Compare commits
35 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f8b764ef8f | ||
|
|
fcfaa5944e | ||
|
|
f89e89c1c9 | ||
|
|
a25965530c | ||
|
|
971124d0d7 | ||
|
|
d7dcc90008 | ||
|
|
df969fcfc6 | ||
|
|
c4042bbfd8 | ||
|
|
4112200b4c | ||
|
|
3f9a54e36f | ||
|
|
3ed4456135 | ||
|
|
e0df9ae47b | ||
|
|
87b2c3ed7d | ||
|
|
50ff7ef6bc | ||
|
|
c7a580ca8a | ||
|
|
eaae7624a7 | ||
|
|
fcd59de6fb | ||
|
|
1bbe127209 | ||
|
|
b868adc058 | ||
|
|
a24b78e8c3 | ||
|
|
c8025f1cff | ||
|
|
fe0860dbf0 | ||
|
|
02d5d641d1 | ||
|
|
a057bb6c5b | ||
|
|
c9e4ae7fa1 | ||
|
|
79a97b2bc4 | ||
|
|
ef53951a16 | ||
|
|
74f1a1c033 | ||
|
|
ce986cfc6d | ||
|
|
61cea2a784 | ||
|
|
8a13bd3c1e | ||
|
|
da68926e9c | ||
|
|
e0b7453883 | ||
|
|
91e2828a95 | ||
|
|
bcf6409536 |
1
.gitattributes
vendored
1
.gitattributes
vendored
@@ -2,6 +2,7 @@ backend-python/rwkv_pip/** linguist-vendored
|
||||
backend-python/wkv_cuda_utils/** linguist-vendored
|
||||
backend-python/get-pip.py linguist-vendored
|
||||
backend-python/convert_model.py linguist-vendored
|
||||
backend-python/convert_safetensors.py linguist-vendored
|
||||
backend-python/utils/midi.py linguist-vendored
|
||||
build/** linguist-vendored
|
||||
finetune/lora/** linguist-vendored
|
||||
|
||||
36
.github/workflows/release.yml
vendored
36
.github/workflows/release.yml
vendored
@@ -48,10 +48,17 @@ jobs:
|
||||
id: cp310
|
||||
with:
|
||||
python-version: '3.10'
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: stable
|
||||
override: true
|
||||
target: wasm32-unknown-unknown
|
||||
- uses: crazy-max/ghaction-chocolatey@v2
|
||||
with:
|
||||
args: install upx
|
||||
- run: |
|
||||
Start-BitsTransfer https://github.com/josStorer/LibreHardwareMonitor.Console/releases/download/v0.1.0/LibreHardwareMonitor.Console.zip ./LibreHardwareMonitor.Console.zip
|
||||
Expand-Archive ./LibreHardwareMonitor.Console.zip -DestinationPath ./components/LibreHardwareMonitor.Console
|
||||
Start-BitsTransfer https://www.python.org/ftp/python/3.10.11/python-3.10.11-embed-amd64.zip ./python-3.10.11-embed-amd64.zip
|
||||
Expand-Archive ./python-3.10.11-embed-amd64.zip -DestinationPath ./py310
|
||||
$content=Get-Content "./py310/python310._pth"; $content | ForEach-Object {if ($_.ReadCount -eq 3) {"Lib\\site-packages"} else {$_}} | Set-Content ./py310/python310._pth
|
||||
@@ -60,7 +67,13 @@ jobs:
|
||||
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../include" -Destination "py310/include" -Recurse
|
||||
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../libs" -Destination "py310/libs" -Recurse
|
||||
./py310/python -m pip install cyac==1.7
|
||||
git clone https://github.com/josStorer/ai00_rwkv_server --depth=1
|
||||
cd ai00_rwkv_server
|
||||
cargo build --release
|
||||
mv ./target/release/ai00_server.exe ../backend-rust/webgpu_server.exe
|
||||
cd ..
|
||||
go install github.com/wailsapp/wails/v2/cmd/wails@latest
|
||||
(Get-Content -Path ./backend-golang/app.go) -replace "//go:custom_build windows ", "" | Set-Content -Path ./backend-golang/app.go
|
||||
make
|
||||
Rename-Item -Path "build/bin/RWKV-Runner.exe" -NewName "RWKV-Runner_windows_x64.exe"
|
||||
|
||||
@@ -76,10 +89,23 @@ jobs:
|
||||
- uses: actions/setup-go@v4
|
||||
with:
|
||||
go-version: '1.20.5'
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: stable
|
||||
override: true
|
||||
target: wasm32-unknown-unknown
|
||||
- run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install upx
|
||||
sudo apt-get install build-essential libgtk-3-dev libwebkit2gtk-4.0-dev
|
||||
git clone https://github.com/josStorer/ai00_rwkv_server --depth=1
|
||||
cd ai00_rwkv_server
|
||||
sudo apt-get install libudev-dev
|
||||
sudo apt-get install libasound2-dev
|
||||
rustup target add x86_64-unknown-linux-gnu
|
||||
cargo build --release --target x86_64-unknown-linux-gnu
|
||||
mv ./target/x86_64-unknown-linux-gnu/release/ai00_server ../backend-rust/webgpu_server
|
||||
cd ..
|
||||
go install github.com/wailsapp/wails/v2/cmd/wails@latest
|
||||
rm -rf ./backend-python/wkv_cuda_utils
|
||||
rm ./backend-python/get-pip.py
|
||||
@@ -101,7 +127,17 @@ jobs:
|
||||
- uses: actions/setup-go@v4
|
||||
with:
|
||||
go-version: '1.20.5'
|
||||
- uses: actions-rs/toolchain@v1
|
||||
with:
|
||||
toolchain: stable
|
||||
override: true
|
||||
target: wasm32-unknown-unknown
|
||||
- run: |
|
||||
git clone https://github.com/josStorer/ai00_rwkv_server --depth=1
|
||||
cd ai00_rwkv_server
|
||||
cargo build --release
|
||||
mv ./target/release/ai00_server ../backend-rust/webgpu_server
|
||||
cd ..
|
||||
go install github.com/wailsapp/wails/v2/cmd/wails@latest
|
||||
rm -rf ./backend-python/wkv_cuda_utils
|
||||
rm ./backend-python/get-pip.py
|
||||
|
||||
3
.gitignore
vendored
3
.gitignore
vendored
@@ -5,6 +5,8 @@ __pycache__
|
||||
.idea
|
||||
.vs
|
||||
*.pth
|
||||
*.st
|
||||
*.safetensors
|
||||
*.bin
|
||||
/config.json
|
||||
/cache.json
|
||||
@@ -24,3 +26,4 @@ __pycache__
|
||||
train_log.txt
|
||||
finetune/json2binidx_tool/data
|
||||
/wsl.state
|
||||
/components
|
||||
|
||||
@@ -1,9 +1,12 @@
|
||||
## Changes
|
||||
|
||||
- japanese UI
|
||||
- global penalty
|
||||
- allow custom user_name and assistant_name (`/chat/completions` API)
|
||||
- update defaultConfigs
|
||||
- frontend adaptation for api params (user_name, assistant_name, presystem)
|
||||
- custom tokenizer (#77)
|
||||
- enable right-click context menu
|
||||
- upgrade cuda-beta
|
||||
- revert(2d5456): refresh local models when download complete (for macOS)
|
||||
- improve ui desc
|
||||
- chore
|
||||
|
||||
## Install
|
||||
|
||||
|
||||
@@ -91,8 +91,8 @@ body.json:
|
||||
|
||||
## 埋め込み API の例
|
||||
|
||||
Note: v1.4.0 has improved the quality of embeddings API. The generated results are not compatible
|
||||
with previous versions. If you are using embeddings API to generate knowledge bases or similar, please regenerate.
|
||||
注意: v1.4.0 では、埋め込み API の品質が向上しました。生成される結果は、以前のバージョンとは互換性がありません。
|
||||
もし、embeddings API を使って知識ベースなどを生成している場合は、再生成してください。
|
||||
|
||||
LangChain を使用している場合は、`OpenAIEmbeddings(openai_api_base="http://127.0.0.1:8000", openai_api_key="sk-")`
|
||||
を使用してください
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
package backend_golang
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"context"
|
||||
"errors"
|
||||
"net/http"
|
||||
@@ -8,6 +9,7 @@ import (
|
||||
"os/exec"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"syscall"
|
||||
|
||||
"github.com/fsnotify/fsnotify"
|
||||
"github.com/minio/selfupdate"
|
||||
@@ -41,6 +43,7 @@ func (a *App) OnStartup(ctx context.Context) {
|
||||
a.cmdPrefix = "cd " + a.exDir + " && "
|
||||
}
|
||||
|
||||
os.Chmod("./backend-rust/webgpu_server", 0777)
|
||||
os.Mkdir(a.exDir+"models", os.ModePerm)
|
||||
os.Mkdir(a.exDir+"lora-models", os.ModePerm)
|
||||
os.Mkdir(a.exDir+"finetune/json2binidx_tool/data", os.ModePerm)
|
||||
@@ -50,7 +53,18 @@ func (a *App) OnStartup(ctx context.Context) {
|
||||
}
|
||||
|
||||
a.downloadLoop()
|
||||
a.watchFs()
|
||||
a.monitorHardware()
|
||||
}
|
||||
|
||||
func (a *App) OnBeforeClose(ctx context.Context) bool {
|
||||
if monitor != nil {
|
||||
monitor.Process.Kill()
|
||||
}
|
||||
return false
|
||||
}
|
||||
|
||||
func (a *App) watchFs() {
|
||||
watcher, err := fsnotify.NewWatcher()
|
||||
if err == nil {
|
||||
watcher.Add("./lora-models")
|
||||
@@ -62,7 +76,7 @@ func (a *App) OnStartup(ctx context.Context) {
|
||||
if !ok {
|
||||
return
|
||||
}
|
||||
wruntime.EventsEmit(ctx, "fsnotify", event.Name)
|
||||
wruntime.EventsEmit(a.ctx, "fsnotify", event.Name)
|
||||
case _, ok := <-watcher.Errors:
|
||||
if !ok {
|
||||
return
|
||||
@@ -73,6 +87,37 @@ func (a *App) OnStartup(ctx context.Context) {
|
||||
}
|
||||
}
|
||||
|
||||
var monitor *exec.Cmd
|
||||
|
||||
func (a *App) monitorHardware() {
|
||||
if runtime.GOOS != "windows" {
|
||||
return
|
||||
}
|
||||
|
||||
monitor = exec.Command("./components/LibreHardwareMonitor.Console/LibreHardwareMonitor.Console.exe")
|
||||
stdout, err := monitor.StdoutPipe()
|
||||
if err != nil {
|
||||
monitor = nil
|
||||
return
|
||||
}
|
||||
|
||||
go func() {
|
||||
reader := bufio.NewReader(stdout)
|
||||
for {
|
||||
line, _, err := reader.ReadLine()
|
||||
if err != nil {
|
||||
wruntime.EventsEmit(a.ctx, "monitorerr", err.Error())
|
||||
break
|
||||
}
|
||||
wruntime.EventsEmit(a.ctx, "monitor", string(line))
|
||||
}
|
||||
}()
|
||||
|
||||
monitor.SysProcAttr = &syscall.SysProcAttr{}
|
||||
//go:custom_build windows monitor.SysProcAttr.HideWindow = true
|
||||
monitor.Start()
|
||||
}
|
||||
|
||||
func (a *App) UpdateApp(url string) (broken bool, err error) {
|
||||
resp, err := http.Get(url)
|
||||
if err != nil {
|
||||
|
||||
@@ -10,7 +10,7 @@ import (
|
||||
"strings"
|
||||
)
|
||||
|
||||
func (a *App) StartServer(python string, port int, host string) (string, error) {
|
||||
func (a *App) StartServer(python string, port int, host string, rwkvBeta bool) (string, error) {
|
||||
var err error
|
||||
if python == "" {
|
||||
python, err = GetPython()
|
||||
@@ -18,7 +18,19 @@ func (a *App) StartServer(python string, port int, host string) (string, error)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
return Cmd(python, "./backend-python/main.py", strconv.Itoa(port), host)
|
||||
args := []string{python, "./backend-python/main.py"}
|
||||
if rwkvBeta {
|
||||
args = append(args, "--rwkv-beta")
|
||||
}
|
||||
args = append(args, "--port", strconv.Itoa(port), "--host", host)
|
||||
return Cmd(args...)
|
||||
}
|
||||
|
||||
func (a *App) StartWebGPUServer(port int, host string) (string, error) {
|
||||
args := []string{"./backend-rust/webgpu_server"}
|
||||
args = append(args, "-a", "0", "-t", "backend-rust/assets/rwkv_vocab_v20230424.json",
|
||||
"--port", strconv.Itoa(port), "--ip", host)
|
||||
return Cmd(args...)
|
||||
}
|
||||
|
||||
func (a *App) ConvertModel(python string, modelPath string, strategy string, outPath string) (string, error) {
|
||||
@@ -32,6 +44,17 @@ func (a *App) ConvertModel(python string, modelPath string, strategy string, out
|
||||
return Cmd(python, "./backend-python/convert_model.py", "--in", modelPath, "--out", outPath, "--strategy", strategy)
|
||||
}
|
||||
|
||||
func (a *App) ConvertSafetensors(python string, modelPath string, outPath string) (string, error) {
|
||||
var err error
|
||||
if python == "" {
|
||||
python, err = GetPython()
|
||||
}
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
return Cmd(python, "./backend-python/convert_safetensors.py", "--input", modelPath, "--output", outPath)
|
||||
}
|
||||
|
||||
func (a *App) ConvertData(python string, input string, outputPrefix string, vocab string) (string, error) {
|
||||
var err error
|
||||
if python == "" {
|
||||
@@ -132,7 +155,6 @@ func (a *App) InstallPyDep(python string, cnMirror bool) (string, error) {
|
||||
"exit"
|
||||
if !cnMirror {
|
||||
installScript = strings.Replace(installScript, " -i https://pypi.tuna.tsinghua.edu.cn/simple", "", -1)
|
||||
installScript = strings.Replace(installScript, "requirements.txt", "requirements_versions.txt", -1)
|
||||
}
|
||||
err = os.WriteFile("./install-py-dep.bat", []byte(installScript), 0644)
|
||||
if err != nil {
|
||||
|
||||
53
backend-python/convert_safetensors.py
vendored
Normal file
53
backend-python/convert_safetensors.py
vendored
Normal file
@@ -0,0 +1,53 @@
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import copy
|
||||
import torch
|
||||
from safetensors.torch import load_file, save_file
|
||||
|
||||
import argparse
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--input", type=str, help="Path to input pth model")
|
||||
parser.add_argument(
|
||||
"--output",
|
||||
type=str,
|
||||
default="./converted.st",
|
||||
help="Path to output safetensors model",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
|
||||
def convert_file(
|
||||
pt_filename: str,
|
||||
sf_filename: str,
|
||||
):
|
||||
loaded = torch.load(pt_filename, map_location="cpu")
|
||||
if "state_dict" in loaded:
|
||||
loaded = loaded["state_dict"]
|
||||
|
||||
loaded = {k: v.clone().half() for k, v in loaded.items()}
|
||||
for k, v in loaded.items():
|
||||
print(f"{k}\t{v.shape}\t{v.dtype}")
|
||||
|
||||
# For tensors to be contiguous
|
||||
loaded = {k: v.contiguous() for k, v in loaded.items()}
|
||||
|
||||
dirname = os.path.dirname(sf_filename)
|
||||
os.makedirs(dirname, exist_ok=True)
|
||||
save_file(loaded, sf_filename, metadata={"format": "pt"})
|
||||
reloaded = load_file(sf_filename)
|
||||
for k in loaded:
|
||||
pt_tensor = loaded[k]
|
||||
sf_tensor = reloaded[k]
|
||||
if not torch.equal(pt_tensor, sf_tensor):
|
||||
raise RuntimeError(f"The output tensors do not match for key {k}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
try:
|
||||
convert_file(args.input, args.output)
|
||||
print(f"Saved to {args.output}")
|
||||
except Exception as e:
|
||||
with open("error.txt", "w") as f:
|
||||
f.write(str(e))
|
||||
@@ -1,3 +1,4 @@
|
||||
import safetensors
|
||||
import midi2audio
|
||||
import mido
|
||||
import lm_dataformat
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
from enum import Enum, auto
|
||||
|
||||
Args = "args"
|
||||
Model = "model"
|
||||
Model_Status = "model_status"
|
||||
Model_Config = "model_config"
|
||||
|
||||
@@ -1,5 +1,11 @@
|
||||
import time
|
||||
|
||||
start_time = time.time()
|
||||
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
from typing import Sequence
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
|
||||
|
||||
@@ -12,7 +18,7 @@ from utils.rwkv import *
|
||||
from utils.torch import *
|
||||
from utils.ngrok import *
|
||||
from utils.log import log_middleware
|
||||
from routes import completion, config, state_cache, midi
|
||||
from routes import completion, config, state_cache, midi, misc
|
||||
import global_var
|
||||
|
||||
app = FastAPI(dependencies=[Depends(log_middleware)])
|
||||
@@ -28,12 +34,18 @@ app.add_middleware(
|
||||
app.include_router(completion.router)
|
||||
app.include_router(config.router)
|
||||
app.include_router(midi.router)
|
||||
app.include_router(misc.router)
|
||||
app.include_router(state_cache.router)
|
||||
|
||||
|
||||
@app.on_event("startup")
|
||||
def init():
|
||||
global_var.init()
|
||||
cmd_params = os.environ["RWKV_RUNNER_PARAMS"]
|
||||
global_var.set(
|
||||
global_var.Args, get_args(cmd_params.split(" ") if cmd_params else None)
|
||||
)
|
||||
|
||||
state_cache.init()
|
||||
|
||||
set_torch()
|
||||
@@ -56,9 +68,34 @@ def exit():
|
||||
parent.kill()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
uvicorn.run(
|
||||
"main:app",
|
||||
port=8000 if len(sys.argv) < 2 else int(sys.argv[1]),
|
||||
host="127.0.0.1" if len(sys.argv) < 3 else sys.argv[2],
|
||||
def get_args(args: Union[Sequence[str], None] = None):
|
||||
parser = argparse.ArgumentParser()
|
||||
group = parser.add_argument_group(title="server arguments")
|
||||
group.add_argument(
|
||||
"--port",
|
||||
type=int,
|
||||
default=8000,
|
||||
help="port to run the server on (default: 8000)",
|
||||
)
|
||||
group.add_argument(
|
||||
"--host",
|
||||
type=str,
|
||||
default="127.0.0.1",
|
||||
help="host to run the server on (default: 127.0.0.1)",
|
||||
)
|
||||
group = parser.add_argument_group(title="mode arguments")
|
||||
group.add_argument(
|
||||
"--rwkv-beta",
|
||||
action="store_true",
|
||||
help="whether to use rwkv-beta (default: False)",
|
||||
)
|
||||
args = parser.parse_args(args)
|
||||
|
||||
return args
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
os.environ["RWKV_RUNNER_PARAMS"] = " ".join(sys.argv[1:])
|
||||
print("--- %s seconds ---" % (time.time() - start_time))
|
||||
uvicorn.run("main:app", port=args.port, host=args.host, workers=1)
|
||||
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -2,11 +2,12 @@ import asyncio
|
||||
import json
|
||||
from threading import Lock
|
||||
from typing import List, Union
|
||||
from enum import Enum
|
||||
import base64
|
||||
|
||||
from fastapi import APIRouter, Request, status, HTTPException
|
||||
from sse_starlette.sse import EventSourceResponse
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, Field
|
||||
import numpy as np
|
||||
import tiktoken
|
||||
from utils.rwkv import *
|
||||
@@ -16,34 +17,52 @@ import global_var
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
class Role(Enum):
|
||||
User = "user"
|
||||
Assistant = "assistant"
|
||||
System = "system"
|
||||
|
||||
|
||||
class Message(BaseModel):
|
||||
role: str
|
||||
content: str
|
||||
role: Role
|
||||
content: str = Field(min_length=0)
|
||||
raw: bool = Field(False, description="Whether to treat content as raw text")
|
||||
|
||||
|
||||
default_stop = [
|
||||
"\n\nUser",
|
||||
"\n\nQuestion",
|
||||
"\n\nQ",
|
||||
"\n\nHuman",
|
||||
"\n\nBob",
|
||||
]
|
||||
|
||||
|
||||
class ChatCompletionBody(ModelConfigBody):
|
||||
messages: List[Message]
|
||||
model: str = "rwkv"
|
||||
messages: Union[List[Message], None]
|
||||
model: Union[str, None] = "rwkv"
|
||||
stream: bool = False
|
||||
stop: Union[str, List[str]] = [
|
||||
"\n\nUser",
|
||||
"\n\nQuestion",
|
||||
"\n\nQ",
|
||||
"\n\nHuman",
|
||||
"\n\nBob",
|
||||
]
|
||||
user_name: str = None
|
||||
assistant_name: str = None
|
||||
stop: Union[str, List[str], None] = default_stop
|
||||
user_name: Union[str, None] = Field(None, description="Internal user name")
|
||||
assistant_name: Union[str, None] = Field(
|
||||
None, description="Internal assistant name"
|
||||
)
|
||||
presystem: bool = Field(
|
||||
True, description="Whether to insert default system prompt at the beginning"
|
||||
)
|
||||
|
||||
class Config:
|
||||
schema_extra = {
|
||||
"example": {
|
||||
"messages": [{"role": "user", "content": "hello"}],
|
||||
"messages": [
|
||||
{"role": Role.User.value, "content": "hello", "raw": False}
|
||||
],
|
||||
"model": "rwkv",
|
||||
