Compare commits

...

111 Commits

Author SHA1 Message Date
josc146
d7d4f87620 release v1.4.3 2023-07-31 22:50:29 +08:00
josc146
b3e35a4cdd allow custom user_name and assistant_name (/chat/completions API) 2023-07-31 22:48:54 +08:00
josc146
8764c37b03 RWKVType 2023-07-31 22:46:13 +08:00
josc146
d12a173f39 global penalty 2023-07-31 22:02:28 +08:00
josc146
64fa939c19 japanese UI chore 2023-07-29 21:44:33 +08:00
josc146
9c8e7b2f08 japanese UI 2023-07-29 21:19:45 +08:00
josc146
abfd668523 update defaultConfigs 2023-07-29 19:41:54 +08:00
github-actions[bot]
ebacf383f5 release v1.4.2 2023-07-29 11:34:18 +00:00
josc146
eb25dc6bcb release v1.4.2 2023-07-29 19:33:52 +08:00
josc146
aecacde819 remove response field of completions api 2023-07-29 19:20:43 +08:00
josc146
3ef22239eb improve default ChatCompletion stop 2023-07-29 19:19:38 +08:00
josc146
719090cc8c improve python backend startup speed 2023-07-29 19:18:01 +08:00
josc146
dbb8374d89 update defaultConfigs 2023-07-29 19:16:44 +08:00
github-actions[bot]
4d875a8c00 release v1.4.1 2023-07-28 14:16:37 +00:00
josc146
30b6d66a2d release v1.4.1 2023-07-28 22:14:53 +08:00
josc146
9d89b6f4db fix params 2023-07-28 22:13:19 +08:00
josc146
d2928e54f7 fix failed to build cyac 2023-07-28 21:40:17 +08:00
josc146
49ba5c97f7 update readme 2023-07-28 13:13:14 +08:00
github-actions[bot]
4054fac359 release v1.4.0 2023-07-28 05:06:42 +00:00
josc146
dfae1d9645 release v1.4.0 2023-07-28 13:05:55 +08:00
josc146
0f16a0dd1b remove LoraFinetunePrecision fp32 2023-07-28 12:53:41 +08:00
josc146
cb05a8a2ae update manifest 2023-07-28 12:50:39 +08:00
josc146
a51385173c add CPU-120M-Music config 2023-07-28 12:45:31 +08:00
josc146
4e18222a35 improve RunButton prompt 2023-07-28 12:45:13 +08:00
josc146
daabcf58a0 add Composition Page (RWKV-Music) 2023-07-28 12:30:05 +08:00
josc146
d0fd480bd6 chore 2023-07-26 22:24:26 +08:00
josc146
1df345b5eb improve embeddings API results 2023-07-25 20:30:43 +08:00
josc146
77868c798b chore 2023-07-25 16:37:06 +08:00
josc146
f56748a941 improve python backend startup speed 2023-07-25 16:14:29 +08:00
josc146
29c5b1d804 add midi api 2023-07-25 16:11:17 +08:00
josc146
34095a6c36 support for stop array 2023-07-25 16:10:22 +08:00
josc146
05b9b42b56 add support for MIDI RWKV 2023-07-25 16:09:31 +08:00
josc146
211ae342af improve sse fetch 2023-07-25 15:59:37 +08:00
josc146
5ae683e915 update presets 2023-07-25 15:53:25 +08:00
josc146
dc59fb39c7 update readme 2023-07-18 14:21:09 +08:00
josc146
49960774ee update readme 2023-07-18 14:16:50 +08:00
github-actions[bot]
b718452618 release v1.3.9 2023-07-17 05:05:17 +00:00
josc146
15ae312b37 release v1.3.9 2023-07-17 13:03:32 +08:00
josc146
6938b5b20e change chinese translation of completion 2023-07-17 13:03:11 +08:00
josc146
9b3b06ab04 fix input with array type (#96, #107) 2023-07-17 12:59:45 +08:00
josc146
e2a7c93753 fix always show Convert Failed when converting model 2023-07-16 16:54:18 +08:00
github-actions[bot]
34349aee0b release v1.3.8 2023-07-15 14:29:14 +00:00
josc146
8e79370e95 release v1.3.8 2023-07-15 22:28:49 +08:00
josc146
652c35322b save conversation as txt (originally in md) 2023-07-15 22:12:59 +08:00
josc146
e2fc57ac24 training: fix data EOL format 2023-07-11 12:19:39 +08:00
josc146
994fc7c828 fix cross-device state cache exception 2023-07-11 11:20:12 +08:00
josc146
b9a960d984 update readme 2023-07-10 23:06:19 +08:00
josc146
3baf260f4d update readme 2023-07-10 22:59:22 +08:00
github-actions[bot]
d037ded146 release v1.3.7 2023-07-10 13:50:05 +00:00
josc146
622287f3da release v1.3.7 2023-07-10 21:49:33 +08:00
josc146
5d12bf74f6 update presets 2023-07-10 21:43:58 +08:00
josc146
c88f9321f5 update manifest 2023-07-10 20:49:31 +08:00
josc146
f9f1d5c9fc improve /completions api compatibility 2023-07-10 20:45:08 +08:00
josc146
0edec68376 improve training data path compatibility 2023-07-10 20:44:09 +08:00
josc146
ee63dc25f4 update readme 2023-07-09 13:56:36 +08:00
josc146
fee8fe73f2 fix loss parser 2023-07-09 13:33:06 +08:00
github-actions[bot]
1689f9e7e7 release v1.3.6 2023-07-09 04:41:11 +00:00
josc146
a1ed0cb2e9 release v1.3.6 2023-07-09 12:40:42 +08:00
josc146
5ee5fa7e6e fix load_state_dict crash 2023-07-09 12:33:29 +08:00
josc146
d8c70453ec format 2023-07-09 12:32:50 +08:00
josc146
e930eb5967 extra vc check 2023-07-09 12:18:51 +08:00
josc146
aec6ad636a chore 2023-07-09 12:10:14 +08:00
josc146
750c91bd3e update logo 2023-07-09 11:59:23 +08:00
josc146
fcc3886db1 improve error messages for training 2023-07-09 11:39:44 +08:00
josc146
22afc98be5 fix loss parser 2023-07-09 11:32:05 +08:00
josc146
5b1a9448e6 fix jsonl data when using directory as training data 2023-07-09 11:31:07 +08:00
github-actions[bot]
07d89e3eeb release v1.3.5 2023-07-07 13:58:33 +00:00
josc146
96e97d9c1e release v1.3.5 2023-07-07 21:58:08 +08:00
josc146
bcb125e168 support using directory as training data 2023-07-07 21:57:01 +08:00
josc146
6fbb86667c improve python script error messages 2023-07-07 20:16:35 +08:00
josc146
2d545604f4 refresh local models in real-time (#98) 2023-07-07 20:14:55 +08:00
josc146
7210a7481e improve finetune guide 2023-07-07 19:10:31 +08:00
josc146
55210c89e2 improve wsl dependencies installation 2023-07-07 18:57:51 +08:00
josc146
c725d11dd9 fix loss parser 2023-07-07 13:56:08 +08:00
josc146
ba2a6bd06c update Related Repositories 2023-07-07 13:54:57 +08:00
josc146
57b80c6ed0 fix build for macos and linux 2023-07-07 13:54:07 +08:00
josc146
115c59d5e1 chore 2023-07-07 13:53:39 +08:00
github-actions[bot]
543ff468b7 release v1.3.4 2023-07-03 14:32:06 +00:00
josc146
96ae47989e release v1.3.4 2023-07-03 22:31:37 +08:00
josc146
368932a610 improve finetune compatibility 2023-07-03 22:28:01 +08:00
josc146
f2cd531fcb fix build for macos and linux 2023-07-03 22:22:55 +08:00
josc146
511652b71c improve finetune compatibility 2023-07-03 22:19:20 +08:00
github-actions[bot]
525fb132d6 release v1.3.3 2023-07-03 13:40:51 +00:00
josc146
5acb1fd958 release v1.3.3 2023-07-03 21:40:22 +08:00
josc146
76761ee453 improve lora finetune process (need to be refactored) 2023-07-03 21:40:16 +08:00
github-actions[bot]
134b2884e6 release v1.3.2 2023-07-03 09:43:01 +00:00
josc146
261e7c8916 release v1.3.2 2023-07-03 17:42:28 +08:00
josc146
987854fe49 lora finetune (need to be refactored) 2023-07-03 17:41:47 +08:00
josc146
c54d10795f chore 2023-07-03 16:42:11 +08:00
github-actions[bot]
b7d9ab0845 release v1.3.1 2023-07-01 11:35:45 +00:00
josc146
176800444a release v1.3.1 2023-07-01 19:35:20 +08:00
josc146
00c13cfc3f improve compatibility for linux 2023-07-01 19:32:58 +08:00
Ikko Eltociear Ashimine
620e0228ed Add Japanese README (#100)
* Add Japanese README

