Compare commits
1 Commits
master
...
dependabot
Author | SHA1 | Date | |
---|---|---|---|
|
be80a47679 |
4
.github/workflows/docker.yml
vendored
4
.github/workflows/docker.yml
vendored
@ -66,7 +66,7 @@ jobs:
|
||||
- name: Build and export
|
||||
id: build
|
||||
if: github.ref == 'refs/heads/master'
|
||||
uses: docker/build-push-action@v3
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
push: true
|
||||
platforms: linux/${{ matrix.arch }}
|
||||
@ -89,7 +89,7 @@ jobs:
|
||||
- name: Build release and export
|
||||
id: build_rel
|
||||
if: startsWith(github.ref, 'refs/tags/')
|
||||
uses: docker/build-push-action@v3
|
||||
uses: docker/build-push-action@v5
|
||||
with:
|
||||
push: true
|
||||
platforms: linux/${{ matrix.arch }}
|
||||
|
17
.github/workflows/pre-release.yml
vendored
17
.github/workflows/pre-release.yml
vendored
@ -18,11 +18,11 @@ jobs:
|
||||
ref: master
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: "1.20.5"
|
||||
go-version: '1.20.5'
|
||||
- uses: actions/setup-python@v5
|
||||
id: cp310
|
||||
with:
|
||||
python-version: "3.10"
|
||||
python-version: '3.10'
|
||||
- uses: crazy-max/ghaction-chocolatey@v3
|
||||
with:
|
||||
args: install upx
|
||||
@ -39,7 +39,7 @@ jobs:
|
||||
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../include" -Destination "py310/include" -Recurse
|
||||
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../libs" -Destination "py310/libs" -Recurse
|
||||
./py310/python -m pip install cyac==1.9
|
||||
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
|
||||
go install github.com/wailsapp/wails/v2/cmd/wails@latest
|
||||
del ./backend-python/rwkv_pip/cpp/librwkv.dylib
|
||||
del ./backend-python/rwkv_pip/cpp/librwkv.so
|
||||
(Get-Content -Path ./backend-golang/app.go) -replace "//go:custom_build windows ", "" | Set-Content -Path ./backend-golang/app.go
|
||||
@ -60,17 +60,18 @@ jobs:
|
||||
ref: master
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: "1.20.5"
|
||||
go-version: '1.20.5'
|
||||
- run: |
|
||||
wget https://github.com/josStorer/ai00_rwkv_server/releases/latest/download/webgpu_server_linux_x86_64 -O ./backend-rust/webgpu_server
|
||||
wget https://github.com/josStorer/web-rwkv-converter/releases/latest/download/web-rwkv-converter_linux_x86_64 -O ./backend-rust/web-rwkv-converter
|
||||
sudo apt-get update
|
||||
sudo apt-get install upx
|
||||
sudo apt-get install build-essential libgtk-3-dev libwebkit2gtk-4.0-dev libasound2-dev
|
||||
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
|
||||
go install github.com/wailsapp/wails/v2/cmd/wails@latest
|
||||
rm ./backend-python/rwkv_pip/wkv_cuda.pyd
|
||||
rm ./backend-python/rwkv_pip/rwkv5.pyd
|
||||
rm ./backend-python/rwkv_pip/rwkv6.pyd
|
||||
rm ./backend-python/rwkv_pip/beta/wkv_cuda.pyd
|
||||
rm ./backend-python/get-pip.py
|
||||
rm ./backend-python/rwkv_pip/cpp/librwkv.dylib
|
||||
rm ./backend-python/rwkv_pip/cpp/rwkv.dll
|
||||
@ -91,14 +92,15 @@ jobs:
|
||||
ref: master
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: "1.20.5"
|
||||
go-version: '1.20.5'
|
||||
- run: |
|
||||
wget https://github.com/josStorer/ai00_rwkv_server/releases/latest/download/webgpu_server_darwin_aarch64 -O ./backend-rust/webgpu_server
|
||||
wget https://github.com/josStorer/web-rwkv-converter/releases/latest/download/web-rwkv-converter_darwin_aarch64 -O ./backend-rust/web-rwkv-converter
|
||||
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
|
||||
go install github.com/wailsapp/wails/v2/cmd/wails@latest
|
||||
rm ./backend-python/rwkv_pip/wkv_cuda.pyd
|
||||
rm ./backend-python/rwkv_pip/rwkv5.pyd
|
||||
rm ./backend-python/rwkv_pip/rwkv6.pyd
|
||||
rm ./backend-python/rwkv_pip/beta/wkv_cuda.pyd
|
||||
rm ./backend-python/get-pip.py
|
||||
rm ./backend-python/rwkv_pip/cpp/rwkv.dll
|
||||
rm ./backend-python/rwkv_pip/cpp/librwkv.so
|
||||
@ -112,3 +114,4 @@ jobs:
|
||||
with:
|
||||
name: RWKV-Runner_macos_universal.zip
|
||||
path: build/bin/RWKV-Runner_macos_universal.zip
|
||||
|
||||
|
18
.github/workflows/release.yml
vendored
18
.github/workflows/release.yml
vendored
@ -18,7 +18,7 @@ jobs:
|
||||
with:
|
||||
ref: master
|
||||
|
||||
- uses: jossef/action-set-json-field@v2.2
|
||||
- uses: jossef/action-set-json-field@v2.1
|
||||
with:
|
||||
file: manifest.json
|
||||
field: version
|
||||
@ -43,11 +43,11 @@ jobs:
|
||||
ref: master
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: "1.20.5"
|
||||
go-version: '1.20.5'
|
||||
- uses: actions/setup-python@v5
|
||||
id: cp310
|
||||
with:
|
||||
python-version: "3.10"
|
||||
python-version: '3.10'
|
||||
- uses: crazy-max/ghaction-chocolatey@v3
|
||||
with:
|
||||
args: install upx
|
||||
@ -64,7 +64,7 @@ jobs:
|
||||
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../include" -Destination "py310/include" -Recurse
|
||||
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../libs" -Destination "py310/libs" -Recurse
|
||||
./py310/python -m pip install cyac==1.9
|
||||
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
|
||||
go install github.com/wailsapp/wails/v2/cmd/wails@latest
|
||||
del ./backend-python/rwkv_pip/cpp/librwkv.dylib
|
||||
del ./backend-python/rwkv_pip/cpp/librwkv.so
|
||||
(Get-Content -Path ./backend-golang/app.go) -replace "//go:custom_build windows ", "" | Set-Content -Path ./backend-golang/app.go
|
||||
@ -83,17 +83,18 @@ jobs:
|
||||
ref: master
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: "1.20.5"
|
||||
go-version: '1.20.5'
|
||||
- run: |
|
||||
wget https://github.com/josStorer/ai00_rwkv_server/releases/latest/download/webgpu_server_linux_x86_64 -O ./backend-rust/webgpu_server
|
||||
wget https://github.com/josStorer/web-rwkv-converter/releases/latest/download/web-rwkv-converter_linux_x86_64 -O ./backend-rust/web-rwkv-converter
|
||||
sudo apt-get update
|
||||
sudo apt-get install upx
|
||||
sudo apt-get install build-essential libgtk-3-dev libwebkit2gtk-4.0-dev libasound2-dev
|
||||
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
|
||||
go install github.com/wailsapp/wails/v2/cmd/wails@latest
|
||||
rm ./backend-python/rwkv_pip/wkv_cuda.pyd
|
||||
rm ./backend-python/rwkv_pip/rwkv5.pyd
|
||||
rm ./backend-python/rwkv_pip/rwkv6.pyd
|
||||
rm ./backend-python/rwkv_pip/beta/wkv_cuda.pyd
|
||||
rm ./backend-python/get-pip.py
|
||||
rm ./backend-python/rwkv_pip/cpp/librwkv.dylib
|
||||
rm ./backend-python/rwkv_pip/cpp/rwkv.dll
|
||||
@ -112,14 +113,15 @@ jobs:
|
||||
ref: master
|
||||
- uses: actions/setup-go@v5
|
||||
with:
|
||||
go-version: "1.20.5"
|
||||
go-version: '1.20.5'
|
||||
- run: |
|
||||
wget https://github.com/josStorer/ai00_rwkv_server/releases/latest/download/webgpu_server_darwin_aarch64 -O ./backend-rust/webgpu_server
|
||||
wget https://github.com/josStorer/web-rwkv-converter/releases/latest/download/web-rwkv-converter_darwin_aarch64 -O ./backend-rust/web-rwkv-converter
|
||||
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
|
||||
go install github.com/wailsapp/wails/v2/cmd/wails@latest
|
||||
rm ./backend-python/rwkv_pip/wkv_cuda.pyd
|
||||
rm ./backend-python/rwkv_pip/rwkv5.pyd
|
||||
rm ./backend-python/rwkv_pip/rwkv6.pyd
|
||||
rm ./backend-python/rwkv_pip/beta/wkv_cuda.pyd
|
||||
rm ./backend-python/get-pip.py
|
||||
rm ./backend-python/rwkv_pip/cpp/rwkv.dll
|
||||
rm ./backend-python/rwkv_pip/cpp/librwkv.so
|
||||
|
@ -1,26 +1,25 @@
|
||||
## v1.8.4
|
||||
## Changes
|
||||
|
||||
- fix f05a4a, __init__.py is not embedded
|
||||
### Features
|
||||
|
||||
## v1.8.3
|
||||
|
||||
### Deprecations
|
||||
|
||||
- rwkv-beta is deprecated
|
||||
|
||||
### Upgrades
|
||||
|
||||
- bump webgpu(python) (https://github.com/cryscan/web-rwkv-py)
|
||||
- sync https://github.com/JL-er/RWKV-PEFT (LoRA)
|
||||
|
||||
### Improvements
|
||||
|
||||
- improve default LoRA fine-tune params
|
||||
- add Docker support (#291) @LonghronShen
|
||||
|
||||
### Fixes
|
||||
|
||||
- fix #342, #345: cannot import name 'packaging' from 'pkg_resources'
|
||||
- fix the huge error prompt that pops up when running in webgpu mode
|
||||
- fix a generation exception caused by potentially dangerous regex being passed into the stop array
|
||||
- fix max_tokens parameter of Chat page not being passed to backend
|
||||
- fix the issue where penalty_decay and global_penalty are not being passed to the backend default config when running
|
||||
the model through client
|
||||
|
||||
### Improvements
|
||||
|
||||
- prevent 'torch' has no attribute 'cuda' error in torch_gc, so user can use CPU or WebGPU (#302)
|
||||
|
||||
### Chores
|
||||
|
||||
- bump dependencies
|
||||
- add pre-release workflow
|
||||
- dep_check.py now ignores GPUtil
|
||||
|
||||
## Install
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
<p align="center">
|
||||
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/65c46133-7506-4b54-b64f-fe49f188afa7">
|
||||
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/d24834b0-265d-45f5-93c0-fac1e19562af">
|
||||
</p>
|
||||
|
||||
<h1 align="center">RWKV Runner</h1>
|
||||
@ -94,8 +94,7 @@ English | [简体中文](README_ZH.md) | [日本語](README_JA.md)
|
||||
- Built-in model conversion tool.
|
||||
- Built-in download management and remote model inspection.
|
||||
- Built-in one-click LoRA Finetune. (Windows Only)
|
||||
- Can also be used as an OpenAI ChatGPT, GPT-Playground, Ollama and more clients. (Fill in the API URL and API Key in
|
||||
Settings page)
|
||||
- Can also be used as an OpenAI ChatGPT and GPT-Playground client. (Fill in the API URL and API Key in Settings page)
|
||||
- Multilingual localization.
|
||||
- Theme switching.
|
||||
- Automatic updates.
|
||||
@ -248,13 +247,13 @@ computer keyboard as MIDI input.
|
||||
|
||||
### Homepage
|
||||
|
||||
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/c1923ed8-22f7-48b4-a274-e215e27a8e01)
|
||||
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/c9b9cdd0-63f9-4319-9f74-5bf5d7df5a67)
|
||||
|
||||
### Chat
|
||||
|
||||
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/80009872-528f-4932-aeb2-f724fa892e7c)
|
||||
|
||||
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/de8d3fa7-c31f-4941-a22b-ded785427ac0)
|
||||
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/e98c9038-3323-47b0-8edb-d639fafd37b2)
|
||||
|
||||
### Completion
|
||||
|
||||
|
10
README_JA.md
10
README_JA.md
@ -1,5 +1,5 @@
|
||||
<p align="center">
|
||||
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/65c46133-7506-4b54-b64f-fe49f188afa7">
|
||||
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/d24834b0-265d-45f5-93c0-fac1e19562af">
|
||||
</p>
|
||||
|
||||
<h1 align="center">RWKV Runner</h1>
|
||||
@ -89,8 +89,8 @@
|
||||
- 内蔵モデル変換ツール
|
||||
- ダウンロード管理とリモートモデル検査機能内蔵
|
||||
- 内蔵のLoRA微調整機能を搭載しています (Windowsのみ)
|
||||
- このプログラムは、OpenAI ChatGPT、GPT Playground、Ollama などのクライアントとしても使用できます(設定ページで `API URL`
|
||||
と `API Key` を入力してください)
|
||||
- このプログラムは、OpenAI ChatGPTとGPT Playgroundのクライアントとしても使用できます(設定ページで `API URL` と `API Key`
|
||||
を入力してください)
|
||||
- 多言語ローカライズ
|
||||
- テーマ切り替え
|
||||
- 自動アップデート
|
||||
@ -244,13 +244,13 @@ MIDIキーボードをお持ちでない場合、`Virtual Midi Controller 3 LE`
|
||||
|
||||
### ホームページ
|
||||
|
||||
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/c1923ed8-22f7-48b4-a274-e215e27a8e01)
|
||||
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/c9b9cdd0-63f9-4319-9f74-5bf5d7df5a67)
|
||||
|
||||
### チャット
|
||||
|
||||
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/80009872-528f-4932-aeb2-f724fa892e7c)
|
||||
|
||||
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/de8d3fa7-c31f-4941-a22b-ded785427ac0)
|
||||
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/e98c9038-3323-47b0-8edb-d639fafd37b2)
|
||||
|
||||
### 補完
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
<p align="center">
|
||||
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/65c46133-7506-4b54-b64f-fe49f188afa7">
|
||||
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/d24834b0-265d-45f5-93c0-fac1e19562af">
|
||||
</p>
|
||||
|
||||
<h1 align="center">RWKV Runner</h1>
|
||||
@ -83,7 +83,7 @@ API兼容的接口,这意味着一切ChatGPT客户端都是RWKV客户端。
|
||||
- 内置模型转换工具
|
||||
- 内置下载管理和远程模型检视
|
||||
- 内置一键LoRA微调 (仅限Windows)
|
||||
- 也可用作 OpenAI ChatGPT, GPT Playground, Ollama 等服务的客户端 (在设置内填写API URL和API Key)
|
||||
- 也可用作 OpenAI ChatGPT 和 GPT Playground 客户端 (在设置内填写API URL和API Key)
|
||||
- 多语言本地化
|
||||
- 主题切换
|
||||
- 自动更新
|
||||
@ -226,13 +226,13 @@ for i in np.argsort(embeddings_cos_sim)[::-1]:
|
||||
|
||||
### 主页
|
||||
|
||||
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/3265b11a-ab19-4e19-bfea-fc687f59aaf9)
|
||||
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/cd82674e-3ee3-4175-bd9c-a11d45437327)
|
||||
|
||||
### 聊天
|
||||
|
||||
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/9570e73b-dca2-4316-9e92-09961f3c48c4)
|
||||
|
||||
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/162fce43-8568-4850-a6af-ab60af988da6)
|
||||
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/54bb0e2b-cdc4-4ea0-8d16-9beaf57c232c)
|
||||
|
||||
### 续写
|
||||
|
||||
|
@ -7,11 +7,7 @@ import (
|
||||
"context"
|
||||
"errors"
|
||||
"io"
|
||||
"log"
|
||||
"net"
|
||||
"net/http"
|
||||
"net/http/httputil"
|
||||
"net/url"
|
||||
"os"
|
||||
"os/exec"
|
||||
"path/filepath"
|
||||
@ -31,7 +27,6 @@ type App struct {
|
||||
HasConfigData bool
|
||||
ConfigData map[string]any
|
||||
Dev bool
|
||||
proxyPort int
|
||||
exDir string
|
||||
cmdPrefix string
|
||||
}
|
||||
@ -41,63 +36,6 @@ func NewApp() *App {
|
||||
return &App{}
|
||||
}
|
||||
|
||||
func (a *App) newFetchProxy() {
|
||||
go func() {
|
||||
handler := func(w http.ResponseWriter, r *http.Request) {
|
||||
if r.Method == "OPTIONS" {
|
||||
w.Header().Set("Access-Control-Allow-Methods", "GET, POST, OPTIONS")
|
||||
w.Header().Set("Access-Control-Allow-Headers", "*")
|
||||
w.Header().Set("Access-Control-Allow-Origin", "*")
|
||||
return
|
||||
}
|
||||
proxy := &httputil.ReverseProxy{
|
||||
ModifyResponse: func(res *http.Response) error {
|
||||
res.Header.Set("Access-Control-Allow-Origin", "*")
|
||||
return nil
|
||||
},
|
||||
Director: func(req *http.Request) {
|
||||
realTarget := req.Header.Get("Real-Target")
|
||||
if realTarget != "" {
|
||||
realTarget, err := url.PathUnescape(realTarget)
|
||||
if err != nil {
|
||||
log.Printf("Error decoding target URL: %v\n", err)
|
||||
return
|
||||
}
|
||||
target, err := url.Parse(realTarget)
|
||||
if err != nil {
|
||||
log.Printf("Error parsing target URL: %v\n", err)
|
||||
return
|
||||
}
|
||||
req.Header.Set("Accept", "*/*")
|
||||
req.Header.Del("Origin")
|
||||
req.Header.Del("Referer")
|
||||
req.Header.Del("Real-Target")
|
||||
req.Header.Del("Sec-Fetch-Dest")
|
||||
req.Header.Del("Sec-Fetch-Mode")
|
||||
req.Header.Del("Sec-Fetch-Site")
|
||||
req.URL.Scheme = target.Scheme
|
||||
req.URL.Host = target.Host
|
||||
req.URL.Path = target.Path
|
||||
req.URL.RawQuery = url.PathEscape(target.RawQuery)
|
||||
log.Println("Proxying to", realTarget)
|
||||
} else {
|
||||
log.Println("Real-Target header is missing")
|
||||
}
|
||||
},
|
||||
}
|
||||
proxy.ServeHTTP(w, r)
|
||||
}
|
||||
http.HandleFunc("/", handler)
|
||||
listener, err := net.Listen("tcp", "127.0.0.1:0")
|
||||
if err != nil {
|
||||
return
|
||||
}
|
||||
a.proxyPort = listener.Addr().(*net.TCPAddr).Port
|
||||
|
||||
http.Serve(listener, nil)
|
||||
}()
|
||||
}
|
||||
|
||||
// startup is called when the app starts. The context is saved
|
||||
// so we can call the runtime methods
|
||||
func (a *App) OnStartup(ctx context.Context) {
|
||||
@ -125,7 +63,6 @@ func (a *App) OnStartup(ctx context.Context) {
|
||||
os.Chmod(a.exDir+"backend-rust/web-rwkv-converter", 0777)
|
||||
os.Mkdir(a.exDir+"models", os.ModePerm)
|
||||
os.Mkdir(a.exDir+"lora-models", os.ModePerm)
|
||||
os.Mkdir(a.exDir+"state-models", os.ModePerm)
|
||||
os.Mkdir(a.exDir+"finetune/json2binidx_tool/data", os.ModePerm)
|
||||
trainLogPath := "lora-models/train_log.txt"
|
||||
if !a.FileExists(trainLogPath) {
|
||||
@ -139,7 +76,6 @@ func (a *App) OnStartup(ctx context.Context) {
|
||||
a.midiLoop()
|
||||
a.watchFs()
|
||||
a.monitorHardware()
|
||||
a.newFetchProxy()
|
||||
}
|
||||
|
||||
func (a *App) OnBeforeClose(ctx context.Context) bool {
|
||||
@ -152,9 +88,8 @@ func (a *App) OnBeforeClose(ctx context.Context) bool {
|
||||
func (a *App) watchFs() {
|
||||
watcher, err := fsnotify.NewWatcher()
|
||||
if err == nil {
|
||||
watcher.Add(a.exDir + "./models")
|
||||
watcher.Add(a.exDir + "./lora-models")
|
||||
watcher.Add(a.exDir + "./state-models")
|
||||
watcher.Add(a.exDir + "./models")
|
||||
go func() {
|
||||
for {
|
||||
select {
|
||||
@ -304,7 +239,3 @@ func (a *App) RestartApp() error {
|
||||
func (a *App) GetPlatform() string {
|
||||
return runtime.GOOS
|
||||
}
|
||||
|
||||
func (a *App) GetProxyPort() int {
|
||||
return a.proxyPort
|
||||
}
|
||||
|
@ -28,7 +28,7 @@ func (a *App) StartServer(python string, port int, host string, webui bool, rwkv
|
||||
args = append(args, "--webui")
|
||||
}
|
||||
if rwkvBeta {
|
||||
// args = append(args, "--rwkv-beta")
|
||||
args = append(args, "--rwkv-beta")
|
||||
}
|
||||
if rwkvcpp {
|
||||
args = append(args, "--rwkv.cpp")
|
||||
@ -215,12 +215,8 @@ func (a *App) DepCheck(python string) error {
|
||||
|
||||
func (a *App) InstallPyDep(python string, cnMirror bool) (string, error) {
|
||||
var err error
|
||||
torchWhlUrl := "torch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 --index-url https://download.pytorch.org/whl/cu117"
|
||||
if python == "" {
|
||||
python, err = GetPython()
|
||||
if cnMirror && python == "py310/python.exe" {
|
||||
torchWhlUrl = "https://mirrors.aliyun.com/pytorch-wheels/cu117/torch-1.13.1+cu117-cp310-cp310-win_amd64.whl"
|
||||
}
|
||||
if runtime.GOOS == "windows" {
|
||||
python = `"%CD%/` + python + `"`
|
||||
}
|
||||
@ -231,12 +227,12 @@ func (a *App) InstallPyDep(python string, cnMirror bool) (string, error) {
|
||||
|
||||
if runtime.GOOS == "windows" {
|
||||
ChangeFileLine("./py310/python310._pth", 3, "Lib\\site-packages")
|
||||
installScript := python + " ./backend-python/get-pip.py -i https://mirrors.aliyun.com/pypi/simple --no-warn-script-location\n" +
|
||||
python + " -m pip install " + torchWhlUrl + " --no-warn-script-location\n" +
|
||||
python + " -m pip install -r ./backend-python/requirements.txt -i https://mirrors.aliyun.com/pypi/simple --no-warn-script-location\n" +
|
||||
installScript := python + " ./backend-python/get-pip.py -i https://pypi.tuna.tsinghua.edu.cn/simple --no-warn-script-location\n" +
|
||||
python + " -m pip install torch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 --index-url https://download.pytorch.org/whl/cu117 --no-warn-script-location\n" +
|
||||
python + " -m pip install -r ./backend-python/requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple --no-warn-script-location\n" +
|
||||
"exit"
|
||||
if !cnMirror {
|
||||
installScript = strings.Replace(installScript, " -i https://mirrors.aliyun.com/pypi/simple", "", -1)
|
||||
installScript = strings.Replace(installScript, " -i https://pypi.tuna.tsinghua.edu.cn/simple", "", -1)
|
||||
}
|
||||
err = os.WriteFile(a.exDir+"install-py-dep.bat", []byte(installScript), 0644)
|
||||
if err != nil {
|
||||
@ -246,7 +242,7 @@ func (a *App) InstallPyDep(python string, cnMirror bool) (string, error) {
|
||||
}
|
||||
|
||||
if cnMirror {
|
||||
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_without_cyac.txt", "-i", "https://mirrors.aliyun.com/pypi/simple")
|
||||
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_without_cyac.txt", "-i", "https://pypi.tuna.tsinghua.edu.cn/simple")
|
||||
} else {
|
||||
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_without_cyac.txt")
|
||||
}
|
||||
|
2
backend-python/convert_safetensors.py
vendored
2
backend-python/convert_safetensors.py
vendored
@ -102,8 +102,6 @@ if __name__ == "__main__":
|
||||
"time_mix_w2",
|
||||
"time_decay_w1",
|
||||
"time_decay_w2",
|
||||
"time_state",
|
||||
"lora.0",
|
||||
],
|
||||
)
|
||||
print(f"Saved to {args.output}")
|
||||
|
@ -1,8 +1,3 @@
|
||||
import setuptools
|
||||
|
||||
if setuptools.__version__ >= "70.0.0":
|
||||
raise ImportError("setuptools>=70.0.0 is not supported")
|
||||
|
||||
import multipart
|
||||
import fitz
|
||||
import safetensors
|
||||
|
@ -27,6 +27,11 @@ def get_args(args: Union[Sequence[str], None] = None):
|
||||
action="store_true",
|
||||
help="whether to enable WebUI (default: False)",
|
||||
)
|
||||
group.add_argument(
|
||||
"--rwkv-beta",
|
||||
action="store_true",
|
||||
help="whether to use rwkv-beta (default: False)",
|
||||
)
|
||||
group.add_argument(
|
||||
"--rwkv.cpp",
|
||||
action="store_true",
|
||||
|
@ -1,8 +1,7 @@
|
||||
torch
|
||||
torchvision
|
||||
torchaudio
|
||||
setuptools==69.5.1
|
||||
rwkv==0.8.26
|
||||
rwkv==0.8.25
|
||||
langchain==0.0.322
|
||||
fastapi==0.109.1
|
||||
uvicorn==0.23.2
|
||||
|
@ -1,8 +1,7 @@
|
||||
torch
|
||||
torchvision
|
||||
torchaudio
|
||||
setuptools==69.5.1
|
||||
rwkv==0.8.26
|
||||
rwkv==0.8.25
|
||||
langchain==0.0.322
|
||||
fastapi==0.109.1
|
||||
uvicorn==0.23.2
|
||||
|
@ -4,7 +4,6 @@ from threading import Lock
|
||||
from typing import List, Union
|
||||
from enum import Enum
|
||||
import base64
|
||||
import time
|
||||
|
||||
from fastapi import APIRouter, Request, status, HTTPException
|
||||
from sse_starlette.sse import EventSourceResponse
|
||||
@ -54,11 +53,8 @@ class ChatCompletionBody(ModelConfigBody):
|
||||
assistant_name: Union[str, None] = Field(
|
||||
None, description="Internal assistant name", min_length=1
|
||||
)
|
||||
system_name: Union[str, None] = Field(
|
||||
None, description="Internal system name", min_length=1
|
||||
)
|
||||
presystem: bool = Field(
|
||||
False, description="Whether to insert default system prompt at the beginning"
|
||||
True, description="Whether to insert default system prompt at the beginning"
|
||||
)
|
||||
|
||||
model_config = {
|
||||
@ -72,7 +68,6 @@ class ChatCompletionBody(ModelConfigBody):
|
||||
"stop": None,
|
||||
"user_name": None,
|
||||
"assistant_name": None,
|
||||
"system_name": None,
|
||||
"presystem": True,
|
||||
"max_tokens": 1000,
|
||||
"temperature": 1,
|
||||
@ -152,13 +147,10 @@ async def eval_rwkv(
|
||||
print(get_rwkv_config(model))
|
||||
|
||||
response, prompt_tokens, completion_tokens = "", 0, 0
|
||||
completion_start_time = None
|
||||
for response, delta, prompt_tokens, completion_tokens in model.generate(
|
||||
prompt,
|
||||
stop=stop,
|
||||
):
|
||||
if not completion_start_time:
|
||||
completion_start_time = time.time()
|
||||
if await request.is_disconnected():
|
||||
break
|
||||
if stream:
|
||||
@ -171,15 +163,12 @@ async def eval_rwkv(
|
||||
),
|
||||
# "response": response,
|
||||
"model": model.name,
|
||||
"id": "chatcmpl-123",
|
||||
"system_fingerprint": "fp_44709d6fcb",
|
||||
"choices": [
|
||||
(
|
||||
{
|
||||
"delta": {"role":Role.Assistant.value,"content": delta},
|
||||
"delta": {"content": delta},
|
||||
"index": 0,
|
||||
"finish_reason": None,
|
||||
"logprobs":None
|
||||
}
|
||||
if chat_mode
|
||||
else {
|
||||
@ -193,13 +182,6 @@ async def eval_rwkv(
|
||||
)
|
||||
# torch_gc()
|
||||
requests_num = requests_num - 1
|
||||
completion_end_time = time.time()
|
||||
completion_interval = completion_end_time - completion_start_time
|
||||
tps = 0
|
||||
if completion_interval > 0:
|
||||
tps = completion_tokens / completion_interval
|
||||
print(f"Generation TPS: {tps:.2f}")
|
||||
|
||||
if await request.is_disconnected():
|
||||
print(f"{request.client} Stop Waiting")
|
||||
quick_log(
|
||||
@ -221,14 +203,11 @@ async def eval_rwkv(
|
||||
),
|
||||
# "response": response,
|
||||
"model": model.name,
|
||||
"id": "chatcmpl-123",
|
||||
"system_fingerprint": "fp_44709d6fcb",
|
||||
"choices": [
|
||||
(
|
||||
{
|
||||
"delta": {},
|
||||
"index": 0,
|
||||
"logprobs": None,
|
||||
"finish_reason": "stop",
|
||||
}
|
||||
if chat_mode
|
||||
@ -273,9 +252,20 @@ async def eval_rwkv(
|
||||
}
|
||||
|
||||
|
||||
def chat_template_old(
|
||||
model: TextRWKV, body: ChatCompletionBody, interface: str, user: str, bot: str
|
||||
):
|
||||
@router.post("/v1/chat/completions", tags=["Completions"])
|
||||
@router.post("/chat/completions", tags=["Completions"])
|
||||
async def chat_completions(body: ChatCompletionBody, request: Request):
|
||||
model: TextRWKV = global_var.get(global_var.Model)
|
||||
if model is None:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "model not loaded")
|
||||
|
||||
if body.messages is None or body.messages == []:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "messages not found")
|
||||
|
||||
interface = model.interface
|
||||
user = model.user if body.user_name is None else body.user_name
|
||||
bot = model.bot if body.assistant_name is None else body.assistant_name
|
||||
|
||||
is_raven = model.rwkv_type == RWKVType.Raven
|
||||
|
||||
completion_text: str = ""
|
||||
@ -344,53 +334,6 @@ The following is a coherent verbose detailed conversation between a girl named {
|
||||
completion_text += append_message + "\n\n"
|
||||
completion_text += f"{bot}{interface}"
|
||||
|
||||
return completion_text
|
||||
|
||||
|
||||
def chat_template(
|
||||
model: TextRWKV, body: ChatCompletionBody, interface: str, user: str, bot: str
|
||||
):
|
||||
completion_text: str = ""
|
||||
if body.presystem:
|
||||
completion_text = (
|
||||
f"{user}{interface} hi\n\n{bot}{interface} Hi. "
|
||||
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
|
||||
)
|
||||
|
||||
system = "System" if body.system_name is None else body.system_name
|
||||
for message in body.messages:
|
||||
append_message: str = ""
|
||||
if message.role == Role.User:
|
||||
append_message = f"{user}{interface} " + message.content
|
||||
elif message.role == Role.Assistant:
|
||||
append_message = f"{bot}{interface} " + message.content
|
||||
elif message.role == Role.System:
|
||||
append_message = f"{system}{interface} " + message.content
|
||||
completion_text += append_message + "\n\n"
|
||||
completion_text += f"{bot}{interface}"
|
||||
|
||||
return completion_text
|
||||
|
||||
|
||||
@router.post("/v1/chat/completions", tags=["Completions"])
|
||||
@router.post("/chat/completions", tags=["Completions"])
|
||||
async def chat_completions(body: ChatCompletionBody, request: Request):
|
||||
model: TextRWKV = global_var.get(global_var.Model)
|
||||
if model is None:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "model not loaded")
|
||||
|
||||
if body.messages is None or body.messages == []:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "messages not found")
|
||||
|
||||
interface = model.interface
|
||||
user = model.user if body.user_name is None else body.user_name
|
||||
bot = model.bot if body.assistant_name is None else body.assistant_name
|
||||
|
||||
if model.version < 5:
|
||||
completion_text = chat_template_old(model, body, interface, user, bot)
|
||||
else:
|
||||
completion_text = chat_template(model, body, interface, user, bot)
|
||||
|
||||
user_code = model.pipeline.decode([model.pipeline.encode(user)[0]])
|
||||
bot_code = model.pipeline.decode([model.pipeline.encode(bot)[0]])
|
||||
if type(body.stop) == str:
|
||||
@ -399,9 +342,9 @@ async def chat_completions(body: ChatCompletionBody, request: Request):
|
||||
body.stop.append(f"\n\n{user_code}")
|
||||
body.stop.append(f"\n\n{bot_code}")
|
||||
elif body.stop is None:
|
||||
body.stop = default_stop + [f"\n\n{user_code}", f"\n\n{bot_code}"]
|
||||
# if not body.presystem:
|
||||
# body.stop.append("\n\n")
|
||||
body.stop = default_stop
|
||||
if not body.presystem:
|
||||
body.stop.append("\n\n")
|
||||
|
||||
if body.stream:
|
||||
return EventSourceResponse(
|
||||
|
@ -120,11 +120,6 @@ def update_config(body: ModelConfigBody):
|
||||
model_config = ModelConfigBody()
|
||||
global_var.set(global_var.Model_Config, model_config)
|
||||
merge_model(model_config, body)
|
||||
exception = load_rwkv_state(
|
||||
global_var.get(global_var.Model), model_config.state, True
|
||||
)
|
||||
if exception is not None:
|
||||
raise exception
|
||||
print("Updated Model Config:", model_config)
|
||||
|
||||
return "success"
|
||||
|
@ -96,9 +96,7 @@ def copy_tensor_to_cpu(tensors):
|
||||
elif tensors_type == np.ndarray: # rwkv.cpp
|
||||
copied = tensors
|
||||
else: # WebGPU state
|
||||
model = global_var.get(global_var.Model)
|
||||
if model:
|
||||
copied = model.model.model.back_state()
|
||||
copied = tensors.back()
|
||||
|
||||
return copied, devices
|
||||
|
||||
@ -178,19 +176,6 @@ def reset_state():
|
||||
return "success"
|
||||
|
||||
|
||||
def force_reset_state():
|
||||
global trie, dtrie
|
||||
|
||||
if trie is None:
|
||||
return
|
||||
|
||||
import cyac
|
||||
|
||||
trie = cyac.Trie()
|
||||
dtrie = {}
|
||||
gc.collect()
|
||||
|
||||
|
||||
class LongestPrefixStateBody(BaseModel):
|
||||
prompt: str
|
||||
|
||||
@ -240,14 +225,11 @@ def longest_prefix_state(body: LongestPrefixStateBody, request: Request):
|
||||
state: Union[Any, None] = v["state"]
|
||||
logits: Union[Any, None] = v["logits"]
|
||||
|
||||
state_type = type(state)
|
||||
if state_type == list and hasattr(state[0], "device"): # torch
|
||||
if type(state) == list and hasattr(state[0], "device"): # torch
|
||||
state = [
|
||||
(
|
||||
tensor.to(devices[i])
|
||||
if devices[i] != torch.device("cpu")
|
||||
else tensor.clone()
|
||||
)
|
||||
tensor.to(devices[i])
|
||||
if devices[i] != torch.device("cpu")
|
||||
else tensor.clone()
|
||||
for i, tensor in enumerate(state)
|
||||
]
|
||||
logits = (
|
||||
@ -255,9 +237,7 @@ def longest_prefix_state(body: LongestPrefixStateBody, request: Request):
|
||||
if logits_device != torch.device("cpu")
|
||||
else logits.clone()
|
||||
)
|
||||
elif state_type == np.ndarray: # rwkv.cpp
|
||||
logits = np.copy(logits)
|
||||
else: # WebGPU
|
||||
else: # rwkv.cpp, WebGPU
|
||||
logits = np.copy(logits)
|
||||
|
||||
quick_log(request, body, "Hit:\n" + prompt)
|
||||
|
124
backend-python/rwkv_pip/beta/cuda/att_one.cu
vendored
Normal file
124
backend-python/rwkv_pip/beta/cuda/att_one.cu
vendored
Normal file
@ -0,0 +1,124 @@
|
||||
#include "ATen/ATen.h"
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <torch/extension.h>
|
||||
|
||||
#include "element_wise.h"
|
||||
#include "util.h"
|
||||
|
||||
// Equivalent Python code:
|
||||
// ww = t_first + k
|
||||
// p = torch.maximum(pp, ww)
|
||||
// e1 = torch.exp(pp - p)
|
||||
// e2 = torch.exp(ww - p)
|
||||
// wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
|
||||
// ww = t_decay + pp
|
||||
// p = torch.maximum(ww, k)
|
||||
// e1 = torch.exp(ww - p)
|
||||
// e2 = torch.exp(k - p)
|
||||
// t1 = e1 * aa + e2 * v
|
||||
// t2 = e1 * bb + e2
|
||||
// r = r * wkv
|
||||
// return t1, t2, p, r
|
||||
struct WkvForwardOne {
|
||||
const float *t_first;
|
||||
const float *k;
|
||||
const float *pp;
|
||||
const float *aa;
|
||||
const float *bb;
|
||||
const float *t_decay;
|
||||
const float *v;
|
||||
/* out */ float *t1;
|
||||
/* out */ float *t2;
|
||||
/* out */ float *p;
|
||||
/* in & out */ half *r;
|
||||
|
||||
__device__ void operator()(int i) const {
|
||||
float ww = t_first[i] + k[i];
|
||||
float pp_ = pp[i];
|
||||
float p_ = (pp_ > ww) ? pp_ : ww;
|
||||
float e1 = expf(pp_ - p_);
|
||||
float e2 = expf(ww - p_);
|
||||
float aa_ = aa[i];
|
||||
float bb_ = bb[i];
|
||||
float v_ = v[i];
|
||||
r[i] = __hmul(r[i], __float2half(((e1 * aa_ + e2 * v_) / (e1 * bb_ + e2))));
|
||||
ww = t_decay[i] + pp_;
|
||||
float k_ = k[i];
|
||||
p_ = (ww > k_) ? ww : k_;
|
||||
e1 = expf(ww - p_);
|
||||
e2 = expf(k_ - p_);
|
||||
t1[i] = e1 * aa_ + e2 * v_;
|
||||
t2[i] = e1 * bb_ + e2;
|
||||
p[i] = p_;
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
Equivalent Python code:
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
vx = xx * v_mix + sx * (1 - v_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
*/
|
||||
|
||||
struct Mix {
|
||||
const half *xx;
|
||||
const half *sx;
|
||||
const half *k_mix;
|
||||
const half *v_mix;
|
||||
const half *r_mix;
|
||||
/* out */ half *kx;
|
||||
/* out */ half *vx;
|
||||
/* out */ half *rx;
|
||||
|
||||
__device__ void operator()(int i) const {
|
||||
half xx_ = xx[i];
|
||||
half sx_ = sx[i];
|
||||
half k_mix_ = k_mix[i];
|
||||
half v_mix_ = v_mix[i];
|
||||
half r_mix_ = r_mix[i];
|
||||
kx[i] = __hadd(__hmul(xx_, k_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
||||
vx[i] = __hadd(__hmul(xx_, v_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), v_mix_)));
|
||||
rx[i] = __hadd(__hmul(xx_, r_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
||||
}
|
||||
};
|
||||
|
||||
using torch::Tensor;
|
||||
|
||||
void gemm_fp16_cublas_tensor(Tensor a, Tensor b, Tensor c);
|
||||
|
||||
Tensor att_one(Tensor x, Tensor ln_w, Tensor ln_b, Tensor sx, Tensor k_mix,
|
||||
Tensor v_mix, Tensor r_mix, Tensor kw,
|
||||
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx, Tensor rw,
|
||||
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
|
||||
/* imm */ Tensor k, Tensor pp, Tensor ww, Tensor aa, Tensor bb,
|
||||
Tensor t_decay, /* imm */ Tensor v, /* in & out */ Tensor r,
|
||||
/* out */ Tensor x_plus_out, /* out */ Tensor t1,
|
||||
/* out */ Tensor t2, /* out */ Tensor p) {
|
||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
||||
element_wise(Mix{data_ptr<half>(xx), data_ptr<half>(sx),
|
||||
data_ptr<half>(k_mix), data_ptr<half>(v_mix),
|
||||
data_ptr<half>(r_mix), data_ptr<half>(kx),
|
||||
data_ptr<half>(vx), data_ptr<half>(rx)},
|
||||
x.numel());
|
||||
|
||||
gemm_fp16_cublas_tensor(kx, kw, k);
|
||||
gemm_fp16_cublas_tensor(vx, vw, v);
|
||||
gemm_fp16_cublas_tensor(rx, rw, r);
|
||||
at::sigmoid_(r);
|
||||
|
||||
element_wise(WkvForwardOne{data_ptr<float>(t_first), data_ptr<float>(k),
|
||||
data_ptr<float>(pp), data_ptr<float>(aa),
|
||||
data_ptr<float>(bb), data_ptr<float>(t_decay),
|
||||
data_ptr<float>(v), data_ptr<float>(t1),
|
||||
data_ptr<float>(t2), data_ptr<float>(p),
|
||||
data_ptr<half>(r)},
|
||||
x.numel());
|
||||
|
||||
gemm_fp16_cublas_tensor(r, ow, x_plus_out);
|
||||
x_plus_out += x;
|
||||
return xx;
|
||||
}
|
109
backend-python/rwkv_pip/beta/cuda/att_one_v5.cu
vendored
Normal file
109
backend-python/rwkv_pip/beta/cuda/att_one_v5.cu
vendored
Normal file
@ -0,0 +1,109 @@
|
||||
#include "ATen/ATen.h"
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <torch/extension.h>
|
||||
|
||||
#include "element_wise.h"
|
||||
#include "util.h"
|
||||
|
||||
// Equivalent Python code:
|
||||
// s1 = t_first * a + s
|
||||
// s2 = a + t_decay * s
|
||||
struct Fused1 {
|
||||
const float *t_first;
|
||||
const float *t_decay;
|
||||
const float *a;
|
||||
const float *s;
|
||||
const int32_t inner_size;
|
||||
/* out */ float *s1;
|
||||
/* out */ float *s2;
|
||||
|
||||
__device__ void operator()(int i) const {
|
||||
const int j = i / inner_size;
|
||||
s1[i] = t_first[j] * a[i] + s[i];
|
||||
s2[i] = a[i] + t_decay[j] * s[i];
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
Equivalent Python code:
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
vx = xx * v_mix + sx * (1 - v_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
*/
|
||||
|
||||
struct Mix {
|
||||
const half *xx;
|
||||
const half *sx;
|
||||
const half *k_mix;
|
||||
const half *v_mix;
|
||||
const half *r_mix;
|
||||
/* out */ half *kx;
|
||||
/* out */ half *vx;
|
||||
/* out */ half *rx;
|
||||
|
||||
__device__ void operator()(int i) const {
|
||||
half xx_ = xx[i];
|
||||
half sx_ = sx[i];
|
||||
half k_mix_ = k_mix[i];
|
||||
half v_mix_ = v_mix[i];
|
||||
half r_mix_ = r_mix[i];
|
||||
kx[i] = __hadd(__hmul(xx_, k_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
||||
vx[i] = __hadd(__hmul(xx_, v_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), v_mix_)));
|
||||
rx[i] = __hadd(__hmul(xx_, r_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
||||
}
|
||||
};
|
||||
|
||||
using torch::Tensor;
|
||||
|
||||
void gemm_fp16_cublas_tensor(Tensor a, Tensor b, Tensor c);
|
||||
|
||||
Tensor att_one_v5(Tensor x, Tensor sx, Tensor s, Tensor ln_w, Tensor ln_b,
|
||||
Tensor lx_w, Tensor lx_b, Tensor k_mix, Tensor v_mix,
|
||||
Tensor r_mix, Tensor kw,
|
||||
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx,
|
||||
Tensor rw,
|
||||
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
|
||||
/* imm */ Tensor k, Tensor t_decay, /* imm */ Tensor v,
|
||||
/* imm */ Tensor r, /* imm */ Tensor s1,
|
||||
/* out */ Tensor x_plus_out, /* out */ Tensor s2) {
|
||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
||||
element_wise(Mix{data_ptr<half>(xx), data_ptr<half>(sx),
|
||||
data_ptr<half>(k_mix), data_ptr<half>(v_mix),
|
||||
data_ptr<half>(r_mix), data_ptr<half>(kx),
|
||||
data_ptr<half>(vx), data_ptr<half>(rx)},
|
||||
x.numel());
|
||||
|
||||
int H = t_decay.size(0);
|
||||
int S = x.size(-1) / H;
|
||||
gemm_fp16_cublas_tensor(rx, rw, r);
|
||||
r = at::reshape(r, {H, 1, S});
|
||||
gemm_fp16_cublas_tensor(kx, kw, k);
|
||||
k = at::reshape(k, {H, S, 1});
|
||||
gemm_fp16_cublas_tensor(vx, vw, v);
|
||||
v = at::reshape(v, {H, 1, S});
|
||||
|
||||
{
|
||||
Tensor a = at::matmul(k, v);
|
||||
|
||||
// s1 = t_first * a + s
|
||||
// s2 = a + t_decay * s
|
||||
element_wise(Fused1{data_ptr<float>(t_first), data_ptr<float>(t_decay),
|
||||
data_ptr<float>(a), data_ptr<float>(s),
|
||||
static_cast<int32_t>(a.size(1) * a.size(2)),
|
||||
data_ptr<float>(s1), data_ptr<float>(s2)},
|
||||
a.numel());
|
||||
}
|
||||
|
||||
Tensor out = at::matmul(r, s1);
|
||||
out = at::flatten(out);
|
||||
out = at::squeeze(at::group_norm(at::unsqueeze(out, 0), H, lx_w, lx_b), 0);
|
||||
out = at::_cast_Half(out);
|
||||
|
||||
gemm_fp16_cublas_tensor(out, ow, x_plus_out);
|
||||
x_plus_out += x;
|
||||
return xx;
|
||||
}
|
178
backend-python/rwkv_pip/beta/cuda/att_seq.cu
vendored
Normal file
178
backend-python/rwkv_pip/beta/cuda/att_seq.cu
vendored
Normal file
@ -0,0 +1,178 @@
|
||||
#include "ATen/ATen.h"
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <torch/extension.h>
|
||||
|
||||
#include "util.h"
|
||||
#include "element_wise.h"
|
||||
|
||||
using torch::Tensor;
|
||||
|
||||
void gemm_fp16_cublas(const void *a, const void *b, void *c, int m,
|
||||
int n, int k, bool output_fp32);
|
||||
|
||||
// based on `kernel_wkv_forward`, fusing more operations
|
||||
__global__ void kernel_wkv_forward_new(
|
||||
const int B, const int T, const int C, const float *__restrict__ const _w,
|
||||
const float *__restrict__ const _u, const float *__restrict__ const _k,
|
||||
const float *__restrict__ const _v, const half *__restrict__ const r,
|
||||
half *__restrict__ const _y, float *__restrict__ const _aa,
|
||||
float *__restrict__ const _bb, float *__restrict__ const _pp) {
|
||||
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int _b = idx / C;
|
||||
const int _c = idx % C;
|
||||
const int _offset = _b * T * C + _c;
|
||||
const int _state_offset = _b * C + _c;
|
||||
|
||||
float u = _u[_c];
|
||||
float w = _w[_c];
|
||||
const float *__restrict__ const k = _k + _offset;
|
||||
const float *__restrict__ const v = _v + _offset;
|
||||
half *__restrict__ const y = _y + _offset;
|
||||
|
||||
float aa = _aa[_state_offset];
|
||||
float bb = _bb[_state_offset];
|
||||
float pp = _pp[_state_offset];
|
||||
for (int i = 0; i < T; i++) {
|
||||
const int ii = i * C;
|
||||
const float kk = k[ii];
|
||||
const float vv = v[ii];
|
||||
float ww = u + kk;
|
||||
float p = max(pp, ww);
|
||||
float e1 = exp(pp - p);
|
||||
float e2 = exp(ww - p);
|
||||
y[ii] = __float2half((e1 * aa + e2 * vv) / (e1 * bb + e2));
|
||||
ww = w + pp;
|
||||
p = max(ww, kk);
|
||||
e1 = exp(ww - p);
|
||||
e2 = exp(kk - p);
|
||||
aa = e1 * aa + e2 * vv;
|
||||
bb = e1 * bb + e2;
|
||||
pp = p;
|
||||
}
|
||||
_aa[_state_offset] = aa;
|
||||
_bb[_state_offset] = bb;
|
||||
_pp[_state_offset] = pp;
|
||||
}
|
||||
|
||||
void cuda_wkv_forward_new(int B, int T, int C, float *w, float *u, float *k,
|
||||
float *v, half *r, half *y, float *aa, float *bb,
|
||||
float *pp) {
|
||||
dim3 threadsPerBlock(min(C, 32));
|
||||
assert(B * C % threadsPerBlock.x == 0);
|
||||
dim3 numBlocks(B * C / threadsPerBlock.x);
|
||||
kernel_wkv_forward_new<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, r,
|
||||
y, aa, bb, pp);
|
||||
}
|
||||
|
||||
__global__ void _att_mix(const half *xx, const half *sx, const half *k_mix,
|
||||
const half *v_mix, const half *r_mix,
|
||||
const int outer_size, const int inner_size, half *kx,
|
||||
half *vx, half *rx) {
|
||||
for (int idx2 = blockIdx.x * blockDim.x + threadIdx.x; idx2 < inner_size;
|
||||
idx2 += blockDim.x * gridDim.x) {
|
||||
half k_mix_ = k_mix[idx2];
|
||||
half v_mix_ = v_mix[idx2];
|
||||
half r_mix_ = r_mix[idx2];
|
||||
for (int row = 0; row < outer_size; ++row) {
|
||||
int idx1 = row * inner_size + idx2;
|
||||
half xx_ = xx[idx1];
|
||||
half sx_ = sx[idx1];
|
||||
kx[idx1] = __hadd(__hmul(xx_, k_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
||||
vx[idx1] = __hadd(__hmul(xx_, v_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), v_mix_)));
|
||||
rx[idx1] = __hadd(__hmul(xx_, r_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void att_mix(const half *xx, const half *sx, const half *k_mix,
|
||||
const half *v_mix, const half *r_mix, const int outer_size,
|
||||
const int inner_size, half *kx, half *vx, half *rx) {
|
||||
// 256 is good enough on most GPUs
|
||||
const int32_t BLOCK_SIZE = 256;
|
||||
assert(inner_size % BLOCK_SIZE == 0);
|
||||
_att_mix<<<inner_size / BLOCK_SIZE, BLOCK_SIZE>>>(
|
||||
xx, sx, k_mix, v_mix, r_mix, outer_size, inner_size, kx, vx, rx);
|
||||
}
|
||||
|
||||
struct InplaceSigmoid {
|
||||
__device__ __forceinline__ half operator()(int i) const {
|
||||
ptr[i] = __float2half(1.0 / (1.0 + exp(-__half2float(ptr[i]))));
|
||||
}
|
||||
half *ptr;
|
||||
};
|
||||
|
||||
struct InplaceMul {
|
||||
__device__ __forceinline__ half operator()(int i) const {
|
||||
y[i] = __hmul(x[i], y[i]);
|
||||
}
|
||||
half *y;
|
||||
half *x;
|
||||
};
|
||||
|
||||
/*
|
||||
Equivalent Python code:
|
||||
|
||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
||||
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
vx = xx * v_mix + sx * (1 - v_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
|
||||
r = torch.sigmoid(gemm(rx, rw))
|
||||
k = gemm(kx, kw, output_dtype=torch.float32)
|
||||
v = gemm(vx, vw, output_dtype=torch.float32)
|
||||
|
||||
T = x.shape[0]
|
||||
for t in range(T):
|
||||
kk = k[t]
|
||||
vv = v[t]
|
||||
ww = t_first + kk
|
||||
p = torch.maximum(pp, ww)
|
||||
e1 = torch.exp(pp - p)
|
||||
e2 = torch.exp(ww - p)
|
||||
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
|
||||
ww = t_decay + pp
|
||||
p = torch.maximum(ww, kk)
|
||||
e1 = torch.exp(ww - p)
|
||||
e2 = torch.exp(kk - p)
|
||||
aa = e1 * aa + e2 * vv
|
||||
bb = e1 * bb + e2
|
||||
pp = p
|
||||
out = gemm(r * sx, ow)
|
||||
return x + out, xx[-1,:], aa, bb, pp
|
||||
*/
|
||||
Tensor att_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
||||
Tensor v_mix, Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
||||
Tensor ow, Tensor t_first, Tensor pp, Tensor aa, Tensor bb,
|
||||
Tensor t_decay, /* imm */ Tensor buf, /* out */ Tensor x_plus_out) {
|
||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
||||
sx = at::cat({sx.unsqueeze(0), xx.slice(0, 0, -1)}, 0);
|
||||
char* buf_ptr = (char*)buf.data_ptr();
|
||||
half* kx = (half*)buf_ptr;
|
||||
half* vx = kx + x.numel();
|
||||
half* rx = vx + x.numel();
|
||||
half* wkv_y = rx + x.numel();
|
||||
att_mix(data_ptr<half>(xx), data_ptr<half>(sx), data_ptr<half>(k_mix),
|
||||
data_ptr<half>(v_mix), data_ptr<half>(r_mix), xx.size(0), xx.size(1),
|
||||
kx, vx, rx);
|
||||
float* k = reinterpret_cast<float*>(wkv_y + x.numel());
|
||||
float* v = k + x.size(0) * kw.size(1);
|
||||
half* r = reinterpret_cast<half*>(v + x.size(0) * vw.size(1));
|
||||
|
||||
gemm_fp16_cublas(kx, kw.data_ptr(), k, x.size(0), kw.size(1), kw.size(0), true);
|
||||
gemm_fp16_cublas(vx, vw.data_ptr(), v, x.size(0), vw.size(1), vw.size(0), true);
|
||||
gemm_fp16_cublas(rx, rw.data_ptr(), r, x.size(0), rw.size(1), rw.size(0), false);
|
||||
element_wise(InplaceSigmoid{r}, x.size(0) * rw.size(1));
|
||||
cuda_wkv_forward_new(1, x.size(0), x.size(1), data_ptr<float>(t_decay),
|
||||
data_ptr<float>(t_first), k, v, r,
|
||||
wkv_y, data_ptr<float>(aa),
|
||||
data_ptr<float>(bb), data_ptr<float>(pp));
|
||||
element_wise(InplaceMul{wkv_y, r}, x.numel());
|
||||
gemm_fp16_cublas(wkv_y, ow.data_ptr(), x_plus_out.data_ptr(), x.size(0), ow.size(1), ow.size(0), false);
|
||||
x_plus_out += x;
|
||||
return xx;
|
||||
}
|
21
backend-python/rwkv_pip/beta/cuda/element_wise.h
vendored
Normal file
21
backend-python/rwkv_pip/beta/cuda/element_wise.h
vendored
Normal file
@ -0,0 +1,21 @@
|
||||
#include <cassert>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
|
||||
template <typename Func> __global__ void _element_wise(Func func, int n) {
|
||||
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n;
|
||||
i += blockDim.x * gridDim.x) {
|
||||
func(i);
|
||||
}
|
||||
}
|
||||
|
||||
// NOTE: packed data type (e.g. float4) is a overkill for current sizes
|
||||
// (4096 in 7B model and 768 in 0.1B model),
|
||||
// and is not faster than the plain float version.
