Compare commits

...

25 Commits

Author SHA1 Message Date
josc146
d66c30698c release v1.0.9 2023-05-29 00:25:22 +08:00
josc146
fecdf238c1 feat: preload preset_system 2023-05-29 00:08:13 +08:00
josc146
3e11128c9d feat: use model state cache to achieve 5x - 50x faster preparation time for generation 2023-05-28 23:52:38 +08:00
josc146
822f2d729c fix: sha256 check for model deduplication 2023-05-28 23:45:11 +08:00
josc146
a16c85b07d fix: the configs page now always displays the currently selected non-local model so that other models can be selected properly 2023-05-28 23:44:21 +08:00
josc146
4e678eff6f update about 2023-05-28 17:24:49 +08:00
josc146
94971bb666 support for rwkv-4-world 2023-05-28 12:53:14 +08:00
josc146
b7fb8ed898 improve api concurrency performance 2023-05-27 15:18:12 +08:00
josc146
2ca8f5eba9 experimental macOS/Linux support 2023-05-27 14:40:59 +08:00
josc146
2431ff68e6 update readme 2023-05-27 00:38:39 +08:00
josc146
06e21badc0 Update README.md 2023-05-26 13:54:45 +08:00
Pedro Cabral
52c3b7e9bf Add RWKV-4 World 0.1B (#25)
* Add RWKV-4 World 0.1B

* Update manifest.json

---------

Co-authored-by: josc146 <josStorer@outlook.com>
2023-05-26 12:32:29 +08:00
josc146
bd490b4fac update readme 2023-05-25 21:06:05 +08:00
josc146
48b09c4310 release v1.0.8 2023-05-25 20:59:22 +08:00
josc146
ffa90d89d1 update manifest.json 2023-05-25 20:59:03 +08:00
josc146
e0781be9a9 update presets 2023-05-25 20:54:54 +08:00
josc146
33b21a0f5c update home page 2023-05-25 20:40:50 +08:00
josc146
bf5ac7efef update presets 2023-05-25 20:36:32 +08:00
josc146
06622b79aa update rwkv_generate 2023-05-25 20:34:42 +08:00
josc146
537f11cbf1 update defaultModelConfigs 2023-05-25 11:46:38 +08:00
josc146
c6500c6b3a update readme 2023-05-25 10:02:29 +08:00
josc146
6f629dbc55 fix startup status detect 2023-05-25 00:51:45 +08:00
josc146
5729d9fc62 release v1.0.7 2023-05-25 00:22:26 +08:00
josc146
bb8af451f6 fix cuda40 kernel 2023-05-25 00:22:09 +08:00
josc146
ed330566e3 fix 2023-05-24 23:17:08 +08:00
28 changed files with 66478 additions and 198 deletions

View File

@@ -15,7 +15,7 @@ compatible with the OpenAI API, which means that every ChatGPT client is an RWKV
English | [简体中文](README_ZH.md)
[Preview](#Preview) | [Download][download-url]
[FAQs](https://github.com/josStorer/RWKV-Runner/wiki/FAQs) | [Preview](#Preview) | [Download][download-url]
[license-image]: http://img.shields.io/badge/license-MIT-blue.svg
@@ -25,7 +25,7 @@ English | [简体中文](README_ZH.md)
[release-url]: https://github.com/josStorer/RWKV-Runner/releases/latest
[download-url]: https://github.com/josStorer/RWKV-Runner/releases/download/v1.0.2/RWKV-Runner_windows_x64.exe
[download-url]: https://github.com/josStorer/RWKV-Runner/releases
</div>
@@ -47,6 +47,25 @@ English | [简体中文](README_ZH.md)
- Theme switching
- Automatic updates
## API Concurrency Stress Testing
```bash
ab -p body.json -T application/json -c 20 -n 100 -l http://127.0.0.1:8000/chat/completions
```
body.json:
```json
{
"messages": [
{
"role": "user",
"content": "Hello"
}
]
}
```
## Todo
- [ ] Model training functionality

View File

@@ -14,7 +14,7 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
[English](README.md) | 简体中文
[视频演示](https://www.bilibili.com/video/BV1hM4y1v76R) | [预览](#Preview) | [下载][download-url]
[视频演示](https://www.bilibili.com/video/BV1hM4y1v76R) | [疑难解答](https://www.bilibili.com/read/cv23921171) | [预览](#Preview) | [下载][download-url]
[license-image]: http://img.shields.io/badge/license-MIT-blue.svg
@@ -24,7 +24,7 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
[release-url]: https://github.com/josStorer/RWKV-Runner/releases/latest
[download-url]: https://github.com/josStorer/RWKV-Runner/releases/download/v1.0.2/RWKV-Runner_windows_x64.exe
[download-url]: https://github.com/josStorer/RWKV-Runner/releases
</div>
@@ -47,6 +47,25 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
- 主题切换
- 自动更新
## API并发压力测试
```bash
ab -p body.json -T application/json -c 20 -n 100 -l http://127.0.0.1:8000/chat/completions
```
body.json:
```json
{
"messages": [
{
"role": "user",
"content": "Hello"
}
]
}
```
## Todo
- [ ] 模型训练功能

View File

@@ -3,6 +3,7 @@ package backend_golang
import (
"errors"
"os/exec"
"runtime"
"strconv"
)
@@ -39,6 +40,9 @@ func (a *App) InstallPyDep(cnMirror bool) (string, error) {
if err != nil {
return "", err
}
if runtime.GOOS == "windows" {
ChangeFileLine("./py310/python310._pth", 3, "Lib\\site-packages")
}
if cnMirror {
_, err = Cmd(python, "./backend-python/get-pip.py", "-i", "https://pypi.tuna.tsinghua.edu.cn/simple")
} else {
@@ -47,7 +51,6 @@ func (a *App) InstallPyDep(cnMirror bool) (string, error) {
if err != nil {
return "", err
}
ChangeFileLine("./py310/python310._pth", 3, "Lib\\site-packages")
_, err = Cmd(python, "-m", "pip", "install", "torch==1.13.1", "torchvision==0.14.1", "torchaudio==0.13.1", "--index-url", "https://download.pytorch.org/whl/cu117")
if err != nil {
return "", err

View File

@@ -13,22 +13,32 @@ import (
)
func Cmd(args ...string) (string, error) {
_, err := os.Stat("cmd-helper.bat")
if err != nil {
if err := os.WriteFile("./cmd-helper.bat", []byte("start %*"), 0644); err != nil {
if runtime.GOOS == "windows" {
_, err := os.Stat("cmd-helper.bat")
if err != nil {
if err := os.WriteFile("./cmd-helper.bat", []byte("start %*"), 0644); err != nil {
return "", err
}
}
cmdHelper, err := filepath.Abs("./cmd-helper")
if err != nil {
return "", err
}
cmd := exec.Command(cmdHelper, args...)
out, err := cmd.CombinedOutput()
if err != nil {
return "", err
}
return string(out), nil
} else {
cmd := exec.Command(args[0], args[1:]...)
err := cmd.Start()
if err != nil {
return "", err
}
cmd.Wait()
return "", nil
}
cmdHelper, err := filepath.Abs("./cmd-helper")
if err != nil {
return "", err
}
cmd := exec.Command(cmdHelper, args...)
out, err := cmd.CombinedOutput()
if err != nil {
return "", err
}
return string(out), nil
}
func GetPython() (string, error) {

View File

@@ -1,3 +1,4 @@
import cyac
import GPUtil
import torch
import rwkv

View File

@@ -11,10 +11,9 @@ import uvicorn
from utils.rwkv import *
from utils.torch import *
from utils.ngrok import *
from routes import completion, config
from routes import completion, config, state_cache
import global_var
app = FastAPI()
app.add_middleware(
@@ -27,11 +26,13 @@ app.add_middleware(
app.include_router(completion.router)
app.include_router(config.router)
app.include_router(state_cache.router)
@app.on_event("startup")
def init():
global_var.init()
state_cache.init()
set_torch()

Binary file not shown.