* minor fix
2023-06-30 12:37:45 +08:00
josc146
87ca694b0b chore 2023-06-29 20:14:52 +08:00
josc146
417389c5f6 improve for python3.8 3.9 2023-06-29 20:12:11 +08:00
github-actions[bot]
fa9f62b42c release v1.3.0 2023-06-28 13:26:51 +00:00
josc146
2c4e9f69eb release v1.3.0 2023-06-28 21:26:23 +08:00
josc146
119204368d update manifest 2023-06-28 20:57:09 +08:00
josc146
87a86042d2 chore 2023-06-28 20:49:41 +08:00
josc146
32c386799d Change chat saving format 2023-06-28 20:48:22 +08:00
josc146
b56a55e81d Completion Regenerate Button 2023-06-28 20:46:21 +08:00
josc146
2fe7a23049 chore 2023-06-28 19:40:55 +08:00
josc146
9ed3547738 rwkv pip 0.8.0 2023-06-28 19:36:15 +08:00
github-actions[bot]
a0522594da release v1.2.9 2023-06-24 16:12:53 +00:00
josc146
1cac147df4 release v1.2.9 2023-06-25 00:12:20 +08:00
josc146
db67f30082 feat: chat presets (experimental) 2023-06-25 00:07:14 +08:00
josc146
08cf09416a chore 2023-06-24 23:57:49 +08:00
josc146
7f2f4f15c1 improve error messages 2023-06-23 16:32:05 +08:00
josc146
97f6af595e display models that have not been fully downloaded in Downloads page, even if the program is restarted 2023-06-23 16:03:57 +08:00
josc146
447f4572b1 improve error messages 2023-06-23 13:55:45 +08:00
github-actions[bot]
5c9b4a4c05 release v1.2.8 2023-06-21 15:12:45 +00:00
92 changed files with 31494 additions and 1144 deletions

3
.gitattributes vendored
View File

@@ -2,5 +2,8 @@ backend-python/rwkv_pip/** linguist-vendored
backend-python/wkv_cuda_utils/** linguist-vendored
backend-python/get-pip.py linguist-vendored
backend-python/convert_model.py linguist-vendored
backend-python/utils/midi.py linguist-vendored
build/** linguist-vendored
finetune/lora/** linguist-vendored
finetune/json2binidx_tool/** linguist-vendored
frontend/wailsjs/** linguist-generated

View File

@@ -11,7 +11,7 @@ env:
jobs:
create-draft:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
steps:
- run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
- uses: actions/checkout@v3
@@ -35,7 +35,7 @@ jobs:
gh release create ${{github.ref_name}} -d -F CURRENT_CHANGE.md -t ${{github.ref_name}}
windows:
runs-on: windows-latest
runs-on: windows-2022
needs: create-draft
steps:
- uses: actions/checkout@v3
@@ -56,10 +56,10 @@ jobs:
Expand-Archive ./python-3.10.11-embed-amd64.zip -DestinationPath ./py310
$content=Get-Content "./py310/python310._pth"; $content | ForEach-Object {if ($_.ReadCount -eq 3) {"Lib\\site-packages"} else {$_}} | Set-Content ./py310/python310._pth
./py310/python ./backend-python/get-pip.py
./py310/python -m pip install Cython
./py310/python -m pip install Cython==0.29.36
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../include" -Destination "py310/include" -Recurse
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../libs" -Destination "py310/libs" -Recurse
./py310/python -m pip install cyac
./py310/python -m pip install cyac==1.7
go install github.com/wailsapp/wails/v2/cmd/wails@latest
make
Rename-Item -Path "build/bin/RWKV-Runner.exe" -NewName "RWKV-Runner_windows_x64.exe"
@@ -67,7 +67,7 @@ jobs:
- run: gh release upload ${{github.ref_name}} build/bin/RWKV-Runner_windows_x64.exe
linux:
runs-on: ubuntu-latest
runs-on: ubuntu-20.04
needs: create-draft
steps:
- uses: actions/checkout@v3
@@ -81,6 +81,11 @@ jobs:
sudo apt-get install upx
sudo apt-get install build-essential libgtk-3-dev libwebkit2gtk-4.0-dev
go install github.com/wailsapp/wails/v2/cmd/wails@latest
rm -rf ./backend-python/wkv_cuda_utils
rm ./backend-python/get-pip.py
sed -i '1,2d' ./backend-golang/wsl_not_windows.go
rm ./backend-golang/wsl.go
mv ./backend-golang/wsl_not_windows.go ./backend-golang/wsl.go
make
mv build/bin/RWKV-Runner build/bin/RWKV-Runner_linux_x64
@@ -98,6 +103,11 @@ jobs:
go-version: '1.20.5'
- run: |
go install github.com/wailsapp/wails/v2/cmd/wails@latest
rm -rf ./backend-python/wkv_cuda_utils
rm ./backend-python/get-pip.py
sed -i '' '1,2d' ./backend-golang/wsl_not_windows.go
rm ./backend-golang/wsl.go
mv ./backend-golang/wsl_not_windows.go ./backend-golang/wsl.go
make
cp build/darwin/Readme_Install.txt build/bin/Readme_Install.txt
cp build/bin/RWKV-Runner.app/Contents/MacOS/RWKV-Runner build/bin/RWKV-Runner_darwin_universal
@@ -106,7 +116,7 @@ jobs:
- run: gh release upload ${{github.ref_name}} build/bin/RWKV-Runner_macos_universal.zip build/bin/RWKV-Runner_darwin_universal
publish-release:
runs-on: ubuntu-latest
runs-on: ubuntu-22.04
needs: [ windows, linux, macos ]
steps:
- uses: actions/checkout@v3

