Compare commits

..

1 Commits

Author SHA1 Message Date
dependabot[bot]
be80a47679 chore(deps): bump docker/build-push-action from 3 to 5
Bumps [docker/build-push-action](https://github.com/docker/build-push-action) from 3 to 5.
- [Release notes](https://github.com/docker/build-push-action/releases)
- [Commits](https://github.com/docker/build-push-action/compare/v3...v5)

---
updated-dependencies:
- dependency-name: docker/build-push-action
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-11 19:19:36 +00:00
33 changed files with 78 additions and 3421 deletions

View File

@@ -66,7 +66,7 @@ jobs:
- name: Build and export
id: build
if: github.ref == 'refs/heads/master'
uses: docker/build-push-action@v3
uses: docker/build-push-action@v5
with:
push: true
platforms: linux/${{ matrix.arch }}
@@ -89,7 +89,7 @@ jobs:
- name: Build release and export
id: build_rel
if: startsWith(github.ref, 'refs/tags/')
uses: docker/build-push-action@v3
uses: docker/build-push-action@v5
with:
push: true
platforms: linux/${{ matrix.arch }}

View File

@@ -2,15 +2,24 @@
### Features
- rwkv6 lora finetune support (https://github.com/JL-er/RWKV-LORA)
- latex support
- add Docker support (#291) @LonghronShen
### Fixes
- fix a generation exception caused by potentially dangerous regex being passed into the stop array
- fix max_tokens parameter of Chat page not being passed to backend
- fix the issue where penalty_decay and global_penalty are not being passed to the backend default config when running
the model through client
### Improvements
- improve markdown rendering
- improve theme
- improve usability
- for Chinese users, replace Tsinghua pip mirrors with Alibaba Cloud to avoid 403 http error
- prevent 'torch' has no attribute 'cuda' error in torch_gc, so user can use CPU or WebGPU (#302)
### Chores
- bump dependencies
- add pre-release workflow
- dep_check.py now ignores GPUtil
## Install

View File

@@ -227,12 +227,12 @@ func (a *App) InstallPyDep(python string, cnMirror bool) (string, error) {
if runtime.GOOS == "windows" {
ChangeFileLine("./py310/python310._pth", 3, "Lib\\site-packages")
installScript := python + " ./backend-python/get-pip.py -i https://mirrors.aliyun.com/pypi/simple --no-warn-script-location\n" +
installScript := python + " ./backend-python/get-pip.py -i https://pypi.tuna.tsinghua.edu.cn/simple --no-warn-script-location\n" +
python + " -m pip install torch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 --index-url https://download.pytorch.org/whl/cu117 --no-warn-script-location\n" +
python + " -m pip install -r ./backend-python/requirements.txt -i https://mirrors.aliyun.com/pypi/simple --no-warn-script-location\n" +
python + " -m pip install -r ./backend-python/requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple --no-warn-script-location\n" +
"exit"
if !cnMirror {
installScript = strings.Replace(installScript, " -i https://mirrors.aliyun.com/pypi/simple", "", -1)
installScript = strings.Replace(installScript, " -i https://pypi.tuna.tsinghua.edu.cn/simple", "", -1)
}
err = os.WriteFile(a.exDir+"install-py-dep.bat", []byte(installScript), 0644)
if err != nil {
@@ -242,7 +242,7 @@ func (a *App) InstallPyDep(python string, cnMirror bool) (string, error) {
}
if cnMirror {
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_without_cyac.txt", "-i", "https://mirrors.aliyun.com/pypi/simple")
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_without_cyac.txt", "-i", "https://pypi.tuna.tsinghua.edu.cn/simple")
} else {
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_without_cyac.txt")
}

View File

@@ -52,13 +52,9 @@ for x in keys:
if "time_maa" in x:
version = max(6, version)
params = f"--vocab_size {vocab_size} --n_layer {n_layer} --n_embd {n_embd}"
if version <= expected_max_version:
if version == 6:
params += ' --my_testing "x060"'
print(
f"v{int(version)}/train.py {params}",
f"v{int(version)}/train.py --vocab_size {vocab_size} --n_layer {n_layer} --n_embd {n_embd}",
end="",
)
else:

View File

@@ -1,7 +1,7 @@
echo $@
if [[ ${cnMirror} == 1 ]]; then
export PIP_INDEX_URL="https://mirrors.aliyun.com/pypi/simple"
export PIP_INDEX_URL="https://pypi.tuna.tsinghua.edu.cn/simple"
if grep -q "mirrors.aliyun.com" /etc/apt/sources.list; then
echo "apt cnMirror already set"
else
@@ -53,7 +53,7 @@ else
fi
echo "loading $loadModel"
modelInfo=$(python3 ./finetune/get_layer_and_embd.py $loadModel 6.0)
modelInfo=$(python3 ./finetune/get_layer_and_embd.py $loadModel 5.2)
echo $modelInfo
if [[ $modelInfo =~ "--n_layer" ]]; then
sudo rm -rf /root/.cache/torch_extensions

View File

@@ -1,202 +0,0 @@
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
template <typename F>
__global__ void kernel_forward(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u,
F *__restrict__ const _y)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_w += h*_N_;
_u += h*_N_;
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
float state[_N_] = {0};
__syncthreads();
w[i] = _w[i];
u[i] = float(_u[i]);
__syncthreads();
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
{
__syncthreads();
r[i] = float(_r[t]);
k[i] = float(_k[t]);
__syncthreads();
const float v = float(_v[t]);
float y = 0;
#pragma unroll
for (int j = 0; j < _N_; j+=4)
{
const float4& r_ = (float4&)(r[j]);
const float4& k_ = (float4&)(k[j]);
const float4& w_ = (float4&)(w[j]);
const float4& u_ = (float4&)(u[j]);
float4& s = (float4&)(state[j]);
float4 x;
x.x = k_.x * v;
x.y = k_.y * v;
x.z = k_.z * v;
x.w = k_.w * v;
y += r_.x * (u_.x * x.x + s.x);
y += r_.y * (u_.y * x.y + s.y);
y += r_.z * (u_.z * x.z + s.z);
y += r_.w * (u_.w * x.w + s.w);
s.x = s.x * w_.x + x.x;
s.y = s.y * w_.y + x.y;
s.z = s.z * w_.z + x.z;
s.w = s.w * w_.w + x.w;
}
_y[t] = F(y);
}
}
template <typename F>
__global__ void kernel_backward(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const float *__restrict__ __w, const F *__restrict__ _u, const F *__restrict__ const _gy,
F *__restrict__ const _gr, F *__restrict__ const _gk, F *__restrict__ const _gv, F *__restrict__ const _gw, F *__restrict__ const _gu)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_w += h*_N_;
_u += h*_N_;
__w += h*_N_;
__shared__ float w_[_N_], u_[_N_];
__shared__ float r[_N_], k[_N_], v[_N_], gy[_N_];
__syncthreads();
w_[i] = _w[i];
u_[i] = float(_u[i]);
__syncthreads();
const float w = w_[i];
const float ww = __w[i];
const float u = u_[i];
float state[_N_] = {0}, saaaa[_N_] = {0}, sbbbb[_N_] = {0}, scccc[_N_] = {0}, sdddd[_N_] = {0};
float gw = 0, gu = 0;
const int t000 = b*T*C + h*_N_ + i;
const int t111 = (b+1)*T*C + h*_N_ + i;
const int t222 = t111 - 2*C;
for (int t = t000; t < t111; t += C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float k = float(_k[t]);
float gr = 0, gu_ = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = state[j];
float x = k * v[j];
gr += (u * x + s) * gy[j];
gu_ += x * gy[j];
s = s * w + x;
}
_gr[t] = F(gr);
gu += float(_r[t]) * gu_;
}
_gu[b*C + h*_N_ + i] = F(gu);
for (int t = t000; t < t222; t += C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t + 2*C]);
__syncthreads();
const float k = float(_k[t]);
float gw_ = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = saaaa[j];
float& s2 = sbbbb[j];
float x = k * v[j];
float tmp = w * (x + s);
s = tmp;
s2 = tmp + w * s2;
gw_ += s2 * gy[j];
}
gw += float(_r[t + 2*C]) * gw_;
}
_gw[b*C + h*_N_ + i] = F(ww * gw);
for (int t = t111 - C; t >= t000; t -= C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float rr = float(_r[t]);
float gk = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
float x = rr * gy[j];
gk += (u * x + s) * v[j];
s = x + s * w;
}
_gk[t] = F(gk);
}
for (int t = t111 - C; t >= t000; t -= C)
{
__syncthreads();
r[i] = float(_r[t]);
k[i] = float(_k[t]);
__syncthreads();
const float gyy = float(_gy[t]);
float gv = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = sdddd[j];
float x = gyy * r[j];
gv += (u_[j] * x + s) * k[j];
s = x + s * w_[j];
}
_gv[t] = F(gv);
}
}
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, y);
}
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, float *ww, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_backward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, ww, u, gy, gr, gk, gv, gw, gu);
}

View File

@@ -1,22 +0,0 @@
#include <torch/extension.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y);
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, float *ww, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu);
void forward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
cuda_forward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), y.data_ptr<bf16>());
}
void backward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &ww, torch::Tensor &u, torch::Tensor &gy, torch::Tensor &gr, torch::Tensor &gk, torch::Tensor &gv, torch::Tensor &gw, torch::Tensor &gu) {
cuda_backward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), ww.data_ptr<float>(), u.data_ptr<bf16>(), gy.data_ptr<bf16>(), gr.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>());
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "wkv5 forward");
m.def("backward", &backward, "wkv5 backward");
}
TORCH_LIBRARY(wkv5, m) {
m.def("forward", forward);
m.def("backward", backward);
}

