Compare commits

...

17 Commits

Author SHA1 Message Date
josc146
28874585ea update about 2023-05-23 18:09:25 +08:00
josc146
11f358c467 update readme 2023-05-23 16:45:53 +08:00
josc146
0a712da7fc Update README_ZH.md 2023-05-23 16:42:50 +08:00
josc146
89ddde9f3e update readme 2023-05-23 14:58:45 +08:00
josc146
5e4f6159be fix CopyFile api 2023-05-23 14:36:24 +08:00
josc146
89c8545528 update manifest.json 2023-05-23 14:17:19 +08:00
josc146
4eca1537a7 add customCudaFile support 2023-05-23 14:04:06 +08:00
josc146
65d92d5da1 useCustomCuda 2023-05-23 13:33:27 +08:00
josc146
3aaf16b38b global status 2023-05-23 12:50:53 +08:00
josc146
9a3657e6ea delete cache before updating 2023-05-23 12:37:13 +08:00
josc146
689c704dca update manifest.json 2023-05-23 12:35:36 +08:00
josc146
29c8a27eed scrollToBottom when opening chat page 2023-05-23 12:24:39 +08:00
josc146
1d08719645 update requirements and /status 2023-05-23 12:13:12 +08:00
josc146
524d9e78e6 SwitchModelBody.customCuda 2023-05-23 11:51:43 +08:00
josc146
7989e93afe fixed torch version; CUDA acceleration utils 2023-05-23 11:19:39 +08:00
josc146
ecb5d6c6e4 Update README_ZH.md 2023-05-22 19:43:47 +08:00
josc146
8be85b1c7e update manifest 2023-05-22 12:29:41 +08:00
26 changed files with 943 additions and 67 deletions

5
.gitignore vendored
View File

@@ -13,4 +13,7 @@ __pycache__
/backend-python/get-pip.py
/py310
*.zip
/cmd-helper.bat
/cmd-helper.bat
/backend-python/wkv_cuda
*.exe
*.old

18
.vscode/launch.json vendored Normal file
View File

@@ -0,0 +1,18 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?linkid=830387
//
// Use Ctrl+Shift+P to Select Interpreter
"version": "0.2.0",
"configurations": [
{
"name": "Python",
"type": "python",
"request": "launch",
"program": "./backend-python/main.py",
"console": "integratedTerminal",
"justMyCode": false,
}
]
}

View File

@@ -2,6 +2,6 @@
"[python]": {
"editor.defaultFormatter": "ms-python.black-formatter"
},
"python.formatting.provider": "black",
"python.formatting.provider": "none",
"editor.formatOnSave": true
}

View File

@@ -25,7 +25,7 @@ English | [简体中文](README_ZH.md)
[release-url]: https://github.com/josStorer/RWKV-Runner/releases/latest
[download-url]: https://github.com/josStorer/RWKV-Runner/releases/download/v1.0.0/RWKV-Runner_windows_x64.exe
[download-url]: https://github.com/josStorer/RWKV-Runner/releases/download/v1.0.2/RWKV-Runner_windows_x64.exe
</div>
@@ -45,10 +45,10 @@ English | [简体中文](README_ZH.md)
## Todo
- Model training functionality
- CUDA operator int8 acceleration
- macOS support
- Linux support
- [ ] Model training functionality
- [x] CUDA operator int8 acceleration
- [ ] macOS support
- [ ] Linux support
## Related Repositories:

View File

@@ -14,7 +14,7 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
[English](README.md) | 简体中文
[预览](#Preview) | [下载][download-url]
[视频演示](https://www.bilibili.com/video/BV1hM4y1v76R) | [预览](#Preview) | [下载][download-url]
[license-image]: http://img.shields.io/badge/license-MIT-blue.svg
@@ -24,10 +24,12 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
[release-url]: https://github.com/josStorer/RWKV-Runner/releases/latest
[download-url]: https://github.com/josStorer/RWKV-Runner/releases/download/v1.0.0/RWKV-Runner_windows_x64.exe
[download-url]: https://github.com/josStorer/RWKV-Runner/releases/download/v1.0.2/RWKV-Runner_windows_x64.exe
</div>
#### 注意 目前RWKV中文模型质量一般推荐使用英文模型体验实际RWKV能力
## 功能
- RWKV模型管理一键启动
@@ -43,10 +45,10 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
## Todo
- 模型训练功能
- CUDA算子int8提速
- macOS支持
- linux支持
- [ ] 模型训练功能
- [x] CUDA算子int8提速
- [ ] macOS支持
- [ ] linux支持
## 相关仓库:

View File

@@ -3,6 +3,7 @@ package backend_golang
import (
"encoding/json"
"fmt"
"io"
"os"
"os/exec"
"path/filepath"
@@ -92,6 +93,26 @@ func (a *App) DeleteFile(path string) error {
return nil
}
func (a *App) CopyFile(src string, dst string) error {
sourceFile, err := os.Open(src)
if err != nil {
return err
}
defer sourceFile.Close()
destFile, err := os.Create(dst)
if err != nil {
return err
}
defer destFile.Close()
_, err = io.Copy(destFile, sourceFile)
if err != nil {
return err
}
return nil
}
func (a *App) OpenFileFolder(path string) error {
absPath, err := filepath.Abs(path)
if err != nil {

View File

@@ -48,7 +48,7 @@ func (a *App) InstallPyDep(cnMirror bool) (string, error) {
return "", err
}
ChangeFileLine("./py310/python310._pth", 3, "Lib\\site-packages")
_, err = Cmd(python, "-m", "pip", "install", "torch", "torchvision", "torchaudio", "--index-url", "https://download.pytorch.org/whl/cu117")
_, err = Cmd(python, "-m", "pip", "install", "torch==1.13.1", "torchvision==0.14.1", "torchaudio==0.13.1", "--index-url", "https://download.pytorch.org/whl/cu117")
if err != nil {
return "", err
}

View File

@@ -1,3 +1,4 @@
import GPUtil
import torch
import rwkv
import langchain

Binary file not shown.

View File

@@ -6,6 +6,7 @@ from langchain.llms import RWKV
from utils.rwkv import *
from utils.torch import *
import global_var
import GPUtil
router = APIRouter()
@@ -13,6 +14,7 @@ router = APIRouter()
class SwitchModelBody(BaseModel):
model: str
strategy: str
customCuda: bool = False
@router.post("/switch-model")
@@ -25,6 +27,8 @@ def switch_model(body: SwitchModelBody, response: Response):
global_var.set(global_var.Model, None)
torch_gc()
os.environ["RWKV_CUDA_ON"] = "1" if body.customCuda else "0"
global_var.set(global_var.Model_Status, global_var.ModelStatus.Loading)
try:
global_var.set(
@@ -63,4 +67,13 @@ def update_config(body: ModelConfigBody):
@router.get("/status")
def status():
return {"status": global_var.get(global_var.Model_Status)}
gpus = GPUtil.getGPUs()
if len(gpus) == 0:
device_name = "CPU"
else:
device_name = gpus[0].name
return {
"status": global_var.get(global_var.Model_Status),
"pid": os.getpid(),
"device_name": device_name,
}