"stream": False,
|
||||
"stop": None,
|
||||
"user_name": None,
|
||||
"assistant_name": None,
|
||||
"presystem": True,
|
||||
"max_tokens": 1000,
|
||||
"temperature": 1.2,
|
||||
"top_p": 0.5,
|
||||
@@ -54,10 +73,10 @@ class ChatCompletionBody(ModelConfigBody):
|
||||
|
||||
|
||||
class CompletionBody(ModelConfigBody):
|
||||
prompt: Union[str, List[str]]
|
||||
model: str = "rwkv"
|
||||
prompt: Union[str, List[str], None]
|
||||
model: Union[str, None] = "rwkv"
|
||||
stream: bool = False
|
||||
stop: Union[str, List[str]] = None
|
||||
stop: Union[str, List[str], None] = None
|
||||
|
||||
class Config:
|
||||
schema_extra = {
|
||||
@@ -87,7 +106,7 @@ async def eval_rwkv(
|
||||
body: ModelConfigBody,
|
||||
prompt: str,
|
||||
stream: bool,
|
||||
stop: Union[str, List[str]],
|
||||
stop: Union[str, List[str], None],
|
||||
chat_mode: bool,
|
||||
):
|
||||
global requests_num
|
||||
@@ -200,7 +219,7 @@ async def eval_rwkv(
|
||||
"choices": [
|
||||
{
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"role": Role.Assistant.value,
|
||||
"content": response,
|
||||
},
|
||||
"index": 0,
|
||||
@@ -223,17 +242,8 @@ async def chat_completions(body: ChatCompletionBody, request: Request):
|
||||
if model is None:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "model not loaded")
|
||||
|
||||
question = body.messages[-1]
|
||||
if question.role == "user":
|
||||
question = question.content
|
||||
elif question.role == "system":
|
||||
question = body.messages[-2]
|
||||
if question.role == "user":
|
||||
question = question.content
|
||||
else:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "no question found")
|
||||
else:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "no question found")
|
||||
if body.messages is None or body.messages == []:
|
||||
raise HTTPException(status.HTTP_400_BAD_REQUEST, "messages not found")
|
||||
|
||||
interface = model.interface
|
||||
user = model.user if body.user_name is None else body.user_name
|
||||
@@ -241,30 +251,43 @@ async def chat_completions(body: ChatCompletionBody, request: Request):
|
||||
|
||||
is_raven = model.rwkv_type == RWKVType.Raven
|
||||
|
||||
completion_text = (
|
||||
f"""
|
||||
completion_text: str = ""
|
||||
basic_system: Union[str, None] = None
|
||||
if body.presystem:
|
||||
if body.messages[0].role == Role.System:
|
||||
basic_system = body.messages[0].content
|
||||
|
||||
if basic_system is None:
|
||||
completion_text = (
|
||||
f"""
|
||||
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
|
||||
{bot} is very intelligent, creative and friendly. \
|
||||
{bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \
|
||||
{bot} likes to tell {user} a lot about herself and her opinions. \
|
||||
{bot} usually gives {user} kind, helpful and informative advices.\n
|
||||
"""
|
||||
if is_raven
|
||||
else f"{user}{interface} hi\n\n{bot}{interface} Hi. "
|
||||
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
|
||||
)
|
||||
for message in body.messages:
|
||||
if message.role == "system":
|
||||
completion_text = (
|
||||
f"The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. "
|
||||
if is_raven
|
||||
else f"{user}{interface} hi\n\n{bot}{interface} Hi. "
|
||||
+ message.content.replace("\\n", "\n")
|
||||
.replace("\r\n", "\n")
|
||||
.replace("\n\n", "\n")
|
||||
.replace("\n", " ")
|
||||
.strip()
|
||||
.replace("You are", f"{bot} is" if is_raven else "I am")
|
||||
else (
|
||||
f"{user}{interface} hi\n\n{bot}{interface} Hi. "
|
||||
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
|
||||
)
|
||||
)
|
||||
else:
|
||||
if not body.messages[0].raw:
|
||||
basic_system = (
|
||||
basic_system.replace("\r\n", "\n")
|
||||
.replace("\r", "\n")
|
||||
.replace("\n\n", "\n")
|
||||
.replace("\n", " ")
|
||||
.strip()
|
||||
)
|
||||
completion_text = (
|
||||
(
|
||||
f"The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. "
|
||||
if is_raven
|
||||
else f"{user}{interface} hi\n\n{bot}{interface} Hi. "
|
||||
)
|
||||
+ basic_system.replace("You are", f"{bot} is" if is_raven else "I am")
|
||||
.replace("you are", f"{bot} is" if is_raven else "I am")
|
||||
.replace("You're", f"{bot} is" if is_raven else "I'm")
|
||||
.replace("you're", f"{bot} is" if is_raven else "I'm")
|
||||
@@ -275,33 +298,32 @@ The following is a coherent verbose detailed conversation between a girl named {
|
||||
.replace("你", f"{bot}" if is_raven else "我")
|
||||
+ "\n\n"
|
||||
)
|
||||
break
|
||||
for message in body.messages:
|
||||
if message.role == "user":
|
||||
completion_text += (
|
||||
f"{user}{interface} "
|
||||
+ message.content.replace("\\n", "\n")
|
||||
.replace("\r\n", "\n")
|
||||
|
||||
for message in body.messages[(0 if basic_system is None else 1) :]:
|
||||
append_message: str = ""
|
||||
if message.role == Role.User:
|
||||
append_message = f"{user}{interface} " + message.content
|
||||
elif message.role == Role.Assistant:
|
||||
append_message = f"{bot}{interface} " + message.content
|
||||
elif message.role == Role.System:
|
||||
append_message = message.content
|
||||
if not message.raw:
|
||||
append_message = (
|
||||
append_message.replace("\r\n", "\n")
|
||||
.replace("\r", "\n")
|
||||
.replace("\n\n", "\n")
|
||||
.strip()
|
||||
+ "\n\n"
|
||||
)
|
||||
elif message.role == "assistant":
|
||||
completion_text += (
|
||||
f"{bot}{interface} "
|
||||
+ message.content.replace("\\n", "\n")
|
||||
.replace("\r\n", "\n")
|
||||
.replace("\n\n", "\n")
|
||||
.strip()
|
||||
+ "\n\n"
|
||||
)
|
||||
completion_text += append_message + "\n\n"
|
||||
completion_text += f"{bot}{interface}"
|
||||
|
||||
if type(body.stop) == str:
|
||||
body.stop = [body.stop, f"\n\n{user}", f"\n\n{bot}"]
|
||||
else:
|
||||
elif type(body.stop) == list:
|
||||
body.stop.append(f"\n\n{user}")
|
||||
body.stop.append(f"\n\n{bot}")
|
||||
elif body.stop is None:
|
||||
body.stop = default_stop
|
||||
|
||||
if body.stream:
|
||||
return EventSourceResponse(
|
||||
@@ -345,8 +367,8 @@ async def completions(body: CompletionBody, request: Request):
|
||||
|
||||
|
||||
class EmbeddingsBody(BaseModel):
|
||||
input: Union[str, List[str], List[List[int]]]
|
||||
model: str = "rwkv"
|
||||
input: Union[str, List[str], List[List[int]], None]
|
||||
model: Union[str, None] = "rwkv"
|
||||
encoding_format: str = None
|
||||
fast_mode: bool = False
|
||||
|
||||
|
||||
@@ -29,6 +29,7 @@ def get_tokens_path(model_path: str):
|
||||
class SwitchModelBody(BaseModel):
|
||||
model: str
|
||||
strategy: str
|
||||
tokenizer: Union[str, None] = None
|
||||
customCuda: bool = False
|
||||
|
||||
class Config:
|
||||
@@ -36,6 +37,7 @@ class SwitchModelBody(BaseModel):
|
||||
"example": {
|
||||
"model": "models/RWKV-4-World-3B-v1-20230619-ctx4096.pth",
|
||||
"strategy": "cuda fp16",
|
||||
"tokenizer": None,
|
||||
"customCuda": False,
|
||||
}
|
||||
}
|
||||
@@ -65,19 +67,24 @@ def switch_model(body: SwitchModelBody, response: Response, request: Request):
|
||||
os.environ["RWKV_CUDA_ON"] = "1" if body.customCuda else "0"
|
||||
|
||||
global_var.set(global_var.Model_Status, global_var.ModelStatus.Loading)
|
||||
tokenizer = (
|
||||
get_tokens_path(body.model)
|
||||
if body.tokenizer is None or body.tokenizer == ""
|
||||
else body.tokenizer
|
||||
)
|
||||
try:
|
||||
global_var.set(
|
||||
global_var.Model,
|
||||
TextRWKV(
|
||||
model=body.model,
|
||||
strategy=body.strategy,
|
||||
tokens_path=get_tokens_path(body.model),
|
||||
tokens_path=tokenizer,
|
||||
)
|
||||
if "midi" not in body.model.lower()
|
||||
else MusicRWKV(
|
||||
model=body.model,
|
||||
strategy=body.strategy,
|
||||
tokens_path=get_tokens_path(body.model),
|
||||
tokens_path=tokenizer,
|
||||
),
|
||||
)
|
||||
except Exception as e:
|
||||
|
||||
131
backend-python/routes/misc.py
Normal file
131
backend-python/routes/misc.py
Normal file
@@ -0,0 +1,131 @@
|
||||
from fastapi import APIRouter, HTTPException, status
|
||||
from utils.rwkv import AbstractRWKV
|
||||
import global_var
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
@router.get("/dashboard/billing/credit_grants", tags=["MISC"])
|
||||
def credit_grants():
|
||||
return {
|
||||
"object": "credit_summary",
|
||||
"total_granted": 10000,
|
||||
"total_used": 0,
|
||||
"total_available": 10000,
|
||||
"grants": {
|
||||
"object": "list",
|
||||
"data": [
|
||||
{
|
||||
"object": "credit_grant",
|
||||
"grant_amount": 10000,
|
||||
"used_amount": 0,
|
||||
"effective_at": 1672531200,
|
||||
"expires_at": 33229440000,
|
||||
}
|
||||
],
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
fake_models = [
|
||||
{
|
||||
"id": "gpt-3.5-turbo",
|
||||
"object": "model",
|
||||
"created": 1677610602,
|
||||
"owned_by": "openai",
|
||||
"permission": [
|
||||
{
|
||||
"id": "modelperm-zy5TOjnE2zVaicIcKO9bQDgX",
|
||||
"object": "model_permission",
|
||||
"created": 1690864883,
|
||||
"allow_create_engine": False,
|
||||
"allow_sampling": True,
|
||||
"allow_logprobs": True,
|
||||
"allow_search_indices": False,
|
||||
"allow_view": True,
|
||||
"allow_fine_tuning": False,
|
||||
"organization": "*",
|
||||
"group": None,
|
||||
"is_blocking": False,
|
||||
}
|
||||
],
|
||||
"root": "gpt-3.5-turbo",
|
||||
"parent": None,
|
||||
},
|
||||
{
|
||||
"id": "text-davinci-003",
|
||||
"object": "model",
|
||||
"created": 1669599635,
|
||||
"owned_by": "openai-internal",
|
||||
"permission": [
|
||||
{
|
||||
"id": "modelperm-a6niqBmW2JaGmo0fDO7FEt1n",
|
||||
"object": "model_permission",
|
||||
"created": 1690930172,
|
||||
"allow_create_engine": False,
|
||||
"allow_sampling": True,
|
||||
"allow_logprobs": True,
|
||||
"allow_search_indices": False,
|
||||
"allow_view": True,
|
||||
"allow_fine_tuning": False,
|
||||
"organization": "*",
|
||||
"group": None,
|
||||
"is_blocking": False,
|
||||
}
|
||||
],
|
||||
"root": "text-davinci-003",
|
||||
"parent": None,
|
||||
},
|
||||
]
|
||||
|
||||
|
||||
@router.get("/v1/models", tags=["MISC"])
|
||||
@router.get("/models", tags=["MISC"])
|
||||
def models():
|
||||
model: AbstractRWKV = global_var.get(global_var.Model)
|
||||
model_name = model.name if model else "rwkv"
|
||||
|
||||
return {
|
||||
"object": "list",
|
||||
"data": [
|
||||
{
|
||||
"id": model_name,
|
||||
"object": "model",
|
||||
"owned_by": "rwkv",
|
||||
"root": model_name,
|
||||
"parent": None,
|
||||
},
|
||||
*fake_models,
|
||||
],
|
||||
}
|
||||
|
||||
|
||||
@router.get("/v1/models/{model_id}", tags=["MISC"])
|
||||
@router.get("/models/{model_id}", tags=["MISC"])
|
||||
def model(model_id: str):
|
||||
for fake_model in fake_models:
|
||||
if fake_model["id"] == model_id:
|
||||
return fake_model
|
||||
|
||||
if "rwkv" in model_id.lower():
|
||||
model: AbstractRWKV = global_var.get(global_var.Model)
|
||||
model_name = model.name if model else "rwkv"
|
||||
return {
|
||||
"id": model_name,
|
||||
"object": "model",
|
||||
"owned_by": "rwkv",
|
||||
"root": model_name,
|
||||
"parent": None,
|
||||
}
|
||||
|
||||
raise HTTPException(
|
||||
status.HTTP_404_NOT_FOUND,
|
||||
{
|
||||
"error": {
|
||||
"message": f"The model '{model_id}' does not exist",
|
||||
"type": "invalid_request_error",
|
||||
"param": "model",
|
||||
"code": "model_not_found",
|
||||
}
|
||||
},
|
||||
)
|
||||
@@ -1,4 +1,4 @@
|
||||
from typing import Any, Dict, List
|
||||
from typing import Any, Dict, List, Union
|
||||
from utils.log import quick_log
|
||||
from fastapi import APIRouter, HTTPException, Request, Response, status
|
||||
from pydantic import BaseModel
|
||||
@@ -60,7 +60,7 @@ def enable_state_cache():
|
||||
|
||||
class AddStateBody(BaseModel):
|
||||
prompt: str
|
||||
tokens: List[str]
|
||||
tokens: List[Union[str, int]]
|
||||
state: Any
|
||||
logits: Any
|
||||
|
||||
@@ -96,7 +96,7 @@ def add_state(body: AddStateBody):
|
||||
quick_log(
|
||||
None,
|
||||
None,
|
||||
f"New Trie Id: {id}\nTrie Len: {len(trie)}\nTrie Buff Size: {trie.buff_size()}\nDtrie Buff Size Of Id: {_get_a_dtrie_buff_size(dtrie[id])}",
|
||||
f"New Trie Id: {id}\nTrie Len: {len(trie)}\nTrie Buff Size: {trie.buff_size()}\nDtrie Buff Size Of Id: {__get_a_dtrie_buff_size(dtrie[id])}",
|
||||
)
|
||||
return "success"
|
||||
except Exception as e:
|
||||
@@ -124,7 +124,7 @@ class LongestPrefixStateBody(BaseModel):
|
||||
prompt: str
|
||||
|
||||
|
||||
def _get_a_dtrie_buff_size(dtrie_v):
|
||||
def __get_a_dtrie_buff_size(dtrie_v):
|
||||
# print(sys.getsizeof(dtrie_v["tokens"][0])) # str
|
||||
# print(sys.getsizeof(dtrie_v["tokens"][0]) * len(dtrie_v["tokens"]))
|
||||
# print(dtrie_v["state"][0][0].element_size())
|
||||
|
||||
124
backend-python/rwkv_pip/beta/cuda/att_one.cu
vendored
Normal file
124
backend-python/rwkv_pip/beta/cuda/att_one.cu
vendored
Normal file
@@ -0,0 +1,124 @@
|
||||
#include "ATen/ATen.h"
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <torch/extension.h>
|
||||
|
||||
#include "element_wise.h"
|
||||
#include "util.h"
|
||||
|
||||
// Equivalent Python code:
|
||||
// ww = t_first + k
|
||||
// p = torch.maximum(pp, ww)
|
||||
// e1 = torch.exp(pp - p)
|
||||
// e2 = torch.exp(ww - p)
|
||||
// wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
|
||||
// ww = t_decay + pp
|
||||
// p = torch.maximum(ww, k)
|
||||
// e1 = torch.exp(ww - p)
|
||||
// e2 = torch.exp(k - p)
|
||||
// t1 = e1 * aa + e2 * v
|
||||
// t2 = e1 * bb + e2
|
||||
// r = r * wkv
|
||||
// return t1, t2, p, r
|
||||
struct WkvForwardOne {
|
||||
const float *t_first;
|
||||
const float *k;
|
||||
const float *pp;
|
||||
const float *aa;
|
||||
const float *bb;
|
||||
const float *t_decay;
|
||||
const float *v;
|
||||
/* out */ float *t1;
|
||||
/* out */ float *t2;
|
||||
/* out */ float *p;
|
||||
/* in & out */ half *r;
|
||||
|
||||
__device__ void operator()(int i) const {
|
||||
float ww = t_first[i] + k[i];
|
||||
float pp_ = pp[i];
|
||||
float p_ = (pp_ > ww) ? pp_ : ww;
|
||||
float e1 = expf(pp_ - p_);
|
||||
float e2 = expf(ww - p_);
|
||||
float aa_ = aa[i];
|
||||
float bb_ = bb[i];
|
||||
float v_ = v[i];
|
||||
r[i] = __hmul(r[i], __float2half(((e1 * aa_ + e2 * v_) / (e1 * bb_ + e2))));
|
||||
ww = t_decay[i] + pp_;
|
||||
float k_ = k[i];
|
||||
p_ = (ww > k_) ? ww : k_;
|
||||
e1 = expf(ww - p_);
|
||||
e2 = expf(k_ - p_);
|
||||
t1[i] = e1 * aa_ + e2 * v_;
|
||||
t2[i] = e1 * bb_ + e2;
|
||||
p[i] = p_;
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
Equivalent Python code:
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
vx = xx * v_mix + sx * (1 - v_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
*/
|
||||
|
||||
struct Mix {
|
||||
const half *xx;
|
||||
const half *sx;
|
||||
const half *k_mix;
|
||||
const half *v_mix;
|
||||
const half *r_mix;
|
||||
/* out */ half *kx;
|
||||
/* out */ half *vx;
|
||||
/* out */ half *rx;
|
||||
|
||||
__device__ void operator()(int i) const {
|
||||
half xx_ = xx[i];
|
||||
half sx_ = sx[i];
|
||||
half k_mix_ = k_mix[i];
|
||||
half v_mix_ = v_mix[i];
|
||||
half r_mix_ = r_mix[i];
|
||||
kx[i] = __hadd(__hmul(xx_, k_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
||||
vx[i] = __hadd(__hmul(xx_, v_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), v_mix_)));
|
||||
rx[i] = __hadd(__hmul(xx_, r_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
||||
}
|
||||
};
|
||||
|
||||
using torch::Tensor;
|
||||
|
||||
void gemm_fp16_cublas_tensor(Tensor a, Tensor b, Tensor c);
|
||||
|
||||
Tensor att_one(Tensor x, Tensor ln_w, Tensor ln_b, Tensor sx, Tensor k_mix,
|
||||
Tensor v_mix, Tensor r_mix, Tensor kw,
|
||||
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx, Tensor rw,
|
||||
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
|
||||
/* imm */ Tensor k, Tensor pp, Tensor ww, Tensor aa, Tensor bb,
|
||||
Tensor t_decay, /* imm */ Tensor v, /* in & out */ Tensor r,
|
||||
/* out */ Tensor x_plus_out, /* out */ Tensor t1,
|
||||
/* out */ Tensor t2, /* out */ Tensor p) {
|
||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
||||
element_wise(Mix{data_ptr<half>(xx), data_ptr<half>(sx),
|
||||
data_ptr<half>(k_mix), data_ptr<half>(v_mix),
|
||||
data_ptr<half>(r_mix), data_ptr<half>(kx),
|
||||
data_ptr<half>(vx), data_ptr<half>(rx)},
|
||||
x.numel());
|
||||
|
||||
gemm_fp16_cublas_tensor(kx, kw, k);
|
||||
gemm_fp16_cublas_tensor(vx, vw, v);
|
||||
gemm_fp16_cublas_tensor(rx, rw, r);
|
||||
at::sigmoid_(r);
|
||||
|
||||
element_wise(WkvForwardOne{data_ptr<float>(t_first), data_ptr<float>(k),
|
||||
data_ptr<float>(pp), data_ptr<float>(aa),
|
||||
data_ptr<float>(bb), data_ptr<float>(t_decay),
|
||||
data_ptr<float>(v), data_ptr<float>(t1),
|
||||
data_ptr<float>(t2), data_ptr<float>(p),
|
||||
data_ptr<half>(r)},
|
||||
x.numel());
|
||||
|
||||
gemm_fp16_cublas_tensor(r, ow, x_plus_out);
|
||||
x_plus_out += x;
|
||||
return xx;
|
||||
}
|
||||
109
backend-python/rwkv_pip/beta/cuda/att_one_v5.cu
vendored
Normal file
109
backend-python/rwkv_pip/beta/cuda/att_one_v5.cu
vendored
Normal file
@@ -0,0 +1,109 @@
|
||||
#include "ATen/ATen.h"
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <torch/extension.h>
|
||||
|
||||
#include "element_wise.h"
|
||||
#include "util.h"
|
||||
|
||||
// Equivalent Python code:
|
||||
// s1 = t_first * a + s
|
||||
// s2 = a + t_decay * s
|
||||
struct Fused1 {
|
||||
const float *t_first;
|
||||
const float *t_decay;
|
||||
const float *a;
|
||||
const float *s;
|
||||
const int32_t inner_size;
|
||||
/* out */ float *s1;
|
||||
/* out */ float *s2;
|
||||
|
||||
__device__ void operator()(int i) const {
|
||||
const int j = i / inner_size;
|
||||
s1[i] = t_first[j] * a[i] + s[i];
|
||||
s2[i] = a[i] + t_decay[j] * s[i];
|
||||
}
|
||||
};
|
||||
|
||||
/*
|
||||
Equivalent Python code:
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
vx = xx * v_mix + sx * (1 - v_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
*/
|
||||
|
||||
struct Mix {
|
||||
const half *xx;
|
||||
const half *sx;
|
||||
const half *k_mix;
|
||||