View File

@@ -1,242 +0,0 @@
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
template <typename F>
__global__ void kernel_forward(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u,
F *__restrict__ const _y)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_u += h*_N_;
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
float state[_N_] = {0};
__syncthreads();
u[i] = float(_u[i]);
__syncthreads();
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
{
__syncthreads();
w[i] = exp(_w[t]);
r[i] = float(_r[t]);
k[i] = float(_k[t]);
__syncthreads();
const float v = float(_v[t]);
float y = 0;
#pragma unroll
for (int j = 0; j < _N_; j+=4)
{
const float4& r_ = (float4&)(r[j]);
const float4& k_ = (float4&)(k[j]);
const float4& w_ = (float4&)(w[j]);
const float4& u_ = (float4&)(u[j]);
float4& s = (float4&)(state[j]);
float4 x;
x.x = k_.x * v;
x.y = k_.y * v;
x.z = k_.z * v;
x.w = k_.w * v;
y += r_.x * (u_.x * x.x + s.x);
y += r_.y * (u_.y * x.y + s.y);
y += r_.z * (u_.z * x.z + s.z);
y += r_.w * (u_.w * x.w + s.w);
s.x = s.x * w_.x + x.x;
s.y = s.y * w_.y + x.y;
s.z = s.z * w_.z + x.z;
s.w = s.w * w_.w + x.w;
}
_y[t] = F(y);
}
}
template <typename F>
__global__ void kernel_backward_111(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u, const F *__restrict__ const _gy,
F *__restrict__ const _gr, F *__restrict__ const _gk, F *__restrict__ const _gv, F *__restrict__ const _gu)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_u += h*_N_;
__shared__ float u_[_N_];
__shared__ float r[_N_], k[_N_], v[_N_], w_[_N_], gy[_N_];
__syncthreads();
u_[i] = float(_u[i]);
__syncthreads();
const float u = u_[i];
float state[_N_] = {0}, scccc[_N_] = {0}, sdddd[_N_] = {0};
const int t_0 = b*T*C + h*_N_ + i;
const int t_T_1 = t_0 + (T-1)*C;
const int t_T = t_0 + T*C;
float gu = 0;
for (int t = t_0; t < t_T; t += C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float k = float(_k[t]);
const float w = exp(_w[t]);
float gr = 0, gu_ = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = state[j];
float x = k * v[j];
gr += (u * x + s) * gy[j];
gu_ += x * gy[j];
s = s * w + x;
}
_gr[t] = F(gr);
gu += float(_r[t]) * gu_;
}
_gu[b*C + h*_N_ + i] = F(gu);
for (int t = t_T_1; t >= t_0; t -= C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float rr = float(_r[t]);
const float w = exp(_w[t]);
float gk = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
float x = rr * gy[j];
gk += (u * x + s) * v[j];
s = x + s * w;
}
_gk[t] = F(gk);
}
for (int t = t_T_1; t >= t_0; t -= C)
{
__syncthreads();
r[i] = float(_r[t]);
k[i] = float(_k[t]);
w_[i] = exp(_w[t]);
__syncthreads();
const float gyy = float(_gy[t]);
float gv = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = sdddd[j];
float x = gyy * r[j];
gv += (u_[j] * x + s) * k[j];
s = x + s * w_[j];
}
_gv[t] = F(gv);
}
}
template <typename F>
__global__ void kernel_backward_222(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u, const F *__restrict__ const _gy,
F *__restrict__ const _gw)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
__shared__ float v[_N_], gy[_N_];
float saaaa[_N_] = {0}, sbbbb[_T_-2] = {0}, scccc[_N_] = {0};
const int t_0 = b*T*C + h*_N_ + i;
const int t_1 = t_0 + C;
const int t_2 = t_0 + 2*C;
const int t_T_1 = t_0 + (T-1)*C;
for (int t = t_T_1; t > t_1; t -= C)
{
__syncthreads();
gy[i] = float(_gy[t]);
v[i] = float(_v[t-2*C]);
__syncthreads();
const float r = float(_r[t]);
const float w = exp(_w[t-C]);
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = saaaa[j];
float x = r * gy[j];
s = (s + x) * w;
sum += s * v[j];
}
sbbbb[(t-t_2)/C] = sum * float(_k[t-2*C]);
}
float sss = sbbbb[0];
_gw[t_0] = 0;
_gw[t_1] = F(sss * _w[t_1]);
for (int t = t_2; t < t_T_1; t += C)
{
__syncthreads();
gy[i] = float(_gy[t]);
v[i] = float(_v[t-2*C]);
__syncthreads();
const float w = exp(_w[t-C]);
const float k = float(_k[t-2*C]);
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
float x = k * v[j];
s = (s + x) * w;
sum += s * gy[j];
}
sss += sbbbb[(t-t_1)/C] - (sum * float(_r[t]));
_gw[t] = F(sss * _w[t]);
}
_gw[t_T_1] = 0;
}
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, y);
}
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_backward_111<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, gy, gr, gk, gv, gu);
kernel_backward_222<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, gy, gw);
}

View File

@@ -1,22 +0,0 @@
#include <torch/extension.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y);
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu);
void forward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
cuda_forward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), y.data_ptr<bf16>());
}
void backward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &gy, torch::Tensor &gr, torch::Tensor &gk, torch::Tensor &gv, torch::Tensor &gw, torch::Tensor &gu) {
cuda_backward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), gy.data_ptr<bf16>(), gr.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>());
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "wkv6 forward");
m.def("backward", &backward, "wkv6 backward");
}
TORCH_LIBRARY(wkv6, m) {
m.def("forward", forward);
m.def("backward", backward);
}

View File

View File

@@ -1,303 +0,0 @@
from lib2to3.pgen2 import token
import os
import torch
import numpy as np
import shutil
import struct
from functools import lru_cache
from itertools import accumulate
def print_rank_0(*message):
pass
# """If distributed is initialized print only on rank 0."""
# if torch.distributed.is_initialized():
# if torch.distributed.get_rank() == 0:
# print(*message, flush=True)
# else:
# print(*message, flush=True)
def _warmup_mmap_file(path):
pass
# with open(path, "rb") as stream:
# while stream.read(100 * 1024 * 1024):
# pass
dtypes = {
1: np.uint8,
2: np.int8,
3: np.int16,
4: np.int32,
5: np.int64,
6: float,
7: np.double,
8: np.uint16,
}
def code(dtype):
for k in dtypes.keys():
if dtypes[k] == dtype:
return k
raise ValueError(dtype)
def index_file_path(prefix_path):
return prefix_path + ".idx"
def data_file_path(prefix_path):
return prefix_path + ".bin"
class MMapIndexedDataset(torch.utils.data.Dataset):
class Index(object):
_HDR_MAGIC = b"MMIDIDX\x00\x00"
@classmethod
def writer(cls, path, dtype):
class _Writer(object):
def __enter__(self):
self._file = open(path, "wb")
# Write Magic string so we can check the file format then opening it again.
self._file.write(cls._HDR_MAGIC)
# Write version number
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", 1))
# Little endian unsigned 8 Bit integer
self._file.write(struct.pack("<B", code(dtype)))
return self
@staticmethod
def _get_pointers(sizes):
dtype_size = dtype().itemsize
address = 0
pointers = []
for size in sizes:
pointers.append(address)
address += size * dtype_size
return pointers
def write(self, sizes, doc_idx):
pointers = self._get_pointers(sizes)
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", len(sizes)))
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", len(doc_idx)))
sizes = np.array(sizes, dtype=np.int32)
self._file.write(sizes.tobytes(order="C"))
del sizes
pointers = np.array(pointers, dtype=np.int64)
self._file.write(pointers.tobytes(order="C"))
del pointers
doc_idx = np.array(doc_idx, dtype=np.int64)
self._file.write(doc_idx.tobytes(order="C"))
def __exit__(self, exc_type, exc_val, exc_tb):
self._file.close()
return _Writer()
def __init__(self, path, skip_warmup=False):
with open(path, "rb") as stream:
magic_test = stream.read(9)
assert self._HDR_MAGIC == magic_test, (
"Index file doesn't match expected format. "
"Make sure that --dataset-impl is configured properly."
)
# Little endian unsigned 64 Bit integer
version = struct.unpack("<Q", stream.read(8))
assert (1,) == version
# Little endian unsigned 8 Bit integer
(dtype_code,) = struct.unpack("<B", stream.read(1))
self._dtype = dtypes[dtype_code]
self._dtype_size = self._dtype().itemsize
self._len = struct.unpack("<Q", stream.read(8))[0]
self._doc_count = struct.unpack("<Q", stream.read(8))[0]
offset = stream.tell()
if not skip_warmup:
print_rank_0(" warming up index mmap file...")
_warmup_mmap_file(path)
self._bin_buffer_mmap = np.memmap(path, mode="r", order="C")
self._bin_buffer = memoryview(self._bin_buffer_mmap)
print_rank_0(" reading sizes...")
self._sizes = np.frombuffer(
self._bin_buffer, dtype=np.int32, count=self._len, offset=offset
)
print_rank_0(" reading pointers...")
self._pointers = np.frombuffer(
self._bin_buffer,
dtype=np.int64,
count=self._len,
offset=offset + self._sizes.nbytes,
)
print_rank_0(" reading document index...")
self._doc_idx = np.frombuffer(
self._bin_buffer,
dtype=np.int64,
count=self._doc_count,
offset=offset + self._sizes.nbytes + self._pointers.nbytes,
)
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
@property
def dtype(self):
return self._dtype
@property
def sizes(self):
return self._sizes
@property
def doc_idx(self):
return self._doc_idx
@lru_cache(maxsize=8)
def __getitem__(self, i):
return self._pointers[i], self._sizes[i]
def __len__(self):
return self._len
def __init__(self, path, skip_warmup=False):
super().__init__()
self._path = None
self._index = None
self._bin_buffer = None
self._do_init(path, skip_warmup)
def __getstate__(self):
return self._path
def __setstate__(self, state):
self._do_init(state)
def _do_init(self, path, skip_warmup):
self._path = path
self._index = self.Index(index_file_path(self._path), skip_warmup)
if not skip_warmup:
print_rank_0(" warming up data mmap file...")
_warmup_mmap_file(data_file_path(self._path))
print_rank_0(" creating numpy buffer of mmap...")
self._bin_buffer_mmap = np.memmap(
data_file_path(self._path), mode="r", order="C"
)
print_rank_0(" creating memory view of numpy buffer...")
self._bin_buffer = memoryview(self._bin_buffer_mmap)
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
del self._index
def __len__(self):
return len(self._index)
# @lru_cache(maxsize=8)
def __getitem__(self, idx):
if isinstance(idx, int):
ptr, size = self._index[idx]
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
)
return np_array
elif isinstance(idx, slice):
start, stop, step = idx.indices(len(self))
if step != 1:
raise ValueError("Slices into indexed_dataset must be contiguous")
ptr = self._index._pointers[start]
sizes = self._index._sizes[idx]
offsets = list(accumulate(sizes))
total_size = sum(sizes)
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=total_size, offset=ptr
)
sents = np.split(np_array, offsets[:-1])
return sents
def get(self, idx, offset=0, length=None):
"""Retrieves a single item from the dataset with the option to only
return a portion of the item.
get(idx) is the same as [idx] but get() does not support slicing.
"""
ptr, size = self._index[idx]
if length is None:
length = size - offset
ptr += offset * np.dtype(self._index.dtype).itemsize
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=length, offset=ptr
)
return np_array
def pad(self, idx, length=None):
ptr, size = self._index[idx]
try:
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=length, offset=ptr
)
except:
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
)
ptr0, _ = self._index[0]
np_array0 = np.frombuffer(
self._bin_buffer,
dtype=self._index.dtype,
count=length - size,
offset=ptr0,
)
np_array = np.append(np_array, np_array0)
return np_array
def only(self, idx):
ptr, size = self._index[idx]
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
)
return np_array
@property
def sizes(self):
return self._index.sizes
@property
def doc_idx(self):
return self._index.doc_idx
def get_doc_idx(self):
return self._index._doc_idx
def set_doc_idx(self, doc_idx_):
self._index._doc_idx = doc_idx_
@property
def supports_prefetch(self):
return False
@staticmethod
def exists(path):
return os.path.exists(index_file_path(path)) and os.path.exists(
data_file_path(path)
)