View File

@@ -1,3 +1,5 @@
import os
import pathlib
from typing import Dict
from langchain.llms import RWKV
from pydantic import BaseModel
@@ -34,6 +36,9 @@ def get_rwkv_config(model: RWKV) -> ModelConfigBody:
)
os.environ["TORCH_EXTENSIONS_DIR"] = f"{pathlib.Path(__file__).parent.parent.resolve()}"
def rwkv_generate(model: RWKV, prompt: str, stop: str = None):
model.model_state = None
model.model_tokens = []

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1,734 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import types, gc, os, time, re
import torch
from torch.nn import functional as F
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
current_path = os.path.dirname(os.path.abspath(__file__))
# https://zhuanlan.zhihu.com/p/612879065
def LoadPreCompileLibrary(file):
import importlib
import os
import torch
# load the custom_op_library and register the custom ops
lib_dir = os.path.dirname(__file__)
if os.name == "nt":
# Register the main torchvision library location on the default DLL path
import ctypes
import sys
kernel32 = ctypes.WinDLL("kernel32.dll", use_last_error=True)
with_load_library_flags = hasattr(kernel32, "AddDllDirectory")
prev_error_mode = kernel32.SetErrorMode(0x0001)
if with_load_library_flags:
kernel32.AddDllDirectory.restype = ctypes.c_void_p
if sys.version_info >= (3, 8):
os.add_dll_directory(lib_dir)
elif with_load_library_flags:
res = kernel32.AddDllDirectory(lib_dir)
if res is None:
err = ctypes.WinError(ctypes.get_last_error())
err.strerror += f' Error adding "{lib_dir}" to the DLL directories.'
raise ValueError(err)
kernel32.SetErrorMode(prev_error_mode)
loader_details = (
importlib.machinery.ExtensionFileLoader,
importlib.machinery.EXTENSION_SUFFIXES,
)
extfinder = importlib.machinery.FileFinder(lib_dir, loader_details)
ext_specs = extfinder.find_spec(file)
if ext_specs is None:
return False
try:
torch.ops.load_library(ext_specs.origin)
except OSError as exc:
return False
return True
########################################################################################################
if os.environ.get('RWKV_JIT_ON') != '0':
os.environ["RWKV_JIT_ON"] = '1'
MyModule = torch.jit.ScriptModule
MyFunction = torch.jit.script_method
MyStatic = torch.jit.script
else:
MyModule = torch.nn.Module
def __nop(ob):
return ob
MyFunction = __nop
MyStatic = __nop
if os.environ.get('RWKV_CUDA_ON') == '1':
if LoadPreCompileLibrary('wkv_cuda') is False:
from torch.utils.cpp_extension import load
load(
name=f"wkv_cuda",
sources=[f"{current_path}/cuda/wrapper.cpp", f"{current_path}/cuda/operators.cu"],
verbose=True,
extra_cuda_cflags=["-t 4", "-std=c++17", "--use_fast_math", "-O3", "--extra-device-vectorization"],
is_python_module=False)
@MyStatic
def cuda_wkv(T: int, C: int, w, u, k, v, aa, bb, pp):
assert 1 * C % min(C, 32) == 0
assert k.dtype == v.dtype == torch.float16 or k.dtype == v.dtype == torch.float32
assert w.dtype == u.dtype == aa.dtype == bb.dtype == pp.dtype == torch.float32
w = w.contiguous()
u = u.contiguous()
k = k.contiguous()
v = v.contiguous()
y = torch.empty((T, C), device=w.device, memory_format=torch.contiguous_format, dtype=k.dtype)
torch.ops.rwkv.wkv_forward(1, T, C, w, u, k, v, y, aa, bb, pp)
return y, aa, bb, pp
@MyStatic
def cuda_mm8_seq(B: int, N: int, M: int, x, w, mx, rx, my, ry):
assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
assert x.dtype == torch.float32 or x.dtype == torch.float16
assert w.dtype == torch.uint8
assert x.shape == [B, N]
assert w.shape == [N, M]
assert rx.shape == mx.shape == [M]
assert ry.shape == my.shape == [N, 1]
y = torch.empty((B, M), device=w.device, dtype=x.dtype)
torch.ops.rwkv.mm8_seq(B, N, M, x, w, mx, rx, my, ry, y)
return y
@MyStatic
def cuda_mm8_one(N: int, M: int, x, w, mx, rx, my, ry):
assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
assert x.dtype == torch.float32 or x.dtype == torch.float16
assert w.dtype == torch.uint8
assert x.shape == [N]
assert w.shape == [N, M]
assert rx.shape == mx.shape == [M]
assert ry.shape == my.shape == [N, 1]
y = torch.zeros((M,), device=w.device, dtype=torch.float32)
torch.ops.rwkv.mm8_one(N, M, x, w, mx, rx, my, ry, y)
return y.to(dtype=x.dtype)
else:
os.environ["RWKV_CUDA_ON"] = '0'
########################################################################################################
class RWKV(MyModule):
def __init__(self, model, strategy, verbose = True, convert_and_save_and_exit = None):
super().__init__()
if verbose:
prxxx = lambda *args, **kwargs: print(*args, **kwargs)
else:
prxxx = lambda *args, **kwargs: None
STRATEGY_REGEX = r"^(?:(?:^|->) *(?:cuda(?::[\d]+)?|cpu|mps) (?:fp(?:16|32)|bf16)(?:i8|i4|i3)?(?: \*[\d]+\+?)? *)+$"
if not re.match(STRATEGY_REGEX, strategy):
raise ValueError("Invalid strategy. Please read https://pypi.org/project/rwkv/")
strategy = ('->'.join([x.strip() for x in strategy.split('->')])).replace('->', ' -> ')
self.args = types.SimpleNamespace()
args = self.args
args.MODEL_NAME = model
args.strategy_string = strategy
# Rescale for fp16 mode: set x = x/2 every X layer (to avoid fp16 overflow)
self.RESCALE_LAYER = 6 if 'fp16' in strategy else 0
prxxx(f'RWKV_JIT_ON {os.environ["RWKV_JIT_ON"]} RWKV_CUDA_ON {os.environ["RWKV_CUDA_ON"]} RESCALE_LAYER {self.RESCALE_LAYER}\n')
args.MODEL_NAME = args.MODEL_NAME.strip()
if not args.MODEL_NAME.endswith('.pth'):
args.MODEL_NAME += '.pth'
prxxx(f'Loading {args.MODEL_NAME} ...')
with torch.no_grad():
self.w = torch.load(args.MODEL_NAME, map_location='cpu') # load model to CPU first
gc.collect()
w = self.w
ALREADY_CONVERTED = False
if '_strategy' in w:
ALREADY_CONVERTED = True
assert convert_and_save_and_exit == None # you should only convert a raw model
prxxx(f"Converted model: strategy {w['_strategy']}, version {w['_version']}\n")