View File

@@ -11,10 +11,6 @@ import global_var
router = APIRouter()
interface = ":"
user = "Bob"
bot = "Alice"
class Message(BaseModel):
role: str
@@ -44,17 +40,27 @@ async def chat_completions(body: ChatCompletionBody, request: Request):
else:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "no question found")
completion_text = f"""
interface = model.interface
user = model.user
bot = model.bot
completion_text = (
f"""
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
{bot} is very intelligent, creative and friendly. \
{bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \
{bot} likes to tell {user} a lot about herself and her opinions. \
{bot} usually gives {user} kind, helpful and informative advices.\n
"""
if user == "Bob"
else ""
)
for message in body.messages:
if message.role == "system":
completion_text = (
f"The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. "
if user == "Bob"
else ""
+ message.content.replace("\\n", "\n")
.replace("\r\n", "\n")
.replace("\n\n", "\n")
@@ -93,14 +99,15 @@ The following is a coherent verbose detailed conversation between a girl named {
async def eval_rwkv():
while completion_lock.locked():
if await request.is_disconnected():
return
await asyncio.sleep(0.1)
else:
completion_lock.acquire()
set_rwkv_config(model, global_var.get(global_var.Model_Config))
set_rwkv_config(model, body)
if body.stream:
for response, delta in rwkv_generate(
model,
for response, delta in model.generate(
completion_text,
stop=f"\n\n{user}" if body.stop is None else body.stop,
):
@@ -139,8 +146,7 @@ The following is a coherent verbose detailed conversation between a girl named {
yield "[DONE]"
else:
response = None
for response, delta in rwkv_generate(
model,
for response, delta in model.generate(
completion_text,
stop=f"\n\n{user}" if body.stop is None else body.stop,
):
@@ -185,17 +191,20 @@ async def completions(body: CompletionBody, request: Request):
if model is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "model not loaded")
if body.prompt is None or body.prompt == "":
raise HTTPException(status.HTTP_400_BAD_REQUEST, "prompt not found")
async def eval_rwkv():
while completion_lock.locked():
if await request.is_disconnected():
return
await asyncio.sleep(0.1)
else:
completion_lock.acquire()
set_rwkv_config(model, global_var.get(global_var.Model_Config))
set_rwkv_config(model, body)
if body.stream:
for response, delta in rwkv_generate(
model, body.prompt, stop=body.stop
):
for response, delta in model.generate(body.prompt, stop=body.stop):
if await request.is_disconnected():
break
yield json.dumps(
@@ -231,9 +240,7 @@ async def completions(body: CompletionBody, request: Request):
yield "[DONE]"
else:
response = None
for response, delta in rwkv_generate(
model, body.prompt, stop=body.stop
):
for response, delta in model.generate(body.prompt, stop=body.stop):
if await request.is_disconnected():
break
# torch_gc()

View File

@@ -11,6 +11,19 @@ import GPUtil
router = APIRouter()
def get_tokens_path(model_path: str):
model_path = model_path.lower()
default_tokens_path = (
f"{pathlib.Path(__file__).parent.parent.resolve()}/rwkv_pip/20B_tokenizer.json"
)
if "raven" in model_path:
return default_tokens_path
elif "world" in model_path:
return "rwkv_vocab_v20230424"
else:
return default_tokens_path
class SwitchModelBody(BaseModel):
model: str
strategy: str
@@ -36,7 +49,7 @@ def switch_model(body: SwitchModelBody, response: Response):
RWKV(
model=body.model,
strategy=body.strategy,
tokens_path=f"{pathlib.Path(__file__).parent.parent.resolve()}/20B_tokenizer.json",
tokens_path=get_tokens_path(body.model),
),
)
except Exception as e:

View File

@@ -0,0 +1,98 @@
from typing import Any, Dict
from fastapi import APIRouter, HTTPException, Response, status
from pydantic import BaseModel
import gc
import copy
router = APIRouter()
trie = None
dtrie: Dict = {}
def init():
global trie
try:
import cyac
import mmap
import os
if os.path.exists("state_cache.trie"):
with open("state_cache.trie", "r") as bf:
buff_object = mmap.mmap(bf.fileno(), 0, access=mmap.ACCESS_READ)
trie = cyac.Trie.from_buff(buff_object, copy=False)
else:
trie = cyac.Trie()
except ModuleNotFoundError:
print("cyac not found")
class AddStateBody(BaseModel):
prompt: str
tokens: list[str]
state: Any
logits: Any
@router.post("/add-state")
def add_state(body: AddStateBody):
global trie, dtrie
if trie is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
id = trie.insert(body.prompt)
dtrie[id] = {
"tokens": copy.deepcopy(body.tokens),
"state": copy.deepcopy(body.state),
"logits": copy.deepcopy(body.logits),
}
return "success"
@router.post("/reset-state")
def reset_state():
global trie
if trie is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
trie = cyac.Trie()
gc.collect()
return "success"
class LongestPrefixStateBody(BaseModel):
prompt: str
@router.post("/longest-prefix-state")
def longest_prefix_state(body: LongestPrefixStateBody):
global trie
if trie is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
id = -1
for id, len in trie.prefix(body.prompt):
pass
if id != -1:
v = dtrie[id]
return {
"prompt": trie[id],
"tokens": v["tokens"],
"state": v["state"],
"logits": v["logits"],
}
else:
return {"prompt": "", "tokens": [], "state": None, "logits": None}
@router.post("/save-state")
def save_state():
global trie
if trie is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
trie.save("state_cache.trie")
return "success"