View File

@@ -1,242 +0,0 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import json, math, random, os, sys
import numpy as np
import torch
from torch.utils.data import Dataset
from pytorch_lightning.utilities import rank_zero_info
from .binidx import MMapIndexedDataset
from .utils import MaybeIsPrime
class MyDataset(Dataset):
def __init__(self, args):
self.args = args
if args.data_type == "binidx":
self.vocab_size = args.vocab_size
rank_zero_info(
f"Current vocab size = {self.vocab_size} (make sure it's correct)"
)
if args.my_pile_version == 1:
self.data = MMapIndexedDataset(args.data_file)
self.data_size = (
len(self.data._bin_buffer) // self.data._index._dtype_size
)
rank_zero_info(f"Data has {self.data_size} tokens.")
elif args.my_pile_version == 2:
data_list = (
open(args.data_file, "r", encoding="utf-8")
.read()
.strip()
.split("\n")
)
data_list = [i.strip().split(" ") for i in data_list]
self.data = []
self.data_size = int(data_list[-1][-1])
rank_zero_info(f"Data has {self.data_size} chunks.")
for d in data_list:
data = MMapIndexedDataset(d[0])
data_size = len(data._bin_buffer) // data._index._dtype_size
assert (data_size - args.ctx_len) == int(d[1])
self.data += [[int(d[-1]), int(d[1]), data]]
# rank_zero_info(self.data)
if args.my_qa_mask > 0:
# self.data_pile = MMapIndexedDataset('/fsx/pile/pile_20B_tokenizer_text_document')
self.data_pile = MMapIndexedDataset(
"/fsx/pile_deduped/pile_0.87_deduped_text_document"
)
self.data_pile_size = (
len(self.data_pile._bin_buffer) // self.data._index._dtype_size
)
else:
self.data_pile = None
self.data_pile_size = 0
if args.my_pile_stage > 0:
# assert self.data_size == 332115325534 and self.vocab_size == 50277
self.samples_per_epoch = args.epoch_steps * args.real_bsz
assert self.samples_per_epoch == 40320
rank_zero_info(
f"########## Pile 20b-tokenized stage {args.my_pile_stage} ##########"
)
dataset_slot = self.data_size // args.ctx_len
if args.my_pile_stage != 4:
assert MaybeIsPrime(args.magic_prime)
assert args.magic_prime % 3 == 2
assert (
args.magic_prime / dataset_slot > 0.99
and args.magic_prime / dataset_slot <= 1
)
elif args.data_type == "numpy":
self.data = np.load(args.data_file).astype("int")
self.vocab_size = args.vocab_size
rank_zero_info(
f"Current vocab size = {self.vocab_size} (make sure it's correct)"
)
self.data_size = len(self.data)
rank_zero_info(f"Data has {self.data_size} tokens.")
elif args.data_type == "uint16":
self.data = (
np.fromfile(args.data_file, dtype=np.uint16)
.astype("int32")
.reshape(-1, args.my_sample_len)
)
self.vocab_size = args.vocab_size
rank_zero_info(
f"Current vocab size = {self.vocab_size} (make sure it's correct)"
)
self.data_size = self.data.shape[0]
rank_zero_info(f"Data has {self.data_size} samples.")
else:
if args.data_type == "dummy":
rank_zero_info("Building dummy data...")
self.data = ""
for i in range(100000):
aa = (i) % 10000
bb = (i * i) % 10000
cc = aa + bb
self.data += f".{aa}+{bb}={cc}."
else:
self.data = open(args.data_file, "r", encoding=args.data_type).read()
rank_zero_info("Building token list...")
unique = sorted(list(set(self.data)))
self.vocab_size = len(unique)
# rank_zero_info()
# for u in unique:
# print(u, end=' ')
# rank_zero_info('\n\n')
xx = 0
xxObj = {}
for u in unique:
xxObj[xx] = u
xx += 1
with open(
f"{args.proj_dir}/vocab.json", "w", encoding="utf-8"
) as vocab_file:
vocab_file.write(json.dumps(xxObj, ensure_ascii=False))
self.data_size = len(self.data)
rank_zero_info(
f"Data has {self.data_size} tokens, {self.vocab_size} vocab size."
)
self.stoi = {ch: i for i, ch in enumerate(unique)}
self.itos = {i: ch for i, ch in enumerate(unique)}
def __len__(self):
return self.args.epoch_steps * self.args.micro_bsz
def __getitem__(self, idx):
args = self.args
rank = self.global_rank
epoch = self.real_epoch
world_size = self.world_size
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size}")
if args.data_type == "uint16":
i = np.random.randint(0, self.data_size - 1)
dix = self.data[i]
x = torch.tensor(dix[:-1], dtype=torch.long)
y = torch.tensor(dix[1:], dtype=torch.long)
else:
ctx_len = args.ctx_len
req_len = ctx_len + 1
magic_prime = args.magic_prime
data = self.data
if args.my_pile_stage > 0:
ii = 1 + epoch * self.samples_per_epoch + (idx * world_size) + rank
if args.my_qa_mask > 0:
ii_orig = ii
if ii % 2 == 0:
ii = -1
data = self.data_pile
else:
ii = ii // 2
if data == self.data_pile:
i = np.random.randint(0, self.data_pile_size - req_len)
else:
if args.my_pile_stage == 4 or ii < args.my_random_steps:
# cheat: pick a random spot in dataset
if args.my_pile_version == 1:
i = np.random.randint(0, self.data_size - req_len)
else:
i = np.random.randint(0, self.data_size)
else:
ii = ii - args.my_random_steps
factor = (math.sqrt(5) - 1) / 2
factor = int(magic_prime * factor)
i = ((factor * ii * ii * ii) % magic_prime) * ctx_len
i = i + args.my_pile_shift
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size} ii {ii} pos {round(i / self.data_size, 3)}")
else:
# cheat: pick a random spot in dataset
i = np.random.randint(0, self.data_size - req_len)
if args.data_type == "binidx":
if args.my_pile_version == 1:
dix = data.get(idx=0, offset=i, length=req_len).astype(int)
# dix = data.pad(idx=idx, length=req_len).astype(int)
else:
# self.data : cutoff, chunk_count, data
for j in range(len(data)):
if i < data[j][0]:
ii = i
i = (i - (data[j - 1][0] if j > 0 else 0)) % data[j][1]
dix = (
data[j][2]
.get(idx=0, offset=i, length=req_len)
.astype(int)
)
# print(ii, j, i)
break
elif args.data_type == "numpy":
dix = data[i : i + req_len]
else:
dix = [self.stoi[s] for s in data[i : i + req_len]]
if args.my_qa_mask == 1:
if data == self.data_pile:
z = [1] * ctx_len
else:
z = [0] * ctx_len
z_sum = 0
isGood = False
for i in range(3, ctx_len):
if (
dix[i] == 27
and dix[i - 1] == 34
and dix[i - 2] == 187
and dix[i - 3] == 187
):
isGood = True
if dix[i] == 0:
isGood = False
if isGood:
z[i] = 1
z_sum += 1
if z_sum == 0:
z = [1] * ctx_len
i = np.random.randint(0, self.data_pile_size - req_len)
dix = self.data_pile.get(
idx=0, offset=i, length=req_len
).astype(int)
z = torch.tensor(z, dtype=torch.bfloat16)
x = torch.tensor(dix[:-1], dtype=torch.long)
y = torch.tensor(dix[1:], dtype=torch.long)
# if ii_orig < 50:
# # if rank == 1:
# print('rank', rank, 'i', ii_orig, ii, i, 'x', x[:5], '...', x[-5:])
# else:
# exit(0)
if args.my_qa_mask == 1:
return x, y, z
return x, y

File diff suppressed because it is too large Load Diff

View File

@@ -1,310 +0,0 @@
import os, math, time, datetime, subprocess
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
from .model import LORA_CONFIG
def my_save(args, trainer, dd, ff):
if "14b-run1" in ff:
fn = ff.split("/")[-1]
fff = "/dev/shm/" + fn
torch.save(dd, fff)
subprocess.Popen(f" aws s3 mv {fff} s3://rwkv-14b-4k/{fn} --quiet", shell=True)
elif ("world/14b" in ff) or ("world/7b" in ff):
aa = ff.split("/")[1]
fn = ff.split("/")[-1]
fff = f"/dev/shm/{aa}-{fn}"
torch.save(dd, fff)
subprocess.Popen(
f" aws s3 mv {fff} s3://rwkv-world/{aa}-{fn} --quiet", shell=True
)
else:
if "deepspeed_stage_3" in args.strategy:
trainer.save_checkpoint(ff, weights_only=True)
else:
torch.save(dd, ff)
class train_callback(pl.Callback):
def __init__(self, args):
super().__init__()
self.args = args
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx):
args = self.args
# if args.cuda_cleanup > 0:
# torch.cuda.empty_cache()
real_step = trainer.global_step + args.epoch_begin * args.epoch_steps
# LR schedule
w_step = args.warmup_steps
if args.lr_final == args.lr_init or args.epoch_count == 0:
lr = args.lr_init
else:
decay_step = real_step - args.my_pile_edecay * args.epoch_steps
decay_total = (args.epoch_count - args.my_pile_edecay) * args.epoch_steps
progress = (decay_step - w_step + 1) / (decay_total - w_step)
progress = min(1, max(0, progress))
if args.lr_final == 0 or args.lr_init == 0: # linear decay
lr = args.lr_init + (args.lr_final - args.lr_init) * progress
else: # exp decay
lr = args.lr_init * math.exp(
math.log(args.lr_final / args.lr_init) * pow(progress, 1)
)
# if trainer.is_global_zero:
# print(trainer.global_step, decay_step, decay_total, w_step, progress, lr)
if args.my_exit_tokens != 0: # cosine decay
real_tokens = real_step * args.ctx_len * args.real_bsz
warmup_tokens = w_step * args.ctx_len * args.real_bsz
progress = (real_tokens - warmup_tokens) / (
abs(args.my_exit_tokens) - warmup_tokens
)
progress = max(0, min(1, progress))
lr_final_factor = args.lr_final / args.lr_init
lr_mult = (0.5 + lr_final_factor / 2) + (
0.5 - lr_final_factor / 2
) * math.cos(math.pi * progress)
if args.my_exit_tokens > 0:
lr = args.lr_init * lr_mult
else:
lr = (lr + args.lr_init * lr_mult) / 2
if progress >= 1:
if (trainer.is_global_zero) or ("deepspeed_stage_3" in args.strategy):
my_save(
args,
trainer,
pl_module.state_dict(),
f"{args.proj_dir}/rwkv-final.pth",
)
exit(0)
if trainer.global_step < w_step:
lr = lr * (0.2 + 0.8 * trainer.global_step / w_step)
if args.weight_decay_final > 0:
wd_now = args.weight_decay * math.exp(
math.log(args.weight_decay_final / args.weight_decay) * progress
)
else:
wd_now = args.weight_decay
for param_group in trainer.optimizers[0].param_groups:
if param_group["weight_decay"] > 0:
param_group["weight_decay"] = wd_now
if args.layerwise_lr > 0:
param_group["lr"] = lr * param_group["my_lr_scale"]
# print(param_group["lr"], param_group["my_lr_scale"])
else:
param_group["lr"] = lr
trainer.my_lr = lr
trainer.my_wd = wd_now
# rank_zero_info(f"{real_step} {lr}")
if trainer.global_step == 0:
if trainer.is_global_zero: # logging
trainer.my_loss_sum = 0
trainer.my_loss_count = 0
trainer.my_log = open(args.proj_dir + "/train_log.txt", "a")
trainer.my_log.write(
f"NEW RUN {args.my_timestamp}\n{vars(self.args)}\n"
)
try:
print(f"\n{trainer.strategy.config}\n")
trainer.my_log.write(f"{trainer.strategy.config}\n")
except:
pass
trainer.my_log.flush()
if len(args.wandb) > 0:
print("Login to wandb...")
import wandb
wandb.init(
project=args.wandb,
name=args.run_name + " " + args.my_timestamp,
config=args,
save_code=False,
)
trainer.my_wandb = wandb
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
args = self.args
token_per_step = args.ctx_len * args.real_bsz
real_step = trainer.global_step + args.epoch_begin * args.epoch_steps
if trainer.is_global_zero: # logging
t_now = time.time_ns()
kt_s = 0
try:
t_cost = (t_now - trainer.my_time_ns) / 1e9
kt_s = token_per_step / t_cost / 1000
self.log("REAL it/s", 1.0 / t_cost, prog_bar=True, on_step=True)
self.log("Kt/s", kt_s, prog_bar=True, on_step=True)
except:
pass
trainer.my_time_ns = t_now
if pl.__version__[0] == "2":
trainer.my_loss = outputs["loss"]
else:
trainer.my_loss = trainer.my_loss_all.float().mean().item()
trainer.my_loss_sum += trainer.my_loss
trainer.my_loss_count += 1
trainer.my_epoch_loss = trainer.my_loss_sum / trainer.my_loss_count
self.log("lr", trainer.my_lr, prog_bar=True, on_step=True)
self.log("loss", trainer.my_epoch_loss, prog_bar=True, on_step=True)
# self.log("s", real_step, prog_bar=True, on_step=True)
if len(args.wandb) > 0:
lll = {
"loss": trainer.my_loss,
"lr": trainer.my_lr,
"wd": trainer.my_wd,
"Gtokens": real_step * token_per_step / 1e9,
}
if kt_s > 0:
lll["kt/s"] = kt_s
trainer.my_wandb.log(lll, step=int(real_step))
if (trainer.is_global_zero) or (
"deepspeed_stage_3" in args.strategy
): # save pth
if args.magic_prime > 0:
expand_factor = 2 if args.my_qa_mask > 0 else 1
if int(real_step) == int(
args.magic_prime * expand_factor // args.real_bsz
) - 1 + int(args.my_random_steps):
to_save_dict = pl_module.state_dict()
my_save(
args,
trainer,
to_save_dict,
f"{args.proj_dir}/rwkv-final.pth",
)
# if args.batch_save==batch_idx :
# to_save_dict = pl_module.state_dict()
# for name, state in to_save_dict.items():
# if 'img' in name:
# to_save_dict[name] = state
# try:
# my_save(
# args, trainer,
# to_save_dict,
# f"{args.proj_dir}/rwkv-{args.epoch_begin + trainer.current_epoch}-{batch_idx}.pth",
# )
# except Exception as e:
# print('Error\n\n', e, '\n\n')
def on_train_epoch_start(self, trainer, pl_module):
args = self.args
if pl.__version__[0] == "2":
dataset = trainer.train_dataloader.dataset
else:
dataset = trainer.train_dataloader.dataset.datasets
assert "MyDataset" in str(dataset)
dataset.global_rank = trainer.global_rank
dataset.real_epoch = int(args.epoch_begin + trainer.current_epoch)
dataset.world_size = trainer.world_size
# print(f'########## world_size {dataset.world_size} global_rank {dataset.global_rank} real_epoch {dataset.real_epoch} ##########')
def on_train_epoch_end(self, trainer, pl_module):
args = self.args
to_save_dict = {}
if (trainer.is_global_zero) or (
"deepspeed_stage_3" in args.strategy
): # save pth
if (
args.epoch_save > 0 and trainer.current_epoch % args.epoch_save == 0
) or (trainer.current_epoch == args.epoch_count - 1):
if args.data_type == "wds_img":
raw_dict = pl_module.state_dict()
for k in raw_dict:
if k.startswith("encoder.") or k.startswith("decoder."):
to_save_dict[k] = raw_dict[k]
else:
to_save_dict = pl_module.state_dict()
if args.data_type == "img" and not args.lora:
for name, state in to_save_dict.items():
if "img" in name:
to_save_dict[name] = state
if args.lora:
enable_time_finetune = "time" in LORA_CONFIG["parts"]
enable_ln_finetune = "ln" in LORA_CONFIG["parts"]
lora_dict = {}
for name, state in to_save_dict.items():
if "img" in name:
lora_dict[name] = state
if (
".lora_" in name
or (enable_time_finetune and ".time_" in name)
or (enable_ln_finetune and ".ln" in name)
):
lora_dict[name] = state
to_save_dict = lora_dict
try:
my_save(
args,
trainer,
to_save_dict,
f"{args.proj_dir}/rwkv-{args.epoch_begin + trainer.current_epoch}.pth",
)
except Exception as e:
print("Error\n\n", e, "\n\n")
if trainer.is_global_zero: # logging
trainer.my_log.write(
f"{args.epoch_begin + trainer.current_epoch} {trainer.my_epoch_loss:.6f} {math.exp(trainer.my_epoch_loss):.4f} {trainer.my_lr:.8f} {datetime.datetime.now()} {trainer.current_epoch}\n"
)
trainer.my_log.flush()
trainer.my_loss_sum = 0
trainer.my_loss_count = 0
if (args.epoch_begin + trainer.current_epoch) >= args.my_exit:
exit(0)
@rank_zero_only
def generate_init_weight(model, init_weight_name):
mm = model.generate_init_weight()
if model.args.my_pile_stage == 1:
if len(model.args.load_model) > 0:
print(f"Combine weights from {model.args.load_model}...")
load_dict = torch.load(model.args.load_model, map_location="cpu")
for k in load_dict:
try:
assert k in mm
except:
print("missing", k)
exit(0)
src = load_dict[k]
try:
mm[k] = src.reshape(mm[k].shape)
except:
tmp = mm[k].squeeze().clone()
print(k, src.shape, "-->", mm[k].shape)
ss = src.shape[0]
dd = tmp.shape[0]
for i in range(dd):
pos = i / dd * ss
if pos >= ss - 1:
tmp[i] = src[ss - 1]
else:
p0 = int(math.floor(pos))
ii = pos - p0
tmp[i] = src[p0] * (1 - ii) + src[p0 + 1] * (ii)
mm[k] = tmp.reshape(mm[k].shape)
sss = src.squeeze().float().cpu().numpy()
print(sss[:10], "...", sss[-10:])
mmm = mm[k].squeeze().float().cpu().numpy()
print(mmm[:10], "...", mmm[-10:])
print(f"Save to {init_weight_name}...")
torch.save(mm, init_weight_name)
if model.args.my_pile_stage == 1:
print("Done. Now go for stage 2.")
exit(0)