6
.gitignore vendored
View File

@@ -8,6 +8,7 @@ __pycache__
*.bin
/config.json
/cache.json
/presets.json
/frontend/stats.html
/frontend/package.json.md5
/py310
@@ -19,4 +20,7 @@ __pycache__
*.old
.DS_Store
*.log.*
*.log
*.log
train_log.txt
finetune/json2binidx_tool/data
/wsl.state

View File

@@ -1,7 +1,9 @@
## Changes
- exact avoidOverflow
- adjust MoreUtilsButton
- japanese UI
- global penalty
- allow custom user_name and assistant_name (`/chat/completions` API)
- update defaultConfigs
## Install

View File

@@ -13,7 +13,7 @@ compatible with the OpenAI API, which means that every ChatGPT client is an RWKV
[![license][license-image]][license-url]
[![release][release-image]][release-url]
English | [简体中文](README_ZH.md)
English | [简体中文](README_ZH.md) | [日本語](README_JA.md)
### Install
@@ -49,7 +49,7 @@ English | [简体中文](README_ZH.md)
#### Default configs has enabled custom CUDA kernel acceleration, which is much faster and consumes much less VRAM. If you encounter possible compatibility issues, go to the Configs page and turn off `Use Custom CUDA kernel to Accelerate`.
#### If Windows Defender claims this is a virus, you can try downloading [v1.0.8](https://github.com/josStorer/RWKV-Runner/releases/tag/v1.0.8)/[v1.0.9](https://github.com/josStorer/RWKV-Runner/releases/tag/v1.0.9) and letting it update automatically to the latest version, or add it to the trusted list.
#### If Windows Defender claims this is a virus, you can try downloading [v1.3.7_win.zip](https://github.com/josStorer/RWKV-Runner/releases/download/v1.3.7/RWKV-Runner_win.zip) and letting it update automatically to the latest version, or add it to the trusted list (`Windows Security` -> `Virus & threat protection` -> `Manage settings` -> `Exclusions` -> `Add or remove exclusions` -> `Add an exclusion` -> `Folder` -> `RWKV-Runner`).
#### For different tasks, adjusting API parameters can achieve better results. For example, for translation tasks, you can try setting Temperature to 1 and Top_P to 0.3.
@@ -64,6 +64,8 @@ English | [简体中文](README_ZH.md)
- Easy-to-understand and operate parameter configuration
- Built-in model conversion tool
- Built-in download management and remote model inspection
- Built-in one-click LoRA Finetune
- Can also be used as an OpenAI ChatGPT and GPT-Playground client
- Multilingual localization
- Theme switching
- Automatic updates
@@ -89,6 +91,9 @@ body.json:
## Embeddings API Example
Note: v1.4.0 has improved the quality of embeddings API. The generated results are not compatible
with previous versions. If you are using embeddings API to generate knowledge bases or similar, please regenerate.
If you are using langchain, just use `OpenAIEmbeddings(openai_api_base="http://127.0.0.1:8000", openai_api_key="sk-")`
```python
@@ -126,46 +131,49 @@ for i in np.argsort(embeddings_cos_sim)[::-1]:
print(f"{embeddings_cos_sim[i]:.10f} - {values[i]}")
```
## Todo
- [ ] Model training functionality
- [x] CUDA operator int8 acceleration
- [x] macOS support
- [x] Linux support
- [ ] Local State Cache DB
## Related Repositories:
- RWKV-4-World: https://huggingface.co/BlinkDL/rwkv-4-world/tree/main
- RWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main
- ChatRWKV: https://github.com/BlinkDL/ChatRWKV
- RWKV-LM: https://github.com/BlinkDL/RWKV-LM
- RWKV-LM-LoRA: https://github.com/Blealtan/RWKV-LM-LoRA
- MIDI-LLM-tokenizer: https://github.com/briansemrau/MIDI-LLM-tokenizer
## Preview
### Homepage
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/60efbb65-29e3-4346-a597-5bdcd099251c)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/d7f24d80-f382-428d-8b28-edf87e1549e2)
### Chat
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/6cde9c45-51bb-4dee-b1fe-746862448520)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/80009872-528f-4932-aeb2-f724fa892e7c)
### Completion
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/52f47f92-d21d-4cd7-b04e-d6f9af937a97)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/bf49de8e-3b89-4543-b1ef-7cd4b19a1836)
### Composition
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/e8ad908d-3fd2-4e92-bcdb-96815cb836ee)
### Configuration
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/93270a68-9d6d-4247-b6a3-e543c65a876b)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/48befdc6-e03c-4851-9bee-22f77ee2640e)
### Model Management
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/6f96fdd3-fdf5-4b78-af80-2afbd1ad173b)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/367fe4f8-cc12-475f-9371-3cf62cdbf293)
### Download Management
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/6982e7ee-bace-4a88-bb47-92379185bf9d)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/c8153cf9-c8cb-4618-8268-60c82a5be539)
### LoRA Finetune
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/4715045a-683e-4d2a-9b0e-090c7a5df63f)
### Settings
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/b3b2ab46-344c-4f04-b066-1503f776eeb9)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/1067e635-8c07-4217-86a8-e48a5fcbb075)