const half *v_mix;
|
||||
const half *r_mix;
|
||||
/* out */ half *kx;
|
||||
/* out */ half *vx;
|
||||
/* out */ half *rx;
|
||||
|
||||
__device__ void operator()(int i) const {
|
||||
half xx_ = xx[i];
|
||||
half sx_ = sx[i];
|
||||
half k_mix_ = k_mix[i];
|
||||
half v_mix_ = v_mix[i];
|
||||
half r_mix_ = r_mix[i];
|
||||
kx[i] = __hadd(__hmul(xx_, k_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
||||
vx[i] = __hadd(__hmul(xx_, v_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), v_mix_)));
|
||||
rx[i] = __hadd(__hmul(xx_, r_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
||||
}
|
||||
};
|
||||
|
||||
using torch::Tensor;
|
||||
|
||||
void gemm_fp16_cublas_tensor(Tensor a, Tensor b, Tensor c);
|
||||
|
||||
Tensor att_one_v5(Tensor x, Tensor sx, Tensor s, Tensor ln_w, Tensor ln_b,
|
||||
Tensor lx_w, Tensor lx_b, Tensor k_mix, Tensor v_mix,
|
||||
Tensor r_mix, Tensor kw,
|
||||
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx,
|
||||
Tensor rw,
|
||||
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
|
||||
/* imm */ Tensor k, Tensor t_decay, /* imm */ Tensor v,
|
||||
/* imm */ Tensor r, /* imm */ Tensor s1,
|
||||
/* out */ Tensor x_plus_out, /* out */ Tensor s2) {
|
||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
||||
element_wise(Mix{data_ptr<half>(xx), data_ptr<half>(sx),
|
||||
data_ptr<half>(k_mix), data_ptr<half>(v_mix),
|
||||
data_ptr<half>(r_mix), data_ptr<half>(kx),
|
||||
data_ptr<half>(vx), data_ptr<half>(rx)},
|
||||
x.numel());
|
||||
|
||||
int H = t_decay.size(0);
|
||||
int S = x.size(-1) / H;
|
||||
gemm_fp16_cublas_tensor(rx, rw, r);
|
||||
r = at::reshape(r, {H, 1, S});
|
||||
gemm_fp16_cublas_tensor(kx, kw, k);
|
||||
k = at::reshape(k, {H, S, 1});
|
||||
gemm_fp16_cublas_tensor(vx, vw, v);
|
||||
v = at::reshape(v, {H, 1, S});
|
||||
|
||||
{
|
||||
Tensor a = at::matmul(k, v);
|
||||
|
||||
// s1 = t_first * a + s
|
||||
// s2 = a + t_decay * s
|
||||
element_wise(Fused1{data_ptr<float>(t_first), data_ptr<float>(t_decay),
|
||||
data_ptr<float>(a), data_ptr<float>(s),
|
||||
static_cast<int32_t>(a.size(1) * a.size(2)),
|
||||
data_ptr<float>(s1), data_ptr<float>(s2)},
|
||||
a.numel());
|
||||
}
|
||||
|
||||
Tensor out = at::matmul(r, s1);
|
||||
out = at::flatten(out);
|
||||
out = at::squeeze(at::group_norm(at::unsqueeze(out, 0), H, lx_w, lx_b), 0);
|
||||
out = at::_cast_Half(out);
|
||||
|
||||
gemm_fp16_cublas_tensor(out, ow, x_plus_out);
|
||||
x_plus_out += x;
|
||||
return xx;
|
||||
}
|
||||
178
backend-python/rwkv_pip/beta/cuda/att_seq.cu
vendored
Normal file
178
backend-python/rwkv_pip/beta/cuda/att_seq.cu
vendored
Normal file
@@ -0,0 +1,178 @@
|
||||
#include "ATen/ATen.h"
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <torch/extension.h>
|
||||
|
||||
#include "util.h"
|
||||
#include "element_wise.h"
|
||||
|
||||
using torch::Tensor;
|
||||
|
||||
void gemm_fp16_cublas(const void *a, const void *b, void *c, int m,
|
||||
int n, int k, bool output_fp32);
|
||||
|
||||
// based on `kernel_wkv_forward`, fusing more operations
|
||||
__global__ void kernel_wkv_forward_new(
|
||||
const int B, const int T, const int C, const float *__restrict__ const _w,
|
||||
const float *__restrict__ const _u, const float *__restrict__ const _k,
|
||||
const float *__restrict__ const _v, const half *__restrict__ const r,
|
||||
half *__restrict__ const _y, float *__restrict__ const _aa,
|
||||
float *__restrict__ const _bb, float *__restrict__ const _pp) {
|
||||
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int _b = idx / C;
|
||||
const int _c = idx % C;
|
||||
const int _offset = _b * T * C + _c;
|
||||
const int _state_offset = _b * C + _c;
|
||||
|
||||
float u = _u[_c];
|
||||
float w = _w[_c];
|
||||
const float *__restrict__ const k = _k + _offset;
|
||||
const float *__restrict__ const v = _v + _offset;
|
||||
half *__restrict__ const y = _y + _offset;
|
||||
|
||||
float aa = _aa[_state_offset];
|
||||
float bb = _bb[_state_offset];
|
||||
float pp = _pp[_state_offset];
|
||||
for (int i = 0; i < T; i++) {
|
||||
const int ii = i * C;
|
||||
const float kk = k[ii];
|
||||
const float vv = v[ii];
|
||||
float ww = u + kk;
|
||||
float p = max(pp, ww);
|
||||
float e1 = exp(pp - p);
|
||||
float e2 = exp(ww - p);
|
||||
y[ii] = __float2half((e1 * aa + e2 * vv) / (e1 * bb + e2));
|
||||
ww = w + pp;
|
||||
p = max(ww, kk);
|
||||
e1 = exp(ww - p);
|
||||
e2 = exp(kk - p);
|
||||
aa = e1 * aa + e2 * vv;
|
||||
bb = e1 * bb + e2;
|
||||
pp = p;
|
||||
}
|
||||
_aa[_state_offset] = aa;
|
||||
_bb[_state_offset] = bb;
|
||||
_pp[_state_offset] = pp;
|
||||
}
|
||||
|
||||
void cuda_wkv_forward_new(int B, int T, int C, float *w, float *u, float *k,
|
||||
float *v, half *r, half *y, float *aa, float *bb,
|
||||
float *pp) {
|
||||
dim3 threadsPerBlock(min(C, 32));
|
||||
assert(B * C % threadsPerBlock.x == 0);
|
||||
dim3 numBlocks(B * C / threadsPerBlock.x);
|
||||
kernel_wkv_forward_new<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, r,
|
||||
y, aa, bb, pp);
|
||||
}
|
||||
|
||||
__global__ void _att_mix(const half *xx, const half *sx, const half *k_mix,
|
||||
const half *v_mix, const half *r_mix,
|
||||
const int outer_size, const int inner_size, half *kx,
|
||||
half *vx, half *rx) {
|
||||
for (int idx2 = blockIdx.x * blockDim.x + threadIdx.x; idx2 < inner_size;
|
||||
idx2 += blockDim.x * gridDim.x) {
|
||||
half k_mix_ = k_mix[idx2];
|
||||
half v_mix_ = v_mix[idx2];
|
||||
half r_mix_ = r_mix[idx2];
|
||||
for (int row = 0; row < outer_size; ++row) {
|
||||
int idx1 = row * inner_size + idx2;
|
||||
half xx_ = xx[idx1];
|
||||
half sx_ = sx[idx1];
|
||||
kx[idx1] = __hadd(__hmul(xx_, k_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
||||
vx[idx1] = __hadd(__hmul(xx_, v_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), v_mix_)));
|
||||
rx[idx1] = __hadd(__hmul(xx_, r_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void att_mix(const half *xx, const half *sx, const half *k_mix,
|
||||
const half *v_mix, const half *r_mix, const int outer_size,
|
||||
const int inner_size, half *kx, half *vx, half *rx) {
|
||||
// 256 is good enough on most GPUs
|
||||
const int32_t BLOCK_SIZE = 256;
|
||||
assert(inner_size % BLOCK_SIZE == 0);
|
||||
_att_mix<<<inner_size / BLOCK_SIZE, BLOCK_SIZE>>>(
|
||||
xx, sx, k_mix, v_mix, r_mix, outer_size, inner_size, kx, vx, rx);
|
||||
}
|
||||
|
||||
struct InplaceSigmoid {
|
||||
__device__ __forceinline__ half operator()(int i) const {
|
||||
ptr[i] = __float2half(1.0 / (1.0 + exp(-__half2float(ptr[i]))));
|
||||
}
|
||||
half *ptr;
|
||||
};
|
||||
|
||||
struct InplaceMul {
|
||||
__device__ __forceinline__ half operator()(int i) const {
|
||||
y[i] = __hmul(x[i], y[i]);
|
||||
}
|
||||
half *y;
|
||||
half *x;
|
||||
};
|
||||
|
||||
/*
|
||||
Equivalent Python code:
|
||||
|
||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
||||
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
vx = xx * v_mix + sx * (1 - v_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
|
||||
r = torch.sigmoid(gemm(rx, rw))
|
||||
k = gemm(kx, kw, output_dtype=torch.float32)
|
||||
v = gemm(vx, vw, output_dtype=torch.float32)
|
||||
|
||||
T = x.shape[0]
|
||||
for t in range(T):
|
||||
kk = k[t]
|
||||
vv = v[t]
|
||||
ww = t_first + kk
|
||||
p = torch.maximum(pp, ww)
|
||||
e1 = torch.exp(pp - p)
|
||||
e2 = torch.exp(ww - p)
|
||||
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
|
||||
ww = t_decay + pp
|
||||
p = torch.maximum(ww, kk)
|
||||
e1 = torch.exp(ww - p)
|
||||
e2 = torch.exp(kk - p)
|
||||
aa = e1 * aa + e2 * vv
|
||||
bb = e1 * bb + e2
|
||||
pp = p
|
||||
out = gemm(r * sx, ow)
|
||||
return x + out, xx[-1,:], aa, bb, pp
|
||||
*/
|
||||
Tensor att_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
||||
Tensor v_mix, Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
||||
Tensor ow, Tensor t_first, Tensor pp, Tensor aa, Tensor bb,
|
||||
Tensor t_decay, /* imm */ Tensor buf, /* out */ Tensor x_plus_out) {
|
||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
||||
sx = at::cat({sx.unsqueeze(0), xx.slice(0, 0, -1)}, 0);
|
||||
char* buf_ptr = (char*)buf.data_ptr();
|
||||
half* kx = (half*)buf_ptr;
|
||||
half* vx = kx + x.numel();
|
||||
half* rx = vx + x.numel();
|
||||
half* wkv_y = rx + x.numel();
|
||||
att_mix(data_ptr<half>(xx), data_ptr<half>(sx), data_ptr<half>(k_mix),
|
||||
data_ptr<half>(v_mix), data_ptr<half>(r_mix), xx.size(0), xx.size(1),
|
||||
kx, vx, rx);
|
||||
float* k = reinterpret_cast<float*>(wkv_y + x.numel());
|
||||
float* v = k + x.size(0) * kw.size(1);
|
||||
half* r = reinterpret_cast<half*>(v + x.size(0) * vw.size(1));
|
||||
|
||||
gemm_fp16_cublas(kx, kw.data_ptr(), k, x.size(0), kw.size(1), kw.size(0), true);
|
||||
gemm_fp16_cublas(vx, vw.data_ptr(), v, x.size(0), vw.size(1), vw.size(0), true);
|
||||
gemm_fp16_cublas(rx, rw.data_ptr(), r, x.size(0), rw.size(1), rw.size(0), false);
|
||||
element_wise(InplaceSigmoid{r}, x.size(0) * rw.size(1));
|
||||
cuda_wkv_forward_new(1, x.size(0), x.size(1), data_ptr<float>(t_decay),
|
||||
data_ptr<float>(t_first), k, v, r,
|
||||
wkv_y, data_ptr<float>(aa),
|
||||
data_ptr<float>(bb), data_ptr<float>(pp));
|
||||
element_wise(InplaceMul{wkv_y, r}, x.numel());
|
||||
gemm_fp16_cublas(wkv_y, ow.data_ptr(), x_plus_out.data_ptr(), x.size(0), ow.size(1), ow.size(0), false);
|
||||
x_plus_out += x;
|
||||
return xx;
|
||||
}
|
||||
21
backend-python/rwkv_pip/beta/cuda/element_wise.h
vendored
Normal file
21
backend-python/rwkv_pip/beta/cuda/element_wise.h
vendored
Normal file
@@ -0,0 +1,21 @@
|
||||
#include <cassert>
|
||||
#include <cstddef>
|
||||
#include <cstdint>
|
||||
|
||||
template <typename Func> __global__ void _element_wise(Func func, int n) {
|
||||
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n;
|
||||
i += blockDim.x * gridDim.x) {
|
||||
func(i);
|
||||
}
|
||||
}
|
||||
|
||||
// NOTE: packed data type (e.g. float4) is a overkill for current sizes
|
||||
// (4096 in 7B model and 768 in 0.1B model),
|
||||
// and is not faster than the plain float version.
|
||||
template <typename Func>
|
||||
void element_wise(Func func, int n) {
|
||||
// 256 is good enough on most GPUs
|
||||
const int32_t BLOCK_SIZE = 256;
|
||||
assert(n % BLOCK_SIZE == 0);
|
||||
_element_wise<<<n / BLOCK_SIZE, BLOCK_SIZE>>>(func, n);
|
||||
}
|
||||
165
backend-python/rwkv_pip/beta/cuda/ffn.cu
vendored
Normal file
165
backend-python/rwkv_pip/beta/cuda/ffn.cu
vendored
Normal file
@@ -0,0 +1,165 @@
|
||||
#include "ATen/ATen.h"
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <torch/extension.h>
|
||||
|
||||
#include "element_wise.h"
|
||||
#include "util.h"
|
||||
|
||||
using torch::Tensor;
|
||||
|
||||
void gemm_fp16_cublas(const void *a, const void *b, void *c, int ori_m,
|
||||
int ori_n, int ori_k, bool output_fp32);
|
||||
|
||||
__global__ void _ffn_seq_mix(const half *xx, const half *sx, const half *k_mix,
|
||||
const half *r_mix, const int outer_size,
|
||||
const int inner_size, half *kx, half *rx) {
|
||||
for (int idx2 = blockIdx.x * blockDim.x + threadIdx.x; idx2 < inner_size;
|
||||
idx2 += blockDim.x * gridDim.x) {
|
||||
half k_mix_ = k_mix[idx2];
|
||||
half r_mix_ = r_mix[idx2];
|
||||
for (int row = 0; row < outer_size; ++row) {
|
||||
int idx1 = row * inner_size + idx2;
|
||||
half xx_ = xx[idx1];
|
||||
half sx_ = sx[idx1];
|
||||
kx[idx1] = __hadd(__hmul(xx_, k_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
||||
rx[idx1] = __hadd(__hmul(xx_, r_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ffn_seq_mix(const half *xx, const half *sx, const half *k_mix,
|
||||
const half *r_mix, const int outer_size, const int inner_size,
|
||||
half *kx, half *rx) {
|
||||
// 256 is good enough on most GPUs
|
||||
const int32_t BLOCK_SIZE = 256;
|
||||
assert(inner_size % BLOCK_SIZE == 0);
|
||||
_ffn_seq_mix<<<inner_size / BLOCK_SIZE, BLOCK_SIZE>>>(
|
||||
xx, sx, k_mix, r_mix, outer_size, inner_size, kx, rx);
|
||||
}
|
||||
|
||||
struct InplaceSigmoid {
|
||||
__device__ __forceinline__ void operator()(int i) const {
|
||||
ptr[i] = __float2half(1.0 / (1.0 + exp(-__half2float(ptr[i]))));
|
||||
}
|
||||
half *ptr;
|
||||
};
|
||||
|
||||
struct InplaceReLUAndSquare {
|
||||
__device__ __forceinline__ void operator()(int i) const {
|
||||
// __hmax is not defined in old cuda
|
||||
if (__hgt(ptr[i], __float2half(0))) {
|
||||
ptr[i] = __hmul(ptr[i], ptr[i]);
|
||||
} else {
|
||||
ptr[i] = __float2half(0);
|
||||
}
|
||||
}
|
||||
half *ptr;
|
||||
};
|
||||
|
||||
struct InplaceFma {
|
||||
__device__ __forceinline__ void operator()(int i) const {
|
||||
a[i] = __hfma(a[i], b[i], c[i]);
|
||||
}
|
||||
half *a;
|
||||
const half *b;
|
||||
const half *c;
|
||||
};
|
||||
|
||||
/*
|
||||
Equivalent Python code:
|
||||
|
||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
||||
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
|
||||
r = torch.sigmoid(gemm(rx, rw))
|
||||
vx = torch.square(torch.relu(gemm(kx, kw)))
|
||||
out = r * gemm(vx, vw)
|
||||
return x + out, xx[-1,:]
|
||||
*/
|
||||
Tensor ffn_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
||||
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
||||
/* imm */ Tensor buf,
|
||||
/* out */ Tensor x_plus_out) {
|
||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
||||
sx = at::cat({sx.unsqueeze(0), xx.slice(0, 0, -1)}, 0);
|
||||
char *buf_ptr = (char *)buf.data_ptr();
|
||||
half *kx = (half *)buf_ptr;
|
||||
half *rx = kx + x.numel();
|
||||
half *vx = rx + x.numel();
|
||||
half *r = vx + x.size(0) * kw.size(1);
|
||||
ffn_seq_mix(data_ptr<half>(xx), data_ptr<half>(sx), data_ptr<half>(k_mix),
|
||||
data_ptr<half>(r_mix), xx.size(0), xx.size(1), kx, rx);
|
||||
|
||||
gemm_fp16_cublas(rx, rw.data_ptr(), r, x.size(0), rw.size(1), x.size(1),
|
||||
false);
|
||||
element_wise(InplaceSigmoid{r}, x.size(0) * rw.size(1));
|
||||
gemm_fp16_cublas(kx, kw.data_ptr(), vx, x.size(0), kw.size(1), x.size(1),
|
||||
false);
|
||||
element_wise(InplaceReLUAndSquare{vx}, x.size(0) * kw.size(1));
|
||||
gemm_fp16_cublas(vx, vw.data_ptr(), x_plus_out.data_ptr(), x.size(0),
|
||||
vw.size(1), vw.size(0), false);
|
||||
element_wise(InplaceFma{data_ptr<half>(x_plus_out), r, data_ptr<half>(x)},
|
||||
x_plus_out.numel());
|
||||
return xx;
|
||||
}
|
||||
|
||||
struct FfnOneMix {
|
||||
__device__ __forceinline__ void operator()(int idx) {
|
||||
half k_mix_ = k_mix[idx];
|
||||
half r_mix_ = r_mix[idx];
|
||||
half xx_ = xx[idx];
|
||||
half sx_ = sx[idx];
|
||||
kx[idx] = __hadd(__hmul(xx_, k_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
|
||||
rx[idx] = __hadd(__hmul(xx_, r_mix_),
|
||||
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
|
||||
}
|
||||
half *k_mix;
|
||||
half *r_mix;
|
||||
half *xx;
|
||||
half *sx;
|
||||
half *kx;
|
||||
half *rx;
|
||||
};
|
||||
|
||||
/*
|
||||
Equivalent Python code:
|
||||
|
||||
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
|
||||
kx = xx * k_mix + sx * (1 - k_mix)
|
||||
rx = xx * r_mix + sx * (1 - r_mix)
|
||||
|
||||
r = torch.sigmoid(gemm(rx, rw))
|
||||
vx = torch.square(torch.relu(gemm(kx, kw)))
|
||||
out = r * gemm(vx, vw)
|
||||
return x + out, xx
|
||||
*/
|
||||
Tensor ffn_one(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
||||
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
||||
/* imm */ Tensor buf,
|
||||
/* out */ Tensor x_plus_out) {
|
||||
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
|
||||
char *buf_ptr = (char *)buf.data_ptr();
|
||||
half *kx = (half *)buf_ptr;
|
||||
half *rx = kx + x.numel();
|
||||
half *vx = rx + x.numel();
|
||||
half *r = vx + x.size(0) * kw.size(1);
|
||||
element_wise(FfnOneMix{data_ptr<half>(k_mix), data_ptr<half>(r_mix),
|
||||
data_ptr<half>(xx), data_ptr<half>(sx), kx, rx},
|
||||
x.numel());
|
||||
// vector * matrix, so m = 1
|
||||
gemm_fp16_cublas(rx, rw.data_ptr(), r, 1, rw.size(1), rw.size(0), false);
|
||||
element_wise(InplaceSigmoid{r}, rw.size(1));
|
||||
gemm_fp16_cublas(kx, kw.data_ptr(), vx, 1, kw.size(1), kw.size(0), false);
|
||||
element_wise(InplaceReLUAndSquare{vx}, kw.size(1));
|
||||
gemm_fp16_cublas(vx, vw.data_ptr(), x_plus_out.data_ptr(), 1, vw.size(1),
|
||||
vw.size(0), false);
|
||||
element_wise(InplaceFma{data_ptr<half>(x_plus_out), r, data_ptr<half>(x)},
|
||||
x_plus_out.numel());
|
||||
return xx;
|
||||
}
|
||||
128
backend-python/rwkv_pip/beta/cuda/gemm_fp16_cublas.cpp
vendored
Normal file
128
backend-python/rwkv_pip/beta/cuda/gemm_fp16_cublas.cpp
vendored
Normal file
@@ -0,0 +1,128 @@
|
||||
#include <cublas_v2.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda_runtime.h>
|
||||
#include <torch/extension.h>
|
||||
|
||||
#define CUBLAS_CHECK(condition) \
|
||||
for (cublasStatus_t _cublas_check_status = (condition); \
|
||||
_cublas_check_status != CUBLAS_STATUS_SUCCESS;) \
|
||||
throw std::runtime_error("cuBLAS error " + \
|
||||
std::to_string(_cublas_check_status) + " at " + \
|
||||
std::to_string(__LINE__));
|
||||
|
||||
#define CUDA_CHECK(condition) \
|
||||
for (cudaError_t _cuda_check_status = (condition); \
|
||||
_cuda_check_status != cudaSuccess;) \
|
||||
throw std::runtime_error( \
|
||||
"CUDA error " + std::string(cudaGetErrorString(_cuda_check_status)) + \
|
||||
" at " + std::to_string(__LINE__));
|
||||
|
||||
cublasHandle_t get_cublas_handle() {
|
||||
static cublasHandle_t cublas_handle = []() {
|
||||
cublasHandle_t handle = nullptr;
|
||||
CUBLAS_CHECK(cublasCreate(&handle));
|
||||
#if CUDA_VERSION < 11000
|
||||
CUBLAS_CHECK(cublasSetMathMode(handle, CUBLAS_TENSOR_OP_MATH));
|
||||
#else
|
||||
CUBLAS_CHECK(cublasSetMathMode(handle, CUBLAS_DEFAULT_MATH));
|
||||
#endif // CUDA_VERSION < 11000
|
||||
return handle;
|
||||
}();
|
||||
return cublas_handle;
|
||||
}
|
||||
|
||||
/*
|
||||
NOTE: blas gemm is column-major by default, but we need row-major output.