|
||||
template <typename Func>
|
||||
void element_wise(Func func, int n) {
|
||||
// 256 is good enough on most GPUs
|
||||
const int32_t BLOCK_SIZE = 256;
|
||||
assert(n % BLOCK_SIZE == 0);
|
||||
_element_wise<<<n / BLOCK_SIZE, BLOCK_SIZE>>>(func, n);
|
||||
}
|
165
backend-python/rwkv_pip/beta/cuda/ffn.cu
vendored
Normal file
165
backend-python/rwkv_pip/beta/cuda/ffn.cu
vendored
Normal file
@ -0,0 +1,165 @@
|
||||
#include "ATen/ATen.h"
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <torch/extension.h>
|
||||
|
||||
#include "element_wise.h"
|
||||
#include "util.h"
|
||||
|
||||
using torch::Tensor;
|
||||
|
||||
void gemm_fp16_cublas(const void *a, const void *b, void *c, int ori_m,
|
||||
int ori_n, int ori_k, bool output_fp32);
|
||||
|
||||
__global__ void _ffn_seq_mix(const half *xx, const half *sx, const half *k_mix,
|
||||
const half *r_mix, const int outer_size,
|
||||
const int inner_size, half *kx, half *rx) {
|
||||
for (int idx2 = blockIdx.x * blockDim.x + threadIdx.x; idx2 < inner_size;
|
||||
idx2 += blockDim.x * gridDim.x) {
|
||||
half k_mix_ = k_mix[idx2];
|
||||
half r_mix_ = r_mix[idx2];
|
||||
for (int row = 0; row < outer_size; ++row) {
|
||||
int idx1 = row * inner_size + idx2;
|
||||
half xx_ = xx[idx1];
|
||||
half sx_ = sx[idx1];
|
||||
kx[idx1] = __hadd(__hmul(xx_, k_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
||||
rx[idx1] = __hadd(__hmul(xx_, r_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ffn_seq_mix(const half *xx, const half *sx, const half *k_mix,
|
||||
const half *r_mix, const int outer_size, const int inner_size,
|
||||
half *kx, half *rx) {
|
||||
// 256 is good enough on most GPUs
|
||||
const int32_t BLOCK_SIZE = 256;
|
||||
assert(inner_size % BLOCK_SIZE == 0);
|
||||
_ffn_seq_mix<<<inner_size / BLOCK_SIZE, BLOCK_SIZE>>>(
|
||||
xx, sx, k_mix, r_mix, outer_size, inner_size, kx, rx);
|
||||
}
|
||||
|
||||
struct InplaceSigmoid {
|
||||
__device__ __forceinline__ void operator()(int i) const {
|
||||
ptr[i] = __float2half(1.0 / (1.0 + exp(-__half2float(ptr[i]))));
|
||||
}
|
||||
half *ptr;
|
||||
};
|
||||
|
||||
struct InplaceReLUAndSquare {
|
||||
__device__ __forceinline__ void operator()(int i) const {
|
||||
// __hmax is not defined in old cuda
|
||||
if (__hgt(ptr[i], __float2half(0))) {
|
||||
ptr[i] = __hmul(ptr[i], ptr[i]);
|
||||
} else {
|
||||
ptr[i] = __float2half(0);
|
||||
}
|
||||
}
|
||||
half *ptr;
|
||||
};
|
||||
|
||||
struct InplaceFma {
|
||||
__device__ __forceinline__ void operator()(int i) const {
|
||||
a[i] = __hfma(a[i], b[i], c[i]);
|
||||
}
|
||||
half *a;
|
||||
const half *b;
|
||||
const half *c;
|
||||
};
|
||||
|
||||
/*
|
||||
Equivalent Python code:
|
||||
|
||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
||||
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
|
||||
r = torch.sigmoid(gemm(rx, rw))
|
||||
vx = torch.square(torch.relu(gemm(kx, kw)))
|
||||
out = r * gemm(vx, vw)
|
||||
return x + out, xx[-1,:]
|
||||
*/
|
||||
Tensor ffn_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
||||
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
||||
/* imm */ Tensor buf,
|
||||
/* out */ Tensor x_plus_out) {
|
||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
||||
sx = at::cat({sx.unsqueeze(0), xx.slice(0, 0, -1)}, 0);
|
||||
char *buf_ptr = (char *)buf.data_ptr();
|
||||
half *kx = (half *)buf_ptr;
|
||||
half *rx = kx + x.numel();
|
||||
half *vx = rx + x.numel();
|
||||
half *r = vx + x.size(0) * kw.size(1);
|
||||
ffn_seq_mix(data_ptr<half>(xx), data_ptr<half>(sx), data_ptr<half>(k_mix),
|
||||
data_ptr<half>(r_mix), xx.size(0), xx.size(1), kx, rx);
|
||||
|
||||
gemm_fp16_cublas(rx, rw.data_ptr(), r, x.size(0), rw.size(1), x.size(1),
|
||||
false);
|
||||
element_wise(InplaceSigmoid{r}, x.size(0) * rw.size(1));
|
||||
gemm_fp16_cublas(kx, kw.data_ptr(), vx, x.size(0), kw.size(1), x.size(1),
|
||||
false);
|
||||
element_wise(InplaceReLUAndSquare{vx}, x.size(0) * kw.size(1));
|
||||
gemm_fp16_cublas(vx, vw.data_ptr(), x_plus_out.data_ptr(), x.size(0),
|
||||
vw.size(1), vw.size(0), false);
|
||||
element_wise(InplaceFma{data_ptr<half>(x_plus_out), r, data_ptr<half>(x)},
|
||||
x_plus_out.numel());
|
||||
return xx;
|
||||
}
|
||||
|
||||
struct FfnOneMix {
|
||||
__device__ __forceinline__ void operator()(int idx) {
|
||||
half k_mix_ = k_mix[idx];
|
||||
half r_mix_ = r_mix[idx];
|
||||
half xx_ = xx[idx];
|
||||
half sx_ = sx[idx];
|
||||
kx[idx] = __hadd(__hmul(xx_, k_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
||||
rx[idx] = __hadd(__hmul(xx_, r_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
||||
}
|
||||
half *k_mix;
|
||||
half *r_mix;
|
||||
half *xx;
|
||||
half *sx;
|
||||
half *kx;
|
||||
half *rx;
|
||||
};
|
||||
|
||||
/*
|
||||
Equivalent Python code:
|
||||
|
||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
|
||||
r = torch.sigmoid(gemm(rx, rw))
|
||||
vx = torch.square(torch.relu(gemm(kx, kw)))
|
||||
out = r * gemm(vx, vw)
|
||||
return x + out, xx
|
||||
*/
|
||||
Tensor ffn_one(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
||||
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
||||
/* imm */ Tensor buf,
|
||||
/* out */ Tensor x_plus_out) {
|
||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
||||
char *buf_ptr = (char *)buf.data_ptr();
|
||||
half *kx = (half *)buf_ptr;
|
||||
half *rx = kx + x.numel();
|
||||
half *vx = rx + x.numel();
|
||||
half *r = vx + x.size(0) * kw.size(1);
|
||||
element_wise(FfnOneMix{data_ptr<half>(k_mix), data_ptr<half>(r_mix),
|
||||
data_ptr<half>(xx), data_ptr<half>(sx), kx, rx},
|
||||
x.numel());
|
||||
// vector * matrix, so m = 1
|
||||
gemm_fp16_cublas(rx, rw.data_ptr(), r, 1, rw.size(1), rw.size(0), false);
|
||||
element_wise(InplaceSigmoid{r}, rw.size(1));
|
||||
gemm_fp16_cublas(kx, kw.data_ptr(), vx, 1, kw.size(1), kw.size(0), false);
|
||||
element_wise(InplaceReLUAndSquare{vx}, kw.size(1));
|
||||
gemm_fp16_cublas(vx, vw.data_ptr(), x_plus_out.data_ptr(), 1, vw.size(1),
|
||||
vw.size(0), false);
|
||||
element_wise(InplaceFma{data_ptr<half>(x_plus_out), r, data_ptr<half>(x)},
|
||||
x_plus_out.numel());
|
||||
return xx;
|
||||
}
|
128
backend-python/rwkv_pip/beta/cuda/gemm_fp16_cublas.cpp
vendored
Normal file
128
backend-python/rwkv_pip/beta/cuda/gemm_fp16_cublas.cpp
vendored
Normal file
@ -0,0 +1,128 @@
|
||||
#include <cublas_v2.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <torch/extension.h>
|
||||
|
||||
#define CUBLAS_CHECK(condition) \
|
||||
for (cublasStatus_t _cublas_check_status = (condition); \
|
||||
_cublas_check_status != CUBLAS_STATUS_SUCCESS;) \
|
||||
throw std::runtime_error("cuBLAS error " + \
|
||||
std::to_string(_cublas_check_status) + " at " + \
|
||||
std::to_string(__LINE__));
|
||||
|
||||
#define CUDA_CHECK(condition) \
|
||||
for (cudaError_t _cuda_check_status = (condition); \
|
||||
_cuda_check_status != cudaSuccess;) \
|
||||
throw std::runtime_error( \
|
||||
"CUDA error " + std::string(cudaGetErrorString(_cuda_check_status)) + \
|
||||
" at " + std::to_string(__LINE__));
|
||||
|
||||
cublasHandle_t get_cublas_handle() {
|
||||
static cublasHandle_t cublas_handle = []() {
|
||||
cublasHandle_t handle = nullptr;
|
||||
CUBLAS_CHECK(cublasCreate(&handle));
|
||||
#if CUDA_VERSION < 11000
|
||||
CUBLAS_CHECK(cublasSetMathMode(handle, CUBLAS_TENSOR_OP_MATH));
|
||||
#else
|
||||
CUBLAS_CHECK(cublasSetMathMode(handle, CUBLAS_DEFAULT_MATH));
|
||||
#endif // CUDA_VERSION < 11000
|
||||
return handle;
|
||||
}();
|
||||
return cublas_handle;
|
||||
}
|
||||
|
||||
/*
|
||||
NOTE: blas gemm is column-major by default, but we need row-major output.
|
||||
The data of row-major, transposed matrix is exactly the same as the
|
||||
column-major, non-transposed matrix, and C = A * B ---> C^T = B^T * A^T
|
||||
*/
|
||||
void gemm_fp16_cublas(const void *a, const void *b, void *c, int ori_m,
|
||||
int ori_n, int ori_k, bool output_fp32) {
|
||||
const auto cuda_data_type = CUDA_R_16F;
|
||||
const auto cuda_c_data_type = output_fp32 ? CUDA_R_32F : CUDA_R_16F;
|
||||
const auto compute_type = CUDA_R_32F;
|
||||
const float sp_alpha = 1.f;
|
||||
// use CUBLAS_OP_N. see the notes above
|
||||
const cublasOperation_t cublas_trans_a = CUBLAS_OP_N;
|
||||
const cublasOperation_t cublas_trans_b = CUBLAS_OP_N;
|
||||
// m = (B^T).size(0) = B.size(1) = n;
|
||||
const int cublas_m = ori_n;
|
||||
const int cublas_k = ori_k;
|
||||
// comptiable with rwkv one mode, where 1-D tensor * 2-D tensor
|
||||
// const int n = a.dense_dim() == 1 ? 1 : a.size(0);
|
||||
const int cublas_n = ori_m;
|
||||
const int cublas_lda = cublas_m;
|
||||
const int cublas_ldb = cublas_k;
|
||||
const int cublas_ldc = cublas_m;
|
||||
cublasHandle_t cublas_handle = get_cublas_handle();
|
||||
|
||||
#if CUDA_VERSION >= 11000
|
||||
cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT;
|
||||
#else
|
||||
cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
|
||||
#endif
|
||||
const float sp_beta = 0.f;
|
||||
CUBLAS_CHECK(cublasGemmEx(
|
||||
cublas_handle, cublas_trans_a, cublas_trans_b, cublas_m, cublas_n,
|
||||
cublas_k, &sp_alpha, b, cuda_data_type, cublas_lda,
|
||||
a, cuda_data_type, cublas_ldb, &sp_beta, c,
|
||||
cuda_c_data_type, cublas_ldc, compute_type, algo));
|
||||
}
|
||||
|
||||
/*
|
||||
NOTE: blas gemm is column-major by default, but we need row-major output.
|
||||
The data of row-major, transposed matrix is exactly the same as the
|
||||
column-major, non-transposed matrix, and C = A * B ---> C^T = B^T * A^T
|
||||
*/
|
||||
void gemm_fp16_cublas_tensor(torch::Tensor a, torch::Tensor b, torch::Tensor c) {
|
||||
if (a.sizes().size() == 1) {
|
||||
assert(b.sizes().size() == 2);
|
||||
a = at::unsqueeze(a, 0);
|
||||
}
|
||||
const auto cuda_data_type = CUDA_R_16F;
|
||||
const auto cuda_c_data_type =
|
||||
c.dtype() == torch::kFloat32 ? CUDA_R_32F : CUDA_R_16F;
|
||||
const auto compute_type = CUDA_R_32F;
|
||||
const float sp_alpha = 1.f;
|
||||
// swap a and b, and use CUBLAS_OP_N. see the notes above
|
||||
std::swap(a, b);
|
||||
const cublasOperation_t cublas_trans_a = CUBLAS_OP_N;
|
||||
const cublasOperation_t cublas_trans_b = CUBLAS_OP_N;
|
||||
// m = (B^T).size(0) = B.size(1), and = A.size(1) after swap,
|
||||
// negative axis is used because of the existence of batch matmul.
|
||||
const int m = a.size(-1);
|
||||
const int k = a.size(-2);
|
||||
const int n = b.size(-2);
|
||||
const int cublas_lda = m;
|
||||
const int cublas_ldb = k;
|
||||
const int cublas_ldc = m;
|
||||
cublasHandle_t cublas_handle = get_cublas_handle();
|
||||
|
||||
#if CUDA_VERSION >= 11000
|
||||
cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT;
|
||||
#else
|
||||
cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
|
||||
#endif
|
||||
const float sp_beta = 0.f;
|
||||
if (a.sizes().size() == 2 && b.sizes().size() == 2) {
|
||||
CUBLAS_CHECK(cublasGemmEx(
|
||||
cublas_handle, cublas_trans_a, cublas_trans_b, m, n, k, &sp_alpha,
|
||||
a.data_ptr(), cuda_data_type, cublas_lda, b.data_ptr(), cuda_data_type,
|
||||
cublas_ldb, &sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc,
|
||||
compute_type, algo));
|
||||
} else {
|
||||
// batch matmul
|
||||
assert(a.sizes().size() == 3 && b.sizes().size() == 3);
|
||||
|
||||
const long long int cublas_stride_a = m * k;
|
||||
const long long int cublas_stride_b = k * n;
|
||||
const long long int cublas_stride_c = m * n;
|
||||
CUBLAS_CHECK(cublasGemmStridedBatchedEx(
|
||||
cublas_handle, cublas_trans_a, cublas_trans_b, m,
|
||||
n, k, &sp_alpha, a.data_ptr(), cuda_data_type, cublas_lda,
|
||||
cublas_stride_a, b.data_ptr(), cuda_data_type, cublas_ldb, cublas_stride_b,
|
||||
&sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc, cublas_stride_c,
|
||||
a.size(0), compute_type, algo));
|
||||
}
|
||||
}
|
246
backend-python/rwkv_pip/beta/cuda/operators.cu
vendored
Normal file
246
backend-python/rwkv_pip/beta/cuda/operators.cu
vendored
Normal file
@ -0,0 +1,246 @@
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include "ATen/ATen.h"
|
||||
#include <cuda_fp16.h>
|
||||
#define MIN_VALUE (-1e38)
|
||||
typedef at::Half fp16;
|
||||
__half *cast(fp16 *ptr) {
|
||||
return reinterpret_cast<__half *>(ptr);
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
__global__ void kernel_wkv_forward(const int B, const int T, const int C,
|
||||
const float *__restrict__ const _w, const float *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
|
||||
F *__restrict__ const _y, float *__restrict__ const _aa, float *__restrict__ const _bb, float *__restrict__ const _pp) {
|
||||
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int _b = idx / C;
|
||||
const int _c = idx % C;
|
||||
const int _offset = _b * T * C + _c;
|
||||
const int _state_offset = _b * C + _c;
|
||||
|
||||
float u = _u[_c];
|
||||
float w = _w[_c];
|
||||
const F *__restrict__ const k = _k + _offset;
|
||||
const F *__restrict__ const v = _v + _offset;
|
||||
F *__restrict__ const y = _y + _offset;
|
||||
|
||||
float aa = _aa[_state_offset];
|
||||
float bb = _bb[_state_offset];
|
||||
float pp = _pp[_state_offset];
|
||||
for (int i = 0; i < T; i++) {
|
||||
const int ii = i * C;
|
||||
const float kk = float(k[ii]);
|
||||
const float vv = float(v[ii]);
|
||||
float ww = u + kk;
|
||||
float p = max(pp, ww);
|
||||
float e1 = exp(pp - p);
|
||||
float e2 = exp(ww - p);
|
||||
y[ii] = F((e1 * aa + e2 * vv) / (e1 * bb + e2));
|
||||
ww = w + pp;
|
||||
p = max(ww, kk);
|
||||
e1 = exp(ww - p);
|
||||
e2 = exp(kk - p);
|
||||
aa = e1 * aa + e2 * vv;
|
||||
bb = e1 * bb + e2;
|
||||
pp = p;
|
||||
}
|
||||
_aa[_state_offset] = aa;
|
||||
_bb[_state_offset] = bb;
|
||||
_pp[_state_offset] = pp;
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void cuda_wkv_forward(int B, int T, int C, float *w, float *u, F *k, F *v, F *y, float *aa, float *bb, float *pp) {
|
||||
dim3 threadsPerBlock( min(C, 32) );
|
||||
assert(B * C % threadsPerBlock.x == 0);
|
||||
dim3 numBlocks(B * C / threadsPerBlock.x);
|
||||
kernel_wkv_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, aa, bb, pp);
|
||||
}
|
||||
|
||||
template void cuda_wkv_forward<fp16>(
|
||||
int B, int T, int C,
|
||||
float *w, float *u, fp16 *k, fp16 *v, fp16 *y,
|
||||
float *aa, float *bb, float *pp);
|
||||
template void cuda_wkv_forward<float>(
|
||||
int B, int T, int C,
|
||||
float *w, float *u, float *k, float *v, float *y,
|
||||
float *aa, float *bb, float *pp);
|
||||
|
||||
__global__ void kernel_mm_seq_fp32i8(
|
||||
const int B, const int N, const int M,
|
||||
const float *__restrict__ const x, const int x_stride,
|
||||
const uint8_t *__restrict__ const w, const int w_stride,
|
||||
const float *__restrict__ const mx,
|
||||
const float *__restrict__ const rx,
|
||||
const float *__restrict__ const my,
|
||||
const float *__restrict__ const ry,
|
||||
float *__restrict__ const y, const int y_stride) {
|
||||
|
||||
const int i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (i < B && k < M) {
|
||||
float y_local = 0;
|
||||
for (int j = 0; j < N; ++j) {
|
||||
y_local += x[i * x_stride + j] * (
|
||||
(float(w[j * w_stride + k]) + 0.5f)
|
||||
* rx[k] * ry[j] + mx[k] + my[j]
|
||||
);
|
||||
}
|
||||
y[i * y_stride + k] = y_local;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void cuda_mm8_seq(int B, int N, int M,
|
||||
F *x, int x_stride,
|
||||
uint8_t *w, int w_stride,
|
||||
F *mx, F *rx,
|
||||
F *my, F *ry,
|
||||
F *y, int y_stride);
|
||||
|
||||
template <>
|
||||
void cuda_mm8_seq<float>(int B, int N, int M,
|
||||
float *x, int x_stride,
|
||||
uint8_t *w, int w_stride,
|
||||
float *mx, float *rx,
|
||||
float *my, float *ry,
|
||||
float *y, int y_stride) {
|
||||
dim3 blockSize(1, 128);
|
||||
dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
|
||||
kernel_mm_seq_fp32i8<<<gridSize, blockSize>>>(
|
||||
B, N, M, x, x_stride, w, w_stride,
|
||||
mx, rx, my, ry, y, y_stride);
|
||||
}
|
||||
|
||||
__global__ void kernel_mm_seq_fp16i8(
|
||||
const int B, const int N, const int M,
|
||||
const __half *__restrict__ const x, const int x_stride,
|
||||
const uint8_t *__restrict__ const w, const int w_stride,
|
||||
const __half *__restrict__ const mx,
|
||||
const __half *__restrict__ const rx,
|
||||
const __half *__restrict__ const my,
|
||||
const __half *__restrict__ const ry,
|
||||
__half *__restrict__ const y, const int y_stride) {
|
||||
|
||||
const int i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (i < B && k < M) {
|
||||
float y_local = 0;
|
||||
for (int j = 0; j < N; ++j) {
|
||||
y_local += __half2float(x[i * x_stride + j]) * (
|
||||
(float(w[j * w_stride + k]) + 0.5f)
|
||||
* __half2float(rx[k]) * __half2float(ry[j])
|
||||
+ __half2float(mx[k]) + __half2float(my[j])
|
||||
);
|
||||
}
|
||||
y[i * y_stride + k] = __float2half(y_local);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
void cuda_mm8_seq<fp16>(int B, int N, int M,
|
||||
fp16 *x, int x_stride,
|
||||
uint8_t *w, int w_stride,
|
||||
fp16 *mx, fp16 *rx,
|
||||
fp16 *my, fp16 *ry,
|
||||
fp16 *y, int y_stride) {
|
||||
dim3 blockSize(1, 128);
|
||||
dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
|
||||
kernel_mm_seq_fp16i8<<<gridSize, blockSize>>>(
|
||||
B, N, M, cast(x), x_stride, w, w_stride,
|
||||
cast(mx), cast(rx), cast(my), cast(ry), cast(y), y_stride);
|
||||
}
|
||||
|
||||
#define MM8_ONE_JSPLIT 24
|
||||
#define MM8_ONE_TILE 1024
|
||||
|
||||
__global__ void kernel_mm_one_fp32i8(
|
||||
const int N, const int M,
|
||||
const float *__restrict__ const x,
|
||||
const uint8_t *__restrict__ const w, const int w_stride,
|
||||
const float *__restrict__ const mx,
|
||||
const float *__restrict__ const rx,
|
||||
const float *__restrict__ const my,
|
||||
const float *__restrict__ const ry,
|
||||
float *__restrict__ const y) {
|
||||
|
||||
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
||||
const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
||||
|
||||
if (k < M) {
|
||||
float y_local = 0;
|
||||
for (int j = j0; j < j1; ++j) {
|
||||
y_local += x[j] * (
|
||||
(float(w[j * w_stride + k]) + 0.5f)
|
||||
* rx[k] * ry[j] + mx[k] + my[j]
|
||||
);
|
||||
}
|
||||
atomicAdd(&y[k], y_local);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void cuda_mm8_one(int N, int M,
|
||||
F *x,
|
||||
uint8_t *w, int w_stride,
|
||||
F *mx, F *rx,
|
||||
F *my, F *ry,
|
||||
float *y);
|
||||
|
||||
template <>
|
||||
void cuda_mm8_one<float>(int N, int M,
|
||||
float *x,
|
||||
uint8_t *w, int w_stride,
|
||||
float *mx, float *rx,
|
||||
float *my, float *ry,
|
||||
float *y) {
|
||||
dim3 blockSize(1, MM8_ONE_TILE);
|
||||
dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
|
||||
kernel_mm_one_fp32i8<<<gridSize, blockSize>>>(
|
||||
N, M, x, w, w_stride,
|
||||
mx, rx, my, ry, y);
|
||||
}
|
||||
|
||||
__global__ void kernel_mm_one_fp16i8(
|
||||
const int N, const int M,
|
||||
const __half *__restrict__ const x,
|
||||
const uint8_t *__restrict__ const w, const int w_stride,
|
||||
const __half *__restrict__ const mx,
|
||||
const __half *__restrict__ const rx,
|
||||
const __half *__restrict__ const my,
|
||||
const __half *__restrict__ const ry,
|
||||
float *__restrict__ const y) {
|
||||
|
||||
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
||||
const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
||||
|
||||
if (k < M) {
|
||||
float y_local = 0;
|
||||
for (int j = j0; j < j1; ++j) {
|
||||
y_local += __half2float(x[j]) * (
|
||||
(float(w[j * w_stride + k]) + 0.5f)
|
||||
* __half2float(rx[k]) * __half2float(ry[j])
|
||||
+ __half2float(mx[k]) + __half2float(my[j])
|
||||
);
|
||||
}
|
||||
atomicAdd(&y[k], y_local);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
void cuda_mm8_one<fp16>(int N, int M,
|
||||
fp16 *x,
|
||||
uint8_t *w, int w_stride,
|
||||
fp16 *mx, fp16 *rx,
|
||||
fp16 *my, fp16 *ry,
|
||||
float *y) {
|
||||
dim3 blockSize(1, MM8_ONE_TILE);
|
||||
dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
|
||||
kernel_mm_one_fp16i8<<<gridSize, blockSize>>>(
|
||||
N, M, cast(x), w, w_stride,
|
||||
cast(mx), cast(rx), cast(my), cast(ry), y);
|
||||
}
|
7
backend-python/rwkv_pip/beta/cuda/util.h
vendored
Normal file
7
backend-python/rwkv_pip/beta/cuda/util.h
vendored
Normal file
@ -0,0 +1,7 @@
|
||||
#include "ATen/ATen.h"
|
||||
#include <cuda_fp16.h>
|
||||
|
||||
template <typename T> T *data_ptr(torch::Tensor x) { return x.data_ptr<T>(); }
|
||||
template <> inline half *data_ptr(torch::Tensor x) {
|
||||
return reinterpret_cast<half *>(x.data_ptr<at::Half>());
|
||||
}
|
181
backend-python/rwkv_pip/beta/cuda/wrapper.cpp
vendored
Normal file
181
backend-python/rwkv_pip/beta/cuda/wrapper.cpp
vendored
Normal file
@ -0,0 +1,181 @@
|
||||
#include <torch/extension.h>
|
||||
#include "ATen/ATen.h"
|
||||
#include <iostream>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
|
||||
typedef at::Half fp16;
|
||||
|
||||
template <typename F>
|
||||
void cuda_wkv_forward(int B, int T, int C,
|
||||
float *w, float *u, F *k, F *v, F *y,
|
||||
float *aa, float *bb, float *pp);
|
||||
template <typename F>
|
||||
void cuda_mm8_seq(int B, int N, int M,
|
||||
F *x, int x_stride,
|
||||
uint8_t *w, int w_stride,
|
||||
F *mx, F *rx,
|
||||
F *my, F *ry,
|
||||
F *y, int y_stride);
|
||||
template <typename F>
|
||||
void cuda_mm8_one(int N, int M,
|
||||
F *x,
|
||||
uint8_t *w, int w_stride,
|
||||
F *mx, F *rx,
|
||||
F *my, F *ry,
|
||||
float *y);
|
||||
|
||||
void wkv_forward(int64_t B, int64_t T, int64_t C,
|
||||
torch::Tensor &w, torch::Tensor &u,
|
||||
torch::Tensor &k, torch::Tensor &v, torch::Tensor &y,
|
||||
torch::Tensor &aa, torch::Tensor &bb, torch::Tensor &pp) {
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
|
||||
switch (k.scalar_type()) {
|
||||
case c10::ScalarType::Half:
|
||||
cuda_wkv_forward(B, T, C,
|
||||
w.data_ptr<float>(), u.data_ptr<float>(),
|
||||
k.data_ptr<fp16>(), v.data_ptr<fp16>(), y.data_ptr<fp16>(),
|
||||
aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
|
||||
break;
|
||||
case c10::ScalarType::Float:
|
||||
cuda_wkv_forward(B, T, C,
|
||||
w.data_ptr<float>(), u.data_ptr<float>(),
|
||||
k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>(),
|
||||
aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
|
||||
break;
|
||||
default:
|
||||
assert(false && "Only FP16 and FP32 are currently supported");
|
||||
}
|
||||
}
|
||||
|
||||
void mm8_seq(int64_t B, int64_t N, int64_t M,
|
||||
torch::Tensor &x, torch::Tensor &w,
|
||||
torch::Tensor &mx, torch::Tensor &rx,
|
||||
torch::Tensor &my, torch::Tensor &ry,
|
||||
torch::Tensor &y) {
|
||||
assert(x.stride(1) == 1);
|
||||
assert(w.stride(1) == 1);
|
||||
assert(mx.stride(0) == 1 && rx.stride(0) == 1);
|
||||
assert(my.stride(0) == 1 && ry.stride(0) == 1);
|
||||
assert(y.stride(1) == 1);
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
|
||||
switch (x.scalar_type()) {
|
||||
case c10::ScalarType::Half:
|
||||
cuda_mm8_seq(
|
||||
B, N, M,
|
||||
x.data_ptr<fp16>(), x.stride(0),
|
||||
w.data_ptr<uint8_t>(), w.stride(0),
|
||||
mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
|
||||
my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
|
||||
y.data_ptr<fp16>(), y.stride(0));
|
||||
break;
|
||||
case c10::ScalarType::Float:
|
||||
cuda_mm8_seq(
|
||||
B, N, M,
|
||||
x.data_ptr<float>(), x.stride(0),
|
||||
w.data_ptr<uint8_t>(), w.stride(0),
|
||||
mx.data_ptr<float>(), rx.data_ptr<float>(),
|
||||
my.data_ptr<float>(), ry.data_ptr<float>(),
|
||||
y.data_ptr<float>(), y.stride(0));
|
||||
break;
|
||||
default:
|
||||
assert(false && "Only FP16 and FP32 are currently supported");
|
||||
}
|
||||
}
|
||||
void mm8_one(int64_t N, int64_t M,
|
||||
torch::Tensor &x, torch::Tensor &w,
|
||||
torch::Tensor &mx, torch::Tensor &rx,
|
||||
torch::Tensor &my, torch::Tensor &ry,
|
||||
torch::Tensor &y) {
|
||||
assert(x.stride(0) == 1);
|
||||
assert(w.stride(1) == 1);
|
||||
assert(mx.stride(0) == 1 && rx.stride(0) == 1);
|
||||
assert(my.stride(0) == 1 && ry.stride(0) == 1);
|
||||
assert(y.stride(0) == 1);
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
|
||||
switch (x.scalar_type()) {
|
||||
case c10::ScalarType::Half:
|
||||
cuda_mm8_one(
|
||||
N, M,
|
||||
x.data_ptr<fp16>(),
|
||||
w.data_ptr<uint8_t>(), w.stride(0),
|
||||
mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
|
||||
my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
|
||||
y.data_ptr<float>());
|
||||
break;
|
||||
case c10::ScalarType::Float:
|
||||
cuda_mm8_one(
|
||||
N, M,
|
||||
x.data_ptr<float>(),
|
||||
w.data_ptr<uint8_t>(), w.stride(0),
|
||||
mx.data_ptr<float>(), rx.data_ptr<float>(),
|
||||
my.data_ptr<float>(), ry.data_ptr<float>(),
|
||||
y.data_ptr<float>());
|
||||
break;
|
||||
default:
|
||||
assert(false && "Only FP16 and FP32 are currently supported");
|
||||
}
|
||||
}
|
||||
|
||||
using torch::Tensor;
|
||||
|
||||
#ifndef DISABLE_CUBLAS_GEMM
|
||||
void gemm_fp16_cublas_tensor(Tensor a, Tensor b, Tensor c);
|
||||
#endif
|
||||
|
||||
Tensor att_one(Tensor x, Tensor ln_w, Tensor ln_b, Tensor sx, Tensor k_mix,
|
||||
Tensor v_mix, Tensor r_mix, Tensor kw,
|
||||
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx, Tensor rw,
|
||||
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
|
||||
/* imm */ Tensor k, Tensor pp, Tensor ww, Tensor aa, Tensor bb,
|
||||
Tensor t_decay, /* imm */ Tensor v, /* in & out */ Tensor r,
|
||||
/* out */ Tensor x_plus_out, /* out */ Tensor t1,
|
||||
/* out */ Tensor t2, /* out */ Tensor p);
|
||||
|
||||
Tensor att_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
||||
Tensor v_mix, Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
||||
Tensor ow, Tensor t_first, Tensor pp, Tensor aa, Tensor bb,
|
||||
Tensor t_decay, /* imm */ Tensor buf, /* out */ Tensor x_plus_out);
|
||||
|
||||
Tensor att_one_v5(Tensor x, Tensor sx, Tensor s, Tensor ln_w, Tensor ln_b,
|
||||
Tensor lx_w, Tensor lx_b, Tensor k_mix, Tensor v_mix,
|
||||
Tensor r_mix, Tensor kw,
|
||||
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx,
|
||||
Tensor rw,
|
||||
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
|
||||
/* imm */ Tensor k, Tensor t_decay, /* imm */ Tensor v,
|
||||
/* imm */ Tensor r, /* imm */ Tensor s1,
|
||||
/* out */ Tensor x_plus_out, /* out */ Tensor s2);
|
||||
|
||||
Tensor ffn_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
||||
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
||||
/* imm */ Tensor buf,
|
||||
/* out */ Tensor x_plus_out);
|
||||
|
||||
Tensor ffn_one(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
||||
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
||||
/* imm */ Tensor buf,
|
||||
/* out */ Tensor x_plus_out);
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("wkv_forward", &wkv_forward, "wkv forward");
|
||||
m.def("mm8_seq", &mm8_seq, "mm8 seq");
|
||||
m.def("mm8_one", &mm8_one, "mm8 one");
|
||||
m.def("gemm_fp16_cublas", &gemm_fp16_cublas_tensor, "gemv fp16 cublas");
|
||||
m.def("att_one", &att_one, "att one");
|
||||
m.def("att_one_v5", &att_one_v5, "att one v5");
|
||||
m.def("att_seq", &att_seq, "att seq");
|
||||
m.def("ffn_seq", &ffn_seq, "ffn seq");
|
||||
m.def("ffn_one", &ffn_one, "ffn one");
|
||||
}
|
||||
|
||||
TORCH_LIBRARY(rwkv, m) {
|
||||
m.def("wkv_forward", wkv_forward);
|
||||
m.def("mm8_seq", mm8_seq);
|
||||
m.def("mm8_one", mm8_one);
|
||||
m.def("gemm_fp16_cublas", gemm_fp16_cublas_tensor);
|
||||
m.def("att_one", att_one);
|
||||
m.def("att_one_v5", &att_one_v5);
|
||||
m.def("att_seq", att_seq);
|
||||
m.def("ffn_seq", ffn_seq);
|
||||
m.def("ffn_one", ffn_one);
|
||||
}
|
1821
backend-python/rwkv_pip/beta/model.py
vendored
Normal file
1821
backend-python/rwkv_pip/beta/model.py
vendored
Normal file
File diff suppressed because it is too large
Load Diff
BIN
backend-python/rwkv_pip/beta/wkv_cuda.pyd
vendored
Normal file
BIN
backend-python/rwkv_pip/beta/wkv_cuda.pyd
vendored
Normal file
Binary file not shown.
BIN
backend-python/rwkv_pip/cpp/librwkv.dylib
vendored
BIN
backend-python/rwkv_pip/cpp/librwkv.dylib
vendored
Binary file not shown.
BIN
backend-python/rwkv_pip/cpp/librwkv.so
vendored
BIN
backend-python/rwkv_pip/cpp/librwkv.so
vendored
Binary file not shown.
3
backend-python/rwkv_pip/cpp/model.py
vendored
3
backend-python/rwkv_pip/cpp/model.py
vendored
@ -9,9 +9,6 @@ class RWKV:
|
||||
self.model = rwkv_cpp_model.RWKVModel(self.library, model_path)
|
||||
self.w = {} # fake weight
|
||||
self.w["emb.weight"] = [0] * self.model.n_vocab
|
||||
self.version = (
|
||||
self.model.arch_version_major + self.model.arch_version_minor / 10
|
||||
)
|
||||
|
||||
def forward(self, tokens: List[int], state: Union[Any, None] = None):
|
||||
return self.model.eval_sequence_in_chunks(tokens, state, use_numpy=True)
|
||||
|
BIN
backend-python/rwkv_pip/cpp/rwkv.dll
vendored
BIN
backend-python/rwkv_pip/cpp/rwkv.dll
vendored
Binary file not shown.
57
backend-python/rwkv_pip/cpp/rwkv_cpp_model.py
vendored
57
backend-python/rwkv_pip/cpp/rwkv_cpp_model.py
vendored
@ -52,14 +52,9 @@ class RWKVModel:
|
||||
if 'gpu_layers_count' in kwargs:
|
||||
gpu_layer_count = kwargs['gpu_layers_count']
|
||||
|
||||
if not os.path.isfile(model_path):
|
||||
raise ValueError(f'{model_path} is not a file')
|
||||
|
||||
if not (thread_count > 0):
|
||||
raise ValueError('Thread count must be > 0')
|
||||
|
||||
if not (gpu_layer_count >= 0):
|
||||
raise ValueError('GPU layer count must be >= 0')
|
||||
assert os.path.isfile(model_path), f'{model_path} is not a file'
|
||||
assert thread_count > 0, 'Thread count must be > 0'
|
||||
assert gpu_layer_count >= 0, 'GPU layer count must be >= 0'
|
||||
|
||||
self._library: rwkv_cpp_shared_library.RWKVSharedLibrary = shared_library
|
||||
|
||||
@ -89,19 +84,10 @@ class RWKVModel:
|
||||
Count of layers to offload onto the GPU, must be >= 0.
|
||||
"""
|
||||
|
||||
if not (layer_count >= 0):
|
||||
raise ValueError('Layer count must be >= 0')
|
||||
assert layer_count >= 0, 'Layer count must be >= 0'
|
||||
|
||||
return self._library.rwkv_gpu_offload_layers(self._ctx, layer_count)
|
||||
|
||||
@property
|
||||
def arch_version_major(self) -> int:
|
||||
return self._library.rwkv_get_arch_version_major(self._ctx)
|
||||
|
||||
@property
|
||||
def arch_version_minor(self) -> int:
|
||||
return self._library.rwkv_get_arch_version_minor(self._ctx)
|
||||
|
||||
@property
|
||||
def n_vocab(self) -> int:
|
||||
return self._library.rwkv_get_n_vocab(self._ctx)
|
||||
@ -147,8 +133,7 @@ class RWKVModel:
|
||||
Logits vector of shape (n_vocab); state for the next step.
|
||||
"""
|
||||
|
||||
if not self._valid:
|
||||
raise ValueError('Model was freed')
|
||||
assert self._valid, 'Model was freed'
|
||||
|
||||
use_numpy = self._detect_numpy_usage([state_in, state_out, logits_out], use_numpy)
|
||||
|
||||
@ -222,8 +207,7 @@ class RWKVModel:
|
||||
Logits vector of shape (n_vocab); state for the next step.
|
||||
"""
|
||||
|
||||
if not self._valid:
|
||||
raise ValueError('Model was freed')
|
||||
assert self._valid, 'Model was freed'
|
||||
|
||||
use_numpy = self._detect_numpy_usage([state_in, state_out, logits_out], use_numpy)
|
||||
|
||||
@ -297,8 +281,7 @@ class RWKVModel:
|
||||
Logits vector of shape (n_vocab); state for the next step.
|
||||
"""
|
||||
|
||||
if not self._valid:
|
||||
raise ValueError('Model was freed')
|
||||
assert self._valid, 'Model was freed'
|
||||
|
||||
use_numpy = self._detect_numpy_usage([state_in, state_out, logits_out], use_numpy)
|
||||
|
||||
@ -337,8 +320,7 @@ class RWKVModel:
|
||||
The object must not be used anymore after calling this method.
|
||||
"""
|
||||
|
||||
if not self._valid:
|
||||
raise ValueError('Already freed')
|
||||
assert self._valid, 'Already freed'
|
||||
|
||||
self._valid = False
|
||||
|
||||
@ -362,25 +344,16 @@ class RWKVModel:
|
||||
def _validate_tensor(self, tensor: NumpyArrayOrPyTorchTensor, name: str, size: int) -> None:
|
||||
if self._is_pytorch_tensor(tensor):
|
||||
tensor: torch.Tensor = tensor
|
||||
|
||||
if tensor.device != torch.device('cpu'):
|
||||
raise ValueError(f'{name} is not on CPU')
|
||||
if tensor.dtype != torch.float32:
|
||||
raise ValueError(f'{name} is not of type float32')
|
||||
if tensor.shape != (size,):
|
||||
raise ValueError(f'{name} has invalid shape {tensor.shape}, expected ({size})')
|
||||
if not tensor.is_contiguous():
|
||||
raise ValueError(f'{name} is not contiguous')
|
||||
assert tensor.device == torch.device('cpu'), f'{name} is not on CPU'
|
||||
assert tensor.dtype == torch.float32, f'{name} is not of type float32'
|
||||
assert tensor.shape == (size,), f'{name} has invalid shape {tensor.shape}, expected ({size})'
|
||||
assert tensor.is_contiguous(), f'{name} is not contiguous'
|
||||
else:
|
||||
import numpy as np
|
||||
tensor: np.ndarray = tensor
|
||||
|
||||
if tensor.dtype != np.float32:
|
||||
raise ValueError(f'{name} is not of type float32')
|
||||
if tensor.shape != (size,):
|
||||
raise ValueError(f'{name} has invalid shape {tensor.shape}, expected ({size})')
|
||||
if not tensor.data.contiguous:
|
||||
raise ValueError(f'{name} is not contiguous')
|
||||
assert tensor.dtype == np.float32, f'{name} is not of type float32'
|
||||
assert tensor.shape == (size,), f'{name} has invalid shape {tensor.shape}, expected ({size})'
|
||||
assert tensor.data.contiguous, f'{name} is not contiguous'
|
||||
|
||||
def _get_data_ptr(self, tensor: NumpyArrayOrPyTorchTensor):
|
||||
if self._is_pytorch_tensor(tensor):
|
||||
|
@ -6,22 +6,21 @@ import platform
|
||||
from typing import Optional, List, Tuple, Callable
|
||||
|
||||
QUANTIZED_FORMAT_NAMES: Tuple[str, str, str, str, str] = (
|
||||
"Q4_0",
|
||||
"Q4_1",
|
||||
"Q5_0",
|
||||
"Q5_1",
|
||||
"Q8_0",
|
||||
'Q4_0',
|
||||
'Q4_1',
|
||||
'Q5_0',
|
||||
'Q5_1',
|
||||
'Q8_0'
|
||||
)
|
||||
|
||||
P_FLOAT = ctypes.POINTER(ctypes.c_float)
|
||||
P_INT = ctypes.POINTER(ctypes.c_int32)
|
||||
|
||||
|
||||
class RWKVContext:
|
||||
|
||||
def __init__(self, ptr: ctypes.pointer) -> None:
|
||||
self.ptr: ctypes.pointer = ptr
|
||||
|
||||
|
||||
class RWKVSharedLibrary:
|
||||
"""
|
||||
Python wrapper around rwkv.cpp shared library.
|
||||
@ -40,7 +39,7 @@ class RWKVSharedLibrary:
|
||||
# When Python is greater than 3.8, we need to reprocess the custom dll
|
||||
# according to the documentation to prevent loading failure errors.
|
||||
# https://docs.python.org/3/whatsnew/3.8.html#ctypes
|
||||
if platform.system().lower() == "windows":
|
||||
if platform.system().lower() == 'windows':
|
||||
self.library = ctypes.CDLL(shared_library_path, winmode=0)
|
||||
else:
|
||||
self.library = ctypes.cdll.LoadLibrary(shared_library_path)
|
||||
@ -48,48 +47,39 @@ class RWKVSharedLibrary:
|
||||
self.library.rwkv_init_from_file.argtypes = [ctypes.c_char_p, ctypes.c_uint32]
|
||||
self.library.rwkv_init_from_file.restype = ctypes.c_void_p
|
||||
|
||||
self.library.rwkv_gpu_offload_layers.argtypes = [
|
||||
ctypes.c_void_p,
|
||||
ctypes.c_uint32,
|
||||
]
|
||||
self.library.rwkv_gpu_offload_layers.argtypes = [ctypes.c_void_p, ctypes.c_uint32]
|
||||
self.library.rwkv_gpu_offload_layers.restype = ctypes.c_bool
|
||||
|
||||
self.library.rwkv_eval.argtypes = [
|
||||
ctypes.c_void_p, # ctx
|
||||
ctypes.c_int32, # token
|
||||
P_FLOAT, # state_in
|
||||
P_FLOAT, # state_out
|
||||
P_FLOAT, # logits_out
|
||||
ctypes.c_void_p, # ctx
|
||||
ctypes.c_int32, # token
|
||||
P_FLOAT, # state_in
|
||||
P_FLOAT, # state_out
|
||||
P_FLOAT # logits_out
|
||||
]
|
||||
self.library.rwkv_eval.restype = ctypes.c_bool
|
||||
|
||||
self.library.rwkv_eval_sequence.argtypes = [
|
||||
ctypes.c_void_p, # ctx
|
||||
P_INT, # tokens
|
||||
ctypes.c_size_t, # token count
|
||||
P_FLOAT, # state_in
|
||||
P_FLOAT, # state_out
|
||||
P_FLOAT, # logits_out
|
||||
ctypes.c_void_p, # ctx
|
||||
P_INT, # tokens
|
||||
ctypes.c_size_t, # token count
|
||||
P_FLOAT, # state_in
|
||||
P_FLOAT, # state_out
|
||||
P_FLOAT # logits_out
|
||||
]
|
||||
self.library.rwkv_eval_sequence.restype = ctypes.c_bool
|
||||
|
||||
self.library.rwkv_eval_sequence_in_chunks.argtypes = [
|
||||
ctypes.c_void_p, # ctx
|
||||
P_INT, # tokens
|
||||
ctypes.c_size_t, # token count
|
||||
ctypes.c_size_t, # chunk size
|
||||
P_FLOAT, # state_in
|
||||
P_FLOAT, # state_out
|
||||
P_FLOAT, # logits_out
|
||||
ctypes.c_void_p, # ctx
|
||||
P_INT, # tokens
|
||||
ctypes.c_size_t, # token count
|
||||
ctypes.c_size_t, # chunk size
|
||||
P_FLOAT, # state_in
|
||||
P_FLOAT, # state_out
|
||||
P_FLOAT # logits_out
|
||||
]
|
||||
self.library.rwkv_eval_sequence_in_chunks.restype = ctypes.c_bool
|
||||
|
||||
self.library.rwkv_get_arch_version_major.argtypes = [ctypes.c_void_p]
|
||||
self.library.rwkv_get_arch_version_major.restype = ctypes.c_uint32
|
||||
|
||||
self.library.rwkv_get_arch_version_minor.argtypes = [ctypes.c_void_p]
|
||||
self.library.rwkv_get_arch_version_minor.restype = ctypes.c_uint32
|
||||
|
||||
self.library.rwkv_get_n_vocab.argtypes = [ctypes.c_void_p]
|
||||
self.library.rwkv_get_n_vocab.restype = ctypes.c_size_t
|
||||
|
||||
@ -111,11 +101,7 @@ class RWKVSharedLibrary:
|
||||
self.library.rwkv_free.argtypes = [ctypes.c_void_p]
|
||||
self.library.rwkv_free.restype = None
|
||||
|
||||
self.library.rwkv_quantize_model_file.argtypes = [
|
||||
ctypes.c_char_p,
|
||||
ctypes.c_char_p,
|
||||
ctypes.c_char_p,
|
||||
]
|
||||
self.library.rwkv_quantize_model_file.argtypes = [ctypes.c_char_p, ctypes.c_char_p, ctypes.c_char_p]
|
||||
self.library.rwkv_quantize_model_file.restype = ctypes.c_bool
|
||||
|
||||
self.library.rwkv_get_system_info_string.argtypes = []
|
||||
@ -123,9 +109,7 @@ class RWKVSharedLibrary:
|
||||
|
||||
self.nullptr = ctypes.cast(0, ctypes.c_void_p)
|
||||
|
||||
def rwkv_init_from_file(
|
||||
self, model_file_path: str, thread_count: int
|
||||
) -> RWKVContext:
|
||||
def rwkv_init_from_file(self, model_file_path: str, thread_count: int) -> RWKVContext:
|
||||
"""
|
||||
Loads the model from a file and prepares it for inference.
