export async function deleteDynamicProgramFiles() {
let promises: Promise<void>[] = [];
manifest.programFiles.forEach(({ path }) => {
if (path.endsWith('.py') && !path.includes('get-pip.py'))
DeleteFile(path);
if ((path.endsWith('.py') && !path.includes('get-pip.py')) || path.includes('requirements') || path.endsWith('.pyd'))
promises.push(DeleteFile(path));
});
return await Promise.allSettled(promises).catch(() => {
});
}
@@ -223,10 +225,15 @@ export async function checkUpdate(notifyEvenLatest: boolean = false) {
`https://github.com/josStorer/RWKV-Runner/releases/download/${versionTag}/RWKV-Runner_windows_x64.exe` :
`https://gitee.com/josc146/RWKV-Runner/releases/download/${versionTag}/RWKV-Runner_windows_x64.exe`;
toastWithButton(t('New Version Available') + ': ' + versionTag, t('Update'), () => {
deletePythonProgramFiles();
DeleteFile('cache.json');
toast(t('Downloading update, please wait. If it is not completed, please manually download the program from GitHub and replace the original program.'), {
type: 'info',
position: 'bottom-left',
autoClose: 10000
});
setTimeout(() => {
UpdateApp(updateUrl).catch((e) => {
toast(t('Update Error, Please restart this program') + ' - ' + e.message || e, {
toast(t('Update Error') + ' - ' + e.message || e, {
type: 'error',
position: 'bottom-left',
autoClose: false
@@ -257,13 +264,30 @@ export async function checkUpdate(notifyEvenLatest: boolean = false) {
}
export function toastWithButton(text: string, buttonText: string, onClickButton: () => void, options?: ToastOptions) {
return toast(
let triggered = false;
const id = toast(
<div className="flex flex-row items-center justify-between">
<div>{text}</div>
<Button appearance="primary" onClick={onClickButton}>{buttonText}</Button>
<Button appearance="primary" onClick={() => {
if (!triggered) {
triggered = true;
toast.dismiss(id);
onClickButton();
}
}}>{buttonText}</Button>
</div>,
{
type: 'info',
...options
});
return id;
}
export function getSupportedCustomCudaFile() {
if ([' 10', ' 16', ' 20', ' 30'].some(v => commonStore.status.device_name.includes(v)))
return './backend-python/wkv_cuda_utils/wkv_cuda10_30.pyd';
else if ([' 40'].some(v => commonStore.status.device_name.includes(v)))
return './backend-python/wkv_cuda_utils/wkv_cuda40.pyd';
else
return '';
}

View File

@@ -8,6 +8,8 @@ export function ContinueDownload(arg1:string):Promise<void>;
export function ConvertModel(arg1:string,arg2:string,arg3:string):Promise<string>;
export function CopyFile(arg1:string,arg2:string):Promise<void>;
export function DeleteFile(arg1:string):Promise<void>;
export function DepCheck():Promise<void>;
@@ -32,6 +34,6 @@ export function ReadJson(arg1:string):Promise<any>;
export function SaveJson(arg1:string,arg2:any):Promise<void>;
export function StartServer(arg1:number):Promise<string>;
export function StartServer(arg1:number,arg2:string):Promise<string>;
export function UpdateApp(arg1:string):Promise<boolean>;

View File

@@ -14,6 +14,10 @@ export function ConvertModel(arg1, arg2, arg3) {
return window['go']['backend_golang']['App']['ConvertModel'](arg1, arg2, arg3);
}
export function CopyFile(arg1, arg2) {
return window['go']['backend_golang']['App']['CopyFile'](arg1, arg2);
}
export function DeleteFile(arg1) {
return window['go']['backend_golang']['App']['DeleteFile'](arg1);
}
@@ -62,8 +66,8 @@ export function SaveJson(arg1, arg2) {
return window['go']['backend_golang']['App']['SaveJson'](arg1, arg2);
}
export function StartServer(arg1) {