View File

@@ -0,0 +1,106 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
class TRIE:
__slots__ = tuple("ch,to,values,front".split(","))
to: list
values: set
def __init__(self, front=None, ch=None):
self.ch = ch
self.to = [None for ch in range(256)]
self.values = set()
self.front = front
def __repr__(self):
fr = self
ret = []
while fr != None:
if fr.ch != None:
ret.append(fr.ch)
fr = fr.front
return "<TRIE %s %s>" % (ret[::-1], self.values)
def add(self, key: bytes, idx: int = 0, val=None):
if idx == len(key):
if val is None:
val = key
self.values.add(val)
return self
ch = key[idx]
if self.to[ch] is None:
self.to[ch] = TRIE(front=self, ch=ch)
return self.to[ch].add(key, idx=idx + 1, val=val)
def find_longest(self, key: bytes, idx: int = 0):
u: TRIE = self
ch: int = key[idx]
while u.to[ch] is not None:
u = u.to[ch]
idx += 1
if u.values:
ret = idx, u, u.values
if idx == len(key):
break
ch = key[idx]
return ret
class TRIE_TOKENIZER:
def __init__(self, file_name):
self.idx2token = {}
sorted = [] # must be already sorted
with open(file_name, "r", encoding="utf-8") as f:
lines = f.readlines()
for l in lines:
idx = int(l[: l.index(" ")])
x = eval(l[l.index(" ") : l.rindex(" ")])
x = x.encode("utf-8") if isinstance(x, str) else x
assert isinstance(x, bytes)
assert len(x) == int(l[l.rindex(" ") :])
sorted += [x]
self.idx2token[idx] = x
self.token2idx = {}
for k, v in self.idx2token.items():
self.token2idx[v] = int(k)
self.root = TRIE()
for t, i in self.token2idx.items():
_ = self.root.add(t, val=(t, i))
def encodeBytes(self, src: bytes) -> list[int]:
idx: int = 0
tokens: list[int] = []
while idx < len(src):
_idx: int = idx
idx, _, values = self.root.find_longest(src, idx)
assert idx != _idx
_, token = next(iter(values))
tokens.append(token)
return tokens
def decodeBytes(self, tokens):
return b"".join(map(lambda i: self.idx2token[i], tokens))
def encode(self, src):
return self.encodeBytes(src.encode("utf-8"))
def decode(self, tokens):
try:
return self.decodeBytes(tokens).decode("utf-8")
except:
return "\ufffd" # bad utf-8
def printTokens(self, tokens):
for i in tokens:
s = self.idx2token[i]
try:
s = s.decode("utf-8")
except:
pass
print(f"{repr(s)}{i}", end=" ")
print()

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,142 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import os, sys
import numpy as np
import torch
from torch.nn import functional as F
class PIPELINE_ARGS:
def __init__(
self,
temperature=1.0,
top_p=0.85,
top_k=0,
alpha_frequency=0.2,
alpha_presence=0.2,
token_ban=[],
token_stop=[],
chunk_len=256,
):
self.temperature = temperature
self.top_p = top_p
self.top_k = top_k
self.alpha_frequency = alpha_frequency # Frequency Penalty (as in GPT-3)
self.alpha_presence = alpha_presence # Presence Penalty (as in GPT-3)
self.token_ban = token_ban # ban the generation of some tokens
self.token_stop = token_stop # stop generation whenever you see any token here
self.chunk_len = (
chunk_len # split input into chunks to save VRAM (shorter -> slower)
)
class PIPELINE:
def __init__(self, model, WORD_NAME):
self.model = model
if WORD_NAME == "cl100k_base":
import tiktoken
self.tokenizer = tiktoken.get_encoding(WORD_NAME)
elif WORD_NAME == "rwkv_vocab_v20230424":
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
from rwkv_tokenizer import TRIE_TOKENIZER
self.tokenizer = TRIE_TOKENIZER(
os.path.dirname(os.path.abspath(__file__)) + "/rwkv_vocab_v20230424.txt"
)
else:
from tokenizers import Tokenizer
self.tokenizer = Tokenizer.from_file(WORD_NAME)
def refine_context(self, context):
context = context.strip().split("\n")
for c in range(len(context)):
context[c] = context[c].strip().strip("\u3000").strip("\r")
context = list(filter(lambda c: c != "", context))
context = "\n" + ("\n".join(context)).strip()
if context == "":
context = "\n"
return context
def encode(self, x):
if "Tokenizer" in str(type(self.tokenizer)):
return self.tokenizer.encode(x).ids
else:
return self.tokenizer.encode(x)
def decode(self, x):
return self.tokenizer.decode(x)
def sample_logits(self, logits, temperature=1.0, top_p=0.85, top_k=0):
probs = F.softmax(logits.float(), dim=-1)
top_k = int(top_k)
if probs.device == torch.device("cpu"):
probs = probs.numpy()
sorted_ids = np.argsort(probs)
sorted_probs = probs[sorted_ids][::-1]
cumulative_probs = np.cumsum(sorted_probs)
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
probs[probs < cutoff] = 0
if top_k < len(probs) and top_k > 0:
probs[sorted_ids[:-top_k]] = 0
if temperature != 1.0:
probs = probs ** (1.0 / temperature)
probs = probs / np.sum(probs)
out = np.random.choice(a=len(probs), p=probs)
return int(out)
else:
sorted_ids = torch.argsort(probs)
sorted_probs = probs[sorted_ids]
sorted_probs = torch.flip(sorted_probs, dims=(0,))
cumulative_probs = torch.cumsum(sorted_probs, dim=-1).cpu().numpy()
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
probs[probs < cutoff] = 0
if top_k < len(probs) and top_k > 0:
probs[sorted_ids[:-top_k]] = 0
if temperature != 1.0:
probs = probs ** (1.0 / temperature)
out = torch.multinomial(probs, num_samples=1)[0]
return int(out)
def generate(
self, ctx, token_count=100, args=PIPELINE_ARGS(), callback=None, state=None
):
all_tokens = []
out_last = 0
out_str = ""
occurrence = {}
for i in range(token_count):
# forward & adjust prob.
tokens = self.encode(ctx) if i == 0 else [token]
while len(tokens) > 0:
out, state = self.model.forward(tokens[: args.chunk_len], state)
tokens = tokens[args.chunk_len :]
for n in args.token_ban:
out[n] = -float("inf")
for n in occurrence:
out[n] -= args.alpha_presence + occurrence[n] * args.alpha_frequency
# sampler
token = self.sample_logits(
out, temperature=args.temperature, top_p=args.top_p, top_k=args.top_k
)
if token in args.token_stop:
break
all_tokens += [token]
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
# output
tmp = self.decode(all_tokens[out_last:])
if "\ufffd" not in tmp: # is valid utf-8 string?
if callback:
callback(tmp)
out_str += tmp
out_last = i + 1
return out_str