|
||||
The data of row-major, transposed matrix is exactly the same as the
|
||||
column-major, non-transposed matrix, and C = A * B ---> C^T = B^T * A^T
|
||||
*/
|
||||
void gemm_fp16_cublas(const void *a, const void *b, void *c, int ori_m,
|
||||
int ori_n, int ori_k, bool output_fp32) {
|
||||
const auto cuda_data_type = CUDA_R_16F;
|
||||
const auto cuda_c_data_type = output_fp32 ? CUDA_R_32F : CUDA_R_16F;
|
||||
const auto compute_type = CUDA_R_32F;
|
||||
const float sp_alpha = 1.f;
|
||||
// use CUBLAS_OP_N. see the notes above
|
||||
const cublasOperation_t cublas_trans_a = CUBLAS_OP_N;
|
||||
const cublasOperation_t cublas_trans_b = CUBLAS_OP_N;
|
||||
// m = (B^T).size(0) = B.size(1) = n;
|
||||
const int cublas_m = ori_n;
|
||||
const int cublas_k = ori_k;
|
||||
// comptiable with rwkv one mode, where 1-D tensor * 2-D tensor
|
||||
// const int n = a.dense_dim() == 1 ? 1 : a.size(0);
|
||||
const int cublas_n = ori_m;
|
||||
const int cublas_lda = cublas_m;
|
||||
const int cublas_ldb = cublas_k;
|
||||
const int cublas_ldc = cublas_m;
|
||||
cublasHandle_t cublas_handle = get_cublas_handle();
|
||||
|
||||
#if CUDA_VERSION >= 11000
|
||||
cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT;
|
||||
#else
|
||||
cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
|
||||
#endif
|
||||
const float sp_beta = 0.f;
|
||||
CUBLAS_CHECK(cublasGemmEx(
|
||||
cublas_handle, cublas_trans_a, cublas_trans_b, cublas_m, cublas_n,
|
||||
cublas_k, &sp_alpha, b, cuda_data_type, cublas_lda,
|
||||
a, cuda_data_type, cublas_ldb, &sp_beta, c,
|
||||
cuda_c_data_type, cublas_ldc, compute_type, algo));
|
||||
}
|
||||
|
||||
/*
|
||||
NOTE: blas gemm is column-major by default, but we need row-major output.
|
||||
The data of row-major, transposed matrix is exactly the same as the
|
||||
column-major, non-transposed matrix, and C = A * B ---> C^T = B^T * A^T
|
||||
*/
|
||||
void gemm_fp16_cublas_tensor(torch::Tensor a, torch::Tensor b, torch::Tensor c) {
|
||||
if (a.sizes().size() == 1) {
|
||||
assert(b.sizes().size() == 2);
|
||||
a = at::unsqueeze(a, 0);
|
||||
}
|
||||
const auto cuda_data_type = CUDA_R_16F;
|
||||
const auto cuda_c_data_type =
|
||||
c.dtype() == torch::kFloat32 ? CUDA_R_32F : CUDA_R_16F;
|
||||
const auto compute_type = CUDA_R_32F;
|
||||
const float sp_alpha = 1.f;
|
||||
// swap a and b, and use CUBLAS_OP_N. see the notes above
|
||||
std::swap(a, b);
|
||||
const cublasOperation_t cublas_trans_a = CUBLAS_OP_N;
|
||||
const cublasOperation_t cublas_trans_b = CUBLAS_OP_N;
|
||||
// m = (B^T).size(0) = B.size(1), and = A.size(1) after swap,
|
||||
// negative axis is used because of the existence of batch matmul.
|
||||
const int m = a.size(-1);
|
||||
const int k = a.size(-2);
|
||||
const int n = b.size(-2);
|
||||
const int cublas_lda = m;
|
||||
const int cublas_ldb = k;
|
||||
const int cublas_ldc = m;
|
||||
cublasHandle_t cublas_handle = get_cublas_handle();
|
||||
|
||||
#if CUDA_VERSION >= 11000
|
||||
cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT;
|
||||
#else
|
||||
cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
|
||||
#endif
|
||||
const float sp_beta = 0.f;
|
||||
if (a.sizes().size() == 2 && b.sizes().size() == 2) {
|
||||
CUBLAS_CHECK(cublasGemmEx(
|
||||
cublas_handle, cublas_trans_a, cublas_trans_b, m, n, k, &sp_alpha,
|
||||
a.data_ptr(), cuda_data_type, cublas_lda, b.data_ptr(), cuda_data_type,
|
||||
cublas_ldb, &sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc,
|
||||
compute_type, algo));
|
||||
} else {
|
||||
// batch matmul
|
||||
assert(a.sizes().size() == 3 && b.sizes().size() == 3);
|
||||
|
||||
const long long int cublas_stride_a = m * k;
|
||||
const long long int cublas_stride_b = k * n;
|
||||
const long long int cublas_stride_c = m * n;
|
||||
CUBLAS_CHECK(cublasGemmStridedBatchedEx(
|
||||
cublas_handle, cublas_trans_a, cublas_trans_b, m,
|
||||
n, k, &sp_alpha, a.data_ptr(), cuda_data_type, cublas_lda,
|
||||
cublas_stride_a, b.data_ptr(), cuda_data_type, cublas_ldb, cublas_stride_b,
|
||||
&sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc, cublas_stride_c,
|
||||
a.size(0), compute_type, algo));
|
||||
}
|
||||
}
|
||||
246
backend-python/rwkv_pip/beta/cuda/operators.cu
vendored
Normal file
246
backend-python/rwkv_pip/beta/cuda/operators.cu
vendored
Normal file
@@ -0,0 +1,246 @@
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include "ATen/ATen.h"
|
||||
#include <cuda_fp16.h>
|
||||
#define MIN_VALUE (-1e38)
|
||||
typedef at::Half fp16;
|
||||
__half *cast(fp16 *ptr) {
|
||||
return reinterpret_cast<__half *>(ptr);
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
__global__ void kernel_wkv_forward(const int B, const int T, const int C,
|
||||
const float *__restrict__ const _w, const float *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
|
||||
F *__restrict__ const _y, float *__restrict__ const _aa, float *__restrict__ const _bb, float *__restrict__ const _pp) {
|
||||
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int _b = idx / C;
|
||||
const int _c = idx % C;
|
||||
const int _offset = _b * T * C + _c;
|
||||
const int _state_offset = _b * C + _c;
|
||||
|
||||
float u = _u[_c];
|
||||
float w = _w[_c];
|
||||
const F *__restrict__ const k = _k + _offset;
|
||||
const F *__restrict__ const v = _v + _offset;
|
||||
F *__restrict__ const y = _y + _offset;
|
||||
|
||||
float aa = _aa[_state_offset];
|
||||
float bb = _bb[_state_offset];
|
||||
float pp = _pp[_state_offset];
|
||||
for (int i = 0; i < T; i++) {
|
||||
const int ii = i * C;
|
||||
const float kk = float(k[ii]);
|
||||
const float vv = float(v[ii]);
|
||||
float ww = u + kk;
|
||||
float p = max(pp, ww);
|
||||
float e1 = exp(pp - p);
|
||||
float e2 = exp(ww - p);
|
||||
y[ii] = F((e1 * aa + e2 * vv) / (e1 * bb + e2));
|
||||
ww = w + pp;
|
||||
p = max(ww, kk);
|
||||
e1 = exp(ww - p);
|
||||
e2 = exp(kk - p);
|
||||
aa = e1 * aa + e2 * vv;
|
||||
bb = e1 * bb + e2;
|
||||
pp = p;
|
||||
}
|
||||
_aa[_state_offset] = aa;
|
||||
_bb[_state_offset] = bb;
|
||||
_pp[_state_offset] = pp;
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void cuda_wkv_forward(int B, int T, int C, float *w, float *u, F *k, F *v, F *y, float *aa, float *bb, float *pp) {
|
||||
dim3 threadsPerBlock( min(C, 32) );
|
||||
assert(B * C % threadsPerBlock.x == 0);
|
||||
dim3 numBlocks(B * C / threadsPerBlock.x);
|
||||
kernel_wkv_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, aa, bb, pp);
|
||||
}
|
||||
|
||||
template void cuda_wkv_forward<fp16>(
|
||||
int B, int T, int C,
|
||||
float *w, float *u, fp16 *k, fp16 *v, fp16 *y,
|
||||
float *aa, float *bb, float *pp);
|
||||
template void cuda_wkv_forward<float>(
|
||||
int B, int T, int C,
|
||||
float *w, float *u, float *k, float *v, float *y,
|
||||
float *aa, float *bb, float *pp);
|
||||
|
||||
__global__ void kernel_mm_seq_fp32i8(
|
||||
const int B, const int N, const int M,
|
||||
const float *__restrict__ const x, const int x_stride,
|
||||
const uint8_t *__restrict__ const w, const int w_stride,
|
||||
const float *__restrict__ const mx,
|
||||
const float *__restrict__ const rx,
|
||||
const float *__restrict__ const my,
|
||||
const float *__restrict__ const ry,
|
||||
float *__restrict__ const y, const int y_stride) {
|
||||
|
||||
const int i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (i < B && k < M) {
|
||||
float y_local = 0;
|
||||
for (int j = 0; j < N; ++j) {
|
||||
y_local += x[i * x_stride + j] * (
|
||||
(float(w[j * w_stride + k]) + 0.5f)
|
||||
* rx[k] * ry[j] + mx[k] + my[j]
|
||||
);
|
||||
}
|
||||
y[i * y_stride + k] = y_local;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void cuda_mm8_seq(int B, int N, int M,
|
||||
F *x, int x_stride,
|
||||
uint8_t *w, int w_stride,
|
||||
F *mx, F *rx,
|
||||
F *my, F *ry,
|
||||
F *y, int y_stride);
|
||||
|
||||
template <>
|
||||
void cuda_mm8_seq<float>(int B, int N, int M,
|
||||
float *x, int x_stride,
|
||||
uint8_t *w, int w_stride,
|
||||
float *mx, float *rx,
|
||||
float *my, float *ry,
|
||||
float *y, int y_stride) {
|
||||
dim3 blockSize(1, 128);
|
||||
dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
|
||||
kernel_mm_seq_fp32i8<<<gridSize, blockSize>>>(
|
||||
B, N, M, x, x_stride, w, w_stride,
|
||||
mx, rx, my, ry, y, y_stride);
|
||||
}
|
||||
|
||||
__global__ void kernel_mm_seq_fp16i8(
|
||||
const int B, const int N, const int M,
|
||||
const __half *__restrict__ const x, const int x_stride,
|
||||
const uint8_t *__restrict__ const w, const int w_stride,
|
||||
const __half *__restrict__ const mx,
|
||||
const __half *__restrict__ const rx,
|
||||
const __half *__restrict__ const my,
|
||||
const __half *__restrict__ const ry,
|
||||
__half *__restrict__ const y, const int y_stride) {
|
||||
|
||||
const int i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (i < B && k < M) {
|
||||
float y_local = 0;
|
||||
for (int j = 0; j < N; ++j) {
|
||||
y_local += __half2float(x[i * x_stride + j]) * (
|
||||
(float(w[j * w_stride + k]) + 0.5f)
|
||||
* __half2float(rx[k]) * __half2float(ry[j])
|
||||
+ __half2float(mx[k]) + __half2float(my[j])
|
||||
);
|
||||
}
|
||||
y[i * y_stride + k] = __float2half(y_local);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
void cuda_mm8_seq<fp16>(int B, int N, int M,
|
||||
fp16 *x, int x_stride,
|
||||
uint8_t *w, int w_stride,
|
||||
fp16 *mx, fp16 *rx,
|
||||
fp16 *my, fp16 *ry,
|
||||
fp16 *y, int y_stride) {
|
||||
dim3 blockSize(1, 128);
|
||||
dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
|
||||
kernel_mm_seq_fp16i8<<<gridSize, blockSize>>>(
|
||||
B, N, M, cast(x), x_stride, w, w_stride,
|
||||
cast(mx), cast(rx), cast(my), cast(ry), cast(y), y_stride);
|
||||
}
|
||||
|
||||
#define MM8_ONE_JSPLIT 24
|
||||
#define MM8_ONE_TILE 1024
|
||||
|
||||
__global__ void kernel_mm_one_fp32i8(
|
||||
const int N, const int M,
|
||||
const float *__restrict__ const x,
|
||||
const uint8_t *__restrict__ const w, const int w_stride,
|
||||
const float *__restrict__ const mx,
|
||||
const float *__restrict__ const rx,
|
||||
const float *__restrict__ const my,
|
||||
const float *__restrict__ const ry,
|
||||
float *__restrict__ const y) {
|
||||
|
||||
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
||||
const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
||||
|
||||
if (k < M) {
|
||||
float y_local = 0;
|
||||
for (int j = j0; j < j1; ++j) {
|
||||
y_local += x[j] * (
|
||||
(float(w[j * w_stride + k]) + 0.5f)
|
||||
* rx[k] * ry[j] + mx[k] + my[j]
|
||||
);
|
||||
}
|
||||
atomicAdd(&y[k], y_local);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void cuda_mm8_one(int N, int M,
|
||||
F *x,
|
||||
uint8_t *w, int w_stride,
|
||||
F *mx, F *rx,
|
||||
F *my, F *ry,
|
||||
float *y);
|
||||
|
||||
template <>
|
||||
void cuda_mm8_one<float>(int N, int M,
|
||||
float *x,
|
||||
uint8_t *w, int w_stride,
|
||||
float *mx, float *rx,
|
||||
float *my, float *ry,
|
||||
float *y) {
|
||||
dim3 blockSize(1, MM8_ONE_TILE);
|
||||
dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
|
||||
kernel_mm_one_fp32i8<<<gridSize, blockSize>>>(
|
||||
N, M, x, w, w_stride,
|
||||
mx, rx, my, ry, y);
|
||||
}
|
||||
|
||||
__global__ void kernel_mm_one_fp16i8(
|
||||
const int N, const int M,
|
||||
const __half *__restrict__ const x,
|
||||
const uint8_t *__restrict__ const w, const int w_stride,
|
||||
const __half *__restrict__ const mx,
|
||||
const __half *__restrict__ const rx,
|
||||
const __half *__restrict__ const my,
|
||||
const __half *__restrict__ const ry,
|
||||
float *__restrict__ const y) {
|
||||
|
||||
const int k = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
||||
const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
|
||||
|
||||
if (k < M) {
|
||||
float y_local = 0;
|
||||
for (int j = j0; j < j1; ++j) {
|
||||
y_local += __half2float(x[j]) * (
|
||||
(float(w[j * w_stride + k]) + 0.5f)
|
||||
* __half2float(rx[k]) * __half2float(ry[j])
|
||||
+ __half2float(mx[k]) + __half2float(my[j])
|
||||
);
|
||||
}
|
||||
atomicAdd(&y[k], y_local);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
void cuda_mm8_one<fp16>(int N, int M,
|
||||
fp16 *x,
|
||||
uint8_t *w, int w_stride,
|
||||
fp16 *mx, fp16 *rx,
|
||||
fp16 *my, fp16 *ry,
|
||||
float *y) {
|
||||
dim3 blockSize(1, MM8_ONE_TILE);
|
||||
dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
|
||||
kernel_mm_one_fp16i8<<<gridSize, blockSize>>>(
|
||||
N, M, cast(x), w, w_stride,
|
||||
cast(mx), cast(rx), cast(my), cast(ry), y);
|
||||
}
|
||||
7
backend-python/rwkv_pip/beta/cuda/util.h
vendored
Normal file
7
backend-python/rwkv_pip/beta/cuda/util.h
vendored
Normal file
@@ -0,0 +1,7 @@
|
||||
#include "ATen/ATen.h"
|
||||
#include <cuda_fp16.h>
|
||||
|
||||
template <typename T> T *data_ptr(torch::Tensor x) { return x.data_ptr<T>(); }
|
||||
template <> inline half *data_ptr(torch::Tensor x) {
|
||||
return reinterpret_cast<half *>(x.data_ptr<at::Half>());
|
||||
}
|
||||
181
backend-python/rwkv_pip/beta/cuda/wrapper.cpp
vendored
Normal file
181
backend-python/rwkv_pip/beta/cuda/wrapper.cpp
vendored
Normal file
@@ -0,0 +1,181 @@
|
||||
#include <torch/extension.h>
|
||||
#include "ATen/ATen.h"
|
||||
#include <iostream>
|
||||
#include <c10/cuda/CUDAGuard.h>
|
||||
|
||||
typedef at::Half fp16;
|
||||
|
||||
template <typename F>
|
||||
void cuda_wkv_forward(int B, int T, int C,
|
||||
float *w, float *u, F *k, F *v, F *y,
|
||||
float *aa, float *bb, float *pp);
|
||||
template <typename F>
|
||||
void cuda_mm8_seq(int B, int N, int M,
|
||||
F *x, int x_stride,
|
||||
uint8_t *w, int w_stride,
|
||||
F *mx, F *rx,
|
||||
F *my, F *ry,
|
||||
F *y, int y_stride);
|
||||
template <typename F>
|
||||
void cuda_mm8_one(int N, int M,
|
||||
F *x,
|
||||
uint8_t *w, int w_stride,
|
||||
F *mx, F *rx,
|
||||
F *my, F *ry,
|
||||
float *y);
|
||||
|
||||
void wkv_forward(int64_t B, int64_t T, int64_t C,
|
||||
torch::Tensor &w, torch::Tensor &u,
|
||||
torch::Tensor &k, torch::Tensor &v, torch::Tensor &y,
|
||||
torch::Tensor &aa, torch::Tensor &bb, torch::Tensor &pp) {
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
|
||||
switch (k.scalar_type()) {
|
||||
case c10::ScalarType::Half:
|
||||
cuda_wkv_forward(B, T, C,
|
||||
w.data_ptr<float>(), u.data_ptr<float>(),
|
||||
k.data_ptr<fp16>(), v.data_ptr<fp16>(), y.data_ptr<fp16>(),
|
||||
aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
|
||||
break;
|
||||
case c10::ScalarType::Float:
|
||||
cuda_wkv_forward(B, T, C,
|
||||
w.data_ptr<float>(), u.data_ptr<float>(),
|
||||
k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>(),
|
||||
aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
|
||||
break;
|
||||
default:
|
||||
assert(false && "Only FP16 and FP32 are currently supported");
|
||||
}
|
||||
}
|
||||
|
||||
void mm8_seq(int64_t B, int64_t N, int64_t M,
|
||||
torch::Tensor &x, torch::Tensor &w,
|
||||
torch::Tensor &mx, torch::Tensor &rx,
|
||||
torch::Tensor &my, torch::Tensor &ry,
|
||||
torch::Tensor &y) {
|
||||
assert(x.stride(1) == 1);
|
||||
assert(w.stride(1) == 1);
|
||||
assert(mx.stride(0) == 1 && rx.stride(0) == 1);
|
||||
assert(my.stride(0) == 1 && ry.stride(0) == 1);
|
||||
assert(y.stride(1) == 1);
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
|
||||
switch (x.scalar_type()) {
|
||||
case c10::ScalarType::Half:
|
||||
cuda_mm8_seq(
|
||||
B, N, M,
|
||||
x.data_ptr<fp16>(), x.stride(0),
|
||||
w.data_ptr<uint8_t>(), w.stride(0),
|
||||
mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
|
||||
my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
|
||||
y.data_ptr<fp16>(), y.stride(0));
|
||||
break;
|
||||
case c10::ScalarType::Float:
|
||||
cuda_mm8_seq(
|
||||
B, N, M,
|
||||
x.data_ptr<float>(), x.stride(0),
|
||||
w.data_ptr<uint8_t>(), w.stride(0),
|
||||
mx.data_ptr<float>(), rx.data_ptr<float>(),
|
||||
my.data_ptr<float>(), ry.data_ptr<float>(),
|
||||
y.data_ptr<float>(), y.stride(0));
|
||||
break;
|
||||
default:
|
||||
assert(false && "Only FP16 and FP32 are currently supported");
|
||||
}
|
||||
}
|
||||
void mm8_one(int64_t N, int64_t M,
|
||||
torch::Tensor &x, torch::Tensor &w,
|
||||
torch::Tensor &mx, torch::Tensor &rx,
|
||||
torch::Tensor &my, torch::Tensor &ry,
|
||||
torch::Tensor &y) {
|
||||
assert(x.stride(0) == 1);
|
||||
assert(w.stride(1) == 1);
|
||||
assert(mx.stride(0) == 1 && rx.stride(0) == 1);
|
||||
assert(my.stride(0) == 1 && ry.stride(0) == 1);
|
||||
assert(y.stride(0) == 1);
|
||||
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
|
||||
switch (x.scalar_type()) {
|
||||
case c10::ScalarType::Half:
|
||||
cuda_mm8_one(
|
||||
N, M,
|
||||
x.data_ptr<fp16>(),
|
||||
w.data_ptr<uint8_t>(), w.stride(0),
|
||||
mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
|
||||
my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
|
||||
y.data_ptr<float>());
|
||||
break;
|
||||
case c10::ScalarType::Float:
|
||||
cuda_mm8_one(
|
||||
N, M,
|
||||
x.data_ptr<float>(),
|
||||
w.data_ptr<uint8_t>(), w.stride(0),
|
||||
mx.data_ptr<float>(), rx.data_ptr<float>(),
|
||||
my.data_ptr<float>(), ry.data_ptr<float>(),
|
||||
y.data_ptr<float>());
|
||||
break;
|
||||
default:
|
||||
assert(false && "Only FP16 and FP32 are currently supported");
|
||||
}
|
||||
}
|
||||
|
||||
using torch::Tensor;
|
||||
|
||||
#ifndef DISABLE_CUBLAS_GEMM
|
||||
void gemm_fp16_cublas_tensor(Tensor a, Tensor b, Tensor c);
|
||||
#endif
|
||||
|
||||
Tensor att_one(Tensor x, Tensor ln_w, Tensor ln_b, Tensor sx, Tensor k_mix,
|
||||
Tensor v_mix, Tensor r_mix, Tensor kw,
|
||||
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx, Tensor rw,
|
||||
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
|
||||
/* imm */ Tensor k, Tensor pp, Tensor ww, Tensor aa, Tensor bb,
|
||||
Tensor t_decay, /* imm */ Tensor v, /* in & out */ Tensor r,
|
||||
/* out */ Tensor x_plus_out, /* out */ Tensor t1,
|
||||
/* out */ Tensor t2, /* out */ Tensor p);
|
||||
|
||||
Tensor att_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
||||
Tensor v_mix, Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
||||