return window['go']['backend_golang']['App']['StartServer'](arg1);
export function StartServer(arg1, arg2) {
return window['go']['backend_golang']['App']['StartServer'](arg1, arg2);
}
export function UpdateApp(arg1) {

View File

@@ -1,62 +1,90 @@
{
"version": "1.0.0",
"version": "1.0.9",
"introduction": {
"en": "RWKV is an open-source, commercially usable large language model with high flexibility and great potential for development.\n### About This Tool\nThis tool aims to lower the barrier of entry for using large language models, making it accessible to everyone. It provides fully automated dependency and model management. You simply need to click and run, following the instructions, to deploy a local large language model. The tool itself is very compact and only requires a single executable file for one-click deployment.\nAdditionally, this tool offers an interface that is fully compatible with the OpenAI API. This means you can use any ChatGPT client as a client for RWKV, enabling capability expansion beyond just chat functionality.\n### Preset Configuration Rules at the Bottom\nThis tool comes with a series of preset configurations to reduce complexity. The naming rules for each configuration represent the following in order: device - required VRAM/memory - model size - model language.\nFor example, \"GPU-8G-3B-EN\" indicates that this configuration is for a graphics card with 8GB of VRAM, a model size of 3 billion parameters, and it uses an English language model.\nLarger model sizes have higher performance and VRAM requirements. Among configurations with the same model size, those with higher VRAM usage will have faster runtime.\nFor example, if you have 12GB of VRAM but running the \"GPU-12G-7B-EN\" configuration is slow, you can downgrade to \"GPU-8G-3B-EN\" for a significant speed improvement.\n### About RWKV\nRWKV is an RNN with Transformer-level LLM performance, which can also be directly trained like a GPT transformer (parallelizable). And it's 100% attention-free. You only need the hidden state at position t to compute the state at position t+1. You can use the \"GPT\" mode to quickly compute the hidden state for the \"RNN\" mode.<br/>So it's combining the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, \"infinite\" ctx_len, and free sentence embedding (using the final hidden state).",
"zh": "RWKV是一个开源且允许商用的大语言模型灵活性很高且极具发展潜力。\n### 关于本工具\n本工具旨在降低大语言模型的使用门槛做到人人可用本工具提供了全自动化的依赖和模型管理你只需要直接点击运行跟随引导即可完成本地大语言模型的部署工具本身体积极小只需要一个exe即可完成一键部署。\n此外本工具提供了与OpenAI API完全兼容的接口这意味着你可以把任意ChatGPT客户端用作RWKV的客户端实现能力拓展而不局限于聊天。\n### 底部的预设配置规则\n本工具内置了一系列预设配置以降低使用难度每个配置名的规则依次代表着设备-所需显存/内存-模型规模-模型语言。\n例如GPU-8G-3B-CN表示该配置用于显卡需要8G显存模型规模为30亿参数使用的是中文模型。\n模型规模越大性能要求越高显存要求也越高而同样模型规模的配置中显存占用越高的运行速度越快。\n例如当你有12G显存但运行GPU-12G-7B-CN配置速度比较慢可降级成GPU-8G-3B-CN将会大幅提速。\n### 关于RWKV\nRWKV是具有Transformer级别LLM性能的RNN也可以像GPT Transformer一样直接进行训练可并行化。而且它是100% attention-free的。你只需在位置t处获得隐藏状态即可计算位置t + 1处的状态。你可以使用“GPT”模式快速计算用于“RNN”模式的隐藏状态。\n因此它将RNN和Transformer的优点结合起来 - 高性能、快速推理、节省显存、快速训练、“无限”上下文长度以及免费的语句嵌入(使用最终隐藏状态)。"
},
"about": {
"en": "<div align=\"center\">\n\nProject Source Code:\nhttps://github.com/josStorer/RWKV-Runner\nAuthor: [@josStorer](https://github.com/josStorer)\n\nRelated Repositories:\nRWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main\nChatRWKV: https://github.com/BlinkDL/ChatRWKV\nRWKV-LM: https://github.com/BlinkDL/RWKV-LM\n\n</div>",