View File

@@ -1,8 +1,183 @@
import os
import pathlib
from typing import Dict
from langchain.llms import RWKV
import copy
from typing import Dict, List
from fastapi import HTTPException
from pydantic import BaseModel
from rwkv_pip.utils import PIPELINE
from routes import state_cache
END_OF_TEXT = 0
END_OF_LINE = 187
os.environ["TORCH_EXTENSIONS_DIR"] = f"{pathlib.Path(__file__).parent.parent.resolve()}"
class RWKV:
def __init__(self, model: str, strategy: str, tokens_path: str) -> None:
from rwkv.model import RWKV as Model # dynamic import to make RWKV_CUDA_ON work
self.model = Model(model, strategy)
self.pipeline = PIPELINE(self.model, tokens_path)
self.model_state = None
self.model_tokens = []
self.CHUNK_LEN = 256
self.max_tokens_per_generation = 500
self.temperature = 1
self.top_p = 0.5
self.penalty_alpha_presence = 0.4
self.penalty_alpha_frequency = 0.4
self.interface = ":"
if "rwkv_vocab" in tokens_path:
self.user = "Human"
self.bot = "Bot"
else:
self.user = "Bob"
self.bot = "Alice"
self.AVOID_REPEAT_TOKENS = []
AVOID_REPEAT = ""
for i in AVOID_REPEAT:
dd = self.pipeline.encode(i)
assert len(dd) == 1
self.AVOID_REPEAT_TOKENS += dd
self.preload()
def preload(self):
if self.user == "Bob":
bot = self.bot
user = self.user
preset_system = f"""
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
{bot} is very intelligent, creative and friendly. \
{bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \
{bot} likes to tell {user} a lot about herself and her opinions. \
{bot} usually gives {user} kind, helpful and informative advices.\n
"""
logits = self.run_rnn(self.pipeline.encode(preset_system))
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=preset_system,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
def run_rnn(self, _tokens: List[str], newline_adj: int = 0):
tokens = [int(x) for x in _tokens]
self.model_tokens += tokens
while len(tokens) > 0:
out, self.model_state = self.model.forward(
tokens[: self.CHUNK_LEN], self.model_state
)
tokens = tokens[self.CHUNK_LEN :]
out[END_OF_LINE] += newline_adj # adjust \n probability
if self.model_tokens[-1] in self.AVOID_REPEAT_TOKENS:
out[self.model_tokens[-1]] = -999999999
return out
def generate(self, prompt: str, stop: str = None):
cache = None
delta_prompt = prompt
try:
cache = state_cache.longest_prefix_state(
state_cache.LongestPrefixStateBody(prompt=prompt)
)
except HTTPException:
pass
if cache is None or cache["prompt"] == "":
self.model_state = None
self.model_tokens = []
else:
delta_prompt = prompt[len(cache["prompt"]) :]
self.model_state = copy.deepcopy(cache["state"])
self.model_tokens = copy.deepcopy(cache["tokens"])
logits = copy.deepcopy(cache["logits"])
if delta_prompt != "":
logits = self.run_rnn(self.pipeline.encode(delta_prompt))
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
begin = len(self.model_tokens)
out_last = begin
occurrence: Dict = {}
response = ""
for i in range(self.max_tokens_per_generation):
for n in occurrence:
logits[n] -= (
self.penalty_alpha_presence
+ occurrence[n] * self.penalty_alpha_frequency
)
token = self.pipeline.sample_logits(
logits, temperature=self.temperature, top_p=self.top_p
)
if token == END_OF_TEXT:
break
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
logits = self.run_rnn([token])
delta: str = self.pipeline.decode(self.model_tokens[out_last:])
if "\ufffd" not in delta: # avoid utf-8 display issues
response += delta
if stop is not None:
if stop in response:
response = response.split(stop)[0]
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
yield response, ""
break
out_last = begin + i + 1
if i == self.max_tokens_per_generation - 1:
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
yield response, delta
class ModelConfigBody(BaseModel):
@@ -34,49 +209,3 @@ def get_rwkv_config(model: RWKV) -> ModelConfigBody:
presence_penalty=model.penalty_alpha_presence,
frequency_penalty=model.penalty_alpha_frequency,
)
os.environ["TORCH_EXTENSIONS_DIR"] = f"{pathlib.Path(__file__).parent.parent.resolve()}"
def rwkv_generate(model: RWKV, prompt: str, stop: str = None):
model.model_state = None
model.model_tokens = []
logits = model.run_rnn(model.tokenizer.encode(prompt).ids)
begin = len(model.model_tokens)
out_last = begin
occurrence: Dict = {}
response = ""
for i in range(model.max_tokens_per_generation):
for n in occurrence:
logits[n] -= (
model.penalty_alpha_presence
+ occurrence[n] * model.penalty_alpha_frequency
)
token = model.pipeline.sample_logits(
logits, temperature=model.temperature, top_p=model.top_p
)
END_OF_TEXT = 0
if token == END_OF_TEXT:
break
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
logits = model.run_rnn([token])
delta: str = model.tokenizer.decode(model.model_tokens[out_last:])
if "\ufffd" not in delta: # avoid utf-8 display issues
response += delta
if stop is not None:
if stop in response:
response = response.split(stop)[0]
yield response, ""
break
yield response, delta
out_last = begin + i + 1
if i >= model.max_tokens_per_generation - 100:
break

View File

@@ -116,5 +116,13 @@
"Werewolf": "狼人杀",
"Blank": "空白",
"The following is an epic science fiction masterpiece that is immortalized, with delicate descriptions and grand depictions of interstellar civilization wars.\nChapter 1.\n": "以下是不朽的科幻史诗巨著,描写细腻,刻画了宏大的星际文明战争。\n第一章\n",
"API Host": "API主机"
"API Host": "API主机",
"The following is a conversation between a cat girl and her owner. The cat girl is a humanized creature that behaves like a cat but is humanoid. At the end of each sentence in the dialogue, she will add \"Meow~\". In the following content, Bob represents the owner and Alice represents the cat girl.\n\nBob: Hello.\n\nAlice: I'm here, meow~.\n\nBob: Can you tell jokes?": "以下是一位猫娘的主人和猫娘的对话内容,猫娘是一种拟人化的生物,其行为似猫但类人,在每一句对话末尾都会加上\"喵~\"。以下内容中Bob代表主人Alice代表猫娘。\n\nBob: 你好\n\nAlice: 主人我在哦,喵~\n\nBob: 你会讲笑话吗?",
"When response finished, inject this content.": "响应结束时,插入此内容到末尾",
"Inject start text": "起始注入文本",
"Inject end text": "结尾注入文本",
"Before the response starts, inject this content.": "响应开始前,在开头插入此内容",
"There is currently a game of Werewolf with six players, including a Seer (who can check identities at night), two Werewolves (who can choose someone to kill at night), a Bodyguard (who can choose someone to protect at night), two Villagers (with no special abilities), and a game host. Bob will play as Player 1, Alice will play as Players 2-6 and the game host, and they will begin playing together. Every night, the host will ask Bob for his action and simulate the actions of the other players. During the day, the host will oversee the voting process and ask Bob for his vote. \n\nAlice: Next, I will act as the game host and assign everyone their roles, including randomly assigning yours. Then, I will simulate the actions of Players 2-6 and let you know what happens each day. Based on your assigned role, you can tell me your actions and I will let you know the corresponding results each day.\n\nBob: Okay, I understand. Let's begin. Please assign me a role. Am I the Seer, Werewolf, Villager, or Bodyguard?\n\nAlice: You are the Seer. Now that night has fallen, please choose a player to check his identity.\n\nBob: Tonight, I want to check Player 2 and find out his role.": "现在有一场六人狼人杀游戏,包括一名预言家(可以在夜晚查验身份),两名狼人(可以在夜晚选择杀人),一名守卫(可以在夜晚选择要守护的人),两名平民(无技能)一名主持人以下内容中Bob将扮演其中的1号玩家Alice来扮演2-6号玩家以及主持人并开始与Bob进行游戏主持人每晚都会询问Bob的行动并模拟其他人的行动在白天则要主持投票并同样询问Bob投票对象公布投票结果。\n\nAlice: 接下来我将首先作为主持人进行角色分配并给你赋予随机的角色之后我将模拟2-6号玩家进行行动告知你每天的动态根据你被分配的角色你可以回复我你做的行动我会告诉你每天对应的结果\n\nBob: 好的,我明白了,那么开始吧。请先给我一个角色身份。我是预言家,狼人,平民,守卫中的哪一个呢?\n\nAlice: 你的身份是预言家。现在夜晚降临,请选择你要查验的玩家。\n\nBob: 今晚我要验2号玩家他是什么身份",
"Writer, Translator, Role-playing": "写作,翻译,角色扮演",
"Chinese Kongfu": "情境冒险"
}