View File

@@ -1,139 +0,0 @@
import json, time, random, os
import numpy as np
import torch
from torch.nn import functional as F
time_slot = {}
time_ref = time.time_ns()
def record_time(name):
if name not in time_slot:
time_slot[name] = 1e20
tt = (time.time_ns() - time_ref) / 1e9
if tt < time_slot[name]:
time_slot[name] = tt
class TOKENIZER:
def __init__(self, WORD_NAME, UNKNOWN_CHAR="\ue083"):
if "list" in str(type(WORD_NAME)):
self.charMode = False
if WORD_NAME[0] == WORD_NAME[1]:
from transformers import PreTrainedTokenizerFast
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=WORD_NAME[0])
else:
from transformers import GPT2TokenizerFast
self.tokenizer = GPT2TokenizerFast(WORD_NAME[0], WORD_NAME[1])
self.vocab_size = len(self.tokenizer)
else:
self.charMode = True
with open(WORD_NAME + ".json", "r", encoding="utf-16") as result_file:
self.word_table = json.load(result_file)
self.vocab_size = len(self.word_table)
self.stoi = {v: int(k) for k, v in self.word_table.items()}
self.itos = {int(k): v for k, v in self.word_table.items()}
self.UNKNOWN_CHAR = self.stoi[UNKNOWN_CHAR]
def refine_context(self, context):
context = context.strip().split("\n")
for c in range(len(context)):
context[c] = context[c].strip().strip("\u3000").strip("\r")
context = list(filter(lambda c: c != "", context))
context = "\n" + ("\n".join(context)).strip()
if context == "":
context = "\n"
return context
def sample_logits(
self, out, x, ctx_len, temperature=1.0, top_p_usual=None, top_p_newline=None
):
# out[self.UNKNOWN_CHAR] = -float('Inf')
lastChar = int(x[-1])
probs = F.softmax(out, dim=-1)
if self.charMode:
if self.itos[lastChar] == "\n":
top_p = top_p_newline
else:
top_p = top_p_usual
else:
top_p = top_p_usual
if os.environ["RWKV_RUN_DEVICE"] == "cpu":
probs = probs.numpy()
sorted_probs = np.sort(probs)[::-1]
cumulative_probs = np.cumsum(sorted_probs)
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
probs[probs < cutoff] = 0
if temperature != 1.0:
probs = probs.pow(1.0 / temperature)
probs = probs / np.sum(probs)
out = np.random.choice(a=len(probs), p=probs)
return out
else:
sorted_probs = torch.sort(probs, descending=True)[0]
cumulative_probs = torch.cumsum(sorted_probs, dim=-1).cpu().numpy()
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
probs[probs < cutoff] = 0
if temperature != 1.0:
probs = probs.pow(1.0 / temperature)
out = torch.multinomial(probs, num_samples=1)[0]
return out
def MaybeIsPrime(number):
if FermatPrimalityTest(number) and MillerRabinPrimalityTest(number):
return True
else:
return False
def FermatPrimalityTest(number):
if number > 1:
for time in range(3):
randomNumber = random.randint(2, number) - 1
if pow(randomNumber, number - 1, number) != 1:
return False
return True
else:
return False
def MillerRabinPrimalityTest(number):
if number == 2:
return True
elif number == 1 or number % 2 == 0:
return False
oddPartOfNumber = number - 1
timesTwoDividNumber = 0
while oddPartOfNumber % 2 == 0:
oddPartOfNumber = oddPartOfNumber // 2
timesTwoDividNumber = timesTwoDividNumber + 1
for time in range(3):
while True:
randomNumber = random.randint(2, number) - 1
if randomNumber != 0 and randomNumber != 1:
break
randomNumberWithPower = pow(randomNumber, oddPartOfNumber, number)
if (randomNumberWithPower != 1) and (randomNumberWithPower != number - 1):
iterationNumber = 1
while (iterationNumber <= timesTwoDividNumber - 1) and (
randomNumberWithPower != number - 1
):
randomNumberWithPower = pow(randomNumberWithPower, 2, number)
iterationNumber = iterationNumber + 1
if randomNumberWithPower != (number - 1):
return False
return True