|
||||
Throws an exception in case of any error. Error messages would be printed to stderr.
|
||||
@ -138,12 +122,9 @@ class RWKVSharedLibrary:
|
||||
Count of threads to use, must be positive.
|
||||
"""
|
||||
|
||||
ptr = self.library.rwkv_init_from_file(
|
||||
model_file_path.encode("utf-8"), ctypes.c_uint32(thread_count)
|
||||
)
|
||||
ptr = self.library.rwkv_init_from_file(model_file_path.encode('utf-8'), ctypes.c_uint32(thread_count))
|
||||
|
||||
if ptr is None:
|
||||
raise ValueError("rwkv_init_from_file failed, check stderr")
|
||||
assert ptr is not None, 'rwkv_init_from_file failed, check stderr'
|
||||
|
||||
return RWKVContext(ptr)
|
||||
|
||||
@ -164,20 +145,17 @@ class RWKVSharedLibrary:
|
||||
Count of layers to offload onto the GPU, must be >= 0.
|
||||
"""
|
||||
|
||||
if not (layer_count >= 0):
|
||||
raise ValueError("Layer count must be >= 0")
|
||||
assert layer_count >= 0, 'Layer count must be >= 0'
|
||||
|
||||
return self.library.rwkv_gpu_offload_layers(
|
||||
ctx.ptr, ctypes.c_uint32(layer_count)
|
||||
)
|
||||
return self.library.rwkv_gpu_offload_layers(ctx.ptr, ctypes.c_uint32(layer_count))
|
||||
|
||||
def rwkv_eval(
|
||||
self,
|
||||
ctx: RWKVContext,
|
||||
token: int,
|
||||
state_in_address: Optional[int],
|
||||
state_out_address: int,
|
||||
logits_out_address: int,
|
||||
self,
|
||||
ctx: RWKVContext,
|
||||
token: int,
|
||||
state_in_address: Optional[int],
|
||||
state_out_address: int,
|
||||
logits_out_address: int
|
||||
) -> None:
|
||||
"""
|
||||
Evaluates the model for a single token.
|
||||
@ -198,22 +176,21 @@ class RWKVSharedLibrary:
|
||||
Address of the first element of a FP32 buffer of size rwkv_get_logits_buffer_element_count. This buffer will be written to.
|
||||
"""
|
||||
|
||||
if not self.library.rwkv_eval(
|
||||
assert self.library.rwkv_eval(
|
||||
ctx.ptr,
|
||||
ctypes.c_int32(token),
|
||||
ctypes.cast(0 if state_in_address is None else state_in_address, P_FLOAT),
|
||||
ctypes.cast(state_out_address, P_FLOAT),
|
||||
ctypes.cast(logits_out_address, P_FLOAT),
|
||||
):
|
||||
raise ValueError("rwkv_eval failed, check stderr")
|
||||
ctypes.cast(logits_out_address, P_FLOAT)
|
||||
), 'rwkv_eval failed, check stderr'
|
||||
|
||||
def rwkv_eval_sequence(
|
||||
self,
|
||||
ctx: RWKVContext,
|
||||
tokens: List[int],
|
||||
state_in_address: Optional[int],
|
||||
state_out_address: int,
|
||||
logits_out_address: int,
|
||||
self,
|
||||
ctx: RWKVContext,
|
||||
tokens: List[int],
|
||||
state_in_address: Optional[int],
|
||||
state_out_address: int,
|
||||
logits_out_address: int
|
||||
) -> None:
|
||||
"""
|
||||
Evaluates the model for a sequence of tokens.
|
||||
@ -246,24 +223,23 @@ class RWKVSharedLibrary:
|
||||
Address of the first element of a FP32 buffer of size rwkv_get_logits_buffer_element_count. This buffer will be written to.
|
||||
"""
|
||||
|
||||
if not self.library.rwkv_eval_sequence(
|
||||
assert self.library.rwkv_eval_sequence(
|
||||
ctx.ptr,
|
||||
ctypes.cast((ctypes.c_int32 * len(tokens))(*tokens), P_INT),
|
||||
ctypes.c_size_t(len(tokens)),
|
||||
ctypes.cast(0 if state_in_address is None else state_in_address, P_FLOAT),
|
||||
ctypes.cast(state_out_address, P_FLOAT),
|
||||
ctypes.cast(logits_out_address, P_FLOAT),
|
||||
):
|
||||
raise ValueError("rwkv_eval_sequence failed, check stderr")
|
||||
ctypes.cast(logits_out_address, P_FLOAT)
|
||||
), 'rwkv_eval_sequence failed, check stderr'
|
||||
|
||||
def rwkv_eval_sequence_in_chunks(
|
||||
self,
|
||||
ctx: RWKVContext,
|
||||
tokens: List[int],
|
||||
chunk_size: int,
|
||||
state_in_address: Optional[int],
|
||||
state_out_address: int,
|
||||
logits_out_address: int,
|
||||
self,
|
||||
ctx: RWKVContext,
|
||||
tokens: List[int],
|
||||
chunk_size: int,
|
||||
state_in_address: Optional[int],
|
||||
state_out_address: int,
|
||||
logits_out_address: int
|
||||
) -> None:
|
||||
"""
|
||||
Evaluates the model for a sequence of tokens using `rwkv_eval_sequence`, splitting a potentially long sequence into fixed-length chunks.
|
||||
@ -293,40 +269,15 @@ class RWKVSharedLibrary:
|
||||
Address of the first element of a FP32 buffer of size rwkv_get_logits_buffer_element_count. This buffer will be written to.
|
||||
"""
|
||||
|
||||
if not self.library.rwkv_eval_sequence_in_chunks(
|
||||
assert self.library.rwkv_eval_sequence_in_chunks(
|
||||
ctx.ptr,
|
||||
ctypes.cast((ctypes.c_int32 * len(tokens))(*tokens), P_INT),
|
||||
ctypes.c_size_t(len(tokens)),
|
||||
ctypes.c_size_t(chunk_size),
|
||||
ctypes.cast(0 if state_in_address is None else state_in_address, P_FLOAT),
|
||||
ctypes.cast(state_out_address, P_FLOAT),
|
||||
ctypes.cast(logits_out_address, P_FLOAT),
|
||||
):
|
||||
raise ValueError("rwkv_eval_sequence_in_chunks failed, check stderr")
|
||||
|
||||
def rwkv_get_arch_version_major(self, ctx: RWKVContext) -> int:
|
||||
"""
|
||||
Returns the major version used by the given model.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ctx : RWKVContext
|
||||
RWKV context obtained from rwkv_init_from_file.
|
||||
"""
|
||||
|
||||
return self.library.rwkv_get_arch_version_major(ctx.ptr)
|
||||
|
||||
def rwkv_get_arch_version_minor(self, ctx: RWKVContext) -> int:
|
||||
"""
|
||||
Returns the minor version used by the given model.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ctx : RWKVContext
|
||||
RWKV context obtained from rwkv_init_from_file.
|
||||
"""
|
||||
|
||||
return self.library.rwkv_get_arch_version_minor(ctx.ptr)
|
||||
ctypes.cast(logits_out_address, P_FLOAT)
|
||||
), 'rwkv_eval_sequence_in_chunks failed, check stderr'
|
||||
|
||||
def rwkv_get_n_vocab(self, ctx: RWKVContext) -> int:
|
||||
"""
|
||||
@ -407,9 +358,7 @@ class RWKVSharedLibrary:
|
||||
|
||||
ctx.ptr = self.nullptr
|
||||
|
||||
def rwkv_quantize_model_file(
|
||||
self, model_file_path_in: str, model_file_path_out: str, format_name: str
|
||||
) -> None:
|
||||
def rwkv_quantize_model_file(self, model_file_path_in: str, model_file_path_out: str, format_name: str) -> None:
|
||||
"""
|
||||
Quantizes FP32 or FP16 model to one of INT4 formats.
|
||||
Throws an exception in case of any error. Error messages would be printed to stderr.
|
||||
@ -424,25 +373,20 @@ class RWKVSharedLibrary:
|
||||
One of QUANTIZED_FORMAT_NAMES.
|
||||
"""
|
||||
|
||||
if format_name not in QUANTIZED_FORMAT_NAMES:
|
||||
raise ValueError(
|
||||
f"Unknown format name {format_name}, use one of {QUANTIZED_FORMAT_NAMES}"
|
||||
)
|
||||
assert format_name in QUANTIZED_FORMAT_NAMES, f'Unknown format name {format_name}, use one of {QUANTIZED_FORMAT_NAMES}'
|
||||
|
||||
if not self.library.rwkv_quantize_model_file(
|
||||
model_file_path_in.encode("utf-8"),
|
||||
model_file_path_out.encode("utf-8"),
|
||||
format_name.encode("utf-8"),
|
||||
):
|
||||
raise ValueError("rwkv_quantize_model_file failed, check stderr")
|
||||
assert self.library.rwkv_quantize_model_file(
|
||||
model_file_path_in.encode('utf-8'),
|
||||
model_file_path_out.encode('utf-8'),
|
||||
format_name.encode('utf-8')
|
||||
), 'rwkv_quantize_model_file failed, check stderr'
|
||||
|
||||
def rwkv_get_system_info_string(self) -> str:
|
||||
"""
|
||||
Returns system information string.
|
||||
"""
|
||||
|
||||
return self.library.rwkv_get_system_info_string().decode("utf-8")
|
||||
|
||||
return self.library.rwkv_get_system_info_string().decode('utf-8')
|
||||
|
||||
def load_rwkv_shared_library() -> RWKVSharedLibrary:
|
||||
"""
|
||||
@ -452,27 +396,27 @@ def load_rwkv_shared_library() -> RWKVSharedLibrary:
|
||||
|
||||
file_name: str
|
||||
|
||||
if "win32" in sys.platform or "cygwin" in sys.platform:
|
||||
file_name = "rwkv.dll"
|
||||
elif "darwin" in sys.platform:
|
||||
file_name = "librwkv.dylib"
|
||||
if 'win32' in sys.platform or 'cygwin' in sys.platform:
|
||||
file_name = 'rwkv.dll'
|
||||
elif 'darwin' in sys.platform:
|
||||
file_name = 'librwkv.dylib'
|
||||
else:
|
||||
file_name = "librwkv.so"
|
||||
file_name = 'librwkv.so'
|
||||
|
||||
# Possible sub-paths to the library relative to the repo dir.
|
||||
child_paths: List[Callable[[pathlib.Path], pathlib.Path]] = [
|
||||
# No lookup for Debug config here.
|
||||
# I assume that if a user wants to debug the library,
|
||||
# they will be able to find the library and set the exact path explicitly.
|
||||
lambda p: p / "backend-python" / "rwkv_pip" / "cpp" / file_name,
|
||||
lambda p: p / "bin" / "Release" / file_name,
|
||||
lambda p: p / "bin" / file_name,
|
||||
lambda p: p / 'backend-python' / 'rwkv_pip' / 'cpp' / file_name,
|
||||
lambda p: p / 'bin' / 'Release' / file_name,
|
||||
lambda p: p / 'bin' / file_name,
|
||||
# Some people prefer to build in the "build" subdirectory.
|
||||
lambda p: p / "build" / "bin" / "Release" / file_name,
|
||||
lambda p: p / "build" / "bin" / file_name,
|
||||
lambda p: p / "build" / file_name,
|
||||
lambda p: p / 'build' / 'bin' / 'Release' / file_name,
|
||||
lambda p: p / 'build' / 'bin' / file_name,
|
||||
lambda p: p / 'build' / file_name,
|
||||
# Fallback.
|
||||
lambda p: p / file_name,
|
||||
lambda p: p / file_name
|
||||
]
|
||||
|
||||
working_dir: pathlib.Path = pathlib.Path(os.path.abspath(os.getcwd()))
|
||||
@ -486,7 +430,7 @@ def load_rwkv_shared_library() -> RWKVSharedLibrary:
|
||||
# .
|
||||
working_dir,
|
||||
# Repo dir relative to this Python file.
|
||||
pathlib.Path(os.path.abspath(__file__)).parent.parent.parent,
|
||||
pathlib.Path(os.path.abspath(__file__)).parent.parent.parent
|
||||
]
|
||||
|
||||
for parent_path in parent_paths:
|
||||
@ -496,7 +440,5 @@ def load_rwkv_shared_library() -> RWKVSharedLibrary:
|
||||
if os.path.isfile(full_path):
|
||||
return RWKVSharedLibrary(str(full_path))
|
||||
|
||||
raise ValueError(
|
||||
f"Failed to find {file_name} automatically; "
|
||||
f"you need to find the library and create RWKVSharedLibrary specifying the path to it"
|
||||
)
|
||||
assert False, (f'Failed to find {file_name} automatically; '
|
||||
f'you need to find the library and create RWKVSharedLibrary specifying the path to it')
|
||||
|
48
backend-python/rwkv_pip/model.py
vendored
48
backend-python/rwkv_pip/model.py
vendored
@ -488,19 +488,14 @@ class RWKV(MyModule):
|
||||
print_need_newline = False
|
||||
|
||||
REAL_TIME_FIRST = False
|
||||
args.time_state = False
|
||||
for x in list(w.keys()):
|
||||
if ".time_faaaa" in x:
|
||||
REAL_TIME_FIRST = True
|
||||
if ".time_state" in x:
|
||||
args.time_state = True
|
||||
if REAL_TIME_FIRST:
|
||||
w = {
|
||||
(
|
||||
k.replace(".time_faaaa", ".time_first")
|
||||
if ".time_faaaa" in k
|
||||
else k
|
||||
): v
|
||||
k.replace(".time_faaaa", ".time_first")
|
||||
if ".time_faaaa" in k
|
||||
else k: v
|
||||
for k, v in w.items()
|
||||
}
|
||||
self.w = w
|
||||
@ -636,12 +631,10 @@ class RWKV(MyModule):
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
shape = [i for i in w[x].shape if i != 1]
|
||||
if len(shape) > 2:
|
||||
shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)} {str(shape[2]).rjust(5)}"
|
||||
elif len(shape) > 1:
|
||||
shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)} "
|
||||
if len(shape) > 1:
|
||||
shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)}"
|
||||
else:
|
||||
shape = f" {str(shape[0]).rjust(5)} "
|
||||
shape = f" {str(shape[0]).rjust(5)} "
|
||||
if layer_id == 0 or layer_id >= args.n_layer - 1:
|
||||
if print_need_newline:
|
||||
prxxx("\n", end="")
|
||||
@ -2115,25 +2108,16 @@ class RWKV(MyModule):
|
||||
state[i * 3 + 0] = torch.zeros(
|
||||
args.n_embd, dtype=atype, requires_grad=False, device=dev
|
||||
).contiguous()
|
||||
if args.time_state:
|
||||
state[i * 3 + 1] = (
|
||||
w[f"blocks.{i}.att.time_state"]
|
||||
.transpose(1, 2)
|
||||
.to(dtype=torch.float, device=dev)
|
||||
.requires_grad_(False)
|
||||
.contiguous()
|
||||
)
|
||||
else:
|
||||
state[i * 3 + 1] = torch.zeros(
|
||||
(
|
||||
args.n_head,
|
||||
args.n_att // args.n_head,
|
||||
args.n_att // args.n_head,
|
||||
),
|
||||
dtype=torch.float,
|
||||
requires_grad=False,
|
||||
device=dev,
|
||||
).contiguous()
|
||||
state[i * 3 + 1] = torch.zeros(
|
||||
(
|
||||
args.n_head,
|
||||
args.n_att // args.n_head,
|
||||
args.n_att // args.n_head,
|
||||
),
|
||||
dtype=torch.float,
|
||||
requires_grad=False,
|
||||
device=dev,
|
||||
).contiguous()
|
||||
state[i * 3 + 2] = torch.zeros(
|
||||
args.n_embd, dtype=atype, requires_grad=False, device=dev
|
||||
).contiguous()
|
||||
|
32
backend-python/rwkv_pip/webgpu/model.py
vendored
32
backend-python/rwkv_pip/webgpu/model.py
vendored
@ -13,6 +13,12 @@ except ModuleNotFoundError:
|
||||
|
||||
class RWKV:
|
||||
def __init__(self, model_path: str, strategy: str = None):
|
||||
self.info = wrp.peek_info(model_path)
|
||||
self.w = {} # fake weight
|
||||
self.w["emb.weight"] = [0] * self.info.num_vocab
|
||||
self.version = str(self.info.version).lower()
|
||||
self.wrp = getattr(wrp, self.version)
|
||||
|
||||
layer = (
|
||||
int(s.lstrip("layer"))
|
||||
for s in strategy.split()
|
||||
@ -26,25 +32,21 @@ class RWKV:
|
||||
for s in s.split(",")
|
||||
if s.startswith("chunk")
|
||||
)
|
||||
self.token_chunk_size = next(chunk_size, 32)
|
||||
|
||||
args = {
|
||||
"path": model_path,
|
||||
"file": model_path,
|
||||
"turbo": True,
|
||||
"quant": next(layer, 31) if "i8" in strategy else 0,
|
||||
"quant_nf4": next(layer, 26) if "i4" in strategy else 0,
|
||||
"token_chunk_size": next(chunk_size, 32),
|
||||
"lora": None,
|
||||
}
|
||||
self.model = wrp.Model(**args)
|
||||
self.info = self.model.info()
|
||||
self.w = {} # fake weight
|
||||
self.w["emb.weight"] = [0] * self.info.num_vocab
|
||||
self.version = str(self.info.version).lower()
|
||||
self.version = float(self.version.lower().replace("v", ""))
|
||||
self.model = self.wrp.Model(**args)
|
||||
|
||||
def forward(self, tokens: List[int], state: Union[Any, None] = None):
|
||||
if state is None:
|
||||
self.model.clear_state()
|
||||
elif type(state).__name__ == "State_Cpu":
|
||||
self.model.load_state(state)
|
||||
logits = self.model.run(tokens, self.token_chunk_size)
|
||||
ret_state = "State_Gpu"
|
||||
return logits, ret_state
|
||||
if type(state).__name__ == "BackedState": # memory state
|
||||
gpu_state = self.wrp.ModelState(self.model, 1)
|
||||
gpu_state.load(state)
|
||||
else:
|
||||
gpu_state = state
|
||||
return self.wrp.run_one(self.model, tokens, gpu_state)
|
||||
|
Binary file not shown.
@ -4,10 +4,9 @@ import os
|
||||
import pathlib
|
||||
import copy
|
||||
import re
|
||||
import time
|
||||
from typing import Dict, Iterable, List, Tuple, Union, Type, Callable
|
||||
from utils.log import quick_log
|
||||
from fastapi import HTTPException, status
|
||||
from fastapi import HTTPException
|
||||
from pydantic import BaseModel, Field
|
||||
from routes import state_cache
|
||||
import global_var
|
||||
@ -27,8 +26,6 @@ class AbstractRWKV(ABC):
|
||||
self.EOS_ID = 0
|
||||
|
||||
self.name = "rwkv"
|
||||
self.model_path = ""
|
||||
self.version = 4
|
||||
self.model = model
|
||||
self.pipeline = pipeline
|
||||
self.model_state = None
|
||||
@ -42,10 +39,8 @@ class AbstractRWKV(ABC):
|
||||
self.top_k = 0
|
||||
self.penalty_alpha_presence = 0
|
||||
self.penalty_alpha_frequency = 1
|
||||
self.penalty_decay = 0.99
|
||||
self.penalty_decay = 0.996
|
||||
self.global_penalty = False
|
||||
self.state_path = ""
|
||||
self.state_tuned = None
|
||||
|
||||
@abstractmethod
|
||||
def adjust_occurrence(self, occurrence: Dict, token: int):
|
||||
@ -239,10 +234,7 @@ class AbstractRWKV(ABC):
|
||||
except HTTPException:
|
||||
pass
|
||||
if cache is None or cache["prompt"] == "" or cache["state"] is None:
|
||||
if self.state_path:
|
||||
self.model_state = copy.deepcopy(self.state_tuned)
|
||||
else:
|
||||
self.model_state = None
|
||||
self.model_state = None
|
||||
self.model_tokens = []
|
||||
else:
|
||||
delta_prompt = prompt[len(cache["prompt"]) :]
|
||||
@ -252,16 +244,9 @@ class AbstractRWKV(ABC):
|
||||
|
||||
prompt_token_len = 0
|
||||
if delta_prompt != "":
|
||||
prompt_start_time = time.time()
|
||||
logits, prompt_token_len = self.run_rnn(
|
||||
self.fix_tokens(self.pipeline.encode(delta_prompt))
|
||||
)
|
||||
prompt_end_time = time.time()
|
||||
prompt_interval = prompt_end_time - prompt_start_time
|
||||
tps = 0
|
||||
if prompt_interval > 0:
|
||||
tps = prompt_token_len / prompt_interval
|
||||
print(f"Prompt Prefill TPS: {tps:.2f}", end=" ", flush=True)
|
||||
try:
|
||||
state_cache.add_state(
|
||||
state_cache.AddStateBody(
|
||||
@ -615,16 +600,22 @@ def get_model_path(model_path: str) -> str:
|
||||
|
||||
|
||||
def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV:
|
||||
model_path = get_model_path(model)
|
||||
model = get_model_path(model)
|
||||
|
||||
rwkv_beta = global_var.get(global_var.Args).rwkv_beta
|
||||
rwkv_cpp = getattr(global_var.get(global_var.Args), "rwkv.cpp")
|
||||
webgpu = global_var.get(global_var.Args).webgpu
|
||||
|
||||
if "midi" in model_path.lower() or "abc" in model_path.lower():
|
||||
if "midi" in model.lower() or "abc" in model.lower():
|
||||
os.environ["RWKV_RESCALE_LAYER"] = "999"
|
||||
|
||||
# dynamic import to make RWKV_CUDA_ON work
|
||||
if rwkv_cpp:
|
||||
if rwkv_beta:
|
||||
print("Using rwkv-beta")
|
||||
from rwkv_pip.beta.model import (
|
||||
RWKV as Model,
|
||||
)
|
||||
elif rwkv_cpp:
|
||||
print("Using rwkv.cpp, strategy is ignored")
|
||||
from rwkv_pip.cpp.model import (
|
||||
RWKV as Model,
|
||||
@ -640,8 +631,8 @@ def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV
|
||||
)
|
||||
from rwkv_pip.utils import PIPELINE
|
||||
|
||||
filename, _ = os.path.splitext(os.path.basename(model_path))
|
||||
model = Model(model_path, strategy)
|
||||
filename, _ = os.path.splitext(os.path.basename(model))
|
||||
model = Model(model, strategy)
|
||||
if not tokenizer:
|
||||
tokenizer = get_tokenizer(len(model.w["emb.weight"]))
|
||||
pipeline = PIPELINE(model, tokenizer)
|
||||
@ -674,8 +665,6 @@ def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV
|
||||
else:
|
||||
rwkv = TextRWKV(model, pipeline)
|
||||
rwkv.name = filename
|
||||
rwkv.model_path = model_path
|
||||
rwkv.version = model.version
|
||||
|
||||
return rwkv
|
||||
|
||||
@ -688,11 +677,7 @@ class ModelConfigBody(BaseModel):
|
||||
frequency_penalty: float = Field(default=None, ge=-2, le=2)
|
||||
penalty_decay: float = Field(default=None, ge=0.99, le=0.999)
|
||||
top_k: int = Field(default=None, ge=0, le=25)
|
||||
global_penalty: bool = Field(
|
||||
default=None,
|
||||
description="When generating a response, whether to include the submitted prompt as a penalty factor. By turning this off, you will get the same generated results as official RWKV Gradio. If you find duplicate results in the generated results, turning this on can help avoid generating duplicates.",
|
||||
)
|
||||
state: str = Field(default=None, description="state-tuned file path")
|
||||
global_penalty: bool = Field(default=None)
|
||||
|
||||
model_config = {
|
||||
"json_schema_extra": {
|
||||
@ -704,97 +689,11 @@ class ModelConfigBody(BaseModel):
|
||||
"frequency_penalty": 1,
|
||||
"penalty_decay": 0.996,
|
||||
"global_penalty": False,
|
||||
"state": "",
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def load_rwkv_state(
|
||||
model: AbstractRWKV, state_path: str, print_log: bool = True
|
||||
) -> HTTPException:
|
||||
if model:
|
||||
if state_path:
|
||||
if model.model_path.endswith(".pth") and state_path.endswith(".pth"):
|
||||
import torch
|
||||
|
||||
state_path = get_model_path(state_path)
|
||||
if model.state_path == state_path:
|
||||
return
|
||||
|
||||
if not os.path.isfile(state_path):
|
||||
return HTTPException(
|
||||
status.HTTP_400_BAD_REQUEST, "state file not found"
|
||||
)
|
||||
|
||||
try:
|
||||
state_raw = torch.load(state_path, map_location="cpu")
|
||||
except Exception as e:
|
||||
print(e)
|
||||
return HTTPException(
|
||||
status.HTTP_400_BAD_REQUEST, "state file failed to load"
|
||||
)
|
||||
state_raw_shape = next(iter(state_raw.values())).shape
|
||||
|
||||
args = model.model.args
|
||||
if (
|
||||
len(state_raw) != args.n_layer
|
||||
or state_raw_shape[0] * state_raw_shape[1] != args.n_embd
|
||||
):
|
||||
if model.state_path:
|
||||
pass
|
||||
elif print_log:
|
||||
print("state failed to load")
|
||||
return HTTPException(
|
||||
status.HTTP_400_BAD_REQUEST, "state shape mismatch"
|
||||
)
|
||||
|
||||
strategy = model.model.strategy
|
||||
model.state_tuned = [None] * args.n_layer * 3
|
||||
|
||||
for i in range(args.n_layer):
|
||||
dd = strategy[i]
|
||||
dev = dd.device
|
||||
atype = dd.atype
|
||||
model.state_tuned[i * 3 + 0] = torch.zeros(
|
||||
args.n_embd, dtype=atype, requires_grad=False, device=dev
|
||||
).contiguous()
|
||||
model.state_tuned[i * 3 + 1] = (
|
||||
state_raw[f"blocks.{i}.att.time_state"]
|
||||
.transpose(1, 2)
|
||||
.to(dtype=torch.float, device=dev)
|
||||
.requires_grad_(False)
|
||||
.contiguous()
|
||||
)
|
||||
model.state_tuned[i * 3 + 2] = torch.zeros(
|
||||
args.n_embd, dtype=atype, requires_grad=False, device=dev
|
||||
).contiguous()
|
||||
|
||||
state_cache.force_reset_state()
|
||||
model.state_path = state_path
|
||||
if print_log:
|
||||
print("state loaded")
|
||||
else:
|
||||
if model.state_path:
|
||||
pass
|
||||
elif print_log:
|
||||
print("state failed to load")
|
||||
return HTTPException(
|
||||
status.HTTP_400_BAD_REQUEST,
|
||||
"file format of the model or state model not supported",
|
||||
)
|
||||
else:
|
||||
if state_path == "" and model.state_path != "":
|
||||
state_cache.force_reset_state()
|
||||
model.state_path = ""
|
||||
model.state_tuned = None # TODO cached
|
||||
if print_log:
|
||||
print("state unloaded")
|
||||
else:
|
||||
if print_log:
|
||||
print("state not loaded")
|
||||
|
||||
|
||||
def set_rwkv_config(model: AbstractRWKV, body: ModelConfigBody):
|
||||
if body.max_tokens is not None:
|
||||
model.max_tokens_per_generation = body.max_tokens
|
||||
@ -815,8 +714,6 @@ def set_rwkv_config(model: AbstractRWKV, body: ModelConfigBody):
|
||||
model.top_k = body.top_k
|
||||
if body.global_penalty is not None:
|
||||
model.global_penalty = body.global_penalty
|
||||
if body.state is not None:
|
||||
load_rwkv_state(model, body.state, False)
|
||||
|
||||
|
||||
def get_rwkv_config(model: AbstractRWKV) -> ModelConfigBody:
|
||||
@ -829,5 +726,4 @@ def get_rwkv_config(model: AbstractRWKV) -> ModelConfigBody:
|
||||
penalty_decay=model.penalty_decay,
|
||||
top_k=model.top_k,
|
||||
global_penalty=model.global_penalty,
|
||||
state=model.state_path,
|
||||
)
|
||||
|
@ -52,13 +52,9 @@ for x in keys:
|
||||
if "time_maa" in x:
|
||||
version = max(6, version)
|
||||
|
||||
params = f"--vocab_size {vocab_size} --n_layer {n_layer} --n_embd {n_embd}"
|
||||
|
||||
if version <= expected_max_version:
|
||||
if version == 6:
|
||||
params += ' --my_testing "x060"'
|
||||
print(
|
||||
f"v{int(version)}/train.py {params}",
|
||||
f"v{int(version)}/train.py --vocab_size {vocab_size} --n_layer {n_layer} --n_embd {n_embd}",
|
||||
end="",
|
||||
)
|
||||
else:
|
||||
|
@ -1,7 +1,7 @@
|
||||
echo $@
|
||||
|
||||
if [[ ${cnMirror} == 1 ]]; then
|
||||
export PIP_INDEX_URL="https://mirrors.aliyun.com/pypi/simple"
|
||||
export PIP_INDEX_URL="https://pypi.tuna.tsinghua.edu.cn/simple"
|
||||
if grep -q "mirrors.aliyun.com" /etc/apt/sources.list; then
|
||||
echo "apt cnMirror already set"
|
||||
else
|
||||
@ -53,7 +53,7 @@ else
|
||||
fi
|
||||
|
||||
echo "loading $loadModel"
|
||||
modelInfo=$(python3 ./finetune/get_layer_and_embd.py $loadModel 6.0)
|
||||
modelInfo=$(python3 ./finetune/get_layer_and_embd.py $loadModel 5.2)
|
||||
echo $modelInfo
|
||||
if [[ $modelInfo =~ "--n_layer" ]]; then
|
||||
sudo rm -rf /root/.cache/torch_extensions
|
||||
|
202
finetune/lora/v6/cuda/wkv5_cuda.cu
vendored
202
finetune/lora/v6/cuda/wkv5_cuda.cu
vendored
@ -1,202 +0,0 @@
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include "ATen/ATen.h"
|
||||
typedef at::BFloat16 bf16;
|
||||
|
||||
template <typename F>
|
||||
__global__ void kernel_forward(const int B, const int T, const int C, const int H,
|
||||
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u,
|
||||
F *__restrict__ const _y)
|
||||
{
|
||||
const int b = blockIdx.x / H;
|
||||
const int h = blockIdx.x % H;
|
||||
const int i = threadIdx.x;
|
||||
_w += h*_N_;
|
||||
_u += h*_N_;
|
||||
|
||||
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
|
||||
float state[_N_] = {0};
|
||||
|
||||
__syncthreads();
|
||||
w[i] = _w[i];
|
||||
u[i] = float(_u[i]);
|
||||
__syncthreads();
|
||||
|
||||
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
|
||||
{
|
||||
__syncthreads();
|
||||
r[i] = float(_r[t]);
|
||||
k[i] = float(_k[t]);
|
||||
__syncthreads();
|
||||
|
||||
const float v = float(_v[t]);
|
||||
float y = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j+=4)
|
||||
{
|
||||
const float4& r_ = (float4&)(r[j]);
|
||||
const float4& k_ = (float4&)(k[j]);
|
||||
const float4& w_ = (float4&)(w[j]);
|
||||
const float4& u_ = (float4&)(u[j]);
|
||||
float4& s = (float4&)(state[j]);
|
||||
float4 x;
|
||||
|
||||
x.x = k_.x * v;
|
||||
x.y = k_.y * v;
|
||||
x.z = k_.z * v;
|
||||
x.w = k_.w * v;
|
||||
|
||||
y += r_.x * (u_.x * x.x + s.x);
|
||||
y += r_.y * (u_.y * x.y + s.y);
|
||||
y += r_.z * (u_.z * x.z + s.z);
|
||||
y += r_.w * (u_.w * x.w + s.w);
|
||||
|
||||
s.x = s.x * w_.x + x.x;
|
||||
s.y = s.y * w_.y + x.y;
|
||||
s.z = s.z * w_.z + x.z;
|
||||
s.w = s.w * w_.w + x.w;
|
||||
}
|
||||
_y[t] = F(y);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
__global__ void kernel_backward(const int B, const int T, const int C, const int H,
|
||||
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const float *__restrict__ __w, const F *__restrict__ _u, const F *__restrict__ const _gy,
|
||||
F *__restrict__ const _gr, F *__restrict__ const _gk, F *__restrict__ const _gv, F *__restrict__ const _gw, F *__restrict__ const _gu)
|
||||
{
|
||||
const int b = blockIdx.x / H;
|
||||
const int h = blockIdx.x % H;
|
||||
const int i = threadIdx.x;
|
||||
_w += h*_N_;
|
||||
_u += h*_N_;
|
||||
__w += h*_N_;
|
||||
|
||||
__shared__ float w_[_N_], u_[_N_];
|
||||
__shared__ float r[_N_], k[_N_], v[_N_], gy[_N_];
|
||||
__syncthreads();
|
||||
w_[i] = _w[i];
|
||||
u_[i] = float(_u[i]);
|
||||
__syncthreads();
|
||||
|
||||
const float w = w_[i];
|
||||
const float ww = __w[i];
|
||||
const float u = u_[i];
|
||||
|
||||
float state[_N_] = {0}, saaaa[_N_] = {0}, sbbbb[_N_] = {0}, scccc[_N_] = {0}, sdddd[_N_] = {0};
|
||||
|
||||
float gw = 0, gu = 0;
|
||||
const int t000 = b*T*C + h*_N_ + i;
|
||||
const int t111 = (b+1)*T*C + h*_N_ + i;
|
||||
const int t222 = t111 - 2*C;
|
||||
|
||||
for (int t = t000; t < t111; t += C)
|
||||
{
|
||||
__syncthreads();
|
||||
v[i] = float(_v[t]);
|
||||
gy[i] = float(_gy[t]);
|
||||
__syncthreads();
|
||||
|
||||
const float k = float(_k[t]);
|
||||
float gr = 0, gu_ = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = state[j];
|
||||
float x = k * v[j];
|
||||
|
||||
gr += (u * x + s) * gy[j];
|
||||
gu_ += x * gy[j];
|
||||
s = s * w + x;
|
||||
}
|
||||
_gr[t] = F(gr);
|
||||
gu += float(_r[t]) * gu_;
|
||||
}
|
||||
_gu[b*C + h*_N_ + i] = F(gu);
|
||||
|
||||
for (int t = t000; t < t222; t += C)
|
||||
{
|
||||
__syncthreads();
|
||||
v[i] = float(_v[t]);
|
||||
gy[i] = float(_gy[t + 2*C]);
|
||||
__syncthreads();
|
||||
|
||||
const float k = float(_k[t]);
|
||||
float gw_ = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = saaaa[j];
|
||||
float& s2 = sbbbb[j];
|
||||
float x = k * v[j];
|
||||
|
||||
float tmp = w * (x + s);
|
||||
s = tmp;
|
||||
s2 = tmp + w * s2;
|
||||
gw_ += s2 * gy[j];
|
||||
}
|
||||
gw += float(_r[t + 2*C]) * gw_;
|
||||
}
|
||||
_gw[b*C + h*_N_ + i] = F(ww * gw);
|
||||
|
||||
for (int t = t111 - C; t >= t000; t -= C)
|
||||
{
|
||||
__syncthreads();
|
||||
v[i] = float(_v[t]);
|
||||
gy[i] = float(_gy[t]);
|
||||
__syncthreads();
|
||||
|
||||
const float rr = float(_r[t]);
|
||||
float gk = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = scccc[j];
|
||||
float x = rr * gy[j];
|
||||
|
||||
gk += (u * x + s) * v[j];
|
||||
s = x + s * w;
|
||||
}
|
||||
_gk[t] = F(gk);
|
||||
}
|
||||
|
||||
for (int t = t111 - C; t >= t000; t -= C)
|
||||
{
|
||||
__syncthreads();
|
||||
r[i] = float(_r[t]);
|
||||
k[i] = float(_k[t]);
|
||||
__syncthreads();
|
||||
|
||||
const float gyy = float(_gy[t]);
|
||||
float gv = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = sdddd[j];
|
||||
float x = gyy * r[j];
|
||||
|
||||
gv += (u_[j] * x + s) * k[j];
|
||||
s = x + s * w_[j];
|
||||
}
|
||||
_gv[t] = F(gv);
|
||||
}
|
||||
}
|
||||
|
||||
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y)
|
||||
{
|
||||
assert(H*_N_ == C);
|
||||
assert(_N_%4 == 0);
|
||||
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, y);
|
||||
}
|
||||
|
||||
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, float *ww, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu)
|
||||
{
|
||||
assert(H*_N_ == C);
|
||||
assert(_N_%4 == 0);
|
||||
kernel_backward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, ww, u, gy, gr, gk, gv, gw, gu);
|
||||
}
|
22
finetune/lora/v6/cuda/wkv5_op.cpp
vendored
22
finetune/lora/v6/cuda/wkv5_op.cpp
vendored
@ -1,22 +0,0 @@
|
||||
#include <torch/extension.h>
|
||||
#include "ATen/ATen.h"
|
||||
typedef at::BFloat16 bf16;
|
||||
|
||||
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y);
|
||||
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, float *ww, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu);
|
||||
|
||||
void forward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
|
||||
cuda_forward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), y.data_ptr<bf16>());
|
||||
}
|
||||
void backward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &ww, torch::Tensor &u, torch::Tensor &gy, torch::Tensor &gr, torch::Tensor &gk, torch::Tensor &gv, torch::Tensor &gw, torch::Tensor &gu) {
|
||||
cuda_backward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), ww.data_ptr<float>(), u.data_ptr<bf16>(), gy.data_ptr<bf16>(), gr.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>());
|
||||
}
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("forward", &forward, "wkv5 forward");
|
||||
m.def("backward", &backward, "wkv5 backward");
|
||||
}
|
||||
|
||||
TORCH_LIBRARY(wkv5, m) {
|
||||
m.def("forward", forward);
|
||||
m.def("backward", backward);
|
||||
}
|
242
finetune/lora/v6/cuda/wkv6_cuda.cu
vendored
242
finetune/lora/v6/cuda/wkv6_cuda.cu
vendored
@ -1,242 +0,0 @@
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include "ATen/ATen.h"
|
||||
typedef at::BFloat16 bf16;
|
||||
|
||||
template <typename F>
|
||||
__global__ void kernel_forward(const int B, const int T, const int C, const int H,
|
||||
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u,
|
||||
F *__restrict__ const _y)
|
||||
{
|
||||
const int b = blockIdx.x / H;
|
||||
const int h = blockIdx.x % H;
|
||||
const int i = threadIdx.x;
|
||||
_u += h*_N_;
|
||||
|
||||
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
|
||||
float state[_N_] = {0};
|
||||
|
||||
__syncthreads();
|
||||
u[i] = float(_u[i]);
|
||||
__syncthreads();
|
||||
|
||||
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
|
||||
{
|
||||
__syncthreads();
|
||||
w[i] = exp(_w[t]);
|
||||
r[i] = float(_r[t]);
|
||||
k[i] = float(_k[t]);
|
||||
__syncthreads();
|
||||
|
||||
const float v = float(_v[t]);
|
||||
float y = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j+=4)
|
||||
{
|
||||
const float4& r_ = (float4&)(r[j]);
|
||||
const float4& k_ = (float4&)(k[j]);
|
||||
const float4& w_ = (float4&)(w[j]);
|
||||
const float4& u_ = (float4&)(u[j]);
|
||||
float4& s = (float4&)(state[j]);
|
||||
float4 x;
|
||||
|
||||
x.x = k_.x * v;
|
||||
x.y = k_.y * v;
|
||||
x.z = k_.z * v;
|
||||
x.w = k_.w * v;
|
||||
|
||||
y += r_.x * (u_.x * x.x + s.x);
|
||||
y += r_.y * (u_.y * x.y + s.y);
|
||||
y += r_.z * (u_.z * x.z + s.z);
|
||||
y += r_.w * (u_.w * x.w + s.w);
|
||||
|
||||
s.x = s.x * w_.x + x.x;
|
||||
s.y = s.y * w_.y + x.y;
|
||||
s.z = s.z * w_.z + x.z;
|
||||
s.w = s.w * w_.w + x.w;
|
||||
}
|
||||
_y[t] = F(y);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
__global__ void kernel_backward_111(const int B, const int T, const int C, const int H,
|
||||
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u, const F *__restrict__ const _gy,
|
||||
F *__restrict__ const _gr, F *__restrict__ const _gk, F *__restrict__ const _gv, F *__restrict__ const _gu)
|
||||
{
|
||||
const int b = blockIdx.x / H;
|
||||
const int h = blockIdx.x % H;
|
||||
const int i = threadIdx.x;
|
||||
_u += h*_N_;
|
||||
|
||||
__shared__ float u_[_N_];
|
||||
__shared__ float r[_N_], k[_N_], v[_N_], w_[_N_], gy[_N_];
|
||||
__syncthreads();
|
||||
u_[i] = float(_u[i]);
|
||||
__syncthreads();
|
||||
|
||||
const float u = u_[i];
|
||||
|
||||
float state[_N_] = {0}, scccc[_N_] = {0}, sdddd[_N_] = {0};
|
||||
|
||||
const int t_0 = b*T*C + h*_N_ + i;
|
||||
const int t_T_1 = t_0 + (T-1)*C;
|
||||
const int t_T = t_0 + T*C;
|
||||
|
||||
float gu = 0;
|
||||
for (int t = t_0; t < t_T; t += C)
|
||||
{
|
||||
__syncthreads();
|
||||
v[i] = float(_v[t]);
|
||||
gy[i] = float(_gy[t]);
|
||||
__syncthreads();
|
||||
|
||||
const float k = float(_k[t]);
|
||||
const float w = exp(_w[t]);
|
||||
float gr = 0, gu_ = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = state[j];
|
||||
float x = k * v[j];
|
||||
|
||||
gr += (u * x + s) * gy[j];
|
||||
gu_ += x * gy[j];
|
||||
s = s * w + x;
|
||||
}
|
||||
_gr[t] = F(gr);
|
||||
gu += float(_r[t]) * gu_;
|
||||
}
|
||||
_gu[b*C + h*_N_ + i] = F(gu);
|
||||
|
||||
for (int t = t_T_1; t >= t_0; t -= C)
|
||||
{
|
||||
__syncthreads();
|
||||
v[i] = float(_v[t]);
|
||||
gy[i] = float(_gy[t]);
|
||||
__syncthreads();
|
||||
|
||||
const float rr = float(_r[t]);
|
||||
const float w = exp(_w[t]);
|
||||
float gk = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = scccc[j];
|
||||
float x = rr * gy[j];
|
||||
|
||||
gk += (u * x + s) * v[j];
|
||||
s = x + s * w;
|
||||
}
|
||||
_gk[t] = F(gk);
|
||||
}
|
||||
|
||||
for (int t = t_T_1; t >= t_0; t -= C)
|
||||
{
|
||||
__syncthreads();
|
||||
r[i] = float(_r[t]);
|
||||
k[i] = float(_k[t]);
|
||||
w_[i] = exp(_w[t]);
|
||||
__syncthreads();
|
||||
|
||||
const float gyy = float(_gy[t]);
|
||||
float gv = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = sdddd[j];
|
||||
float x = gyy * r[j];
|
||||
|
||||
gv += (u_[j] * x + s) * k[j];
|
||||
s = x + s * w_[j];
|
||||
}
|
||||
_gv[t] = F(gv);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
__global__ void kernel_backward_222(const int B, const int T, const int C, const int H,
|
||||
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u, const F *__restrict__ const _gy,
|
||||
F *__restrict__ const _gw)
|
||||
{
|
||||
const int b = blockIdx.x / H;
|
||||
const int h = blockIdx.x % H;
|
||||
const int i = threadIdx.x;
|
||||
|
||||
__shared__ float v[_N_], gy[_N_];
|
||||
float saaaa[_N_] = {0}, sbbbb[_T_-2] = {0}, scccc[_N_] = {0};
|
||||
|
||||
const int t_0 = b*T*C + h*_N_ + i;
|
||||
const int t_1 = t_0 + C;
|
||||
const int t_2 = t_0 + 2*C;
|
||||
const int t_T_1 = t_0 + (T-1)*C;
|
||||
|
||||
for (int t = t_T_1; t > t_1; t -= C)
|
||||
{
|
||||
__syncthreads();
|
||||
gy[i] = float(_gy[t]);
|
||||
v[i] = float(_v[t-2*C]);
|
||||
__syncthreads();
|
||||
|
||||
const float r = float(_r[t]);
|
||||
const float w = exp(_w[t-C]);
|
||||
float sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = saaaa[j];
|
||||
float x = r * gy[j];
|
||||
s = (s + x) * w;
|
||||
sum += s * v[j];
|
||||
}
|
||||
sbbbb[(t-t_2)/C] = sum * float(_k[t-2*C]);
|
||||
}
|
||||
|
||||
float sss = sbbbb[0];
|
||||
_gw[t_0] = 0;
|
||||
_gw[t_1] = F(sss * _w[t_1]);
|
||||
|
||||
for (int t = t_2; t < t_T_1; t += C)
|
||||
{
|
||||
__syncthreads();
|
||||
gy[i] = float(_gy[t]);
|
||||
v[i] = float(_v[t-2*C]);
|
||||
__syncthreads();
|
||||
|
||||
const float w = exp(_w[t-C]);
|
||||
const float k = float(_k[t-2*C]);
|
||||
float sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = scccc[j];
|
||||
float x = k * v[j];
|
||||
s = (s + x) * w;
|
||||
sum += s * gy[j];
|
||||
}
|
||||
sss += sbbbb[(t-t_1)/C] - (sum * float(_r[t]));
|
||||
_gw[t] = F(sss * _w[t]);
|
||||
}
|
||||
_gw[t_T_1] = 0;
|
||||
}
|
||||
|
||||
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y)
|
||||
{
|
||||
assert(H*_N_ == C);
|
||||
assert(_N_%4 == 0);
|
||||
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, y);
|
||||
}
|
||||
|
||||
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu)
|
||||
{
|
||||
assert(H*_N_ == C);
|
||||
assert(_N_%4 == 0);
|
||||
kernel_backward_111<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, gy, gr, gk, gv, gu);
|
||||
kernel_backward_222<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, gy, gw);
|
||||
}
|
22
finetune/lora/v6/cuda/wkv6_op.cpp
vendored
22
finetune/lora/v6/cuda/wkv6_op.cpp
vendored
@ -1,22 +0,0 @@
|
||||
#include <torch/extension.h>
|
||||
#include "ATen/ATen.h"
|
||||
typedef at::BFloat16 bf16;
|
||||
|
||||
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y);
|
||||
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu);
|
||||
|
||||
void forward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
|
||||
cuda_forward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), y.data_ptr<bf16>());
|
||||
}
|
||||
void backward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &gy, torch::Tensor &gr, torch::Tensor &gk, torch::Tensor &gv, torch::Tensor &gw, torch::Tensor &gu) {
|
||||
cuda_backward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), gy.data_ptr<bf16>(), gr.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>());
|
||||
}
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("forward", &forward, "wkv6 forward");
|
||||
m.def("backward", &backward, "wkv6 backward");
|
||||
}
|
||||
|
||||
TORCH_LIBRARY(wkv6, m) {
|
||||
m.def("forward", forward);
|
||||
m.def("backward", backward);
|
||||
}
|
311
finetune/lora/v6/cuda/wkv6infctx_cuda.cu
vendored
311
finetune/lora/v6/cuda/wkv6infctx_cuda.cu
vendored
@ -1,311 +0,0 @@
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include "ATen/ATen.h"
|
||||
typedef at::BFloat16 bf16;
|
||||
|
||||
template <typename F>
|
||||
__global__ void kernel_forward(const int B, const int T, const int C, const int H,
|
||||
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ _w, const F *__restrict__ _u, F *__restrict__ _s,
|
||||
F *__restrict__ const _y)
|
||||
{
|
||||
const int b = blockIdx.x / H;
|
||||
const int h = blockIdx.x % H;
|
||||
const int i = threadIdx.x;
|
||||
_u += h*_N_;
|
||||
_s += h*_N_*_N_ + i*_N_;
|
||||
|
||||
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
|
||||
float state[_N_];
|
||||
|
||||
__syncthreads();
|
||||
u[i] = float(_u[i]);
|
||||
__syncthreads();
|
||||
for (int j = 0; j < _N_; j++) {
|
||||
state[j] = float(_s[j]);
|
||||
}
|
||||
|
||||
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
|
||||
{
|
||||
__syncthreads();
|
||||
w[i] = __expf(-__expf(float(_w[t])));
|
||||
r[i] = float(_r[t]);
|
||||
k[i] = float(_k[t]);
|
||||
__syncthreads();
|
||||
|
||||
const float v = float(_v[t]);
|
||||
float y = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j+=4)
|
||||
{
|
||||
const float4& r_ = (float4&)(r[j]);
|
||||
const float4& k_ = (float4&)(k[j]);
|
||||
const float4& w_ = (float4&)(w[j]);
|
||||
const float4& u_ = (float4&)(u[j]);
|
||||
float4& s = (float4&)(state[j]);
|
||||
float4 x;
|
||||
|
||||
x.x = k_.x * v;
|
||||
x.y = k_.y * v;
|
||||
x.z = k_.z * v;
|
||||
x.w = k_.w * v;
|
||||
|
||||
y += r_.x * (u_.x * x.x + s.x);
|
||||
y += r_.y * (u_.y * x.y + s.y);
|
||||
y += r_.z * (u_.z * x.z + s.z);
|
||||
y += r_.w * (u_.w * x.w + s.w);
|
||||
|
||||
s.x = s.x * w_.x + x.x;
|
||||
s.y = s.y * w_.y + x.y;
|
||||
s.z = s.z * w_.z + x.z;
|
||||
s.w = s.w * w_.w + x.w;
|
||||
}
|
||||
_y[t] = F(y);
|
||||
}
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