View File

@@ -43,8 +43,8 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
const navigate = useNavigate();
const onClickMainButton = async () => {
if (commonStore.status.modelStatus === ModelStatus.Offline) {
commonStore.setStatus({ modelStatus: ModelStatus.Starting });
if (commonStore.status.status === ModelStatus.Offline) {
commonStore.setStatus({ status: ModelStatus.Starting });
const modelConfig = commonStore.getCurrentModelConfig();
let modelName = '';
@@ -54,7 +54,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
modelPath = `./${manifest.localModelDir}/${modelName}`;
} else {
toast(t('Model Config Exception'), { type: 'error' });
commonStore.setStatus({ modelStatus: ModelStatus.Offline });
commonStore.setStatus({ status: ModelStatus.Offline });
return;
}
@@ -80,7 +80,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
}
});
if (depErrorMsg) {
commonStore.setStatus({ modelStatus: ModelStatus.Offline });
commonStore.setStatus({ status: ModelStatus.Offline });
return;
}
commonStore.setDepComplete(true);
@@ -102,7 +102,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
}
});
commonStore.setStatus({ modelStatus: ModelStatus.Offline });
commonStore.setStatus({ status: ModelStatus.Offline });
return;
}
@@ -125,7 +125,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
if (status)
commonStore.setStatus(status);
});
commonStore.setStatus({ modelStatus: ModelStatus.Loading });
commonStore.setStatus({ status: ModelStatus.Loading });
toast(t('Loading Model'), { type: 'info' });
updateConfig({
max_tokens: modelConfig.apiParameters.maxResponseToken,
@@ -161,51 +161,51 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
customCuda: customCudaFile !== ''
}).then((r) => {
if (r.ok) {
commonStore.setStatus({ modelStatus: ModelStatus.Working });
commonStore.setStatus({ status: ModelStatus.Working });
toastWithButton(t('Startup Completed'), t('Chat'), () => {
navigate({ pathname: '/chat' });
}, { type: 'success', autoClose: 3000 });
} else if (r.status === 304) {
toast(t('Loading Model'), { type: 'info' });
} else {
commonStore.setStatus({ modelStatus: ModelStatus.Offline });
commonStore.setStatus({ status: ModelStatus.Offline });
toast(t('Failed to switch model'), { type: 'error' });
}
}).catch(() => {
commonStore.setStatus({ modelStatus: ModelStatus.Offline });
commonStore.setStatus({ status: ModelStatus.Offline });
toast(t('Failed to switch model'), { type: 'error' });
});
}
}).catch(() => {
if (timeoutCount <= 0) {
clearInterval(intervalId);
commonStore.setStatus({ modelStatus: ModelStatus.Offline });
commonStore.setStatus({ status: ModelStatus.Offline });
}
});
timeoutCount--;
}, 1000);
} else {
commonStore.setStatus({ modelStatus: ModelStatus.Offline });
commonStore.setStatus({ status: ModelStatus.Offline });
exit();
}
};
const onClick = async (e: any) => {
if (commonStore.status.modelStatus === ModelStatus.Offline)
if (commonStore.status.status === ModelStatus.Offline)
await onClickRun?.(e);
await onClickMainButton();
};
return (iconMode ?
<ToolTipButton disabled={commonStore.status.modelStatus === ModelStatus.Starting}
icon={iconModeButtonIcon[commonStore.status.modelStatus]}
desc={t(mainButtonText[commonStore.status.modelStatus])}
<ToolTipButton disabled={commonStore.status.status === ModelStatus.Starting}
icon={iconModeButtonIcon[commonStore.status.status]}
desc={t(mainButtonText[commonStore.status.status])}
size="small" onClick={onClick} />
:
<Button disabled={commonStore.status.modelStatus === ModelStatus.Starting} appearance="primary" size="large"
<Button disabled={commonStore.status.status === ModelStatus.Starting} appearance="primary" size="large"
onClick={onClick}>
{t(mainButtonText[commonStore.status.modelStatus])}
{t(mainButtonText[commonStore.status.status])}
</Button>
);
});

View File

@@ -29,8 +29,8 @@ export const WorkHeader: FC = observer(() => {
<div className="flex flex-col gap-1">
<div className="flex justify-between items-center">
<div className="flex items-center gap-2">
<PresenceBadge status={badgeStatus[commonStore.status.modelStatus]} />
<Text size={100}>{t('Model Status') + ': ' + t(statusText[commonStore.status.modelStatus])}</Text>
<PresenceBadge status={badgeStatus[commonStore.status.status]} />
<Text size={100}>{t('Model Status') + ': ' + t(statusText[commonStore.status.status])}</Text>
</div>
<div className="flex items-center gap-2">
<ConfigSelector size="small" />

View File

@@ -93,7 +93,7 @@ const ChatPanel: FC = observer(() => {
e.stopPropagation();
if (e.type === 'click' || (e.keyCode === 13 && !e.shiftKey)) {
e.preventDefault();
if (commonStore.status.modelStatus === ModelStatus.Offline) {
if (commonStore.status.status === ModelStatus.Offline) {
toast(t('Please click the button in the top right corner to start the model'), { type: 'warning' });
return;
}