assert w['_strategy'] == args.strategy_string # if you are using a new strategy, re-convert the model
assert float(w['_version']) >= 0.7 # sometimes you should re-convert using latest convert_model.py
assert w['_rescale_layer'] == self.RESCALE_LAYER
del w['_strategy']
del w['_version']
del w['_rescale_layer']
args.n_embd = w['emb.weight'].shape[1]
args.n_layer = 0
keys = list(w.keys())
for x in keys:
layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
args.n_layer = max(args.n_layer, layer_id+1)
####################### Compute strategy
s = [x.strip().split(' ') for x in strategy.split('->')]
plan = [0] * len(s)
stream_i = -1
stream_count = 0
to_allocate = args.n_layer + 1
allocated = 0
free_slots = 0
for i in range(len(s)):
si = s[i]
si1 = si[1]
if si1.startswith('fp32'): si[1] = [torch.float]
elif si1.startswith('fp16'): si[1] = [torch.float16]
elif si1.startswith('bf16'): si[1] = [torch.bfloat16]
if si1.endswith('i8'): si[1] += [torch.uint8]
else: si[1] += [si[1][0]]
if len(si) > 2:
ss = si[2]
assert ss.startswith('*')
if ss.endswith('+'):
plan[i] = int(ss[1:-1])
stream_i = i
else:
plan[i] = int(ss[1:])
allocated += plan[i]
if allocated >= to_allocate:
plan[i] += to_allocate - allocated
break
else:
free_slots += 1
if stream_i < 0:
if free_slots > 0 and to_allocate > allocated:
for i in range(len(s)):
if plan[i] == 0:
plan[i] = (to_allocate - allocated) // free_slots
allocated += plan[i]
free_slots -= 1
if to_allocate > allocated:
plan[len(s)-1] += to_allocate - allocated
else:
if to_allocate > allocated:
stream_count = to_allocate - allocated
plan[stream_i] += stream_count
prxxx(f'Strategy: (total {args.n_layer}+1={args.n_layer+1} layers)')
for i in range(len(s)):
ss = s[i]
if i != stream_i:
prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]} layers')
else:
prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]-stream_count} layers, stream {stream_count} layers')
plan[i] += (0 if i == 0 else plan[i-1])
self.strategy = [None] * (args.n_layer + 1)
strategy = self.strategy
for n in range(args.n_layer + 1):
for i in range(len(s)):
if n < plan[i]:
strategy[n] = types.SimpleNamespace()
strategy[n].device = s[i][0]
strategy[n].atype = s[i][1][0]
strategy[n].wtype = s[i][1][1]
strategy[n].stream = False
if i == stream_i and n >= (plan[i] - stream_count):
strategy[n].stream = True
break
prxxx(f"{n}-{strategy[n].device}-{str(strategy[n].atype).replace('torch.','')}-{str(strategy[n].wtype).replace('torch.','')}{'-stream' if strategy[n].stream else ''}",end=' ')
prxxx()
####################### Load weights to self.w
if not ALREADY_CONVERTED:
try: # precompute embedding
w['emb.weight'] = F.layer_norm(w['emb.weight'], (args.n_embd,), weight=w['blocks.0.ln0.weight'], bias=w['blocks.0.ln0.bias'])
except:
w['emb.weight'] = F.layer_norm(w['emb.weight'].float(), (args.n_embd,), weight=w['blocks.0.ln0.weight'].float(), bias=w['blocks.0.ln0.bias'].float())
del w['blocks.0.ln0.weight']
del w['blocks.0.ln0.bias']
print_need_newline = False
keys = list(w.keys())
for x in keys:
w[x].requires_grad = False
layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
if ('ln_out.' in x) or ('head.' in x):
layer_id = args.n_layer
dd = strategy[layer_id]
DEVICE = dd.device
ATYPE = dd.atype
WTYPE = dd.wtype
if not ALREADY_CONVERTED:
if self.RESCALE_LAYER > 0:
if 'att.output.weight' in x:
w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
if 'ffn.value.weight' in x:
w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
if '.time_' in x:
w[x] = w[x].squeeze()
if 'key.weight' in x or 'value.weight' in x or 'receptance.weight' in x or 'output.weight' in x or 'head.weight' in x:
w[x] = w[x].t()
if '.time_decay' in x: # need fp32 for this
w[x] = -torch.exp(w[x].float())
elif '.time_first' in x: # need fp32 for this
w[x] = w[x].float()
else:
if (len(w[x].shape) == 2) and ('emb' not in x):
if WTYPE != torch.uint8:
w[x] = w[x].to(dtype=WTYPE)
else:
w[x] = w[x].float()
if w[x].shape[0] > w[x].shape[1]:
w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
w[x] = w[x] - w[x+'_my']
w[x+'_mx'] = torch.amin(w[x], dim=0)
w[x] = w[x] - w[x+'_mx']
w[x+'_rx'] = torch.amax(w[x], dim=0)
w[x] = w[x] / w[x+'_rx']
w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
w[x] = w[x] / w[x+'_ry']
else:
w[x+'_mx'] = torch.amin(w[x], dim=0)
w[x] = w[x] - w[x+'_mx']
w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
w[x] = w[x] - w[x+'_my']
w[x+'_rx'] = torch.amax(w[x], dim=0)
w[x] = w[x] / w[x+'_rx']
w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
w[x] = w[x] / w[x+'_ry']
w[x] = torch.clip(torch.floor(w[x] * 256), min=0, max=255).to(dtype=torch.uint8)
w[x+'_mx'] = w[x+'_mx'].to(dtype=ATYPE).contiguous()
w[x+'_rx'] = (w[x+'_rx'] / 16).to(dtype=ATYPE).contiguous()
w[x+'_my'] = w[x+'_my'].to(dtype=ATYPE).contiguous()
w[x+'_ry'] = (w[x+'_ry'] / 16).to(dtype=ATYPE).contiguous()
else:
w[x] = w[x].to(dtype=ATYPE)
if convert_and_save_and_exit == None:
if 'emb.' in x:
w[x] = w[x].contiguous()
elif (dd.stream) and (x.endswith('key.weight') or x.endswith('value.weight') or x.endswith('receptance.weight') or x.endswith('output.weight')):
try:
w[x] = w[x].contiguous().pin_memory() # if you see "CUDA error: out of memory" here, that's out of CPU RAM, not VRAM. Get more RAM :)
except:
print('Note: You are running out of RAM. Get more CPU RAM. Now this will run much slower.')
elif DEVICE != 'cpu':
w[x] = w[x].to(device=DEVICE).contiguous()
if (dd.stream) or (DEVICE != 'cpu'):
try:
w[x+'_mx'] = w[x+'_mx'].to(device=DEVICE).contiguous()
w[x+'_rx'] = w[x+'_rx'].to(device=DEVICE).contiguous()
w[x+'_my'] = w[x+'_my'].to(device=DEVICE).contiguous()
w[x+'_ry'] = w[x+'_ry'].to(device=DEVICE).contiguous()
except:
pass