180
README_JA.md Normal file
View File

@@ -0,0 +1,180 @@
<p align="center">
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/d24834b0-265d-45f5-93c0-fac1e19562af">
</p>
<h1 align="center">RWKV Runner</h1>
<div align="center">
このプロジェクトは、すべてを自動化することで、大規模な言語モデルを使用する際の障壁をなくすことを目的としています。必要なのは、
わずか数メガバイトの軽量な実行プログラムだけです。さらに、このプロジェクトは OpenAI API と互換性のあるインターフェイスを提供しており、
すべての ChatGPT クライアントは RWKV クライアントであることを意味します。
[![license][license-image]][license-url]
[![release][release-image]][release-url]
[English](README.md) | [简体中文](README_ZH.md) | 日本語
### インストール
[![Windows][Windows-image]][Windows-url]
[![MacOS][MacOS-image]][MacOS-url]
[![Linux][Linux-image]][Linux-url]
[FAQs](https://github.com/josStorer/RWKV-Runner/wiki/FAQs) | [プレビュー](#Preview) | [ダウンロード][download-url] | [サーバーデプロイ例](https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples)
[license-image]: http://img.shields.io/badge/license-MIT-blue.svg
[license-url]: https://github.com/josStorer/RWKV-Runner/blob/master/LICENSE
[release-image]: https://img.shields.io/github/release/josStorer/RWKV-Runner.svg
[release-url]: https://github.com/josStorer/RWKV-Runner/releases/latest
[download-url]: https://github.com/josStorer/RWKV-Runner/releases
[Windows-image]: https://img.shields.io/badge/-Windows-blue?logo=windows
[Windows-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/windows/Readme_Install.txt
[MacOS-image]: https://img.shields.io/badge/-MacOS-black?logo=apple
[MacOS-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/darwin/Readme_Install.txt
[Linux-image]: https://img.shields.io/badge/-Linux-black?logo=linux
[Linux-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/linux/Readme_Install.txt
</div>
#### デフォルトの設定はカスタム CUDA カーネルアクセラレーションを有効にしています。互換性の問題が発生する可能性がある場合は、コンフィグページに移動し、`Use Custom CUDA kernel to Accelerate` をオフにしてください。
#### Windows Defender がこれをウイルスだと主張する場合は、[v1.3.7_win.zip](https://github.com/josStorer/RWKV-Runner/releases/download/v1.3.7/RWKV-Runner_win.zip) をダウンロードして最新版に自動更新させるか、信頼済みリストに追加してみてください (`Windows Security` -> `Virus & threat protection` -> `Manage settings` -> `Exclusions` -> `Add or remove exclusions` -> `Add an exclusion` -> `Folder` -> `RWKV-Runner`)。
#### 異なるタスクについては、API パラメータを調整することで、より良い結果を得ることができます。例えば、翻訳タスクの場合、Temperature を 1 に、Top_P を 0.3 に設定してみてください。
## 特徴
- RWKV モデル管理とワンクリック起動
- OpenAI API と完全に互換性があり、すべての ChatGPT クライアントを RWKV クライアントにします。モデル起動後、
http://127.0.0.1:8000/docs を開いて詳細をご覧ください。
- 依存関係の自動インストールにより、軽量な実行プログラムのみを必要とします
- 2G から 32G の VRAM のコンフィグが含まれており、ほとんどのコンピュータで動作します
- ユーザーフレンドリーなチャットと完成インタラクションインターフェースを搭載
- 分かりやすく操作しやすいパラメータ設定
- 内蔵モデル変換ツール
- ダウンロード管理とリモートモデル検査機能内蔵
- 内蔵のLoRA微調整機能を搭載しています
- このプログラムは、OpenAI ChatGPTとGPT Playgroundのクライアントとしても使用できます
- 多言語ローカライズ
- テーマ切り替え
- 自動アップデート
## API 同時実行ストレステスト
```bash
ab -p body.json -T application/json -c 20 -n 100 -l http://127.0.0.1:8000/chat/completions
```
body.json:
```json
{
"messages": [
{
"role": "user",
"content": "Hello"
}
]
}
```
## 埋め込み API の例
Note: v1.4.0 has improved the quality of embeddings API. The generated results are not compatible
with previous versions. If you are using embeddings API to generate knowledge bases or similar, please regenerate.
LangChain を使用している場合は、`OpenAIEmbeddings(openai_api_base="http://127.0.0.1:8000", openai_api_key="sk-")`
を使用してください
```python
import numpy as np
import requests
def cosine_similarity(a, b):
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
values = [
"I am a girl",
"我是个女孩",
"私は女の子です",
"广东人爱吃福建人",
"我是个人类",
"I am a human",
"that dog is so cute",
"私はねこむすめです、にゃん♪",
"宇宙级特大事件!号外号外!"
]
embeddings = []
for v in values:
r = requests.post("http://127.0.0.1:8000/embeddings", json={"input": v})
embedding = r.json()["data"][0]["embedding"]
embeddings.append(embedding)
compared_embedding = embeddings[0]
embeddings_cos_sim = [cosine_similarity(compared_embedding, e) for e in embeddings]
for i in np.argsort(embeddings_cos_sim)[::-1]:
print(f"{embeddings_cos_sim[i]:.10f} - {values[i]}")
```
## 関連リポジトリ:
- RWKV-4-World: https://huggingface.co/BlinkDL/rwkv-4-world/tree/main
- RWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main
- ChatRWKV: https://github.com/BlinkDL/ChatRWKV
- RWKV-LM: https://github.com/BlinkDL/RWKV-LM
- RWKV-LM-LoRA: https://github.com/Blealtan/RWKV-LM-LoRA
- MIDI-LLM-tokenizer: https://github.com/briansemrau/MIDI-LLM-tokenizer
## プレビュー
### ホームページ
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/d7f24d80-f382-428d-8b28-edf87e1549e2)
### チャット
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/80009872-528f-4932-aeb2-f724fa892e7c)
### 補完
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/bf49de8e-3b89-4543-b1ef-7cd4b19a1836)
### 作曲
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/e8ad908d-3fd2-4e92-bcdb-96815cb836ee)
### コンフィグ
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/48befdc6-e03c-4851-9bee-22f77ee2640e)
### モデル管理
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/367fe4f8-cc12-475f-9371-3cf62cdbf293)
### ダウンロード管理
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/c8153cf9-c8cb-4618-8268-60c82a5be539)
### LoRA Finetune
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/4715045a-683e-4d2a-9b0e-090c7a5df63f)
### 設定
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/1067e635-8c07-4217-86a8-e48a5fcbb075)

View File

@@ -12,7 +12,7 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
[![license][license-image]][license-url]
[![release][release-image]][release-url]
[English](README.md) | 简体中文
[English](README.md) | 简体中文 | [日本語](README_JA.md)
### 安装
@@ -20,7 +20,7 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
[![MacOS][MacOS-image]][MacOS-url]
[![Linux][Linux-image]][Linux-url]
[视频演示](https://www.bilibili.com/video/BV1hM4y1v76R) | [疑难解答](https://www.bilibili.com/read/cv23921171) | [预览](#Preview) | [下载][download-url] | [懒人包](https://pan.baidu.com/s/1wchIUHgne3gncIiLIeKBEQ?pwd=1111) | [服务器部署示例](https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples)
[视频演示](https://www.bilibili.com/video/BV1hM4y1v76R) | [疑难解答](https://www.bilibili.com/read/cv23921171) | [预览](#Preview) | [下载][download-url] | [懒人包](https://pan.baidu.com/s/1zdzZ_a0uM3gDqi6pXIZVAA?pwd=1111) | [服务器部署示例](https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples)
[license-image]: http://img.shields.io/badge/license-MIT-blue.svg
@@ -46,11 +46,9 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
</div>
#### 注意 目前RWKV中文模型质量一般推荐使用英文模型或World(全球语言)体验实际RWKV能力
#### 预设配置已经开启自定义CUDA算子加速速度更快且显存消耗更少。如果你遇到可能的兼容性问题前往配置页面关闭`使用自定义CUDA算子加速`
#### 如果Windows Defender说这是一个病毒你可以尝试下载[v1.0.8](https://github.com/josStorer/RWKV-Runner/releases/tag/v1.0.8)/[v1.0.9](https://github.com/josStorer/RWKV-Runner/releases/tag/v1.0.9)然后让其自动更新到最新版,或添加信任
#### 如果Windows Defender说这是一个病毒你可以尝试下载[v1.3.7_win.zip](https://github.com/josStorer/RWKV-Runner/releases/download/v1.3.7/RWKV-Runner_win.zip),然后让其自动更新到最新版,或添加信任 (`Windows Security` -> `Virus & threat protection` -> `Manage settings` -> `Exclusions` -> `Add or remove exclusions` -> `Add an exclusion` -> `Folder` -> `RWKV-Runner`)
#### 对于不同的任务调整API参数会获得更好的效果例如对于翻译任务你可以尝试设置Temperature为1Top_P为0.3
@@ -60,10 +58,12 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
- 与OpenAI API完全兼容一切ChatGPT客户端都是RWKV客户端。启动模型后打开 http://127.0.0.1:8000/docs 查看详细内容
- 全自动依赖安装,你只需要一个轻巧的可执行程序
- 预设了2G至32G显存的配置几乎在各种电脑上工作良好
- 自带用户友好的聊天和补全交互页面
- 自带用户友好的聊天和续写交互页面
- 易于理解和操作的参数配置
- 内置模型转换工具
- 内置下载管理和远程模型检视
- 内置一键LoRA微调
- 也可用作 OpenAI ChatGPT 和 GPT Playground 客户端
- 多语言本地化
- 主题切换
- 自动更新
@@ -89,6 +89,8 @@ body.json:
## Embeddings API 示例
注意: 1.4.0 版本对embeddings API质量进行了改善生成结果与之前的版本不兼容如果你正在使用此API生成知识库等请重新生成
如果你在用langchain, 直接使用 `OpenAIEmbeddings(openai_api_base="http://127.0.0.1:8000", openai_api_key="sk-")`
```python
@@ -126,46 +128,49 @@ for i in np.argsort(embeddings_cos_sim)[::-1]:
print(f"{embeddings_cos_sim[i]:.10f} - {values[i]}")
```
## Todo
- [ ] 模型训练功能
- [x] CUDA算子int8提速
- [x] macOS支持
- [x] linux支持
- [ ] 本地状态缓存数据库
## 相关仓库:
- RWKV-4-World: https://huggingface.co/BlinkDL/rwkv-4-world/tree/main
- RWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main
- ChatRWKV: https://github.com/BlinkDL/ChatRWKV
- RWKV-LM: https://github.com/BlinkDL/RWKV-LM
- RWKV-LM-LoRA: https://github.com/Blealtan/RWKV-LM-LoRA
- MIDI-LLM-tokenizer: https://github.com/briansemrau/MIDI-LLM-tokenizer
## Preview
### 主页
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/9d25380a-a17b-443f-b823-86c754ebebf0)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/ff2b1eef-dd3b-4cbf-98fb-b5a1ecee43e1)
### 聊天
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/0e66d5fa-f34a-409f-9cd4-d880815733f3)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/9570e73b-dca2-4316-9e92-09961f3c48c4)
### 补全
### 续写
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/d4178ee9-a188-4878-9777-25c916872c29)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/69f9ba7a-2fe8-4a5e-94cb-aa655aa409e2)
### 作曲
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/95b34893-80c2-4706-87f9-bc141032ed4b)
### 配置
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/ad9921fc-7248-40a3-9e18-03445b86e4bf)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/59460f69-b172-4c7a-86cb-573262543076)
### 模型管理
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/7c36f15f-3e77-49cd-a16d-99a29f870bdf)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/551121ee-1bfe-421b-a9d1-24125126ab4b)
### 下载管理
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/32fde30b-11dd-43b9-9667-ad6975be2106)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/cc076038-2a91-4d36-bd39-266020e8ea87)
### LoRA微调
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/31939b8f-9546-4f44-b434-295b492ec625)
### 设置
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/e8a0f746-9da7-48e3-b3fc-e1453ac50de2)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/9652d7cc-ac33-4587-a8fb-03e5a6f5ea77)