_s[j] = F(state[j]);
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
__global__ void kernel_backward_111(const int B, const int T, const int C, const int H,
|
||||
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ _w, const F *__restrict__ _u, const F *__restrict__ _s, const F *__restrict__ const _gy,
|
||||
F *__restrict__ const _gr, F *__restrict__ const _gk, F *__restrict__ const _gv, F *__restrict__ const _gu, F *__restrict__ const _gs)
|
||||
{
|
||||
const int b = blockIdx.x / H;
|
||||
const int h = blockIdx.x % H;
|
||||
const int i = threadIdx.x;
|
||||
_u += h*_N_;
|
||||
_s += h*_N_*_N_ + i;
|
||||
|
||||
__shared__ float u_[_N_];
|
||||
__shared__ float r[_N_], k[_N_], v[_N_], w_[_N_], gy[_N_];
|
||||
__syncthreads();
|
||||
u_[i] = float(_u[i]);
|
||||
__syncthreads();
|
||||
|
||||
const float u = u_[i];
|
||||
|
||||
float state[_N_], scccc[_N_] = {0}, sdddd[_N_] = {0}, sssss[_N_] = {0}, swwww[_N_];
|
||||
for (int j = 0; j < _N_; j++) {
|
||||
state[j] = float(_s[j*_N_]);
|
||||
swwww[j] = 1.0;
|
||||
}
|
||||
|
||||
const int t_0 = b*T*C + h*_N_ + i;
|
||||
const int t_T_1 = t_0 + (T-1)*C;
|
||||
const int t_T = t_0 + T*C;
|
||||
|
||||
float gu = 0;
|
||||
for (int t = t_0; t < t_T; t += C)
|
||||
{
|
||||
__syncthreads();
|
||||
v[i] = float(_v[t]);
|
||||
gy[i] = float(_gy[t]);
|
||||
__syncthreads();
|
||||
|
||||
const float k = float(_k[t]);
|
||||
const float w = __expf(-__expf(float(_w[t])));
|
||||
float gr = 0, gu_ = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = state[j];
|
||||
float x = k * v[j];
|
||||
|
||||
gr += (u * x + s) * gy[j];
|
||||
gu_ += x * gy[j];
|
||||
s = s * w + x;
|
||||
}
|
||||
_gr[t] = F(gr);
|
||||
gu += float(_r[t]) * gu_;
|
||||
}
|
||||
_gu[b*C + h*_N_ + i] = F(gu);
|
||||
|
||||
for (int t = t_T_1; t >= t_0; t -= C)
|
||||
{
|
||||
__syncthreads();
|
||||
v[i] = float(_v[t]);
|
||||
gy[i] = float(_gy[t]);
|
||||
__syncthreads();
|
||||
|
||||
const float rr = float(_r[t]);
|
||||
const float w = __expf(-__expf(float(_w[t])));
|
||||
float gk = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = scccc[j];
|
||||
float x = rr * gy[j];
|
||||
|
||||
gk += (u * x + s) * v[j];
|
||||
s = x + s * w;
|
||||
}
|
||||
_gk[t] = F(gk);
|
||||
}
|
||||
|
||||
for (int t = t_T_1; t >= t_0; t -= C)
|
||||
{
|
||||
__syncthreads();
|
||||
r[i] = float(_r[t]);
|
||||
k[i] = float(_k[t]);
|
||||
w_[i] = __expf(-__expf(float(_w[t])));
|
||||
__syncthreads();
|
||||
|
||||
const float gyy = float(_gy[t]);
|
||||
float gv = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = sdddd[j];
|
||||
float x = gyy * r[j];
|
||||
|
||||
gv += (u_[j] * x + s) * k[j];
|
||||
s = x + s * w_[j];
|
||||
}
|
||||
_gv[t] = F(gv);
|
||||
}
|
||||
|
||||
for (int t = t_0; t < t_T; t += C)
|
||||
{
|
||||
__syncthreads();
|
||||
r[i] = float(_r[t]);
|
||||
w_[i] = __expf(-__expf(float(_w[t])));
|
||||
__syncthreads();
|
||||
|
||||
const float gyy = float(_gy[t]);
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& w = swwww[j];
|
||||
sssss[j] += gyy * w * r[j];
|
||||
w *= w_[j];
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < _N_; j++)
|
||||
_gs[b*H*_N_*_N_ + h*_N_*_N_ + i*_N_ + j] = F(sssss[j]);
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
__global__ void kernel_backward_222(const int B, const int T, const int C, const int H,
|
||||
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ _w, const F *__restrict__ _u, const F *__restrict__ _s, const F *__restrict__ const _gy,
|
||||
F *__restrict__ const _gw)
|
||||
{
|
||||
const int b = blockIdx.x / H;
|
||||
const int h = blockIdx.x % H;
|
||||
const int i = threadIdx.x;
|
||||
_s += h*_N_*_N_ + i;
|
||||
|
||||
__shared__ float v[_N_], gy[_N_];
|
||||
float state[_N_], saaaa[_N_] = {0}, sbbbb[_T_-1] = {0}, scccc[_N_] = {0};
|
||||
for (int j = 0; j < _N_; j++) {
|
||||
state[j] = float(_s[j*_N_]);
|
||||
}
|
||||
|
||||
const int t_0 = b*T*C + h*_N_ + i;
|
||||
const int t_1 = t_0 + C;
|
||||
const int t_2 = t_0 + 2*C;
|
||||
const int t_T_1 = t_0 + (T-1)*C;
|
||||
|
||||
for (int t = t_T_1; t > t_1; t -= C)
|
||||
{
|
||||
__syncthreads();
|
||||
gy[i] = float(_gy[t]);
|
||||
v[i] = float(_v[t-2*C]);
|
||||
__syncthreads();
|
||||
|
||||
const float r = float(_r[t]);
|
||||
const float w = __expf(-__expf(float(_w[t-C])));
|
||||
float sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = saaaa[j];
|
||||
s = (s + r * gy[j]) * w;
|
||||
sum += s * v[j];
|
||||
}
|
||||
sbbbb[(t-t_1)/C] = sum * float(_k[t-2*C]);
|
||||
}
|
||||
{
|
||||
__syncthreads();
|
||||
gy[i] = float(_gy[t_1]);
|
||||
__syncthreads();
|
||||
|
||||
const float r = float(_r[t_1]);
|
||||
const float w = __expf(-__expf(float(_w[t_0])));
|
||||
float sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = saaaa[j];
|
||||
s = (s + r * gy[j]) * w;
|
||||
sum += s * state[j];
|
||||
}
|
||||
sbbbb[0] = sum;
|
||||
}
|
||||
|
||||
float sss = sbbbb[0];
|
||||
_gw[t_0] = F(sss * -__expf(float(_w[t_0])));
|
||||
|
||||
{
|
||||
__syncthreads();
|
||||
gy[i] = float(_gy[t_1]);
|
||||
__syncthreads();
|
||||
|
||||
const float w = __expf(-__expf(float(_w[t_0])));
|
||||
float sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = scccc[j];
|
||||
s = (s + state[j]) * w;
|
||||
sum += s * gy[j];
|
||||
}
|
||||
sss += sbbbb[1] - (sum * float(_r[t_1]));
|
||||
_gw[t_1] = F(sss * -__expf(float(_w[t_1])));
|
||||
}
|
||||
for (int t = t_2; t < t_T_1; t += C)
|
||||
{
|
||||
__syncthreads();
|
||||
gy[i] = float(_gy[t]);
|
||||
v[i] = float(_v[t-2*C]);
|
||||
__syncthreads();
|
||||
|
||||
const float w = __expf(-__expf(float(_w[t-C])));
|
||||
const float k = float(_k[t-2*C]);
|
||||
float sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = scccc[j];
|
||||
s = (s + k * v[j]) * w;
|
||||
sum += s * gy[j];
|
||||
}
|
||||
sss += sbbbb[(t-t_0)/C] - (sum * float(_r[t]));
|
||||
_gw[t] = F(sss * -__expf(float(_w[t])));
|
||||
}
|
||||
_gw[t_T_1] = 0;
|
||||
}
|
||||
|
||||
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *z, bf16 *y)
|
||||
{
|
||||
assert(H*_N_ == C);
|
||||
assert(_N_%4 == 0);
|
||||
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, z, y);
|
||||
}
|
||||
|
||||
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *z, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu, bf16 *gs)
|
||||
{
|
||||
assert(H*_N_ == C);
|
||||
assert(_N_%4 == 0);
|
||||
kernel_backward_111<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, z, gy, gr, gk, gv, gu, gs);
|
||||
kernel_backward_222<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, z, gy, gw);
|
||||
}
|
22
finetune/lora/v6/cuda/wkv6infctx_op.cpp
vendored
22
finetune/lora/v6/cuda/wkv6infctx_op.cpp
vendored
@ -1,22 +0,0 @@
|
||||
#include <torch/extension.h>
|
||||
#include "ATen/ATen.h"
|
||||
typedef at::BFloat16 bf16;
|
||||
|
||||
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *s, bf16 *y);
|
||||
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *s, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu, bf16 *gs);
|
||||
|
||||
void forward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &s, torch::Tensor &y) {
|
||||
cuda_forward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<bf16>(), u.data_ptr<bf16>(), s.data_ptr<bf16>(), y.data_ptr<bf16>());
|
||||
}
|
||||
void backward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &s, torch::Tensor &gy, torch::Tensor &gr, torch::Tensor &gk, torch::Tensor &gv, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gs) {
|
||||
cuda_backward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<bf16>(), u.data_ptr<bf16>(), s.data_ptr<bf16>(), gy.data_ptr<bf16>(), gr.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>(), gs.data_ptr<bf16>());
|
||||
}
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("forward", &forward, "wkv6state forward");
|
||||
m.def("backward", &backward, "wkv6state backward");
|
||||
}
|
||||
|
||||
TORCH_LIBRARY(wkv6state, m) {
|
||||
m.def("forward", forward);
|
||||
m.def("backward", backward);
|
||||
}
|
311
finetune/lora/v6/cuda/wkv6state_cuda.cu
vendored
311
finetune/lora/v6/cuda/wkv6state_cuda.cu
vendored
@ -1,311 +0,0 @@
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include "ATen/ATen.h"
|
||||
typedef at::BFloat16 bf16;
|
||||
|
||||
template <typename F>
|
||||
__global__ void kernel_forward(const int B, const int T, const int C, const int H,
|
||||
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ _w, const F *__restrict__ _u,const F *__restrict__ _s,
|
||||
F *__restrict__ const _y)
|
||||
{
|
||||
const int b = blockIdx.x / H;
|
||||
const int h = blockIdx.x % H;
|
||||
const int i = threadIdx.x;
|
||||
_u += h*_N_;
|
||||
_s += h*_N_*_N_ + i*_N_;
|
||||
|
||||
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
|
||||
float state[_N_];
|
||||
|
||||
__syncthreads();
|
||||
u[i] = float(_u[i]);
|
||||
__syncthreads();
|
||||
for (int j = 0; j < _N_; j++) {
|
||||
state[j] = float(_s[j]);
|
||||
}
|
||||
|
||||
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
|
||||
{
|
||||
__syncthreads();
|
||||
w[i] = __expf(-__expf(float(_w[t])));
|
||||
r[i] = float(_r[t]);
|
||||
k[i] = float(_k[t]);
|
||||
__syncthreads();
|
||||
|
||||
const float v = float(_v[t]);
|
||||
float y = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j+=4)
|
||||
{
|
||||
const float4& r_ = (float4&)(r[j]);
|
||||
const float4& k_ = (float4&)(k[j]);
|
||||
const float4& w_ = (float4&)(w[j]);
|
||||
const float4& u_ = (float4&)(u[j]);
|
||||
float4& s = (float4&)(state[j]);
|
||||
float4 x;
|
||||
|
||||
x.x = k_.x * v;
|
||||
x.y = k_.y * v;
|
||||
x.z = k_.z * v;
|
||||
x.w = k_.w * v;
|
||||
|
||||
y += r_.x * (u_.x * x.x + s.x);
|
||||
y += r_.y * (u_.y * x.y + s.y);
|
||||
y += r_.z * (u_.z * x.z + s.z);
|
||||
y += r_.w * (u_.w * x.w + s.w);
|
||||
|
||||
s.x = s.x * w_.x + x.x;
|
||||
s.y = s.y * w_.y + x.y;
|
||||
s.z = s.z * w_.z + x.z;
|
||||
s.w = s.w * w_.w + x.w;
|
||||
}
|
||||
_y[t] = F(y);
|
||||
}
|
||||
// #pragma unroll
|
||||
// for (int j = 0; j < _N_; j++)
|
||||
// _s[j] = F(state[j]);
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
__global__ void kernel_backward_111(const int B, const int T, const int C, const int H,
|
||||
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ _w, const F *__restrict__ _u, const F *__restrict__ _s, const F *__restrict__ const _gy,
|
||||
F *__restrict__ const _gr, F *__restrict__ const _gk, F *__restrict__ const _gv, F *__restrict__ const _gu, F *__restrict__ const _gs)
|
||||
{
|
||||
const int b = blockIdx.x / H;
|
||||
const int h = blockIdx.x % H;
|
||||
const int i = threadIdx.x;
|
||||
_u += h*_N_;
|
||||
_s += h*_N_*_N_ + i;
|
||||
|
||||
__shared__ float u_[_N_];
|
||||
__shared__ float r[_N_], k[_N_], v[_N_], w_[_N_], gy[_N_];
|
||||
__syncthreads();
|
||||
u_[i] = float(_u[i]);
|
||||
__syncthreads();
|
||||
|
||||
const float u = u_[i];
|
||||
|
||||
float state[_N_], scccc[_N_] = {0}, sdddd[_N_] = {0}, sssss[_N_] = {0}, swwww[_N_];
|
||||
for (int j = 0; j < _N_; j++) {
|
||||
state[j] = float(_s[j*_N_]);
|
||||
swwww[j] = 1.0;
|
||||
}
|
||||
|
||||
const int t_0 = b*T*C + h*_N_ + i;
|
||||
const int t_T_1 = t_0 + (T-1)*C;
|
||||
const int t_T = t_0 + T*C;
|
||||
|
||||
float gu = 0;
|
||||
for (int t = t_0; t < t_T; t += C)
|
||||
{
|
||||
__syncthreads();
|
||||
v[i] = float(_v[t]);
|
||||
gy[i] = float(_gy[t]);
|
||||
__syncthreads();
|
||||
|
||||
const float k = float(_k[t]);
|
||||
const float w = __expf(-__expf(float(_w[t])));
|
||||
float gr = 0, gu_ = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = state[j];
|
||||
float x = k * v[j];
|
||||
|
||||
gr += (u * x + s) * gy[j];
|
||||
gu_ += x * gy[j];
|
||||
s = s * w + x;
|
||||
}
|
||||
_gr[t] = F(gr);
|
||||
gu += float(_r[t]) * gu_;
|
||||
}
|
||||
_gu[b*C + h*_N_ + i] = F(gu);
|
||||
|
||||
for (int t = t_T_1; t >= t_0; t -= C)
|
||||
{
|
||||
__syncthreads();
|
||||
v[i] = float(_v[t]);
|
||||
gy[i] = float(_gy[t]);
|
||||
__syncthreads();
|
||||
|
||||
const float rr = float(_r[t]);
|
||||
const float w = __expf(-__expf(float(_w[t])));
|
||||
float gk = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = scccc[j];
|
||||
float x = rr * gy[j];
|
||||
|
||||
gk += (u * x + s) * v[j];
|
||||
s = x + s * w;
|
||||
}
|
||||
_gk[t] = F(gk);
|
||||
}
|
||||
|
||||
for (int t = t_T_1; t >= t_0; t -= C)
|
||||
{
|
||||
__syncthreads();
|
||||
r[i] = float(_r[t]);
|
||||
k[i] = float(_k[t]);
|
||||
w_[i] = __expf(-__expf(float(_w[t])));
|
||||
__syncthreads();
|
||||
|
||||
const float gyy = float(_gy[t]);
|
||||
float gv = 0;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = sdddd[j];
|
||||
float x = gyy * r[j];
|
||||
|
||||
gv += (u_[j] * x + s) * k[j];
|
||||
s = x + s * w_[j];
|
||||
}
|
||||
_gv[t] = F(gv);
|
||||
}
|
||||
|
||||
for (int t = t_0; t < t_T; t += C)
|
||||
{
|
||||
__syncthreads();
|
||||
r[i] = float(_r[t]);
|
||||
w_[i] = __expf(-__expf(float(_w[t])));
|
||||
__syncthreads();
|
||||
|
||||
const float gyy = float(_gy[t]);
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& w = swwww[j];
|
||||
sssss[j] += gyy * w * r[j];
|
||||
w *= w_[j];
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < _N_; j++)
|
||||
_gs[b*H*_N_*_N_ + h*_N_*_N_ + i*_N_ + j] = F(sssss[j]);
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
__global__ void kernel_backward_222(const int B, const int T, const int C, const int H,
|
||||
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ _w, const F *__restrict__ _u, const F *__restrict__ _s, const F *__restrict__ const _gy,
|
||||
F *__restrict__ const _gw)
|
||||
{
|
||||
const int b = blockIdx.x / H;
|
||||
const int h = blockIdx.x % H;
|
||||
const int i = threadIdx.x;
|
||||
_s += h*_N_*_N_ + i;
|
||||
|
||||
__shared__ float v[_N_], gy[_N_];
|
||||
float state[_N_], saaaa[_N_] = {0}, sbbbb[_T_-1] = {0}, scccc[_N_] = {0};
|
||||
for (int j = 0; j < _N_; j++) {
|
||||
state[j] = float(_s[j*_N_]);
|
||||
}
|
||||
|
||||
const int t_0 = b*T*C + h*_N_ + i;
|
||||
const int t_1 = t_0 + C;
|
||||
const int t_2 = t_0 + 2*C;
|
||||
const int t_T_1 = t_0 + (T-1)*C;
|
||||
|
||||
for (int t = t_T_1; t > t_1; t -= C)
|
||||
{
|
||||
__syncthreads();
|
||||
gy[i] = float(_gy[t]);
|
||||
v[i] = float(_v[t-2*C]);
|
||||
__syncthreads();
|
||||
|
||||
const float r = float(_r[t]);
|
||||
const float w = __expf(-__expf(float(_w[t-C])));
|
||||
float sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = saaaa[j];
|
||||
s = (s + r * gy[j]) * w;
|
||||
sum += s * v[j];
|
||||
}
|
||||
sbbbb[(t-t_1)/C] = sum * float(_k[t-2*C]);
|
||||
}
|
||||
{
|
||||
__syncthreads();
|
||||
gy[i] = float(_gy[t_1]);
|
||||
__syncthreads();
|
||||
|
||||
const float r = float(_r[t_1]);
|
||||
const float w = __expf(-__expf(float(_w[t_0])));
|
||||
float sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = saaaa[j];
|
||||
s = (s + r * gy[j]) * w;
|
||||
sum += s * state[j];
|
||||
}
|
||||
sbbbb[0] = sum;
|
||||
}
|
||||
|
||||
float sss = sbbbb[0];
|
||||
_gw[t_0] = F(sss * -__expf(float(_w[t_0])));
|
||||
|
||||
{
|
||||
__syncthreads();
|
||||
gy[i] = float(_gy[t_1]);
|
||||
__syncthreads();
|
||||
|
||||
const float w = __expf(-__expf(float(_w[t_0])));
|
||||
float sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = scccc[j];
|
||||
s = (s + state[j]) * w;
|
||||
sum += s * gy[j];
|
||||
}
|
||||
sss += sbbbb[1] - (sum * float(_r[t_1]));
|
||||
_gw[t_1] = F(sss * -__expf(float(_w[t_1])));
|
||||
}
|
||||
for (int t = t_2; t < t_T_1; t += C)
|
||||
{
|
||||
__syncthreads();
|
||||
gy[i] = float(_gy[t]);
|
||||
v[i] = float(_v[t-2*C]);
|
||||
__syncthreads();
|
||||
|
||||
const float w = __expf(-__expf(float(_w[t-C])));
|
||||
const float k = float(_k[t-2*C]);
|
||||
float sum = 0.0f;
|
||||
|
||||
#pragma unroll
|
||||
for (int j = 0; j < _N_; j++)
|
||||
{
|
||||
float& s = scccc[j];
|
||||
s = (s + k * v[j]) * w;
|
||||
sum += s * gy[j];
|
||||
}
|
||||
sss += sbbbb[(t-t_0)/C] - (sum * float(_r[t]));
|
||||
_gw[t] = F(sss * -__expf(float(_w[t])));
|
||||
}
|
||||
_gw[t_T_1] = 0;
|
||||
}
|
||||
|
||||
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *z, bf16 *y)
|
||||
{
|
||||
assert(H*_N_ == C);
|
||||
assert(_N_%4 == 0);
|
||||
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, z, y);
|
||||
}
|
||||
|
||||
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *z, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu, bf16 *gs)
|
||||
{
|
||||
assert(H*_N_ == C);
|
||||
assert(_N_%4 == 0);
|
||||
kernel_backward_111<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, z, gy, gr, gk, gv, gu, gs);
|
||||
kernel_backward_222<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, z, gy, gw);
|
||||
}
|
22
finetune/lora/v6/cuda/wkv6state_op.cpp
vendored
22
finetune/lora/v6/cuda/wkv6state_op.cpp
vendored
@ -1,22 +0,0 @@
|
||||
#include <torch/extension.h>
|
||||
#include "ATen/ATen.h"
|
||||
typedef at::BFloat16 bf16;
|
||||
|
||||
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *s, bf16 *y);
|
||||
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *s, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu, bf16 *gs);
|
||||
|
||||
void forward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &s, torch::Tensor &y) {
|
||||
cuda_forward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<bf16>(), u.data_ptr<bf16>(), s.data_ptr<bf16>(), y.data_ptr<bf16>());
|
||||
}
|
||||
void backward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &s, torch::Tensor &gy, torch::Tensor &gr, torch::Tensor &gk, torch::Tensor &gv, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gs) {
|
||||
cuda_backward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<bf16>(), u.data_ptr<bf16>(), s.data_ptr<bf16>(), gy.data_ptr<bf16>(), gr.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>(), gs.data_ptr<bf16>());
|
||||
}
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("forward", &forward, "wkv6state forward");
|
||||
m.def("backward", &backward, "wkv6state backward");
|
||||
}
|
||||
|
||||
TORCH_LIBRARY(wkv6state, m) {
|
||||
m.def("forward", forward);
|
||||
m.def("backward", backward);
|
||||
}
|
16
finetune/lora/v6/demo/demo-lora-merge.sh
vendored
16
finetune/lora/v6/demo/demo-lora-merge.sh
vendored
@ -1,16 +0,0 @@
|
||||
|
||||
base_model='/home/rwkv/JL/model/rwkv-x060-7b-world-v2.1-36%trained-20240413-ctx4k.pth'
|
||||
lora_init='/home/rwkv/JL/out_model/nf4/init_lora.pth'
|
||||
lora_checkpoint='/home/rwkv/JL/out_model/nf4/rwkv-0.pth'
|
||||
output='/home/rwkv/JL/model/nf4-world.pth'
|
||||
QUANT='nf4' #follow train
|
||||
TYPE='lora'
|
||||
Lora_alpha=128
|
||||
|
||||
python merge/merge.py --base_model $base_model \
|
||||
--lora_init $lora_init \
|
||||
--lora_checkpoint $lora_checkpoint \
|
||||
--output $output \
|
||||
--quant $QUANT \
|
||||
--type $TYPE \
|
||||
--lora_alpha $Lora_alpha
|
27
finetune/lora/v6/demo/demo-lora.sh
vendored
27
finetune/lora/v6/demo/demo-lora.sh
vendored
@ -1,27 +0,0 @@
|
||||
load_model='/home/rwkv/JL/model/rwkv-x060-7b-world-v2.1-36%trained-20240413-ctx4k.pth'
|
||||
proj_dir='/home/rwkv/JL/out_model/nf4'
|
||||
data_file='/home/rwkv/JL/data/roleplay'
|
||||
|
||||
QUANT='nf4' #4bit nf4 fp4 none
|
||||
|
||||
lora_r=64
|
||||
lora_alpha=128
|
||||
|
||||
n_layer=32
|
||||
n_embd=4096
|
||||
|
||||
micro_bsz=8
|
||||
epoch_save=1
|
||||
epoch_steps=1000
|
||||
ctx_len=1024
|
||||
|
||||
python train.py --load_model $load_model \
|
||||
--proj_dir $proj_dir --data_file $data_file \
|
||||
--data_type binidx --vocab_size 65536 \
|
||||
--ctx_len $ctx_len --epoch_steps $epoch_steps --epoch_count 20 --epoch_begin 0 --epoch_save $epoch_save --micro_bsz $micro_bsz \
|
||||
--n_layer $n_layer --n_embd $n_embd \
|
||||
--pre_ffn 0 --head_qk 0 --lr_init 5e-5 --lr_final 5e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
|
||||
--accelerator gpu --devices 1 --precision bf16 --strategy deepspeed_stage_1 --grad_cp 1 \
|
||||
--my_testing "x060" \
|
||||
--lora_load rwkv-0 --lora --lora_r $lora_r --lora_alpha $lora_alpha --lora_dropout 0.01 --lora_parts=att,ffn,time,ln \
|
||||
--quant $QUANT
|
15
finetune/lora/v6/demo/demo-pissa-merge.sh
vendored
15
finetune/lora/v6/demo/demo-pissa-merge.sh
vendored
@ -1,15 +0,0 @@
|
||||
|
||||
|
||||
base_model='/home/rwkv/JL/model/RWKV-x060-World-1B6-v2-20240208-ctx4096.pth'
|
||||
lora_init='/home/rwkv/JL/out_model/nf4/init_lora.pth'
|
||||
lora_checkpoint='/home/rwkv/JL/out_model/nf4/rwkv-0.pth'
|
||||
output='/home/rwkv/JL/model/end-world.pth'
|
||||
QUANT='nf4' #follow train
|
||||
TYPE='pissa'
|
||||
|
||||
python merge/merge.py --base_model $base_model \
|
||||
--lora_init $lora_init \
|
||||
--lora_checkpoint $lora_checkpoint \
|
||||
--output $output \
|
||||
--quant $QUANT \
|
||||
--type $TYPE
|
40
finetune/lora/v6/demo/demo-pissa.sh
vendored
40
finetune/lora/v6/demo/demo-pissa.sh
vendored
@ -1,40 +0,0 @@
|
||||
|
||||
load_model='/home/rwkv/JL/model/RWKV-x060-World-1B6-v2.1-20240328-ctx4096.pth'
|
||||
proj_dir='/home/rwkv/JL/out_model/nf4'
|
||||
data_file='/home/rwkv/JL/data/end_text_document'
|
||||
|
||||
QUANT='nf4' #4bit nf4 fp4 none
|
||||
svd_niter=4
|
||||
lora_r=64
|
||||
|
||||
n_layer=24
|
||||
n_embd=2048
|
||||
|
||||
micro_bsz=8
|
||||
epoch_save=1
|
||||
epoch_steps=1000
|
||||
ctx_len=1024
|
||||
|
||||
python train.py --load_model $load_model \
|
||||
--proj_dir $proj_dir --data_file $data_file \
|
||||
--data_type binidx --vocab_size 65536 \
|
||||
--ctx_len $ctx_len --epoch_steps $epoch_steps --epoch_count 1 --epoch_begin 0 --epoch_save $epoch_save --micro_bsz $micro_bsz \
|
||||
--n_layer $n_layer --n_embd $n_embd \
|
||||
--pre_ffn 0 --head_qk 0 --lr_init 5e-5 --lr_final 5e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
|
||||
--accelerator gpu --devices 1 --precision bf16 --strategy deepspeed_stage_1 --grad_cp 1 \
|
||||
--my_testing "x060" \
|
||||
--lora_load rwkv-0 --lora --lora_r $lora_r --lora_alpha 128 --lora_dropout 0.01 --lora_parts=att,ffn,time,ln \
|
||||
--PISSA --svd_niter $svd_niter \
|
||||
--dataload pad
|
||||
|
||||
###remove load_model
|
||||
# python train.py --proj_dir $proj_dir --data_file $data_file \
|
||||
# --data_type binidx --vocab_size 65536 \
|
||||
# --ctx_len $ctx_len --epoch_steps $epoch_steps --epoch_count 20 --epoch_begin 0 --epoch_save $epoch_save --micro_bsz $micro_bsz \
|
||||
# --n_layer $n_layer --n_embd $n_embd \
|
||||
# --pre_ffn 0 --head_qk 0 --lr_init 5e-5 --lr_final 5e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
|
||||
# --accelerator gpu --devices 1 --precision bf16 --strategy deepspeed_stage_1 --grad_cp 1 \
|
||||
# --my_testing "x060" \
|
||||
# --lora_load rwkv-0 --lora --lora_r $lora_r --lora_alpha 128 --lora_dropout 0.01 --lora_parts=att,ffn,time,ln \
|
||||
# --PISSA --svd_niter $svd_niter \
|
||||
# --quant $QUANT
|
27
finetune/lora/v6/demo/demo-qpissa-pt.sh
vendored
27
finetune/lora/v6/demo/demo-qpissa-pt.sh
vendored
@ -1,27 +0,0 @@
|
||||
load_model='/home/rwkv/JL/model/rwkv-x060-7b-world-v2.1-36%trained-20240413-ctx4k.pth'
|
||||
proj_dir='/home/rwkv/JL/out_model/nf4'
|
||||
data_file='/home/rwkv/JL/data/roleplay'
|
||||
|
||||
QUANT='nf4' #4bit nf4 fp4 none
|
||||
svd_niter=4
|
||||
lora_r=64
|
||||
|
||||
n_layer=32
|
||||
n_embd=4096
|
||||
|
||||
micro_bsz=4
|
||||
epoch_save=1
|
||||
epoch_steps=1000
|
||||
ctx_len=1024
|
||||
|
||||
|
||||
python train.py --proj_dir $proj_dir --data_file $data_file \
|
||||
--data_type binidx --vocab_size 65536 \
|
||||
--ctx_len $ctx_len --epoch_steps $epoch_steps --epoch_count 20 --epoch_begin 0 --epoch_save $epoch_save --micro_bsz $micro_bsz \
|
||||
--n_layer $n_layer --n_embd $n_embd \
|
||||
--pre_ffn 0 --head_qk 0 --lr_init 5e-5 --lr_final 5e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
|
||||
--accelerator gpu --devices 1 --precision bf16 --strategy deepspeed_stage_1 --grad_cp 1 \
|
||||
--my_testing "x060" \
|
||||
--lora_load rwkv-0 --lora --lora_r $lora_r --lora_alpha 128 --lora_dropout 0.01 --lora_parts=att,ffn,time,ln \
|
||||
--PISSA --svd_niter $svd_niter \
|
||||
--quant $QUANT
|
8
finetune/lora/v6/demo/demo-state-merge.sh
vendored
8
finetune/lora/v6/demo/demo-state-merge.sh
vendored
@ -1,8 +0,0 @@
|
||||
base_model='/home/rwkv/JL/model/RWKV-x060-World-3B-v2.1-20240417-ctx4096.pth'
|
||||
state_checkpoint='/home/rwkv/JL/out_model/state/rwkv-9.pth'
|
||||
output='/home/rwkv/JL/model/state-0.pth'
|
||||
|
||||
|
||||
python merge/merge_state.py --base_model $base_model \
|
||||
--state_checkpoint $state_checkpoint \
|
||||
--output $output
|
22
finetune/lora/v6/demo/demo-state-tuning.sh
vendored
22
finetune/lora/v6/demo/demo-state-tuning.sh
vendored
@ -1,22 +0,0 @@
|
||||
load_model='/home/rwkv/JL/model/RWKV-x060-World-1B6-v2.1-20240328-ctx4096.pth'
|
||||
proj_dir='/home/rwkv/JL/out_model/state'
|
||||
data_file='/home/rwkv/JL/data/end_text_document'
|
||||
|
||||
|
||||
n_layer=24
|
||||
n_embd=2048
|
||||
|
||||
micro_bsz=1
|
||||
epoch_save=1
|
||||
epoch_steps=1000
|
||||
ctx_len=1024
|
||||
|
||||
python train.py --load_model $load_model \
|
||||
--proj_dir $proj_dir --data_file $data_file \
|
||||
--data_type binidx --vocab_size 65536 \
|
||||
--ctx_len $ctx_len --epoch_steps $epoch_steps --epoch_count 1 --epoch_begin 0 --epoch_save $epoch_save --micro_bsz $micro_bsz \
|
||||
--n_layer $n_layer --n_embd $n_embd \
|
||||
--pre_ffn 0 --head_qk 0 --lr_init 1 --lr_final 1e-1 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
|
||||
--accelerator gpu --devices 1 --precision bf16 --strategy deepspeed_stage_1 --grad_cp 0 \
|
||||
--my_testing "x060" \
|
||||
--train_type "state" --dataload pad --wandb fla --fla
|
27
finetune/lora/v6/demo/demo-training-prepare.sh
vendored
27
finetune/lora/v6/demo/demo-training-prepare.sh
vendored
@ -1,27 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Create data directory
|
||||
|
||||
mkdir -p data
|
||||
|
||||
# Download minipile (1498226207 tokens, around 3GB)
|
||||
|
||||
wget --continue -O data/minipile.idx https://huggingface.co/datasets/BlinkDL/minipile-tokenized/resolve/main/rwkv_vocab_v20230424/minipile.idx
|
||||
wget --continue -O data/minipile.bin https://huggingface.co/datasets/BlinkDL/minipile-tokenized/resolve/main/rwkv_vocab_v20230424/minipile.bin
|
||||
|
||||
# Generate initial model (L12-D768 = 169M)
|
||||
|
||||
BASE_NAME="model/0.1-1"
|
||||
N_LAYER="12"
|
||||
N_EMBD="768"
|
||||
|
||||
# magic_prime = the largest 3n+2 prime smaller than datalen/ctxlen-1 (= 1498226207/512-1 = 2926222.06 in this case)
|
||||
# use https://www.dcode.fr/prime-numbers-search
|
||||
|
||||
python train.py --wandb "" --proj_dir $BASE_NAME \
|
||||
--data_file "data/minipile" --data_type "binidx" --vocab_size 65536 \
|
||||
--ctx_len 512 --my_pile_stage 1 --epoch_count 1 --epoch_begin 0 \
|
||||
--epoch_save 1 --weight_decay 0 --head_size_a 64 \
|
||||
--num_nodes 1 --micro_bsz 1 --n_layer $N_LAYER --n_embd $N_EMBD --pre_ffn 0 --head_qk 0 --my_exit_tokens 1498226207 --magic_prime 2926181 \
|
||||
--lr_init 1e-5 --lr_final 1e-5 --warmup_steps 10 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 --my_pile_edecay 0 \
|
||||
--accelerator cpu --devices 1 --precision bf16 --strategy deepspeed_stage_2 --grad_cp 0 --enable_progress_bar False --ds_bucket_mb 200
|
21
finetune/lora/v6/demo/demo-training-run.sh
vendored
21
finetune/lora/v6/demo/demo-training-run.sh
vendored
@ -1,21 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
BASE_NAME="model/0.1-1"
|
||||
N_LAYER="12"
|
||||
N_EMBD="768"
|
||||
M_BSZ="16" # takes 16G VRAM (reduce this to save VRAM)
|
||||
LR_INIT="6e-4"
|
||||
LR_FINAL="6e-5"
|
||||
GRAD_CP=0 # set to 1 to save VRAM (will be slower)
|
||||
EPOCH_SAVE=10
|
||||
|
||||
# magic_prime = the largest 3n+2 prime smaller than datalen/ctxlen-1 (= 1498226207/512-1 = 2926222.06 in this case)
|
||||
# use https://www.dcode.fr/prime-numbers-search
|
||||
|
||||
python train.py --load_model "0" --wandb "RWKV-5-Test" --proj_dir $BASE_NAME \
|
||||
--ctx_len 512 --my_pile_stage 3 --epoch_count 999999 --epoch_begin 0 \
|
||||
--data_file "data/minipile" --my_exit_tokens 1498226207 --magic_prime 2926181 \
|
||||
--num_nodes 1 --micro_bsz $M_BSZ --n_layer $N_LAYER --n_embd $N_EMBD --pre_ffn 0 --head_qk 0 \
|
||||
--lr_init $LR_INIT --lr_final $LR_FINAL --warmup_steps 10 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 --my_pile_edecay 0 --data_type "binidx" --vocab_size 65536 \
|
||||
--weight_decay 0.001 --epoch_save $EPOCH_SAVE --head_size_a 64 \
|
||||
--accelerator gpu --devices 1 --precision bf16 --strategy deepspeed_stage_2 --grad_cp $GRAD_CP --enable_progress_bar True --ds_bucket_mb 200
|
182
finetune/lora/v6/demo/demo.jsonl
vendored
182
finetune/lora/v6/demo/demo.jsonl
vendored
File diff suppressed because one or more lines are too long
25
finetune/lora/v6/demo/infctx.sh
vendored
25
finetune/lora/v6/demo/infctx.sh
vendored
@ -1,25 +0,0 @@
|
||||
load_model='/home/rwkv/JL/model/RWKV-x060-World-1B6-v2.1-20240328-ctx4096.pth'
|
||||
proj_dir='/home/rwkv/JL/out_model/infctx'
|
||||
data_file='/home/rwkv/JL/data/roleplay'
|
||||
|
||||
|
||||
n_layer=24
|
||||
n_embd=2048
|
||||
|
||||
micro_bsz=8
|
||||
epoch_save=5
|
||||
epoch_steps=1000
|
||||
ctx_len=16384
|
||||
chunk_ctx=2048
|
||||
|
||||
|
||||
python train.py --load_model $load_model \
|
||||
--proj_dir $proj_dir --data_file $data_file \
|
||||
--data_type binidx --vocab_size 65536 \
|
||||
--ctx_len $ctx_len --epoch_steps $epoch_steps --epoch_count 1 --epoch_begin 0 --epoch_save $epoch_save --micro_bsz $micro_bsz \
|
||||
--n_layer $n_layer --n_embd $n_embd \
|
||||
--pre_ffn 0 --head_qk 0 --lr_init 1e-4 --lr_final 1e-4 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
|
||||
--accelerator gpu --devices 1 --precision bf16 --strategy deepspeed_stage_1 --grad_cp 1 \
|
||||
--lora_load rwkv-0 --lora --lora_r 64 --lora_alpha 128 --lora_dropout 0.01 --lora_parts=att,ffn,time,ln \
|
||||
--my_testing "x060" --dataload pad \
|
||||
--train_type infctx --chunk_ctx $chunk_ctx --fla --wandb infctx
|
50
finetune/lora/v6/fla/__init__.py
vendored
50
finetune/lora/v6/fla/__init__.py
vendored
@ -1,50 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from fla.layers import (ABCAttention, BasedLinearAttention, DeltaNet,
|
||||
GatedLinearAttention, HGRN2Attention, LinearAttention,
|
||||
MultiScaleRetention, ReBasedLinearAttention)
|
||||
from fla.models import (ABCForCausalLM, ABCModel, DeltaNetForCausalLM,
|
||||
DeltaNetModel, GLAForCausalLM, GLAModel,
|
||||
HGRN2ForCausalLM, HGRN2Model, HGRNForCausalLM,
|
||||
HGRNModel, LinearAttentionForCausalLM,
|
||||
LinearAttentionModel, RetNetForCausalLM, RetNetModel,
|
||||
RWKV6ForCausalLM, RWKV6Model, TransformerForCausalLM,
|
||||
TransformerModel)
|
||||
from fla.ops import (chunk_gla, chunk_retention, fused_chunk_based,
|
||||
fused_chunk_gla, fused_chunk_retention)
|
||||
|
||||
__all__ = [
|
||||
'ABCAttention',
|
||||
'BasedLinearAttention',
|
||||
'DeltaNet',
|
||||
'HGRN2Attention',
|
||||
'GatedLinearAttention',
|
||||
'LinearAttention',
|
||||
'MultiScaleRetention',
|
||||
'ReBasedLinearAttention',
|
||||
'ABCForCausalLM',
|
||||
'ABCModel',
|
||||
'DeltaNetForCausalLM',
|
||||
'DeltaNetModel',
|
||||
'HGRNForCausalLM',
|
||||
'HGRNModel',
|
||||
'HGRN2ForCausalLM',
|
||||
'HGRN2Model',
|
||||
'GLAForCausalLM',
|
||||
'GLAModel',
|
||||
'LinearAttentionForCausalLM',
|
||||
'LinearAttentionModel',
|
||||
'RetNetForCausalLM',
|
||||
'RetNetModel',
|
||||
'RWKV6ForCausalLM',
|
||||
'RWKV6Model',
|
||||
'TransformerForCausalLM',
|
||||
'TransformerModel',
|
||||
'chunk_gla',
|
||||
'chunk_retention',
|
||||
'fused_chunk_based',
|
||||
'fused_chunk_gla',
|
||||
'fused_chunk_retention'
|
||||
]
|
||||
|
||||
__version__ = '0.1'
|
25
finetune/lora/v6/fla/layers/__init__.py
vendored
25
finetune/lora/v6/fla/layers/__init__.py
vendored
@ -1,25 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from .abc import ABCAttention
|
||||
from .based import BasedLinearAttention
|
||||
from .delta_net import DeltaNet
|
||||
from .gla import GatedLinearAttention
|
||||
from .hgrn import HGRNAttention
|
||||
from .hgrn2 import HGRN2Attention
|
||||
from .linear_attn import LinearAttention
|
||||
from .multiscale_retention import MultiScaleRetention
|
||||
from .rebased import ReBasedLinearAttention
|
||||
from .rwkv6 import RWKV6Attention
|
||||
|
||||
__all__ = [
|
||||
'ABCAttention',
|
||||
'BasedLinearAttention',
|
||||
'DeltaNet',
|
||||
'GatedLinearAttention',
|
||||
'HGRNAttention',
|
||||
'HGRN2Attention',
|
||||
'LinearAttention',
|
||||
'MultiScaleRetention',
|
||||
'ReBasedLinearAttention',
|
||||
'RWKV6Attention'
|
||||
]
|
195
finetune/lora/v6/fla/layers/abc.py
vendored
195
finetune/lora/v6/fla/layers/abc.py
vendored
@ -1,195 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import warnings
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from einops import rearrange
|
||||
from transformers.cache_utils import Cache
|
||||
|
||||
from fla.modules import (FusedRMSNormSwishGate, RMSNorm, RotaryEmbedding,
|
||||
ShortConvolution)
|
||||
from fla.modules.activations import swiglu, swish
|
||||
from fla.modules.convolution import proj_then_conv1d
|
||||
from fla.ops.abc.chunk import chunk_abc
|
||||
|
||||
|
||||
class ABCAttention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int = 1024,
|
||||
expand_k: float = 0.5,
|
||||
expand_v: float = 1.0,
|
||||
num_heads: int = 4,
|
||||
use_short_conv: bool = False,
|
||||
conv_size: int = 4,
|
||||
conv_bias: bool = False,
|
||||
share_conv_kernel: bool = True,
|
||||
num_slots: Optional[int] = None,
|
||||
elementwise_affine: Optional[bool] = True,
|
||||
norm_eps: float = 1e-5,
|
||||
gate_low_rank_dim: int = 16,
|
||||
gate_logit_normalizer: int = 16,
|
||||
use_input_gate: bool = False,
|
||||
use_output_gate: bool = True,
|
||||
use_norm: bool = True,
|
||||
clamp_min: Optional[float] = -32,
|
||||
clamp_max: Optional[float] = 32,
|
||||
layer_idx: Optional[int] = None,
|
||||
**kwargs
|
||||
) -> ABCAttention:
|
||||
super().__init__()
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
self.expand_k = expand_k
|
||||
self.expand_v = expand_v
|
||||
self.num_heads = num_heads
|
||||
self.key_dim = int(self.hidden_size * self.expand_k)
|
||||
self.value_dim = int(self.hidden_size * self.expand_v)
|
||||
self.head_k_dim = self.key_dim // self.num_heads
|
||||
self.head_v_dim = self.value_dim // self.num_heads
|
||||
|
||||
self.use_short_conv = use_short_conv
|
||||
self.conv_size = conv_size
|
||||
self.conv_bias = conv_bias
|
||||
self.share_conv_kernel = share_conv_kernel
|
||||
|
||||
self.gate_low_rank_dim = gate_low_rank_dim
|
||||
self.gate_logit_normalizer = gate_logit_normalizer
|
||||
|
||||
self.use_input_gate = use_input_gate
|
||||
self.use_output_gate = use_output_gate
|
||||
self.use_norm = use_norm
|
||||
|
||||
if num_slots is None:
|
||||
num_slots = self.head_k_dim
|
||||
self.num_slots = num_slots
|
||||
|
||||
self.norm_eps = norm_eps
|
||||
|
||||
self.clamp_min = clamp_min
|
||||
self.clamp_max = clamp_max
|
||||
self.layer_idx = layer_idx
|
||||
|
||||
if layer_idx is None:
|
||||
warnings.warn(
|
||||
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
||||
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
||||
"when creating this class."
|
||||
)
|
||||
|
||||
self.q_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
|
||||
self.k_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
|
||||
self.v_proj = nn.Linear(self.hidden_size, self.value_dim, bias=False)
|
||||
|
||||
if use_output_gate:
|
||||
self.g_proj = nn.Linear(self.hidden_size, self.value_dim, bias=False)
|
||||
self.s_proj = nn.Linear(self.hidden_size, self.num_heads * self.num_slots, bias=False)
|
||||
self.o_proj = nn.Linear(self.value_dim, self.hidden_size, bias=False)
|
||||
|
||||
if use_short_conv:
|
||||
self.conv_size = conv_size
|
||||
if share_conv_kernel:
|
||||
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation='silu')
|
||||
else:
|
||||
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
||||
self.k_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
||||
self.v_conv1d = ShortConvolution(self.value_dim, conv_size, activation='silu')
|
||||
|
||||
if self.use_norm:
|
||||
if self.use_output_gate:
|
||||
self.g_norm = FusedRMSNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps)
|
||||
else:
|
||||
self.g_norm = RMSNorm(self.head_v_dim, elementwise_affine, norm_eps)
|
||||
|
||||
if self.use_rope:
|
||||
self.rotary = RotaryEmbedding(self.head_k_dim)
|
||||
|
||||
self.apply(self._initialize_weights)
|
||||
|
||||
def _initialize_weights(self, module: nn.Module):
|
||||
if getattr(module, "_is_hf_initialized", False):
|
||||
return
|
||||
if isinstance(module, nn.Linear):
|
||||
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
module._is_hf_initialized = True
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Cache] = None,
|
||||
use_cache: Optional[bool] = False,
|
||||
output_attentions: Optional[bool] = False,
|
||||
**kwargs
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
||||
|
||||
if self.use_short_conv:
|
||||
if self.share_conv_kernel:
|
||||
hidden_states = self.h_conv1d(hidden_states)
|
||||
q = self.q_proj(hidden_states)
|
||||
k = self.k_proj(hidden_states)
|
||||
v = self.v_proj(hidden_states)
|
||||
else:
|
||||
q = proj_then_conv1d(hidden_states, self.q_proj.weight, self.q_conv1d.weight, self.q_conv1d.bias)
|
||||
k = proj_then_conv1d(hidden_states, self.k_proj.weight, self.k_conv1d.weight, self.k_conv1d.bias)
|
||||
v = proj_then_conv1d(hidden_states, self.v_proj.weight, self.v_conv1d.weight, self.v_conv1d.bias)
|
||||
else:
|
||||
q = self.q_proj(hidden_states)
|
||||
k = self.k_proj(hidden_states)
|
||||
v = self.v_proj(hidden_states)
|
||||
|
||||
if self.use_input_gate:
|
||||
q, k, v = map(lambda x: swish(x), (q, k, v))
|
||||
|
||||
if self.use_rope:
|
||||
q = rearrange(q, '... (h d) -> ... h d', h=self.num_heads)
|
||||
k = rearrange(k, '... (h d) -> ... h d', h=self.num_heads)
|
||||
seqlen_offset = 0
|
||||
if past_key_values is not None:
|
||||
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
|
||||
q, k = self.rotary(q, k, seqlen_offset)
|
||||
q = rearrange(q, 'b n h d -> b h n d', h=self.num_heads)
|
||||
k = rearrange(k, 'b n h d -> b h n d', h=self.num_heads)
|
||||
else:
|
||||
q = rearrange(q, 'b n (h d) -> b h n d', h=self.num_heads)
|
||||
k = rearrange(k, 'b n (h d) -> b h n d', h=self.num_heads)
|
||||
v = rearrange(v, 'b n (h d) -> b h n d', h=self.num_heads)
|
||||
|
||||
# [batch_size, n_heads, seq_len, num_slots]
|
||||
s = rearrange(self.s_proj(hidden_states), 'b t (h m) -> b h t m', h=self.num_heads)
|
||||
s = s.clamp_(self.clamp_min, self.clamp_max)
|
||||
|
||||
last_state = past_key_values[self.layer_idx] if use_cache else None
|
||||
o, last_state = chunk_abc(q, k, v, s, initial_state=last_state, output_final_state=use_cache)
|
||||
if past_key_values is not None and last_state is not None:
|
||||
past_key_values.update(last_state, self.layer_idx, q.shape[2])
|
||||
|
||||
o = rearrange(o, 'b h t d -> b t h d')
|
||||
if self.use_norm and not self.use_output_gate:
|
||||
o = self.g_norm(o)
|
||||
elif self.use_output_gate:
|
||||
g = rearrange(self.g_proj(hidden_states), 'b t (h d) -> b t h d', h=self.num_heads)
|
||||
o = self.g_norm(o, g) if self.use_norm else swiglu(g, o)
|
||||
o = rearrange(o, 'b t h d -> b t (h d)')
|
||||
o = self.o_proj(o)
|
||||
|
||||
return o, None, past_key_values
|
||||
|
||||
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
|
||||
param = next(self.parameters())
|
||||
state = tuple()
|
||||
if self.use_short_conv:
|
||||
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
|
||||
state += (param.new_zeros(batch_size, self.num_heads, self.head_k_dim, self.num_slots),
|
||||
param.new_zeros(batch_size, self.num_heads, self.num_slots, self.head_v_dim))
|
||||
return state
|
||||
|
||||
def state_size(self, sequence_length: int = 2048):
|
||||
return self.num_heads * self.key_dim * self.head_v_dim
|
126
finetune/lora/v6/fla/layers/based.py
vendored
126
finetune/lora/v6/fla/layers/based.py
vendored
@ -1,126 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
"""
|
||||
Linear attention in Based.