Tensor ow, Tensor t_first, Tensor pp, Tensor aa, Tensor bb,
|
||||
Tensor t_decay, /* imm */ Tensor buf, /* out */ Tensor x_plus_out);
|
||||
|
||||
Tensor att_one_v5(Tensor x, Tensor sx, Tensor s, Tensor ln_w, Tensor ln_b,
|
||||
Tensor lx_w, Tensor lx_b, Tensor k_mix, Tensor v_mix,
|
||||
Tensor r_mix, Tensor kw,
|
||||
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx,
|
||||
Tensor rw,
|
||||
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
|
||||
/* imm */ Tensor k, Tensor t_decay, /* imm */ Tensor v,
|
||||
/* imm */ Tensor r, /* imm */ Tensor s1,
|
||||
/* out */ Tensor x_plus_out, /* out */ Tensor s2);
|
||||
|
||||
Tensor ffn_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
||||
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
||||
/* imm */ Tensor buf,
|
||||
/* out */ Tensor x_plus_out);
|
||||
|
||||
Tensor ffn_one(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
|
||||
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
|
||||
/* imm */ Tensor buf,
|
||||
/* out */ Tensor x_plus_out);
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("wkv_forward", &wkv_forward, "wkv forward");
|
||||
m.def("mm8_seq", &mm8_seq, "mm8 seq");
|
||||
m.def("mm8_one", &mm8_one, "mm8 one");
|
||||
m.def("gemm_fp16_cublas", &gemm_fp16_cublas_tensor, "gemv fp16 cublas");
|
||||
m.def("att_one", &att_one, "att one");
|
||||
m.def("att_one_v5", &att_one_v5, "att one v5");
|
||||
m.def("att_seq", &att_seq, "att seq");
|
||||
m.def("ffn_seq", &ffn_seq, "ffn seq");
|
||||
m.def("ffn_one", &ffn_one, "ffn one");
|
||||
}
|
||||
|
||||
TORCH_LIBRARY(rwkv, m) {
|
||||
m.def("wkv_forward", wkv_forward);
|
||||
m.def("mm8_seq", mm8_seq);
|
||||
m.def("mm8_one", mm8_one);
|
||||
m.def("gemm_fp16_cublas", gemm_fp16_cublas_tensor);
|
||||
m.def("att_one", att_one);
|
||||
m.def("att_one_v5", &att_one_v5);
|
||||
m.def("att_seq", att_seq);
|
||||
m.def("ffn_seq", ffn_seq);
|
||||
m.def("ffn_one", ffn_one);
|
||||
}
|
||||
1820
backend-python/rwkv_pip/beta/model.py
vendored
Normal file
1820
backend-python/rwkv_pip/beta/model.py
vendored
Normal file
File diff suppressed because it is too large
Load Diff
@@ -2,6 +2,8 @@ import json
|
||||
import logging
|
||||
from typing import Any
|
||||
from fastapi import Request
|
||||
from pydantic import BaseModel
|
||||
from enum import Enum
|
||||
|
||||
|
||||
logger = logging.getLogger()
|
||||
@@ -14,12 +16,21 @@ fh.setFormatter(formatter)
|
||||
logger.addHandler(fh)
|
||||
|
||||
|
||||
class ClsEncoder(json.JSONEncoder):
|
||||
def default(self, obj):
|
||||
if isinstance(obj, BaseModel):
|
||||
return obj.dict()
|
||||
if isinstance(obj, Enum):
|
||||
return obj.value
|
||||
return super().default(obj)
|
||||
|
||||
|
||||
def quick_log(request: Request, body: Any, response: str):
|
||||
try:
|
||||
logger.info(
|
||||
f"Client: {request.client if request else ''}\nUrl: {request.url if request else ''}\n"
|
||||
+ (
|
||||
f"Body: {json.dumps(body.__dict__, default=vars, ensure_ascii=False)}\n"
|
||||
f"Body: {json.dumps(body.__dict__, ensure_ascii=False, cls=ClsEncoder)}\n"
|
||||
if body
|
||||
else ""
|
||||
)
|
||||
|
||||
@@ -10,6 +10,7 @@ from fastapi import HTTPException
|
||||
from pydantic import BaseModel, Field
|
||||
import numpy as np
|
||||
from routes import state_cache
|
||||
import global_var
|
||||
|
||||
|
||||
END_OF_TEXT = 0
|
||||
@@ -27,7 +28,17 @@ class RWKVType(Enum):
|
||||
|
||||
class AbstractRWKV(ABC):
|
||||
def __init__(self, model: str, strategy: str, tokens_path: str):
|
||||
from rwkv.model import RWKV as Model # dynamic import to make RWKV_CUDA_ON work
|
||||
rwkv_beta = global_var.get(global_var.Args).rwkv_beta
|
||||
|
||||
# dynamic import to make RWKV_CUDA_ON work
|
||||
if rwkv_beta:
|
||||
from rwkv_pip.beta.model import (
|
||||
RWKV as Model,
|
||||
)
|
||||
else:
|
||||
from rwkv.model import (
|
||||
RWKV as Model,
|
||||
)
|
||||
from rwkv_pip.utils import PIPELINE
|
||||
|
||||
filename, _ = os.path.splitext(os.path.basename(model))
|
||||
@@ -221,7 +232,7 @@ class AbstractRWKV(ABC):
|
||||
return state[0].tolist(), token_len
|
||||
|
||||
def generate(
|
||||
self, prompt: str, stop: Union[str, List[str]] = None
|
||||
self, prompt: str, stop: Union[str, List[str], None] = None
|
||||
) -> Iterable[Tuple[str, str, int, int]]:
|
||||
quick_log(None, None, "Generation Prompt:\n" + prompt)
|
||||
cache = None
|
||||
@@ -438,8 +449,10 @@ The following is a coherent verbose detailed conversation between a girl named {
|
||||
{bot} usually gives {user} kind, helpful and informative advices.\n
|
||||
"""
|
||||
if self.rwkv_type == RWKVType.Raven
|
||||
else f"{user}{interface} hi\n\n{bot}{interface} Hi. "
|
||||
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
|
||||
else (
|
||||
f"{user}{interface} hi\n\n{bot}{interface} Hi. "
|
||||
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
|
||||
)
|
||||
)
|
||||
logits, _ = self.run_rnn(self.fix_tokens(self.pipeline.encode(preset_system)))
|
||||
try:
|
||||
|
||||
66861
backend-rust/assets/rwkv_vocab_v20230424.json
Normal file
66861
backend-rust/assets/rwkv_vocab_v20230424.json
Normal file
File diff suppressed because it is too large
Load Diff
6
build/darwin/Readme_Install.txt
vendored
6
build/darwin/Readme_Install.txt
vendored
@@ -1,6 +1,6 @@
|
||||
For Mac and Linux users, please manually install Python 3.10 (usually the latest systems come with it built-in). You can specify the Python interpreter to use in Settings.
|
||||
对于Mac和Linux用户,请手动安装 Python3.10 (通常最新的系统已经内置了). 你可以在设置中指定使用的Python解释器.
|
||||
MacおよびLinuxのユーザーの方は、Python3.10を手動でインストールしてください(通常、最新のシステムには既に組み込まれています)。 設定メニューで使用するPythonインタプリタを指定することができます。
|
||||
For Mac and Linux users, please manually install Python 3.10 (usually the latest systems come with it built-in). You can specify the Python interpreter to use in Settings. (which python3)
|
||||
对于Mac和Linux用户,请手动安装 Python3.10 (通常最新的系统已经内置了). 你可以在设置中指定使用的Python解释器. (which python3)
|
||||
MacおよびLinuxのユーザーの方は、Python3.10を手動でインストールしてください(通常、最新のシステムには既に組み込まれています)。 設定メニューで使用するPythonインタプリタを指定することができます。 (which python3)
|
||||
|
||||
Please execute this program in an empty directory. All related dependencies will be placed in this directory.
|
||||
请将本程序放在一个空目录内执行, 所有相关依赖均会放置于此目录.
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
echo $@
|
||||
|
||||
if [[ ${cnMirror} == 1 ]]; then
|
||||
export PIP_INDEX_URL="https://pypi.tuna.tsinghua.edu.cn/simple"
|
||||
if grep -q "mirrors.aliyun.com" /etc/apt/sources.list; then
|
||||
|
||||
14
finetune/lora/train.py
vendored
14
finetune/lora/train.py
vendored
@@ -184,7 +184,7 @@ if __name__ == "__main__":
|
||||
args.num_sanity_val_steps = 0
|
||||
args.check_val_every_n_epoch = int(1e20)
|
||||
args.log_every_n_steps = int(1e20)
|
||||
args.max_epochs = -1 # continue forever
|
||||
args.max_epochs = args.epoch_count # continue forever
|
||||
args.betas = (args.beta1, args.beta2)
|
||||
args.real_bsz = int(args.num_nodes) * int(args.devices) * args.micro_bsz
|
||||
os.environ["RWKV_T_MAX"] = str(args.ctx_len)
|
||||
@@ -373,7 +373,7 @@ if __name__ == "__main__":
|
||||
for param in module.parameters():
|
||||
param.requires_grad = True
|
||||
elif enable_time_finetune and any(
|
||||
n.startswith("time") for n, _ in module.named_parameters()
|
||||
n.startswith("time") for n, _ in module.named_parameters()
|
||||
):
|
||||
for pname, param in module.named_parameters():
|
||||
if pname.startswith("time"):
|
||||
@@ -381,7 +381,7 @@ if __name__ == "__main__":
|
||||
param.requires_grad = True
|
||||
|
||||
if (
|
||||
len(args.load_model) == 0 or args.my_pile_stage == 1
|
||||
len(args.load_model) == 0 or args.my_pile_stage == 1
|
||||
): # shall we build the initial weights?
|
||||
init_weight_name = f"{args.proj_dir}/rwkv-init.pth"
|
||||
generate_init_weight(model, init_weight_name) # save initial weights
|
||||
@@ -423,8 +423,8 @@ if __name__ == "__main__":
|
||||
)
|
||||
|
||||
if (
|
||||
args.lr_init > 1e-4
|
||||
or trainer.world_size * args.micro_bsz * trainer.accumulate_grad_batches < 8
|
||||
args.lr_init > 1e-4
|
||||
or trainer.world_size * args.micro_bsz * trainer.accumulate_grad_batches < 8
|
||||
):
|
||||
if "I_KNOW_WHAT_IM_DOING" in os.environ:
|
||||
if trainer.global_rank == 0:
|
||||
@@ -459,10 +459,10 @@ if __name__ == "__main__":
|
||||
|
||||
if "deepspeed" in args.strategy:
|
||||
trainer.strategy.config["zero_optimization"]["allgather_bucket_size"] = (
|
||||
args.ds_bucket_mb * 1000 * 1000
|
||||
args.ds_bucket_mb * 1000 * 1000
|
||||
)
|
||||
trainer.strategy.config["zero_optimization"]["reduce_bucket_size"] = (
|
||||
args.ds_bucket_mb * 1000 * 1000
|
||||
args.ds_bucket_mb * 1000 * 1000
|
||||
)
|
||||
|
||||
# must set shuffle=False, persistent_workers=False (because worker is in another thread)
|
||||
|
||||
@@ -128,6 +128,7 @@
|
||||
"Chinese Kongfu": "中国武術",
|
||||
"Allow external access to the API (service must be restarted)": "APIへの外部アクセスを許可する (サービスを再起動する必要があります)",
|
||||
"Custom": "カスタム",
|
||||
"CUDA (Beta, Faster)": "CUDA (ベータ、高速)",
|
||||
"Reset All Configs": "すべての設定をリセット",
|
||||
"Cancel": "キャンセル",
|
||||
"Confirm": "確認",
|
||||
@@ -177,7 +178,7 @@
|
||||
"Failed to import. Please copy a preset to the clipboard.": "インポートに失敗しました。プリセットをクリップボードにコピーしてください。",
|
||||
"Clipboard is empty.": "クリップボードが空です。",
|
||||
"Successfully copied to clipboard.": "クリップボードにコピーしました。",
|
||||
"Edit Messages": "メッセージの編集",
|
||||
"Edit Character Settings": "キャラクター設定を編集",
|
||||
"Go Back": "戻る",
|
||||
"Description": "説明",
|
||||
"Avatar Url": "アバターURL",
|
||||
@@ -225,7 +226,7 @@
|
||||
"Please select a LoRA model": "LoRAモデルを選択してください",
|
||||
"You are using sample data for training. For formal training, please make sure to create your own jsonl file.": "トレーニングにはサンプルデータを使用しています。正式なトレーニングのためには、自身でjsonlファイルを作成してください。",
|
||||
"WSL is not running, please retry. If it keeps happening, it means you may be using an outdated version of WSL, run \"wsl --update\" to update.": "WSLが実行されていません、もう一度試してください。これが続く場合、古いバージョンのWSLを使用している可能性があります。\"wsl --update\"を実行して更新してください。",
|
||||
"Memory is not enough, try to increase the virtual memory or use a smaller base model.": "メモリが不足しています、仮想メモリを増やすか小さなベースモデルを使用してみてください。",
|
||||
"Memory is not enough, try to increase the virtual memory (Swap of WSL) or use a smaller base model.": "メモリが不足しています、仮想メモリ (WSL Swap) を増やすか小さなベースモデルを使用してみてください。",
|
||||
"VRAM is not enough": "ビデオRAMが不足しています",
|
||||
"Training data is not enough, reduce context length or add more data for training": "トレーニングデータが不足しています、コンテキストの長さを減らすか、トレーニング用のデータをさらに追加してください",
|
||||
"You are using WSL 1 for training, please upgrade to WSL 2. e.g. Run \"wsl --set-version Ubuntu-22.04 2\"": "トレーニングにWSL 1を使用しています、WSL 2にアップグレードしてください。例:\"wsl --set-version Ubuntu-22.04 2\"を実行する",
|
||||
@@ -240,5 +241,17 @@
|
||||
"Auto Play At The End": "最後に自動再生",
|
||||
"No File to save": "保存するファイルがありません",
|
||||
"File Saved": "ファイルが保存されました",
|
||||
"Failed to load local sound font, please check if the files exist - assets/sound-font": "ローカルサウンドフォントの読み込みに失敗しました、ファイルが存在するか確認してください - assets/sound-font"
|
||||
"Failed to load local sound font, please check if the files exist - assets/sound-font": "ローカルサウンドフォントの読み込みに失敗しました、ファイルが存在するか確認してください - assets/sound-font",
|
||||
"Please convert model to safe tensors format first": "モデルを安全なテンソル形式に変換してください",
|
||||
"Convert To Safe Tensors Format": "安全なテンソル形式に変換",
|
||||
"Please change Strategy to WebGPU to use safetensors format": "StrategyをWebGPUに変更して、安全なテンソル形式を使用してください",
|
||||
"Preview Only": "プレビューのみ",
|
||||
"RAM": "RAM",
|
||||
"VRAM": "VRAM",
|
||||
"GPU Usage": "GPU使用率",
|
||||
"Use Custom Tokenizer": "カスタムトークナイザーを使用する",
|
||||
"Tokenizer Path (e.g. backend-python/rwkv_pip/20B_tokenizer.json)": "トークナイザーパス (例: backend-python/rwkv_pip/20B_tokenizer.json)",
|
||||
"User Name": "ユーザー名",
|
||||
"Assistant Name": "アシスタント名",
|
||||
"Insert default system prompt at the beginning": "最初にデフォルトのシステムプロンプトを挿入"
|
||||
}
|
||||
@@ -128,6 +128,7 @@
|
||||
"Chinese Kongfu": "情境冒险",
|
||||
"Allow external access to the API (service must be restarted)": "允许外部访问API (必须重启服务)",
|
||||
"Custom": "自定义",
|
||||
"CUDA (Beta, Faster)": "CUDA (Beta, 更快)",
|
||||
"Reset All Configs": "重置所有配置",
|
||||
"Cancel": "取消",
|
||||
"Confirm": "确认",
|
||||
@@ -177,7 +178,7 @@
|
||||
"Failed to import. Please copy a preset to the clipboard.": "导入失败。请复制一个预设到剪贴板",
|
||||
"Clipboard is empty.": "剪贴板没有内容",
|
||||
"Successfully copied to clipboard.": "成功复制到剪贴板",
|
||||
"Edit Messages": "编辑对话",
|
||||
"Edit Character Settings": "编辑人设",
|
||||
"Go Back": "返回",
|
||||
"Description": "描述",
|
||||
"Avatar Url": "头像图片地址",
|
||||
@@ -225,7 +226,7 @@
|
||||
"Please select a LoRA model": "请选择一个LoRA模型",
|
||||
"You are using sample data for training. For formal training, please make sure to create your own jsonl file.": "你正在使用示例数据训练,对于正式训练场合,请务必创建你自己的jsonl训练数据",
|
||||
"WSL is not running, please retry. If it keeps happening, it means you may be using an outdated version of WSL, run \"wsl --update\" to update.": "WSL没有运行,请重试。如果一直出现此错误,意味着你可能正在使用旧版本的WSL,请在cmd执行\"wsl --update\"以更新",
|
||||
"Memory is not enough, try to increase the virtual memory or use a smaller base model.": "内存不足,尝试增加虚拟内存,或使用一个更小规模的基底模型",
|
||||
"Memory is not enough, try to increase the virtual memory (Swap of WSL) or use a smaller base model.": "内存不足,尝试增加虚拟内存(WSL Swap),或使用一个更小规模的基底模型",
|
||||
"VRAM is not enough": "显存不足",
|
||||
"Training data is not enough, reduce context length or add more data for training": "训练数据不足,请减小上下文长度或增加训练数据",
|
||||
"You are using WSL 1 for training, please upgrade to WSL 2. e.g. Run \"wsl --set-version Ubuntu-22.04 2\"": "你正在使用WSL 1进行训练,请升级到WSL 2。例如,运行\"wsl --set-version Ubuntu-22.04 2\"",
|
||||
@@ -240,5 +241,17 @@
|
||||
"Auto Play At The End": "结束时自动播放",
|
||||
"No File to save": "无文件可保存",
|
||||
"File Saved": "文件已保存",
|
||||
"Failed to load local sound font, please check if the files exist - assets/sound-font": "加载本地音色资源失败,请检查文件是否存在 - assets/sound-font"
|
||||
"Failed to load local sound font, please check if the files exist - assets/sound-font": "加载本地音色资源失败,请检查文件是否存在 - assets/sound-font",
|
||||
"Please convert model to safe tensors format first": "请先将模型转换为Safetensors格式",
|
||||
"Convert To Safe Tensors Format": "转换为Safetensors格式",
|
||||
"Please change Strategy to WebGPU to use safetensors format": "请将Strategy改为WebGPU以使用safetensors格式",
|
||||
"Preview Only": "仅预览",
|
||||
"RAM": "内存",
|
||||
"VRAM": "显存",
|
||||
"GPU Usage": "GPU占用",
|
||||
"Use Custom Tokenizer": "使用自定义Tokenizer",
|
||||
"Tokenizer Path (e.g. backend-python/rwkv_pip/20B_tokenizer.json)": "Tokenizer路径 (例如: backend-python/rwkv_pip/20B_tokenizer.json)",
|
||||
"User Name": "用户名称",
|
||||
"Assistant Name": "AI名称",
|
||||
"Insert default system prompt at the beginning": "在开头自动插入默认系统提示"
|
||||
}
|
||||
@@ -11,7 +11,7 @@ export const ResetConfigsButton: FC<{ afterConfirm?: () => void }> = ({ afterCon
|
||||
return <DialogButton icon={<ArrowReset20Regular />} tooltip={t('Reset All Configs')} title={t('Reset All Configs')}
|
||||
contentText={t('Are you sure you want to reset all configs? This will obtain the latest preset configs, but will override your custom configs and cannot be undone.')}
|
||||
onConfirm={() => {
|
||||
commonStore.setModelConfigs(commonStore.platform != 'darwin' ? defaultModelConfigs : defaultModelConfigsMac, false);
|
||||
commonStore.setModelConfigs(commonStore.platform !== 'darwin' ? defaultModelConfigs : defaultModelConfigsMac, false);
|
||||
commonStore.setCurrentConfigIndex(0, true);
|
||||
afterConfirm?.();
|
||||
}} />;
|
||||
|
||||
@@ -1,6 +1,12 @@
|
||||
import React, { FC, MouseEventHandler, ReactElement } from 'react';
|
||||
import commonStore, { ModelStatus } from '../stores/commonStore';
|
||||
import { AddToDownloadList, CopyFile, FileExists, StartServer } from '../../wailsjs/go/backend_golang/App';
|
||||
import {
|
||||
AddToDownloadList,
|
||||
CopyFile,
|
||||
FileExists,
|
||||
StartServer,
|
||||
StartWebGPUServer
|
||||
} from '../../wailsjs/go/backend_golang/App';
|
||||
import { Button } from '@fluentui/react-components';
|
||||
import { observer } from 'mobx-react-lite';
|
||||
import { exit, getStatus, readRoot, switchModel, updateConfig } from '../apis';
|
||||
@@ -39,6 +45,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
|
||||
commonStore.setStatus({ status: ModelStatus.Starting });
|
||||
|
||||
const modelConfig = commonStore.getCurrentModelConfig();
|
||||
const webgpu = modelConfig.modelParameters.device === 'WebGPU';
|
||||
let modelName = '';
|
||||
let modelPath = '';
|
||||
if (modelConfig && modelConfig.modelParameters) {
|
||||
@@ -50,9 +57,32 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
|
||||
return;
|
||||
}
|
||||
|
||||
const ok = await checkDependencies(navigate);
|
||||
if (!ok)
|
||||
return;
|
||||
if (webgpu) {
|
||||
if (!['.st', '.safetensors'].some(ext => modelPath.endsWith(ext))) {
|
||||
const stModelPath = modelPath.replace(/\.pth$/, '.st');
|
||||
if (await FileExists(stModelPath)) {
|
||||
modelPath = stModelPath;
|
||||
} else {
|
||||
toast(t('Please convert model to safe tensors format first'), { type: 'error' });
|
||||
commonStore.setStatus({ status: ModelStatus.Offline });
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!webgpu) {
|
||||
if (['.st', '.safetensors'].some(ext => modelPath.endsWith(ext))) {
|
||||
toast(t('Please change Strategy to WebGPU to use safetensors format'), { type: 'error' });
|
||||
commonStore.setStatus({ status: ModelStatus.Offline });
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
if (!webgpu) {
|
||||
const ok = await checkDependencies(navigate);
|
||||
if (!ok)
|
||||
return;
|
||||
}
|
||||
|
||||
const currentModelSource = commonStore.modelSourceList.find(item => item.name === modelName);
|
||||
|
||||
@@ -85,7 +115,14 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
|
||||
|
||||
await exit(1000).catch(() => {
|
||||
});
|
||||
StartServer(commonStore.settings.customPythonPath, port, commonStore.settings.host !== '127.0.0.1' ? '0.0.0.0' : '127.0.0.1').catch((e) => {
|
||||
|
||||
const startServer = webgpu ?