Binary file not shown.

View File

@@ -0,0 +1,116 @@
# https://github.com/magenta/magenta-js/issues/164
import json
import os
import urllib.request
def get_pitches_array(min_pitch, max_pitch):
return list(range(min_pitch, max_pitch + 1))
base_url = 'https://storage.googleapis.com/magentadata/js/soundfonts'
soundfont_path = 'sgm_plus'
soundfont_json_url = f"{base_url}/{soundfont_path}/soundfont.json"
# Download soundfont.json
soundfont_json = ""
if not os.path.exists('soundfont.json'):
try:
with urllib.request.urlopen(soundfont_json_url) as response:
soundfont_json = response.read()
# Save soundfont.json
with open('soundfont.json', 'wb') as file:
file.write(soundfont_json)
except:
print("Failed to download soundfont.json")
else:
# If file exists, get it from the file system
with open('soundfont.json', 'rb') as file:
soundfont_json = file.read()
# Parse soundfont.json
soundfont_data = json.loads(soundfont_json)
if soundfont_data is not None:
# Iterate over each instrument
for instrument_id, instrument_name in soundfont_data['instruments'].items():
if not os.path.isdir(instrument_name):
# Create instrument directory if it doesn't exist
os.makedirs(instrument_name)
instrument_json = ""
instrument_path = f"{soundfont_path}/{instrument_name}"
if not os.path.exists(f"{instrument_name}/instrument.json"):
# Download instrument.json
instrument_json_url = f"{base_url}/{instrument_path}/instrument.json"
try:
with urllib.request.urlopen(instrument_json_url) as response:
instrument_json = response.read()
# Save instrument.json
with open(f"{instrument_name}/instrument.json", 'wb') as file:
file.write(instrument_json)
except:
print(f"Failed to download {instrument_name}/instrument.json")
else:
# If file exists, get it from the file system
with open(f"{instrument_name}/instrument.json", 'rb') as file:
instrument_json = file.read()
# Parse instrument.json
instrument_data = json.loads(instrument_json)
if instrument_data is not None:
# Iterate over each pitch and velocity
for velocity in instrument_data['velocities']:
pitches = get_pitches_array(instrument_data['minPitch'], instrument_data['maxPitch'])
for pitch in pitches:
# Create the file name
file_name = f'p{pitch}_v{velocity}.mp3'
# Check if the file already exists
if os.path.exists(f"{instrument_name}/{file_name}"):
pass
#print(f"Skipping {instrument_name}/{file_name} - File already exists")
else:
# Download pitch/velocity file
file_url = f"{base_url}/{instrument_path}/{file_name}"
try:
with urllib.request.urlopen(file_url) as response:
file_contents = response.read()
# Save pitch/velocity file
with open(f"{instrument_name}/{file_name}", 'wb') as file:
file.write(file_contents)
print(f"Downloaded {instrument_name}/{file_name}")
except:
print(f"Failed to download {instrument_name}/{file_name}")
else:
print(f"Failed to parse instrument.json for {instrument_name}")
else:
print('Failed to parse soundfont.json')