View File

@@ -1,435 +0,0 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import logging
logging.basicConfig(level=logging.INFO)
if __name__ == "__main__":
from argparse import ArgumentParser
from pytorch_lightning import Trainer
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
import pytorch_lightning as pl
rank_zero_info("########## work in progress ##########")
parser = ArgumentParser()
parser.add_argument("--load_model", default="", type=str) # full path, with .pth
parser.add_argument(
"--wandb", default="", type=str
) # wandb project name. if "" then don't use wandb
parser.add_argument("--proj_dir", default="out", type=str)
parser.add_argument("--random_seed", default="-1", type=int)
parser.add_argument("--data_file", default="", type=str)
parser.add_argument("--data_type", default="utf-8", type=str)
parser.add_argument(
"--vocab_size", default=0, type=int
) # vocab_size = 0 means auto (for char-level LM and .txt data)
parser.add_argument("--ctx_len", default=1024, type=int)
parser.add_argument(
"--epoch_steps", default=1000, type=int
) # a mini "epoch" has [epoch_steps] steps
parser.add_argument(
"--epoch_count", default=500, type=int
) # train for this many "epochs". will continue afterwards with lr = lr_final
parser.add_argument(
"--epoch_begin", default=0, type=int
) # if you load a model trained for x "epochs", set epoch_begin = x
parser.add_argument(
"--epoch_save", default=5, type=int
) # save the model every [epoch_save] "epochs"
parser.add_argument(
"--micro_bsz", default=12, type=int
) # micro batch size (batch size per GPU)
parser.add_argument("--n_layer", default=6, type=int)
parser.add_argument("--n_embd", default=512, type=int)
parser.add_argument("--dim_att", default=0, type=int)
parser.add_argument("--dim_ffn", default=0, type=int)
parser.add_argument(
"--pre_ffn", default=0, type=int
) # replace first att layer by ffn (sometimes better)
parser.add_argument("--head_qk", default=0, type=int) # my headQK trick
parser.add_argument("--tiny_att_dim", default=0, type=int) # tiny attention dim
parser.add_argument(
"--tiny_att_layer", default=-999, type=int
) # tiny attention @ which layer
parser.add_argument(
"--lr_init", default=6e-4, type=float
) # 6e-4 for L12-D768, 4e-4 for L24-D1024, 3e-4 for L24-D2048
parser.add_argument("--lr_final", default=1e-5, type=float)
parser.add_argument(
"--warmup_steps", default=-1, type=int
) # try 50 if you load a model
parser.add_argument("--beta1", default=0.9, type=float)
parser.add_argument(
"--beta2", default=0.99, type=float
) # use 0.999 when your model is close to convergence
parser.add_argument("--adam_eps", default=1e-8, type=float)
parser.add_argument(
"--grad_cp", default=0, type=int
) # gradient checkpt: saves VRAM, but slower
parser.add_argument(
"--dropout", default=0, type=float
) # try 0.01 / 0.02 / 0.05 / 0.1
parser.add_argument(
"--weight_decay", default=0, type=float
) # try 0.1 / 0.01 / 0.001
parser.add_argument("--weight_decay_final", default=-1, type=float)
parser.add_argument(
"--my_pile_version", default=1, type=int
) # my special pile version
parser.add_argument("--my_pile_stage", default=0, type=int) # my special pile mode
parser.add_argument(
"--my_pile_shift", default=-1, type=int
) # my special pile mode - text shift
parser.add_argument("--my_pile_edecay", default=0, type=int)
parser.add_argument(
"--layerwise_lr", default=1, type=int
) # layerwise lr for faster convergence (but slower it/s)
parser.add_argument(
"--ds_bucket_mb", default=200, type=int
) # deepspeed bucket size in MB. 200 seems enough
# parser.add_argument("--cuda_cleanup", default=0, type=int) # extra cuda cleanup (sometimes helpful)
parser.add_argument("--my_sample_len", default=0, type=int)
parser.add_argument("--my_ffn_shift", default=1, type=int)
parser.add_argument("--my_att_shift", default=1, type=int)
parser.add_argument(
"--head_size_a", default=64, type=int
) # can try larger values for larger models
parser.add_argument("--head_size_divisor", default=8, type=int)
parser.add_argument("--my_pos_emb", default=0, type=int)
parser.add_argument("--load_partial", default=0, type=int)
parser.add_argument("--magic_prime", default=0, type=int)
parser.add_argument("--my_qa_mask", default=0, type=int)
parser.add_argument("--my_random_steps", default=0, type=int)
parser.add_argument("--my_testing", default="", type=str)
parser.add_argument("--my_exit", default=99999999, type=int)
parser.add_argument("--my_exit_tokens", default=0, type=int)
# LORA
parser.add_argument("--emb", action="store_true")
parser.add_argument("--lora", action="store_true")
parser.add_argument("--lora_load", default="", type=str)
parser.add_argument("--lora_r", default=8, type=int)
parser.add_argument("--lora_alpha", default=32, type=float)
parser.add_argument("--lora_dropout", default=0.01, type=float)
parser.add_argument("--lora_parts", default="att,ln,time", type=str)
if pl.__version__[0] == "2":
parser.add_argument("--accelerator", default="gpu", type=str)
parser.add_argument("--strategy", default="auto", type=str)
parser.add_argument("--devices", default=1, type=int)
parser.add_argument("--num_nodes", default=1, type=int)
parser.add_argument("--precision", default="fp16", type=str)
parser.add_argument("--accumulate_grad_batches", default=1, type=int)
else:
parser = Trainer.add_argparse_args(parser)
args = parser.parse_args()
########################################################################################################
import os, warnings, math, datetime, sys, time
import numpy as np
import torch
from torch.utils.data import DataLoader
if "deepspeed" in args.strategy:
import deepspeed
from pytorch_lightning import seed_everything
if args.random_seed >= 0:
print(
f"########## WARNING: GLOBAL SEED {args.random_seed} THIS WILL AFFECT MULTIGPU SAMPLING ##########\n"
* 3
)
seed_everything(args.random_seed)
np.set_printoptions(precision=4, suppress=True, linewidth=200)
warnings.filterwarnings(
"ignore", ".*Consider increasing the value of the `num_workers` argument*"
)
warnings.filterwarnings(
"ignore", ".*The progress bar already tracks a metric with the*"
)
# os.environ["WDS_SHOW_SEED"] = "1"
args.my_timestamp = datetime.datetime.today().strftime("%Y-%m-%d-%H-%M-%S")
args.enable_checkpointing = False
args.replace_sampler_ddp = False
args.logger = False
args.gradient_clip_val = 1.0
args.num_sanity_val_steps = 0
args.check_val_every_n_epoch = int(1e20)
args.log_every_n_steps = int(1e20)
args.max_epochs = args.epoch_count # -1 continue forever
args.betas = (args.beta1, args.beta2)
args.real_bsz = int(args.num_nodes) * int(args.devices) * args.micro_bsz
os.environ["RWKV_MY_TESTING"] = args.my_testing
os.environ["RWKV_CTXLEN"] = str(args.ctx_len)
os.environ["RWKV_HEAD_SIZE_A"] = str(args.head_size_a)
if args.dim_att <= 0:
args.dim_att = args.n_embd
if args.dim_ffn <= 0:
args.dim_ffn = int((args.n_embd * 3.5) // 32 * 32) # default = 3.5x emb size
if args.data_type == "wds_img":
args.run_name = f"v{args.my_img_version}-{args.my_img_size}-{args.my_img_bit}bit-{args.my_img_clip}x{args.my_img_clip_scale}"
args.proj_dir = f"{args.proj_dir}-{args.run_name}"
else:
args.run_name = (
f"{args.vocab_size} ctx{args.ctx_len} L{args.n_layer} D{args.n_embd}"
)
if not os.path.exists(args.proj_dir):
os.makedirs(args.proj_dir)
if args.my_pile_stage > 0:
magic_prime_bak = args.magic_prime
if args.my_pile_shift < 0:
args.my_pile_shift = 0
if magic_prime_bak > 0:
args.magic_prime = magic_prime_bak
if args.my_qa_mask == 2:
args.epoch_count = 2 * args.magic_prime // 40320
else:
args.epoch_count = args.magic_prime // 40320
args.epoch_steps = 40320 // args.real_bsz
assert args.epoch_steps * args.real_bsz == 40320
# if args.my_pile_stage == 2:
# assert args.lr_final == args.lr_init
if args.my_pile_stage >= 2: # find latest saved model
list_p = []
for p in os.listdir(args.proj_dir):
if p.startswith("rwkv") and p.endswith(".pth"):
p = ((p.split("-"))[1].split("."))[0]
if p != "final":
if p == "init":
p = -1
else:
p = int(p)
list_p += [p]
list_p.sort()
max_p = list_p[-1]
if len(list_p) > 1:
args.my_pile_prev_p = list_p[-2] # in case max_p is corrupted
if max_p == -1:
args.load_model = f"{args.proj_dir}/rwkv-init.pth"
else:
args.load_model = f"{args.proj_dir}/rwkv-{max_p}.pth"
if args.warmup_steps < 0:
if args.my_pile_stage == 2:
args.warmup_steps = 10
else:
args.warmup_steps = 30
args.epoch_begin = max_p + 1
samples_per_epoch = args.epoch_steps * args.real_bsz
tokens_per_epoch = samples_per_epoch * args.ctx_len
try:
deepspeed_version = deepspeed.__version__
except:
deepspeed_version = None
pass
rank_zero_info(
f"""
############################################################################
#
# RWKV-5 {args.precision.upper()} on {args.num_nodes}x{args.devices} {args.accelerator.upper()}, bsz {args.num_nodes}x{args.devices}x{args.micro_bsz}={args.real_bsz}, {args.strategy} {'with grad_cp' if args.grad_cp > 0 else ''}
#
# Data = {args.data_file} ({args.data_type}), ProjDir = {args.proj_dir}
#
# Epoch = {args.epoch_begin} to {args.epoch_begin + args.epoch_count - 1}, save every {args.epoch_save} epoch
#
# Each "epoch" = {args.epoch_steps} steps, {samples_per_epoch} samples, {tokens_per_epoch} tokens
#
# Model = {args.n_layer} n_layer, {args.n_embd} n_embd, {args.ctx_len} ctx_len
#
# Adam = lr {args.lr_init} to {args.lr_final}, warmup {args.warmup_steps} steps, beta {args.betas}, eps {args.adam_eps}
#
# Found torch {torch.__version__}, recommend 1.13.1+cu117 or newer
# Found deepspeed {deepspeed_version}, recommend 0.7.0 (faster than newer versions)
# Found pytorch_lightning {pl.__version__}, recommend 1.9.5
#
############################################################################
"""
)
rank_zero_info(str(vars(args)) + "\n")
assert args.data_type in ["utf-8", "utf-16le", "numpy", "binidx", "dummy", "uint16"]
if args.lr_final == 0 or args.lr_init == 0:
rank_zero_info(
"\n\nNote: lr_final = 0 or lr_init = 0. Using linear LR schedule instead.\n\n"
)
assert args.precision in ["fp32", "tf32", "fp16", "bf16"]
os.environ["RWKV_FLOAT_MODE"] = args.precision
if args.precision == "fp32":
for i in range(10):
rank_zero_info(
"\n\nNote: you are using fp32 (very slow). Try bf16 / tf32 for faster training.\n\n"
)
if args.precision == "fp16":
rank_zero_info(
"\n\nNote: you are using fp16 (might overflow). Try bf16 / tf32 for stable training.\n\n"
)
os.environ["RWKV_JIT_ON"] = "0"
if "deepspeed_stage_3" in args.strategy:
os.environ["RWKV_JIT_ON"] = "0"
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = True
if args.precision == "fp32":
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_tf32 = False
else:
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
if "32" in args.precision:
args.precision = 32
elif args.precision == "fp16":
args.precision = 16
else:
args.precision = "bf16"
########################################################################################################
from src.trainer import train_callback, generate_init_weight
from src.dataset import MyDataset
train_data = MyDataset(args)
args.vocab_size = train_data.vocab_size
from src.model import RWKV, LORA_CONFIG, LoraLinear
model = RWKV(args)
if args.lora:
assert args.lora_r > 0, "LoRA should have its `r` > 0"
LORA_CONFIG["r"] = args.lora_r
LORA_CONFIG["alpha"] = args.lora_alpha
LORA_CONFIG["dropout"] = args.lora_dropout
LORA_CONFIG["parts"] = set(str(args.lora_parts).split(","))
enable_time_finetune = "time" in LORA_CONFIG["parts"]
enable_ln_finetune = "ln" in LORA_CONFIG["parts"]
model.requires_grad_(False)
for name, module in model.named_modules():
if any(n.startswith("lora_") for n, _ in module.named_parameters()):
print(f" LoRA additionally training module {name}")
for pname, param in module.named_parameters():
param.requires_grad = "lora_" in pname
elif enable_ln_finetune and ".ln" in name:
print(f" LoRA additionally training module {name}")
for param in module.parameters():
param.requires_grad = True
elif enable_time_finetune and any(
n.startswith("time") for n, _ in module.named_parameters()
):
for pname, param in module.named_parameters():
if pname.startswith("time"):
print(f" LoRA additionally training parameter {pname}")
param.requires_grad = True
if (
len(args.load_model) == 0 or args.my_pile_stage == 1
): # shall we build the initial weights?
init_weight_name = f"{args.proj_dir}/rwkv-init.pth"
generate_init_weight(model, init_weight_name) # save initial weights
args.load_model = init_weight_name
rank_zero_info(f"########## Loading {args.load_model}... ##########")
try:
load_dict = torch.load(args.load_model, map_location="cpu")
load_keys = list(load_dict.keys())
for k in load_keys:
if k.startswith("_forward_module."):
load_dict[k.replace("_forward_module.", "")] = load_dict[k]
del load_dict[k]
except:
rank_zero_info(f"Bad checkpoint {args.load_model}")
if args.my_pile_stage >= 2: # try again using another checkpoint
max_p = args.my_pile_prev_p
if max_p == -1:
args.load_model = f"{args.proj_dir}/rwkv-init.pth"
else:
args.load_model = f"{args.proj_dir}/rwkv-{max_p}.pth"
args.epoch_begin = max_p + 1
rank_zero_info(f"Trying {args.load_model}")
load_dict = torch.load(args.load_model, map_location="cpu")
if args.load_partial == 1:
load_keys = load_dict.keys()
for k in model.state_dict():
if k not in load_keys:
load_dict[k] = model.state_dict()[k]
model.load_state_dict(load_dict, strict=(not args.lora))
if os.path.isfile(args.lora_load):
model.load_state_dict(
torch.load(args.lora_load, map_location="cpu"), strict=False
)
if pl.__version__[0] == "2":
trainer = Trainer(
accelerator=args.accelerator,
strategy=args.strategy,
devices=args.devices,
num_nodes=args.num_nodes,
precision=args.precision,
logger=args.logger,
callbacks=[train_callback(args)],
max_epochs=args.max_epochs,
check_val_every_n_epoch=args.check_val_every_n_epoch,
num_sanity_val_steps=args.num_sanity_val_steps,
log_every_n_steps=args.log_every_n_steps,
enable_checkpointing=args.enable_checkpointing,
accumulate_grad_batches=args.accumulate_grad_batches,
gradient_clip_val=args.gradient_clip_val,
)
else:
trainer = Trainer.from_argparse_args(
args,
callbacks=[train_callback(args)],
)
if trainer.global_rank == 0:
for n in model.state_dict():
shape = model.state_dict()[n].shape
shape = [i for i in shape if i != 1]
if len(shape) > 1:
print(f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {n}")
else:
print(f"{str(shape[0]).ljust(5)} {n}")
if "deepspeed" in args.strategy:
trainer.strategy.config["zero_optimization"]["allgather_bucket_size"] = (
args.ds_bucket_mb * 1000 * 1000
)
trainer.strategy.config["zero_optimization"]["reduce_bucket_size"] = (
args.ds_bucket_mb * 1000 * 1000
)
# must set shuffle=False, persistent_workers=False (because worker is in another thread)
data_loader = DataLoader(
train_data,
shuffle=False,
pin_memory=True,
batch_size=args.micro_bsz,
num_workers=1,
persistent_workers=False,
drop_last=True,
)
trainer.fit(model, data_loader)