|
||||
(_: string, port: number, host: string) => StartWebGPUServer(port, host)
|
||||
: StartServer;
|
||||
|
||||
startServer(commonStore.settings.customPythonPath, port, commonStore.settings.host !== '127.0.0.1' ? '0.0.0.0' : '127.0.0.1',
|
||||
modelConfig.modelParameters.device === 'CUDA-Beta'
|
||||
).catch((e) => {
|
||||
const errMsg = e.message || e;
|
||||
if (errMsg.includes('path contains space'))
|
||||
toast(`${t('Error')} - ${t('File Path Cannot Contain Space')}`, { type: 'error' });
|
||||
@@ -102,23 +139,27 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
|
||||
if (r.ok && !loading) {
|
||||
loading = true;
|
||||
clearInterval(intervalId);
|
||||
await getStatus().then(status => {
|
||||
if (status)
|
||||
commonStore.setStatus(status);
|
||||
});
|
||||
if (!webgpu) {
|
||||
await getStatus().then(status => {
|
||||
if (status)
|
||||
commonStore.setStatus(status);
|
||||
});
|
||||
}
|
||||
commonStore.setStatus({ status: ModelStatus.Loading });
|
||||
toast(t('Loading Model'), { type: 'info' });
|
||||
updateConfig({
|
||||
max_tokens: modelConfig.apiParameters.maxResponseToken,
|
||||
temperature: modelConfig.apiParameters.temperature,
|
||||
top_p: modelConfig.apiParameters.topP,
|
||||
presence_penalty: modelConfig.apiParameters.presencePenalty,
|
||||
frequency_penalty: modelConfig.apiParameters.frequencyPenalty
|
||||
});
|
||||
if (!webgpu) {
|
||||
updateConfig({
|
||||
max_tokens: modelConfig.apiParameters.maxResponseToken,
|
||||
temperature: modelConfig.apiParameters.temperature,
|
||||
top_p: modelConfig.apiParameters.topP,
|
||||
presence_penalty: modelConfig.apiParameters.presencePenalty,
|
||||
frequency_penalty: modelConfig.apiParameters.frequencyPenalty
|
||||
});
|
||||
}
|
||||
|
||||
const strategy = getStrategy(modelConfig);
|
||||
let customCudaFile = '';
|
||||
if ((modelConfig.modelParameters.device === 'CUDA' || modelConfig.modelParameters.device === 'Custom')
|
||||
if ((modelConfig.modelParameters.device.includes('CUDA') || modelConfig.modelParameters.device === 'Custom')
|
||||
&& modelConfig.modelParameters.useCustomCuda && !strategy.includes('fp32')) {
|
||||
if (commonStore.platform === 'windows') {
|
||||
customCudaFile = getSupportedCustomCudaFile();
|
||||
@@ -145,6 +186,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
|
||||
switchModel({
|
||||
model: modelPath,
|
||||
strategy: strategy,
|
||||
tokenizer: modelConfig.modelParameters.useCustomTokenizer ? modelConfig.modelParameters.customTokenizer : undefined,
|
||||
customCuda: customCudaFile !== ''
|
||||
}).then(async (r) => {
|
||||
if (r.ok) {
|
||||
|
||||
@@ -312,7 +312,10 @@ const ChatPanel: FC = observer(() => {
|
||||
stream: true,
|
||||
model: commonStore.settings.apiChatModelName, // 'gpt-3.5-turbo'
|
||||
temperature: apiParams.temperature,
|
||||
top_p: apiParams.topP
|
||||
top_p: apiParams.topP,
|
||||
user_name: commonStore.activePreset?.userName,
|
||||
assistant_name: commonStore.activePreset?.assistantName,
|
||||
presystem: commonStore.activePreset?.presystem
|
||||
}),
|
||||
signal: chatSseController?.signal,
|
||||
onmessage(e) {
|
||||
|
||||
@@ -1,6 +1,19 @@
|
||||
import { Dropdown, Input, Label, Option, Select, Switch, Text } from '@fluentui/react-components';
|
||||
import {
|
||||
Accordion,
|
||||
AccordionHeader,
|
||||
AccordionItem,
|
||||
AccordionPanel,
|
||||
Checkbox,
|
||||
Dropdown,
|
||||
Input,
|
||||
Label,
|
||||
Option,
|
||||
Select,
|
||||
Switch,
|
||||
Text
|
||||
} from '@fluentui/react-components';
|
||||
import { AddCircle20Regular, DataUsageSettings20Regular, Delete20Regular, Save20Regular } from '@fluentui/react-icons';
|
||||
import React, { FC } from 'react';
|
||||
import React, { FC, useEffect, useRef } from 'react';
|
||||
import { Section } from '../components/Section';
|
||||
import { Labeled } from '../components/Labeled';
|
||||
import { ToolTipButton } from '../components/ToolTipButton';
|
||||
@@ -13,13 +26,14 @@ import { Page } from '../components/Page';
|
||||
import { useNavigate } from 'react-router';
|
||||
import { RunButton } from '../components/RunButton';
|
||||
import { updateConfig } from '../apis';
|
||||
import { ConvertModel, FileExists, GetPyError } from '../../wailsjs/go/backend_golang/App';
|
||||
import { getStrategy } from '../utils';
|
||||
import { ConvertModel, ConvertSafetensors, FileExists, GetPyError } from '../../wailsjs/go/backend_golang/App';
|
||||
import { checkDependencies, getStrategy } from '../utils';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { WindowShow } from '../../wailsjs/runtime/runtime';
|
||||
import strategyImg from '../assets/images/strategy.jpg';
|
||||
import strategyZhImg from '../assets/images/strategy_zh.jpg';
|
||||
import { ResetConfigsButton } from '../components/ResetConfigsButton';
|
||||
import { useMediaQuery } from 'usehooks-ts';
|
||||
|
||||
export type ApiParameters = {
|
||||
apiPort: number
|
||||
@@ -30,7 +44,7 @@ export type ApiParameters = {
|
||||
frequencyPenalty: number;
|
||||
}
|
||||
|
||||
export type Device = 'CPU' | 'CUDA' | 'MPS' | 'Custom';
|
||||
export type Device = 'CPU' | 'CUDA' | 'CUDA-Beta' | 'WebGPU' | 'MPS' | 'Custom';
|
||||
export type Precision = 'fp16' | 'int8' | 'fp32';
|
||||
|
||||
export type ModelParameters = {
|
||||
@@ -42,6 +56,8 @@ export type ModelParameters = {
|
||||
maxStoredLayers: number;
|
||||
useCustomCuda?: boolean;
|
||||
customStrategy?: string;
|
||||
useCustomTokenizer?: boolean;
|
||||
customTokenizer?: string;
|
||||
}
|
||||
|
||||
export type ModelConfig = {
|
||||
@@ -56,9 +72,16 @@ export const Configs: FC = observer(() => {
|
||||
const [selectedIndex, setSelectedIndex] = React.useState(commonStore.currentModelConfigIndex);
|
||||
const [selectedConfig, setSelectedConfig] = React.useState(commonStore.modelConfigs[selectedIndex]);
|
||||
const [displayStrategyImg, setDisplayStrategyImg] = React.useState(false);
|
||||
const advancedHeaderRef = useRef<HTMLDivElement>(null);
|
||||
const mq = useMediaQuery('(min-width: 640px)');
|
||||
const navigate = useNavigate();
|
||||
const port = selectedConfig.apiParameters.apiPort;
|
||||
|
||||
useEffect(() => {
|
||||
if (advancedHeaderRef.current)
|
||||
(advancedHeaderRef.current.firstElementChild as HTMLElement).style.padding = '0';
|
||||
}, []);
|
||||
|
||||
const updateSelectedIndex = (newIndex: number) => {
|
||||
setSelectedIndex(newIndex);
|
||||
setSelectedConfig(commonStore.modelConfigs[newIndex]);
|
||||
@@ -128,7 +151,8 @@ export const Configs: FC = observer(() => {
|
||||
setSelectedIndex(0);
|
||||
setSelectedConfig(commonStore.modelConfigs[0]);
|
||||
}} />
|
||||
<ToolTipButton desc={t('Save Config')} icon={<Save20Regular />} onClick={onClickSave} />
|
||||
<ToolTipButton desc={mq ? '' : t('Save Config')} icon={<Save20Regular />} text={mq ? t('Save Config') : null}
|
||||
onClick={onClickSave} />
|
||||
</div>
|
||||
<div className="flex items-center gap-4">
|
||||
<Label>{t('Config Name')}</Label>
|
||||
@@ -237,40 +261,84 @@ export const Configs: FC = observer(() => {
|
||||
}} />
|
||||
</div>
|
||||
} />
|
||||
<ToolTipButton text={t('Convert')}
|
||||
desc={t('Convert model with these configs. Using a converted model will greatly improve the loading speed, but model parameters of the converted model cannot be modified.')}
|
||||
onClick={async () => {
|
||||
if (commonStore.platform == 'darwin') {
|
||||
toast(t('MacOS is not yet supported for performing this operation, please do it manually.'), { type: 'info' });
|
||||
return;
|
||||
} else if (commonStore.platform == 'linux') {
|
||||
toast(t('Linux is not yet supported for performing this operation, please do it manually.'), { type: 'info' });
|
||||
return;
|
||||
}
|
||||
|
||||
const modelPath = `${commonStore.settings.customModelsPath}/${selectedConfig.modelParameters.modelName}`;
|
||||
if (await FileExists(modelPath)) {
|
||||
const strategy = getStrategy(selectedConfig);
|
||||
const newModelPath = modelPath + '-' + strategy.replace(/[:> *+]/g, '-');
|
||||
toast(t('Start Converting'), { autoClose: 1000, type: 'info' });
|
||||
ConvertModel(commonStore.settings.customPythonPath, modelPath, strategy, newModelPath).then(async () => {
|
||||
if (!await FileExists(newModelPath + '.pth')) {
|
||||
toast(t('Convert Failed') + ' - ' + await GetPyError(), { type: 'error' });
|
||||
} else {
|
||||
toast(`${t('Convert Success')} - ${newModelPath}`, { type: 'success' });
|
||||
{
|
||||
selectedConfig.modelParameters.device !== 'WebGPU' ?
|
||||
<ToolTipButton text={t('Convert')}
|
||||
desc={t('Convert model with these configs. Using a converted model will greatly improve the loading speed, but model parameters of the converted model cannot be modified.')}
|
||||
onClick={async () => {
|
||||
if (commonStore.platform === 'darwin') {
|
||||
toast(t('MacOS is not yet supported for performing this operation, please do it manually.') + ' (backend-python/convert_model.py)', { type: 'info' });
|
||||
return;
|
||||
} else if (commonStore.platform === 'linux') {
|
||||
toast(t('Linux is not yet supported for performing this operation, please do it manually.') + ' (backend-python/convert_model.py)', { type: 'info' });
|
||||
return;
|
||||
}
|
||||
}).catch(e => {
|
||||
const errMsg = e.message || e;
|
||||
if (errMsg.includes('path contains space'))
|
||||
toast(`${t('Convert Failed')} - ${t('File Path Cannot Contain Space')}`, { type: 'error' });
|
||||
else
|
||||
toast(`${t('Convert Failed')} - ${e.message || e}`, { type: 'error' });
|
||||
});
|
||||
setTimeout(WindowShow, 1000);
|
||||
} else {
|
||||
toast(`${t('Model Not Found')} - ${modelPath}`, { type: 'error' });
|
||||
}
|
||||
}} />
|
||||
|
||||
const ok = await checkDependencies(navigate);
|
||||
if (!ok)
|
||||
return;
|
||||
|
||||
const modelPath = `${commonStore.settings.customModelsPath}/${selectedConfig.modelParameters.modelName}`;
|
||||
if (await FileExists(modelPath)) {
|
||||
const strategy = getStrategy(selectedConfig);
|
||||
const newModelPath = modelPath + '-' + strategy.replace(/[:> *+]/g, '-');
|
||||
toast(t('Start Converting'), { autoClose: 1000, type: 'info' });
|
||||
ConvertModel(commonStore.settings.customPythonPath, modelPath, strategy, newModelPath).then(async () => {
|
||||
if (!await FileExists(newModelPath + '.pth')) {
|
||||
toast(t('Convert Failed') + ' - ' + await GetPyError(), { type: 'error' });
|
||||
} else {
|
||||
toast(`${t('Convert Success')} - ${newModelPath}`, { type: 'success' });
|
||||
}
|
||||
}).catch(e => {
|
||||
const errMsg = e.message || e;
|
||||
if (errMsg.includes('path contains space'))
|
||||
toast(`${t('Convert Failed')} - ${t('File Path Cannot Contain Space')}`, { type: 'error' });
|
||||
else
|
||||
toast(`${t('Convert Failed')} - ${e.message || e}`, { type: 'error' });
|
||||
});
|
||||
setTimeout(WindowShow, 1000);
|
||||
} else {
|
||||
toast(`${t('Model Not Found')} - ${modelPath}`, { type: 'error' });
|
||||
}
|
||||
}} /> :
|
||||
<ToolTipButton text={t('Convert To Safe Tensors Format')}
|
||||
desc=""
|
||||
onClick={async () => {
|
||||
if (commonStore.platform === 'darwin') {
|
||||
toast(t('MacOS is not yet supported for performing this operation, please do it manually.') + ' (backend-python/convert_safetensors.py)', { type: 'info' });
|
||||
return;
|
||||
} else if (commonStore.platform === 'linux') {
|
||||
toast(t('Linux is not yet supported for performing this operation, please do it manually.') + ' (backend-python/convert_safetensors.py)', { type: 'info' });
|
||||
return;
|
||||
}
|
||||
|
||||
const ok = await checkDependencies(navigate);
|
||||
if (!ok)
|
||||
return;
|
||||
|
||||
const modelPath = `${commonStore.settings.customModelsPath}/${selectedConfig.modelParameters.modelName}`;
|
||||
if (await FileExists(modelPath)) {
|
||||
toast(t('Start Converting'), { autoClose: 1000, type: 'info' });
|
||||
const newModelPath = modelPath.replace(/\.pth$/, '.st');
|
||||
ConvertSafetensors(commonStore.settings.customPythonPath, modelPath, newModelPath).then(async () => {
|
||||
if (!await FileExists(newModelPath)) {
|
||||
toast(t('Convert Failed') + ' - ' + await GetPyError(), { type: 'error' });
|
||||
} else {
|
||||
toast(`${t('Convert Success')} - ${newModelPath}`, { type: 'success' });
|
||||
}
|
||||
}).catch(e => {
|
||||
const errMsg = e.message || e;
|
||||
if (errMsg.includes('path contains space'))
|
||||
toast(`${t('Convert Failed')} - ${t('File Path Cannot Contain Space')}`, { type: 'error' });
|
||||
else
|
||||
toast(`${t('Convert Failed')} - ${e.message || e}`, { type: 'error' });
|
||||
});
|
||||
setTimeout(WindowShow, 1000);
|
||||
} else {
|
||||
toast(`${t('Model Not Found')} - ${modelPath}`, { type: 'error' });
|
||||
}
|
||||
}} />
|
||||
}
|
||||
<Labeled label={t('Strategy')} content={
|
||||
<Dropdown style={{ minWidth: 0 }} className="grow" value={t(selectedConfig.modelParameters.device)!}
|
||||
selectedOptions={[selectedConfig.modelParameters.device]}
|
||||
@@ -284,11 +352,13 @@ export const Configs: FC = observer(() => {
|
||||
<Option value="CPU">CPU</Option>
|
||||
{commonStore.platform === 'darwin' && <Option value="MPS">MPS</Option>}
|
||||
<Option value="CUDA">CUDA</Option>
|
||||
<Option value="CUDA-Beta">{t('CUDA (Beta, Faster)')!}</Option>
|
||||
<Option value="WebGPU">WebGPU</Option>
|
||||
<Option value="Custom">{t('Custom')!}</Option>
|
||||
</Dropdown>
|
||||
} />
|
||||
{
|
||||
selectedConfig.modelParameters.device != 'Custom' && <Labeled label={t('Precision')}
|
||||
selectedConfig.modelParameters.device !== 'Custom' && <Labeled label={t('Precision')}
|
||||
desc={t('int8 uses less VRAM, but has slightly lower quality. fp16 has higher quality, and fp32 has the best quality.')}
|
||||
content={
|
||||
<Dropdown style={{ minWidth: 0 }} className="grow"
|
||||
@@ -303,17 +373,17 @@ export const Configs: FC = observer(() => {
|
||||
}}>
|
||||
<Option>fp16</Option>
|
||||
<Option>int8</Option>
|
||||
<Option>fp32</Option>
|
||||
{selectedConfig.modelParameters.device !== 'WebGPU' && <Option>fp32</Option>}
|
||||
</Dropdown>
|
||||
} />
|
||||
}
|
||||
{
|
||||
selectedConfig.modelParameters.device == 'CUDA' &&
|
||||
selectedConfig.modelParameters.device.includes('CUDA') &&
|
||||
<Labeled label={t('Current Strategy')}
|
||||
content={<Text> {getStrategy(selectedConfig)} </Text>} />
|
||||
}
|
||||
{
|
||||
selectedConfig.modelParameters.device == 'CUDA' &&
|
||||
selectedConfig.modelParameters.device.includes('CUDA') &&
|
||||
<Labeled label={t('Stored Layers')}
|
||||
desc={t('Number of the neural network layers loaded into VRAM, the more you load, the faster the speed, but it consumes more VRAM. (If your VRAM is not enough, it will fail to load)')}
|
||||
content={
|
||||
@@ -326,9 +396,7 @@ export const Configs: FC = observer(() => {
|
||||
}} />
|
||||
} />
|
||||
}
|
||||
{
|
||||
selectedConfig.modelParameters.device == 'CUDA' && <div />
|
||||
}
|
||||
{selectedConfig.modelParameters.device.includes('CUDA') && <div />}
|
||||
{
|
||||
displayStrategyImg &&
|
||||
<img style={{ width: '80vh', height: 'auto', zIndex: 100 }}
|
||||
@@ -336,13 +404,13 @@ export const Configs: FC = observer(() => {
|
||||
src={commonStore.settings.language === 'zh' ? strategyZhImg : strategyImg} />
|
||||
}
|
||||
{
|
||||
selectedConfig.modelParameters.device == 'Custom' &&
|
||||
selectedConfig.modelParameters.device === 'Custom' &&
|
||||
<Labeled label="Strategy"
|
||||
onMouseEnter={() => setDisplayStrategyImg(true)}
|
||||
onMouseLeave={() => setDisplayStrategyImg(false)}
|
||||
content={
|
||||
<Input className="grow"
|
||||
placeholder={commonStore.platform != 'darwin' ? 'cuda:0 fp16 *20 -> cuda:1 fp16' : 'mps fp32'}
|
||||
placeholder={commonStore.platform !== 'darwin' ? 'cuda:0 fp16 *20 -> cuda:1 fp16' : 'mps fp32'}
|
||||
value={selectedConfig.modelParameters.customStrategy}
|
||||
onChange={(e, data) => {
|
||||
setSelectedConfigModelParams({
|
||||
@@ -351,9 +419,9 @@ export const Configs: FC = observer(() => {
|
||||
}} />
|
||||
} />
|
||||
}
|
||||
{selectedConfig.modelParameters.device == 'Custom' && <div />}
|
||||
{selectedConfig.modelParameters.device === 'Custom' && <div />}
|
||||
{
|
||||
selectedConfig.modelParameters.device != 'CPU' && selectedConfig.modelParameters.device != 'MPS' &&
|
||||
(selectedConfig.modelParameters.device.includes('CUDA') || selectedConfig.modelParameters.device === 'Custom') &&
|
||||
<Labeled label={t('Use Custom CUDA kernel to Accelerate')}
|
||||
desc={t('Enabling this option can greatly improve inference speed and save some VRAM, but there may be compatibility issues. If it fails to start, please turn off this option.')}
|
||||
content={
|
||||
@@ -365,6 +433,40 @@ export const Configs: FC = observer(() => {
|
||||
}} />
|
||||
} />
|
||||
}
|
||||
{selectedConfig.modelParameters.device !== 'WebGPU' &&
|
||||
<Accordion className="sm:col-span-2" collapsible
|
||||
openItems={!commonStore.modelParamsCollapsed && 'advanced'}
|
||||
onToggle={(e, data) => {
|
||||
if (data.value === 'advanced')
|
||||
commonStore.setModelParamsCollapsed(!commonStore.modelParamsCollapsed);
|
||||
}}>
|
||||
<AccordionItem value="advanced">
|
||||
<AccordionHeader ref={advancedHeaderRef} size="small">{t('Advanced')}</AccordionHeader>
|
||||
<AccordionPanel>
|
||||
<div className="flex flex-col">
|
||||
<div className="flex grow">
|
||||
<Checkbox className="select-none"
|
||||
size="large" label={t('Use Custom Tokenizer')}
|
||||
checked={selectedConfig.modelParameters.useCustomTokenizer}
|
||||
onChange={(_, data) => {
|
||||
setSelectedConfigModelParams({
|
||||
useCustomTokenizer: data.checked as boolean
|
||||
});
|
||||
}} />
|
||||
<Input className="grow"
|
||||
placeholder={t('Tokenizer Path (e.g. backend-python/rwkv_pip/20B_tokenizer.json)')!}
|
||||
value={selectedConfig.modelParameters.customTokenizer}
|
||||
onChange={(e, data) => {
|
||||
setSelectedConfigModelParams({
|
||||
customTokenizer: data.value
|
||||
});
|
||||
}} />
|
||||
</div>
|
||||
</div>
|
||||
</AccordionPanel>
|
||||
</AccordionItem>
|
||||
</Accordion>
|
||||
}
|
||||
</div>
|
||||
}
|
||||
/>
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
import React, { FC } from 'react';
|
||||
import React, { FC, useEffect } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { Page } from '../components/Page';
|
||||
import { observer } from 'mobx-react-lite';
|
||||
import commonStore from '../stores/commonStore';
|
||||
import { Divider, Field, ProgressBar } from '@fluentui/react-components';
|
||||
import { bytesToGb, bytesToKb, bytesToMb } from '../utils';
|
||||
import { bytesToGb, bytesToKb, bytesToMb, refreshLocalModels } from '../utils';
|
||||
import { ToolTipButton } from '../components/ToolTipButton';
|
||||
import { Folder20Regular, Pause20Regular, Play20Regular } from '@fluentui/react-icons';
|
||||
import { AddToDownloadList, OpenFileFolder, PauseDownload } from '../../wailsjs/go/backend_golang/App';
|
||||
@@ -23,6 +23,12 @@ export type DownloadStatus = {
|
||||
|
||||
export const Downloads: FC = observer(() => {
|
||||
const { t } = useTranslation();
|
||||
const finishedModelsLen = commonStore.downloadList.filter((status) => status.done && status.name.endsWith('.pth')).length;
|
||||
useEffect(() => {
|
||||
if (finishedModelsLen > 0)
|
||||
refreshLocalModels({ models: commonStore.modelSourceList }, false);
|
||||
console.log('finishedModelsLen:', finishedModelsLen);
|
||||
}, [finishedModelsLen]);
|
||||
|
||||
let displayList = commonStore.downloadList.slice();
|
||||
const downloadListNames = displayList.map(s => s.name);
|
||||
|
||||
@@ -56,6 +56,9 @@ export type Preset = {
|
||||
stop: string,
|
||||
injectStart: string,
|
||||
injectEnd: string,
|
||||
presystem?: boolean,
|
||||
userName?: string,
|
||||
assistantName?: string
|
||||
}
|
||||
|
||||
export const defaultPreset: Preset = {
|
||||
@@ -250,14 +253,41 @@ export const ChatPresetEditor: FC<{
|
||||
}} />
|
||||
<Button onClick={() => {
|
||||
setEditingMessages(!editingMessages);
|
||||
}}>{!editingMessages ? t('Edit Messages') : t('Go Back')}</Button>
|
||||
}}>{!editingMessages ? t('Edit Character Settings') : t('Go Back')}</Button>
|
||||
</div>
|
||||
} />
|
||||
{
|
||||
editingMessages ?