View File

@@ -0,0 +1,134 @@
{
"name": "sgm_plus",
"instruments": {
"0": "acoustic_grand_piano",
"1": "bright_acoustic_piano",
"2": "electric_grand_piano",
"3": "honkytonk_piano",
"4": "electric_piano_1",
"5": "electric_piano_2",
"6": "harpsichord",
"7": "clavichord",
"8": "celesta",
"9": "glockenspiel",
"10": "music_box",
"11": "vibraphone",
"12": "marimba",
"13": "xylophone",
"14": "tubular_bells",
"15": "dulcimer",
"16": "drawbar_organ",
"17": "percussive_organ",
"18": "rock_organ",
"19": "church_organ",
"20": "reed_organ",
"21": "accordion",
"22": "harmonica",
"23": "tango_accordion",
"24": "acoustic_guitar_nylon",
"25": "acoustic_guitar_steel",
"26": "electric_guitar_jazz",
"27": "electric_guitar_clean",
"28": "electric_guitar_muted",
"29": "overdriven_guitar",
"30": "distortion_guitar",
"31": "guitar_harmonics",
"32": "acoustic_bass",
"33": "electric_bass_finger",
"34": "electric_bass_pick",
"35": "fretless_bass",
"36": "slap_bass_1",
"37": "slap_bass_2",
"38": "synth_bass_1",
"39": "synth_bass_2",
"40": "violin",
"41": "viola",
"42": "cello",
"43": "contrabass",
"44": "tremolo_strings",
"45": "pizzicato_strings",
"46": "orchestral_harp",
"47": "timpani",
"48": "string_ensemble_1",
"49": "string_ensemble_2",
"50": "synthstrings_1",
"51": "synthstrings_2",
"52": "choir_aahs",
"53": "voice_oohs",
"54": "synth_voice",
"55": "orchestra_hit",
"56": "trumpet",
"57": "trombone",
"58": "tuba",
"59": "muted_trumpet",
"60": "french_horn",
"61": "brass_section",
"62": "synthbrass_1",
"63": "synthbrass_2",
"64": "soprano_sax",
"65": "alto_sax",
"66": "tenor_sax",
"67": "baritone_sax",
"68": "oboe",
"69": "english_horn",
"70": "bassoon",
"71": "clarinet",
"72": "piccolo",
"73": "flute",
"74": "recorder",
"75": "pan_flute",
"76": "blown_bottle",
"77": "shakuhachi",
"78": "whistle",
"79": "ocarina",
"80": "lead_1_square",
"81": "lead_2_sawtooth",
"82": "lead_3_calliope",
"83": "lead_4_chiff",
"84": "lead_5_charang",
"85": "lead_6_voice",
"86": "lead_7_fifths",
"87": "lead_8_bass_lead",
"88": "pad_1_new_age",
"89": "pad_2_warm",
"90": "pad_3_polysynth",
"91": "pad_4_choir",
"92": "pad_5_bowed",
"93": "pad_6_metallic",
"94": "pad_7_halo",
"95": "pad_8_sweep",
"96": "fx_1_rain",
"97": "fx_2_soundtrack",
"98": "fx_3_crystal",
"99": "fx_4_atmosphere",
"100": "fx_5_brightness",
"101": "fx_6_goblins",
"102": "fx_7_echoes",
"103": "fx_8_scifi",
"104": "sitar",
"105": "banjo",
"106": "shamisen",
"107": "koto",
"108": "kalimba",
"109": "bag_pipe",
"110": "fiddle",
"111": "shanai",
"112": "tinkle_bell",
"113": "agogo",
"114": "steel_drums",
"115": "woodblock",
"116": "taiko_drum",
"117": "melodic_tom",
"118": "synth_drum",
"119": "reverse_cymbal",
"120": "guitar_fret_noise",
"121": "breath_noise",
"122": "seashore",
"123": "bird_tweet",
"124": "telephone_ring",
"125": "helicopter",
"126": "applause",
"127": "gunshot",
"drums": "percussion"
}
}