if 'ffn.value.weight' in x:
gc.collect()
if 'cuda' in args.strategy_string:
torch.cuda.empty_cache()
shape = [i for i in w[x].shape if i != 1]
if len(shape) > 1:
shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)}"
else:
shape = f" {str(shape[0]).rjust(5)} "
if layer_id == 0 or layer_id >= args.n_layer-1:
if print_need_newline:
prxxx('\n', end = '')
print_need_newline = False
dt = str(w[x].dtype).replace('torch.', '')
dt = dt.replace('float32', 'f32').replace('bfloat16', 'bf16').replace('float16', 'f16').replace('uint8', 'i8')
prxxx(x.ljust(32), dt.rjust(4), str(w[x].device).rjust(8), shape, ' (pinned)' if w[x].is_pinned() else '')
else:
print_need_newline = True
prxxx('.', end = '', flush = True)
if convert_and_save_and_exit:
w['_strategy'] = args.strategy_string
w['_rescale_layer'] = self.RESCALE_LAYER
w['_version'] = '0.7'
if not convert_and_save_and_exit.endswith('.pth'):
convert_and_save_and_exit += '.pth'
prxxx(f'Saving to {convert_and_save_and_exit}...')
torch.save(w, convert_and_save_and_exit)
prxxx(f'Converted and saved. Now this will exit.')
exit(0)
gc.collect()
if 'cuda' in args.strategy_string:
torch.cuda.empty_cache()
@MyFunction
def torch_mm8_seq(self, x, w, mx, rx, my, ry):
return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)
@MyFunction
def torch_mm8_one(self, x, w, mx, rx, my, ry):
return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)
if os.environ.get('RWKV_CUDA_ON') == '1':
@MyFunction
def mm8_seq(self, x, w, mx, rx, my, ry):
if w.device.type == 'cuda' and x.dtype == torch.float16:
B, N, M = x.shape[0], w.shape[0], w.shape[1]
return cuda_mm8_seq(B, N, M, x, w, mx, rx, my, ry)
else:
return self.torch_mm8_seq(x, w, mx, rx, my, ry)
@MyFunction
def mm8_one(self, x, w, mx, rx, my, ry):
if w.device.type == 'cuda':
N, M = w.shape[0], w.shape[1]
return cuda_mm8_one(N, M, x, w, mx, rx, my, ry)
else:
return self.torch_mm8_one(x, w, mx, rx, my, ry)
else:
@MyFunction
def mm8_seq(self, x, w, mx, rx, my, ry):
return self.torch_mm8_seq(x, w, mx, rx, my, ry)
@MyFunction
def mm8_one(self, x, w, mx, rx, my, ry):
return self.torch_mm8_one(x, w, mx, rx, my, ry)
########################################################################################################
@MyFunction
def ffn_one(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(rx @ rw)
vx = torch.square(torch.relu(kx @ kw))
out = r * (vx @ vw)
return x + out, xx
@MyFunction
def ffn_one_i8(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(self.mm8_one(rx, rw, rmx, rrx, rmy, rry))
vx = torch.square(torch.relu(self.mm8_one(kx, kw, kmx, krx, kmy, kry)))
out = r * (self.mm8_one(vx, vw, vmx, vrx, vmy, vry))
return x + out, xx
########################################################################################################
@MyFunction
def ffn_seq(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
kx = xx * k_mix + sx * (1 - k_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(rx @ rw)
vx = torch.square(torch.relu(kx @ kw))
out = r * (vx @ vw)
return x + out, xx[-1,:]
@MyFunction
def ffn_seq_i8(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
kx = xx * k_mix + sx * (1 - k_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
vx = torch.square(torch.relu(self.mm8_seq(kx, kw, kmx, krx, kmy, kry)))
out = r * (self.mm8_seq(vx, vw, vmx, vrx, vmy, vry))
return x + out, xx[-1,:]
########################################################################################################
@MyFunction
def att_one(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(rx @ rw)
k = (kx @ kw).float()
v = (vx @ vw).float()
ww = t_first + k
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
ww = t_decay + pp
p = torch.maximum(ww, k)
e1 = torch.exp(ww - p)
e2 = torch.exp(k - p)
out = (r * wkv) @ ow
return x + out, xx, e1 * aa + e2 * v, e1 * bb + e2, p
@MyFunction
def att_one_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(self.mm8_one(rx, rw, rmx, rrx, rmy, rry))
k = (self.mm8_one(kx, kw, kmx, krx, kmy, kry)).float()
v = (self.mm8_one(vx, vw, vmx, vrx, vmy, vry)).float()
ww = t_first + k
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
ww = t_decay + pp
p = torch.maximum(ww, k)
e1 = torch.exp(ww - p)
e2 = torch.exp(k - p)
out = self.mm8_one(r * wkv, ow, omx, orx, omy, ory)
return x + out, xx, e1 * aa + e2 * v, e1 * bb + e2, p
########################################################################################################
@MyFunction
def att_seq(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(rx @ rw)
k = (kx @ kw).float()
v = (vx @ vw).float()
T = x.shape[0]
for t in range(T):
kk = k[t]
vv = v[t]
ww = t_first + kk
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
ww = t_decay + pp
p = torch.maximum(ww, kk)
e1 = torch.exp(ww - p)
e2 = torch.exp(kk - p)
aa = e1 * aa + e2 * vv
bb = e1 * bb + e2
pp = p
out = (r * sx) @ ow
return x + out, xx[-1,:], aa, bb, pp
@MyFunction
def att_seq_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
k = self.mm8_seq(kx, kw, kmx, krx, kmy, kry).float()
v = self.mm8_seq(vx, vw, vmx, vrx, vmy, vry).float()
T = x.shape[0]
for t in range(T):
kk = k[t]
vv = v[t]
ww = t_first + kk
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
ww = t_decay + pp
p = torch.maximum(ww, kk)
e1 = torch.exp(ww - p)
e2 = torch.exp(kk - p)
aa = e1 * aa + e2 * vv
bb = e1 * bb + e2
pp = p
out = self.mm8_seq(r * sx, ow, omx, orx, omy, ory)
return x + out, xx[-1,:], aa, bb, pp
########################################################################################################
if os.environ["RWKV_CUDA_ON"] == '1':
@MyFunction
def cuda_att_seq(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
T, C = x.size()
xx = F.layer_norm(x, (C,), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(rx @ rw)