|
||||
<MessagesEditor /> :
|
||||
<div className="flex flex-col gap-1">
|
||||
<Labeled flex spaceBetween label={t('Insert default system prompt at the beginning')}
|
||||
content={
|
||||
<Switch checked={editingPreset.presystem === undefined ? true : editingPreset.presystem}
|
||||
onChange={(e, data) => {
|
||||
setEditingPreset({
|
||||
presystem: data.checked
|
||||
});
|
||||
}} />
|
||||
} />
|
||||
<Labeled flex breakline label={t('User Name')}
|
||||
content={
|
||||
<Input placeholder="User" value={editingPreset.userName} onChange={(e, data) => {
|
||||
setEditingPreset({
|
||||
userName: data.value
|
||||
});
|
||||
}} />
|
||||
} />
|
||||
<Labeled flex breakline label={t('Assistant Name')}
|
||||
content={
|
||||
<Input placeholder="Assistant" value={editingPreset.assistantName} onChange={(e, data) => {
|
||||
setEditingPreset({
|
||||
assistantName: data.value
|
||||
});
|
||||
}} />
|
||||
} />
|
||||
<MessagesEditor />
|
||||
</div> :
|
||||
<div className="flex flex-col gap-1 p-2 overflow-x-hidden overflow-y-auto">
|
||||
<Labeled flex breakline label={t('Description')}
|
||||
<Labeled flex breakline label={`${t('Description')} (${t('Preview Only')})`}
|
||||
content={
|
||||
<Input value={editingPreset.desc} onChange={(e, data) => {
|
||||
setEditingPreset({
|
||||
|
||||
@@ -126,7 +126,7 @@ export const Settings: FC = observer(() => {
|
||||
} />
|
||||
}
|
||||
{
|
||||
commonStore.settings.language === 'zh' && commonStore.platform != 'linux' &&
|
||||
commonStore.settings.language === 'zh' && commonStore.platform !== 'linux' &&
|
||||
<Labeled label={t('Use Tsinghua Pip Mirrors')} flex spaceBetween content={
|
||||
<Switch checked={commonStore.settings.cnMirror}
|
||||
onChange={(e, data) => {
|
||||
|
||||
@@ -154,7 +154,7 @@ const showError = (e: any) => {
|
||||
};
|
||||
|
||||
const errorsMap = Object.entries({
|
||||
'python3 ./finetune/lora/train.py': 'Memory is not enough, try to increase the virtual memory or use a smaller base model.',
|
||||
'python3 ./finetune/lora/train.py': 'Memory is not enough, try to increase the virtual memory (Swap of WSL) or use a smaller base model.',
|
||||
'cuda out of memory': 'VRAM is not enough',
|
||||
'valueerror: high <= 0': 'Training data is not enough, reduce context length or add more data for training',
|
||||
'+= \'+ptx\'': 'You are using WSL 1 for training, please upgrade to WSL 2. e.g. Run "wsl --set-version Ubuntu-22.04 2"',
|
||||
@@ -219,7 +219,7 @@ const Terminal: FC = observer(() => {
|
||||
WslStart().then(() => {
|
||||
addWslMessage('WSL> ' + input);
|
||||
setInput('');
|
||||
WslCommand(input).catch(showError);
|
||||
WslCommand(input).then(WindowShow).catch(showError);
|
||||
}).catch(showError);
|
||||
}
|
||||
};
|
||||
|
||||
@@ -2,11 +2,12 @@ import commonStore, { Platform } from './stores/commonStore';
|
||||
import { GetPlatform, ListDirFiles, ReadJson } from '../wailsjs/go/backend_golang/App';
|
||||
import { Cache, checkUpdate, downloadProgramFiles, LocalConfig, refreshLocalModels, refreshModels } from './utils';
|
||||
import { getStatus } from './apis';
|
||||
import { EventsOn } from '../wailsjs/runtime';
|
||||
import { EventsOn, WindowSetTitle } from '../wailsjs/runtime';
|
||||
import manifest from '../../manifest.json';
|
||||
import { defaultModelConfigs, defaultModelConfigsMac } from './pages/defaultConfigs';
|
||||
import { Preset } from './pages/PresetsManager/PresetsButton';
|
||||
import { wslHandler } from './pages/Train';
|
||||
import { t } from 'i18next';
|
||||
|
||||
export async function startup() {
|
||||
downloadProgramFiles();
|
||||
@@ -23,6 +24,8 @@ export async function startup() {
|
||||
|
||||
initPresets();
|
||||
|
||||
initHardwareMonitor();
|
||||
|
||||
await GetPlatform().then(p => commonStore.setPlatform(p as Platform));
|
||||
await initConfig();
|
||||
|
||||
@@ -70,7 +73,7 @@ async function initConfig() {
|
||||
configData.currentModelConfigIndex >= 0 && configData.currentModelConfigIndex < configData.modelConfigs.length)
|
||||
commonStore.setCurrentConfigIndex(configData.currentModelConfigIndex, false);
|
||||
}).catch(() => {
|
||||
commonStore.setModelConfigs(commonStore.platform != 'darwin' ? defaultModelConfigs : defaultModelConfigsMac, true);
|
||||
commonStore.setModelConfigs(commonStore.platform !== 'darwin' ? defaultModelConfigs : defaultModelConfigsMac, true);
|
||||
});
|
||||
}
|
||||
|
||||
@@ -117,3 +120,20 @@ async function initLocalModelsNotify() {
|
||||
refreshLocalModels({ models: commonStore.modelSourceList }, false); //TODO fix bug that only add models
|
||||
});
|
||||
}
|
||||
|
||||
type monitorData = {
|
||||
usedMemory: number;
|
||||
totalMemory: number;
|
||||
gpuUsage: number;
|
||||
gpuPower: number;
|
||||
usedVram: number;
|
||||
totalVram: number;
|
||||
}
|
||||
|
||||
async function initHardwareMonitor() {
|
||||
EventsOn('monitor', (data: string) => {
|
||||
const results: monitorData = JSON.parse(data);
|
||||
if (results)
|
||||
WindowSetTitle(`RWKV-Runner (${t('RAM')}: ${results.usedMemory.toFixed(1)}/${results.totalMemory.toFixed(1)} GB, ${t('VRAM')}: ${(results.usedVram / 1024).toFixed(1)}/${(results.totalVram / 1024).toFixed(1)} GB, ${t('GPU Usage')}: ${results.gpuUsage}%)`);
|
||||
});
|
||||
}
|
||||
|
||||
@@ -74,6 +74,7 @@ class CommonStore {
|
||||
// configs
|
||||
currentModelConfigIndex: number = 0;
|
||||
modelConfigs: ModelConfig[] = [];
|
||||
modelParamsCollapsed: boolean = true;
|
||||
// models
|
||||
modelSourceManifestList: string = 'https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/manifest.json;';
|
||||
modelSourceList: ModelSourceItem[] = [];
|
||||
@@ -167,7 +168,7 @@ class CommonStore {
|
||||
createModelConfig = (config: ModelConfig = defaultModelConfigs[0], saveConfig: boolean = true) => {
|
||||
if (config.name === defaultModelConfigs[0].name) {
|
||||
// deep copy
|
||||
config = JSON.parse(JSON.stringify(commonStore.platform != 'darwin' ? defaultModelConfigs[0] : defaultModelConfigsMac[0]));
|
||||
config = JSON.parse(JSON.stringify(commonStore.platform !== 'darwin' ? defaultModelConfigs[0] : defaultModelConfigsMac[0]));
|
||||
config.name = new Date().toLocaleString();
|
||||
}
|
||||
this.modelConfigs.push(config);
|
||||
@@ -259,6 +260,10 @@ class CommonStore {
|
||||
this.advancedCollapsed = value;
|
||||
}
|
||||
|
||||
setModelParamsCollapsed(value: boolean) {
|
||||
this.modelParamsCollapsed = value;
|
||||
}
|
||||
|
||||
setLastUnfinishedModelDownloads(value: DownloadStatus[]) {
|
||||
this.lastUnfinishedModelDownloads = value;
|
||||
}
|
||||
|
||||
@@ -57,6 +57,8 @@ export async function refreshBuiltInModels(readCache: boolean = false) {
|
||||
return cache;
|
||||
}
|
||||
|
||||
const modelSuffix = ['.pth', '.st', '.safetensors'];
|
||||
|
||||
export async function refreshLocalModels(cache: {
|
||||
models: ModelSourceItem[]
|
||||
}, filter: boolean = true, initUnfinishedModels: boolean = false) {
|
||||
@@ -65,7 +67,7 @@ export async function refreshLocalModels(cache: {
|
||||
|
||||
await ListDirFiles(commonStore.settings.customModelsPath).then((data) => {
|
||||
cache.models.push(...data.flatMap(d => {
|
||||
if (!d.isDir && d.name.endsWith('.pth'))
|
||||
if (!d.isDir && modelSuffix.some((ext => d.name.endsWith(ext))))
|
||||
return [{
|
||||
name: d.name,
|
||||
size: d.size,
|
||||
@@ -146,7 +148,7 @@ export async function refreshRemoteModels(cache: { models: ModelSourceItem[] })
|
||||
.catch(() => {
|
||||
});
|
||||
cache.models = cache.models.filter((model, index, self) => {
|
||||
return model.name.endsWith('.pth')
|
||||
return modelSuffix.some((ext => model.name.endsWith(ext)))
|
||||
&& index === self.findIndex(
|
||||
m => m.name === model.name || (m.SHA256 && m.SHA256 === model.SHA256 && m.size === model.size));
|
||||
});
|
||||
@@ -176,7 +178,11 @@ export const getStrategy = (modelConfig: ModelConfig | undefined = undefined) =>
|
||||
strategy += 'cpu ';
|
||||
strategy += params.precision === 'int8' ? 'fp32i8' : 'fp32';
|
||||
break;
|
||||
case 'WebGPU':
|
||||
strategy += params.precision === 'int8' ? 'fp16i8' : 'fp16';
|
||||
break;
|
||||
case 'CUDA':
|
||||
case 'CUDA-Beta':
|
||||
if (avoidOverflow)
|
||||
strategy = 'cuda fp32 *1 -> ';
|
||||
strategy += 'cuda ';
|
||||
@@ -239,7 +245,7 @@ export function downloadProgramFiles() {
|
||||
manifest.programFiles.forEach(({ url, path }) => {
|
||||
if (path)
|
||||
ReadFileInfo(path).then(info => {
|
||||
if (info.size == 0 && url)
|
||||
if (info.size === 0 && url)
|
||||
AddToDownloadList(path, url.replace('@master', '@v' + manifest.version));
|
||||
}).catch(() => {
|
||||
if (url)
|
||||
@@ -372,7 +378,7 @@ export const checkDependencies = async (navigate: NavigateFunction) => {
|
||||
});
|
||||
} else {
|
||||
toast(depErrorMsg, { type: 'info', position: 'bottom-left' });
|
||||
if (commonStore.platform != 'linux')
|
||||
if (commonStore.platform !== 'linux')
|
||||
toastWithButton(t('Python dependencies are incomplete, would you like to install them?'), t('Install'), () => {
|
||||
InstallPyDep(commonStore.settings.customPythonPath, commonStore.settings.cnMirror).catch((e) => {
|
||||
const errMsg = e.message || e;
|
||||
|
||||
6
frontend/wailsjs/go/backend_golang/App.d.ts
generated
vendored
6
frontend/wailsjs/go/backend_golang/App.d.ts
generated
vendored
@@ -10,6 +10,8 @@ export function ConvertData(arg1:string,arg2:string,arg3:string,arg4:string):Pro
|
||||
|
||||
export function ConvertModel(arg1:string,arg2:string,arg3:string,arg4:string):Promise<string>;
|
||||
|
||||
export function ConvertSafetensors(arg1:string,arg2:string,arg3:string):Promise<string>;
|
||||
|
||||
export function CopyFile(arg1:string,arg2:string):Promise<void>;
|
||||
|
||||
export function DeleteFile(arg1:string):Promise<void>;
|
||||
@@ -46,7 +48,9 @@ export function RestartApp():Promise<void>;
|
||||
|
||||
export function SaveJson(arg1:string,arg2:any):Promise<void>;
|
||||
|
||||
export function StartServer(arg1:string,arg2:number,arg3:string):Promise<string>;
|
||||
export function StartServer(arg1:string,arg2:number,arg3:string,arg4:boolean):Promise<string>;
|
||||
|
||||
export function StartWebGPUServer(arg1:number,arg2:string):Promise<string>;
|
||||
|
||||
export function UpdateApp(arg1:string):Promise<boolean>;
|
||||
|
||||
|
||||
12
frontend/wailsjs/go/backend_golang/App.js
generated
12
frontend/wailsjs/go/backend_golang/App.js
generated
@@ -18,6 +18,10 @@ export function ConvertModel(arg1, arg2, arg3, arg4) {
|
||||
return window['go']['backend_golang']['App']['ConvertModel'](arg1, arg2, arg3, arg4);
|
||||
}
|
||||
|
||||
export function ConvertSafetensors(arg1, arg2, arg3) {
|
||||
return window['go']['backend_golang']['App']['ConvertSafetensors'](arg1, arg2, arg3);
|
||||
}
|
||||
|
||||
export function CopyFile(arg1, arg2) {
|
||||
return window['go']['backend_golang']['App']['CopyFile'](arg1, arg2);
|
||||
}
|
||||
@@ -90,8 +94,12 @@ export function SaveJson(arg1, arg2) {
|
||||
return window['go']['backend_golang']['App']['SaveJson'](arg1, arg2);
|
||||
}
|
||||
|
||||
export function StartServer(arg1, arg2, arg3) {
|
||||
return window['go']['backend_golang']['App']['StartServer'](arg1, arg2, arg3);
|
||||
export function StartServer(arg1, arg2, arg3, arg4) {
|
||||
return window['go']['backend_golang']['App']['StartServer'](arg1, arg2, arg3, arg4);
|
||||
}
|
||||
|
||||
export function StartWebGPUServer(arg1, arg2) {
|
||||
return window['go']['backend_golang']['App']['StartWebGPUServer'](arg1, arg2);
|
||||
}
|
||||
|
||||
export function UpdateApp(arg1) {
|
||||
|
||||
11
go.mod
11
go.mod
@@ -4,15 +4,16 @@ go 1.20
|
||||
|
||||
require (
|
||||
github.com/cavaliergopher/grab/v3 v3.0.1
|
||||
github.com/fsnotify/fsnotify v1.6.0
|
||||
github.com/minio/selfupdate v0.6.0
|
||||
github.com/nyaosorg/go-windows-su v0.2.1
|
||||
github.com/ubuntu/gowsl v0.0.0-20230615094051-94945650cc1e
|
||||
github.com/wailsapp/wails/v2 v2.5.1
|
||||
github.com/wailsapp/wails/v2 v2.6.0
|
||||
)
|
||||
|
||||
require (
|
||||
aead.dev/minisign v0.2.0 // indirect
|
||||
github.com/bep/debounce v1.2.1 // indirect
|
||||
github.com/fsnotify/fsnotify v1.6.0
|
||||
github.com/go-ole/go-ole v1.2.6 // indirect
|
||||
github.com/google/uuid v1.3.0 // indirect
|
||||
github.com/jchv/go-winloader v0.0.0-20210711035445-715c2860da7e // indirect
|
||||
@@ -22,8 +23,7 @@ require (
|
||||
github.com/leaanthony/gosod v1.0.3 // indirect
|
||||
github.com/leaanthony/slicer v1.6.0 // indirect
|
||||
github.com/mattn/go-colorable v0.1.13 // indirect
|
||||
github.com/mattn/go-isatty v0.0.18 // indirect
|
||||
github.com/nyaosorg/go-windows-su v0.2.1
|
||||
github.com/mattn/go-isatty v0.0.19 // indirect
|
||||
github.com/pkg/browser v0.0.0-20210911075715-681adbf594b8 // indirect
|
||||
github.com/pkg/errors v0.9.1 // indirect
|
||||
github.com/rivo/uniseg v0.4.4 // indirect
|
||||
@@ -33,9 +33,10 @@ require (
|
||||
github.com/ubuntu/decorate v0.0.0-20230125165522-2d5b0a9bb117 // indirect
|
||||
github.com/valyala/bytebufferpool v1.0.0 // indirect
|
||||
github.com/valyala/fasttemplate v1.2.2 // indirect
|
||||
github.com/wailsapp/go-webview2 v1.0.1 // indirect
|
||||
github.com/wailsapp/mimetype v1.4.1 // indirect
|
||||
golang.org/x/crypto v0.9.0 // indirect
|
||||
golang.org/x/exp v0.0.0-20230515195305-f3d0a9c9a5cc // indirect
|
||||
golang.org/x/exp v0.0.0-20230522175609-2e198f4a06a1 // indirect
|
||||
golang.org/x/net v0.10.0 // indirect
|
||||
golang.org/x/sys v0.9.0 // indirect
|
||||
golang.org/x/text v0.9.0 // indirect
|
||||
|
||||
14
go.sum
14
go.sum
@@ -36,8 +36,8 @@ github.com/mattn/go-colorable v0.1.13 h1:fFA4WZxdEF4tXPZVKMLwD8oUnCTTo08duU7wxec
|
||||
github.com/mattn/go-colorable v0.1.13/go.mod h1:7S9/ev0klgBDR4GtXTXX8a3vIGJpMovkB8vQcUbaXHg=
|
||||
github.com/mattn/go-isatty v0.0.14/go.mod h1:7GGIvUiUoEMVVmxf/4nioHXj79iQHKdU27kJ6hsGG94=
|
||||
github.com/mattn/go-isatty v0.0.16/go.mod h1:kYGgaQfpe5nmfYZH+SKPsOc2e4SrIfOl2e/yFXSvRLM=
|
||||
github.com/mattn/go-isatty v0.0.18 h1:DOKFKCQ7FNG2L1rbrmstDN4QVRdS89Nkh85u68Uwp98=
|
||||
github.com/mattn/go-isatty v0.0.18/go.mod h1:W+V8PltTTMOvKvAeJH7IuucS94S2C6jfK/D7dTCTo3Y=
|
||||
github.com/mattn/go-isatty v0.0.19 h1:JITubQf0MOLdlGRuRq+jtsDlekdYPia9ZFsB8h/APPA=
|
||||