View File

@@ -10,7 +10,11 @@ import commonStore, { ModelStatus } from '../stores/commonStore';
import { fetchEventSource } from '@microsoft/fetch-event-source';
import { toast } from 'react-toastify';
export type CompletionParams = Omit<ApiParameters, 'apiPort'> & { stop: string }
export type CompletionParams = Omit<ApiParameters, 'apiPort'> & {
stop: string,
injectStart: string,
injectEnd: string
};
export type CompletionPreset = {
name: string,
@@ -22,67 +26,93 @@ export const defaultPresets: CompletionPreset[] = [{
name: 'Writer',
prompt: 'The following is an epic science fiction masterpiece that is immortalized, with delicate descriptions and grand depictions of interstellar civilization wars.\nChapter 1.\n',
params: {
maxResponseToken: 4100,
temperature: 1,
maxResponseToken: 500,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4,
stop: ''
stop: '\\n\\nBob',
injectStart: '',
injectEnd: ''
}
}, {
name: 'Translator',
prompt: '',
prompt: 'Translate this into Chinese.\n\nEnglish: What rooms do you have available?',
params: {
maxResponseToken: 4100,
maxResponseToken: 500,
temperature: 1,
topP: 0.5,
topP: 0.3,
presencePenalty: 0.4,
frequencyPenalty: 0.4,
stop: ''
stop: '\\nEnglish',
injectStart: '\\nChinese: ',
injectEnd: '\\nEnglish: '
}
}, {
name: 'Catgirl',
prompt: '',
prompt: 'The following is a conversation between a cat girl and her owner. The cat girl is a humanized creature that behaves like a cat but is humanoid. At the end of each sentence in the dialogue, she will add \"Meow~\". In the following content, Bob represents the owner and Alice represents the cat girl.\n\nBob: Hello.\n\nAlice: I\'m here, meow~.\n\nBob: Can you tell jokes?',
params: {
maxResponseToken: 4100,
temperature: 1,
maxResponseToken: 500,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4,
stop: ''
stop: '\\n\\nBob',
injectStart: '\\n\\nAlice: ',
injectEnd: '\\n\\nBob: '
}
}, {
name: 'Explain Code',
prompt: '',
name: 'Chinese Kongfu',
prompt: 'Bob: 请你扮演一个文本冒险游戏,我是游戏主角。这是一个玄幻修真世界,有四大门派。我输入我的行动,请你显示行动结果,并具体描述环境。我的第一个行动是“醒来”,请开始故事。',
params: {
maxResponseToken: 4100,
temperature: 1,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4,
stop: ''
maxResponseToken: 500,
temperature: 1.1,
topP: 0.7,
presencePenalty: 0.3,
frequencyPenalty: 0.3,
stop: '\\n\\nBob',
injectStart: '\\n\\nAlice: ',
injectEnd: '\\n\\nBob: '
}
}, {
// }, {
// name: 'Explain Code',
// prompt: 'export async function startup() {\n FileExists(\'cache.json\').then((exists) => {\n if (exists)\n downloadProgramFiles();\n else {\n deleteDynamicProgramFiles().then(downloadProgramFiles);\n }\n });\n EventsOn(\'downloadList\', (data) => {\n if (data)\n commonStore.setDownloadList(data);\n });\n\n initCache().then(initRemoteText);\n\n await initConfig();\n\n if (commonStore.settings.autoUpdatesCheck) // depends on config settings\n checkUpdate();\n\n getStatus(1000).then(status => { // depends on config api port\n if (status)\n commonStore.setStatus(status);\n });\n}\n\n\"\"\"\nHere\'s what the above code is doing, explained in a concise way:\n',
// params: {
// maxResponseToken: 500,
// temperature: 0.8,
// topP: 0.7,
// presencePenalty: 0.4,
// frequencyPenalty: 0.4,
// stop: '\\n\\n',
// injectStart: '',
// injectEnd: ''
// }
// }, {
name: 'Werewolf',
prompt: '',
prompt: 'There is currently a game of Werewolf with six players, including a Seer (who can check identities at night), two Werewolves (who can choose someone to kill at night), a Bodyguard (who can choose someone to protect at night), two Villagers (with no special abilities), and a game host. Bob will play as Player 1, Alice will play as Players 2-6 and the game host, and they will begin playing together. Every night, the host will ask Bob for his action and simulate the actions of the other players. During the day, the host will oversee the voting process and ask Bob for his vote. \n\nAlice: Next, I will act as the game host and assign everyone their roles, including randomly assigning yours. Then, I will simulate the actions of Players 2-6 and let you know what happens each day. Based on your assigned role, you can tell me your actions and I will let you know the corresponding results each day.\n\nBob: Okay, I understand. Let\'s begin. Please assign me a role. Am I the Seer, Werewolf, Villager, or Bodyguard?\n\nAlice: You are the Seer. Now that night has fallen, please choose a player to check his identity.\n\nBob: Tonight, I want to check Player 2 and find out his role.',
params: {
maxResponseToken: 4100,
temperature: 1,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4,
stop: ''
maxResponseToken: 500,
temperature: 1.2,
topP: 0.4,
presencePenalty: 0.5,
frequencyPenalty: 0.5,
stop: '\\n\\nBob',
injectStart: '\\n\\nAlice: ',
injectEnd: '\\n\\nBob: '
}
}, {
name: 'Blank',
prompt: '',
params: {
maxResponseToken: 4100,
maxResponseToken: 500,
temperature: 1,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4,
stop: ''
stop: '',
injectStart: '',
injectEnd: ''
}
}];
@@ -135,11 +165,14 @@ const CompletionPanel: FC = observer(() => {
};
const onSubmit = (prompt: string) => {
if (commonStore.status.modelStatus === ModelStatus.Offline) {
if (commonStore.status.status === ModelStatus.Offline) {
toast(t('Please click the button in the top right corner to start the model'), { type: 'warning' });
commonStore.setCompletionGenerating(false);
return;
}
prompt += params.injectStart.replaceAll('\\n', '\n');
let answer = '';
sseControllerRef.current = new AbortController();
fetchEventSource(`http://127.0.0.1:${port}/completions`, // https://api.openai.com/v1/completions || http://127.0.0.1:${port}/completions
@@ -158,7 +191,7 @@ const CompletionPanel: FC = observer(() => {
top_p: params.topP,
presence_penalty: params.presencePenalty,
frequency_penalty: params.frequencyPenalty,
stop: params.stop || undefined
stop: params.stop.replaceAll('\\n', '\n') || undefined
}),
signal: sseControllerRef.current?.signal,
onmessage(e) {
@@ -177,7 +210,7 @@ const CompletionPanel: FC = observer(() => {
}
if (data.choices && Array.isArray(data.choices) && data.choices.length > 0) {
answer += data.choices[0].text;
setPrompt(prompt + answer);
setPrompt(prompt + answer.trim() + params.injectEnd.replaceAll('\\n', '\n'));
}
},
onclose() {
@@ -278,6 +311,26 @@ const CompletionPanel: FC = observer(() => {
});
}} />
} />
<Labeled flex breakline label={t('Inject start text')}
desc={t('Before the response starts, inject this content.')}
content={
<Input value={params.injectStart}
onChange={(e, data) => {
setParams({
injectStart: data.value
});
}} />
} />
<Labeled flex breakline label={t('Inject end text')}
desc={t('When response finished, inject this content.')}
content={
<Input value={params.injectEnd}
onChange={(e, data) => {
setParams({
injectEnd: data.value
});
}} />
} />
</div>
<div className="grow" />
<div className="flex justify-between gap-2">

View File

@@ -66,7 +66,8 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'int8',
storedLayers: 4,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: true
enableHighPrecisionForLastLayer: true,
useCustomCuda: true
}
},
{
@@ -85,7 +86,8 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'int8',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -104,7 +106,8 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'int8',
storedLayers: 24,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: true
enableHighPrecisionForLastLayer: true,
useCustomCuda: true
}
},
{
@@ -123,7 +126,8 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'int8',
storedLayers: 24,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: true
enableHighPrecisionForLastLayer: true,
useCustomCuda: true
}
},
{
@@ -142,7 +146,8 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'int8',
storedLayers: 8,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: true
enableHighPrecisionForLastLayer: true,
useCustomCuda: true
}
},
{
@@ -161,7 +166,8 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'int8',
storedLayers: 8,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: true
enableHighPrecisionForLastLayer: true,
useCustomCuda: true
}
},
{
@@ -180,7 +186,8 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'fp16',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -199,7 +206,8 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'int8',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -218,7 +226,8 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'int8',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -237,7 +246,8 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'int8',
storedLayers: 18,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: true
enableHighPrecisionForLastLayer: true,
useCustomCuda: true
}
},
{
@@ -256,7 +266,8 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'int8',
storedLayers: 18,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: true
enableHighPrecisionForLastLayer: true,
useCustomCuda: true
}
},
{
@@ -275,7 +286,8 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'fp16',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -294,7 +306,48 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'fp16',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
name: 'GPU-8G-7B-EN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 27,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
name: 'GPU-8G-7B-CN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v11-Eng49%-Chn49%-Jpn1%-Other1%-20230430-ctx8192.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 27,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -313,7 +366,8 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'int8',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -332,11 +386,12 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'int8',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
name: 'GPU-12G-7B-EN',
name: 'GPU-12G-14B-EN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
@@ -346,31 +401,13 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192.pth',
modelName: 'RWKV-4-Raven-14B-v12-Eng98%-Other2%-20230523-ctx8192.pth',
device: 'CUDA',
precision: 'fp16',
storedLayers: 22,
precision: 'int8',
storedLayers: 24,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
}
},
{
name: 'GPU-12G-7B-CN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v11-Eng49%-Chn49%-Jpn1%-Other1%-20230430-ctx8192.pth',
device: 'CUDA',
precision: 'fp16',
storedLayers: 22,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -389,7 +426,8 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'fp16',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -408,7 +446,28 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'fp16',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
name: 'GPU-16G-14B-EN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-14B-v12-Eng98%-Other2%-20230523-ctx8192.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 37,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -427,7 +486,8 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'int8',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -446,7 +506,8 @@ export const defaultModelConfigs: ModelConfig[] = [
precision: 'fp16',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
enableHighPrecisionForLastLayer: false,
useCustomCuda: true
}
},
{
@@ -714,6 +775,10 @@ export const Configs: FC = observer(() => {
modelName: data.value
});
}}>
{!commonStore.modelSourceList.find(item => item.name === selectedConfig.modelParameters.modelName)?.isLocal
&& <option key={-1}
value={selectedConfig.modelParameters.modelName}>{selectedConfig.modelParameters.modelName}
</option>}
{commonStore.modelSourceList.map((modelItem, index) =>
modelItem.isLocal && <option key={index} value={modelItem.name}>{modelItem.name}</option>
)}