"zh": "<div align=\"center\">\n\n本项目源码:\nhttps://github.com/josStorer/RWKV-Runner\n作者: [@josStorer](https://github.com/josStorer)\n\n相关仓库:\nRWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main\nChatRWKV: https://github.com/BlinkDL/ChatRWKV\nRWKV-LM: https://github.com/BlinkDL/RWKV-LM\n\n</div>"
"en": "<div align=\"center\">\n\nProject Source Code:\nhttps://github.com/josStorer/RWKV-Runner\nAuthor: [@josStorer](https://github.com/josStorer)\nFAQs: https://github.com/josStorer/RWKV-Runner/wiki/FAQs\n\nRelated Repositories:\nRWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main\nChatRWKV: https://github.com/BlinkDL/ChatRWKV\nRWKV-LM: https://github.com/BlinkDL/RWKV-LM\n\n</div>",
"zh": "<div align=\"center\">\n\n本项目源码:\nhttps://github.com/josStorer/RWKV-Runner\n作者: [@josStorer](https://github.com/josStorer)\n演示与常见问题说明视频: https://www.bilibili.com/video/BV1hM4y1v76R\n疑难解答: https://www.bilibili.com/read/cv23921171\n\n相关仓库:\nRWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main\nChatRWKV: https://github.com/BlinkDL/ChatRWKV\nRWKV-LM: https://github.com/BlinkDL/RWKV-LM\n\n</div>"
},
"localModelDir": "models",
"programFiles": [
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/requirements.txt",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/requirements.txt",
"path": "backend-python/requirements.txt"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/requirements_versions.txt",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/requirements_versions.txt",
"path": "backend-python/requirements_versions.txt"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/main.py",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/main.py",
"path": "backend-python/main.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/global_var.py",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/global_var.py",
"path": "backend-python/global_var.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/convert_model.py",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/convert_model.py",
"path": "backend-python/convert_model.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/dep_check.py",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/dep_check.py",
"path": "backend-python/dep_check.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/routes/completion.py",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/routes/completion.py",
"path": "backend-python/routes/completion.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/routes/config.py",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/routes/config.py",
"path": "backend-python/routes/config.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/utils/ngrok.py",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/routes/state_cache.py",
"path": "backend-python/routes/state_cache.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/utils/ngrok.py",
"path": "backend-python/utils/ngrok.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/utils/rwkv.py",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/utils/rwkv.py",
"path": "backend-python/utils/rwkv.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/utils/torch.py",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/utils/torch.py",
"path": "backend-python/utils/torch.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/20B_tokenizer.json",
"path": "backend-python/20B_tokenizer.json"
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/rwkv_pip/rwkv_tokenizer.py",
"path": "backend-python/rwkv_pip/rwkv_tokenizer.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/rwkv_pip/utils.py",