|
||||
https://github.com/HazyResearch/zoology/blob/main/zoology/mixers/based.py
|
||||
"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from einops import rearrange
|
||||
|
||||
from fla.modules.feature_map import TaylorFeatureMap
|
||||
from fla.ops.based import parallel_based
|
||||
from fla.ops.linear_attn import chunk_linear_attn, fused_chunk_linear_attn
|
||||
|
||||
|
||||
class BasedLinearAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
l_max: int = 2048,
|
||||
feature_dim: int = 16,
|
||||
num_key_value_heads: int = 12,
|
||||
num_heads: int = 12,
|
||||
feature_name: str = "taylor_exp",
|
||||
eps: float = 1e-12,
|
||||
causal: bool = True,
|
||||
mode: str = "parallel",
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_size
|
||||
self.l_max = l_max
|
||||
self.mode = mode
|
||||
assert self.mode in ["fused_chunk", "parallel", 'chunk']
|
||||
|
||||
# linear attention
|
||||
self.feature_name = feature_name
|
||||
self.feature_dim = feature_dim
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = self.hidden_size // self.num_key_value_heads
|
||||
self.causal = causal
|
||||
|
||||
self.q_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
|
||||
self.k_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
|
||||
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
||||
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
||||
self.dropout = nn.Identity()
|
||||
self.feature_map = TaylorFeatureMap(feature_dim)
|
||||
self.eps = eps
|
||||
|
||||
self.apply(self._initialize_weights)
|
||||
|
||||
def _initialize_weights(self, module: nn.Module):
|
||||
if getattr(module, "_is_hf_initialized", False):
|
||||
return
|
||||
if isinstance(module, nn.Linear):
|
||||
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
module._is_hf_initialized = True
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, **kwargs):
|
||||
mode = self.mode
|
||||
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
||||
q, k, v = map(lambda x: rearrange(x, "b l (h d) -> b h l d", h=self.num_heads), [q, k, v])
|
||||
if mode == "fused_chunk":
|
||||
q, k = self.feature_map(q), self.feature_map(k)
|
||||
o = fused_chunk_linear_attn(q, k, v, normalize=True, scale=1)
|
||||
elif mode == 'chunk':
|
||||
q, k = self.feature_map(q), self.feature_map(k)
|
||||
o = chunk_linear_attn(q, k, v, normalize=True, scale=1)
|
||||
elif mode == 'parallel':
|
||||
assert q.shape[-1] <= 128
|
||||
o = parallel_based(q, k, v, True, True)
|
||||
o = rearrange(o, "b h l d -> b l (h d)")
|
||||
o = self.o_proj(o)
|
||||
o = self.dropout(o)
|
||||
return o
|
||||
|
||||
# https://github.com/HazyResearch/zoology/blob/main/zoology/mixers/based.py#L119
|
||||
|
||||
def forward_reference(self, hidden_states: torch.Tensor, filters: torch.Tensor = None, *args, **kwargs):
|
||||
"""
|
||||
x (torch.Tensor): tensor of shape (b, d, l)
|
||||
y (torch.Tensor): tensor of shape (b, d, l)
|
||||
"""
|
||||
# hidden_states = hidden_states.transpose(1, 2)
|
||||
b, l, _ = hidden_states.size()
|
||||
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
||||
|
||||
q = q.view(b, l, self.num_heads, self.feature_dim).transpose(1, 2)
|
||||
k = k.view(b, l, self.num_key_value_heads, self.feature_dim).transpose(1, 2)
|
||||
v = v.view(b, l, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
# Linear attention
|
||||
q, k = self.feature_map(q), self.feature_map(k)
|
||||
q, k, v = q.unsqueeze(-2), k.unsqueeze(-2), v.unsqueeze(-1)
|
||||
|
||||
# Compute attention
|
||||
if self.causal:
|
||||
y = ((q * (k * v).cumsum(2)).sum(-1) / ((q * k.cumsum(2)).sum(-1) + self.eps))
|
||||
else:
|
||||
y = ((q * (k * v).sum(2, True)).sum(-1) / ((q * k.sum(2, True)).sum(-1) + self.eps))
|
||||
y = rearrange(y, 'b h l d -> b l (h d)')
|
||||
y = self.o_proj(y.to(hidden_states.dtype))
|
||||
y = self.dropout(y)
|
||||
return y.to(hidden_states.dtype)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
batch = 4
|
||||
seq_len = 1024
|
||||
hidden_size = 1024
|
||||
dtype = torch.float32
|
||||
x = torch.randn(batch, seq_len, hidden_size).to(dtype).cuda().requires_grad_(True)
|
||||
dy = torch.randn(batch, seq_len, hidden_size).to(dtype).cuda()
|
||||
model = BasedLinearAttention(hidden_size, mode='chunk').to(dtype).cuda()
|
||||
y = model(x)
|
||||
y.backward(dy, retain_graph=True)
|
||||
x_grad, x.grad = x.grad, None
|
||||
y2 = model.forward_reference(x)
|
||||
y2.backward(dy)
|
||||
assert y.allclose(y2, 0, 1e-4), breakpoint()
|
||||
assert x_grad.allclose(x.grad, 0, 1e-4), breakpoint()
|
||||
print("Pass")
|
254
finetune/lora/v6/fla/layers/delta_net.py
vendored
254
finetune/lora/v6/fla/layers/delta_net.py
vendored
@ -1,254 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# Sect4.2 of Linear Transformers Are Secretly Fast Weight Programmers https://arxiv.org/abs/2102.11174
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from einops import rearrange
|
||||
from transformers.cache_utils import Cache
|
||||
|
||||
|
||||
from fla.modules import FusedRMSNormSwishGate, RMSNorm, ShortConvolution, LayerNorm
|
||||
from fla.modules.rotary import RotaryEmbedding
|
||||
from fla.ops.delta_rule import (fused_chunk_delta_rule,
|
||||
fused_recurrent_linear_attn_delta_rule,
|
||||
chunk_delta_rule)
|
||||
from torch.nn import functional as F
|
||||
|
||||
|
||||
def simple_norm(x):
|
||||
return (F.normalize(x, dim=-1) * x.shape[-1] ** 0.5).to(x)
|
||||
|
||||
|
||||
# @torch.jit.script
|
||||
def elu_p1(x):
|
||||
return (F.elu(x, 1., False) + 1.).to(x)
|
||||
|
||||
|
||||
# @torch.jit.script
|
||||
def sum_norm(x):
|
||||
return (x / x.sum(-1, keepdim=True)).to(x)
|
||||
|
||||
|
||||
# @torch.jit.script
|
||||
def elu_norm(x):
|
||||
dtype = x.dtype
|
||||
x = F.elu(x, 1., False) + 1.
|
||||
return (x / x.sum(-1, keepdim=True)).to(dtype)
|
||||
|
||||
|
||||
|
||||
|
||||
# https://github.com/IDSIA/recurrent-fwp/blob/master/algorithmic/layers.py#L86C1-L146C1
|
||||
class DeltaNet(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int = None,
|
||||
hidden_size: int = 1024,
|
||||
expand_k: float = 1.0,
|
||||
expand_v: float = 1.0,
|
||||
num_heads: int = 4,
|
||||
mode: str = 'fused_chunk',
|
||||
chunk_size: int = 16,
|
||||
use_beta: bool = True,
|
||||
use_gate: bool = True,
|
||||
use_rope: bool = False,
|
||||
use_output_norm: bool = True,
|
||||
use_elu: bool = False,
|
||||
use_short_conv: bool = True,
|
||||
conv_size: int = 4,
|
||||
conv_bias: bool = False,
|
||||
share_conv_kernel: bool = False,
|
||||
layer_idx: int = None,
|
||||
qk_activation: str = 'silu',
|
||||
qk_norm: str = None,
|
||||
save_memory: str = False,
|
||||
**kwargs
|
||||
) -> DeltaNet:
|
||||
super().__init__()
|
||||
self.mode = mode
|
||||
self.qk_activation = qk_activation
|
||||
self.qk_norm = qk_norm
|
||||
assert self.qk_activation in ['silu', 'relu', 'elu', 'identity']
|
||||
assert self.qk_norm in ['l2', 'sum']
|
||||
if d_model is not None:
|
||||
hidden_size = d_model
|
||||
self.hidden_size = hidden_size
|
||||
self.expand_k = expand_k
|
||||
self.expand_v = expand_v
|
||||
self.num_heads = num_heads
|
||||
self.chunk_size = chunk_size
|
||||
self.use_gate = use_gate
|
||||
self.use_output_norm = use_output_norm
|
||||
self.use_short_conv = use_short_conv
|
||||
self.conv_size = conv_size
|
||||
self.conv_bias = conv_bias
|
||||
self.share_conv_kernel = share_conv_kernel
|
||||
|
||||
self.key_dim = int(hidden_size * expand_k)
|
||||
self.value_dim = int(hidden_size * expand_v)
|
||||
self.head_qk_dim = self.key_dim // num_heads
|
||||
self.head_v_dim = self.value_dim // num_heads
|
||||
self.layer_idx = layer_idx
|
||||
|
||||
self.silu = torch.nn.SiLU()
|
||||
|
||||
assert mode in ['chunk', 'fused_chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
||||
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
||||
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
||||
|
||||
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
||||
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
||||
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
||||
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
||||
|
||||
self.use_beta = use_beta
|
||||
self.use_elu = use_elu
|
||||
if self.use_beta:
|
||||
self.b_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
|
||||
if use_short_conv:
|
||||
self.conv_size = conv_size
|
||||
if share_conv_kernel:
|
||||
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation=None)
|
||||
else:
|
||||
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu' if qk_activation == 'silu' else None)
|
||||
self.k_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu' if qk_activation == 'silu' else None)
|
||||
self.v_conv1d = ShortConvolution(self.value_dim, conv_size, activation='silu')
|
||||
if use_gate:
|
||||
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
||||
if self.use_gate:
|
||||
self.norm = FusedRMSNormSwishGate(self.head_v_dim)
|
||||
else:
|
||||
self.norm = RMSNorm(self.head_v_dim)
|
||||
self.apply(self._initialize_weights)
|
||||
|
||||
def _initialize_weights(self, module: nn.Module):
|
||||
if getattr(module, "_is_hf_initialized", False):
|
||||
return
|
||||
if isinstance(module, nn.Linear):
|
||||
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
module._is_hf_initialized = True
|
||||
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Cache] = None,
|
||||
use_cache: Optional[bool] = False,
|
||||
output_attentions: Optional[bool] = False,
|
||||
**kwargs
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
||||
|
||||
# change to inference mode.
|
||||
mode = 'fused_recurrent' if hidden_states.shape[1] < 64 else self.mode
|
||||
last_state = past_key_values[self.layer_idx] if use_cache else None
|
||||
|
||||
if attention_mask is not None:
|
||||
if attention_mask.shape[-1] != hidden_states.shape[-2]:
|
||||
attention_mask = attention_mask[:, -1:]
|
||||
|
||||
if self.use_short_conv:
|
||||
conv_state = last_state[0] if use_cache else None
|
||||
if self.share_conv_kernel:
|
||||
# conv state is updated inplace
|
||||
hidden_states = self.h_conv1d(hidden_states, attention_mask, conv_state)
|
||||
q = self.q_proj(hidden_states)
|
||||
k = self.k_proj(hidden_states)
|
||||
v = self.v_proj(hidden_states)
|
||||
else:
|
||||
conv_state_q = last_state[0] if use_cache else None
|
||||
conv_state_k = last_state[1] if use_cache else None
|
||||
conv_state_v = last_state[2] if use_cache else None
|
||||
k = self.k_proj(hidden_states)
|
||||
v = self.v_proj(hidden_states)
|
||||
q = self.q_proj(hidden_states)
|
||||
q = self.q_conv1d(q, attention_mask, conv_state_q)
|
||||
k = self.k_conv1d(k, attention_mask, conv_state_k)
|
||||
v = self.v_conv1d(v, attention_mask, conv_state_v)
|
||||
else:
|
||||
q = (self.q_proj(hidden_states))
|
||||
k = (self.k_proj(hidden_states))
|
||||
v = self.silu(self.v_proj(hidden_states))
|
||||
|
||||
# dealing with left-padding
|
||||
if attention_mask is not None:
|
||||
v = v.mul_(attention_mask.unsqueeze(-1))
|
||||
|
||||
q, k, v = map(lambda x: rearrange(x, 'b l (h d) -> b h l d', h=self.num_heads), (q, k, v))
|
||||
|
||||
if self.qk_activation != 'silu':
|
||||
if self.qk_activation == 'relu':
|
||||
q, k = q.relu(), k.relu()
|
||||
elif self.qk_activation == 'elu':
|
||||
q, k = elu_p1(q), elu_p1(k)
|
||||
elif self.qk_activation == 'identity':
|
||||
pass
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
if self.qk_norm is not None:
|
||||
if self.qk_norm == 'l2':
|
||||
k = torch.nn.functional.normalize(k, dim=-1, p=2).to(v) #auto mixed precision type transfer is annoying.
|
||||
q = torch.nn.functional.normalize(q, dim=-1, p=2).to(v)
|
||||
elif self.qk_norm == 'sum':
|
||||
q = sum_norm(q).to(v)
|
||||
k = sum_norm(k).to(v)
|
||||
|
||||
if self.use_beta:
|
||||
beta = rearrange(self.b_proj(hidden_states), 'b l h -> b h l').sigmoid()
|
||||
else:
|
||||
beta = q.new_ones(q.shape[0], q.shape[1], q.shape[2])
|
||||
state = past_key_values[self.layer_idx][-1] if use_cache else None
|
||||
if mode == 'fused_recurrent':
|
||||
o, recurrent_state = fused_recurrent_linear_attn_delta_rule(q, k, v, beta, state, output_final_state=use_cache)
|
||||
elif mode == 'fused_chunk':
|
||||
assert self.chunk_size in [16, 32, 64]
|
||||
o, recurrent_state = fused_chunk_delta_rule(q, k, v, beta, self.chunk_size, state, output_final_state=use_cache)
|
||||
elif mode == 'chunk':
|
||||
assert self.chunk_size in [16, 32, 64]
|
||||
o, recurrent_state = chunk_delta_rule(q, k, v, beta, self.chunk_size, state, output_final_state=use_cache)
|
||||
else:
|
||||
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
||||
|
||||
if past_key_values is not None:
|
||||
if self.use_short_conv:
|
||||
if self.share_conv_kernel:
|
||||
state = (conv_state, recurrent_state)
|
||||
else:
|
||||
state = (conv_state_q, conv_state_k, conv_state_v, recurrent_state)
|
||||
else:
|
||||
state = (recurrent_state,)
|
||||
past_key_values.update(state, self.layer_idx)
|
||||
|
||||
o = rearrange(o, 'b h l d -> b l h d')
|
||||
if self.use_gate:
|
||||
g = rearrange(self.g_proj(hidden_states), 'b l (h d) -> b l h d', h=self.num_heads)
|
||||
o = self.norm(o, g)
|
||||
else:
|
||||
o = self.norm(o)
|
||||
o = rearrange(o, 'b l h d -> b l (h d)')
|
||||
o = self.o_proj(o)
|
||||
|
||||
return o, None, past_key_values
|
||||
|
||||
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
|
||||
param = next(self.parameters())
|
||||
state = tuple()
|
||||
if self.use_short_conv:
|
||||
if self.share_conv_kernel:
|
||||
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
|
||||
else:
|
||||
# for q/k/v each
|
||||
state += (param.new_zeros(batch_size, self.key_dim, self.conv_size),
|
||||
param.new_zeros(batch_size, self.key_dim, self.conv_size),
|
||||
param.new_zeros(batch_size, self.value_dim, self.conv_size))
|
||||
state += (param.new_zeros(batch_size, self.num_heads, self.head_qk_dim, self.head_v_dim),)
|
||||
return state
|
234
finetune/lora/v6/fla/layers/gated_abc.py
vendored
234
finetune/lora/v6/fla/layers/gated_abc.py
vendored
@ -1,234 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import warnings
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange, repeat
|
||||
from transformers.cache_utils import Cache
|
||||
|
||||
from fla.modules import (FusedRMSNormSwishGateLinear, RMSNormLinear,
|
||||
RotaryEmbedding, ShortConvolution)
|
||||
from fla.modules.activations import ACT2FN, swiglu_linear, swish
|
||||
from fla.ops.abc.chunk_gate import chunk_gated_abc
|
||||
|
||||
|
||||
class GatedABCAttention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int = 1024,
|
||||
expand_k: float = 1.,
|
||||
expand_v: float = 1.,
|
||||
num_heads: int = 4,
|
||||
num_kv_heads: Optional[int] = None,
|
||||
use_short_conv: bool = False,
|
||||
conv_size: int = 4,
|
||||
conv_bias: bool = False,
|
||||
share_conv_kernel: bool = True,
|
||||
num_slots: Optional[int] = None,
|
||||
elementwise_affine: Optional[bool] = True,
|
||||
norm_eps: float = 1e-5,
|
||||
gate_low_rank_dim: Optional[int] = None,
|
||||
gate_logit_normalizer: int = 16,
|
||||
feature_map: str = 'swish',
|
||||
use_rope: bool = False,
|
||||
use_output_gate: bool = False,
|
||||
use_norm: bool = True,
|
||||
layer_idx: Optional[int] = None,
|
||||
**kwargs
|
||||
) -> GatedABCAttention:
|
||||
super().__init__()
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
self.expand_k = expand_k
|
||||
self.expand_v = expand_v
|
||||
self.num_heads = num_heads
|
||||
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
|
||||
self.num_kv_groups = self.num_heads // self.num_kv_heads
|
||||
self.key_dim = int(hidden_size * expand_k)
|
||||
self.value_dim = int(hidden_size * expand_v)
|
||||
self.key_dim_per_group = self.key_dim // self.num_kv_groups
|
||||
self.value_dim_per_group = self.value_dim // self.num_kv_groups
|
||||
self.head_k_dim = self.key_dim // self.num_heads
|
||||
self.head_v_dim = self.value_dim // self.num_heads
|
||||
|
||||
self.use_short_conv = use_short_conv
|
||||
self.conv_size = conv_size
|
||||
self.conv_bias = conv_bias
|
||||
self.share_conv_kernel = share_conv_kernel
|
||||
|
||||
if gate_low_rank_dim is None:
|
||||
gate_low_rank_dim = self.hidden_size // 16
|
||||
self.gate_low_rank_dim = gate_low_rank_dim
|
||||
self.gate_logit_normalizer = gate_logit_normalizer
|
||||
|
||||
self.feature_map = feature_map
|
||||
self.use_rope = use_rope
|
||||
self.use_output_gate = use_output_gate
|
||||
self.use_norm = use_norm
|
||||
|
||||
if num_slots is None:
|
||||
num_slots = self.head_k_dim
|
||||
self.num_slots = num_slots
|
||||
|
||||
self.layer_idx = layer_idx
|
||||
|
||||
if layer_idx is None:
|
||||
warnings.warn(
|
||||
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
||||
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
||||
"when creating this class."
|
||||
)
|
||||
|
||||
self.q_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
|
||||
self.k_proj = nn.Linear(self.hidden_size, self.key_dim_per_group, bias=False)
|
||||
self.v_proj = nn.Linear(self.hidden_size, self.value_dim_per_group, bias=False)
|
||||
self.f_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.num_slots, bias=False)
|
||||
|
||||
if use_output_gate:
|
||||
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
||||
|
||||
if use_short_conv:
|
||||
self.conv_size = conv_size
|
||||
if share_conv_kernel:
|
||||
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation='silu')
|
||||
else:
|
||||
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
||||
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
|
||||
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
|
||||
|
||||
if self.use_norm:
|
||||
if self.use_output_gate:
|
||||
self.g_norm = FusedRMSNormSwishGateLinear(self.hidden_size, elementwise_affine, norm_eps)
|
||||
else:
|
||||
self.g_norm = RMSNormLinear(self.hidden_size, elementwise_affine, norm_eps)
|
||||
self.o_proj = nn.Linear(self.value_dim, self.hidden_size, bias=False)
|
||||
|
||||
if self.use_rope:
|
||||
self.rotary = RotaryEmbedding(self.head_k_dim)
|
||||
|
||||
self.apply(self._initialize_weights)
|
||||
|
||||
def _initialize_weights(self, module: nn.Module):
|
||||
if getattr(module, "_is_hf_initialized", False):
|
||||
return
|
||||
if isinstance(module, nn.Linear):
|
||||
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
module._is_hf_initialized = True
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Cache] = None,
|
||||
use_cache: Optional[bool] = False,
|
||||
output_attentions: Optional[bool] = False,
|
||||
lower_bound: Optional[torch.Tensor] = None,
|
||||
**kwargs
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
||||
|
||||
last_state = past_key_values[self.layer_idx] if use_cache else None
|
||||
if self.use_short_conv:
|
||||
conv_state = last_state[0] if use_cache else None
|
||||
if self.share_conv_kernel:
|
||||
# conv state is updated inplace
|
||||
hidden_states = self.h_conv1d(hidden_states, attention_mask, conv_state)
|
||||
q = self.q_proj(hidden_states)
|
||||
k = self.k_proj(hidden_states)
|
||||
v = self.v_proj(hidden_states)
|
||||
else:
|
||||
conv_state_q = last_state[0] if use_cache else None
|
||||
conv_state_k = last_state[1] if use_cache else None
|
||||
conv_state_v = last_state[2] if use_cache else None
|
||||
q = self.q_proj(hidden_states)
|
||||
k = self.k_proj(hidden_states)
|
||||
v = self.v_proj(hidden_states)
|
||||
q = self.q_conv1d(q, attention_mask, conv_state_q)
|
||||
k = self.k_conv1d(k, attention_mask, conv_state_k)
|
||||
v = self.v_conv1d(v, attention_mask, conv_state_v)
|
||||
else:
|
||||
q = self.q_proj(hidden_states)
|
||||
k = self.k_proj(hidden_states)
|
||||
v = self.v_proj(hidden_states)
|
||||
f = self.f_proj(hidden_states)
|
||||
|
||||
if self.use_rope:
|
||||
q = rearrange(q, '... (h d) -> ... h d', h=self.num_heads)
|
||||
k = rearrange(k, '... (h d) -> ... h d', h=self.num_kv_heads)
|
||||
seqlen_offset = 0
|
||||
if past_key_values is not None:
|
||||
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
|
||||
q, k = self.rotary(q, k, seqlen_offset)
|
||||
q = rearrange(q, 'b n h d -> b h n d', h=self.num_heads)
|
||||
k = rearrange(k, 'b n h d -> b h n d', h=self.num_kv_heads)
|
||||
else:
|
||||
q = rearrange(q, 'b n (h d) -> b h n d', h=self.num_heads)
|
||||
if self.num_kv_groups > 1:
|
||||
k = repeat(k, 'b n (h d) -> b (h g) n d', h=self.num_kv_heads, g=self.num_kv_groups)
|
||||
else:
|
||||
k = rearrange(k, 'b n (h d) -> b h n d', h=self.num_kv_heads)
|
||||
if self.num_kv_groups > 1:
|
||||
v = repeat(v, 'b n (h d) -> b (h g) n d', h=self.num_kv_heads, g=self.num_kv_groups)
|
||||
f = repeat(f, 'b n (h m) -> b (h g) n m', h=self.num_kv_heads, g=self.num_kv_groups)
|
||||
else:
|
||||
v = rearrange(v, 'b n (h d) -> b h n d', h=self.num_kv_heads)
|
||||
f = rearrange(f, 'b n (h m) -> b h n m', h=self.num_kv_heads)
|
||||
|
||||
if self.feature_map is not None:
|
||||
q, k, v = map(lambda x: ACT2FN[self.feature_map](x), (q, k, v))
|
||||
f = F.logsigmoid(f) / self.gate_logit_normalizer
|
||||
s = (1 - f.exp()).to(f.dtype)
|
||||
# dealing with left-padding
|
||||
if attention_mask is not None:
|
||||
s = s.mul_(attention_mask.view(attention_mask.shape[0], 1, -1, 1))
|
||||
v = v.mul_(attention_mask.view(attention_mask.shape[0], 1, -1, 1))
|
||||
|
||||
recurrent_state = last_state[-2:] if use_cache else None
|
||||
o, recurrent_state = chunk_gated_abc(q, k, v, s, f,
|
||||
initial_state=recurrent_state,
|
||||
output_final_state=use_cache)
|
||||
if past_key_values is not None:
|
||||
if self.use_short_conv:
|
||||
if self.share_conv_kernel:
|
||||
last_state = (conv_state,) + recurrent_state
|
||||
else:
|
||||
last_state = (conv_state_q, conv_state_k, conv_state_v) + recurrent_state
|
||||
else:
|
||||
last_state = recurrent_state
|
||||
past_key_values.update(last_state, self.layer_idx, q.shape[2])
|
||||
|
||||
o = rearrange(o, 'b h t d -> b t (h d)')
|
||||
if self.use_norm and not self.use_output_gate:
|
||||
o = swish(o)
|
||||
o = self.g_norm(o, self.o_proj.weight, self.o_proj.bias)
|
||||
elif self.use_output_gate and not self.use_norm:
|
||||
o = swiglu_linear(self.g_proj(hidden_states), o, self.o_proj.weight, self.o_proj.bias)
|
||||
elif self.use_output_gate and self.use_norm:
|
||||
o = self.g_norm(o, self.g_proj(hidden_states), self.o_proj.weight, self.o_proj.bias)
|
||||
else:
|
||||
o = self.o_proj(o)
|
||||
return o, None, past_key_values
|
||||
|
||||
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
|
||||
param = next(self.parameters())
|
||||
state = tuple()
|
||||
if self.use_short_conv:
|
||||
if self.share_conv_kernel:
|
||||
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
|
||||
else:
|
||||
state += (param.new_zeros(batch_size, self.key_dim, self.conv_size),
|
||||
param.new_zeros(batch_size, self.key_dim, self.conv_size),
|
||||
param.new_zeros(batch_size, self.value_dim, self.conv_size))
|
||||
state += (param.new_zeros(batch_size, self.num_heads, self.head_k_dim, self.num_slots),
|
||||
param.new_zeros(batch_size, self.num_heads, self.num_slots, self.head_v_dim))
|
||||
return state
|
||||
|
||||
def state_size(self, sequence_length: int = 2048):
|
||||
return self.num_heads * self.key_dim * self.head_v_dim
|
268
finetune/lora/v6/fla/layers/gla.py
vendored
268
finetune/lora/v6/fla/layers/gla.py
vendored
@ -1,268 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange, repeat
|
||||
from transformers.cache_utils import Cache
|
||||
|
||||
from fla.modules import FusedRMSNormSwishGate, RMSNorm, ShortConvolution
|
||||
from fla.modules.activations import ACT2FN
|
||||
from fla.ops.gla import chunk_gla, fused_chunk_gla, fused_recurrent_gla
|
||||
|
||||
|
||||
class GatedLinearAttention(nn.Module):
|
||||
r"""
|
||||
The layer implementaion for [Gated Linear Attention Transformers with Hardware-Efficient Training](https://arxiv.org/abs/2312.06635). # noqa
|
||||
|
||||
Args:
|
||||
mode (str, Optional):
|
||||
Which GLA kernel to use.
|
||||
Currently available: `chunk`, `fused_recurrent`, and `fused_chunk`.
|
||||
Default: `chunk`.
|
||||
hidden_size (int, Optional):
|
||||
The hidden size of the input. Default: 1024.
|
||||
expand_k (float, Optional):
|
||||
The expansion ratio for the key dim. Default: 0.5.
|
||||
expand_v (float, Optional):
|
||||
The expansion ratio for the value dim. Default: 1.0.
|
||||
num_heads (int, Optional):
|
||||
The number of heads. Default: 4.
|
||||
num_kv_heads (int, Optional):
|
||||
The number of key/value heads, used for MQA. Default: None.
|
||||
feature_map (str, Optional):
|
||||
Feature map function applied to queries/keys. Default: None.
|
||||
use_short_conv (bool, Optional):
|
||||
Whether to use short convolutions. Default: `False`.
|
||||
conv_size (int, Optional):
|
||||
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
|
||||
conv_bias (bool, Optional):
|
||||
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
|
||||
share_conv_kernel (bool, Optional):
|
||||
Whether to apply convolutions berfore q/k/v mapping, only taking effects when `use_short_conv`. Default: `True`.
|
||||
use_output_gate (bool, Optional):
|
||||
Whether to use output gate. Default: `True`.
|
||||
gate_fn (str, Optional):
|
||||
The activation function for the output gate. Default: `swish`.
|
||||
elementwise_affine (bool, Optional):
|
||||
If `True`, applies elementwise affine to LayerNorm with learnable parameters. Default: `True`.
|
||||
norm_eps (float, Optional):
|
||||
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
|
||||
gate_logit_normalizer (int, Optional):
|
||||
The normalizer for the gate logits, appied after `logsigmoid`. Default: 16.
|
||||
gate_low_rank_dim (int, Optional):
|
||||
The low rank dim for the gate projection. Default: 16.
|
||||
clamp_min (float, Optional):
|
||||
The minimum value for the gate logits. Default: None.
|
||||
fuse_norm (bool, Optional):
|
||||
Whether to fuse the norm and the output gate for better memory footprint. Default: `True`.
|
||||
layer_idx (int, Optional):
|
||||
The index of the layer. Default: None.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
mode: str = 'chunk',
|
||||
hidden_size: int = 1024,
|
||||
expand_k: float = 0.5,
|
||||
expand_v: float = 1.0,
|
||||
num_heads: int = 4,
|
||||
num_kv_heads: Optional[int] = None,
|
||||
feature_map: Optional[str] = None,
|
||||
use_short_conv: bool = False,
|
||||
conv_size: int = 4,
|
||||
conv_bias: bool = False,
|
||||
share_conv_kernel: bool = True,
|
||||
use_output_gate: bool = True,
|
||||
gate_fn: str = 'swish',
|
||||
elementwise_affine: Optional[bool] = True,
|
||||
norm_eps: float = 1e-5,
|
||||
gate_logit_normalizer: int = 16,
|
||||
gate_low_rank_dim: int = 16,
|
||||
clamp_min: Optional[float] = None,
|
||||
fuse_norm: bool = True,
|
||||
layer_idx: int = None,
|
||||
) -> GatedLinearAttention:
|
||||
super().__init__()
|
||||
|
||||
self.mode = mode
|
||||
self.hidden_size = hidden_size
|
||||
self.expand_k = expand_k
|
||||
self.expand_v = expand_v
|
||||
self.num_heads = num_heads
|
||||
self.num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads
|
||||
self.num_kv_groups = self.num_heads // self.num_kv_heads
|
||||
self.feature_map_fn = ACT2FN[feature_map] if feature_map is not None else None
|
||||
|
||||
self.use_short_conv = use_short_conv
|
||||
self.conv_size = conv_size
|
||||
self.conv_bias = conv_bias
|
||||
self.share_conv_kernel = share_conv_kernel
|
||||
self.use_output_gate = use_output_gate
|
||||
|
||||
self.key_dim = int(hidden_size * expand_k)
|
||||
self.value_dim = int(hidden_size * expand_v)
|
||||
self.key_dim_per_group = self.key_dim // self.num_kv_groups
|
||||
self.value_dim_per_group = self.value_dim // self.num_kv_groups
|
||||
self.clamp_min = clamp_min
|
||||
self.layer_idx = layer_idx
|
||||
|
||||
assert mode in ['chunk', 'fused_recurrent', 'fused_chunk'], f"Not suppoerted mode `{mode}`."
|
||||
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
||||
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
||||
|
||||
self.head_qk_dim = self.key_dim // num_heads
|
||||
self.head_v_dim = self.value_dim // num_heads
|
||||
|
||||
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
||||
self.k_proj = nn.Linear(hidden_size, self.key_dim_per_group, bias=False)
|
||||
self.v_proj = nn.Linear(hidden_size, self.value_dim_per_group, bias=False)
|
||||
if self.use_output_gate:
|
||||
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
||||
|
||||
if use_short_conv:
|
||||
self.conv_size = conv_size
|
||||
if share_conv_kernel:
|
||||
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation='silu')
|
||||
else:
|
||||
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
||||
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
|
||||
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
|
||||
|
||||
self.gk_proj = nn.Sequential(nn.Linear(hidden_size, gate_low_rank_dim, bias=False),
|
||||
nn.Linear(gate_low_rank_dim, self.key_dim_per_group, bias=True))
|
||||
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
||||
|
||||
if gate_fn == 'swish' and fuse_norm and use_output_gate:
|
||||
self.g_norm_swish_gate = FusedRMSNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps)
|
||||
self.fuse_norm_and_gate = True
|
||||
else:
|
||||
self.fuse_norm_and_gate = False
|
||||
self.g_norm = RMSNorm(self.head_v_dim, elementwise_affine, norm_eps)
|
||||
self.gate_fn = ACT2FN[gate_fn]
|
||||
|
||||
self.gate_logit_normalizer = gate_logit_normalizer
|
||||
|
||||
self.apply(self._initialize_weights)
|
||||
|
||||
def _initialize_weights(self, module: nn.Module):
|
||||
if getattr(module, "_is_hf_initialized", False):
|
||||
return
|
||||
if isinstance(module, nn.Linear):
|
||||
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
module._is_hf_initialized = True
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Cache] = None,
|
||||
use_cache: Optional[bool] = False,
|
||||
output_attentions: Optional[bool] = False,
|
||||
**kwargs
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
||||
# launching the triton kernel for just one token will actually be slower
|
||||
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
|
||||
|
||||
last_state = past_key_values[self.layer_idx] if use_cache else None
|
||||
if self.use_short_conv:
|
||||
conv_state = last_state[0] if use_cache else None
|
||||
if self.share_conv_kernel:
|
||||
# conv state is updated inplace
|
||||
hidden_states = self.h_conv1d(hidden_states, attention_mask, conv_state)
|
||||
q = self.q_proj(hidden_states)
|
||||
k = self.k_proj(hidden_states)
|
||||
v = self.v_proj(hidden_states)
|
||||
else:
|
||||
conv_state_q = last_state[0] if use_cache else None
|
||||
conv_state_k = last_state[1] if use_cache else None
|
||||
conv_state_v = last_state[2] if use_cache else None
|
||||
q = self.q_proj(hidden_states)
|
||||
k = self.k_proj(hidden_states)
|
||||
v = self.v_proj(hidden_states)
|
||||
q = self.q_conv1d(q, attention_mask, conv_state_q)
|
||||
k = self.k_conv1d(k, attention_mask, conv_state_k)
|
||||
v = self.v_conv1d(v, attention_mask, conv_state_v)
|
||||
else:
|
||||
q = self.q_proj(hidden_states)
|
||||
k = self.k_proj(hidden_states)
|
||||
v = self.v_proj(hidden_states)
|
||||
gk = self.gk_proj(hidden_states)
|
||||
|
||||
if self.feature_map_fn is not None:
|
||||
q, k = map(self.feature_map_fn, (q, k))
|
||||
# dealing with left-padding
|
||||
if attention_mask is not None:
|
||||
v = v.mul_(attention_mask.unsqueeze(-1))
|
||||
q = rearrange(q, 'b l (h d) -> b h l d', h=self.num_heads)
|
||||
if self.num_kv_groups > 1:
|
||||
k, v, gk = (repeat(x, 'b l (h d) -> b (h g) l d', h=self.num_kv_heads, g=self.num_kv_groups) for x in (k, v, gk))
|
||||
else:
|
||||
k, v, gk = (rearrange(x, 'b l (h d) -> b h l d', h=self.num_kv_heads) for x in (k, v, gk))
|
||||
gk = F.logsigmoid(gk) / self.gate_logit_normalizer
|
||||
|
||||
if self.clamp_min is not None:
|
||||
gk = torch.clamp_min(gk, self.clamp_min)
|
||||
|
||||
recurrent_state = last_state[-1] if use_cache else None
|
||||
if mode == 'fused_recurrent':
|
||||
o, recurrent_state = fused_recurrent_gla(q, k, v, gk, initial_state=recurrent_state, output_final_state=use_cache)
|
||||
elif mode == 'fused_chunk':
|
||||
o, recurrent_state = fused_chunk_gla(q, k, v, gk, initial_state=recurrent_state, output_final_state=use_cache)
|
||||
elif mode == 'chunk':
|
||||
o, recurrent_state = chunk_gla(q, k, v, gk, initial_state=recurrent_state, output_final_state=use_cache)
|
||||
else:
|
||||
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
||||
|
||||
if past_key_values is not None:
|
||||
if self.use_short_conv:
|
||||
if self.share_conv_kernel:
|
||||
last_state = (conv_state, recurrent_state)
|
||||
else:
|
||||
last_state = (conv_state_q, conv_state_k, conv_state_v, recurrent_state)
|
||||
else:
|
||||
last_state = (recurrent_state,)
|
||||
past_key_values.update(last_state, self.layer_idx, q.shape[2])
|
||||
|
||||
o = rearrange(o, 'b h l d -> b l h d')
|
||||
if self.use_output_gate:
|
||||
g = self.g_proj(hidden_states)
|
||||
if self.fuse_norm_and_gate:
|
||||
g = rearrange(g, 'b l (h d) -> b l h d', h=self.num_heads)
|
||||
o = self.g_norm_swish_gate(o, g)
|
||||
o = rearrange(o, 'b l h d -> b l (h d)')
|
||||
else:
|
||||
o = rearrange(self.g_norm(o), 'b l h d -> b l (h d)')
|
||||
o = o * self.gate_fn(g)
|
||||
else:
|
||||
o = rearrange(self.g_norm(o), 'b l h d -> b l (h d)')
|
||||
o = self.o_proj(o)
|
||||
|
||||
return o, None, past_key_values
|
||||
|
||||
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
|
||||
param = next(self.parameters())
|
||||
state = tuple()
|
||||
if self.use_short_conv:
|
||||
if self.share_conv_kernel:
|
||||
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
|
||||
else:
|
||||
state += (param.new_zeros(batch_size, self.key_dim, self.conv_size),
|
||||
param.new_zeros(batch_size, self.key_dim, self.conv_size),
|
||||
param.new_zeros(batch_size, self.value_dim, self.conv_size))
|
||||
state += (param.new_zeros(batch_size, self.num_heads, self.head_qk_dim, self.head_v_dim),)
|
||||
return state
|
||||
|
||||
def state_size(self, **kwargs) -> int:
|
||||
state_size = self.key_dim * self.head_v_dim
|
||||
for module in self.children():
|
||||
if isinstance(module, ShortConvolution):
|
||||
state_size += module.state_size
|
||||
return state_size
|
165
finetune/lora/v6/fla/layers/hgrn.py
vendored
165
finetune/lora/v6/fla/layers/hgrn.py
vendored
@ -1,165 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# "Hierarchically Gated Recurrent Neural Network for Sequence Modeling" [https://arxiv.org/abs/2311.04823]
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
from transformers.cache_utils import Cache
|
||||
|
||||
from fla.modules import FusedRMSNormSwishGate, ShortConvolution
|
||||
from fla.modules.activations import swiglu
|
||||
from fla.ops.hgrn import chunk_hgrn, fused_recurrent_hgrn
|
||||
|
||||
|
||||
class HGRNAttention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
mode: str = 'chunk',
|
||||
hidden_size: int = 1024,
|
||||
num_heads: Optional[int] = None,
|
||||
expand_ratio: Optional[int] = 1,
|
||||
use_short_conv: bool = False,
|
||||
conv_size: int = 4,
|
||||
conv_bias: bool = False,
|
||||
share_conv_kernel: bool = True,
|
||||
elementwise_affine: Optional[bool] = True,
|
||||
norm_eps: float = 1e-5,
|
||||
layer_idx: int = None
|
||||
) -> HGRNAttention:
|
||||
super().__init__()
|
||||
|
||||
self.mode = mode
|
||||
self.hidden_size = hidden_size
|
||||
self.num_heads = num_heads
|
||||
self.expand_ratio = expand_ratio
|
||||
self.input_dim = int(hidden_size * expand_ratio)
|
||||
self.head_dim = self.input_dim // self.num_heads
|
||||
|
||||
self.use_short_conv = use_short_conv
|
||||
self.conv_size = conv_size
|
||||
self.conv_bias = conv_bias
|
||||
self.share_conv_kernel = share_conv_kernel
|
||||
|
||||
self.layer_idx = layer_idx
|
||||
|
||||
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
||||
assert self.hidden_size % num_heads == 0, f"hidden size must be divisible by num_heads of {num_heads}"
|
||||
|
||||
self.i_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
|
||||
self.f_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
|
||||
self.g_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
|
||||
|
||||
if use_short_conv:
|
||||
self.conv_size = conv_size
|
||||
if share_conv_kernel:
|
||||
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation='silu')
|
||||
else:
|
||||
self.q_conv1d = ShortConvolution(self.input_dim, conv_size, activation='silu')
|
||||
self.f_conv1d = ShortConvolution(self.input_dim, conv_size, activation='silu')
|
||||
self.i_conv1d = ShortConvolution(self.input_dim, conv_size, activation='silu')
|
||||
|
||||
self.g_norm = FusedRMSNormSwishGate(self.input_dim, elementwise_affine, norm_eps)
|
||||
self.o_proj = nn.Linear(self.input_dim, hidden_size, bias=False)
|
||||
|
||||
self.apply(self._initialize_weights)
|
||||
|
||||
def _initialize_weights(self, module: nn.Module):
|
||||
if getattr(module, "_is_hf_initialized", False):
|
||||
return
|
||||
if isinstance(module, nn.Linear):
|
||||
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
module._is_hf_initialized = True
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Cache] = None,
|
||||
use_cache: Optional[bool] = False,
|
||||
output_attentions: Optional[bool] = False,
|
||||
lower_bound: Optional[torch.Tensor] = None,
|
||||
**kwargs
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
||||
# launching the triton kernel for just one token will actually be slower
|
||||
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
|
||||
|
||||
last_state = past_key_values[self.layer_idx] if use_cache else None
|
||||
if self.use_short_conv:
|
||||
conv_state = last_state[0] if use_cache else None
|
||||
if self.share_conv_kernel:
|
||||
# conv state is updated inplace
|
||||
hidden_states = self.h_conv1d(hidden_states, attention_mask, conv_state)
|
||||
i = self.i_proj(hidden_states)
|
||||
f = self.f_proj(hidden_states)
|
||||
else:
|
||||
conv_state_i = last_state[2] if use_cache else None
|
||||
conv_state_f = last_state[1] if use_cache else None
|
||||
i = self.i_conv1d(self.i_proj(hidden_states), attention_mask, conv_state_i)
|
||||
f = self.f_conv1d(self.f_proj(hidden_states), attention_mask, conv_state_f)
|
||||
else:
|
||||
i = self.i_proj(hidden_states)
|
||||
f = self.f_proj(hidden_states)
|
||||
|
||||
# the lower bound for the first layer is zero
|
||||
if lower_bound is None or self.layer_idx == 0:
|
||||
i, f = swiglu(i, 1 - f.sigmoid()), F.logsigmoid(f)
|
||||
else:
|
||||
g = lower_bound + (1 - lower_bound) * f.sigmoid()
|
||||
i, f = swiglu(i, 1 - g), g.log()
|
||||
|
||||
# dealing with left-padding
|
||||
if attention_mask is not None:
|
||||
i = i.mul_(attention_mask.unsqueeze(-1))
|
||||
i, f = map(lambda x: rearrange(x, 'b l (h d) -> b h l d', h=self.num_heads), (i, f))
|
||||
|
||||
recurrent_state = last_state[-1] if use_cache else None
|
||||
if mode == 'chunk':
|
||||
o, recurrent_state = chunk_hgrn(i, f, initial_state=recurrent_state, output_final_state=use_cache)
|
||||
elif mode == 'fused_recurrent':
|
||||
o, recurrent_state = fused_recurrent_hgrn(i, f, initial_state=recurrent_state, output_final_state=use_cache)
|
||||
else:
|
||||
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
||||
|
||||
if past_key_values is not None:
|
||||
if self.use_short_conv:
|
||||
if self.share_conv_kernel:
|
||||
last_state = (conv_state, recurrent_state)
|
||||
else:
|
||||
last_state = (conv_state_i, conv_state_f, recurrent_state)
|
||||
else:
|
||||
last_state = (recurrent_state,)
|
||||
past_key_values.update(last_state, self.layer_idx, i.shape[2])
|
||||
|
||||
o = self.g_norm(self.g_proj(hidden_states), rearrange(o, 'b h l d -> b l (h d)'))
|
||||
o = self.o_proj(o)
|
||||
|
||||
return o, None, past_key_values
|
||||
|
||||
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
|
||||
param = next(self.parameters())
|
||||
state = tuple()
|
||||
if self.use_short_conv:
|
||||
if self.share_conv_kernel:
|
||||
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
|
||||
else:
|
||||
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),
|
||||
param.new_zeros(batch_size, self.hidden_size, self.conv_size),
|
||||
param.new_zeros(batch_size, self.hidden_size, self.conv_size))
|
||||
state += (param.new_zeros(batch_size, self.num_heads, self.head_dim),)
|
||||
return state
|
||||
|
||||
def state_size(self, **kwargs) -> int:
|
||||
state_size = self.hidden_size
|
||||
for module in self.children():
|
||||
if isinstance(module, ShortConvolution):
|
||||
state_size += module.state_size
|
||||
return state_size
|
186
finetune/lora/v6/fla/layers/hgrn2.py
vendored
186
finetune/lora/v6/fla/layers/hgrn2.py
vendored
@ -1,186 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# "HGRN2: Gated Linear RNNs with State Expansion"[https://arxiv.org/abs/2404.07904]
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
from transformers.cache_utils import Cache
|
||||
|
||||
from fla.modules import RMSNorm, ShortConvolution
|
||||
from fla.modules.activations import swish
|
||||
from fla.ops.gla import chunk_gla, fused_chunk_gla, fused_recurrent_gla
|
||||
|
||||
|
||||
class HGRN2Attention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
mode: str = 'chunk',
|
||||
hidden_size: int = 1024,
|
||||
num_heads: Optional[int] = None,
|
||||
expand_ratio: Optional[int] = 128,
|
||||
use_short_conv: bool = False,
|
||||
conv_size: int = 4,
|
||||
conv_bias: bool = False,
|
||||
share_conv_kernel: bool = True,
|
||||
elementwise_affine: Optional[bool] = True,
|
||||
norm_eps: float = 1e-5,
|
||||
layer_idx: int = None
|
||||
) -> HGRN2Attention:
|
||||
super().__init__()
|
||||
|
||||
self.mode = mode
|
||||
self.hidden_size = hidden_size
|
||||
|
||||
if expand_ratio is None and num_heads is not None:
|
||||
expand_ratio = hidden_size // num_heads
|
||||
elif expand_ratio is not None and num_heads is None:
|
||||
num_heads = hidden_size // expand_ratio
|
||||
else:
|
||||
raise RuntimeError("One of `expand_ratio` or `num_heads` should be provided.")
|
||||
self.num_heads = num_heads
|
||||
self.expand_ratio = expand_ratio
|
||||
|
||||
self.use_short_conv = use_short_conv
|
||||
self.conv_size = conv_size
|
||||
self.conv_bias = conv_bias
|
||||
self.share_conv_kernel = share_conv_kernel
|
||||
|
||||
self.forget_dim = int(self.num_heads * self.expand_ratio)
|
||||
self.input_dim = hidden_size
|
||||
self.layer_idx = layer_idx
|
||||
|
||||
assert mode in ['chunk', 'fused_recurrent', 'fused_chunk'], f"Not suppoerted mode `{mode}`."