View File

@@ -19,7 +19,6 @@
"file-saver": "^2.0.5",
"html-midi-player": "^1.5.0",
"i18next": "^22.4.15",
"katex": "^0.16.9",
"lodash-es": "^4.17.21",
"mobx": "^6.9.0",
"mobx-react-lite": "^3.4.3",
@@ -35,16 +34,13 @@
"react-router-dom": "^6.11.1",
"react-toastify": "^9.1.3",
"rehype-highlight": "^6.0.0",
"rehype-katex": "^6.0.3",
"rehype-raw": "^6.1.1",
"remark-breaks": "^3.0.3",
"remark-gfm": "^3.0.1",
"remark-math": "^5.1.1",
"usehooks-ts": "^2.9.1",
"uuid": "^9.0.0"
},
"devDependencies": {
"@tailwindcss/typography": "^0.5.10",
"@types/file-saver": "^2.0.7",
"@types/lodash-es": "^4.17.12",
"@types/react": "^18.2.6",
@@ -2287,34 +2283,6 @@
"integrity": "sha512-myfUej5naTBWnqOCc/MdVOLVjXUXtIA+NpDrDBKJtLLg2shUjBu3cZmB/85RyitKc55+lUUyl7oRfLOvkr2hsw==",
"dev": true
},
"node_modules/@tailwindcss/typography": {
"version": "0.5.10",
"resolved": "https://registry.npmjs.org/@tailwindcss/typography/-/typography-0.5.10.tgz",
"integrity": "sha512-Pe8BuPJQJd3FfRnm6H0ulKIGoMEQS+Vq01R6M5aCrFB/ccR/shT+0kXLjouGC1gFLm9hopTFN+DMP0pfwRWzPw==",
"dev": true,
"dependencies": {
"lodash.castarray": "^4.4.0",
"lodash.isplainobject": "^4.0.6",
"lodash.merge": "^4.6.2",
"postcss-selector-parser": "6.0.10"
},
"peerDependencies": {
"tailwindcss": ">=3.0.0 || insiders"
}
},
"node_modules/@tailwindcss/typography/node_modules/postcss-selector-parser": {
"version": "6.0.10",
"resolved": "https://registry.npmjs.org/postcss-selector-parser/-/postcss-selector-parser-6.0.10.tgz",
"integrity": "sha512-IQ7TZdoaqbT+LCpShg46jnZVlhWD2w6iQYAcYXfHARZ7X1t/UGhhceQDs5X0cGqKvYlHNOuv7Oa1xmb0oQuA3w==",
"dev": true,
"dependencies": {
"cssesc": "^3.0.0",
"util-deprecate": "^1.0.2"
},
"engines": {
"node": ">=4"
}
},
"node_modules/@tensorflow/tfjs": {
"version": "2.8.6",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs/-/tfjs-2.8.6.tgz",
@@ -2568,11 +2536,6 @@
"hoist-non-react-statics": "^3.3.0"
}
},
"node_modules/@types/katex": {
"version": "0.14.0",
"resolved": "https://registry.npmjs.org/@types/katex/-/katex-0.14.0.tgz",
"integrity": "sha512-+2FW2CcT0K3P+JMR8YG846bmDwplKUTsWgT2ENwdQ1UdVfRk3GQrh6Mi4sTopy30gI8Uau5CEqHTDZ6YvWIUPA=="
},
"node_modules/@types/lodash": {
"version": "4.14.202",
"resolved": "https://registry.npmjs.org/@types/lodash/-/lodash-4.14.202.tgz",
@@ -3500,17 +3463,6 @@
"resolved": "https://registry.npmmirror.com/emoji-regex/-/emoji-regex-8.0.0.tgz",
"integrity": "sha512-MSjYzcWNOA0ewAHpz0MxpYFvwg6yjy1NG3xteoqz644VCo/RPgnr1/GGt+ic3iJTzQ8Eu3TdM14SawnVUmGE6A=="
},
"node_modules/entities": {
"version": "4.5.0",
"resolved": "https://registry.npmjs.org/entities/-/entities-4.5.0.tgz",
"integrity": "sha512-V0hjH4dGPh9Ao5p0MoRY6BVqtwCjhz6vI5LT8AJ55H+4g9/4vbHx1I54fS0XuclLhDHArPQCiMjDxjaL8fPxhw==",
"engines": {
"node": ">=0.12"
},
"funding": {
"url": "https://github.com/fb55/entities?sponsor=1"
}
},
"node_modules/esbuild": {
"version": "0.17.19",
"resolved": "https://registry.npmmirror.com/esbuild/-/esbuild-0.17.19.tgz",
@@ -3907,61 +3859,6 @@
"integrity": "sha512-8Rf9Y83NBReMnx0gFzA8JImQACstCYWUplepDa9xprwwtmgEZUF0h/i5xSA625zB/I37EtrswSST6OXxwaaIJQ==",
"optional": true
},
"node_modules/hast-util-from-dom": {
"version": "4.2.0",
"resolved": "https://registry.npmjs.org/hast-util-from-dom/-/hast-util-from-dom-4.2.0.tgz",
"integrity": "sha512-t1RJW/OpJbCAJQeKi3Qrj1cAOLA0+av/iPFori112+0X7R3wng+jxLA+kXec8K4szqPRGI8vPxbbpEYvvpwaeQ==",
"dependencies": {
"hastscript": "^7.0.0",
"web-namespaces": "^2.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/unified"
}
},
"node_modules/hast-util-from-html": {
"version": "1.0.2",
"resolved": "https://registry.npmjs.org/hast-util-from-html/-/hast-util-from-html-1.0.2.tgz",
"integrity": "sha512-LhrTA2gfCbLOGJq2u/asp4kwuG0y6NhWTXiPKP+n0qNukKy7hc10whqqCFfyvIA1Q5U5d0sp9HhNim9gglEH4A==",
"dependencies": {
"@types/hast": "^2.0.0",
"hast-util-from-parse5": "^7.0.0",
"parse5": "^7.0.0",
"vfile": "^5.0.0",
"vfile-message": "^3.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/unified"
}
},
"node_modules/hast-util-from-html-isomorphic": {
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/hast-util-from-html-isomorphic/-/hast-util-from-html-isomorphic-1.0.0.tgz",
"integrity": "sha512-Yu480AKeOEN/+l5LA674a+7BmIvtDj24GvOt7MtQWuhzUwlaaRWdEPXAh3Qm5vhuthpAipFb2vTetKXWOjmTvw==",
"dependencies": {
"@types/hast": "^2.0.0",
"hast-util-from-dom": "^4.0.0",
"hast-util-from-html": "^1.0.0",
"unist-util-remove-position": "^4.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/unified"
}
},
"node_modules/hast-util-from-html/node_modules/parse5": {
"version": "7.1.2",
"resolved": "https://registry.npmjs.org/parse5/-/parse5-7.1.2.tgz",
"integrity": "sha512-Czj1WaSVpaoj0wbhMzLmWD69anp2WH7FXMB9n1Sy8/ZFF9jolSQVMu1Ij5WIyGmcBmhk7EOndpO4mIpihVqAXw==",
"dependencies": {
"entities": "^4.4.0"
},
"funding": {
"url": "https://github.com/inikulin/parse5?sponsor=1"
}
},
"node_modules/hast-util-from-parse5": {
"version": "7.1.2",
"resolved": "https://registry.npmmirror.com/hast-util-from-parse5/-/hast-util-from-parse5-7.1.2.tgz",
@@ -4288,29 +4185,6 @@
"node": ">=6"
}
},
"node_modules/katex": {
"version": "0.16.9",
"resolved": "https://registry.npmjs.org/katex/-/katex-0.16.9.tgz",
"integrity": "sha512-fsSYjWS0EEOwvy81j3vRA8TEAhQhKiqO+FQaKWp0m39qwOzHVBgAUBIXWj1pB+O2W3fIpNa6Y9KSKCVbfPhyAQ==",
"funding": [
"https://opencollective.com/katex",
"https://github.com/sponsors/katex"
],
"dependencies": {
"commander": "^8.3.0"
},
"bin": {
"katex": "cli.js"
}
},
"node_modules/katex/node_modules/commander": {
"version": "8.3.0",
"resolved": "https://registry.npmjs.org/commander/-/commander-8.3.0.tgz",
"integrity": "sha512-OkTL9umf+He2DZkUq8f8J9of7yL6RJKI24dVITBmNfZBmri9zYZQrKkuXiKhyfPSu8tUhnVBB1iKXevvnlR4Ww==",
"engines": {
"node": ">= 12"
}
},
"node_modules/keyborg": {
"version": "2.0.0",
"resolved": "https://registry.npmmirror.com/keyborg/-/keyborg-2.0.0.tgz",
@@ -4368,24 +4242,6 @@
"resolved": "https://registry.npmjs.org/lodash-es/-/lodash-es-4.17.21.tgz",
"integrity": "sha512-mKnC+QJ9pWVzv+C4/U3rRsHapFfHvQFoFB92e52xeyGMcX6/OlIl78je1u8vePzYZSkkogMPJ2yjxxsb89cxyw=="
},
"node_modules/lodash.castarray": {
"version": "4.4.0",
"resolved": "https://registry.npmjs.org/lodash.castarray/-/lodash.castarray-4.4.0.tgz",
"integrity": "sha512-aVx8ztPv7/2ULbArGJ2Y42bG1mEQ5mGjpdvrbJcJFU3TbYybe+QlLS4pst9zV52ymy2in1KpFPiZnAOATxD4+Q==",
"dev": true
},
"node_modules/lodash.isplainobject": {
"version": "4.0.6",
"resolved": "https://registry.npmjs.org/lodash.isplainobject/-/lodash.isplainobject-4.0.6.tgz",
"integrity": "sha512-oSXzaWypCMHkPC3NvBEaPHf0KsA5mvPrOPgQWDsbg8n7orZ290M0BmC/jgRZ4vcJ6DTAhjrsSYgdsW/F+MFOBA==",
"dev": true
},
"node_modules/lodash.merge": {
"version": "4.6.2",
"resolved": "https://registry.npmjs.org/lodash.merge/-/lodash.merge-4.6.2.tgz",
"integrity": "sha512-0KpjqXRVvrYyCsX1swR/XTK0va6VQkQM6MNo7PqW77ByjAhoARA8EfrP1N4+KlKj8YS0ZUCtRT/YUuhyYDujIQ==",
"dev": true
},
"node_modules/long": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/long/-/long-4.0.0.tgz",
@@ -4566,20 +4422,6 @@
"mdast-util-to-markdown": "^1.3.0"
}
},
"node_modules/mdast-util-math": {
"version": "2.0.2",
"resolved": "https://registry.npmjs.org/mdast-util-math/-/mdast-util-math-2.0.2.tgz",
"integrity": "sha512-8gmkKVp9v6+Tgjtq6SYx9kGPpTf6FVYRa53/DLh479aldR9AyP48qeVOgNZ5X7QUK7nOy4yw7vg6mbiGcs9jWQ==",
"dependencies": {
"@types/mdast": "^3.0.0",
"longest-streak": "^3.0.0",
"mdast-util-to-markdown": "^1.3.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/unified"
}
},
"node_modules/mdast-util-newline-to-break": {
"version": "1.0.0",
"resolved": "https://registry.npmmirror.com/mdast-util-newline-to-break/-/mdast-util-newline-to-break-1.0.0.tgz",
@@ -4783,29 +4625,6 @@
"uvu": "^0.5.0"
}
},
"node_modules/micromark-extension-math": {
"version": "2.1.2",
"resolved": "https://registry.npmjs.org/micromark-extension-math/-/micromark-extension-math-2.1.2.tgz",
"integrity": "sha512-es0CcOV89VNS9wFmyn+wyFTKweXGW4CEvdaAca6SWRWPyYCbBisnjaHLjWO4Nszuiud84jCpkHsqAJoa768Pvg==",
"dependencies": {
"@types/katex": "^0.16.0",
"katex": "^0.16.0",
"micromark-factory-space": "^1.0.0",
"micromark-util-character": "^1.0.0",
"micromark-util-symbol": "^1.0.0",
"micromark-util-types": "^1.0.0",
"uvu": "^0.5.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/unified"
}
},
"node_modules/micromark-extension-math/node_modules/@types/katex": {
"version": "0.16.7",
"resolved": "https://registry.npmjs.org/@types/katex/-/katex-0.16.7.tgz",
"integrity": "sha512-HMwFiRujE5PjrgwHQ25+bsLJgowjGjm5Z8FVSf0N6PwgJrwxH0QxzHYDcKsTfV3wva0vzrpqMTJS2jXPr5BMEQ=="
},
"node_modules/micromark-factory-destination": {
"version": "1.0.0",
"resolved": "https://registry.npmmirror.com/micromark-factory-destination/-/micromark-factory-destination-1.0.0.tgz",
@@ -5831,23 +5650,6 @@
"unist-util-visit": "^4.0.0"
}
},
"node_modules/rehype-katex": {
"version": "6.0.3",
"resolved": "https://registry.npmjs.org/rehype-katex/-/rehype-katex-6.0.3.tgz",
"integrity": "sha512-ByZlRwRUcWegNbF70CVRm2h/7xy7jQ3R9LaY4VVSvjnoVWwWVhNL60DiZsBpC5tSzYQOCvDbzncIpIjPZWodZA==",
"dependencies": {
"@types/hast": "^2.0.0",
"@types/katex": "^0.14.0",
"hast-util-from-html-isomorphic": "^1.0.0",
"hast-util-to-text": "^3.1.0",
"katex": "^0.16.0",
"unist-util-visit": "^4.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/unified"
}
},
"node_modules/rehype-raw": {
"version": "6.1.1",
"resolved": "https://registry.npmmirror.com/rehype-raw/-/rehype-raw-6.1.1.tgz",
@@ -5879,21 +5681,6 @@
"unified": "^10.0.0"
}
},
"node_modules/remark-math": {
"version": "5.1.1",
"resolved": "https://registry.npmjs.org/remark-math/-/remark-math-5.1.1.tgz",
"integrity": "sha512-cE5T2R/xLVtfFI4cCePtiRn+e6jKMtFDR3P8V3qpv8wpKjwvHoBA4eJzvX+nVrnlNy0911bdGmuspCSwetfYHw==",
"dependencies": {
"@types/mdast": "^3.0.0",
"mdast-util-math": "^2.0.0",
"micromark-extension-math": "^2.0.0",
"unified": "^10.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/unified"
}
},
"node_modules/remark-parse": {
"version": "10.0.2",
"resolved": "https://registry.npmmirror.com/remark-parse/-/remark-parse-10.0.2.tgz",
@@ -6756,19 +6543,6 @@
"@types/unist": "^2.0.0"
}
},
"node_modules/unist-util-remove-position": {
"version": "4.0.2",
"resolved": "https://registry.npmjs.org/unist-util-remove-position/-/unist-util-remove-position-4.0.2.tgz",
"integrity": "sha512-TkBb0HABNmxzAcfLf4qsIbFbaPDvMO6wa3b3j4VcEzFVaw1LBKwnW4/sRJ/atSLSzoIg41JWEdnE7N6DIhGDGQ==",
"dependencies": {
"@types/unist": "^2.0.0",
"unist-util-visit": "^4.0.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/unified"
}
},
"node_modules/unist-util-stringify-position": {
"version": "3.0.3",
"resolved": "https://registry.npmmirror.com/unist-util-stringify-position/-/unist-util-stringify-position-3.0.3.tgz",