k = kx @ kw
v = vx @ vw
y, aa, bb, pp = cuda_wkv(T, C, t_decay, t_first, k, v, aa, bb, pp)
out = (r * y) @ ow
return x + out, xx[-1,:], aa, bb, pp
@MyFunction
def cuda_att_seq_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
T, C = x.size()
xx = F.layer_norm(x, (C,), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
k = self.mm8_seq(kx, kw, kmx, krx, kmy, kry)
v = self.mm8_seq(vx, vw, vmx, vrx, vmy, vry)
y, aa, bb, pp = cuda_wkv(T, C, t_decay, t_first, k, v, aa, bb, pp)
out = self.mm8_seq(r * y, ow, omx, orx, omy, ory)
return x + out, xx[-1,:], aa, bb, pp
########################################################################################################
def forward(self, tokens, state, full_output=False):
with torch.no_grad():
w = self.w
args = self.args
if state == None:
state = [None] * args.n_layer * 5
for i in range(args.n_layer): # state: 0=att_xx 1=att_aa 2=att_bb 3=att_pp 4=ffn_xx
dd = self.strategy[i]
dev = dd.device
atype = dd.atype
state[i*5+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
state[i*5+1] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous()
state[i*5+2] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous()
state[i*5+3] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous() - 1e30
state[i*5+4] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
seq_mode = len(tokens) > 1
x = w['emb.weight'][tokens if seq_mode else tokens[0]]
for i in range(args.n_layer):
bbb = f'blocks.{i}.'
att = f'blocks.{i}.att.'
ffn = f'blocks.{i}.ffn.'
dd = self.strategy[i]
dev = dd.device
atype = dd.atype
wtype = dd.wtype
if seq_mode:
if 'cuda' in str(dev) and os.environ["RWKV_CUDA_ON"] == '1':
ATT = self.cuda_att_seq if wtype != torch.uint8 else self.cuda_att_seq_i8
else:
ATT = self.att_seq if wtype != torch.uint8 else self.att_seq_i8
FFN = self.ffn_seq if wtype != torch.uint8 else self.ffn_seq_i8
else:
ATT = self.att_one if wtype != torch.uint8 else self.att_one_i8
FFN = self.ffn_one if wtype != torch.uint8 else self.ffn_one_i8
x = x.to(dtype=atype, device=dev)
kw = w[f'{att}key.weight']
vw = w[f'{att}value.weight']
rw = w[f'{att}receptance.weight']
ow = w[f'{att}output.weight']
if dd.stream:
kw = kw.to(device=dev, non_blocking=True)
vw = vw.to(device=dev, non_blocking=True)
rw = rw.to(device=dev, non_blocking=True)
ow = ow.to(device=dev, non_blocking=True)
kmx = w[f'{att}key.weight_mx'] if wtype == torch.uint8 else x
krx = w[f'{att}key.weight_rx'] if wtype == torch.uint8 else x
kmy = w[f'{att}key.weight_my'] if wtype == torch.uint8 else x
kry = w[f'{att}key.weight_ry'] if wtype == torch.uint8 else x
vmx = w[f'{att}value.weight_mx'] if wtype == torch.uint8 else x
vrx = w[f'{att}value.weight_rx'] if wtype == torch.uint8 else x
vmy = w[f'{att}value.weight_my'] if wtype == torch.uint8 else x
vry = w[f'{att}value.weight_ry'] if wtype == torch.uint8 else x
rmx = w[f'{att}receptance.weight_mx'] if wtype == torch.uint8 else x
rrx = w[f'{att}receptance.weight_rx'] if wtype == torch.uint8 else x
rmy = w[f'{att}receptance.weight_my'] if wtype == torch.uint8 else x
rry = w[f'{att}receptance.weight_ry'] if wtype == torch.uint8 else x
omx = w[f'{att}output.weight_mx'] if wtype == torch.uint8 else x
orx = w[f'{att}output.weight_rx'] if wtype == torch.uint8 else x
omy = w[f'{att}output.weight_my'] if wtype == torch.uint8 else x
ory = w[f'{att}output.weight_ry'] if wtype == torch.uint8 else x
x, state[i*5+0], state[i*5+1], state[i*5+2], state[i*5+3] = ATT(
x, state[i*5+0], state[i*5+1], state[i*5+2], state[i*5+3],
w[f'{bbb}ln1.weight'], w[f'{bbb}ln1.bias'],
w[f'{att}time_mix_k'], w[f'{att}time_mix_v'], w[f'{att}time_mix_r'],
w[f'{att}time_decay'], w[f'{att}time_first'],
kw, vw, rw, ow,
kmx, krx, kmy, kry,
vmx, vrx, vmy, vry,
rmx, rrx, rmy, rry,
omx, orx, omy, ory,
)
if dd.stream:
del kw, vw, rw, ow
kw = w[f'{ffn}key.weight']
vw = w[f'{ffn}value.weight']
rw = w[f'{ffn}receptance.weight']
if dd.stream:
kw = kw.to(device=dev, non_blocking=True)
vw = vw.to(device=dev, non_blocking=True)
rw = rw.to(device=dev, non_blocking=True)
kmx = w[f'{ffn}key.weight_mx'] if wtype == torch.uint8 else x
krx = w[f'{ffn}key.weight_rx'] if wtype == torch.uint8 else x
kmy = w[f'{ffn}key.weight_my'] if wtype == torch.uint8 else x
kry = w[f'{ffn}key.weight_ry'] if wtype == torch.uint8 else x
vmx = w[f'{ffn}value.weight_mx'] if wtype == torch.uint8 else x
vrx = w[f'{ffn}value.weight_rx'] if wtype == torch.uint8 else x
vmy = w[f'{ffn}value.weight_my'] if wtype == torch.uint8 else x
vry = w[f'{ffn}value.weight_ry'] if wtype == torch.uint8 else x
rmx = w[f'{ffn}receptance.weight_mx'] if wtype == torch.uint8 else x
rrx = w[f'{ffn}receptance.weight_rx'] if wtype == torch.uint8 else x
rmy = w[f'{ffn}receptance.weight_my'] if wtype == torch.uint8 else x
rry = w[f'{ffn}receptance.weight_ry'] if wtype == torch.uint8 else x
x, state[i*5+4] = FFN(
x, state[i*5+4],
w[f'{bbb}ln2.weight'], w[f'{bbb}ln2.bias'],
w[f'{ffn}time_mix_k'], w[f'{ffn}time_mix_r'],
kw, vw, rw,
kmx, krx, kmy, kry,
vmx, vrx, vmy, vry,
rmx, rrx, rmy, rry,
)
if dd.stream:
del kw, vw, rw
if self.RESCALE_LAYER > 0:
if (i+1) % self.RESCALE_LAYER == 0:
x = x / 2
dd = self.strategy[args.n_layer]
x = x[-1,:] if (seq_mode and (not full_output)) else x
x = x.to(dtype=dd.atype, device=dd.device)
x = F.layer_norm(x, (args.n_embd,), weight=w['ln_out.weight'], bias=w['ln_out.bias'])
if w['head.weight'].dtype != torch.uint8:
x = x @ w['head.weight']
else:
if seq_mode and full_output:
x = self.mm8_seq(x, w['head.weight'], w['head.weight_mx'], w['head.weight_rx'], w['head.weight_my'], w['head.weight_ry'])
else:
x = self.mm8_one(x, w['head.weight'], w['head.weight_mx'], w['head.weight_rx'], w['head.weight_my'], w['head.weight_ry'])
return x.float(), state