|
||||
assert self.forget_dim % num_heads == 0, f"forget dim must be divisible by num_heads of {num_heads}"
|
||||
assert self.input_dim % num_heads == 0, f"input dim must be divisible by num_heads of {num_heads}"
|
||||
|
||||
self.head_f_dim = self.expand_ratio
|
||||
self.head_i_dim = self.hidden_size // num_heads
|
||||
|
||||
self.q_proj = nn.Linear(hidden_size, self.forget_dim, bias=False)
|
||||
self.f_proj = nn.Linear(hidden_size, self.forget_dim, bias=False)
|
||||
self.i_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
|
||||
|
||||
if use_short_conv:
|
||||
self.conv_size = conv_size
|
||||
if share_conv_kernel:
|
||||
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation='silu')
|
||||
else:
|
||||
self.q_conv1d = ShortConvolution(self.forget_dim, conv_size, activation='silu')
|
||||
self.f_conv1d = ShortConvolution(self.forget_dim, conv_size, activation='silu')
|
||||
self.i_conv1d = ShortConvolution(self.input_dim, conv_size, activation='silu')
|
||||
|
||||
self.g_norm = RMSNorm(self.hidden_size, elementwise_affine, norm_eps)
|
||||
self.o_proj = nn.Linear(self.input_dim, hidden_size, bias=False)
|
||||
|
||||
self.apply(self._initialize_weights)
|
||||
|
||||
def _initialize_weights(self, module: nn.Module):
|
||||
if getattr(module, "_is_hf_initialized", False):
|
||||
return
|
||||
if isinstance(module, nn.Linear):
|
||||
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
module._is_hf_initialized = True
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Cache] = None,
|
||||
use_cache: Optional[bool] = False,
|
||||
output_attentions: Optional[bool] = False,
|
||||
lower_bound: Optional[torch.Tensor] = None,
|
||||
**kwargs
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
||||
# launching the triton kernel for just one token will actually be slower
|
||||
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
|
||||
|
||||
last_state = past_key_values[self.layer_idx] if use_cache else None
|
||||
if self.use_short_conv:
|
||||
conv_state = last_state[0] if use_cache else None
|
||||
if self.share_conv_kernel:
|
||||
# conv state is updated inplace
|
||||
hidden_states = self.h_conv1d(hidden_states, attention_mask, conv_state)
|
||||
q = self.q_proj(hidden_states)
|
||||
f = self.f_proj(hidden_states)
|
||||
i = self.i_proj(hidden_states)
|
||||
else:
|
||||
conv_state_q = last_state[0] if use_cache else None
|
||||
conv_state_f = last_state[1] if use_cache else None
|
||||
conv_state_i = last_state[2] if use_cache else None
|
||||
q = self.q_proj(hidden_states)
|
||||
f = self.f_proj(hidden_states)
|
||||
i = self.i_proj(hidden_states)
|
||||
q = self.q_conv1d(q, attention_mask, conv_state_q)
|
||||
f = self.f_conv1d(f, attention_mask, conv_state_f)
|
||||
i = self.i_conv1d(i, attention_mask, conv_state_i)
|
||||
else:
|
||||
q = self.q_proj(hidden_states)
|
||||
f = self.f_proj(hidden_states)
|
||||
i = self.i_proj(hidden_states)
|
||||
|
||||
# dealing with left-padding
|
||||
if attention_mask is not None:
|
||||
i = i.mul_(attention_mask.unsqueeze(-1))
|
||||
|
||||
q = swish(q)
|
||||
# the lower bound for the first layer is zero
|
||||
if lower_bound is None or self.layer_idx == 0:
|
||||
k, g = 1 - f.sigmoid(), F.logsigmoid(f)
|
||||
else:
|
||||
g = lower_bound + (1 - lower_bound) * f.sigmoid()
|
||||
k, g = 1 - g, g.log()
|
||||
q, k, i, g = map(lambda x: rearrange(x, 'b l (h d) -> b h l d', h=self.num_heads), (q, k, i, g))
|
||||
|
||||
recurrent_state = last_state[-1] if use_cache else None
|
||||
if mode == 'fused_recurrent':
|
||||
o, recurrent_state = fused_recurrent_gla(q, k, i, g, initial_state=recurrent_state, output_final_state=use_cache)
|
||||
elif mode == 'fused_chunk':
|
||||
o, recurrent_state = fused_chunk_gla(q, k, i, g, initial_state=recurrent_state, output_final_state=use_cache)
|
||||
elif mode == 'chunk':
|
||||
o, recurrent_state = chunk_gla(q, k, i, g, initial_state=recurrent_state, output_final_state=use_cache)
|
||||
else:
|
||||
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
||||
|
||||
if past_key_values is not None:
|
||||
if self.use_short_conv:
|
||||
if self.share_conv_kernel:
|
||||
last_state = (conv_state, recurrent_state)
|
||||
else:
|
||||
last_state = (conv_state_q, conv_state_f, conv_state_i, recurrent_state)
|
||||
else:
|
||||
last_state = (recurrent_state,)
|
||||
past_key_values.update(last_state, self.layer_idx, q.shape[2])
|
||||
|
||||
o = self.g_norm(rearrange(o, 'b h l d -> b l (h d)'))
|
||||
o = self.o_proj(o)
|
||||
|
||||
return o, None, past_key_values
|
||||
|
||||
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
|
||||
param = next(self.parameters())
|
||||
state = tuple()
|
||||
if self.use_short_conv:
|
||||
if self.share_conv_kernel:
|
||||
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
|
||||
else:
|
||||
state += (param.new_zeros(batch_size, self.forget_dim, self.conv_size),
|
||||
param.new_zeros(batch_size, self.forget_dim, self.conv_size),
|
||||
param.new_zeros(batch_size, self.input_dim, self.conv_size))
|
||||
state += (param.new_zeros(batch_size, self.num_heads, self.head_f_dim, self.head_i_dim),)
|
||||
return state
|
||||
|
||||
def state_size(self, **kwargs) -> int:
|
||||
state_size = self.forget_dim * self.head_i_dim
|
||||
for module in self.children():
|
||||
if isinstance(module, ShortConvolution):
|
||||
state_size += module.state_size
|
||||
return state_size
|
156
finetune/lora/v6/fla/layers/linear_attn.py
vendored
156
finetune/lora/v6/fla/layers/linear_attn.py
vendored
@ -1,156 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
|
||||
from fla.modules import RMSNorm
|
||||
from fla.modules.feature_map import (DPFPFeatureMap, HadamardFeatureMap,
|
||||
HedgehogFeatureMap, T2RFeatureMap)
|
||||
from fla.ops.linear_attn import (chunk_linear_attn, fused_chunk_linear_attn,
|
||||
fused_recurrent_linear_attn)
|
||||
|
||||
|
||||
class LinearAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: str = 1024,
|
||||
expand_k: int = 1.0,
|
||||
expand_v: int = 1.0,
|
||||
num_heads: int = 8,
|
||||
mode: str = 'chunk',
|
||||
feature_map: str = 'elementwise_product',
|
||||
tie_feature_map_qk: bool = False,
|
||||
output_norm: str = 'rmsnorm',
|
||||
norm_q: bool = False,
|
||||
norm_k: bool = False,
|
||||
# standard linear attention normalization
|
||||
do_feature_map_norm: bool = False,
|
||||
elementwise_affine: bool = True,
|
||||
norm_eps: float = 1e-5,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
assert feature_map in ['elu', 'relu', 'hedgehog', 't2r', 'dpfp',
|
||||
'identity', 'elementwise_product'], f"Not supported feature map `{feature_map}`."
|
||||
|
||||
assert output_norm in ['rmsnorm', 'identity'], f"Not supported output norm `{output_norm}`."
|
||||
|
||||
self.hidden_size
|
||||
self.mode = mode
|
||||
self.key_dim = int(hidden_size * expand_k)
|
||||
self.value_dim = int(hidden_size * expand_v)
|
||||
self.num_heads = num_heads
|
||||
|
||||
assert mode in ['chunk', 'fused_chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
||||
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
||||
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
||||
|
||||
self.head_qk_dim = self.key_dim // num_heads
|
||||
self.head_v_dim = self.value_dim // num_heads
|
||||
|
||||
if feature_map == 'hedgehog':
|
||||
if tie_feature_map_qk:
|
||||
self.feature_map_q = self.feature_map_k = HedgehogFeatureMap(head_dim=self.head_qk_dim)
|
||||
else:
|
||||
self.feature_map_q = HedgehogFeatureMap(head_dim=self.head_qk_dim)
|
||||
self.feature_map_k = HedgehogFeatureMap(head_dim=self.head_qk_dim)
|
||||
|
||||
elif feature_map == 't2r':
|
||||
if tie_feature_map_qk:
|
||||
self.feature_map_q = self.feature_map_k = T2RFeatureMap(head_dim=self.head_qk_dim)
|
||||
else:
|
||||
self.feature_map_q = T2RFeatureMap(head_dim=self.head_qk_dim)
|
||||
self.feature_map_k = T2RFeatureMap(head_dim=self.head_qk_dim)
|
||||
|
||||
elif feature_map == 'elementwise_product':
|
||||
if tie_feature_map_qk:
|
||||
self.feature_map_q = self.feature_map_k = HadamardFeatureMap(head_dim=self.head_qk_dim)
|
||||
else:
|
||||
self.feature_map_q = HadamardFeatureMap(head_dim=self.head_qk_dim)
|
||||
self.feature_map_k = HadamardFeatureMap(head_dim=self.head_qk_dim)
|
||||
|
||||
elif feature_map == 'dpfp':
|
||||
self.feature_map_q = DPFPFeatureMap(head_dim=self.head_qk_dim)
|
||||
self.feature_map_k = DPFPFeatureMap(head_dim=self.head_qk_dim)
|
||||
|
||||
elif feature_map == 'elu':
|
||||
def elu(x):
|
||||
return F.elu(x) + 1
|
||||
self.feature_map_q = elu
|
||||
self.feature_map_k = elu
|
||||
|
||||
elif feature_map == 'relu':
|
||||
self.feature_map_q = nn.ReLU()
|
||||
self.feature_map_k = nn.ReLU()
|
||||
|
||||
elif feature_map == 'identity':
|
||||
self.feature_map_q = nn.Identity()
|
||||
self.feature_map_k = nn.Identity()
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
self.do_feature_map_norm = do_feature_map_norm
|
||||
if output_norm == 'rmsnorm':
|
||||
self.norm = RMSNorm(self.head_v_dim, elementwise_affine, norm_eps)
|
||||
elif output_norm == 'identity':
|
||||
self.norm = nn.Identity()
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
||||
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
||||
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
||||
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
||||
|
||||
self.norm_q = norm_q
|
||||
self.norm_k = norm_k
|
||||
|
||||
self.apply(self._initialize_weights)
|
||||
|
||||
def _initialize_weights(self, module: nn.Module):
|
||||
if getattr(module, "_is_hf_initialized", False):
|
||||
return
|
||||
if isinstance(module, nn.Linear):
|
||||
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
module._is_hf_initialized = True
|
||||
|
||||
def forward(self, x):
|
||||
mode = self.mode
|
||||
q = rearrange(self.q_proj(x), 'b n (h d) -> b h n d', h=self.num_heads)
|
||||
k = rearrange(self.k_proj(x), 'b n (h d) -> b h n d', h=self.num_heads)
|
||||
v = rearrange(self.v_proj(x), 'b n (h d) -> b h n d', h=self.num_heads)
|
||||
q = self.feature_map_q(q)
|
||||
k = self.feature_map_k(k)
|
||||
if self.norm_q:
|
||||
q = q / (q.sum(-1, keepdim=True) + 1e-4)
|
||||
if self.norm_k:
|
||||
k = k / (k.sum(-1, keepdim=True) + 1e-4)
|
||||
|
||||
if mode == 'chunk':
|
||||
o = chunk_linear_attn(q, k, v, normalize=self.do_feature_map_norm)
|
||||
elif mode == 'fused_chunk':
|
||||
o = fused_chunk_linear_attn(q, k, v, normalize=self.do_feature_map_norm)
|
||||
elif mode == 'fused_recurrent':
|
||||
o = fused_recurrent_linear_attn(q, k, v, normalize=self.do_feature_map_norm)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
o = self.norm(o)
|
||||
o = rearrange(o, 'b h n d -> b n (h d)')
|
||||
o = self.o_proj(o)
|
||||
return o
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import torch
|
||||
batch = 4
|
||||
seq_len = 1024
|
||||
hidden_size = 1024
|
||||
x = torch.randn(batch, seq_len, hidden_size).to(torch.bfloat16).cuda().requires_grad_(True)
|
||||
model = LinearAttention(hidden_size, feature_map='dplp').to(torch.bfloat16).cuda()
|
||||
y = model(x)
|
||||
print(y.shape)
|
||||
y.sum().backward()
|
||||
print(x.grad.shape)
|
271
finetune/lora/v6/fla/layers/multiscale_retention.py
vendored
271
finetune/lora/v6/fla/layers/multiscale_retention.py
vendored
@ -1,271 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from einops import rearrange, repeat
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.cache_utils import Cache
|
||||
|
||||
from fla.modules import FusedRMSNormSwishGate, RMSNorm, ShortConvolution
|
||||
from fla.modules.rotary import RotaryEmbedding
|
||||
from fla.ops.retention import (chunk_retention, fused_chunk_retention,
|
||||
fused_recurrent_retention, parallel_retention)
|
||||
|
||||
|
||||
class MultiScaleRetention(nn.Module):
|
||||
r"""
|
||||
The layer implementaion for [Retentive Network: A Successor to Transformer for Large Language Models](https://arxiv.org/pdf/2307.08621.pdf). # noqa
|
||||
|
||||
Args:
|
||||
mode (str, Optional):
|
||||
Which Retention kernel to use.
|
||||
Currently available: `chunk`, `fused_recurrent`, `parallel`, and `fused_chunk`.
|
||||
Default: `fused_chunk`.
|
||||
hidden_size (int, Optional):
|
||||
The hidden size of the input. Default: 1024.
|
||||
expand_k (float, Optional):
|
||||
The expansion ratio for the key dim. Default: 1.0.
|
||||
expand_v (float, Optional):
|
||||
The expansion ratio for the value dim. Default: 2.0.
|
||||
num_heads (int, Optional):
|
||||
The number of heads. Default: 8.
|
||||
num_kv_heads (int, Optional):
|
||||
The number of key/value heads, used for MQA. Default: None.
|
||||
feature_map (str, Optional):
|
||||
Feature map function applied to queries/keys. Default: None.
|
||||
use_short_conv (bool, Optional):
|
||||
Whether to use short convolutions. Default: `False`.
|
||||
conv_size (int, Optional):
|
||||
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
|
||||
conv_bias (bool, Optional):
|
||||
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
|
||||
share_conv_kernel (bool, Optional):
|
||||
Whether to apply convolutions berfore q/k/v mapping, only taking effects when `use_short_conv`. Default: `True`.
|
||||
use_output_gate (bool, Optional):
|
||||
Whether to use output gate. Default: `True`.
|
||||
gate_fn (str, Optional):
|
||||
The activation function for the output gate. Default: `swish`.
|
||||
elementwise_affine (bool, Optional):
|
||||
If `True`, applies elementwise affine to LayerNorm with learnable parameters. Default: `True`.
|
||||
norm_eps (float, Optional):
|
||||
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
|
||||
fuse_norm (bool, Optional):
|
||||
Whether to fuse the norm and the output gate for better memory footprint. Default: `True`.
|
||||
layer_idx (int, Optional):
|
||||
The index of the layer. Default: None.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
mode: str = 'fused_chunk',
|
||||
hidden_size: int = 1024,
|
||||
expand_k: float = 1.0,
|
||||
expand_v: float = 2.0,
|
||||
num_heads: int = 8,
|
||||
num_kv_heads: Optional[int] = None,
|
||||
feature_map: Optional[str] = None,
|
||||
use_short_conv: bool = False,
|
||||
conv_size: int = 4,
|
||||
conv_bias: bool = False,
|
||||
share_conv_kernel: bool = True,
|
||||
use_output_gate: bool = True,
|
||||
gate_fn: str = 'swish',
|
||||
elementwise_affine: Optional[bool] = True,
|
||||
norm_eps: float = 1e-5,
|
||||
fuse_norm: bool = True,
|
||||
layer_idx: int = None,
|
||||
**kwargs
|
||||
) -> MultiScaleRetention:
|
||||
super().__init__()
|
||||
|
||||
self.mode = mode
|
||||
self.hidden_size = hidden_size
|
||||
self.expand_k = expand_k
|
||||
self.expand_v = expand_v
|
||||
self.num_heads = num_heads
|
||||
self.num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads
|
||||
self.num_kv_groups = self.num_heads // self.num_kv_heads
|
||||
self.feature_map_fn = ACT2FN[feature_map] if feature_map is not None else None
|
||||
|
||||
self.use_short_conv = use_short_conv
|
||||
self.conv_size = conv_size
|
||||
self.conv_bias = conv_bias
|
||||
self.share_conv_kernel = share_conv_kernel
|
||||
self.use_output_gate = use_output_gate
|
||||
|
||||
self.key_dim = int(hidden_size * expand_k)
|
||||
self.value_dim = int(hidden_size * expand_v)
|
||||
self.key_dim_per_group = self.key_dim // self.num_kv_groups
|
||||
self.value_dim_per_group = self.value_dim // self.num_kv_groups
|
||||
self.layer_idx = layer_idx
|
||||
|
||||
assert mode in ['chunk', 'fused_chunk', 'parallel', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
||||
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
||||
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
||||
|
||||
self.head_qk_dim = self.key_dim // num_heads
|
||||
self.head_v_dim = self.value_dim // num_heads
|
||||
|
||||
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
||||
self.k_proj = nn.Linear(hidden_size, self.key_dim_per_group, bias=False)
|
||||
self.v_proj = nn.Linear(hidden_size, self.value_dim_per_group, bias=False)
|
||||
if self.use_output_gate:
|
||||
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
||||
|
||||
if use_short_conv:
|
||||
self.conv_size = conv_size
|
||||
if share_conv_kernel:
|
||||
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation='silu')
|
||||
else:
|
||||
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
|
||||
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
|
||||
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
|
||||
|
||||
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
||||
|
||||
if gate_fn == 'swish' and fuse_norm and use_output_gate:
|
||||
self.g_norm_swish_gate = FusedRMSNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps)
|
||||
self.fuse_norm_and_gate = True
|
||||
else:
|
||||
self.fuse_norm_and_gate = False
|
||||
self.g_norm = RMSNorm(self.head_v_dim, elementwise_affine, norm_eps)
|
||||
self.gate_fn = ACT2FN[gate_fn]
|
||||
|
||||
# TODO: fix this issue
|
||||
# https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/ops/triton/rotary.py#L180
|
||||
# Ideally, we would want to support arbitrary d_head_qk
|
||||
assert self.head_qk_dim <= 256, "head_qk_dim must be less than or equal to 256"
|
||||
self.rotary = RotaryEmbedding(dim=self.head_qk_dim)
|
||||
|
||||
self.apply(self._initialize_weights)
|
||||
|
||||
def _initialize_weights(self, module: nn.Module):
|
||||
if getattr(module, "_is_hf_initialized", False):
|
||||
return
|
||||
if isinstance(module, nn.Linear):
|
||||
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
module._is_hf_initialized = True
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Cache] = None,
|
||||
use_cache: Optional[bool] = False,
|
||||
output_attentions: Optional[bool] = False,
|
||||
**kwargs
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
||||
# launching the triton kernel for just one token will actually be slower
|
||||
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
|
||||
|
||||
last_state = past_key_values[self.layer_idx] if use_cache else None
|
||||
if self.use_short_conv:
|
||||
conv_state = last_state[0] if use_cache else None
|
||||
if self.share_conv_kernel:
|
||||
# conv state is updated inplace
|
||||
hidden_states = self.h_conv1d(hidden_states, attention_mask, conv_state)
|
||||
q = self.q_proj(hidden_states)
|
||||
k = self.k_proj(hidden_states)
|
||||
v = self.v_proj(hidden_states)
|
||||
else:
|
||||
conv_state_q = last_state[0] if use_cache else None
|
||||
conv_state_k = last_state[1] if use_cache else None
|
||||
conv_state_v = last_state[2] if use_cache else None
|
||||
q = self.q_proj(hidden_states)
|
||||
k = self.k_proj(hidden_states)
|
||||
v = self.v_proj(hidden_states)
|
||||
q = self.q_conv1d(q, attention_mask, conv_state_q)
|
||||
k = self.k_conv1d(k, attention_mask, conv_state_k)
|
||||
v = self.v_conv1d(v, attention_mask, conv_state_v)
|
||||
else:
|
||||
q = self.q_proj(hidden_states)
|
||||
k = self.k_proj(hidden_states)
|
||||
v = self.v_proj(hidden_states)
|
||||
|
||||
# dealing with left-padding
|
||||
if attention_mask is not None:
|
||||
v = v.mul_(attention_mask.unsqueeze(-1))
|
||||
q = rearrange(q, '... (h d) -> ... h d', h=self.num_heads)
|
||||
k = rearrange(k, '... (h d) -> ... h d', h=self.num_kv_heads)
|
||||
if self.feature_map_fn is not None:
|
||||
q, k = map(self.feature_map_fn, (q, k))
|
||||
|
||||
seqlen_offset, max_seqlen = 0, None
|
||||
if past_key_values is not None:
|
||||
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
|
||||
max_seqlen = q.shape[1] + seqlen_offset
|
||||
if attention_mask is not None:
|
||||
# to deliminate the offsets of padding tokens
|
||||
seqlen_offset = seqlen_offset + attention_mask.sum(-1) - attention_mask.shape[-1]
|
||||
max_seqlen = q.shape[1] + max(seqlen_offset)
|
||||
q, k = self.rotary(q, k, seqlen_offset, max_seqlen)
|
||||
q = q.transpose(1, 2)
|
||||
if self.num_kv_groups > 1:
|
||||
k = repeat(k, 'b t h d -> b (h g) t d', h=self.num_kv_heads, g=self.num_kv_groups)
|
||||
v = repeat(v, 'b t (h d) -> b (h g) t d', h=self.num_kv_heads, g=self.num_kv_groups)
|
||||
else:
|
||||
k, v = rearrange(k, 'b t h d -> b h t d'), rearrange(v, 'b t (h d) -> b h t d', h=self.num_kv_heads)
|
||||
|
||||
state = last_state[-1] if use_cache else None
|
||||
if mode == 'chunk':
|
||||
o, recurrent_state = chunk_retention(q, k, v, initial_state=state, output_final_state=use_cache)
|
||||
elif mode == 'fused_chunk':
|
||||
o, recurrent_state = fused_chunk_retention(q, k, v, initial_state=state, output_final_state=use_cache)
|
||||
elif mode == 'parallel':
|
||||
o, recurrent_state = parallel_retention(q, k, v, initial_state=state, output_final_state=use_cache)
|
||||
elif mode == 'fused_recurrent':
|
||||
o, recurrent_state = fused_recurrent_retention(q, k, v, initial_state=state, output_final_state=use_cache)
|
||||
else:
|
||||
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
||||
|
||||
if past_key_values is not None:
|
||||
if self.use_short_conv:
|
||||
if self.share_conv_kernel:
|
||||
last_state = (conv_state, recurrent_state)
|
||||
else:
|
||||
last_state = (conv_state_q, conv_state_k, conv_state_v, recurrent_state)
|
||||
else:
|
||||
last_state = (recurrent_state,)
|
||||
past_key_values.update(last_state, self.layer_idx, q.shape[2])
|
||||
|
||||
o = rearrange(o, 'b h l d -> b l h d')
|
||||
if self.use_output_gate:
|
||||
g = self.g_proj(hidden_states)
|
||||
if self.fuse_norm_and_gate:
|
||||
g = rearrange(g, 'b l (h d) -> b l h d', h=self.num_heads)
|
||||
o = self.g_norm_swish_gate(o, g)
|
||||
o = rearrange(o, 'b l h d -> b l (h d)')
|
||||
else:
|
||||
o = rearrange(self.g_norm(o), 'b l h d -> b l (h d)')
|
||||
o = o * self.gate_fn(g)
|
||||
else:
|
||||
o = rearrange(self.g_norm(o), 'b l h d -> b l (h d)')
|
||||
o = self.o_proj(o)
|
||||
|
||||
return o, None, past_key_values
|
||||
|
||||
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
|
||||
param = next(self.parameters())
|
||||
state = tuple()
|
||||
if self.use_short_conv:
|
||||
if self.share_conv_kernel:
|
||||
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
|
||||
else:
|
||||
state += (param.new_zeros(batch_size, self.key_dim, self.conv_size),
|
||||
param.new_zeros(batch_size, self.key_dim, self.conv_size),
|
||||
param.new_zeros(batch_size, self.value_dim, self.conv_size))
|
||||
state += (param.new_zeros(batch_size, self.num_heads, self.head_qk_dim, self.head_v_dim),)
|
||||
return state
|
||||
|
||||
def state_size(self, **kwargs) -> int:
|
||||
state_size = self.key_dim * self.head_v_dim
|
||||
for module in self.children():
|
||||
if isinstance(module, ShortConvolution):
|
||||
state_size += module.state_size
|
||||
return state_size
|
137
finetune/lora/v6/fla/layers/rebased.py
vendored
137
finetune/lora/v6/fla/layers/rebased.py
vendored
@ -1,137 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
"""
|
||||
https://github.com/corl-team/rebased/blob/main/flash_linear_attention/fla/layers/rebased_fast.py
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from einops import rearrange
|
||||
|
||||
from fla.modules.feature_map import RebasedFeatureMap
|
||||
from fla.ops.linear_attn import chunk_linear_attn, fused_chunk_linear_attn
|
||||
from fla.ops.rebased import parallel_rebased
|
||||
|
||||
|
||||
class ReBasedLinearAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
l_max: int = 2048,
|
||||
feature_dim: int = 16,
|
||||
num_key_value_heads: int = 16,
|
||||
num_heads: int = 16,
|
||||
use_gamma: Optional[bool] = True,
|
||||
use_beta: Optional[bool] = True,
|
||||
normalize: Optional[bool] = True,
|
||||
causal: bool = True,
|
||||
eps: float = 1e-5,
|
||||
mode: str = "parallel",
|
||||
layer_idx: Optional[int] = None,
|
||||
**kwargs
|
||||
) -> ReBasedLinearAttention:
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
self.l_max = l_max
|
||||
self.mode = mode
|
||||
assert self.mode in ["fused_chunk", "parallel", 'chunk']
|
||||
|
||||
# linear attention
|
||||
self.feature_dim = feature_dim
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.num_heads = num_heads
|
||||
self.head_dim = self.hidden_size // self.num_key_value_heads
|
||||
self.use_gamma = use_gamma
|
||||
self.use_beta = use_beta
|
||||
self.normalize = normalize
|
||||
self.causal = causal
|
||||
|
||||
self.feature_map = RebasedFeatureMap(self.feature_dim, use_gamma, use_beta, normalize)
|
||||
self.q_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
|
||||
self.k_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
|
||||
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
||||
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
||||
self.dropout = nn.Identity()
|
||||
self.eps = eps
|
||||
|
||||
self.apply(self._initialize_weights)
|
||||
|
||||
def _initialize_weights(self, module: nn.Module):
|
||||
if getattr(module, "_is_hf_initialized", False):
|
||||
return
|
||||
if isinstance(module, nn.Linear):
|
||||
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
module._is_hf_initialized = True
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, **kwargs):
|
||||
mode = self.mode
|
||||
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
||||
q, k, v = map(lambda x: rearrange(x, "b l (h d) -> b h l d", h=self.num_heads), [q, k, v])
|
||||
q, k = self.feature_map(q, flatten=(mode != 'parallel')), self.feature_map(k, flatten=(mode != 'parallel'))
|
||||
if mode == "fused_chunk":
|
||||
o = fused_chunk_linear_attn(q, k, v, normalize=True, scale=1)
|
||||
elif mode == 'chunk':
|
||||
o = chunk_linear_attn(q, k, v, normalize=True, scale=1)
|
||||
elif mode == 'parallel':
|
||||
assert q.shape[-1] <= 128
|
||||
o = parallel_rebased(q, k, v, self.eps, True, True)
|
||||
o = rearrange(o, "b h l d -> b l (h d)")
|
||||
o = self.o_proj(o)
|
||||
o = self.dropout(o)
|
||||
return o
|
||||
|
||||
# https://github.com/HazyResearch/zoology/blob/main/zoology/mixers/based.py#L119
|
||||
def forward_reference(self, hidden_states: torch.Tensor, filters: torch.Tensor = None, *args, **kwargs):
|
||||
"""
|
||||
x (torch.Tensor): tensor of shape (b, d, l)
|
||||
y (torch.Tensor): tensor of shape (b, d, l)
|
||||
"""
|
||||
# hidden_states = hidden_states.transpose(1, 2)
|
||||
b, l, _ = hidden_states.size()
|
||||
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
|
||||
|
||||
q = q.view(b, l, self.num_heads, self.feature_dim).transpose(1, 2)
|
||||
k = k.view(b, l, self.num_key_value_heads, self.feature_dim).transpose(1, 2)
|
||||
v = v.view(b, l, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
# Linear attention
|
||||
q, k = self.feature_map(q), self.feature_map(k)
|
||||
q, k, v = q.unsqueeze(-2), k.unsqueeze(-2), v.unsqueeze(-1)
|
||||
|
||||
# Compute attention
|
||||
if self.causal:
|
||||
y = ((q * (k * v).cumsum(2)).sum(-1) / ((q * k.cumsum(2)).sum(-1) + self.eps))
|
||||
else:
|
||||
y = ((q * (k * v).sum(2, True)).sum(-1) / ((q * k.sum(2, True)).sum(-1) + self.eps))
|
||||
y = rearrange(y, 'b h l d -> b l (h d)')
|
||||
y = self.o_proj(y.to(hidden_states.dtype))
|
||||
y = self.dropout(y)
|
||||
return y.to(hidden_states.dtype)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
batch = 4
|
||||
seq_len = 1024
|
||||
hidden_size = 1024
|
||||
dtype = torch.float32
|
||||
x = torch.randn(batch, seq_len, hidden_size).to(dtype).cuda().requires_grad_(True)
|
||||
dy = torch.randn(batch, seq_len, hidden_size).to(dtype).cuda()
|
||||
model = ReBasedLinearAttention(hidden_size=hidden_size, mode='parallel').to(dtype).cuda()
|
||||
|
||||
y = model(x)
|
||||
y.backward(dy, retain_graph=True)
|
||||
x_grad, x.grad = x.grad, None
|
||||
print(model.mode)
|
||||
model.mode = 'fused_chunk'
|
||||
y2 = model(x)
|
||||
print(model.mode)
|
||||
y2.backward(dy)
|
||||
# assert y.allclose(y2, 0, 1e-4), breakpoint()
|
||||
# assert x_grad.allclose(x.grad, 0, 1e-4), breakpoint()
|
||||
print("Pass")
|
264
finetune/lora/v6/fla/layers/rwkv6.py
vendored
264
finetune/lora/v6/fla/layers/rwkv6.py
vendored
@ -1,264 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
# "Eagle and Finch: RWKV with Matrix-Valued States and Dynamic Recurrence"[https://arxiv.org/abs/2404.05892]
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from einops import rearrange
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.cache_utils import Cache
|
||||
|
||||
from fla.modules import FusedLayerNormSwishGate, LayerNorm
|
||||
from fla.ops.rwkv6 import chunk_rwkv6, fused_recurrent_rwkv6
|
||||
|
||||
|
||||
class RWKV6Attention(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
mode: str = 'chunk',
|
||||
hidden_size: int = 1024,
|
||||
expand_k: float = 0.5,
|
||||
expand_v: float = 1.0,
|
||||
num_heads: int = 4,
|
||||
gate_fn: str = 'swish',
|
||||
proj_low_rank_dim: int = 32,
|
||||
gate_low_rank_dim: int = 64,
|
||||
fuse_norm: bool = True,
|
||||
elementwise_affine: Optional[bool] = True,
|
||||
norm_eps: float = 1e-5,
|
||||
layer_idx: int = None,
|
||||
**kwargs
|
||||
) -> RWKV6Attention:
|
||||
super().__init__()
|
||||
|
||||
self.mode = mode
|
||||
self.hidden_size = hidden_size
|
||||
self.expand_k = expand_k
|
||||
self.expand_v = expand_v
|
||||
self.num_heads = num_heads
|
||||
self.proj_low_rank_dim = proj_low_rank_dim
|
||||
self.gate_low_rank_dim = gate_low_rank_dim
|
||||
|
||||
self.key_dim = int(hidden_size * expand_k)
|
||||
self.value_dim = int(hidden_size * expand_v)
|
||||
self.layer_idx = layer_idx
|
||||
|
||||
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
|
||||
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
||||
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
||||
|
||||
self.head_qk_dim = self.key_dim // num_heads
|
||||
self.head_v_dim = self.value_dim // num_heads
|
||||
|
||||
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
||||
self.x_proj = nn.Sequential(
|
||||
LerpLinear(hidden_size, proj_low_rank_dim * 5),
|
||||
nn.Tanh(),
|
||||
nn.Linear(proj_low_rank_dim * 5, hidden_size, bias=True)
|
||||
)
|
||||
self.r_proj = DDLerpLinear(hidden_size, self.key_dim)
|
||||
self.w_proj = DDLerpLinear(hidden_size, self.key_dim, low_rank_dim=gate_low_rank_dim)
|
||||
self.k_proj = DDLerpLinear(hidden_size, self.key_dim)
|
||||
self.v_proj = DDLerpLinear(hidden_size, self.value_dim)
|
||||
self.g_proj = DDLerpLinear(hidden_size, self.value_dim)
|
||||
self.bonus = nn.Parameter(torch.zeros(num_heads, self.head_qk_dim))
|
||||
|
||||
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
||||
|
||||
if gate_fn == 'swish' and fuse_norm:
|
||||
self.g_norm_swish_gate = FusedLayerNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps)
|
||||
self.fuse_norm_and_gate = True
|
||||
else:
|
||||
self.fuse_norm_and_gate = False
|
||||
self.g_norm = LayerNorm(self.head_v_dim, elementwise_affine, norm_eps)
|
||||
self.gate_fn = ACT2FN[gate_fn]
|
||||
|
||||
self.apply(self._initialize_weights)
|
||||
|
||||
def _initialize_weights(self, module: nn.Module):
|
||||
if getattr(module, "_is_hf_initialized", False):
|
||||
return
|
||||
if isinstance(module, nn.Linear):
|
||||
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
if isinstance(module, nn.Parameter):
|
||||
nn.init.xavier_uniform_(module, gain=2 ** -2.5)
|
||||
module._is_hf_initialized = True
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Cache] = None,
|
||||
use_cache: Optional[bool] = False,
|
||||
output_attentions: Optional[bool] = False,
|
||||
**kwargs
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
||||
batch_size, seq_len, hidden_size = hidden_states.size()
|
||||
# launching the triton kernel for just one token will actually be slower
|
||||
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
|
||||
|
||||
delta = self.time_shift(hidden_states) - hidden_states
|
||||
x = self.x_proj[0](hidden_states, delta).view(batch_size, seq_len, -1, self.proj_low_rank_dim)
|
||||
r, w, k, v, g = torch.einsum('b l n r, n r d-> b l n d',
|
||||
self.x_proj[1](x),
|
||||
self.x_proj[2].weight.view(5, -1, hidden_size)).unbind(-2)
|
||||
r = self.r_proj(hidden_states, r, delta)
|
||||
w = self.w_proj(hidden_states, w, delta)
|
||||
k = self.k_proj(hidden_states, k, delta)
|
||||
v = self.v_proj(hidden_states, v, delta)
|
||||
g = self.g_proj(hidden_states, g, delta)
|
||||
|
||||
# dealing with left-padding
|
||||
if attention_mask is not None:
|
||||
v = v.mul_(attention_mask.unsqueeze(-1))
|
||||
r, w, k, v = map(lambda x: rearrange(x, 'b l (h d) -> b h l d', h=self.num_heads), (r, w, k, v))
|
||||
w = -torch.exp(w)
|
||||
u = self.bonus
|
||||
|
||||
last_state = past_key_values[self.layer_idx] if use_cache else None
|
||||
state = last_state[-1] if use_cache else None
|
||||
if mode == 'fused_recurrent':
|
||||
o, recurrent_state = fused_recurrent_rwkv6(r, k, v, w, u, initial_state=state, output_final_state=use_cache)
|
||||
elif mode == 'chunk':
|
||||
o, recurrent_state = chunk_rwkv6(r, k, v, w, u, initial_state=state, output_final_state=use_cache)
|
||||
else:
|
||||
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
||||
|
||||
if past_key_values is not None:
|
||||
past_key_values.update((recurrent_state,), self.layer_idx, r.shape[2])
|
||||
|
||||
o = rearrange(o, 'b h l d -> b l h d')
|
||||
if self.fuse_norm_and_gate:
|
||||
g = rearrange(g, 'b l (h d) -> b l h d', h=self.num_heads)
|
||||
o = self.g_norm_swish_gate(o, g)
|
||||
o = rearrange(o, 'b l h d -> b l (h d)')
|
||||
else:
|
||||
o = self.g_norm(o)
|
||||
o = rearrange(o, 'b l h d -> b l (h d)')
|
||||
o = o * self.gate_fn(g)
|
||||
o = self.o_proj(o)
|
||||
|
||||
return o, None, past_key_values
|
||||
|
||||
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
|
||||
param = next(self.parameters())
|
||||
state = (param.new_zeros(batch_size, self.num_heads, self.head_qk_dim, self.head_v_dim),)
|
||||
return state
|
||||
|
||||
def state_size(self, **kwargs) -> int:
|
||||
state_size = self.key_dim * self.head_v_dim
|
||||
return state_size
|
||||
|
||||
|
||||
class LoRA(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_dim: int,
|
||||
output_dim: int,
|
||||
low_rank_dim: int,
|
||||
bias: Optional[bool] = True
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.input_dim = input_dim
|
||||
self.output_dim = output_dim
|
||||
self.low_rank_dim = low_rank_dim
|
||||
self.bias = bias
|
||||
|
||||
self.lora = nn.Sequential(
|
||||
nn.Linear(input_dim, low_rank_dim, bias=False),
|
||||
nn.Tanh(),
|
||||
nn.Linear(low_rank_dim, output_dim, bias=bias)
|
||||
)
|
||||
|
||||
def __repr__(self) -> str:
|
||||
s = f"{self.__class__.__name__}("
|
||||
s += f"input_dim={self.input_dim}, low_rank_dim={self.low_rank_dim}, output_dim={self.output_dim}"
|
||||
if not self.bias:
|
||||
s += f", bias={self.bias}"
|
||||
s += ")"
|
||||
return s
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return self.lora(x)
|
||||
|
||||
|
||||
class LerpLinear(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_dim: int,
|
||||
output_dim: int,
|
||||
low_rank_dim: Optional[int] = None
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.input_dim = input_dim
|
||||
self.output_dim = output_dim
|
||||
self.low_rank_dim = low_rank_dim
|
||||
|
||||
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
||||
if low_rank_dim is None:
|
||||
self.linear = nn.Linear(input_dim, output_dim, bias=False)
|
||||
else:
|
||||
self.linear = LoRA(input_dim, output_dim, low_rank_dim)
|
||||
self.mu = nn.Parameter(torch.zeros(input_dim))
|
||||
|
||||
def __repr__(self) -> str:
|
||||
s = f"{self.__class__.__name__}({self.input_dim}, {self.output_dim}"
|
||||
if self.low_rank_dim is not None:
|
||||
s += f", low_rank_dim={self.low_rank_dim}"
|
||||
s += ")"
|
||||
return s
|
||||
|
||||
def forward(self, x: torch.Tensor, delta: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||||
if delta is None:
|
||||
shifted = self.time_shift(x)
|
||||
if len(shifted.shape) == 2:
|
||||
shifted = shifted.unsqueeze(1)
|
||||
delta = shifted - x
|
||||
return self.linear(x + delta * self.mu)
|
||||
|
||||
|
||||
class DDLerpLinear(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_dim: int,
|
||||
output_dim: int,
|
||||
low_rank_dim: Optional[int] = None
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.input_dim = input_dim
|
||||
self.output_dim = output_dim
|
||||
self.low_rank_dim = low_rank_dim
|
||||
|
||||
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
||||
if low_rank_dim is None:
|
||||
self.linear = nn.Linear(input_dim, output_dim, bias=False)
|
||||
else:
|
||||
self.linear = LoRA(input_dim, output_dim, low_rank_dim)
|
||||
|
||||
def __repr__(self) -> str:
|
||||
s = f"{self.__class__.__name__}({self.input_dim}, {self.output_dim}"
|
||||
if self.low_rank_dim is not None:
|
||||
s += f", low_rank_dim={self.low_rank_dim}"
|
||||
s += ")"
|
||||
return s
|
||||
|
||||
def forward(self, x: torch.Tensor, mu: torch.Tensor, delta: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||||
if delta is None:
|
||||
shifted = self.time_shift(x)
|
||||
if len(shifted.shape) == 2:
|
||||
shifted = shifted.unsqueeze(1)
|
||||
delta = shifted - x
|
||||
return self.linear(x + delta * mu)
|
143
finetune/lora/v6/fla/layers/simple_gla.py
vendored
143
finetune/lora/v6/fla/layers/simple_gla.py
vendored
@ -1,143 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
from transformers.activations import ACT2FN
|
||||
|
||||
from fla.modules import FusedRMSNormSwishGate, RMSNorm
|
||||
from fla.ops.simple_gla import chunk_simple_gla
|
||||
|
||||
|
||||
class SimpleGatedLinearAttention(nn.Module):
|
||||
r"""
|
||||
The layer implementaion for [Gated Linear Attention Transformers with Hardware-Efficient Training](https://arxiv.org/abs/2312.06635). # noqa
|
||||
This layer calls the simplified GLA kernel in which the gating is head-wise instead of elementwise.
|
||||
|
||||
Args:
|
||||
mode (str, Optional):
|
||||
Which GLA kernel to use.
|
||||
Currently available: `chunk`.
|
||||
Default: `chunk`.
|
||||
hidden_size (int, Optional):
|
||||
The hidden size of the input. Default: 1024.
|
||||
expand_k (float, Optional):
|
||||
The expansion ratio for the key dim. Default: 0.5.
|
||||
expand_v (float, Optional):
|
||||
The expansion ratio for the value dim. Default: 1.0.
|
||||
num_heads (int, Optional):
|
||||
The number of heads. Default: 4.
|
||||
gate_fn (str, Optional):
|
||||
The activation function for the output gate. Default: `swish`.
|
||||
elementwise_affine (bool, Optional):
|
||||
If `True`, applies elementwise affine to LayerNorm with learnable parameters. Default: `True`.
|
||||
norm_eps (float, Optional):
|
||||
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
|
||||
gate_logit_normalizer (int, Optional):
|
||||
The normalizer for the gate logits, appied after `logsigmoid`. Default: 16.
|
||||
fuse_norm (bool, Optional):
|
||||
Whether to fuse the norm and the output gate for better memory footprint. Default: `True`.
|
||||
layer_idx (int, Optional):
|
||||
The index of the layer. Default: None.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
mode: str = 'chunk',
|
||||
hidden_size: int = 1024,
|
||||
expand_k: float = 1.0,
|
||||
expand_v: float = 2.0,
|
||||
num_heads: int = 4,
|
||||
gate_fn: str = 'swish',
|
||||
elementwise_affine: Optional[bool] = True,
|
||||
norm_eps: float = 1e-5,
|
||||
gate_logit_normalizer: int = 16,
|
||||
fuse_norm: bool = True,
|
||||
**kwargs
|
||||
) -> SimpleGatedLinearAttention:
|
||||
super().__init__()
|
||||
self.hidden_size = hidden_size
|
||||
|
||||
self.mode = mode
|
||||
self.key_dim = int(hidden_size * expand_k)
|
||||
self.value_dim = int(hidden_size * expand_v)
|
||||
assert mode in ['chunk'], f"Not suppoerted mode `{mode}`."
|
||||
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
|
||||
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
|
||||
self.num_heads = num_heads
|
||||
self.head_qk_dim = self.key_dim // num_heads
|
||||
self.head_v_dim = self.value_dim // num_heads
|
||||
self.gate_fn = ACT2FN[gate_fn]
|
||||
|
||||
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
||||
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
|
||||
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
||||
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
|
||||
|
||||
self.gk_proj = nn.Linear(hidden_size, self.num_heads)
|
||||
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
|
||||
|
||||
if gate_fn == 'swish' and fuse_norm:
|
||||
self.g_norm_swish_gate = FusedRMSNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps)
|
||||
self.fuse_norm_and_gate = True
|
||||
else:
|
||||
self.fuse_norm_and_gate = False
|
||||
self.g_norm = RMSNorm(self.head_v_dim, elementwise_affine, norm_eps)
|
||||
|
||||
self.gate_logit_normalizer = gate_logit_normalizer
|
||||
|
||||
self.apply(self._initialize_weights)
|
||||
|
||||
def _initialize_weights(self, module: nn.Module):
|
||||
if getattr(module, "_is_hf_initialized", False):
|
||||
return
|
||||
if isinstance(module, nn.Linear):
|
||||
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
module._is_hf_initialized = True
|
||||
|
||||
def forward(self, x):
|
||||
mode = self.mode
|
||||
q = rearrange(self.q_proj(x), 'b n (h d) -> b h n d', h=self.num_heads)
|
||||
k = rearrange(self.k_proj(x), 'b n (h d) -> b h n d', h=self.num_heads)
|
||||
v = rearrange(self.v_proj(x), 'b n (h d) -> b h n d', h=self.num_heads)
|
||||
gk = rearrange(self.gk_proj(x), 'b n h -> b h n')
|
||||
gk = (F.logsigmoid(gk) / self.gate_logit_normalizer)
|
||||
|
||||
if mode == 'chunk':
|
||||
o = chunk_simple_gla(q, k, v, gk)
|
||||
else:
|
||||
raise NotImplementedError(f"Not supported mode `{mode}`.")
|
||||
|
||||
o = rearrange(o, 'b h l d -> b l h d')
|
||||
g = self.g_proj(x)
|
||||
|
||||
if self.fuse_norm_and_gate:
|
||||
g = rearrange(g, 'b l (h d) -> b l h d', h=self.num_heads)
|
||||
o = self.g_norm_swish_gate(o, g)
|
||||
o = rearrange(o, 'b l h d -> b l (h d)')
|
||||
else:
|
||||
o = self.g_norm(o)
|
||||
o = rearrange(o, 'b l h d -> b l (h d)')
|
||||
o = o * self.gate_fn(g)
|
||||
o = self.o_proj(o)
|
||||
return o
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
batch = 4
|
||||
seq_len = 1024
|
||||
|
||||
hidden_size = 2048
|
||||
x = torch.randn(batch, seq_len, hidden_size).to(torch.bfloat16).cuda().requires_grad_(True)
|
||||
model = SimpleGatedLinearAttention(hidden_size=hidden_size, mode='chunk').to(torch.bfloat16).cuda()
|
||||
y = model(x)
|
||||
print(y.shape)
|
||||
y.sum().backward()
|
||||
print(x.grad.shape)
|
29
finetune/lora/v6/fla/models/__init__.py
vendored
29
finetune/lora/v6/fla/models/__init__.py
vendored
@ -1,29 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from fla.models.abc import ABCConfig, ABCForCausalLM, ABCModel
|
||||
from fla.models.delta_net import (DeltaNetConfig, DeltaNetForCausalLM,
|
||||
DeltaNetModel)
|
||||
from fla.models.gla import GLAConfig, GLAForCausalLM, GLAModel
|
||||
from fla.models.hgrn import HGRNConfig, HGRNForCausalLM, HGRNModel
|
||||
from fla.models.hgrn2 import HGRN2Config, HGRN2ForCausalLM, HGRN2Model
|
||||
from fla.models.linear_attn import (LinearAttentionConfig,
|
||||
LinearAttentionForCausalLM,
|
||||
LinearAttentionModel)
|
||||
from fla.models.mamba import MambaConfig, MambaForCausalLM, MambaModel
|
||||
from fla.models.retnet import RetNetConfig, RetNetForCausalLM, RetNetModel
|
||||
from fla.models.rwkv6 import RWKV6Config, RWKV6ForCausalLM, RWKV6Model
|
||||
from fla.models.transformer import (TransformerConfig, TransformerForCausalLM,
|
||||
TransformerModel)
|
||||
|
||||
__all__ = [
|
||||
'ABCConfig', 'ABCForCausalLM', 'ABCModel',
|
||||
'DeltaNetConfig', 'DeltaNetForCausalLM', 'DeltaNetModel',
|
||||
'GLAConfig', 'GLAForCausalLM', 'GLAModel',
|
||||
'HGRNConfig', 'HGRNForCausalLM', 'HGRNModel',
|
||||
'HGRN2Config', 'HGRN2ForCausalLM', 'HGRN2Model',
|
||||
'LinearAttentionConfig', 'LinearAttentionForCausalLM', 'LinearAttentionModel',
|
||||
'MambaConfig', 'MambaForCausalLM', 'MambaModel',
|
||||
'RetNetConfig', 'RetNetForCausalLM', 'RetNetModel',
|
||||
'RWKV6Config', 'RWKV6ForCausalLM', 'RWKV6Model',
|
||||
'TransformerConfig', 'TransformerForCausalLM', 'TransformerModel'
|
||||
]
|
13
finetune/lora/v6/fla/models/abc/__init__.py
vendored
13
finetune/lora/v6/fla/models/abc/__init__.py
vendored
@ -1,13 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
||||
|
||||
from fla.models.abc.configuration_abc import ABCConfig
|
||||
from fla.models.abc.modeling_abc import ABCForCausalLM, ABCModel
|
||||
|
||||
AutoConfig.register(ABCConfig.model_type, ABCConfig)
|
||||
AutoModel.register(ABCConfig, ABCModel)
|
||||
AutoModelForCausalLM.register(ABCConfig, ABCForCausalLM)
|
||||
|
||||
|
||||
__all__ = ['ABCConfig', 'ABCForCausalLM', 'ABCModel']
|
@ -1,74 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
|
||||
|
||||
class ABCConfig(PretrainedConfig):
|
||||
|
||||
model_type = 'abc'
|
||||
keys_to_ignore_at_inference = ['past_key_values']
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int = 32000,
|
||||
hidden_size: int = 2048,
|
||||
gate_low_rank_dim: int = 16,
|
||||
clamp_min: float = -32,
|
||||
clamp_max: float = 32,
|
||||
hidden_ratio: Optional[int] = 4,
|
||||
intermediate_size: Optional[int] = None,
|
||||
num_hidden_layers: int = 24,
|
||||
num_heads: int = 4,
|
||||
num_slots: Optional[int] = 64,
|
||||
use_short_conv: bool = True,
|
||||
conv_size: int = 4,
|
||||
share_conv_kernel: bool = True,
|
||||
exapnd_k: float = 0.5,
|
||||
exapnd_v: float = 1,
|
||||
hidden_act: str = "swish",
|
||||
max_position_embeddings: int = 2048,
|
||||
elementwise_affine: Optional[bool] = True,
|
||||
norm_eps: float = 1e-6,
|
||||
use_cache: bool = True,
|
||||
pad_token_id: int = None,
|
||||
bos_token_id: int = 1,
|
||||
eos_token_id: int = 2,
|
||||
initializer_range: float = 0.02,
|
||||
tie_word_embeddings: bool = False,
|
||||
fuse_norm: bool = True,
|
||||
fuse_cross_entropy: bool = True,
|
||||
**kwargs
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.gate_low_rank_dim = gate_low_rank_dim
|
||||
self.clamp_min = clamp_min
|
||||
self.clamp_max = clamp_max
|
||||
self.hidden_ratio = hidden_ratio
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_heads = num_heads
|
||||
self.num_slots = num_slots
|
||||
self.use_short_conv = use_short_conv
|
||||
self.conv_size = conv_size
|
||||
self.share_conv_kernel = share_conv_kernel
|
||||
self.expand_k = exapnd_k
|
||||
self.expand_v = exapnd_v
|
||||
self.hidden_act = hidden_act
|
||||
self.elementwise_affine = elementwise_affine
|
||||
self.norm_eps = norm_eps
|
||||
self.use_cache = use_cache
|
||||
self.initializer_range = initializer_range
|
||||
self.fuse_cross_entropy = fuse_cross_entropy
|
||||
self.fuse_norm = fuse_norm
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
394
finetune/lora/v6/fla/models/abc/modeling_abc.py
vendored
394
finetune/lora/v6/fla/models/abc/modeling_abc.py
vendored
@ -1,394 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.utils.checkpoint
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
||||
CausalLMOutputWithPast)
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.utils import logging
|
||||
|
||||
from fla.layers.abc import ABCAttention
|
||||
from fla.models.abc.configuration_abc import ABCConfig
|
||||
from fla.models.utils import RecurrentCache
|
||||
from fla.modules import FusedCrossEntropyLoss, RMSNorm
|
||||
from fla.modules.activations import swiglu_linear
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class ABCMLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
hidden_ratio: Optional[int] = None,
|
||||
intermediate_size: Optional[int] = None,
|
||||
hidden_act: str = 'swish'
|
||||
) -> ABCMLP:
|
||||
super().__init__()
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
# the final number of params is `hidden_ratio * hidden_size^2`
|
||||
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
|
||||
if hidden_ratio is None:
|
||||
hidden_ratio = 4
|
||||
if intermediate_size is None:
|
||||
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
|
||||
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
|
||||
self.hidden_ratio = hidden_ratio
|
||||
self.intermediate_size = intermediate_size
|
||||
|
||||
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
|
||||
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
||||
self.act_fn = ACT2FN[hidden_act]
|
||||
|
||||
def forward(self, x):
|
||||
y = self.gate_proj(x)
|
||||
gate, y = y.chunk(2, -1)
|
||||
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
|
||||
|
||||
|
||||
class ABCBlock(nn.Module):
|
||||
def __init__(self, config: ABCConfig, layer_idx: int):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
|
||||
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
||||
self.attn = ABCAttention(
|
||||
hidden_size=config.hidden_size,
|
||||
expand_k=config.expand_k,
|
||||
expand_v=config.expand_v,
|
||||
num_heads=config.num_heads,
|
||||
num_slots=config.num_slots,
|
||||
use_short_conv=config.use_short_conv,
|
||||
conv_size=config.conv_size,
|
||||
share_conv_kernel=config.share_conv_kernel,
|
||||
gate_fn=config.hidden_act,
|
||||
elementwise_affine=config.elementwise_affine,
|
||||
norm_eps=config.norm_eps,
|
||||
clamp_min=config.clamp_min,
|
||||
clamp_max=config.clamp_max,
|
||||
fuse_norm=config.fuse_norm,
|
||||
layer_idx=layer_idx
|
||||
)
|
||||
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
||||
self.mlp = ABCMLP(
|
||||
hidden_size=config.hidden_size,
|
||||
hidden_ratio=config.hidden_ratio,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
|
||||
use_cache: Optional[bool] = False,
|
||||
output_attentions: Optional[bool] = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.attn_norm(hidden_states)
|
||||
hidden_states, attentions, past_key_values = self.attn(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions
|
||||
)
|
||||
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
outputs = (hidden_states, attentions, past_key_values)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
class ABCPreTrainedModel(PreTrainedModel):
|
||||
|
||||
config_class = ABCConfig
|
||||
supports_gradient_checkpointing = True
|
||||
_no_split_modules = ['ABCBlock']
|
||||
|
||||
def __init__(self, *inputs, **kwargs):
|
||||
super().__init__(*inputs, **kwargs)
|
||||
|
||||
def _init_weights(
|
||||
self,
|
||||
module: nn.Module,
|
||||
rescale_prenorm_residual: bool = True,
|
||||
num_residuals_per_layer: int = 2,
|
||||
):
|
||||
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
||||
# Slightly different from the TF version which uses truncated_normal for initialization
|
||||
# cf https://github.com/pytorch/pytorch/pull/5617
|
||||
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
elif isinstance(module, nn.Embedding):
|
||||
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
|
||||
if rescale_prenorm_residual:
|
||||
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
||||
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
||||
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
||||
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
||||
#
|
||||
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
||||
for name, p in module.named_parameters():
|
||||
if name in ["o_proj.weight", "down_proj.weight"]:
|
||||
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
||||
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
||||
# We need to reinit p since this code could be called multiple times
|
||||
# Having just p *= scale would repeatedly scale it down
|
||||
with torch.no_grad():
|
||||
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
||||
|
||||
|
||||
class ABCModel(ABCPreTrainedModel):
|
||||
|
||||
def __init__(self, config: ABCConfig):
|
||||
super().__init__(config)
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
||||
self.layers = nn.ModuleList([ABCBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embeddings
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.embeddings = value
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None, # noqa
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
if output_attentions:
|
||||
warnings.warn("`ABCModel` does not `output_attentions` now, setting it to `False`.")