github.com/mattn/go-isatty v0.0.19/go.mod h1:W+V8PltTTMOvKvAeJH7IuucS94S2C6jfK/D7dTCTo3Y=
|
||||
github.com/minio/selfupdate v0.6.0 h1:i76PgT0K5xO9+hjzKcacQtO7+MjJ4JKA8Ak8XQ9DDwU=
|
||||
github.com/minio/selfupdate v0.6.0/go.mod h1:bO02GTIPCMQFTEvE5h4DjYB58bCoZ35XLeBf0buTDdM=
|
||||
github.com/nyaosorg/go-windows-su v0.2.1 h1:5V0XavLyjOqPUp7psxxCvBISaneU4XmFPSMlejSl5sc=
|
||||
@@ -69,17 +69,19 @@ github.com/valyala/bytebufferpool v1.0.0/go.mod h1:6bBcMArwyJ5K/AmCkWv1jt77kVWyC
|
||||
github.com/valyala/fasttemplate v1.2.1/go.mod h1:KHLXt3tVN2HBp8eijSv/kGJopbvo7S+qRAEEKiv+SiQ=
|
||||
github.com/valyala/fasttemplate v1.2.2 h1:lxLXG0uE3Qnshl9QyaK6XJxMXlQZELvChBOCmQD0Loo=
|
||||
github.com/valyala/fasttemplate v1.2.2/go.mod h1:KHLXt3tVN2HBp8eijSv/kGJopbvo7S+qRAEEKiv+SiQ=
|
||||
github.com/wailsapp/go-webview2 v1.0.1 h1:dEJIeEApW/MhO2tTMISZBFZPuW7kwrFA1NtgFB1z1II=
|
||||
github.com/wailsapp/go-webview2 v1.0.1/go.mod h1:Uk2BePfCRzttBBjFrBmqKGJd41P6QIHeV9kTgIeOZNo=
|
||||
github.com/wailsapp/mimetype v1.4.1 h1:pQN9ycO7uo4vsUUuPeHEYoUkLVkaRntMnHJxVwYhwHs=
|
||||
github.com/wailsapp/mimetype v1.4.1/go.mod h1:9aV5k31bBOv5z6u+QP8TltzvNGJPmNJD4XlAL3U+j3o=
|
||||
github.com/wailsapp/wails/v2 v2.5.1 h1:mfG+2kWqQXYOwdgI43HEILjOZDXbk5woPYI3jP2b+js=
|
||||
github.com/wailsapp/wails/v2 v2.5.1/go.mod h1:jbOZbcr/zm79PxXxAjP8UoVlDd9wLW3uDs+isIthDfs=
|
||||
github.com/wailsapp/wails/v2 v2.6.0 h1:EyH0zR/EO6dDiqNy8qU5spaXDfkluiq77xrkabPYD4c=
|
||||
github.com/wailsapp/wails/v2 v2.6.0/go.mod h1:WBG9KKWuw0FKfoepBrr/vRlyTmHaMibWesK3yz6nNiM=
|
||||
golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w=
|
||||
golang.org/x/crypto v0.0.0-20210220033148-5ea612d1eb83/go.mod h1:jdWPYTVW3xRLrWPugEBEK3UY2ZEsg3UU495nc5E+M+I=
|
||||
golang.org/x/crypto v0.0.0-20211209193657-4570a0811e8b/go.mod h1:IxCIyHEi3zRg3s0A5j5BB6A9Jmi73HwBIUl50j+osU4=
|
||||
golang.org/x/crypto v0.9.0 h1:LF6fAI+IutBocDJ2OT0Q1g8plpYljMZ4+lty+dsqw3g=
|
||||
golang.org/x/crypto v0.9.0/go.mod h1:yrmDGqONDYtNj3tH8X9dzUun2m2lzPa9ngI6/RUPGR0=
|
||||
golang.org/x/exp v0.0.0-20230515195305-f3d0a9c9a5cc h1:mCRnTeVUjcrhlRmO0VK8a6k6Rrf6TF9htwo2pJVSjIU=
|
||||
golang.org/x/exp v0.0.0-20230515195305-f3d0a9c9a5cc/go.mod h1:V1LtkGg67GoY2N1AnLN78QLrzxkLyJw7RJb1gzOOz9w=
|
||||
golang.org/x/exp v0.0.0-20230522175609-2e198f4a06a1 h1:k/i9J1pBpvlfR+9QsetwPyERsqu1GIbi967PQMq3Ivc=
|
||||
golang.org/x/exp v0.0.0-20230522175609-2e198f4a06a1/go.mod h1:V1LtkGg67GoY2N1AnLN78QLrzxkLyJw7RJb1gzOOz9w=
|
||||
golang.org/x/net v0.0.0-20190404232315-eb5bcb51f2a3/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg=
|
||||
golang.org/x/net v0.0.0-20210505024714-0287a6fb4125/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
|
||||
golang.org/x/net v0.0.0-20211112202133-69e39bad7dc2/go.mod h1:9nx3DQGgdP8bBQD5qxJ1jj9UTztislL4KSBs9R2vV5Y=
|
||||
|
||||
12
main.go
12
main.go
@@ -49,6 +49,9 @@ var cyacInfo embed.FS
|
||||
//go:embed backend-python
|
||||
var py embed.FS
|
||||
|
||||
//go:embed backend-rust
|
||||
var webgpu embed.FS
|
||||
|
||||
//go:embed finetune
|
||||
var finetune embed.FS
|
||||
|
||||
@@ -58,14 +61,19 @@ var midi embed.FS
|
||||
//go:embed assets/sound-font
|
||||
var midiAssets embed.FS
|
||||
|
||||
//go:embed components
|
||||
var components embed.FS
|
||||
|
||||
func main() {
|
||||
if buildInfo, ok := debug.ReadBuildInfo(); !ok || strings.Contains(buildInfo.String(), "-ldflags") {
|
||||
backend.CopyEmbed(cyac)
|
||||
backend.CopyEmbed(cyacInfo)
|
||||
backend.CopyEmbed(py)
|
||||
backend.CopyEmbed(webgpu)
|
||||
backend.CopyEmbed(finetune)
|
||||
backend.CopyEmbed(midi)
|
||||
backend.CopyEmbed(midiAssets)
|
||||
backend.CopyEmbed(components)
|
||||
}
|
||||
|
||||
// Create an instance of the app structure
|
||||
@@ -90,6 +98,7 @@ func main() {
|
||||
Height: 680,
|
||||
MinWidth: 375,
|
||||
MinHeight: 640,
|
||||
EnableDefaultContextMenu: true,
|
||||
Windows: &windows.Options{
|
||||
ZoomFactor: zoomFactor,
|
||||
IsZoomControlEnabled: true,
|
||||
@@ -98,7 +107,8 @@ func main() {
|
||||
Assets: assets,
|
||||
Handler: NewFileLoader(),
|
||||
},
|
||||
OnStartup: app.OnStartup,
|
||||
OnStartup: app.OnStartup,
|
||||
OnBeforeClose: app.OnBeforeClose,
|
||||
Bind: []any{
|
||||
app,
|
||||
},
|
||||
|
||||
106
manifest.json
106
manifest.json
@@ -1,5 +1,5 @@
|
||||
{
|
||||
"version": "1.4.2",
|
||||
"version": "1.4.5",
|
||||
"introduction": {
|
||||
"en": "RWKV is an open-source, commercially usable large language model with high flexibility and great potential for development.\n### About This Tool\nThis tool aims to lower the barrier of entry for using large language models, making it accessible to everyone. It provides fully automated dependency and model management. You simply need to click and run, following the instructions, to deploy a local large language model. The tool itself is very compact and only requires a single executable file for one-click deployment.\nAdditionally, this tool offers an interface that is fully compatible with the OpenAI API. This means you can use any ChatGPT client as a client for RWKV, enabling capability expansion beyond just chat functionality.\n### Preset Configuration Rules at the Bottom\nThis tool comes with a series of preset configurations to reduce complexity. The naming rules for each configuration represent the following in order: device - required VRAM/memory - model size - model language.\nFor example, \"GPU-8G-3B-EN\" indicates that this configuration is for a graphics card with 8GB of VRAM, a model size of 3 billion parameters, and it uses an English language model.\nLarger model sizes have higher performance and VRAM requirements. Among configurations with the same model size, those with higher VRAM usage will have faster runtime.\nFor example, if you have 12GB of VRAM but running the \"GPU-12G-7B-EN\" configuration is slow, you can downgrade to \"GPU-8G-3B-EN\" for a significant speed improvement.\n### About RWKV\nRWKV is an RNN with Transformer-level LLM performance, which can also be directly trained like a GPT transformer (parallelizable). And it's 100% attention-free. You only need the hidden state at position t to compute the state at position t+1. You can use the \"GPT\" mode to quickly compute the hidden state for the \"RNN\" mode.<br/>So it's combining the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, \"infinite\" ctx_len, and free sentence embedding (using the final hidden state).",
|
||||
"zh": "RWKV是一个开源且允许商用的大语言模型,灵活性很高且极具发展潜力。\n### 关于本工具\n本工具旨在降低大语言模型的使用门槛,做到人人可用,本工具提供了全自动化的依赖和模型管理,你只需要直接点击运行,跟随引导,即可完成本地大语言模型的部署,工具本身体积极小,只需要一个exe即可完成一键部署。\n此外,本工具提供了与OpenAI API完全兼容的接口,这意味着你可以把任意ChatGPT客户端用作RWKV的客户端,实现能力拓展,而不局限于聊天。\n### 底部的预设配置规则\n本工具内置了一系列预设配置,以降低使用难度,每个配置名的规则,依次代表着:设备-所需显存/内存-模型规模-模型语言。\n例如,GPU-8G-3B-CN,表示该配置用于显卡,需要8G显存,模型规模为30亿参数,使用的是中文模型。\n模型规模越大,性能要求越高,显存要求也越高,而同样模型规模的配置中,显存占用越高的,运行速度越快。\n例如当你有12G显存,但运行GPU-12G-7B-CN配置速度比较慢,可降级成GPU-8G-3B-CN,将会大幅提速。\n### 关于RWKV\nRWKV是具有Transformer级别LLM性能的RNN,也可以像GPT Transformer一样直接进行训练(可并行化)。而且它是100% attention-free的。你只需在位置t处获得隐藏状态即可计算位置t + 1处的状态。你可以使用“GPT”模式快速计算用于“RNN”模式的隐藏状态。\n因此,它将RNN和Transformer的优点结合起来 - 高性能、快速推理、节省显存、快速训练、“无限”上下文长度以及免费的语句嵌入(使用最终隐藏状态)。"
|
||||
@@ -301,6 +301,58 @@
|
||||
"url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-7B-v1-20230626-ctx4096.pth",
|
||||
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-7B-v1-20230626-ctx4096.pth"
|
||||
},
|
||||
{
|
||||
"name": "RWKV-claude-4-World-7B-20230805-ctx65k.pth",
|
||||
"desc": {
|
||||
"en": "Global Languages 7B v1 Ctx65k Claude Like",
|
||||
"zh": "全球语言 7B v1 65k上下文 Claude功能",
|
||||
"ja": "グローバル言語 7B v1 65kコンテキスト Claude機能"
|
||||
},
|
||||
"size": 15035391533,
|
||||
"SHA256": "8cd25f8a1ab58965993cc47b3b2f99585836eed008a2e44526c258189ea751a6",
|
||||
"lastUpdated": "2023-08-05T08:52:20",
|
||||
"url": "https://huggingface.co/xiaol/RWKV-claude-4-World-7B-65k/blob/main/RWKV-claude-4-World-7B-20230805-ctx65k.pth",
|
||||
"downloadUrl": "https://huggingface.co/xiaol/RWKV-claude-4-World-7B-65k/resolve/main/RWKV-claude-4-World-7B-20230805-ctx65k.pth"
|
||||
},
|
||||
{
|
||||
"name": "RWKV-toolformer-translation-japanese-chinese-english-7B-World-20230815-ctx128k.pth",
|
||||
"desc": {
|
||||
"en": "Global Languages 7B v1 Ctx128k Toolformer",
|
||||
"zh": "全球语言 7B v1 128k上下文 Toolformer",
|
||||
"ja": "グローバル言語 7B v1 128kコンテキスト Toolformer"
|
||||
},
|
||||
"size": 15035391533,
|
||||
"SHA256": "648a3b21055bdab77021ce278da80fbada8dcaae0b3d41d1eca9aa194c1fd25f",
|
||||
"lastUpdated": "2023-08-15T07:18:23",
|
||||
"url": "https://huggingface.co/xiaol/RWKV-toolformer-translation-japanese-chinese-english-7B-World-128k/blob/main/RWKV-toolformer-translation-japanese-chinese-english-7B-World-20230815-ctx128k.pth",
|
||||
"downloadUrl": "https://huggingface.co/xiaol/RWKV-toolformer-translation-japanese-chinese-english-7B-World-128k/resolve/main/RWKV-toolformer-translation-japanese-chinese-english-7B-World-20230815-ctx128k.pth"
|
||||
},
|
||||
{
|
||||
"name": "RWKV-code-4-World-7B-20230820-ctx32k.pth",
|
||||
"desc": {
|
||||
"en": "Global Languages 7B v1 Ctx32k Code Ability",
|
||||
"zh": "全球语言 7B v1 32k上下文 代码能力",
|
||||
"ja": "グローバル言語 7B v1 32kコンテキスト コード能力"
|
||||
},
|
||||
"size": 15035391533,
|
||||
"SHA256": "19666620437ae3a5fb06e16a52729d67e449fca155fab3d5861ffe9ecf247404",
|
||||
"lastUpdated": "2023-08-20T05:00:17",
|
||||
"url": "https://huggingface.co/xiaol/RWKV-Code-7B-world-32k/blob/main/RWKV-code-4-World-7B-20230820-ctx32k.pth",
|
||||
"downloadUrl": "https://huggingface.co/xiaol/RWKV-Code-7B-world-32k/resolve/main/RWKV-code-4-World-7B-20230820-ctx32k.pth"
|
||||
},
|
||||
{
|
||||
"name": "wizard-rwkv-4-world-ctx32k.pth",
|
||||
"desc": {
|
||||
"en": "Global Languages 7B v1 Ctx32k Wikipedia",
|
||||
"zh": "全球语言 7B v1 32k上下文 维基百科",
|
||||
"ja": "グローバル言語 7B v1 32kコンテキスト ウィキペディア"
|
||||
},
|
||||
"size": 15035391538,
|
||||
"SHA256": "c5d991f315a1676d4bed93dd91f803b1376096e7a4af5bf72b339d055f53bac7",
|
||||
"lastUpdated": "2023-07-29T03:21:47",
|
||||
"url": "https://huggingface.co/xiaol/wizard-rwkv-world-7B-ctx32k/blob/main/wizard-rwkv-4-world-ctx32k.pth",
|
||||
"downloadUrl": "https://huggingface.co/xiaol/wizard-rwkv-world-7B-ctx32k/resolve/main/wizard-rwkv-4-world-ctx32k.pth"
|
||||
},
|
||||
{
|
||||
"name": "RWKV-4-World-CHNtuned-7B-v1-20230709-ctx4096.pth",
|
||||
"desc": {
|
||||
@@ -327,6 +379,45 @@
|
||||
"url": "https://huggingface.co/xiaol/readflow-rwkv-4-world-ctx32k/blob/main/Readflow-RWKV-4-World-CHNtuned-7B-v1-20230709-ctx32k.pth",
|
||||
"downloadUrl": "https://huggingface.co/xiaol/readflow-rwkv-4-world-ctx32k/resolve/main/Readflow-RWKV-4-World-CHNtuned-7B-v1-20230709-ctx32k.pth"
|
||||
},
|
||||
{
|
||||
"name": "novel-RWKV-4-World-CHNtuned-7B-v1-20230709-ctx32k.pth",
|
||||
"desc": {
|
||||
"en": "Global Languages 7B v1 Enhanced Chinese Ctx32k Novel Outline Ability",
|
||||
"zh": "全球语言 7B v1 中文增强 32k上下文 小说大纲扩写",
|
||||
"ja": "グローバル言語 7B v1 中国語強化 32kコンテキスト 小説のあらすじを書く"
|
||||
},
|
||||
"size": 15035391538,
|
||||
"SHA256": "0fe2415ce61af52a8c38c071b475c01b4c9f8a4f2b4aaed6181f0334f3faf7f4",
|
||||
"lastUpdated": "2023-07-28T13:30:59",
|
||||
"url": "https://huggingface.co/xiaol/ruotangwx-rwkv-7b-novel-32k/blob/main/novel-RWKV-4-World-CHNtuned-7B-v1-20230709-ctx32k.pth",
|
||||
"downloadUrl": "https://huggingface.co/xiaol/ruotangwx-rwkv-7b-novel-32k/resolve/main/novel-RWKV-4-World-CHNtuned-7B-v1-20230709-ctx32k.pth"
|
||||
},
|
||||
{
|
||||
"name": "chatgal-RWKV-4-World-CHNtuned-7B-v1-20230709-ctx32k-1000.pth",
|
||||
"desc": {
|
||||
"en": "Global Languages 7B v1 Enhanced Chinese Ctx32k GalGame 1000",
|
||||
"zh": "全球语言 7B v1 中文增强 32k上下文 GalGame 1000",
|
||||
"ja": "グローバル言語 7B v1 中国語強化 32kコンテキスト GalGame 1000"
|
||||
},
|
||||
"size": 15035391543,
|
||||
"SHA256": "aaed29cfd1bddee47c48f564aa800eb001f62fd03290d772647d5678e40d66e8",
|
||||
"lastUpdated": "2023-07-21T08:59:18",
|
||||
"url": "https://huggingface.co/xiaol/chatgal-rwkv-7b-world-32k/blob/main/chatgal-RWKV-4-World-CHNtuned-7B-v1-20230709-ctx32k-1000.pth",
|
||||
"downloadUrl": "https://huggingface.co/xiaol/chatgal-rwkv-7b-world-32k/resolve/main/chatgal-RWKV-4-World-CHNtuned-7B-v1-20230709-ctx32k-1000.pth"
|
||||
},
|
||||
{
|
||||
"name": "chatgal-RWKV-4-World-CHNtuned-7B-v1-20230709-ctx32k-500.pth",
|
||||
"desc": {
|
||||
"en": "Global Languages 7B v1 Enhanced Chinese Ctx32k GalGame 500",
|
||||
"zh": "全球语言 7B v1 中文增强 32k上下文 GalGame 500",
|
||||
"ja": "グローバル言語 7B v1 中国語強化 32kコンテキスト GalGame 500"
|
||||
},
|
||||
"size": 15035391538,
|
||||
"SHA256": "b5d347d5dedb4f398ec31489ab87b75b1dee772ae7d0a34c26635cf5d95c8794",
|
||||
"lastUpdated": "2023-07-21T07:31:05",
|
||||
"url": "https://huggingface.co/xiaol/chatgal-rwkv-7b-world-32k/blob/main/chatgal-RWKV-4-World-CHNtuned-7B-v1-20230709-ctx32k-500.pth",
|
||||
"downloadUrl": "https://huggingface.co/xiaol/chatgal-rwkv-7b-world-32k/resolve/main/chatgal-RWKV-4-World-CHNtuned-7B-v1-20230709-ctx32k-500.pth"
|
||||
},
|
||||
{
|
||||
"name": "RWKV-4-World-JPNtuned-7B-v1-20230718-ctx4096.pth",
|
||||
"desc": {
|
||||
@@ -340,6 +431,19 @@
|
||||
"url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-JPNtuned-7B-v1-20230718-ctx4096.pth",
|
||||
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-JPNtuned-7B-v1-20230718-ctx4096.pth"
|
||||
},
|
||||
{
|
||||
"name": "RWKV-novel-4-World-7B-20230810-ctx128k.pth",
|
||||
"desc": {
|
||||
"en": "Global Languages Writer 7B v1 Ctx128k",
|
||||
"zh": "全球语言写作 7B v1 128k上下文",
|
||||
"ja": "グローバル言語ライター 7B v1 128kコンテキスト"
|
||||
},
|
||||
"size": 15035391533,
|
||||
"SHA256": "5e429c49e4cab2f29a93f87a80635422c8710d70e5b1d962c078e47d957389c8",
|
||||
"lastUpdated": "2023-08-10T06:30:32",
|
||||
"url": "https://huggingface.co/xiaol/rwkv-7B-world-novel-128k/blob/main/RWKV-novel-4-World-7B-20230810-ctx128k.pth",
|
||||
"downloadUrl": "https://huggingface.co/xiaol/rwkv-7B-world-novel-128k/resolve/main/RWKV-novel-4-World-7B-20230810-ctx128k.pth"
|
||||
},
|
||||
{
|
||||
"name": "RWKV-4-Novel-7B-v1-ChnEng-ChnPro-20230410-ctx4096.pth",
|
||||
"desc": {
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
- ^backend-python/wkv_cuda_utils/
|
||||
- ^backend-python/get-pip\.py
|
||||
- ^backend-python/convert_model\.py
|
||||
- ^backend-python/convert_safetensors\.py
|
||||
- ^backend-python/utils/midi\.py
|
||||
- ^build/
|
||||
- ^finetune/lora/
|
||||
|
||||
Reference in New Issue
Block a user