View File

@@ -82,7 +82,7 @@
"Consider the results of the top n% probability mass, 0.1 considers the top 10%, with higher quality but more conservative, 1 considers all results, with lower quality but more diverse.": "考虑前 n% 概率质量的结果, 0.1 考虑前 10%, 质量更高, 但更保守, 1 考虑所有质量结果, 质量降低, 但更多样",
"Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.": "存在惩罚. 正值根据新token在至今的文本中是否出现过, 来对其进行惩罚, 从而增加了模型涉及新话题的可能性",
"Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.": "频率惩罚. 正值根据新token在至今的文本中出现的频率/次数, 来对其进行惩罚, 从而减少模型原封不动地重复相同句子的可能性",
"int8 uses less VRAM, and is faster, but has slightly lower quality. fp16 has higher quality, and fp32 has the best quality.": "int8占用显存更低, 速度更快, 但质量略微下降. fp16质量更好, fp32质量最好",
"int8 uses less VRAM, but has slightly lower quality. fp16 has higher quality, and fp32 has the best quality.": "int8占用显存更低, 但质量略微下降. fp16质量更好, fp32质量最好",
"Number of the neural network layers loaded into VRAM, the more you load, the faster the speed, but it consumes more VRAM.": "载入显存的神经网络层数, 载入越多, 速度越快, 但显存消耗越大",
"Whether to use CPU to calculate the last output layer of the neural network with FP32 precision to obtain better quality.": "是否使用cpu以fp32精度计算神经网络的最后一层输出层, 以获得更好的质量",
"Downloads": "下载",
@@ -97,5 +97,9 @@
"This is the latest version": "已是最新版",
"Use Tsinghua Pip Mirrors": "使用清华大学Pip镜像源",
"Model Config Exception": "模型配置异常",
"Use Gitee Updates Source": "使用Gitee更新源"
"Use Gitee Updates Source": "使用Gitee更新源",
"Use Custom CUDA kernel to Accelerate": "使用自定义CUDA算子加速",
"Enabling this option can greatly improve inference speed, but there may be compatibility issues. If it fails to start, please turn off this option.": "开启这个选项能大大提升推理速度,但可能存在兼容性问题,如果启动失败,请关闭此选项",
"Supported custom cuda file not found": "没有找到支持的自定义cuda文件",
"Failed to copy custom cuda file": "自定义cuda文件复制失败"
}

View File

@@ -1,4 +1,4 @@
import commonStore, { ModelStatus } from '../stores/commonStore';
import commonStore, { Status } from '../stores/commonStore';
export const readRoot = async () => {
const port = commonStore.getCurrentModelConfig().apiParameters.apiPort;
@@ -36,15 +36,15 @@ export const updateConfig = async (body: any) => {
});
};
export const getStatus = async (timeout?: number): Promise<ModelStatus | undefined> => {
export const getStatus = async (timeout?: number): Promise<Status | undefined> => {
const controller = new AbortController();
if (timeout)
setTimeout(() => controller.abort(), timeout);
const port = commonStore.getCurrentModelConfig().apiParameters.apiPort;
let ret: ModelStatus | undefined;
let ret: Status | undefined;
await fetch(`http://127.0.0.1:${port}/status`, { signal: controller.signal }).then(r => r.json()).then(data => {
ret = data.status;
ret = data;
}).catch(() => {
});
return ret;

View File

@@ -2,6 +2,7 @@ import React, { FC, MouseEventHandler, ReactElement } from 'react';
import commonStore, { ModelStatus } from '../stores/commonStore';
import {
AddToDownloadList,
CopyFile,
DepCheck,
FileExists,
InstallPyDep,
@@ -9,10 +10,10 @@ import {
} from '../../wailsjs/go/backend_golang/App';
import { Button } from '@fluentui/react-components';
import { observer } from 'mobx-react-lite';
import { exit, readRoot, switchModel, updateConfig } from '../apis';
import { exit, getStatus, readRoot, switchModel, updateConfig } from '../apis';
import { toast } from 'react-toastify';
import manifest from '../../../manifest.json';
import { getStrategy, saveCache, toastWithButton } from '../utils';
import { getStrategy, getSupportedCustomCudaFile, saveCache, toastWithButton } from '../utils';
import { useTranslation } from 'react-i18next';
import { ToolTipButton } from './ToolTipButton';
import { Play16Regular, Stop16Regular } from '@fluentui/react-icons';
@@ -42,8 +43,8 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
const navigate = useNavigate();
const onClickMainButton = async () => {
if (commonStore.modelStatus === ModelStatus.Offline) {
commonStore.setModelStatus(ModelStatus.Starting);
if (commonStore.status.modelStatus === ModelStatus.Offline) {
commonStore.setStatus({ modelStatus: ModelStatus.Starting });
const modelConfig = commonStore.getCurrentModelConfig();
let modelName = '';
@@ -53,7 +54,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
modelPath = `./${manifest.localModelDir}/${modelName}`;
} else {
toast(t('Model Config Exception'), { type: 'error' });
commonStore.setModelStatus(ModelStatus.Offline);
commonStore.setStatus({ modelStatus: ModelStatus.Offline });
return;
}
@@ -79,10 +80,11 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
}
});
if (depErrorMsg) {
commonStore.setModelStatus(ModelStatus.Offline);
commonStore.setStatus({ modelStatus: ModelStatus.Offline });
return;
}
commonStore.setDepComplete(true);
CopyFile('./backend-python/wkv_cuda_utils/wkv_cuda_model.py', './py310/Lib/site-packages/rwkv/model.py');
saveCache();
}
@@ -100,7 +102,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
}
});
commonStore.setModelStatus(ModelStatus.Offline);
commonStore.setStatus({ modelStatus: ModelStatus.Offline });
return;
}
@@ -115,10 +117,14 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
let loading = false;
const intervalId = setInterval(() => {
readRoot()
.then(r => {
.then(async r => {
if (r.ok && !loading) {
clearInterval(intervalId);
commonStore.setModelStatus(ModelStatus.Loading);
await getStatus().then(status => {
if (status)
commonStore.setStatus(status);
});
commonStore.setStatus({ modelStatus: ModelStatus.Loading });
loading = true;
toast(t('Loading Model'), { type: 'info' });
updateConfig({
@@ -128,56 +134,74 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
presence_penalty: modelConfig.apiParameters.presencePenalty,
frequency_penalty: modelConfig.apiParameters.frequencyPenalty
});
let customCudaFile = '';
if (modelConfig.modelParameters.useCustomCuda) {
customCudaFile = getSupportedCustomCudaFile();
if (customCudaFile) {
FileExists('./py310/Lib/site-packages/rwkv/model.py').then((exist) => {
// defensive measure. As Python has already been launched, will only take effect the next time it runs.
if (!exist) CopyFile('./backend-python/wkv_cuda_utils/wkv_cuda_model.py', './py310/Lib/site-packages/rwkv/model.py');
});
await CopyFile(customCudaFile, './py310/Lib/site-packages/rwkv/wkv_cuda.pyd').catch(() => {
customCudaFile = '';
toast(t('Failed to copy custom cuda file'), { type: 'error' });
});
} else
toast(t('Supported custom cuda file not found'), { type: 'warning' });
}
switchModel({
model: `${manifest.localModelDir}/${modelConfig.modelParameters.modelName}`,
strategy: getStrategy(modelConfig)
strategy: getStrategy(modelConfig),
customCuda: customCudaFile !== ''
}).then((r) => {
if (r.ok) {
commonStore.setModelStatus(ModelStatus.Working);
commonStore.setStatus({ modelStatus: ModelStatus.Working });
toastWithButton(t('Startup Completed'), t('Chat'), () => {
navigate({ pathname: '/chat' });
}, { type: 'success', autoClose: 3000 });
} else if (r.status === 304) {
toast(t('Loading Model'), { type: 'info' });
} else {
commonStore.setModelStatus(ModelStatus.Offline);
commonStore.setStatus({ modelStatus: ModelStatus.Offline });
toast(t('Failed to switch model'), { type: 'error' });
}
}).catch(() => {
commonStore.setModelStatus(ModelStatus.Offline);
commonStore.setStatus({ modelStatus: ModelStatus.Offline });
toast(t('Failed to switch model'), { type: 'error' });
});
}
}).catch(() => {
if (timeoutCount <= 0) {
clearInterval(intervalId);
commonStore.setModelStatus(ModelStatus.Offline);
commonStore.setStatus({ modelStatus: ModelStatus.Offline });
}
});
timeoutCount--;
}, 1000);
} else {
commonStore.setModelStatus(ModelStatus.Offline);
commonStore.setStatus({ modelStatus: ModelStatus.Offline });
exit();
}
};
const onClick = async (e: any) => {
if (commonStore.modelStatus === ModelStatus.Offline)
if (commonStore.status.modelStatus === ModelStatus.Offline)
await onClickRun?.(e);
await onClickMainButton();
};
return (iconMode ?
<ToolTipButton disabled={commonStore.modelStatus === ModelStatus.Starting}
icon={iconModeButtonIcon[commonStore.modelStatus]}
desc={t(mainButtonText[commonStore.modelStatus])}
<ToolTipButton disabled={commonStore.status.modelStatus === ModelStatus.Starting}
icon={iconModeButtonIcon[commonStore.status.modelStatus]}
desc={t(mainButtonText[commonStore.status.modelStatus])}
size="small" onClick={onClick} />
:
<Button disabled={commonStore.modelStatus === ModelStatus.Starting} appearance="primary" size="large"
<Button disabled={commonStore.status.modelStatus === ModelStatus.Starting} appearance="primary" size="large"
onClick={onClick}>
{t(mainButtonText[commonStore.modelStatus])}
{t(mainButtonText[commonStore.status.modelStatus])}
</Button>
);
});