"path": "backend-python/rwkv_pip/utils.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/wkv_cuda_utils/wkv_cuda10_30.pyd",
"path": "backend-python/wkv_cuda_utils/wkv_cuda10_30.pyd"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/wkv_cuda_utils/wkv_cuda40.pyd",
"path": "backend-python/wkv_cuda_utils/wkv_cuda40.pyd"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/wkv_cuda_utils/wkv_cuda_model.py",
"path": "backend-python/wkv_cuda_utils/wkv_cuda_model.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/rwkv_pip/rwkv_vocab_v20230424.txt",
"path": "backend-python/rwkv_pip/rwkv_vocab_v20230424.txt"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/rwkv_pip/20B_tokenizer.json",
"path": "backend-python/rwkv_pip/20B_tokenizer.json"
},
{
"url": "https://cdn.jsdelivr.net/gh/pypa/get-pip/public/get-pip.py",
@@ -76,6 +104,18 @@
"url": "https://huggingface.co/BlinkDL/rwkv-4-raven/blob/main/RWKV-4-Raven-3B-v11-Eng99%25-Other1%25-20230425-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-raven/resolve/main/RWKV-4-Raven-3B-v11-Eng99%25-Other1%25-20230425-ctx4096.pth"
},
{
"name": "RWKV-4-Raven-3B-v12-Eng98%-Other2%-20230520-ctx4096.pth",
"desc": {
"en": "English 3B v12",
"zh": "英文 3B v12"
},
"size": 5969345074,
"SHA256": "1eea1845acfe9729dfdaec66a8d1aeb91a1287d94bebbca5529c13c050540b33",
"lastUpdated": "2023-05-21T07:13:25",
"url": "https://huggingface.co/BlinkDL/rwkv-4-raven/blob/main/RWKV-4-Raven-3B-v12-Eng98%25-Other2%25-20230520-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-raven/resolve/main/RWKV-4-Raven-3B-v12-Eng98%25-Other2%25-20230520-ctx4096.pth"
},
{
"name": "RWKV-4-Raven-7B-v10x-Eng49%-Chn50%-Other1%-20230423-ctx4096.pth",
"desc": {
@@ -100,6 +140,18 @@
"url": "https://huggingface.co/BlinkDL/rwkv-4-raven/blob/main/RWKV-4-Raven-7B-v11-Eng49%25-Chn49%25-Jpn1%25-Other1%25-20230430-ctx8192.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-raven/resolve/main/RWKV-4-Raven-7B-v11-Eng49%25-Chn49%25-Jpn1%25-Other1%25-20230430-ctx8192.pth"
},
{
"name": "RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192.pth",
"desc": {
"en": "English 7B v12",
"zh": "英文 7B v12"
},
"size": 14785389618,
"SHA256": "5a725eaeb9e09b724de6c97e6845dd0283097c7920acd05b46852ab7afa9ec32",
"lastUpdated": "2023-05-22T10:32:17",
"url": "https://huggingface.co/BlinkDL/rwkv-4-raven/blob/main/RWKV-4-Raven-7B-v12-Eng98%25-Other2%25-20230521-ctx8192.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-raven/resolve/main/RWKV-4-Raven-7B-v12-Eng98%25-Other2%25-20230521-ctx8192.pth"
},
{
"name": "RWKV-4-Raven-7B-v11x-Eng99%-Other1%-20230429-ctx8192.pth",
"desc": {
@@ -124,6 +176,18 @@
"url": "https://huggingface.co/BlinkDL/rwkv-4-raven/blob/main/RWKV-4-Raven-1B5-v11-Eng99%25-Other1%25-20230425-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-raven/resolve/main/RWKV-4-Raven-1B5-v11-Eng99%25-Other1%25-20230425-ctx4096.pth"
},
{
"name": "RWKV-4-Raven-1B5-v12-Eng98%-Other2%-20230520-ctx4096.pth",
"desc": {
"en": "English 1B5 v12",
"zh": "英文 1B5 v12"
},
"size": 3030279730,
"SHA256": "6bbbffb3ee2372dfa9ef49c599e9a2bc0a01b94b6a264ba9bf5bd524fc38f723",
"lastUpdated": "2023-05-21T07:08:56",
"url": "https://huggingface.co/BlinkDL/rwkv-4-raven/blob/main/RWKV-4-Raven-1B5-v12-Eng98%25-Other2%25-20230520-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-raven/resolve/main/RWKV-4-Raven-1B5-v12-Eng98%25-Other2%25-20230520-ctx4096.pth"
},
{
"name": "RWKV-4-Raven-3B-v11-Eng49%-Chn49%-Jpn1%-Other1%-20230429-ctx4096.pth",
"desc": {
@@ -136,6 +200,18 @@