View File

@@ -3,9 +3,9 @@ import React, { FC, ReactElement } from 'react';
import banner from '../assets/images/banner.jpg';
import {
Chat20Regular,
ClipboardEdit20Regular,
DataUsageSettings20Regular,
DocumentSettings20Regular,
Storage20Regular
DocumentSettings20Regular
} from '@fluentui/react-icons';
import { useNavigate } from 'react-router';
import { observer } from 'mobx-react-lite';
@@ -16,6 +16,7 @@ import { useTranslation } from 'react-i18next';
import { ConfigSelector } from '../components/ConfigSelector';
import MarkdownRender from '../components/MarkdownRender';
import commonStore from '../stores/commonStore';
import { Completion } from './Completion';
export type IntroductionContent = { [lang: string]: string }
@@ -33,6 +34,12 @@ const navCards: NavCard[] = [
path: '/chat',
icon: <Chat20Regular />
},
{
label: 'Completion',
desc: 'Writer, Translator, Role-playing',
path: '/completion',
icon: <ClipboardEdit20Regular />
},
{
label: 'Configs',
desc: 'Manage your configs',
@@ -44,12 +51,6 @@ const navCards: NavCard[] = [
desc: 'Manage models',
path: '/models',
icon: <DataUsageSettings20Regular />
},
{
label: 'Train',
desc: '',
path: '/train',
icon: <Storage20Regular />
}
];

View File

@@ -33,7 +33,7 @@ export async function startup() {
if (commonStore.settings.autoUpdatesCheck) // depends on config settings
checkUpdate();
getStatus(500).then(status => { // depends on config api port
getStatus(1000).then(status => { // depends on config api port
if (status)
commonStore.setStatus(status);
});

View File

@@ -20,7 +20,7 @@ export enum ModelStatus {
}
export type Status = {
modelStatus: ModelStatus;
status: ModelStatus;
pid: number;
device_name: string;
}
@@ -28,7 +28,7 @@ export type Status = {
class CommonStore {
// global
status: Status = {
modelStatus: ModelStatus.Offline,
status: ModelStatus.Offline,
pid: 0,
device_name: 'CPU'
};

View File

@@ -113,7 +113,7 @@ export async function refreshRemoteModels(cache: { models: ModelSourceItem[] })
cache.models = cache.models.filter((model, index, self) => {
return model.name.endsWith('.pth')
&& index === self.findIndex(
m => m.name === model.name || (m.SHA256 === model.SHA256 && m.size === model.size));
m => m.name === model.name || (m.SHA256 && m.SHA256 === model.SHA256 && m.size === model.size));
});
commonStore.setModelSourceList(cache.models);
await saveCache().catch(() => {