View File

@@ -65,6 +65,7 @@ const ChatPanel: FC = observer(() => {
useEffect(() => {
if (inputRef.current)
inputRef.current.style.maxHeight = '16rem';
scrollToBottom();
}, []);
useEffect(() => {
@@ -94,7 +95,7 @@ const ChatPanel: FC = observer(() => {
e.stopPropagation();
if (e.type === 'click' || (e.keyCode === 13 && !e.shiftKey)) {
e.preventDefault();
if (commonStore.modelStatus === ModelStatus.Offline) {
if (commonStore.status.modelStatus === ModelStatus.Offline) {
toast(t('Please click the button in the top right corner to start the model'), { type: 'warning' });
return;
}
@@ -314,8 +315,8 @@ export const Chat: FC = observer(() => {
<div className="flex flex-col gap-1 p-2 h-full overflow-hidden">
<div className="flex justify-between items-center">
<div className="flex items-center gap-2">
<PresenceBadge status={badgeStatus[commonStore.modelStatus]} />
<Text size={100}>{t('Model Status') + ': ' + t(statusText[commonStore.modelStatus])}</Text>
<PresenceBadge status={badgeStatus[commonStore.status.modelStatus]} />
<Text size={100}>{t('Model Status') + ': ' + t(statusText[commonStore.status.modelStatus])}</Text>
</div>
<div className="flex items-center gap-2">
<ConfigSelector size="small" />

View File

@@ -39,6 +39,7 @@ export type ModelParameters = {
storedLayers: number;
maxStoredLayers: number;
enableHighPrecisionForLastLayer: boolean;
useCustomCuda?: boolean;
}
export type ModelConfig = {
@@ -754,7 +755,7 @@ export const Configs: FC = observer(() => {
</Dropdown>
} />
<Labeled label={t('Precision')}
desc={t('int8 uses less VRAM, and is faster, but has slightly lower quality. fp16 has higher quality, and fp32 has the best quality.')}
desc={t('int8 uses less VRAM, but has slightly lower quality. fp16 has higher quality, and fp32 has the best quality.')}
content={
<Dropdown style={{ minWidth: 0 }} className="grow"
value={selectedConfig.modelParameters.precision}
@@ -771,6 +772,7 @@ export const Configs: FC = observer(() => {
<Option>fp32</Option>
</Dropdown>
} />
<div />
<Labeled label={t('Stored Layers')}
desc={t('Number of the neural network layers loaded into VRAM, the more you load, the faster the speed, but it consumes more VRAM.')}
content={
@@ -792,6 +794,16 @@ export const Configs: FC = observer(() => {
});
}} />
} />
<Labeled label={t('Use Custom CUDA kernel to Accelerate')}
desc={t('Enabling this option can greatly improve inference speed, but there may be compatibility issues. If it fails to start, please turn off this option.')}
content={
<Switch checked={selectedConfig.modelParameters.useCustomCuda}
onChange={(e, data) => {
setSelectedConfigModelParams({
useCustomCuda: data.checked
});
}} />
} />
</div>
}
/>

View File

@@ -21,7 +21,7 @@ export async function startup() {
getStatus(500).then(status => { // depends on config api port
if (status)
commonStore.setModelStatus(status);
commonStore.setStatus(status);
});
}

View File

@@ -18,9 +18,19 @@ export enum ModelStatus {
Working,
}
export type Status = {
modelStatus: ModelStatus;
pid: number;
device_name: string;
}
class CommonStore {
// global
modelStatus: ModelStatus = ModelStatus.Offline;
status: Status = {
modelStatus: ModelStatus.Offline,
pid: 0,
device_name: 'CPU'
};
depComplete: boolean = false;
// home
introduction: IntroductionContent = manifest.introduction;
@@ -54,8 +64,8 @@ class CommonStore {
return this.modelConfigs[this.currentModelConfigIndex];
};
setModelStatus = (status: ModelStatus) => {
this.modelStatus = status;
setStatus = (status: Partial<Status>) => {
this.status = { ...this.status, ...status };
};
setCurrentConfigIndex = (index: number, saveConfig: boolean = true) => {

View File

@@ -189,9 +189,10 @@ export function forceDownloadProgramFiles() {
});
}
export function deletePythonProgramFiles() {
export function deleteDynamicProgramFiles() {
DeleteFile('cache.json');
manifest.programFiles.forEach(({ path }) => {
if (path.endsWith('.py') && !path.includes('get-pip.py'))
if ((path.endsWith('.py') && !path.includes('get-pip.py')) || path.includes('requirements'))
DeleteFile(path);
});
}
@@ -223,7 +224,7 @@ export async function checkUpdate(notifyEvenLatest: boolean = false) {
`https://github.com/josStorer/RWKV-Runner/releases/download/${versionTag}/RWKV-Runner_windows_x64.exe` :
`https://gitee.com/josc146/RWKV-Runner/releases/download/${versionTag}/RWKV-Runner_windows_x64.exe`;
toastWithButton(t('New Version Available') + ': ' + versionTag, t('Update'), () => {
deletePythonProgramFiles();
deleteDynamicProgramFiles();
setTimeout(() => {
UpdateApp(updateUrl).catch((e) => {
toast(t('Update Error, Please restart this program') + ' - ' + e.message || e, {
@@ -266,4 +267,13 @@ export function toastWithButton(text: string, buttonText: string, onClickButton:
type: 'info',
...options
});
}
export function getSupportedCustomCudaFile() {
if ([' 10', ' 20', ' 30'].some(v => commonStore.status.device_name.includes(v)))
return './backend-python/wkv_cuda_utils/wkv_cuda10_30.pyd';
else if ([' 40'].some(v => commonStore.status.device_name.includes(v)))
return './backend-python/wkv_cuda_utils/wkv_cuda40.pyd';
else
return '';
}