View File

@@ -20,7 +20,6 @@
"file-saver": "^2.0.5",
"html-midi-player": "^1.5.0",
"i18next": "^22.4.15",
"katex": "^0.16.9",
"lodash-es": "^4.17.21",
"mobx": "^6.9.0",
"mobx-react-lite": "^3.4.3",
@@ -36,16 +35,13 @@
"react-router-dom": "^6.11.1",
"react-toastify": "^9.1.3",
"rehype-highlight": "^6.0.0",
"rehype-katex": "^6.0.3",
"rehype-raw": "^6.1.1",
"remark-breaks": "^3.0.3",
"remark-gfm": "^3.0.1",
"remark-math": "^5.1.1",
"usehooks-ts": "^2.9.1",
"uuid": "^9.0.0"
},
"devDependencies": {
"@tailwindcss/typography": "^0.5.10",
"@types/file-saver": "^2.0.7",
"@types/lodash-es": "^4.17.12",
"@types/react": "^18.2.6",

View File

@@ -4,7 +4,7 @@
"About": "約",
"Settings": "設定",
"Go to chat page": "チャットページに移動する",
"Manage your configs, adjust the starting model and parameters": "設定を管理し、開始モデルとパラメータを調整します",
"Manage your configs": "あなたの設定を管理す",
"Manage models": "モデルの管理",
"Run": "実行",
"Offline": "オフライン",
@@ -96,7 +96,7 @@
"Python dependencies are incomplete, would you like to install them?": "Pythonの依存関係が不完全です、インストールしますか",
"Install": "インストール",
"This is the latest version": "これは最新バージョンです",
"Use Alibaba Cloud Pip Mirrors": "Alibaba Cloud Pipミラーサーバーを使用",
"Use Tsinghua Pip Mirrors": "清華大学Pipミラーサーバーを使用",
"Model Config Exception": "モデル設定例外",
"Use Gitee Updates Source": "Gitee更新ソースを使用",
"Use Custom CUDA kernel to Accelerate": "カスタムCUDAカーネルを使用して加速",
@@ -347,9 +347,5 @@
"Parallel Token Chunk Size": "並列トークンチャンクサイズ",
"Maximum tokens to be processed in parallel at once. For high end GPUs, this could be 64 or 128 (faster).": "一度に並列で処理される最大トークン数。高性能なGPUの場合、64または128になります高速。",
"Global Penalty": "グローバルペナルティ",
"When generating a response, whether to include the submitted prompt as a penalty factor. By turning this off, you will get the same generated results as official RWKV Gradio. If you find duplicate results in the generated results, turning this on can help avoid generating duplicates.": "レスポンスを生成する際、提出されたプロンプトをペナルティ要因として含めるかどうか。これをオフにすると、公式RWKV Gradioと同じ生成結果を得ることができます。生成された結果に重複がある場合、これをオンにすることで重複の生成を回避するのに役立ちます。",
"Create a new user or AI message content. You can prepare a chat record with AI here, and fill in the responses you want to get from AI in the tone of AI. When you use this preset, the chat record will be processed, and at this point, AI will better understand what you want it to do or what role to play.": "新しいユーザーまたはAIメッセージコンテンツを作成します。ここでAIとのチャット記録を準備し、AIから得たい応答をAIのトーンで記入することができます。このプリセットを使用すると、チャット記録が処理され、この時点でAIはあなたが望むことやどのような役割を果たすかをよりよく理解することができます。",
"The name used internally by the model when processing user message, changing this value helps improve the role-playing effect.": "ユーザーメッセージを処理する際にモデルが内部で使用する名前、この値を変更することで、役割演技の効果を向上させることができます。",
"The name used internally by the model when processing AI message, changing this value helps improve the role-playing effect.": "AIメッセージを処理する際にモデルが内部で使用する名前、この値を変更することで、役割演技の効果を向上させることができます。",
"Inside the model, there is a default prompt to improve the model's handling of common issues, but it may degrade the role-playing effect. You can disable this option to achieve a better role-playing effect.": "モデル内部には、一般的な問題の処理を改善するためのデフォルトのプロンプトがありますが、役割演技の効果を低下させる可能性があります。このオプションを無効にすることで、より良い役割演技効果を得ることができます。"
"When generating a response, whether to include the submitted prompt as a penalty factor. By turning this off, you will get the same generated results as official RWKV Gradio. If you find duplicate results in the generated results, turning this on can help avoid generating duplicates.": "レスポンスを生成する際、提出されたプロンプトをペナルティ要因として含めるかどうか。これをオフにすると、公式RWKV Gradioと同じ生成結果を得ることができます。生成された結果に重複がある場合、これをオンにすることで重複の生成を回避するのに役立ちます。"
}

View File

@@ -4,7 +4,7 @@
"About": "关于",
"Settings": "设置",
"Go to chat page": "前往聊天页",
"Manage your configs, adjust the starting model and parameters": "管理你的配置, 调整启动的模型和参数",
"Manage your configs": "管理你的配置",
"Manage models": "管理模型",
"Run": "运行",
"Offline": "离线",
@@ -96,7 +96,7 @@
"Python dependencies are incomplete, would you like to install them?": "Python依赖缺失, 是否安装?",
"Install": "安装",
"This is the latest version": "已是最新版",
"Use Alibaba Cloud Pip Mirrors": "使用阿里云Pip镜像源",
"Use Tsinghua Pip Mirrors": "使用清华大学Pip镜像源",
"Model Config Exception": "模型配置异常",
"Use Gitee Updates Source": "使用Gitee更新源",
"Use Custom CUDA kernel to Accelerate": "使用自定义CUDA算子加速",
@@ -347,9 +347,5 @@
"Parallel Token Chunk Size": "并行Token块大小",
"Maximum tokens to be processed in parallel at once. For high end GPUs, this could be 64 or 128 (faster).": "一次最多可以并行处理的token数量. 对于高端显卡, 这可以是64或128 (更快)",
"Global Penalty": "全局惩罚",
"When generating a response, whether to include the submitted prompt as a penalty factor. By turning this off, you will get the same generated results as official RWKV Gradio. If you find duplicate results in the generated results, turning this on can help avoid generating duplicates.": "生成响应时, 是否将提交的prompt也纳入到惩罚项. 关闭此项将得到与RWKV官方Gradio完全一致的生成结果. 如果你发现生成结果出现重复, 那么开启此项有助于避免生成重复",
"Create a new user or AI message content. You can prepare a chat record with AI here, and fill in the responses you want to get from AI in the tone of AI. When you use this preset, the chat record will be processed, and at this point, AI will better understand what you want it to do or what role to play.": "新建一个 用户 或 AI 的发言内容. 你可以在这里准备好一段你与 AI 的聊天记录, 并用 AI 的口吻正确填写你想得到的 AI 的回复, 这样你在使用这个预设时, 这些聊天记录也会被处理, 并且此时 AI 能更好地理解你希望它做什么 / 扮演什么样的角色",
"The name used internally by the model when processing user message, changing this value helps improve the role-playing effect.": "模型内部处理用户发言时使用的名称, 更改此值有助于改善角色扮演效果",
"The name used internally by the model when processing AI message, changing this value helps improve the role-playing effect.": "模型内部处理AI发言时使用的名称, 更改此值有助于改善角色扮演效果",
"Inside the model, there is a default prompt to improve the model's handling of common issues, but it may degrade the role-playing effect. You can disable this option to achieve a better role-playing effect.": "模型内部有一个默认提示来改善模型处理常规问题的效果, 但它可能会让角色扮演的效果变差, 你可以关闭此选项来获得更好的角色扮演效果"
"When generating a response, whether to include the submitted prompt as a penalty factor. By turning this off, you will get the same generated results as official RWKV Gradio. If you find duplicate results in the generated results, turning this on can help avoid generating duplicates.": "生成响应时, 是否将提交的prompt也纳入到惩罚项. 关闭此项将得到与RWKV官方Gradio完全一致的生成结果. 如果你发现生成结果出现重复, 那么开启此项有助于避免生成重复"
}