|
||||
output_attentions = False
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# retrieve input_ids and inputs_embeds
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
batch_size = input_ids.shape[0]
|
||||
elif inputs_embeds is not None:
|
||||
batch_size = inputs_embeds.shape[0]
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embeddings(input_ids)
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
if use_cache:
|
||||
if past_key_values is None:
|
||||
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
|
||||
if not isinstance(past_key_values, RecurrentCache):
|
||||
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_attns = () if output_attentions else None
|
||||
for layer in self.layers:
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
|
||||
layer.__call__,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
past_key_values,
|
||||
use_cache,
|
||||
output_attentions
|
||||
)
|
||||
else:
|
||||
hidden_states, attentions, past_key_values = layer(
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions
|
||||
)
|
||||
|
||||
if output_attentions:
|
||||
all_attns += (attentions,)
|
||||
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = None
|
||||
if use_cache:
|
||||
next_cache = past_key_values.to_legacy_cache()
|
||||
if not return_dict:
|
||||
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_attns
|
||||
)
|
||||
|
||||
|
||||
class ABCForCausalLM(ABCPreTrainedModel):
|
||||
_tied_weights_keys = ["lm_head.weight"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.model = ABCModel(config)
|
||||
self.vocab_size = config.vocab_size
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.model.embeddings
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.model.embeddings = value
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def set_decoder(self, decoder):
|
||||
self.model = decoder
|
||||
|
||||
def get_decoder(self):
|
||||
return self.model
|
||||
|
||||
def generate(self, *args, **kwargs):
|
||||
try:
|
||||
return super().generate(*args, **kwargs)
|
||||
except AttributeError as exception:
|
||||
if 'past_key_values' in str(exception):
|
||||
raise AttributeError(
|
||||
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
||||
f"which is not supported for {self.__class__.__name__}. "
|
||||
f"Try another generation strategy instead. "
|
||||
f"For the available generation strategies, check this doc: "
|
||||
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
||||
)
|
||||
else:
|
||||
raise exception
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
**kwargs
|
||||
):
|
||||
# only last token for `inputs_ids` if the `past_key_values` is passed along.
|
||||
if past_key_values is not None:
|
||||
if not isinstance(past_key_values, RecurrentCache):
|
||||
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
|
||||
input_ids = input_ids[:, -1:]
|
||||
|
||||
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||||
if inputs_embeds is not None and past_key_values is None:
|
||||
model_inputs = {'inputs_embeds': inputs_embeds}
|
||||
else:
|
||||
model_inputs = {'input_ids': input_ids}
|
||||
model_inputs['past_key_values'] = past_key_values
|
||||
return model_inputs
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
outputs = self.model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
logits = self.lm_head(hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
if self.config.fuse_cross_entropy:
|
||||
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
|
||||
else:
|
||||
loss_fct = nn.CrossEntropyLoss()
|
||||
# Enable model parallelism
|
||||
labels = labels.to(logits.device)
|
||||
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
|
||||
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
@ -1,14 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
||||
|
||||
from fla.models.delta_net.configuration_delta_net import \
|
||||
DeltaNetConfig
|
||||
from fla.models.delta_net.modeling_delta_net import (
|
||||
DeltaNetForCausalLM, DeltaNetModel)
|
||||
|
||||
AutoConfig.register(DeltaNetConfig.model_type, DeltaNetConfig)
|
||||
AutoModel.register(DeltaNetConfig, DeltaNetModel)
|
||||
AutoModelForCausalLM.register(DeltaNetConfig, DeltaNetForCausalLM)
|
||||
|
||||
__all__ = ['DeltaNetConfig', 'DeltaNetForCausalLM', 'DeltaNetModel']
|
@ -1,77 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
|
||||
|
||||
class DeltaNetConfig(PretrainedConfig):
|
||||
|
||||
model_type = 'delta_net'
|
||||
keys_to_ignore_at_inference = ['past_key_values']
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int = 32000,
|
||||
hidden_size: int = 2048,
|
||||
expand_k: int = 1,
|
||||
expand_v: int = 1,
|
||||
use_gate: bool = False,
|
||||
use_short_conv: bool = True,
|
||||
conv_size: int = 4,
|
||||
share_conv_kernel: bool = False,
|
||||
use_rope: bool = False,
|
||||
use_beta: bool = True,
|
||||
use_output_norm: bool = True,
|
||||
hidden_ratio: Optional[int] = 4,
|
||||
intermediate_size: Optional[int] = None,
|
||||
num_hidden_layers: int = 24,
|
||||
num_heads: int = 4,
|
||||
attn_mode: str = "chunk",
|
||||
qk_norm: str = 'l2',
|
||||
qk_activation: str = 'silu',
|
||||
chunk_size: int = 64,
|
||||
hidden_act: str = "swish",
|
||||
max_position_embeddings: int = 2048,
|
||||
rms_norm_eps: float = 1e-6,
|
||||
use_cache: bool = True,
|
||||
pad_token_id: int = None,
|
||||
bos_token_id: int = 1,
|
||||
eos_token_id: int = 2,
|
||||
tie_word_embeddings: bool = False,
|
||||
initializer_range: float = 0.02,
|
||||
fuse_cross_entropy: bool = True,
|
||||
**kwargs
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.expand_k = expand_k
|
||||
self.expand_v = expand_v
|
||||
self.hidden_ratio = hidden_ratio
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_heads = num_heads
|
||||
self.attn_mode = attn_mode
|
||||
self.hidden_act = hidden_act
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.use_cache = use_cache
|
||||
self.initializer_range = initializer_range
|
||||
self.fuse_cross_entropy = fuse_cross_entropy
|
||||
self.use_gate = use_gate
|
||||
self.use_short_conv = use_short_conv
|
||||
self.conv_size = conv_size
|
||||
self.share_conv_kernel = share_conv_kernel
|
||||
self.use_rope = use_rope
|
||||
self.use_beta = use_beta
|
||||
self.use_output_norm = use_output_norm
|
||||
self.qk_norm = qk_norm
|
||||
self.qk_activation = qk_activation
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
@ -1,405 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.utils.checkpoint
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
||||
CausalLMOutputWithPast)
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.utils import logging
|
||||
|
||||
from fla.layers.delta_net import DeltaNet
|
||||
from fla.models.delta_net.configuration_delta_net import DeltaNetConfig
|
||||
from fla.models.utils import RecurrentCache
|
||||
from fla.modules import FusedCrossEntropyLoss, RMSNorm
|
||||
from fla.modules.activations import swiglu_linear
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class DeltaNetMLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
hidden_ratio: Optional[int] = None,
|
||||
intermediate_size: Optional[int] = None,
|
||||
hidden_act: str = 'swish'
|
||||
) -> DeltaNetMLP:
|
||||
super().__init__()
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
# the final number of params is `hidden_ratio * hidden_size^2`
|
||||
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
|
||||
if hidden_ratio is None:
|
||||
hidden_ratio = 4
|
||||
if intermediate_size is None:
|
||||
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
|
||||
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
|
||||
self.hidden_ratio = hidden_ratio
|
||||
self.intermediate_size = intermediate_size
|
||||
|
||||
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
|
||||
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
||||
self.act_fn = ACT2FN[hidden_act]
|
||||
|
||||
def forward(self, x):
|
||||
y = self.gate_proj(x)
|
||||
gate, y = y.chunk(2, -1)
|
||||
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
|
||||
|
||||
|
||||
class DeltaNetBlock(nn.Module):
|
||||
def __init__(self, config: DeltaNetConfig, layer_idx: int):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
|
||||
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.attn = DeltaNet(
|
||||
mode=config.attn_mode,
|
||||
hidden_size=config.hidden_size,
|
||||
expand_k=config.expand_k,
|
||||
expand_v=config.expand_v,
|
||||
num_heads=config.num_heads,
|
||||
use_gate=config.use_gate,
|
||||
use_rope=config.use_rope,
|
||||
use_beta=config.use_beta,
|
||||
use_short_conv=config.use_short_conv,
|
||||
use_output_norm=config.use_output_norm,
|
||||
conv_size=config.conv_size,
|
||||
share_conv_kernel=config.share_conv_kernel,
|
||||
layer_idx=layer_idx,
|
||||
qk_norm=config.qk_norm,
|
||||
qk_activation=config.qk_activation
|
||||
)
|
||||
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.rms_norm_eps)
|
||||
self.mlp = DeltaNetMLP(
|
||||
hidden_size=config.hidden_size,
|
||||
hidden_ratio=config.hidden_ratio,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
|
||||
use_cache: Optional[bool] = False,
|
||||
output_attentions: Optional[bool] = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.attn_norm(hidden_states)
|
||||
hidden_states, attentions, past_key_values = self.attn(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions
|
||||
)
|
||||
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
outputs = (hidden_states, attentions, past_key_values)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
class DeltaNetPreTrainedModel(PreTrainedModel):
|
||||
|
||||
config_class = DeltaNetConfig
|
||||
supports_gradient_checkpointing = True
|
||||
_no_split_modules = ['DeltaNetBlock']
|
||||
|
||||
def __init__(self, *inputs, **kwargs):
|
||||
super().__init__(*inputs, **kwargs)
|
||||
|
||||
def _init_weights(
|
||||
self,
|
||||
module: nn.Module,
|
||||
rescale_prenorm_residual: bool = True,
|
||||
num_residuals_per_layer: int = 2,
|
||||
):
|
||||
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
||||
# Slightly different from the TF version which uses truncated_normal for initialization
|
||||
# cf https://github.com/pytorch/pytorch/pull/5617
|
||||
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
elif isinstance(module, nn.Embedding):
|
||||
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
|
||||
if rescale_prenorm_residual:
|
||||
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
||||
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
||||
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
||||
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
||||
#
|
||||
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
||||
for name, p in module.named_parameters():
|
||||
if name in ["o_proj.weight", "down_proj.weight"]:
|
||||
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
||||
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
||||
# We need to reinit p since this code could be called multiple times
|
||||
# Having just p *= scale would repeatedly scale it down
|
||||
with torch.no_grad():
|
||||
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
||||
|
||||
|
||||
class DeltaNetModel(DeltaNetPreTrainedModel):
|
||||
|
||||
def __init__(self, config: DeltaNetConfig):
|
||||
super().__init__(config)
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
||||
self.layers = nn.ModuleList([DeltaNetBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embeddings
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.embeddings = value
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None, # noqa
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
if output_attentions:
|
||||
warnings.warn("`DeltaNetModel` does not `output_attentions` now, setting it to `False`.")
|
||||
output_attentions = False
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# retrieve input_ids and inputs_embeds
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
batch_size = input_ids.shape[0]
|
||||
elif inputs_embeds is not None:
|
||||
batch_size = inputs_embeds.shape[0]
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embeddings(input_ids)
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
if use_cache:
|
||||
if past_key_values is None:
|
||||
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
|
||||
if not isinstance(past_key_values, RecurrentCache):
|
||||
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_attns = () if output_attentions else None
|
||||
for layer in self.layers:
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
|
||||
layer.__call__,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
past_key_values,
|
||||
use_cache,
|
||||
output_attentions
|
||||
)
|
||||
else:
|
||||
hidden_states, attentions, past_key_values = layer(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions
|
||||
)
|
||||
|
||||
if output_attentions:
|
||||
all_attns += (attentions,)
|
||||
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = past_key_values
|
||||
# if use_cache:
|
||||
# next_cache = past_key_values.to_legacy_cache()
|
||||
if not return_dict:
|
||||
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_attns
|
||||
)
|
||||
|
||||
|
||||
class DeltaNetForCausalLM(DeltaNetPreTrainedModel):
|
||||
_tied_weights_keys = ["lm_head.weight"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.model = DeltaNetModel(config)
|
||||
self.vocab_size = config.vocab_size
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.model.embeddings
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.model.embeddings = value
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def set_decoder(self, decoder):
|
||||
self.model = decoder
|
||||
|
||||
def get_decoder(self):
|
||||
return self.model
|
||||
|
||||
def generate(self, *args, **kwargs):
|
||||
try:
|
||||
return super().generate(*args, **kwargs)
|
||||
except AttributeError as exception:
|
||||
if 'past_key_values' in str(exception):
|
||||
raise AttributeError(
|
||||
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
||||
f"which is not supported for {self.__class__.__name__}. "
|
||||
f"Try another generation strategy instead. "
|
||||
f"For the available generation strategies, check this doc: "
|
||||
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
||||
)
|
||||
else:
|
||||
raise exception
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
**kwargs
|
||||
):
|
||||
# only last token for `inputs_ids` if the `past_key_values` is passed along.
|
||||
if past_key_values is not None:
|
||||
if not isinstance(past_key_values, RecurrentCache):
|
||||
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
|
||||
# breakpoint()
|
||||
input_ids, attention_mask = input_ids[:, -1:], attention_mask[:, -1:]
|
||||
|
||||
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||||
if inputs_embeds is not None and past_key_values is None:
|
||||
model_inputs = {'inputs_embeds': inputs_embeds}
|
||||
else:
|
||||
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
||||
# recompiles graphs as the stride of the inputs is a guard.
|
||||
# Ref: https://github.com/huggingface/transformers/pull/29114
|
||||
# TODO: use `next_tokens` directly instead.
|
||||
model_inputs = {'input_ids': input_ids.contiguous()}
|
||||
|
||||
model_inputs.update({
|
||||
'past_key_values': past_key_values,
|
||||
'use_cache': kwargs.get('use_cache'),
|
||||
'attention_mask': attention_mask,
|
||||
})
|
||||
return model_inputs
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
outputs = self.model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
logits = self.lm_head(hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
if self.config.fuse_cross_entropy:
|
||||
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
|
||||
else:
|
||||
loss_fct = nn.CrossEntropyLoss()
|
||||
# Enable model parallelism
|
||||
labels = labels.to(logits.device)
|
||||
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
|
||||
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
13
finetune/lora/v6/fla/models/gla/__init__.py
vendored
13
finetune/lora/v6/fla/models/gla/__init__.py
vendored
@ -1,13 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
||||
|
||||
from fla.models.gla.configuration_gla import GLAConfig
|
||||
from fla.models.gla.modeling_gla import GLAForCausalLM, GLAModel
|
||||
|
||||
AutoConfig.register(GLAConfig.model_type, GLAConfig)
|
||||
AutoModel.register(GLAConfig, GLAModel)
|
||||
AutoModelForCausalLM.register(GLAConfig, GLAForCausalLM)
|
||||
|
||||
|
||||
__all__ = ['GLAConfig', 'GLAForCausalLM', 'GLAModel']
|
@ -1,80 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
|
||||
|
||||
class GLAConfig(PretrainedConfig):
|
||||
|
||||
model_type = 'gla'
|
||||
keys_to_ignore_at_inference = ['past_key_values']
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int = 32000,
|
||||
hidden_size: int = 2048,
|
||||
expand_k: int = 0.5,
|
||||
expand_v: int = 1,
|
||||
hidden_ratio: Optional[int] = 4,
|
||||
intermediate_size: Optional[int] = None,
|
||||
num_hidden_layers: int = 24,
|
||||
num_heads: int = 4,
|
||||
num_kv_heads: Optional[int] = None,
|
||||
feature_map: Optional[str] = None,
|
||||
attn_mode: str = "chunk",
|
||||
use_short_conv: bool = False,
|
||||
conv_size: int = 4,
|
||||
share_conv_kernel: bool = True,
|
||||
use_output_gate: bool = True,
|
||||
clamp_min: Optional[float] = None,
|
||||
hidden_act: str = "swish",
|
||||
max_position_embeddings: int = 2048,
|
||||
elementwise_affine: Optional[bool] = True,
|
||||
norm_eps: float = 1e-6,
|
||||
use_gk: bool = True,
|
||||
use_gv: bool = False,
|
||||
use_cache: bool = True,
|
||||
pad_token_id: int = None,
|
||||
bos_token_id: int = 1,
|
||||
eos_token_id: int = 2,
|
||||
tie_word_embeddings: bool = False,
|
||||
initializer_range: float = 0.02,
|
||||
fuse_norm: bool = True,
|
||||
fuse_cross_entropy: bool = True,
|
||||
**kwargs
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.expand_k = expand_k
|
||||
self.expand_v = expand_v
|
||||
self.hidden_ratio = hidden_ratio
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_heads = num_heads
|
||||
self.num_kv_heads = num_kv_heads
|
||||
self.feature_map = feature_map
|
||||
self.attn_mode = attn_mode
|
||||
self.clamp_min = clamp_min
|
||||
self.hidden_act = hidden_act
|
||||
self.elementwise_affine = elementwise_affine
|
||||
self.norm_eps = norm_eps
|
||||
self.use_gk = use_gk
|
||||
self.use_gv = use_gv
|
||||
self.use_cache = use_cache
|
||||
self.initializer_range = initializer_range
|
||||
self.fuse_norm = fuse_norm
|
||||
self.fuse_cross_entropy = fuse_cross_entropy
|
||||
self.use_short_conv = use_short_conv
|
||||
self.conv_size = conv_size
|
||||
self.share_conv_kernel = share_conv_kernel
|
||||
self.use_output_gate = use_output_gate
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
403
finetune/lora/v6/fla/models/gla/modeling_gla.py
vendored
403
finetune/lora/v6/fla/models/gla/modeling_gla.py
vendored
@ -1,403 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.utils.checkpoint
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
||||
CausalLMOutputWithPast)
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.utils import logging
|
||||
|
||||
from fla.layers.gla import GatedLinearAttention
|
||||
from fla.models.gla.configuration_gla import GLAConfig
|
||||
from fla.models.utils import RecurrentCache
|
||||
from fla.modules import FusedCrossEntropyLoss, RMSNorm
|
||||
from fla.modules.activations import swiglu_linear
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class GLAMLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
hidden_ratio: Optional[int] = None,
|
||||
intermediate_size: Optional[int] = None,
|
||||
hidden_act: str = 'swish'
|
||||
) -> GLAMLP:
|
||||
super().__init__()
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
# the final number of params is `hidden_ratio * hidden_size^2`
|
||||
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
|
||||
if hidden_ratio is None:
|
||||
hidden_ratio = 4
|
||||
if intermediate_size is None:
|
||||
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
|
||||
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
|
||||
self.hidden_ratio = hidden_ratio
|
||||
self.intermediate_size = intermediate_size
|
||||
|
||||
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
|
||||
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
||||
self.act_fn = ACT2FN[hidden_act]
|
||||
|
||||
def forward(self, x):
|
||||
y = self.gate_proj(x)
|
||||
gate, y = y.chunk(2, -1)
|
||||
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
|
||||
|
||||
|
||||
class GLABlock(nn.Module):
|
||||
def __init__(self, config: GLAConfig, layer_idx: int):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
|
||||
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
||||
self.attn = GatedLinearAttention(
|
||||
mode=config.attn_mode,
|
||||
hidden_size=config.hidden_size,
|
||||
expand_k=config.expand_k,
|
||||
expand_v=config.expand_v,
|
||||
num_heads=config.num_heads,
|
||||
num_kv_heads=config.num_kv_heads,
|
||||
feature_map=config.feature_map,
|
||||
use_short_conv=config.use_short_conv,
|
||||
conv_size=config.conv_size,
|
||||
share_conv_kernel=config.share_conv_kernel,
|
||||
use_output_gate=config.use_output_gate,
|
||||
gate_fn=config.hidden_act,
|
||||
elementwise_affine=config.elementwise_affine,
|
||||
norm_eps=config.norm_eps,
|
||||
clamp_min=config.clamp_min,
|
||||
fuse_norm=config.fuse_norm,
|
||||
layer_idx=layer_idx
|
||||
)
|
||||
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
||||
self.mlp = GLAMLP(
|
||||
hidden_size=config.hidden_size,
|
||||
hidden_ratio=config.hidden_ratio,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
|
||||
use_cache: Optional[bool] = False,
|
||||
output_attentions: Optional[bool] = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
residual = hidden_states
|
||||
hidden_states = self.attn_norm(hidden_states)
|
||||
hidden_states, attentions, past_key_values = self.attn(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions
|
||||
)
|
||||
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
outputs = (hidden_states, attentions, past_key_values)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
class GLAPreTrainedModel(PreTrainedModel):
|
||||
|
||||
config_class = GLAConfig
|
||||
supports_gradient_checkpointing = True
|
||||
_no_split_modules = ['GLABlock']
|
||||
|
||||
def __init__(self, *inputs, **kwargs):
|
||||
super().__init__(*inputs, **kwargs)
|
||||
|
||||
def _init_weights(
|
||||
self,
|
||||
module: nn.Module,
|
||||
rescale_prenorm_residual: bool = True,
|
||||
num_residuals_per_layer: int = 2,
|
||||
):
|
||||
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
||||
# Slightly different from the TF version which uses truncated_normal for initialization
|
||||
# cf https://github.com/pytorch/pytorch/pull/5617
|
||||
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
elif isinstance(module, nn.Embedding):
|
||||
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
|
||||
if rescale_prenorm_residual:
|
||||
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
||||
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
||||
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
||||
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
||||
#
|
||||
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
||||
for name, p in module.named_parameters():
|
||||
if name in ["o_proj.weight", "down_proj.weight"]:
|
||||
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
||||
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
||||
# We need to reinit p since this code could be called multiple times
|
||||
# Having just p *= scale would repeatedly scale it down
|
||||
with torch.no_grad():
|
||||
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
||||
|
||||
|
||||
class GLAModel(GLAPreTrainedModel):
|
||||
|
||||
def __init__(self, config: GLAConfig):
|
||||
super().__init__(config)
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
||||
self.layers = nn.ModuleList([GLABlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embeddings
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.embeddings = value
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None, # noqa
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
if output_attentions:
|
||||
warnings.warn("`GLAModel` does not `output_attentions` now, setting it to `False`.")
|
||||
output_attentions = False
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# retrieve input_ids and inputs_embeds
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
batch_size = input_ids.shape[0]
|
||||
elif inputs_embeds is not None:
|
||||
batch_size = inputs_embeds.shape[0]
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embeddings(input_ids)
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
if use_cache:
|
||||
if past_key_values is None:
|
||||
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
|
||||
if not isinstance(past_key_values, RecurrentCache):
|
||||
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_attns = () if output_attentions else None
|
||||
for layer in self.layers:
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
|
||||
layer.__call__,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
past_key_values,
|
||||
use_cache,
|
||||
output_attentions
|
||||
)
|
||||
else:
|
||||
hidden_states, attentions, past_key_values = layer(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions
|
||||
)
|
||||
|
||||
if output_attentions:
|
||||
all_attns += (attentions,)
|
||||
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = None
|
||||
if use_cache:
|
||||
next_cache = past_key_values.to_legacy_cache()
|
||||
if not return_dict:
|
||||
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_attns
|
||||
)
|
||||
|
||||
|
||||
class GLAForCausalLM(GLAPreTrainedModel):
|
||||
_tied_weights_keys = ["lm_head.weight"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.model = GLAModel(config)
|
||||
self.vocab_size = config.vocab_size
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.model.embeddings
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.model.embeddings = value
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def set_decoder(self, decoder):
|
||||
self.model = decoder
|
||||
|
||||
def get_decoder(self):
|
||||
return self.model
|
||||
|
||||
def generate(self, *args, **kwargs):
|
||||
try:
|
||||
return super().generate(*args, **kwargs)
|
||||
except AttributeError as exception:
|
||||
if 'past_key_values' in str(exception):
|
||||
raise AttributeError(
|
||||
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
||||
f"which is not supported for {self.__class__.__name__}. "
|
||||
f"Try another generation strategy instead. "
|
||||
f"For the available generation strategies, check this doc: "
|
||||
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
||||
)
|
||||
else:
|
||||
raise exception
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
**kwargs
|
||||
):
|
||||
# only last token for `inputs_ids` if the `past_key_values` is passed along.
|
||||
if past_key_values is not None:
|
||||
if not isinstance(past_key_values, RecurrentCache):
|
||||
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
|
||||
input_ids, attention_mask = input_ids[:, -1:], attention_mask[:, -1:]
|
||||
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||||
if inputs_embeds is not None and past_key_values is None:
|
||||
model_inputs = {'inputs_embeds': inputs_embeds}
|
||||
else:
|
||||
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
||||
# recompiles graphs as the stride of the inputs is a guard.
|
||||
# Ref: https://github.com/huggingface/transformers/pull/29114
|
||||
# TODO: use `next_tokens` directly instead.
|
||||
model_inputs = {'input_ids': input_ids.contiguous()}
|
||||
|
||||
model_inputs.update({
|
||||
'past_key_values': past_key_values,
|
||||
'use_cache': kwargs.get('use_cache'),
|
||||
'attention_mask': attention_mask,
|
||||
})
|
||||
return model_inputs
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
outputs = self.model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
logits = self.lm_head(hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
if self.config.fuse_cross_entropy:
|
||||
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
|
||||
else:
|
||||
loss_fct = nn.CrossEntropyLoss()
|
||||
# Enable model parallelism
|
||||
labels = labels.to(logits.device)
|
||||
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
|
||||
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
13
finetune/lora/v6/fla/models/hgrn/__init__.py
vendored
13
finetune/lora/v6/fla/models/hgrn/__init__.py
vendored
@ -1,13 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
||||
|
||||
from fla.models.hgrn.configuration_hgrn import HGRNConfig
|
||||
from fla.models.hgrn.modeling_hgrn import HGRNForCausalLM, HGRNModel
|
||||
|
||||
AutoConfig.register(HGRNConfig.model_type, HGRNConfig)
|
||||
AutoModel.register(HGRNConfig, HGRNModel)
|
||||
AutoModelForCausalLM.register(HGRNConfig, HGRNForCausalLM)
|
||||
|
||||
|
||||
__all__ = ['HGRNConfig', 'HGRNForCausalLM', 'HGRNModel']
|
@ -1,66 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
|
||||
|
||||
class HGRNConfig(PretrainedConfig):
|
||||
|
||||
model_type = 'hgrn'
|
||||
keys_to_ignore_at_inference = ['past_key_values']
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
attn_mode: str = "chunk",
|
||||
vocab_size: int = 32000,
|
||||
hidden_size: int = 2048,
|
||||
num_hidden_layers: int = 24,
|
||||
num_heads: Optional[int] = 1,
|
||||
expand_ratio: Optional[int] = 1,
|
||||
use_short_conv: bool = False,
|
||||
conv_size: int = 4,
|
||||
share_conv_kernel: bool = True,
|
||||
use_lower_bound: bool = True,
|
||||
hidden_ratio: Optional[int] = 4,
|
||||
intermediate_size: Optional[int] = None,
|
||||
hidden_act: str = "swish",
|
||||
max_position_embeddings: int = 2048,
|
||||
elementwise_affine: Optional[bool] = True,
|
||||
norm_eps: float = 1e-6,
|
||||
use_cache: bool = True,
|
||||
pad_token_id: int = None,
|
||||
bos_token_id: int = 1,
|
||||
eos_token_id: int = 2,
|
||||
tie_word_embeddings: bool = False,
|
||||
initializer_range: float = 0.02,
|
||||
fuse_cross_entropy: bool = True,
|
||||
**kwargs
|
||||
):
|
||||
self.attn_mode = attn_mode
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_heads = num_heads
|
||||
self.expand_ratio = expand_ratio
|
||||
self.use_short_conv = use_short_conv
|
||||
self.conv_size = conv_size
|
||||
self.share_conv_kernel = share_conv_kernel
|
||||
self.use_lower_bound = use_lower_bound
|
||||
self.hidden_ratio = hidden_ratio
|
||||
self.intermediate_size = intermediate_size
|
||||
self.hidden_act = hidden_act
|
||||
self.elementwise_affine = elementwise_affine
|
||||
self.norm_eps = norm_eps
|
||||
self.use_cache = use_cache
|
||||
self.initializer_range = initializer_range
|
||||
self.fuse_cross_entropy = fuse_cross_entropy
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
407
finetune/lora/v6/fla/models/hgrn/modeling_hgrn.py
vendored
407
finetune/lora/v6/fla/models/hgrn/modeling_hgrn.py
vendored
@ -1,407 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.utils.checkpoint
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
||||
CausalLMOutputWithPast)
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.utils import logging
|
||||
|
||||
from fla.layers.hgrn import HGRNAttention
|
||||
from fla.models.hgrn.configuration_hgrn import HGRNConfig
|
||||
from fla.models.utils import RecurrentCache
|
||||
from fla.modules import FusedCrossEntropyLoss, RMSNorm
|
||||
from fla.modules.activations import swiglu_linear
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class HGRNMLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
hidden_ratio: Optional[int] = None,
|
||||
intermediate_size: Optional[int] = None,
|
||||
hidden_act: str = 'swish'
|
||||
) -> HGRNMLP:
|
||||
super().__init__()
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
# the final number of params is `hidden_ratio * hidden_size^2`
|
||||
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
|
||||
if hidden_ratio is None:
|
||||
hidden_ratio = 4
|
||||
if intermediate_size is None:
|
||||
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
|
||||
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
|
||||
self.hidden_ratio = hidden_ratio
|
||||
self.intermediate_size = intermediate_size
|
||||
|
||||
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
|
||||
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
||||
self.act_fn = ACT2FN[hidden_act]
|
||||
|
||||
def forward(self, x):
|
||||
y = self.gate_proj(x)
|
||||
gate, y = y.chunk(2, -1)
|
||||
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
|
||||
|
||||
|
||||
class HGRNBlock(nn.Module):
|
||||
def __init__(self, config: HGRNConfig, layer_idx: int):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
|
||||
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
||||
self.attn = HGRNAttention(
|
||||
mode=config.attn_mode,
|
||||
hidden_size=config.hidden_size,
|
||||
num_heads=config.num_heads,
|
||||
expand_ratio=config.expand_ratio,
|
||||
use_short_conv=config.use_short_conv,
|
||||
conv_size=config.conv_size,
|
||||
share_conv_kernel=config.share_conv_kernel,
|
||||
elementwise_affine=config.elementwise_affine,
|
||||
norm_eps=config.norm_eps,
|
||||
layer_idx=layer_idx
|
||||
)
|
||||
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
||||
self.mlp = HGRNMLP(
|
||||
hidden_size=config.hidden_size,
|
||||
hidden_ratio=config.hidden_ratio,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
|
||||
use_cache: Optional[bool] = False,
|
||||
output_attentions: Optional[bool] = False,
|
||||
lower_bound: Optional[torch.Tensor] = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
residual = hidden_states
|
||||
hidden_states = self.attn_norm(hidden_states)
|
||||
hidden_states, attentions, past_key_values = self.attn(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
lower_bound=lower_bound
|
||||
)
|
||||
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
outputs = (hidden_states, attentions, past_key_values)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
class HGRNPreTrainedModel(PreTrainedModel):
|
||||
|
||||
config_class = HGRNConfig
|
||||
supports_gradient_checkpointing = True
|
||||
_no_split_modules = ['HGRNBlock']
|
||||
|
||||
def __init__(self, *inputs, **kwargs):
|
||||
super().__init__(*inputs, **kwargs)
|
||||
|
||||
def _init_weights(
|
||||
self,
|
||||
module: nn.Module,
|
||||
rescale_prenorm_residual: bool = True,
|
||||
num_residuals_per_layer: int = 2,
|
||||
):
|
||||
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
||||
# Slightly different from the TF version which uses truncated_normal for initialization
|
||||
# cf https://github.com/pytorch/pytorch/pull/5617
|
||||
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
elif isinstance(module, nn.Embedding):
|
||||
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
|
||||
if rescale_prenorm_residual:
|
||||
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
||||
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
||||
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
||||
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
||||
#
|
||||
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
||||
for name, p in module.named_parameters():
|
||||
if name in ["o_proj.weight", "down_proj.weight"]:
|
||||
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
||||
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
||||
# We need to reinit p since this code could be called multiple times
|
||||
# Having just p *= scale would repeatedly scale it down
|
||||
with torch.no_grad():
|
||||
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
||||
|
||||
|
||||
class HGRNModel(HGRNPreTrainedModel):
|
||||
|
||||
def __init__(self, config: HGRNConfig):
|
||||
super().__init__(config)
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
||||
if config.use_lower_bound:
|
||||
self.lower_bounds = nn.Parameter(torch.zeros(config.num_hidden_layers, config.hidden_size))
|
||||
self.layers = nn.ModuleList([HGRNBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embeddings
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.embeddings = value
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None, # noqa
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
if output_attentions:
|
||||
warnings.warn("`HGRNModel` does not `output_attentions` now, setting it to `False`.")
|
||||
output_attentions = False
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# retrieve input_ids and inputs_embeds
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
batch_size = input_ids.shape[0]
|
||||
elif inputs_embeds is not None:
|
||||
batch_size = inputs_embeds.shape[0]
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embeddings(input_ids)
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
if use_cache:
|
||||
if past_key_values is None:
|
||||
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
|
||||
if not isinstance(past_key_values, RecurrentCache):
|
||||
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_attns = () if output_attentions else None
|
||||
|
||||
if self.config.use_lower_bound:
|
||||
lower_bounds = self.lower_bounds.softmax(0)
|
||||
lower_bounds = lower_bounds.cumsum(0) - lower_bounds[0]
|
||||
for i, layer in enumerate(self.layers):
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
lower_bound = lower_bounds[i] if self.config.use_lower_bound else None
|
||||
if self.gradient_checkpointing and self.training:
|
||||
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
|
||||
layer.__call__,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
past_key_values,
|
||||
use_cache,
|
||||
output_attentions,
|
||||
lower_bound
|
||||
)
|
||||
else:
|
||||
hidden_states, attentions, past_key_values = layer(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
lower_bound=lower_bound
|
||||
)
|
||||
|
||||
if output_attentions:
|
||||
all_attns += (attentions,)
|
||||
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = None
|
||||
if use_cache:
|
||||
next_cache = past_key_values.to_legacy_cache()
|
||||
if not return_dict:
|
||||
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_attns
|
||||
)
|
||||
|
||||
|
||||
class HGRNForCausalLM(HGRNPreTrainedModel):
|
||||
_tied_weights_keys = ["lm_head.weight"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.model = HGRNModel(config)
|
||||
self.vocab_size = config.vocab_size
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.model.embeddings
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.model.embeddings = value
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def set_decoder(self, decoder):
|
||||
self.model = decoder
|
||||
|
||||
def get_decoder(self):
|
||||
return self.model
|
||||
|
||||
def generate(self, *args, **kwargs):
|
||||
try:
|
||||
return super().generate(*args, **kwargs)
|
||||
except AttributeError as exception:
|
||||
if 'past_key_values' in str(exception):
|
||||
raise AttributeError(
|
||||
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
||||
f"which is not supported for {self.__class__.__name__}. "
|
||||
f"Try another generation strategy instead. "
|
||||
f"For the available generation strategies, check this doc: "
|
||||
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
||||
)
|
||||
else:
|
||||
raise exception
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
**kwargs
|
||||
):
|
||||
# only last token for `inputs_ids` if the `past_key_values` is passed along.
|
||||
if past_key_values is not None:
|
||||
if not isinstance(past_key_values, RecurrentCache):
|
||||
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
|
||||
input_ids, attention_mask = input_ids[:, -1:], attention_mask[:, -1:]
|
||||
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||||
if inputs_embeds is not None and past_key_values is None:
|
||||
model_inputs = {'inputs_embeds': inputs_embeds}
|
||||
else:
|
||||
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
||||
# recompiles graphs as the stride of the inputs is a guard.
|
||||
# Ref: https://github.com/huggingface/transformers/pull/29114
|
||||
# TODO: use `next_tokens` directly instead.
|
||||
model_inputs = {'input_ids': input_ids.contiguous()}
|
||||
|
||||
model_inputs.update({
|
||||
'past_key_values': past_key_values,
|
||||
'use_cache': kwargs.get('use_cache'),
|
||||
'attention_mask': attention_mask,
|
||||
})
|
||||
return model_inputs
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
outputs = self.model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
logits = self.lm_head(hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
if self.config.fuse_cross_entropy:
|
||||
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
|
||||
else:
|
||||
loss_fct = nn.CrossEntropyLoss()
|
||||
# Enable model parallelism
|
||||
labels = labels.to(logits.device)
|
||||
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
|
||||
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
13
finetune/lora/v6/fla/models/hgrn2/__init__.py
vendored
13
finetune/lora/v6/fla/models/hgrn2/__init__.py
vendored
@ -1,13 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
||||
|
||||
from fla.models.hgrn2.configuration_hgrn2 import HGRN2Config
|
||||
from fla.models.hgrn2.modeling_hgrn2 import HGRN2ForCausalLM, HGRN2Model
|
||||
|
||||
AutoConfig.register(HGRN2Config.model_type, HGRN2Config)
|
||||
AutoModel.register(HGRN2Config, HGRN2Model)
|
||||
AutoModelForCausalLM.register(HGRN2Config, HGRN2ForCausalLM)
|
||||
|
||||
|
||||
__all__ = ['HGRN2Config', 'HGRN2ForCausalLM', 'HGRN2Model']
|
@ -1,66 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
|
||||
|
||||
class HGRN2Config(PretrainedConfig):
|
||||
|
||||
model_type = 'hgrn2'
|
||||
keys_to_ignore_at_inference = ['past_key_values']
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int = 32000,
|
||||
hidden_size: int = 2048,
|
||||
num_hidden_layers: int = 24,
|
||||
attn_mode: str = "chunk",
|
||||
num_heads: Optional[int] = None,
|
||||
expand_ratio: Optional[int] = 128,
|
||||
use_short_conv: bool = False,
|
||||
conv_size: int = 4,
|
||||
share_conv_kernel: bool = True,
|
||||
use_lower_bound: bool = True,
|
||||
hidden_ratio: Optional[int] = 4,
|
||||
intermediate_size: Optional[int] = None,
|
||||
hidden_act: str = "swish",
|
||||
max_position_embeddings: int = 2048,
|
||||
elementwise_affine: Optional[bool] = True,
|
||||
norm_eps: float = 1e-6,
|
||||
use_cache: bool = True,
|
||||
pad_token_id: int = None,
|
||||
bos_token_id: int = 1,
|
||||
eos_token_id: int = 2,
|
||||
tie_word_embeddings: bool = False,
|
||||
initializer_range: float = 0.02,
|
||||
fuse_cross_entropy: bool = True,
|
||||
**kwargs
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.attn_mode = attn_mode
|
||||
self.num_heads = num_heads
|
||||
self.expand_ratio = expand_ratio
|
||||
self.use_short_conv = use_short_conv
|
||||
self.conv_size = conv_size
|
||||
self.share_conv_kernel = share_conv_kernel
|
||||
self.use_lower_bound = use_lower_bound
|
||||
self.hidden_ratio = hidden_ratio
|
||||
self.intermediate_size = intermediate_size
|
||||
self.hidden_act = hidden_act
|
||||
self.elementwise_affine = elementwise_affine
|
||||
self.norm_eps = norm_eps
|
||||
self.use_cache = use_cache
|
||||
self.initializer_range = initializer_range
|
||||
self.fuse_cross_entropy = fuse_cross_entropy
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
407
finetune/lora/v6/fla/models/hgrn2/modeling_hgrn2.py
vendored
407
finetune/lora/v6/fla/models/hgrn2/modeling_hgrn2.py
vendored
@ -1,407 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.utils.checkpoint
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
||||
CausalLMOutputWithPast)
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.utils import logging
|
||||
|
||||
from fla.layers.hgrn2 import HGRN2Attention
|
||||
from fla.models.hgrn2.configuration_hgrn2 import HGRN2Config
|
||||
from fla.models.utils import RecurrentCache
|
||||
from fla.modules import FusedCrossEntropyLoss, RMSNorm
|
||||
from fla.modules.activations import swiglu_linear
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class HGRN2MLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
hidden_ratio: Optional[int] = None,
|
||||
intermediate_size: Optional[int] = None,
|
||||
hidden_act: str = 'swish'
|
||||
) -> HGRN2MLP:
|
||||
super().__init__()
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
# the final number of params is `hidden_ratio * hidden_size^2`
|
||||
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
|
||||
if hidden_ratio is None:
|
||||
hidden_ratio = 4
|
||||
if intermediate_size is None:
|
||||
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
|
||||
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
|
||||
self.hidden_ratio = hidden_ratio
|
||||
self.intermediate_size = intermediate_size
|
||||
|
||||
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
|
||||
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
||||
self.act_fn = ACT2FN[hidden_act]
|
||||
|
||||
def forward(self, x):
|
||||
y = self.gate_proj(x)
|
||||
gate, y = y.chunk(2, -1)
|
||||
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
|
||||
|
||||
|
||||
class HGRN2Block(nn.Module):
|
||||
def __init__(self, config: HGRN2Config, layer_idx: int):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
|
||||
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
||||
self.attn = HGRN2Attention(
|
||||
mode=config.attn_mode,
|
||||
hidden_size=config.hidden_size,
|
||||
num_heads=config.num_heads,
|
||||
expand_ratio=config.expand_ratio,
|
||||
use_short_conv=config.use_short_conv,
|
||||
conv_size=config.conv_size,
|
||||
share_conv_kernel=config.share_conv_kernel,
|
||||
elementwise_affine=config.elementwise_affine,
|
||||
norm_eps=config.norm_eps,
|
||||
layer_idx=layer_idx
|
||||
)
|
||||
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
||||
self.mlp = HGRN2MLP(
|
||||
hidden_size=config.hidden_size,
|
||||
hidden_ratio=config.hidden_ratio,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
|
||||
use_cache: Optional[bool] = False,
|
||||
output_attentions: Optional[bool] = False,
|
||||
lower_bound: Optional[torch.Tensor] = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
residual = hidden_states
|
||||
hidden_states = self.attn_norm(hidden_states)
|
||||
hidden_states, attentions, past_key_values = self.attn(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
lower_bound=lower_bound
|
||||
)
|
||||
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
outputs = (hidden_states, attentions, past_key_values)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
class HGRN2PreTrainedModel(PreTrainedModel):
|
||||
|
||||
config_class = HGRN2Config
|
||||
supports_gradient_checkpointing = True
|
||||
_no_split_modules = ['HGRN2Block']
|
||||
|
||||
def __init__(self, *inputs, **kwargs):
|
||||
super().__init__(*inputs, **kwargs)
|
||||
|
||||
def _init_weights(
|
||||
self,
|
||||
module: nn.Module,
|
||||
rescale_prenorm_residual: bool = True,
|
||||
num_residuals_per_layer: int = 2,
|
||||
):
|
||||
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
||||
# Slightly different from the TF version which uses truncated_normal for initialization
|
||||
# cf https://github.com/pytorch/pytorch/pull/5617
|
||||
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
elif isinstance(module, nn.Embedding):
|
||||
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
|
||||
if rescale_prenorm_residual:
|
||||
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
||||
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
||||
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
||||
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
||||
#
|
||||
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
||||
for name, p in module.named_parameters():
|
||||
if name in ["o_proj.weight", "down_proj.weight"]:
|
||||
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
||||
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
||||
# We need to reinit p since this code could be called multiple times
|
||||
# Having just p *= scale would repeatedly scale it down
|
||||
with torch.no_grad():
|
||||
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
||||
|
||||
|
||||
class HGRN2Model(HGRN2PreTrainedModel):
|
||||
|
||||
def __init__(self, config: HGRN2Config):
|
||||
super().__init__(config)
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
||||
if config.use_lower_bound:
|
||||
self.lower_bounds = nn.Parameter(torch.zeros(config.num_hidden_layers, config.hidden_size))
|
||||
self.layers = nn.ModuleList([HGRN2Block(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embeddings
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.embeddings = value
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None, # noqa
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
if output_attentions:
|
||||
warnings.warn("`HGRN2Model` does not `output_attentions` now, setting it to `False`.")