"url": "https://huggingface.co/BlinkDL/rwkv-4-raven/blob/main/RWKV-4-Raven-3B-v11-Eng49%25-Chn49%25-Jpn1%25-Other1%25-20230429-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-raven/resolve/main/RWKV-4-Raven-3B-v11-Eng49%25-Chn49%25-Jpn1%25-Other1%25-20230429-ctx4096.pth"
},
{
"name": "RWKV-4-Raven-14B-v12-Eng98%-Other2%-20230523-ctx8192.pth",
"desc": {
"en": "English 14B v12",
"zh": "英文 14B v12"
},
"size": 28297309490,
"SHA256": "1193b5a9ceab572e4dbb9ed1d798eab7bf4793d18904d08bd4bf183579338ae7",
"lastUpdated": "2023-05-23T11:22:41",
"url": "https://huggingface.co/BlinkDL/rwkv-4-raven/blob/main/RWKV-4-Raven-14B-v12-Eng98%25-Other2%25-20230523-ctx8192.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-raven/resolve/main/RWKV-4-Raven-14B-v12-Eng98%25-Other2%25-20230523-ctx8192.pth"
},
{
"name": "RWKV-4-Raven-14B-v11x-Eng99%-Other1%-20230501-ctx8192.pth",
"desc": {
@@ -147,6 +223,66 @@
"lastUpdated": "2023-05-02T09:43:33",
"url": "https://huggingface.co/BlinkDL/rwkv-4-raven/blob/main/RWKV-4-Raven-14B-v11x-Eng99%25-Other1%25-20230501-ctx8192.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-raven/resolve/main/RWKV-4-Raven-14B-v11x-Eng99%25-Other1%25-20230501-ctx8192.pth"
},
{
"name": "RWKV-4-Novel-7B-v1-Chn-20230426-ctx8192.pth",
"desc": {
"en": "Chinese Novel 7B v1",
"zh": "中文小说 7B v1"
},
"size": 14785389864,
"SHA256": "5fced44febdf80d303250eef9c020f087abded43aaecc8caaea8a9e7f1fb771e",
"lastUpdated": "2023-04-26T18:57:01",
"url": "https://huggingface.co/BlinkDL/rwkv-4-novel/blob/main/RWKV-4-Novel-7B-v1-Chn-20230426-ctx8192.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-novel/resolve/main/RWKV-4-Novel-7B-v1-Chn-20230426-ctx8192.pth"
},
{
"name": "RWKV-4-Novel-3B-v1-Chn-20230412-ctx4096.pth",
"desc": {
"en": "Chinese Novel 3B v1",
"zh": "中文小说 3B v1"
},
"size": 5969345064,
"SHA256": "c41e0af2cbc66e94121377680e8224a1504fac6c9ea620c395f0a79281db26e7",
"lastUpdated": "2023-04-12T13:18:29",
"url": "https://huggingface.co/BlinkDL/rwkv-4-novel/blob/main/RWKV-4-Novel-3B-v1-Chn-20230412-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-novel/resolve/main/RWKV-4-Novel-3B-v1-Chn-20230412-ctx4096.pth"
},
{
"name": "RWKV-4-Novel-3B-v1-ChnEng-20230412-ctx4096.pth",
"desc": {
"en": "English Novel 3B v1",
"zh": "英文小说 3B v1"
},
"size": 5969345064,
"SHA256": "283c6e6fa10c52a93e9a01d9630f288473267ea152a49c6579b5c0427bdc9c61",
"lastUpdated": "2023-04-12T13:18:29",
"url": "https://huggingface.co/BlinkDL/rwkv-4-novel/blob/main/RWKV-4-Novel-3B-v1-ChnEng-20230412-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-novel/resolve/main/RWKV-4-Novel-3B-v1-ChnEng-20230412-ctx4096.pth"
},
{
"name": "RWKV-4-Novel-7B-v1-ChnEng-20230426-ctx8192.pth",
"desc": {
"en": "English Novel 7B v1",
"zh": "英文小说 7B v1"
},
"size": 14785389864,
"SHA256": "bd08c75a296bd193dcfadb993fe06d7f9dd91ca3385231f24c592c89d25cd596",
"lastUpdated": "2023-04-26T18:57:01",
"url": "https://huggingface.co/BlinkDL/rwkv-4-novel/blob/main/RWKV-4-Novel-7B-v1-ChnEng-20230426-ctx8192.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-novel/resolve/main/RWKV-4-Novel-7B-v1-ChnEng-20230426-ctx8192.pth"
},
{
"name": "RWKV-4-World-0.1B-v1-20230520-ctx4096.pth",
"desc": {
"en": "+100 Languages 0.1B v1",
"zh": "+100种语言 0.1B v1"
},
"size": 385594610,
"SHA256": "a10ef99df2a8f8a6801edf4fc92a9c49bedd63dcb900d3e5667a2136b3d671e7",
"lastUpdated": "2023-05-25T09:21:27",
"url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-0.1B-v1-20230520-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-0.1B-v1-20230520-ctx4096.pth"
}
]
}
}