469
assets/soundfont_builder.rb Normal file
View File

@@ -0,0 +1,469 @@
#!/usr/bin/env ruby
#
# JavaScript Soundfont Builder for MIDI.js
# Author: 0xFE <mohit@muthanna.com>
# edited by Valentijn Nieman <valentijnnieman@gmail.com>
#
# Requires:
#
# FluidSynth
# Lame
# Ruby Gems: midilib parallel
#
# $ brew install fluidsynth lame (on OSX)
# $ gem install midilib parallel
#
# You'll need to download a GM soundbank to generate audio.
#
# Usage:
#
# 1) Install the above dependencies.
# 2) Edit BUILD_DIR, SOUNDFONT, and INSTRUMENTS as required.
# 3) Run without any argument.
require 'base64'
require 'digest/sha1'
require 'etc'
require 'fileutils'
require 'midilib'
require 'parallel'
require 'zlib'
require 'json'
include FileUtils
BUILD_DIR = "./sound-font" # Output path
SOUNDFONT = "./default_sound_font.sf2" # Soundfont file path
# This script will generate MIDI.js-compatible instrument JS files for
# all instruments in the below array. Add or remove as necessary.
INSTRUMENTS = [
0,
1,
2,
3,
4,
5,
6,
7,
8,
9,
10,
11,
12,
13,
14,
15,
16,
17,
18,
19,
20,
21,
22,
23,
24,
25,
26,
27,
28,
29,
30,
31,
32,
33,
34,
35,
36,
37,
38,
39,
40,
41,
42,
43,
44,
45,
46,
47,
48,
49,
50,
51,
52,
53,
54,
55,
56,
57,
58,
59,
60,
61,
62,
63,
64,
65,
66,
67,
68,
69,
70,
71,
72,
73,
74,
75,
76,
77,
78,
79,
80,
81,
82,
83,
84,
85,
86,
87,
88,
89,
90,
91,
92,
93,
94,
95,
96,
97,
98,
99,
100,
101,
102,
103,
104,
105,
106,
107,
108,
109,
110,
111,
112,
113,
114,
115,
116,
117,
118,
119,
120,
121,
122,
123,
124,
125,
126,
127
]
# It was found that midilib uses names that are incompatible with MIDI.js
# For example, midilib uses "SynthBrass 1" -> https://github.com/jimm/midilib/blob/6c8e481ae72cd9f00a38eb3700ddfca6b549f153/lib/midilib/consts.rb#L280
# and the MIDI association uses "SynthBrass 1" -> https://www.midi.org/specifications-old/item/gm-level-1-sound-set
# but the MIDI.js calls this "Synth Brass 1" -> https://github.com/mudcube/MIDI.js/blob/a8a84257afa70721ae462448048a87301fc1554a/js/midi/gm.js#L44
# there are others like "Bag pipe" vs "Bagpipe", etc.
# here, we use the MIDI.js definitions because that is how most users will interact with the generated soundfonts.
MIDIJS_PATCH_NAMES = [
"Acoustic Grand Piano",
"Bright Acoustic Piano",
"Electric Grand Piano",
"Honky-tonk Piano",
"Electric Piano 1",
"Electric Piano 2",
"Harpsichord",
"Clavinet",
"Celesta",
"Glockenspiel",
"Music Box",
"Vibraphone",
"Marimba",
"Xylophone",
"Tubular Bells",
"Dulcimer",
"Drawbar Organ",
"Percussive Organ",
"Rock Organ",
"Church Organ",
"Reed Organ",
"Accordion",
"Harmonica",
"Tango Accordion",
"Acoustic Guitar (nylon)",
"Acoustic Guitar (steel)",
"Electric Guitar (jazz)",
"Electric Guitar (clean)",
"Electric Guitar (muted)",
"Overdriven Guitar",
"Distortion Guitar",
"Guitar Harmonics",
"Acoustic Bass",
"Electric Bass (finger)",
"Electric Bass (pick)",
"Fretless Bass",
"Slap Bass 1",
"Slap Bass 2",
"Synth Bass 1",
"Synth Bass 2",
"Violin",
"Viola",
"Cello",
"Contrabass",
"Tremolo Strings",
"Pizzicato Strings",
"Orchestral Harp",
"Timpani",
"String Ensemble 1",
"String Ensemble 2",
"Synth Strings 1",
"Synth Strings 2",
"Choir Aahs",
"Voice Oohs",
"Synth Choir",
"Orchestra Hit",
"Trumpet",
"Trombone",
"Tuba",
"Muted Trumpet",
"French Horn",
"Brass Section",
"Synth Brass 1",
"Synth Brass 2",
"Soprano Sax",
"Alto Sax",
"Tenor Sax",
"Baritone Sax",
"Oboe",
"English Horn",
"Bassoon",
"Clarinet",
"Piccolo",
"Flute",
"Recorder",
"Pan Flute",
"Blown Bottle",
"Shakuhachi",
"Whistle",
"Ocarina",
"Lead 1 (square)",
"Lead 2 (sawtooth)",
"Lead 3 (calliope)",
"Lead 4 (chiff)",
"Lead 5 (charang)",
"Lead 6 (voice)",
"Lead 7 (fifths)",
"Lead 8 (bass + lead)",
"Pad 1 (new age)",
"Pad 2 (warm)",
"Pad 3 (polysynth)",
"Pad 4 (choir)",
"Pad 5 (bowed)",
"Pad 6 (metallic)",
"Pad 7 (halo)",
"Pad 8 (sweep)",
"FX 1 (rain)",
"FX 2 (soundtrack)",
"FX 3 (crystal)",
"FX 4 (atmosphere)",
"FX 5 (brightness)",
"FX 6 (goblins)",
"FX 7 (echoes)",
"FX 8 (sci-fi)",
"Sitar",
"Banjo",
"Shamisen",
"Koto",
"Kalimba",
"Bagpipe",
"Fiddle",
"Shanai",
"Tinkle Bell",
"Agogo",
"Steel Drums",
"Woodblock",
"Taiko Drum",
"Melodic Tom",
"Synth Drum",
"Reverse Cymbal",
"Guitar Fret Noise",
"Breath Noise",
"Seashore",
"Bird Tweet",
"Telephone Ring",
"Helicopter",
"Applause",
"Gunshot"
]
# The encoders and tools are expected in your PATH. You can supply alternate
# paths by changing the constants below.
LAME = "lame" # `which lame`.chomp
FLUIDSYNTH = "fluidsynth" # `which fluidsynth`.chomp
puts "Building the following instruments using font: " + SOUNDFONT
# Display instrument names.
INSTRUMENTS.each do |i|
puts " #{i}: " + MIDIJS_PATCH_NAMES[i]
end
puts
puts "Using MP3 encoder: " + LAME
puts "Using FluidSynth encoder: " + FLUIDSYNTH
puts
puts "Sending output to: " + BUILD_DIR
puts
raise "Can't find soundfont: #{SOUNDFONT}" unless File.exist? SOUNDFONT
raise "Can't find 'lame' command" if LAME.empty?
raise "Can't find 'fluidsynth' command" if FLUIDSYNTH.empty?
raise "Output directory does not exist: #{BUILD_DIR}" unless File.exist?(BUILD_DIR)
puts "Hit return to begin."
$stdin.readline
NOTES = {
"C" => 0,
"Db" => 1,
"D" => 2,
"Eb" => 3,
"E" => 4,
"F" => 5,
"Gb" => 6,
"G" => 7,
"Ab" => 8,
"A" => 9,
"Bb" => 10,
"B" => 11
}
MIDI_C0 = 12
VELOCITY = 100
DURATION = Integer(3000)
TEMP_FILE = "#{BUILD_DIR}/%s%stemp.midi"
FLUIDSYNTH_RAW = "%s.wav"
def deflate(string, level)
z = Zlib::Deflate.new(level)
dst = z.deflate(string, Zlib::FINISH)
z.close
dst
end
def note_to_int(note, octave)
value = NOTES[note]
increment = MIDI_C0 * octave
return value + increment
end
def int_to_note(value)
raise "Bad Value" if value < MIDI_C0
reverse_notes = NOTES.invert
value -= MIDI_C0
octave = value / 12
note = value % 12
return { key: reverse_notes[note],
octave: octave }
end
# Run a quick table validation
MIDI_C0.upto(100) do |x|
note = int_to_note x
#raise "Broken table" unless note_to_int(note[:key], note[:octave]) == x
end
def generate_midi(program, note_value, file)
include MIDI
seq = Sequence.new()
track = Track.new(seq)
seq.tracks << track
track.events << ProgramChange.new(0, Integer(program))
track.events << NoteOn.new(0, note_value, VELOCITY, 0) # channel, note, velocity, delta
track.events << NoteOff.new(0, note_value, VELOCITY, DURATION)
File.open(file, 'wb') { | file | seq.write(file) }
end
def run_command(cmd)
puts "Running: " + cmd
`#{cmd}`
end
def midi_to_audio(source, target)
run_command "#{FLUIDSYNTH} -C no -R no -g 0.5 -F #{target} #{SOUNDFONT} #{source}"
run_command "#{LAME} -v -b 8 -B 64 #{target}"
rm target
end
def open_js_file(instrument_key, type)
js_file = File.open("#{BUILD_DIR}/#{instrument_key}-#{type}.js", "w")
js_file.write(
"""
if (typeof(MIDI) === 'undefined') var MIDI = {};
if (typeof(MIDI.Soundfont) === 'undefined') MIDI.Soundfont = {};
MIDI.Soundfont.#{instrument_key} = {
""")
return js_file
end
def close_js_file(file)
file.write("\n}\n")
file.close
end
def base64js(note, file, type)
output = '"' + note + '": '
output += '"' + "data:audio/#{type};base64,"
output += Base64.strict_encode64(File.read(file)) + '"'
return output
end
def generate_audio(program)
instrument = MIDIJS_PATCH_NAMES[program]
instrument_key = instrument.downcase.gsub(/[^a-z0-9 ]/, "").gsub(/[ ]/, "_")
puts "Generating audio for: " + instrument + "(#{instrument_key})"
mkdir_p "#{BUILD_DIR}/#{instrument_key}"
note_to_int("A", 0).upto(note_to_int("C", 8)) do |note_value|
output_name = "p#{note_value}_v#{VELOCITY}"
output_path_prefix = BUILD_DIR + "/#{instrument_key}" + output_name
puts "Generating: #{output_name}"
temp_file_specific = TEMP_FILE % [output_name, instrument_key]
generate_midi(program, note_value, temp_file_specific)
midi_to_audio(temp_file_specific, output_path_prefix + ".wav")
mv output_path_prefix + ".mp3", "#{BUILD_DIR}/#{instrument_key}/#{output_name}.mp3"
rm temp_file_specific
end
tempHash = {
"name" => instrument_key,
"minPitch" => 0,
"maxPitch" => 127,
"durationSeconds" => 3.0,
"releaseSeconds" => 1.0,
"percussive": false,
"velocities": [100]
}
File.open("#{BUILD_DIR}/#{instrument_key}/instrument.json", "w") do |f|
f.write(tempHash.to_json)
end
end
Parallel.each(INSTRUMENTS, :in_processes=>Etc.nprocessors){|i| generate_audio(i)}

View File

@@ -9,6 +9,7 @@ import (
"path/filepath"
"runtime"
"github.com/fsnotify/fsnotify"
"github.com/minio/selfupdate"
wruntime "github.com/wailsapp/wails/v2/pkg/runtime"
)
@@ -40,7 +41,36 @@ func (a *App) OnStartup(ctx context.Context) {
a.cmdPrefix = "cd " + a.exDir + " && "
}
os.Mkdir(a.exDir+"models", os.ModePerm)
os.Mkdir(a.exDir+"lora-models", os.ModePerm)
os.Mkdir(a.exDir+"finetune/json2binidx_tool/data", os.ModePerm)
f, err := os.Create(a.exDir + "lora-models/train_log.txt")
if err == nil {
f.Close()
}
a.downloadLoop()
watcher, err := fsnotify.NewWatcher()
if err == nil {
watcher.Add("./lora-models")
watcher.Add("./models")
go func() {
for {
select {
case event, ok := <-watcher.Events:
if !ok {
return
}
wruntime.EventsEmit(ctx, "fsnotify", event.Name)
case _, ok := <-watcher.Errors:
if !ok {
return
}
}
}
}()
}
}
func (a *App) UpdateApp(url string) (broken bool, err error) {