|
||||
output_attentions = False
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# retrieve input_ids and inputs_embeds
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
batch_size = input_ids.shape[0]
|
||||
elif inputs_embeds is not None:
|
||||
batch_size = inputs_embeds.shape[0]
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embeddings(input_ids)
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
if use_cache:
|
||||
if past_key_values is None:
|
||||
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
|
||||
if not isinstance(past_key_values, RecurrentCache):
|
||||
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_attns = () if output_attentions else None
|
||||
|
||||
if self.config.use_lower_bound:
|
||||
lower_bounds = self.lower_bounds.softmax(0)
|
||||
lower_bounds = lower_bounds.cumsum(0) - lower_bounds[0]
|
||||
for i, layer in enumerate(self.layers):
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
lower_bound = lower_bounds[i] if self.config.use_lower_bound else None
|
||||
if self.gradient_checkpointing and self.training:
|
||||
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
|
||||
layer.__call__,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
past_key_values,
|
||||
use_cache,
|
||||
output_attentions,
|
||||
lower_bound
|
||||
)
|
||||
else:
|
||||
hidden_states, attentions, past_key_values = layer(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
lower_bound=lower_bound
|
||||
)
|
||||
|
||||
if output_attentions:
|
||||
all_attns += (attentions,)
|
||||
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = None
|
||||
if use_cache:
|
||||
next_cache = past_key_values.to_legacy_cache()
|
||||
if not return_dict:
|
||||
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_attns
|
||||
)
|
||||
|
||||
|
||||
class HGRN2ForCausalLM(HGRN2PreTrainedModel):
|
||||
_tied_weights_keys = ["lm_head.weight"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.model = HGRN2Model(config)
|
||||
self.vocab_size = config.vocab_size
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.model.embeddings
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.model.embeddings = value
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def set_decoder(self, decoder):
|
||||
self.model = decoder
|
||||
|
||||
def get_decoder(self):
|
||||
return self.model
|
||||
|
||||
def generate(self, *args, **kwargs):
|
||||
try:
|
||||
return super().generate(*args, **kwargs)
|
||||
except AttributeError as exception:
|
||||
if 'past_key_values' in str(exception):
|
||||
raise AttributeError(
|
||||
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
||||
f"which is not supported for {self.__class__.__name__}. "
|
||||
f"Try another generation strategy instead. "
|
||||
f"For the available generation strategies, check this doc: "
|
||||
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
||||
)
|
||||
else:
|
||||
raise exception
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
**kwargs
|
||||
):
|
||||
# only last token for `inputs_ids` if the `past_key_values` is passed along.
|
||||
if past_key_values is not None:
|
||||
if not isinstance(past_key_values, RecurrentCache):
|
||||
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
|
||||
input_ids, attention_mask = input_ids[:, -1:], attention_mask[:, -1:]
|
||||
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||||
if inputs_embeds is not None and past_key_values is None:
|
||||
model_inputs = {'inputs_embeds': inputs_embeds}
|
||||
else:
|
||||
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
||||
# recompiles graphs as the stride of the inputs is a guard.
|
||||
# Ref: https://github.com/huggingface/transformers/pull/29114
|
||||
# TODO: use `next_tokens` directly instead.
|
||||
model_inputs = {'input_ids': input_ids.contiguous()}
|
||||
|
||||
model_inputs.update({
|
||||
'past_key_values': past_key_values,
|
||||
'use_cache': kwargs.get('use_cache'),
|
||||
'attention_mask': attention_mask,
|
||||
})
|
||||
return model_inputs
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
outputs = self.model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
logits = self.lm_head(hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
if self.config.fuse_cross_entropy:
|
||||
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
|
||||
else:
|
||||
loss_fct = nn.CrossEntropyLoss()
|
||||
# Enable model parallelism
|
||||
labels = labels.to(logits.device)
|
||||
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
|
||||
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
@ -1,14 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
||||
|
||||
from fla.models.linear_attn.configuration_linear_attn import \
|
||||
LinearAttentionConfig
|
||||
from fla.models.linear_attn.modeling_linear_attn import (
|
||||
LinearAttentionForCausalLM, LinearAttentionModel)
|
||||
|
||||
AutoConfig.register(LinearAttentionConfig.model_type, LinearAttentionConfig)
|
||||
AutoModel.register(LinearAttentionConfig, LinearAttentionModel)
|
||||
AutoModelForCausalLM.register(LinearAttentionConfig, LinearAttentionForCausalLM)
|
||||
|
||||
__all__ = ['LinearAttentionConfig', 'LinearAttentionForCausalLM', 'LinearAttentionModel']
|
@ -1,70 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
|
||||
|
||||
class LinearAttentionConfig(PretrainedConfig):
|
||||
|
||||
model_type = 'linear_attn'
|
||||
keys_to_ignore_at_inference = ['past_key_values']
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int = 32000,
|
||||
hidden_size: int = 2048,
|
||||
expand_k: int = 1,
|
||||
expand_v: int = 1,
|
||||
hidden_ratio: Optional[int] = 4,
|
||||
intermediate_size: Optional[int] = None,
|
||||
num_hidden_layers: int = 24,
|
||||
num_heads: int = 4,
|
||||
attn_mode: str = "fused_chunk",
|
||||
feature_map: str = "elementwise_product",
|
||||
tie_feature_map_qk: bool = False,
|
||||
norm_q: bool = False,
|
||||
norm_k: bool = False,
|
||||
norm_feature_map: bool = False,
|
||||
hidden_act: str = "swish",
|
||||
max_position_embeddings: int = 2048,
|
||||
elementwise_affine: Optional[bool] = True,
|
||||
norm_eps: float = 1e-6,
|
||||
use_cache: bool = True,
|
||||
pad_token_id: int = None,
|
||||
bos_token_id: int = 1,
|
||||
eos_token_id: int = 2,
|
||||
tie_word_embeddings: bool = False,
|
||||
initializer_range: float = 0.02,
|
||||
fuse_cross_entropy: bool = True,
|
||||
**kwargs
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.expand_k = expand_k
|
||||
self.expand_v = expand_v
|
||||
self.hidden_ratio = hidden_ratio
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_heads = num_heads
|
||||
self.attn_mode = attn_mode
|
||||
self.feature_map = feature_map
|
||||
self.tie_feature_map_qk = tie_feature_map_qk
|
||||
self.norm_q = norm_q
|
||||
self.norm_k = norm_k
|
||||
self.norm_feature_map = norm_feature_map
|
||||
self.hidden_act = hidden_act
|
||||
self.elementwise_affine = elementwise_affine
|
||||
self.norm_eps = norm_eps
|
||||
self.use_cache = use_cache
|
||||
self.initializer_range = initializer_range
|
||||
self.fuse_cross_entropy = fuse_cross_entropy
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
@ -1,424 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.utils.checkpoint
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.cache_utils import Cache, DynamicCache
|
||||
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
||||
CausalLMOutputWithPast)
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.utils import logging
|
||||
|
||||
from fla.layers.linear_attn import LinearAttention
|
||||
from fla.models.linear_attn.configuration_linear_attn import \
|
||||
LinearAttentionConfig
|
||||
from fla.modules import FusedCrossEntropyLoss, RMSNorm
|
||||
from fla.modules.activations import swiglu_linear
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class LinearAttentionMLP(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
hidden_ratio: Optional[int] = None,
|
||||
intermediate_size: Optional[int] = None,
|
||||
hidden_act: str = 'swish'
|
||||
) -> LinearAttentionMLP:
|
||||
super().__init__()
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
# the final number of params is `hidden_ratio * hidden_size^2`
|
||||
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
|
||||
if hidden_ratio is None:
|
||||
hidden_ratio = 4
|
||||
if intermediate_size is None:
|
||||
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
|
||||
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
|
||||
self.hidden_ratio = hidden_ratio
|
||||
self.intermediate_size = intermediate_size
|
||||
|
||||
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
|
||||
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
||||
self.act_fn = ACT2FN[hidden_act]
|
||||
|
||||
def forward(self, x):
|
||||
y = self.gate_proj(x)
|
||||
gate, y = y.chunk(2, -1)
|
||||
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
|
||||
|
||||
|
||||
class LinearAttentionBlock(nn.Module):
|
||||
def __init__(self, config: LinearAttentionConfig, layer_idx: int):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
|
||||
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
||||
self.attn = LinearAttention(
|
||||
hidden_size=config.hidden_size,
|
||||
expand_k=config.expand_k,
|
||||
expand_v=config.expand_v,
|
||||
num_heads=config.num_heads,
|
||||
mode=config.attn_mode,
|
||||
feature_map=config.feature_map,
|
||||
tie_feature_map_qk=config.tie_feature_map_qk,
|
||||
norm_q=config.norm_q,
|
||||
norm_k=config.norm_k,
|
||||
do_feature_map_norm=config.norm_feature_map,
|
||||
elementwise_affine=config.elementwise_affine,
|
||||
norm_eps=config.norm_eps,
|
||||
layer_idx=layer_idx
|
||||
)
|
||||
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
||||
self.mlp = LinearAttentionMLP(
|
||||
hidden_size=config.hidden_size,
|
||||
hidden_ratio=config.hidden_ratio,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
||||
output_attentions: Optional[bool] = False,
|
||||
use_cache: Optional[bool] = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
|
||||
residual = hidden_states
|
||||
# currently not supported
|
||||
attn_weights, present_key_value = None, None
|
||||
|
||||
hidden_states = self.attn_norm(hidden_states)
|
||||
hidden_states = self.attn(hidden_states)
|
||||
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
outputs = (hidden_states,)
|
||||
|
||||
if output_attentions:
|
||||
outputs += (attn_weights,)
|
||||
|
||||
if use_cache:
|
||||
outputs += (present_key_value,)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
class LinearAttentionPreTrainedModel(PreTrainedModel):
|
||||
config_class = LinearAttentionConfig
|
||||
supports_gradient_checkpointing = True
|
||||
_no_split_modules = ['LinearAttentionBlock']
|
||||
|
||||
def __init__(self, *inputs, **kwargs):
|
||||
super().__init__(*inputs, **kwargs)
|
||||
|
||||
def _init_weights(
|
||||
self,
|
||||
module: nn.Module,
|
||||
rescale_prenorm_residual: bool = True,
|
||||
num_residuals_per_layer: int = 2,
|
||||
):
|
||||
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
||||
# Slightly different from the TF version which uses truncated_normal for initialization
|
||||
# cf https://github.com/pytorch/pytorch/pull/5617
|
||||
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
elif isinstance(module, nn.Embedding):
|
||||
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
|
||||
if rescale_prenorm_residual:
|
||||
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
||||
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
||||
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
||||
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
||||
#
|
||||
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
||||
for name, p in module.named_parameters():
|
||||
if name in ["o_proj.weight", "down_proj.weight"]:
|
||||
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
||||
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
||||
# We need to reinit p since this code could be called multiple times
|
||||
# Having just p *= scale would repeatedly scale it down
|
||||
with torch.no_grad():
|
||||
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
||||
|
||||
|
||||
class LinearAttentionModel(LinearAttentionPreTrainedModel):
|
||||
|
||||
def __init__(self, config: LinearAttentionConfig):
|
||||
super().__init__(config)
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
||||
self.layers = nn.ModuleList(
|
||||
[LinearAttentionBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
||||
)
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embeddings
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.embeddings = value
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
if output_attentions:
|
||||
warnings.warn(
|
||||
"`LinearAttentionModel` does not support output attention weights now, "
|
||||
"so `output_attentions` is set to `False`."
|
||||
)
|
||||
output_attentions = False
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# retrieve input_ids and inputs_embeds
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
_, seq_length = input_ids.shape[:2]
|
||||
elif inputs_embeds is not None:
|
||||
_, seq_length = inputs_embeds.shape[:2]
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
past_key_values_length = 0
|
||||
if use_cache:
|
||||
use_legacy_cache = not isinstance(past_key_values, Cache)
|
||||
if use_legacy_cache:
|
||||
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
||||
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
||||
|
||||
if position_ids is None:
|
||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||
position_ids = torch.arange(
|
||||
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
||||
)
|
||||
position_ids = position_ids.unsqueeze(0)
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embeddings(input_ids)
|
||||
|
||||
# embed positions
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
# decoder layers
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_self_attns = () if output_attentions else None
|
||||
next_decoder_cache = None
|
||||
|
||||
for decoder_layer in self.layers:
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
layer_outputs = self._gradient_checkpointing_func(
|
||||
decoder_layer.__call__,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
position_ids,
|
||||
past_key_values,
|
||||
output_attentions,
|
||||
use_cache,
|
||||
)
|
||||
else:
|
||||
layer_outputs = decoder_layer(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_value=past_key_values,
|
||||
output_attentions=output_attentions,
|
||||
use_cache=use_cache,
|
||||
)
|
||||
|
||||
hidden_states = layer_outputs[0]
|
||||
|
||||
if use_cache:
|
||||
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
||||
|
||||
if output_attentions:
|
||||
all_self_attns += (layer_outputs[1],)
|
||||
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = None
|
||||
if use_cache:
|
||||
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_self_attns,
|
||||
)
|
||||
|
||||
|
||||
class LinearAttentionForCausalLM(LinearAttentionPreTrainedModel):
|
||||
_tied_weights_keys = ["lm_head.weight"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.model = LinearAttentionModel(config)
|
||||
self.vocab_size = config.vocab_size
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.model.embeddings
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.model.embeddings = value
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def set_decoder(self, decoder):
|
||||
self.model = decoder
|
||||
|
||||
def get_decoder(self):
|
||||
return self.model
|
||||
|
||||
def generate(self, *args, **kwargs):
|
||||
try:
|
||||
return super().generate(*args, **kwargs)
|
||||
except AttributeError as exc:
|
||||
# Expected exception: "AttributeError: '(object name)' object has no attribute 'past_key_values'"
|
||||
if 'past_key_values' in str(exc):
|
||||
raise AttributeError(
|
||||
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
||||
f"which is not supported for {self.__class__.__name__}. "
|
||||
f"Try another generation strategy instead. "
|
||||
f"For the available generation strategies, check this doc: "
|
||||
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
||||
)
|
||||
else:
|
||||
raise exc
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
state: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
**kwargs
|
||||
):
|
||||
# only last token for inputs_ids if the state is passed along.
|
||||
if state is not None:
|
||||
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||||
|
||||
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||||
if inputs_embeds is not None and state is None:
|
||||
model_inputs = {"inputs_embeds": inputs_embeds}
|
||||
else:
|
||||
model_inputs = {"input_ids": input_ids}
|
||||
model_inputs["state"] = state
|
||||
return model_inputs
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||||
outputs = self.model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
logits = self.lm_head(hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
if self.config.fuse_cross_entropy:
|
||||
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
|
||||
else:
|
||||
loss_fct = nn.CrossEntropyLoss()
|
||||
# Enable model parallelism
|
||||
labels = labels.to(logits.device)
|
||||
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
|
||||
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
14
finetune/lora/v6/fla/models/mamba/__init__.py
vendored
14
finetune/lora/v6/fla/models/mamba/__init__.py
vendored
@ -1,14 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
||||
|
||||
from fla.models.mamba.configuration_mamba import MambaConfig
|
||||
from fla.models.mamba.modeling_mamba import (MambaBlock, MambaForCausalLM,
|
||||
MambaModel)
|
||||
|
||||
AutoConfig.register(MambaConfig.model_type, MambaConfig, True)
|
||||
AutoModel.register(MambaConfig, MambaModel, True)
|
||||
AutoModelForCausalLM.register(MambaConfig, MambaForCausalLM, True)
|
||||
|
||||
|
||||
__all__ = ['MambaConfig', 'MambaForCausalLM', 'MambaModel', 'MambaBlock']
|
@ -1,156 +0,0 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2024 The HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""MAMBA configuration"""
|
||||
|
||||
import math
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
|
||||
|
||||
class MambaConfig(PretrainedConfig):
|
||||
"""
|
||||
This is the configuration class to store the configuration of a [`MambaModel`]. It is used to instantiate a MAMBA
|
||||
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
||||
defaults will yield a similar configuration to that of the MAMBA
|
||||
[state-spaces/mamba-2.8b](https://huggingface.co/state-spaces/mamba-2.8b) architecture.
|
||||
|
||||
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
||||
documentation from [`PretrainedConfig`] for more information.
|
||||
|
||||
|
||||
Args:
|
||||
vocab_size (`int`, *optional*, defaults to 50280):
|
||||
Vocabulary size of the MAMBA model. Defines the number of different tokens that can be represented by the
|
||||
`inputs_ids` passed when calling [`MambaModel`].
|
||||
hidden_size (`int`, *optional*, defaults to 768):
|
||||
Dimensionality of the embeddings and hidden states.
|
||||
state_size (`int`, *optional*, defaults to 16): shape of the state space latents.
|
||||
num_hidden_layers (`int`, *optional*, defaults to 32):
|
||||
Number of hidden layers in the model.
|
||||
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
||||
The epsilon to use in the layer normalization layers.
|
||||
pad_token_id (`int`, *optional*, defaults to 0):
|
||||
Padding token id.
|
||||
bos_token_id (`int`, *optional*, defaults to 0):
|
||||
The id of the beginning of sentence token in the vocabulary.
|
||||
eos_token_id (`int`, *optional*, defaults to 0):
|
||||
The id of the end of sentence token in the vocabulary.
|
||||
expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size.
|
||||
conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel.
|
||||
use_bias (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block
|
||||
use_conv_bias (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to use bias in the convolution layer of the mixer block.
|
||||
hidden_act (`str`, *optional*, defaults to `"silu"`):
|
||||
The non-linear activation function (function or string) in the decoder.
|
||||
initializer_range (`float`, *optional*, defaults to 0.1):
|
||||
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
||||
residual_in_fp32 (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not residuals should be in `float32`.
|
||||
If set to `False` residuals will keep the same `dtype` as the rest of the model
|
||||
time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
|
||||
Rank of the the discretization projection matrix.
|
||||
`"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
|
||||
time_step_scale (`float`, *optional*, defaults to 1.0):
|
||||
Scale used used to scale `dt_proj.bias`.
|
||||
time_step_min (`float`, *optional*, defaults to 0.001):
|
||||
Minimum `time_step` used to bound `dt_proj.bias`.
|
||||
time_step_max (`float`, *optional*, defaults to 0.1):
|
||||
Maximum `time_step` used to bound `dt_proj.bias`.
|
||||
time_step_init_scheme (`float`, *optional*, defaults to `"random"`):
|
||||
Init scheme used for `dt_proj.weight`. Should be one of `["random","uniform"]`
|
||||
time_step_floor (`float`, *optional*, defaults to 0.0001):
|
||||
Minimum clamping value of the `dt_proj.bias` layer initialization.
|
||||
rescale_prenorm_residual (`bool`, *optional*, defaults to `False`):
|
||||
Whether or not to rescale `out_proj` weights when initializing.
|
||||
use_cache (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not the cache should be used.
|
||||
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import MambaConfig, MambaModel
|
||||
|
||||
>>> # Initializing a Mamba configuration
|
||||
>>> configuration = MambaConfig()
|
||||
|
||||
>>> # Initializing a model (with random weights) from the configuration
|
||||
>>> model = MambaModel(configuration)
|
||||
|
||||
>>> # Accessing the model configuration
|
||||
>>> configuration = model.config
|
||||
```"""
|
||||
|
||||
model_type = "mamba"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=32000,
|
||||
hidden_size=2048,
|
||||
state_size=16,
|
||||
num_hidden_layers=48,
|
||||
layer_norm_epsilon=1e-5,
|
||||
pad_token_id= 0,
|
||||
bos_token_id= 1,
|
||||
eos_token_id= 2,
|
||||
expand=2,
|
||||
conv_kernel=4,
|
||||
use_bias=False,
|
||||
use_conv_bias=True,
|
||||
hidden_act="silu",
|
||||
initializer_range=0.1,
|
||||
residual_in_fp32=False,
|
||||
time_step_rank="auto",
|
||||
time_step_scale=1.0,
|
||||
time_step_min=0.001,
|
||||
time_step_max=0.1,
|
||||
time_step_init_scheme="random",
|
||||
time_step_floor=1e-4,
|
||||
rescale_prenorm_residual=False,
|
||||
use_cache=True,
|
||||
fuse_norm: bool = True,
|
||||
fuse_cross_entropy: bool = True,
|
||||
tie_word_embeddings: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.hidden_size = hidden_size
|
||||
self.state_size = state_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.layer_norm_epsilon = layer_norm_epsilon
|
||||
self.conv_kernel = conv_kernel
|
||||
self.expand = expand
|
||||
self.intermediate_size = int(expand * self.hidden_size)
|
||||
self.bos_token_id = bos_token_id
|
||||
self.eos_token_id = eos_token_id
|
||||
self.pad_token_id = pad_token_id
|
||||
self.use_bias = use_bias
|
||||
self.use_conv_bias = use_conv_bias
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.time_step_rank = math.ceil(self.hidden_size / 16) if time_step_rank == "auto" else time_step_rank
|
||||
self.time_step_scale = time_step_scale
|
||||
self.time_step_min = time_step_min
|
||||
self.time_step_max = time_step_max
|
||||
self.time_step_init_scheme = time_step_init_scheme
|
||||
self.time_step_floor = time_step_floor
|
||||
self.rescale_prenorm_residual = rescale_prenorm_residual
|
||||
self.residual_in_fp32 = residual_in_fp32
|
||||
self.use_cache = use_cache
|
||||
self.fuse_cross_entropy = fuse_cross_entropy
|
||||
self.fuse_norm = fuse_norm
|
||||
|
||||
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs)
|
605
finetune/lora/v6/fla/models/mamba/modeling_mamba.py
vendored
605
finetune/lora/v6/fla/models/mamba/modeling_mamba.py
vendored
@ -1,605 +0,0 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2024 state-spaces/mamba org and HuggingFace Inc. team.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""PyTorch MAMBA model."""
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Dict, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.utils import ModelOutput, logging
|
||||
|
||||
from fla.models.mamba.configuration_mamba import MambaConfig
|
||||
from fla.modules import FusedCrossEntropyLoss, RMSNorm
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
try:
|
||||
from mamba_ssm.ops.selective_scan_interface import (mamba_inner_fn,
|
||||
selective_scan_fn)
|
||||
from mamba_ssm.ops.triton.selective_state_update import \
|
||||
selective_state_update
|
||||
except ImportError:
|
||||
selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None
|
||||
|
||||
try:
|
||||
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
|
||||
except ImportError:
|
||||
causal_conv1d_update, causal_conv1d_fn = None, None
|
||||
|
||||
is_fast_path_available = all(
|
||||
(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)
|
||||
)
|
||||
|
||||
|
||||
class MambaCache:
|
||||
def __init__(self, config, batch_size, dtype=torch.float16, device=None):
|
||||
self.seqlen_offset = 0
|
||||
self.dtype = dtype
|
||||
intermediate_size = config.intermediate_size
|
||||
ssm_state_size = config.state_size
|
||||
conv_kernel_size = config.conv_kernel
|
||||
|
||||
self.conv_states = {
|
||||
i: torch.zeros(batch_size, intermediate_size, conv_kernel_size, device=device, dtype=dtype)
|
||||
for i in range(config.num_hidden_layers)
|
||||
}
|
||||
self.ssm_states = {
|
||||
i: torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=dtype)
|
||||
for i in range(config.num_hidden_layers)
|
||||
}
|
||||
|
||||
|
||||
class MambaMixer(nn.Module):
|
||||
"""
|
||||
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
|
||||
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
|
||||
∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
|
||||
and is why Mamba is called **selective** state spaces)
|
||||
"""
|
||||
|
||||
def __init__(self, config, layer_idx):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
self.ssm_state_size = config.state_size
|
||||
self.conv_kernel_size = config.conv_kernel
|
||||
self.intermediate_size = config.intermediate_size
|
||||
self.time_step_rank = config.time_step_rank
|
||||
self.layer_idx = layer_idx
|
||||
self.use_conv_bias = config.use_conv_bias
|
||||
self.conv1d = nn.Conv1d(
|
||||
in_channels=self.intermediate_size,
|
||||
out_channels=self.intermediate_size,
|
||||
bias=config.use_conv_bias,
|
||||
kernel_size=config.conv_kernel,
|
||||
groups=self.intermediate_size,
|
||||
padding=config.conv_kernel - 1,
|
||||
)
|
||||
|
||||
self.activation = config.hidden_act
|
||||
self.act = ACT2FN[config.hidden_act]
|
||||
|
||||
# projection of the input hidden states
|
||||
self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=config.use_bias)
|
||||
# selective projection used to make dt, B and C input dependant
|
||||
self.x_proj = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
|
||||
# time step projection (discretization)
|
||||
self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True)
|
||||
|
||||
# S4D real initialization. These are not discretized!
|
||||
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
|
||||
A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :]
|
||||
A = A.expand(self.intermediate_size, -1).contiguous()
|
||||
|
||||
self.A_log = nn.Parameter(torch.log(A))
|
||||
self.D = nn.Parameter(torch.ones(self.intermediate_size))
|
||||
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
|
||||
self.use_bias = config.use_bias
|
||||
|
||||
if not is_fast_path_available:
|
||||
logger.warning_once(
|
||||
"The fast path is not available because on of "
|
||||
"`(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`"
|
||||
" is None. Falling back to the naive implementation. "
|
||||
"To install follow https://github.com/state-spaces/mamba/#installation and"
|
||||
" https://github.com/Dao-AILab/causal-conv1d"
|
||||
)
|
||||
|
||||
def cuda_kernels_forward(self, hidden_states: torch.Tensor, cache_params: Optional[MambaCache] = None):
|
||||
# 1. Gated MLP's linear projection
|
||||
projected_states = self.in_proj(hidden_states).transpose(1, 2)
|
||||
|
||||
if self.training and cache_params is None: # Doesn't support outputting the states -> used for training
|
||||
contextualized_states = mamba_inner_fn(
|
||||
projected_states,
|
||||
self.conv1d.weight,
|
||||
self.conv1d.bias if self.use_conv_bias else None,
|
||||
self.x_proj.weight,
|
||||
self.dt_proj.weight,
|
||||
self.out_proj.weight,
|
||||
self.out_proj.bias.float() if self.use_bias else None,
|
||||
-torch.exp(self.A_log.float()),
|
||||
None, # input-dependent B
|
||||
None, # input-dependent C
|
||||
self.D.float(),
|
||||
delta_bias=self.dt_proj.bias.float(),
|
||||
delta_softplus=True,
|
||||
)
|
||||
|
||||
else:
|
||||
hidden_states, gate = projected_states.chunk(2, dim=1)
|
||||
|
||||
# 2. Convolution sequence transformation
|
||||
conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2))
|
||||
if cache_params is not None and cache_params.seqlen_offset > 0:
|
||||
hidden_states = causal_conv1d_update(
|
||||
hidden_states.squeeze(-1),
|
||||
cache_params.conv_states[self.layer_idx],
|
||||
conv_weights,
|
||||
self.conv1d.bias,
|
||||
self.activation,
|
||||
)
|
||||
hidden_states = hidden_states.unsqueeze(-1)
|
||||
else:
|
||||
if cache_params is not None:
|
||||
conv_states = nn.functional.pad(
|
||||
hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0)
|
||||
)
|
||||
cache_params.conv_states[self.layer_idx].copy_(conv_states)
|
||||
hidden_states = causal_conv1d_fn(
|
||||
hidden_states, conv_weights, self.conv1d.bias, activation=self.activation
|
||||
)
|
||||
|
||||
# 3. State Space Model sequence transformation
|
||||
# 3.a. input varying initialization of time_step, B and C
|
||||
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
|
||||
time_step, B, C = torch.split(
|
||||
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
|
||||
)
|
||||
discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2)
|
||||
|
||||
A = -torch.exp(self.A_log.float())
|
||||
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
|
||||
time_proj_bias = self.dt_proj.bias.float() if hasattr(self.dt_proj, "bias") else None
|
||||
if cache_params is not None and cache_params.seqlen_offset > 0:
|
||||
scan_outputs = selective_state_update(
|
||||
cache_params.ssm_states[self.layer_idx],
|
||||
hidden_states[..., 0],
|
||||
discrete_time_step[..., 0],
|
||||
A,
|
||||
B[:, 0],
|
||||
C[:, 0],
|
||||
self.D,
|
||||
gate[..., 0],
|
||||
time_proj_bias,
|
||||
dt_softplus=True,
|
||||
).unsqueeze(-1)
|
||||
else:
|
||||
scan_outputs, ssm_state = selective_scan_fn(
|
||||
hidden_states,
|
||||
discrete_time_step,
|
||||
A,
|
||||
B.transpose(1, 2),
|
||||
C.transpose(1, 2),
|
||||
self.D.float(),
|
||||
gate,
|
||||
time_proj_bias,
|
||||
delta_softplus=True,
|
||||
return_last_state=True,
|
||||
)
|
||||
if ssm_state is not None and cache_params is not None:
|
||||
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
|
||||
|
||||
# 4. Final linear projection
|
||||
contextualized_states = self.out_proj(scan_outputs.transpose(1, 2))
|
||||
return contextualized_states
|
||||
|
||||
# fmt: off
|
||||
def slow_forward(self, input_states, cache_params: Optional[MambaCache] = None):
|
||||
batch_size, seq_len, _ = input_states.shape
|
||||
dtype = input_states.dtype
|
||||
# 1. Gated MLP's linear projection
|
||||
# [batch, 2 * intermediate_size, seq_len]
|
||||
projected_states = self.in_proj(input_states).transpose(1, 2)
|
||||
hidden_states, gate = projected_states.chunk(2, dim=1)
|
||||
|
||||
# 2. Convolution sequence transformation
|
||||
if cache_params is not None:
|
||||
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
|
||||
if cache_params.seqlen_offset > 0:
|
||||
# [batch, intermediate_size, conv_kernel_size]
|
||||
conv_state = cache_params.conv_states[self.layer_idx]
|
||||
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
|
||||
conv_state[:, :, -1] = hidden_states[:, :, 0]
|
||||
cache_params.conv_states[self.layer_idx].copy_(conv_state)
|
||||
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
|
||||
if self.use_conv_bias:
|
||||
hidden_states += self.conv1d.bias
|
||||
# [batch, intermediate_size, 1] : decoding
|
||||
hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1)
|
||||
else:
|
||||
conv_state = nn.functional.pad(
|
||||
hidden_states,
|
||||
(self.conv_kernel_size - hidden_states.shape[-1], 0)
|
||||
)
|
||||
cache_params.conv_states[self.layer_idx].copy_(conv_state)
|
||||
# [batch, intermediate_size, seq_len]
|
||||
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len])
|
||||
else:
|
||||
ssm_state = torch.zeros(
|
||||
(batch_size, self.intermediate_size, self.ssm_state_size),
|
||||
device=hidden_states.device, dtype=dtype
|
||||
)
|
||||
# [batch, intermediate_size, seq_len]
|
||||
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len])
|
||||
|
||||
# 3. State Space Model sequence transformation
|
||||
# 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2]
|
||||
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
|
||||
time_step, B, C = torch.split(
|
||||
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
|
||||
)
|
||||
# [batch, seq_len, intermediate_size]
|
||||
discrete_time_step = self.dt_proj(time_step)
|
||||
# [batch, intermediate_size, seq_len]
|
||||
discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2)
|
||||
|
||||
# 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM)
|
||||
# [intermediate_size, ssm_state_size]
|
||||
A = -torch.exp(self.A_log.float())
|
||||
# [batch, intermediate_size, seq_len, ssm_state_size]
|
||||
discrete_A = torch.exp(A[None, :, None, :] * discrete_time_step[:, :, :, None])
|
||||
# [batch, intermediade_size, seq_len, ssm_state_size]
|
||||
discrete_B = discrete_time_step[:, :, :, None] * B[:, None, :, :].float()
|
||||
deltaB_u = discrete_B * hidden_states[:, :, :, None].float()
|
||||
|
||||
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
|
||||
scan_outputs = []
|
||||
for i in range(seq_len):
|
||||
# [batch, intermediade_size, ssm_state]
|
||||
ssm_state = discrete_A[:, :, i, :] * ssm_state + deltaB_u[:, :, i, :]
|
||||
# [batch, intermediade_size, 1]
|
||||
scan_output = torch.matmul(ssm_state.to(dtype), C[:, i, :].unsqueeze(-1))
|
||||
scan_outputs.append(scan_output[:, :, 0])
|
||||
# [batch, seq_len, intermediade_size]
|
||||
scan_output = torch.stack(scan_outputs, dim=-1)
|
||||
scan_output = scan_output + (hidden_states * self.D[None, :, None])
|
||||
scan_output = (scan_output * self.act(gate))
|
||||
|
||||
if cache_params is not None:
|
||||
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
|
||||
|
||||
# 4. Final linear projection
|
||||
# [batch, seq_len, hidden_size]
|
||||
contextualized_states = self.out_proj(scan_output.transpose(1, 2))
|
||||
return contextualized_states
|
||||
# fmt: on
|
||||
|
||||
def forward(self, hidden_states, cache_params: Optional[MambaCache] = None):
|
||||
if is_fast_path_available and "cuda" in self.x_proj.weight.device.type:
|
||||
return self.cuda_kernels_forward(hidden_states, cache_params)
|
||||
return self.slow_forward(hidden_states, cache_params)
|
||||
|
||||
|
||||
class MambaBlock(nn.Module):
|
||||
def __init__(self, config, layer_idx):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.layer_idx = layer_idx
|
||||
self.residual_in_fp32 = config.residual_in_fp32
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||
self.mixer = MambaMixer(config, layer_idx=layer_idx)
|
||||
|
||||
def forward(self, hidden_states, cache_params: Optional[MambaCache] = None):
|
||||
residual = hidden_states
|
||||
hidden_states = self.norm(hidden_states)
|
||||
# if self.residual_in_fp32:
|
||||
# residual = residual.to(torch.float32)
|
||||
hidden_states = self.mixer(hidden_states, cache_params=cache_params)
|
||||
hidden_states = residual + hidden_states
|
||||
return hidden_states
|
||||
|
||||
|
||||
class MambaPreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
config_class = MambaConfig
|
||||
base_model_prefix = "backbone"
|
||||
_no_split_modules = ["MambaBlock"]
|
||||
supports_gradient_checkpointing = True
|
||||
|
||||
def _init_weights(self, module):
|
||||
"""Initialize the weights."""
|
||||
if isinstance(module, MambaMixer):
|
||||
module.A_log._no_weight_decay = True
|
||||
module.D._no_weight_decay = True
|
||||
|
||||
dt_init_std = self.config.time_step_rank**-0.5 * self.config.time_step_scale
|
||||
if self.config.time_step_init_scheme == "constant":
|
||||
nn.init.constant_(module.dt_proj.weight, dt_init_std)
|
||||
elif self.config.time_step_init_scheme == "random":
|
||||
nn.init.uniform_(module.dt_proj.weight, -dt_init_std, dt_init_std)
|
||||
|
||||
dt = torch.exp(
|
||||
torch.rand(self.config.intermediate_size)
|
||||
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
|
||||
+ math.log(self.config.time_step_min)
|
||||
).clamp(min=self.config.time_step_floor)
|
||||
# # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
|
||||
inv_dt = dt + torch.log(-torch.expm1(-dt))
|
||||
with torch.no_grad():
|
||||
module.dt_proj.bias.copy_(inv_dt)
|
||||
module.dt_proj.bias._no_reinit = True
|
||||
|
||||
if isinstance(module, nn.Linear):
|
||||
if module.bias is not None:
|
||||
if not getattr(module.bias, "_no_reinit", False):
|
||||
nn.init.zeros_(module.bias)
|
||||
elif isinstance(module, nn.Embedding):
|
||||
nn.init.normal_(module.weight, std=self.config.initializer_range)
|
||||
|
||||
if self.config.rescale_prenorm_residual:
|
||||
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
||||
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
||||
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
||||
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
||||
#
|
||||
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
||||
for name, p in module.named_parameters():
|
||||
if name in ["out_proj.weight"]:
|
||||
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
||||
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
||||
# We need to reinit p since this code could be called multiple times
|
||||
# Having just p *= scale would repeatedly scale it down
|
||||
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
|
||||
with torch.no_grad():
|
||||
p /= math.sqrt(self.config.num_layers)
|
||||
|
||||
|
||||
@dataclass
|
||||
class MambaOutput(ModelOutput):
|
||||
"""
|
||||
Class for the MAMBA model outputs.
|
||||
|
||||
Args:
|
||||
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
||||
Sequence of hidden-states at the output of the last layer of the model.
|
||||
cache_params (`MambaCache`):
|
||||
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
||||
avoid providing the old `input_ids`.
|
||||
|
||||
Includes both the State space model state matrices after the selective scan, and the Convolutional states
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*,
|
||||
returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||||
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||||
"""
|
||||
|
||||
last_hidden_state: Optional[torch.FloatTensor] = None
|
||||
cache_params: Optional[MambaCache] = None
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||
|
||||
|
||||
@dataclass
|
||||
class MambaCausalLMOutput(ModelOutput):
|
||||
"""
|
||||
Base class for causal language model (or autoregressive) outputs.
|
||||
|
||||
Args:
|
||||
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
||||
Language modeling loss (for next-token prediction).
|
||||
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
||||
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
||||
cache_params (`MambaCache`):
|
||||
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
|
||||
avoid providing the old `input_ids`.
|
||||
|
||||
Includes both the State space model state matrices after the selective scan, and the Convolutional states
|
||||
hidden_states (`tuple(torch.FloatTensor)`, *optional*,
|
||||
returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
||||
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
||||
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
||||
|
||||
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
||||
"""
|
||||
|
||||
loss: Optional[torch.FloatTensor] = None
|
||||
logits: Optional[torch.FloatTensor] = None
|
||||
cache_params: Optional[MambaCache] = None
|
||||
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
||||
|
||||
|
||||
class MambaModel(MambaPreTrainedModel):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
|
||||
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
||||
self.layers = nn.ModuleList([MambaBlock(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
self.norm_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embeddings
|
||||
|
||||
def set_input_embeddings(self, new_embeddings):
|
||||
self.embeddings = new_embeddings
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.LongTensor] = None,
|
||||
cache_params: Optional[MambaCache] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
**kwargs, # `attention_mask` is passed by the tokenizer and we don't want it
|
||||
) -> Union[Tuple, MambaOutput]:
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor
|
||||
raise ValueError(
|
||||
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
||||
)
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embeddings(input_ids)
|
||||
|
||||
if self.gradient_checkpointing and self.training and use_cache:
|
||||
use_cache = False
|
||||
|
||||
if cache_params is None and use_cache:
|
||||
cache_params = MambaCache(
|
||||
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
|
||||
)
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
for mixer_block in self.layers:
|
||||
if self.gradient_checkpointing and self.training:
|
||||
hidden_states = self._gradient_checkpointing_func(mixer_block.__call__, hidden_states, cache_params)
|
||||
else:
|
||||
hidden_states = mixer_block(hidden_states, cache_params=cache_params)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if use_cache:
|
||||
cache_params.seqlen_offset += inputs_embeds.shape[1]
|
||||
|
||||
hidden_states = self.norm_f(hidden_states)
|
||||
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None)
|
||||
|
||||
return MambaOutput(
|
||||
last_hidden_state=hidden_states,
|
||||
cache_params=cache_params if use_cache else None,
|
||||
hidden_states=all_hidden_states,
|
||||
)
|
||||
|
||||
|
||||
class MambaForCausalLM(MambaPreTrainedModel):
|
||||
_tied_weights_keys = ["lm_head.weight"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.backbone = MambaModel(config)
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.backbone.get_input_embeddings()
|
||||
|
||||
def set_input_embeddings(self, new_embeddings):
|
||||
return self.backbone.set_input_embeddings(new_embeddings)
|
||||
|
||||
def _update_model_kwargs_for_generation(
|
||||
self, outputs: ModelOutput, model_kwargs: Dict[str, Any], **kwargs
|
||||
) -> Dict[str, Any]:
|
||||
model_kwargs["cache_params"] = outputs.get("cache_params", None)
|
||||
return model_kwargs
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self, input_ids, cache_params: Optional[MambaCache] = None, inputs_embeds=None, attention_mask=None, **kwargs
|
||||
):
|
||||
# only last token for inputs_ids if the state is passed along.
|
||||
if cache_params is not None:
|
||||
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||||
|
||||
if inputs_embeds is not None and cache_params is None:
|
||||
model_inputs = {"inputs_embeds": inputs_embeds}
|
||||
else:
|
||||
model_inputs = {"input_ids": input_ids}
|
||||
|
||||
model_inputs["cache_params"] = cache_params
|
||||
return model_inputs
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
cache_params: Optional[MambaCache] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
**kwargs, # for now we need this for generation
|
||||
) -> Union[Tuple, MambaCausalLMOutput]:
|
||||
r"""
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
||||
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
||||
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
||||
"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
mamba_outputs = self.backbone(
|
||||
input_ids,
|
||||
cache_params=cache_params,
|
||||
inputs_embeds=inputs_embeds,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
use_cache=use_cache,
|
||||
)
|
||||
hidden_states = mamba_outputs[0]
|
||||
logits = self.lm_head(hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
if self.config.fuse_cross_entropy:
|
||||
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
|
||||
else:
|
||||
loss_fct = nn.CrossEntropyLoss()
|
||||
# Enable model parallelism
|
||||
labels = labels.to(logits.device)
|
||||
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
|
||||
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + mamba_outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
|
||||
return MambaCausalLMOutput(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
cache_params=mamba_outputs.cache_params,
|
||||
hidden_states=mamba_outputs.hidden_states,
|
||||
)
|
13
finetune/lora/v6/fla/models/retnet/__init__.py
vendored
13
finetune/lora/v6/fla/models/retnet/__init__.py
vendored
@ -1,13 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
||||
|
||||
from fla.models.retnet.configuration_retnet import RetNetConfig
|
||||
from fla.models.retnet.modeling_retnet import RetNetForCausalLM, RetNetModel
|
||||
|
||||
AutoConfig.register(RetNetConfig.model_type, RetNetConfig)
|
||||
AutoModel.register(RetNetConfig, RetNetModel)
|
||||
AutoModelForCausalLM.register(RetNetConfig, RetNetForCausalLM)
|
||||
|
||||
|
||||
__all__ = ['RetNetConfig', 'RetNetForCausalLM', 'RetNetModel']
|
@ -1,76 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
|
||||
|
||||
class RetNetConfig(PretrainedConfig):
|
||||
|
||||
model_type = 'retnet'
|
||||
keys_to_ignore_at_inference = ['past_key_values']
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size: int = 32000,
|
||||
hidden_size: int = 2048,
|
||||
expand_k: int = 1,
|
||||
expand_v: int = 2,
|
||||
hidden_ratio: Optional[int] = 2,
|
||||
intermediate_size: Optional[int] = None,
|
||||
num_hidden_layers: int = 24,
|
||||
num_heads: int = 8,
|
||||
num_kv_heads: Optional[int] = None,
|
||||
feature_map: Optional[str] = None,
|
||||
attn_mode: str = "fused_chunk",
|
||||
hidden_act: str = "swish",
|
||||
use_short_conv: bool = False,
|
||||
conv_size: int = 4,
|
||||
share_conv_kernel: bool = True,
|
||||
use_output_gate: bool = True,
|
||||
max_position_embeddings: int = 2048,
|
||||
elementwise_affine: Optional[bool] = True,
|
||||
norm_eps: float = 1e-6,
|
||||
use_cache: bool = True,
|
||||
pad_token_id: int = None,
|
||||
bos_token_id: int = 1,
|
||||
eos_token_id: int = 2,
|
||||
tie_word_embeddings: bool = False,
|
||||
initializer_range: float = 0.02,
|
||||
fuse_norm: bool = True,
|
||||
fuse_cross_entropy: bool = True,
|
||||
**kwargs
|
||||
) -> RetNetConfig:
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.expand_k = expand_k
|
||||
self.expand_v = expand_v
|
||||
self.hidden_ratio = hidden_ratio
|
||||
self.intermediate_size = intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_heads = num_heads
|
||||
self.num_kv_heads = num_kv_heads
|
||||
self.feature_map = feature_map
|
||||
self.attn_mode = attn_mode
|
||||
self.hidden_act = hidden_act
|
||||
self.use_short_conv = use_short_conv
|
||||
self.conv_size = conv_size
|
||||
self.share_conv_kernel = share_conv_kernel
|
||||
self.use_output_gate = use_output_gate
|
||||
self.elementwise_affine = elementwise_affine
|
||||
self.norm_eps = norm_eps
|
||||
self.use_cache = use_cache
|
||||
self.initializer_range = initializer_range
|
||||
self.fuse_norm = fuse_norm
|
||||
self.fuse_cross_entropy = fuse_cross_entropy
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
@ -1,410 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import math
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.utils.checkpoint
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_outputs import (BaseModelOutputWithPast,
|
||||
CausalLMOutputWithPast)
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.utils import logging
|
||||
|
||||
from fla.layers.multiscale_retention import MultiScaleRetention
|
||||
from fla.models.retnet.configuration_retnet import RetNetConfig
|
||||
from fla.models.utils import RecurrentCache
|
||||
from fla.modules import FusedCrossEntropyLoss, RMSNorm
|
||||
from fla.modules.activations import swiglu_linear
|
||||
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
|
||||
class RetNetMLP(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
hidden_size: int,
|
||||
hidden_ratio: Optional[int] = None,
|
||||
intermediate_size: Optional[int] = None,
|
||||
hidden_act: str = 'swish'
|
||||
) -> RetNetMLP:
|
||||
super().__init__()
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
# the final number of params is `hidden_ratio * hidden_size^2`
|
||||
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
|
||||
if hidden_ratio is None:
|
||||
hidden_ratio = 4
|
||||
if intermediate_size is None:
|
||||
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
|
||||
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
|
||||
self.hidden_ratio = hidden_ratio
|
||||
self.intermediate_size = intermediate_size
|
||||
|
||||
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
|
||||
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
||||
self.act_fn = ACT2FN[hidden_act]
|
||||
|
||||
def forward(self, x):
|
||||
y = self.gate_proj(x)
|
||||
gate, y = y.chunk(2, -1)
|
||||
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
|
||||
|
||||
|
||||
class RetNetBlock(nn.Module):
|
||||
def __init__(self, config: RetNetConfig, layer_idx: int):
|
||||
super().__init__()
|
||||
self.hidden_size = config.hidden_size
|
||||
|
||||
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
||||
self.attn = MultiScaleRetention(
|
||||
mode=config.attn_mode,
|
||||
hidden_size=config.hidden_size,
|
||||
expand_k=config.expand_k,
|
||||
expand_v=config.expand_v,
|
||||
num_heads=config.num_heads,
|
||||
num_kv_heads=config.num_kv_heads,
|
||||
feature_map=config.feature_map,
|
||||
use_output_gate=config.use_output_gate,
|
||||
gate_fn=config.hidden_act,
|
||||
elementwise_affine=config.elementwise_affine,
|
||||
norm_eps=config.norm_eps,
|
||||
fuse_norm=config.fuse_norm,
|
||||
layer_idx=layer_idx
|
||||
)
|
||||
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
|
||||
self.mlp = RetNetMLP(
|
||||
hidden_size=config.hidden_size,
|
||||
hidden_ratio=config.hidden_ratio,
|
||||
intermediate_size=config.intermediate_size,
|
||||
hidden_act=config.hidden_act
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
use_cache: Optional[bool] = False,
|
||||
output_attentions: Optional[bool] = False,
|
||||
**kwargs,
|
||||
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
||||
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = self.attn_norm(hidden_states)
|
||||
hidden_states, attentions, past_key_values = self.attn(
|
||||
hidden_states=hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions
|
||||
)
|
||||
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
|
||||
hidden_states = self.mlp(hidden_states)
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
outputs = (hidden_states, attentions, past_key_values)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
class RetNetPreTrainedModel(PreTrainedModel):
|
||||
|
||||
config_class = RetNetConfig
|
||||
supports_gradient_checkpointing = True
|
||||
_no_split_modules = ['RetNetBlock']
|
||||
|
||||
def __init__(self, *inputs, **kwargs):
|
||||
super().__init__(*inputs, **kwargs)
|
||||
|
||||
def _init_weights(
|
||||
self,
|
||||
module: nn.Module,
|
||||
rescale_prenorm_residual: bool = True,
|
||||
num_residuals_per_layer: int = 2,
|
||||
):
|
||||
if isinstance(module, (nn.Linear, nn.Conv1d)):
|
||||
# Slightly different from the TF version which uses truncated_normal for initialization
|
||||
# cf https://github.com/pytorch/pytorch/pull/5617
|
||||
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
||||
if module.bias is not None:
|
||||
nn.init.zeros_(module.bias)
|
||||
elif isinstance(module, nn.Embedding):
|
||||
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
||||
if module.padding_idx is not None:
|
||||
module.weight.data[module.padding_idx].zero_()
|
||||
|
||||
if rescale_prenorm_residual:
|
||||
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
||||
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
||||
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
||||
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
||||
#
|
||||
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
||||
for name, p in module.named_parameters():
|
||||
if name in ["o_proj.weight", "down_proj.weight"]:
|
||||
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
||||
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
|
||||
# We need to reinit p since this code could be called multiple times
|
||||
# Having just p *= scale would repeatedly scale it down
|
||||
with torch.no_grad():
|
||||
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
|
||||
|
||||
|
||||
class RetNetModel(RetNetPreTrainedModel):
|
||||
|
||||
def __init__(self, config: RetNetConfig):
|
||||
super().__init__(config)
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
||||
self.layers = nn.ModuleList(
|
||||
[RetNetBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
||||
)
|
||||
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.embeddings
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.embeddings = value
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None, # noqa
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
if output_attentions:
|
||||
warnings.warn(
|
||||
"`RetNetModel` does not support output attention weights now, so `output_attentions` is set to `False`."
|
||||
)
|
||||
output_attentions = False
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# retrieve input_ids and inputs_embeds
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
batch_size, seq_len = input_ids.shape[:2]
|
||||
elif inputs_embeds is not None:
|
||||
batch_size, seq_len = inputs_embeds.shape[:2]
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embeddings(input_ids)
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
if use_cache:
|
||||
if past_key_values is None:
|
||||
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
|
||||
if not isinstance(past_key_values, RecurrentCache):
|
||||
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
all_attns = () if output_attentions else None
|
||||
for layer in self.layers:
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
|
||||
layer.__call__,
|
||||
hidden_states,
|
||||
attention_mask,
|
||||
past_key_values,
|
||||
use_cache,
|
||||
output_attentions
|
||||
)
|
||||
else:
|
||||
hidden_states, attentions, past_key_values = layer(
|
||||
hidden_states,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions
|
||||
)
|
||||
|
||||
if output_attentions:
|
||||
all_attns += (attentions,)
|
||||
|
||||
hidden_states = self.norm(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
if output_hidden_states:
|
||||
all_hidden_states += (hidden_states,)
|
||||
|
||||
next_cache = None
|
||||
if use_cache:
|
||||
next_cache = past_key_values.to_legacy_cache()
|
||||
if not return_dict:
|
||||
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=next_cache,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_attns
|
||||
)
|
||||
|
||||
|
||||
class RetNetForCausalLM(RetNetPreTrainedModel):
|
||||
_tied_weights_keys = ["lm_head.weight"]
|
||||
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
self.model = RetNetModel(config)
|
||||
self.vocab_size = config.vocab_size
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.model.embeddings
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.model.embeddings = value
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.lm_head
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.lm_head = new_embeddings
|
||||
|
||||
def set_decoder(self, decoder):
|
||||
self.model = decoder
|
||||
|
||||
def get_decoder(self):
|
||||
return self.model
|
||||
|
||||
def generate(self, *args, **kwargs):
|
||||
try:
|
||||
return super().generate(*args, **kwargs)
|
||||
except AttributeError as exception:
|
||||
# Expected exception: "AttributeError: '(object name)' object has no attribute 'past_key_values'"
|
||||
if 'past_key_values' in str(exception):
|
||||
raise AttributeError(
|
||||
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
|
||||
f"which is not supported for {self.__class__.__name__}. "
|
||||
f"Try another generation strategy instead. "
|
||||
f"For the available generation strategies, check this doc: "
|
||||
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
|
||||
)
|
||||
else:
|
||||
raise exception
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
past_key_values: Optional[torch.Tensor] = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
**kwargs
|
||||
):
|
||||
# only last token for `inputs_ids` if the `past_key_values` is passed along.
|
||||
if past_key_values is not None:
|
||||
if not isinstance(past_key_values, RecurrentCache):
|
||||
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
|
||||
input_ids, attention_mask = input_ids[:, -1:], attention_mask[:, -1:]
|
||||
|
||||
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||||
if inputs_embeds is not None and past_key_values is None:
|
||||
model_inputs = {'inputs_embeds': inputs_embeds}
|
||||
else:
|
||||
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
||||
# recompiles graphs as the stride of the inputs is a guard.
|
||||
# Ref: https://github.com/huggingface/transformers/pull/29114
|
||||
# TODO: use `next_tokens` directly instead.
|
||||
model_inputs = {'input_ids': input_ids.contiguous()}
|
||||
|
||||
model_inputs.update({
|
||||
'past_key_values': past_key_values,
|
||||
'use_cache': kwargs.get('use_cache'),
|
||||
'attention_mask': attention_mask,
|
||||
})
|
||||
return model_inputs
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||||
outputs = self.model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
logits = self.lm_head(hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
if self.config.fuse_cross_entropy:
|
||||
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
|
||||
else:
|
||||
loss_fct = nn.CrossEntropyLoss()
|
||||
# Enable model parallelism
|
||||
labels = labels.to(logits.device)
|
||||
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
|
||||
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
13
finetune/lora/v6/fla/models/rwkv6/__init__.py
vendored
13
finetune/lora/v6/fla/models/rwkv6/__init__.py
vendored
@ -1,13 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
||||
|
||||
from fla.models.rwkv6.configuration_rwkv6 import RWKV6Config
|
||||
from fla.models.rwkv6.modeling_rwkv6 import RWKV6ForCausalLM, RWKV6Model
|
||||
|
||||
AutoConfig.register(RWKV6Config.model_type, RWKV6Config)
|
||||
AutoModel.register(RWKV6Config, RWKV6Model)
|
||||
AutoModelForCausalLM.register(RWKV6Config, RWKV6ForCausalLM)
|
||||
|
||||
|
||||
__all__ = ['RWKV6Config', 'RWKV6ForCausalLM', 'RWKV6Model']
|
@ -1,66 +0,0 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from typing import Optional
|
||||
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
|
||||
|
||||
class RWKV6Config(PretrainedConfig):
|
||||
|
||||
model_type = 'rwkv6'
|
||||
keys_to_ignore_at_inference = ['past_key_values']
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
attn_mode: str = "chunk",
|
||||
vocab_size: int = 32000,
|
||||
hidden_size: int = 2048,
|
||||
expand_k: int = 0.5,
|
||||
expand_v: int = 1,
|
||||
hidden_ratio: Optional[int] = 3.5,
|
||||
intermediate_size: Optional[int] = None,
|
||||
use_glu: Optional[bool] = False,
|
||||
num_hidden_layers: int = 24,
|
||||
num_heads: int = 4,
|
||||
proj_low_rank_dim: int = 32,
|
||||
gate_low_rank_dim: int = 64,
|
||||
hidden_act: str = "sqrelu",
|
||||
max_position_embeddings: int = 2048,
|
||||
eps: float = 1e-6,
|
||||
use_cache: bool = True,
|
||||
pad_token_id: int = None,
|
||||
bos_token_id: int = 1,
|
||||
eos_token_id: int = 2,
|
||||
tie_word_embeddings: bool = False,
|
||||
initializer_range: float = 0.02,
|
||||
fuse_norm: bool = True,
|
||||
fuse_cross_entropy: bool = True,
|
||||
**kwargs
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.expand_k = expand_k
|
||||
self.expand_v = expand_v
|
||||
self.hidden_ratio = hidden_ratio
|
||||
self.intermediate_size = intermediate_size
|
||||
self.use_glu = use_glu
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_heads = num_heads
|
||||
self.proj_low_rank_dim = proj_low_rank_dim
|
||||
self.gate_low_rank_dim = gate_low_rank_dim
|
||||
self.attn_mode = attn_mode
|
||||
self.hidden_act = hidden_act
|
||||
self.eps = eps
|
||||
self.use_cache = use_cache
|
||||
self.initializer_range = initializer_range
|
||||
self.fuse_norm = fuse_norm
|
||||
self.fuse_cross_entropy = fuse_cross_entropy
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user