View File

@@ -1,9 +1,6 @@
import 'katex/dist/katex.min.css';
import ReactMarkdown from 'react-markdown';
import rehypeRaw from 'rehype-raw';
import rehypeHighlight from 'rehype-highlight';
import rehypeKatex from 'rehype-katex';
import remarkMath from 'remark-math';
import remarkGfm from 'remark-gfm';
import remarkBreaks from 'remark-breaks';
import { FC } from 'react';
@@ -26,7 +23,7 @@ const Hyperlink: FC<any> = ({ href, children }) => {
const MarkdownRender: FC<ReactMarkdownOptions & { disabled?: boolean }> = (props) => {
return (
<div dir="auto" className="prose markdown-body" style={{ maxWidth: '100%' }}>
<div dir="auto" className="markdown-body">
{props.disabled ?
<div style={{ whiteSpace: 'pre-wrap' }}>
{props.children}
@@ -93,9 +90,8 @@ const MarkdownRender: FC<ReactMarkdownOptions & { disabled?: boolean }> = (props
'cite'
]}
unwrapDisallowed={true}
remarkPlugins={[remarkMath, remarkGfm, remarkBreaks]}
remarkPlugins={[remarkGfm, remarkBreaks]}
rehypePlugins={[
rehypeKatex,
rehypeRaw,
[
rehypeHighlight,

View File

@@ -26,12 +26,10 @@ export const ToolTipButton: FC<{
onClick,
showDelay = 0
}) => {
return (desc ?
<Tooltip content={desc} showDelay={showDelay} hideDelay={0} relationship="label">
<Button style={style} className={className} disabled={disabled} icon={icon} onClick={onClick} size={size}
shape={shape} appearance={appearance}>{text}</Button>
</Tooltip> :
return (
<Tooltip content={desc} showDelay={showDelay} hideDelay={0} relationship="label">
<Button style={style} className={className} disabled={disabled} icon={icon} onClick={onClick} size={size}
shape={shape} appearance={appearance}>{text}</Button>
</Tooltip>
);
};

View File

@@ -149,8 +149,8 @@ const ChatMessageItem: FC<{
className={classnames(
'flex p-2 rounded-lg overflow-hidden',
editing ? 'grow' : '',
commonStore.settings.darkMode ? 'bg-neutral-800 border-neutral-600 border-[1px]' : (messageItem.side === 'left' ? 'bg-gray-200' : 'bg-blue-500'),
commonStore.settings.darkMode ? 'text-white' : (messageItem.side === 'left' ? 'text-gray-600' : 'text-white')
messageItem.side === 'left' ? 'bg-gray-200' : 'bg-blue-500',
messageItem.side === 'left' ? 'text-gray-600' : 'text-white'
)}
>
{!editing ?

View File

@@ -37,7 +37,7 @@ const clientNavCards: NavCard[] = [
},
{
label: 'Configs',
desc: 'Manage your configs, adjust the starting model and parameters',
desc: 'Manage your configs',
path: '/configs',
icon: <DocumentSettings20Regular />
},

View File

@@ -3,7 +3,7 @@ import { DragDropContext, Draggable, Droppable, DropResult } from 'react-beautif
import commonStore from '../../stores/commonStore';
import { observer } from 'mobx-react-lite';
import { v4 as uuid } from 'uuid';
import { Card, Dropdown, Option, Textarea } from '@fluentui/react-components';
import { Button, Card, Dropdown, Option, Textarea } from '@fluentui/react-components';
import { useTranslation } from 'react-i18next';
import { ToolTipButton } from '../../components/ToolTipButton';
import { Delete20Regular, ReOrderDotsVertical20Regular } from '@fluentui/react-icons';
@@ -84,10 +84,7 @@ const MessagesEditor: FC = observer(() => {
return (
<div className="grid grid-cols-1 gap-2 overflow-hidden">
<ToolTipButton text={t('New')}
desc={t('Create a new user or AI message content. You can prepare a chat record with AI here, and fill in the responses you want to get from AI in the tone of AI. When you use this preset, the chat record will be processed, and at this point, AI will better understand what you want it to do or what role to play.')}
style={{ width: '100%' }}
onClick={createNewItem} />
<Button style={{ width: '100%' }} onClick={createNewItem}>{t('New')}</Button>
<div className="overflow-x-hidden overflow-y-auto p-2">
<DragDropContext onDragEnd={onDragEnd}>
<Droppable droppableId="droppable">

View File

@@ -230,7 +230,6 @@ const ChatPresetEditor: FC<{
editingMessages ?
<div className="flex flex-col gap-1">
<Labeled flex spaceBetween label={t('Insert default system prompt at the beginning')}
desc={t('Inside the model, there is a default prompt to improve the model\'s handling of common issues, but it may degrade the role-playing effect. You can disable this option to achieve a better role-playing effect.')}
content={
<Switch checked={editingPreset.presystem === undefined ? true : editingPreset.presystem}
onChange={(e, data) => {
@@ -240,7 +239,6 @@ const ChatPresetEditor: FC<{
}} />
} />
<Labeled flex breakline label={t('User Name')}
desc={t('The name used internally by the model when processing user message, changing this value helps improve the role-playing effect.')}
content={
<Input placeholder="User" value={editingPreset.userName} onChange={(e, data) => {
setEditingPreset({
@@ -249,7 +247,6 @@ const ChatPresetEditor: FC<{
}} />
} />
<Labeled flex breakline label={t('Assistant Name')}
desc={t('The name used internally by the model when processing AI message, changing this value helps improve the role-playing effect.')}
content={
<Input placeholder="Assistant" value={editingPreset.assistantName} onChange={(e, data) => {
setEditingPreset({

View File

@@ -246,7 +246,7 @@ const Settings: FC = observer(() => {
}
{
commonStore.settings.language === 'zh' && commonStore.platform !== 'linux' &&
<Labeled label={t('Use Alibaba Cloud Pip Mirrors')} flex spaceBetween content={
<Labeled label={t('Use Tsinghua Pip Mirrors')} flex spaceBetween content={
<Switch checked={commonStore.settings.cnMirror}
onChange={(e, data) => {
commonStore.setSettings({

View File

@@ -81,7 +81,6 @@ async function initConfig() {
}).catch(() => {
commonStore.setModelConfigs(commonStore.platform !== 'darwin' ? defaultModelConfigs : defaultModelConfigsMac, true);
});
commonStore.setSettings({}, false); // to activate side effects
}
async function initCache(initUnfinishedModels: boolean) {

View File

@@ -259,18 +259,13 @@ class CommonStore {
setSettings = (value: Partial<SettingsType>, saveConfig: boolean = true) => {
this.settings = { ...this.settings, ...value };
if (this.settings.darkMode) {
if (this.settings.darkMode)
WindowSetDarkTheme();
document.documentElement.setAttribute('style', 'color-scheme: dark;');
} else {
else
WindowSetLightTheme();
document.documentElement.setAttribute('style', 'color-scheme: light;');
}
if (this.settings.language) {
if (this.settings.language)
i18n.changeLanguage(this.settings.language);
document.documentElement.setAttribute('lang', this.settings.language === 'dev' ? 'en' : this.settings.language);
}
if (saveConfig)
saveConfigs();

View File

@@ -46,24 +46,48 @@ body {
overflow-y: auto;
overflow-x: hidden;
ul,
ol {
padding-left: 1.5em;
}
ol {
list-style: none;
counter-reset: item;
li {
counter-increment: item;
&::marker {
content: counter(item) '. ';
}
}
}
pre {
padding: 0;
background: transparent;
code {
font-size: 14px;
}
}
p {
margin: 0 0 10px;
}
code {
padding: 0 0.4em;
margin: 0;
white-space: pre-wrap;
word-break: break-word;
border-radius: 8px;
background-color: var(--color-neutral-muted);
}
font-size: 11px;
details summary {
cursor: pointer;
.hljs {
padding: 0;
}
}
}

View File

@@ -127,11 +127,7 @@ if (!window.go) {
return ''
})
defineApp('ReadJson', async (fileName) => {
const data = JSON.parse(localStorage.getItem(fileName))
if (data)
return data
else
throw new Error('File not found')
return JSON.parse(localStorage.getItem(fileName))
})
defineApp('SaveJson', async (fileName, data) => {
localStorage.setItem(fileName, JSON.stringify(data))

View File

@@ -1,121 +1,12 @@
const markdownElements = [
'div',
'p',
'span',
'video',
'img',
'abbr',
'acronym',
'b',
'blockquote',
'code',
'em',
'i',
'li',
'ol',
'ul',
'strong',
'table',
'tr',
'td',
'th',
'details',
'summary',
'kbd',
'samp',
'sub',
'sup',
'ins',
'del',
'var',
'q',
'dl',
'dt',
'dd',
'ruby',
'rt',
'rp',
'br',
'hr',
'h1',
'h2',
'h3',
'h4',
'h5',
'h6',
'thead',
'tbody',
'tfoot',
'u',
's',
'a',
'pre',
'cite'
]
const markdownPseudoElements = [
'::marker',
'::before',
'::after'
]
const tableElements = [
'table',
'tr',
'td',
'th',
'thead',
'tbody',
'tfoot'
]
const proseStyles = {
color: 'inherit'
}
const tableProseStyles = {
...proseStyles,
borderWidth: 'thin',
borderColor: '#d2d2d5'
}
const elementsStyles = markdownElements.reduce((acc, element) => {
let styles = proseStyles
if (tableElements.includes(element))
styles = tableProseStyles
acc[element] = styles
markdownPseudoElements.forEach(pseudo => {
acc[element + pseudo] = styles
})
return acc
}, {})
/** @type {import('tailwindcss').Config} */
export default {
content: [
'./index.html',
'./src/**/*.{js,ts,jsx,tsx}'
"./index.html",
"./src/**/*.{js,ts,jsx,tsx}",
],
theme: {
extend: {
typography: {
DEFAULT: {
css: {
color: 'inherit',
fontSize: 'inherit',
...elementsStyles
}
}
}
}
extend: {},
},
plugins: [require('@tailwindcss/typography')]
plugins: [],
}

View File

@@ -23,7 +23,7 @@ const embedded = [
'react-beautiful-dnd',
'react-draggable',
'@magenta/music', 'html-midi-player',
'react-markdown', 'rehype-highlight', 'rehype-raw', 'remark-breaks', 'remark-gfm', 'remark-math', 'rehype-katex', 'katex'
'react-markdown', 'rehype-highlight', 'rehype-raw', 'remark-breaks', 'remark-gfm'
];
function renderChunks(deps: Record<string, string>) {