View File

@@ -8,6 +8,8 @@ export function ContinueDownload(arg1:string):Promise<void>;
export function ConvertModel(arg1:string,arg2:string,arg3:string):Promise<string>;
export function CopyFile(arg1:string,arg2:string):Promise<void>;
export function DeleteFile(arg1:string):Promise<void>;
export function DepCheck():Promise<void>;

View File

@@ -14,6 +14,10 @@ export function ConvertModel(arg1, arg2, arg3) {
return window['go']['backend_golang']['App']['ConvertModel'](arg1, arg2, arg3);
}
export function CopyFile(arg1, arg2) {
return window['go']['backend_golang']['App']['CopyFile'](arg1, arg2);
}
export function DeleteFile(arg1) {
return window['go']['backend_golang']['App']['DeleteFile'](arg1);
}

View File

@@ -1,61 +1,73 @@
{
"version": "1.0.0",
"version": "1.0.2",
"introduction": {
"en": "RWKV is an open-source, commercially usable large language model with high flexibility and great potential for development.\n### About This Tool\nThis tool aims to lower the barrier of entry for using large language models, making it accessible to everyone. It provides fully automated dependency and model management. You simply need to click and run, following the instructions, to deploy a local large language model. The tool itself is very compact and only requires a single executable file for one-click deployment.\nAdditionally, this tool offers an interface that is fully compatible with the OpenAI API. This means you can use any ChatGPT client as a client for RWKV, enabling capability expansion beyond just chat functionality.\n### Preset Configuration Rules at the Bottom\nThis tool comes with a series of preset configurations to reduce complexity. The naming rules for each configuration represent the following in order: device - required VRAM/memory - model size - model language.\nFor example, \"GPU-8G-3B-EN\" indicates that this configuration is for a graphics card with 8GB of VRAM, a model size of 3 billion parameters, and it uses an English language model.\nLarger model sizes have higher performance and VRAM requirements. Among configurations with the same model size, those with higher VRAM usage will have faster runtime.\nFor example, if you have 12GB of VRAM but running the \"GPU-12G-7B-EN\" configuration is slow, you can downgrade to \"GPU-8G-3B-EN\" for a significant speed improvement.\n### About RWKV\nRWKV is an RNN with Transformer-level LLM performance, which can also be directly trained like a GPT transformer (parallelizable). And it's 100% attention-free. You only need the hidden state at position t to compute the state at position t+1. You can use the \"GPT\" mode to quickly compute the hidden state for the \"RNN\" mode.<br/>So it's combining the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, \"infinite\" ctx_len, and free sentence embedding (using the final hidden state).",
"zh": "RWKV是一个开源且允许商用的大语言模型灵活性很高且极具发展潜力。\n### 关于本工具\n本工具旨在降低大语言模型的使用门槛做到人人可用本工具提供了全自动化的依赖和模型管理你只需要直接点击运行跟随引导即可完成本地大语言模型的部署工具本身体积极小只需要一个exe即可完成一键部署。\n此外本工具提供了与OpenAI API完全兼容的接口这意味着你可以把任意ChatGPT客户端用作RWKV的客户端实现能力拓展而不局限于聊天。\n### 底部的预设配置规则\n本工具内置了一系列预设配置以降低使用难度每个配置名的规则依次代表着设备-所需显存/内存-模型规模-模型语言。\n例如GPU-8G-3B-CN表示该配置用于显卡需要8G显存模型规模为30亿参数使用的是中文模型。\n模型规模越大性能要求越高显存要求也越高而同样模型规模的配置中显存占用越高的运行速度越快。\n例如当你有12G显存但运行GPU-12G-7B-CN配置速度比较慢可降级成GPU-8G-3B-CN将会大幅提速。\n### 关于RWKV\nRWKV是具有Transformer级别LLM性能的RNN也可以像GPT Transformer一样直接进行训练可并行化。而且它是100% attention-free的。你只需在位置t处获得隐藏状态即可计算位置t + 1处的状态。你可以使用“GPT”模式快速计算用于“RNN”模式的隐藏状态。\n因此它将RNN和Transformer的优点结合起来 - 高性能、快速推理、节省显存、快速训练、“无限”上下文长度以及免费的语句嵌入(使用最终隐藏状态)。"
},
"about": {
"en": "<div align=\"center\">\n\nProject Source Code:\nhttps://github.com/josStorer/RWKV-Runner\nAuthor: [@josStorer](https://github.com/josStorer)\n\nRelated Repositories:\nRWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main\nChatRWKV: https://github.com/BlinkDL/ChatRWKV\nRWKV-LM: https://github.com/BlinkDL/RWKV-LM\n\n</div>",
"zh": "<div align=\"center\">\n\n本项目源码:\nhttps://github.com/josStorer/RWKV-Runner\n作者: [@josStorer](https://github.com/josStorer)\n\n相关仓库:\nRWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main\nChatRWKV: https://github.com/BlinkDL/ChatRWKV\nRWKV-LM: https://github.com/BlinkDL/RWKV-LM\n\n</div>"
"zh": "<div align=\"center\">\n\n本项目源码:\nhttps://github.com/josStorer/RWKV-Runner\n作者: [@josStorer](https://github.com/josStorer)\n演示与常见问题说明视频: https://www.bilibili.com/video/BV1hM4y1v76R\n\n相关仓库:\nRWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main\nChatRWKV: https://github.com/BlinkDL/ChatRWKV\nRWKV-LM: https://github.com/BlinkDL/RWKV-LM\n\n</div>"
},
"localModelDir": "models",
"programFiles": [
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/requirements.txt",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/requirements.txt",
"path": "backend-python/requirements.txt"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/requirements_versions.txt",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/requirements_versions.txt",
"path": "backend-python/requirements_versions.txt"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/main.py",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/main.py",
"path": "backend-python/main.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/global_var.py",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/global_var.py",
"path": "backend-python/global_var.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/convert_model.py",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/convert_model.py",
"path": "backend-python/convert_model.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/dep_check.py",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/dep_check.py",
"path": "backend-python/dep_check.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/routes/completion.py",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/routes/completion.py",
"path": "backend-python/routes/completion.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/routes/config.py",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/routes/config.py",
"path": "backend-python/routes/config.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/utils/ngrok.py",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/utils/ngrok.py",
"path": "backend-python/utils/ngrok.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/utils/rwkv.py",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/utils/rwkv.py",
"path": "backend-python/utils/rwkv.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/utils/torch.py",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/utils/torch.py",
"path": "backend-python/utils/torch.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner/backend-python/20B_tokenizer.json",
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/wkv_cuda_utils/wkv_cuda10_30.pyd",
"path": "backend-python/wkv_cuda_utils/wkv_cuda10_30.pyd"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/wkv_cuda_utils/wkv_cuda40.pyd",
"path": "backend-python/wkv_cuda_utils/wkv_cuda40.pyd"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/wkv_cuda_utils/wkv_cuda_model.py",
"path": "backend-python/wkv_cuda_utils/wkv_cuda_model.py"
},
{
"url": "https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/backend-python/20B_tokenizer.json",
"path": "backend-python/20B_tokenizer.json"
},
{