View File

@@ -1,12 +1,12 @@
{
"version": "1.0.6",
"version": "1.0.9",
"introduction": {
"en": "RWKV is an open-source, commercially usable large language model with high flexibility and great potential for development.\n### About This Tool\nThis tool aims to lower the barrier of entry for using large language models, making it accessible to everyone. It provides fully automated dependency and model management. You simply need to click and run, following the instructions, to deploy a local large language model. The tool itself is very compact and only requires a single executable file for one-click deployment.\nAdditionally, this tool offers an interface that is fully compatible with the OpenAI API. This means you can use any ChatGPT client as a client for RWKV, enabling capability expansion beyond just chat functionality.\n### Preset Configuration Rules at the Bottom\nThis tool comes with a series of preset configurations to reduce complexity. The naming rules for each configuration represent the following in order: device - required VRAM/memory - model size - model language.\nFor example, \"GPU-8G-3B-EN\" indicates that this configuration is for a graphics card with 8GB of VRAM, a model size of 3 billion parameters, and it uses an English language model.\nLarger model sizes have higher performance and VRAM requirements. Among configurations with the same model size, those with higher VRAM usage will have faster runtime.\nFor example, if you have 12GB of VRAM but running the \"GPU-12G-7B-EN\" configuration is slow, you can downgrade to \"GPU-8G-3B-EN\" for a significant speed improvement.\n### About RWKV\nRWKV is an RNN with Transformer-level LLM performance, which can also be directly trained like a GPT transformer (parallelizable). And it's 100% attention-free. You only need the hidden state at position t to compute the state at position t+1. You can use the \"GPT\" mode to quickly compute the hidden state for the \"RNN\" mode.<br/>So it's combining the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, \"infinite\" ctx_len, and free sentence embedding (using the final hidden state).",
"zh": "RWKV是一个开源且允许商用的大语言模型灵活性很高且极具发展潜力。\n### 关于本工具\n本工具旨在降低大语言模型的使用门槛做到人人可用本工具提供了全自动化的依赖和模型管理你只需要直接点击运行跟随引导即可完成本地大语言模型的部署工具本身体积极小只需要一个exe即可完成一键部署。\n此外本工具提供了与OpenAI API完全兼容的接口这意味着你可以把任意ChatGPT客户端用作RWKV的客户端实现能力拓展而不局限于聊天。\n### 底部的预设配置规则\n本工具内置了一系列预设配置以降低使用难度每个配置名的规则依次代表着设备-所需显存/内存-模型规模-模型语言。\n例如GPU-8G-3B-CN表示该配置用于显卡需要8G显存模型规模为30亿参数使用的是中文模型。\n模型规模越大性能要求越高显存要求也越高而同样模型规模的配置中显存占用越高的运行速度越快。\n例如当你有12G显存但运行GPU-12G-7B-CN配置速度比较慢可降级成GPU-8G-3B-CN将会大幅提速。\n### 关于RWKV\nRWKV是具有Transformer级别LLM性能的RNN也可以像GPT Transformer一样直接进行训练可并行化。而且它是100% attention-free的。你只需在位置t处获得隐藏状态即可计算位置t + 1处的状态。你可以使用“GPT”模式快速计算用于“RNN”模式的隐藏状态。\n因此它将RNN和Transformer的优点结合起来 - 高性能、快速推理、节省显存、快速训练、“无限”上下文长度以及免费的语句嵌入(使用最终隐藏状态)。"
},
"about": {
"en": "<div align=\"center\">\n\nProject Source Code:\nhttps://github.com/josStorer/RWKV-Runner\nAuthor: [@josStorer](https://github.com/josStorer)\n\nRelated Repositories:\nRWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main\nChatRWKV: https://github.com/BlinkDL/ChatRWKV\nRWKV-LM: https://github.com/BlinkDL/RWKV-LM\n\n</div>",
"zh": "<div align=\"center\">\n\n本项目源码:\nhttps://github.com/josStorer/RWKV-Runner\n作者: [@josStorer](https://github.com/josStorer)\n演示与常见问题说明视频: https://www.bilibili.com/video/BV1hM4y1v76R\n\n相关仓库:\nRWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main\nChatRWKV: https://github.com/BlinkDL/ChatRWKV\nRWKV-LM: https://github.com/BlinkDL/RWKV-LM\n\n</div>"
"en": "<div align=\"center\">\n\nProject Source Code:\nhttps://github.com/josStorer/RWKV-Runner\nAuthor: [@josStorer](https://github.com/josStorer)\nFAQs: https://github.com/josStorer/RWKV-Runner/wiki/FAQs\n\nRelated Repositories:\nRWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main\nChatRWKV: https://github.com/BlinkDL/ChatRWKV\nRWKV-LM: https://github.com/BlinkDL/RWKV-LM\n\n</div>",
"zh": "<div align=\"center\">\n\n本项目源码:\nhttps://github.com/josStorer/RWKV-Runner\n作者: [@josStorer](https://github.com/josStorer)\n演示与常见问题说明视频: https://www.bilibili.com/video/BV1hM4y1v76R\n疑难解答: https://www.bilibili.com/read/cv23921171\n\n相关仓库:\nRWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main\nChatRWKV: https://github.com/BlinkDL/ChatRWKV\nRWKV-LM: https://github.com/BlinkDL/RWKV-LM\n\n</div>"
},
"localModelDir": "models",
"programFiles": [
@@ -42,6 +42,10 @@
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/routes/config.py",
"path": "backend-python/routes/config.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/routes/state_cache.py",
"path": "backend-python/routes/state_cache.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/utils/ngrok.py",
"path": "backend-python/utils/ngrok.py"
@@ -54,6 +58,14 @@
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/utils/torch.py",
"path": "backend-python/utils/torch.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/rwkv_pip/rwkv_tokenizer.py",
"path": "backend-python/rwkv_pip/rwkv_tokenizer.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/rwkv_pip/utils.py",
"path": "backend-python/rwkv_pip/utils.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/wkv_cuda_utils/wkv_cuda10_30.pyd",
"path": "backend-python/wkv_cuda_utils/wkv_cuda10_30.pyd"
@@ -67,8 +79,12 @@
"path": "backend-python/wkv_cuda_utils/wkv_cuda_model.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/20B_tokenizer.json",
"path": "backend-python/20B_tokenizer.json"
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/rwkv_pip/rwkv_vocab_v20230424.txt",
"path": "backend-python/rwkv_pip/rwkv_vocab_v20230424.txt"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/rwkv_pip/20B_tokenizer.json",
"path": "backend-python/rwkv_pip/20B_tokenizer.json"
},
{
"url": "https://cdn.jsdelivr.net/gh/pypa/get-pip/public/get-pip.py",
@@ -207,6 +223,66 @@
"lastUpdated": "2023-05-02T09:43:33",
"url": "https://huggingface.co/BlinkDL/rwkv-4-raven/blob/main/RWKV-4-Raven-14B-v11x-Eng99%25-Other1%25-20230501-ctx8192.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-raven/resolve/main/RWKV-4-Raven-14B-v11x-Eng99%25-Other1%25-20230501-ctx8192.pth"
},
{
"name": "RWKV-4-Novel-7B-v1-Chn-20230426-ctx8192.pth",
"desc": {
"en": "Chinese Novel 7B v1",
"zh": "中文小说 7B v1"
},
"size": 14785389864,
"SHA256": "5fced44febdf80d303250eef9c020f087abded43aaecc8caaea8a9e7f1fb771e",
"lastUpdated": "2023-04-26T18:57:01",
"url": "https://huggingface.co/BlinkDL/rwkv-4-novel/blob/main/RWKV-4-Novel-7B-v1-Chn-20230426-ctx8192.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-novel/resolve/main/RWKV-4-Novel-7B-v1-Chn-20230426-ctx8192.pth"
},
{
"name": "RWKV-4-Novel-3B-v1-Chn-20230412-ctx4096.pth",
"desc": {
"en": "Chinese Novel 3B v1",
"zh": "中文小说 3B v1"
},
"size": 5969345064,
"SHA256": "c41e0af2cbc66e94121377680e8224a1504fac6c9ea620c395f0a79281db26e7",
"lastUpdated": "2023-04-12T13:18:29",
"url": "https://huggingface.co/BlinkDL/rwkv-4-novel/blob/main/RWKV-4-Novel-3B-v1-Chn-20230412-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-novel/resolve/main/RWKV-4-Novel-3B-v1-Chn-20230412-ctx4096.pth"
},
{
"name": "RWKV-4-Novel-3B-v1-ChnEng-20230412-ctx4096.pth",
"desc": {
"en": "English Novel 3B v1",
"zh": "英文小说 3B v1"
},
"size": 5969345064,
"SHA256": "283c6e6fa10c52a93e9a01d9630f288473267ea152a49c6579b5c0427bdc9c61",
"lastUpdated": "2023-04-12T13:18:29",
"url": "https://huggingface.co/BlinkDL/rwkv-4-novel/blob/main/RWKV-4-Novel-3B-v1-ChnEng-20230412-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-novel/resolve/main/RWKV-4-Novel-3B-v1-ChnEng-20230412-ctx4096.pth"
},
{
"name": "RWKV-4-Novel-7B-v1-ChnEng-20230426-ctx8192.pth",
"desc": {
"en": "English Novel 7B v1",
"zh": "英文小说 7B v1"
},
"size": 14785389864,
"SHA256": "bd08c75a296bd193dcfadb993fe06d7f9dd91ca3385231f24c592c89d25cd596",
"lastUpdated": "2023-04-26T18:57:01",
"url": "https://huggingface.co/BlinkDL/rwkv-4-novel/blob/main/RWKV-4-Novel-7B-v1-ChnEng-20230426-ctx8192.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-novel/resolve/main/RWKV-4-Novel-7B-v1-ChnEng-20230426-ctx8192.pth"
},
{
"name": "RWKV-4-World-0.1B-v1-20230520-ctx4096.pth",
"desc": {
"en": "+100 Languages 0.1B v1",
"zh": "+100种语言 0.1B v1"
},
"size": 385594610,
"SHA256": "a10ef99df2a8f8a6801edf4fc92a9c49bedd63dcb900d3e5667a2136b3d671e7",
"lastUpdated": "2023-05-25T09:21:27",
"url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-0.1B-v1-20230520-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-0.1B-v1-20230520-ctx4096.pth"
}
]
}
}