View File

@@ -122,6 +122,10 @@ func (a *App) CopyFile(src string, dst string) error {
}
func (a *App) OpenSaveFileDialog(filterPattern string, defaultFileName string, savedContent string) (string, error) {
return a.OpenSaveFileDialogBytes(filterPattern, defaultFileName, []byte(savedContent))
}
func (a *App) OpenSaveFileDialogBytes(filterPattern string, defaultFileName string, savedContent []byte) (string, error) {
path, err := wruntime.SaveFileDialog(a.ctx, wruntime.SaveDialogOptions{
DefaultFilename: defaultFileName,
Filters: []wruntime.FileFilter{{
@@ -135,7 +139,7 @@ func (a *App) OpenSaveFileDialog(filterPattern string, defaultFileName string, s
if path == "" {
return "", nil
}
if err := os.WriteFile(path, []byte(savedContent), 0644); err != nil {
if err := os.WriteFile(path, savedContent, 0644); err != nil {
return "", err
}
return path, nil

View File

@@ -1,6 +1,7 @@
package backend_golang
import (
"encoding/json"
"errors"
"os"
"os/exec"
@@ -31,6 +32,71 @@ func (a *App) ConvertModel(python string, modelPath string, strategy string, out
return Cmd(python, "./backend-python/convert_model.py", "--in", modelPath, "--out", outPath, "--strategy", strategy)
}
func (a *App) ConvertData(python string, input string, outputPrefix string, vocab string) (string, error) {
var err error
if python == "" {
python, err = GetPython()
}
if err != nil {
return "", err
}
tokenizerType := "HFTokenizer"
if strings.Contains(vocab, "rwkv_vocab_v20230424") {
tokenizerType = "RWKVTokenizer"
}
input = strings.TrimSuffix(input, "/")
if fi, err := os.Stat(input); err == nil && fi.IsDir() {
files, err := os.ReadDir(input)
if err != nil {
return "", err
}
jsonlFile, err := os.Create(outputPrefix + ".jsonl")
if err != nil {
return "", err
}
defer jsonlFile.Close()
for _, file := range files {
if file.IsDir() || !strings.HasSuffix(file.Name(), ".txt") {
continue
}
textContent, err := os.ReadFile(input + "/" + file.Name())
if err != nil {
return "", err
}
textJson, err := json.Marshal(map[string]string{"text": strings.ReplaceAll(strings.ReplaceAll(string(textContent), "\r\n", "\n"), "\r", "\n")})
if err != nil {
return "", err
}
if _, err := jsonlFile.WriteString(string(textJson) + "\n"); err != nil {
return "", err
}
}
input = outputPrefix + ".jsonl"
} else if err != nil {
return "", err
}
return Cmd(python, "./finetune/json2binidx_tool/tools/preprocess_data.py", "--input", input, "--output-prefix", outputPrefix, "--vocab", vocab,
"--tokenizer-type", tokenizerType, "--dataset-impl", "mmap", "--append-eod")
}
func (a *App) MergeLora(python string, useGpu bool, loraAlpha int, baseModel string, loraPath string, outputPath string) (string, error) {
var err error
if python == "" {
python, err = GetPython()
}
if err != nil {
return "", err
}
args := []string{python, "./finetune/lora/merge_lora.py"}
if useGpu {
args = append(args, "--use-gpu")
}
args = append(args, strconv.Itoa(loraAlpha), baseModel, loraPath, outputPath)
return Cmd(args...)
}
func (a *App) DepCheck(python string) error {
var err error
if python == "" {
@@ -81,3 +147,11 @@ func (a *App) InstallPyDep(python string, cnMirror bool) (string, error) {
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_without_cyac.txt")
}
}
func (a *App) GetPyError() string {
content, err := os.ReadFile("./error.txt")
if err != nil {
return ""
}
return string(content)
}

181
backend-golang/wsl.go Normal file
View File

@@ -0,0 +1,181 @@
//go:build windows
package backend_golang
import (
"bufio"
"context"
"errors"
"io"
"os"
"os/exec"
"path/filepath"
"strings"
"time"
su "github.com/nyaosorg/go-windows-su"
wsl "github.com/ubuntu/gowsl"
wruntime "github.com/wailsapp/wails/v2/pkg/runtime"
)
var distro *wsl.Distro
var stdin io.WriteCloser
var cmd *exec.Cmd
func isWslRunning() (bool, error) {
if distro == nil {
return false, nil
}
state, err := distro.State()
if err != nil {
return false, err
}
if state != wsl.Running {
distro = nil
return false, nil
}
return true, nil
}
func (a *App) WslStart() error {
running, err := isWslRunning()
if err != nil {
return err
}
if running {
return nil
}
distros, err := wsl.RegisteredDistros(context.Background())
if err != nil {
return err
}
for _, d := range distros {
if strings.Contains(d.Name(), "Ubuntu") {
distro = &d
break
}
}
if distro == nil {
return errors.New("ubuntu not found")
}
cmd = exec.Command("wsl", "-d", distro.Name(), "-u", "root")
stdin, err = cmd.StdinPipe()
if err != nil {
return err
}
stdout, err := cmd.StdoutPipe()
cmd.Stderr = cmd.Stdout
if err != nil {
// stdin.Close()
stdin = nil
return err
}
go func() {
reader := bufio.NewReader(stdout)
for {
if stdin == nil {
break
}
line, _, err := reader.ReadLine()
if err != nil {
wruntime.EventsEmit(a.ctx, "wslerr", err.Error())
break
}
wruntime.EventsEmit(a.ctx, "wsl", string(line))
}
// stdout.Close()
}()
if err := cmd.Start(); err != nil {
return err
}
return nil
}
func (a *App) WslCommand(command string) error {
running, err := isWslRunning()
if err != nil {
return err
}
if !running {
return errors.New("wsl not running")
}
_, err = stdin.Write([]byte(command + "\n"))
if err != nil {
return err
}
return nil
}
func (a *App) WslStop() error {
running, err := isWslRunning()
if err != nil {
return err
}
if !running {
return errors.New("wsl not running")
}
if cmd != nil {
err = cmd.Process.Kill()
cmd = nil
}
// stdin.Close()
stdin = nil
distro = nil
if err != nil {
return err
}
return nil
}
func (a *App) WslIsEnabled() error {
ex, err := os.Executable()
if err != nil {
return err
}
exDir := filepath.Dir(ex)
data, err := os.ReadFile(exDir + "/wsl.state")
if err == nil {
if strings.Contains(string(data), "Enabled") {
return nil
}
}
cmd := `-Command (Get-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Linux).State | Out-File -Encoding utf8 -FilePath ` + exDir + "/wsl.state"
_, err = su.ShellExecute(su.RUNAS, "powershell", cmd, exDir)
if err != nil {
return err
}
time.Sleep(2 * time.Second)
data, err = os.ReadFile(exDir + "/wsl.state")
if err != nil {
return err
}
if strings.Contains(string(data), "Enabled") {
return nil
} else {
return errors.New("wsl is not enabled")
}
}
func (a *App) WslEnable(forceMode bool) error {
cmd := `/online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux`
_, err := su.ShellExecute(su.RUNAS, "dism", cmd, `C:\`)
if err != nil {
return err
}
if forceMode {
os.WriteFile("./wsl.state", []byte("Enabled"), 0644)
}
return nil
}
func (a *App) WslInstallUbuntu() error {
_, err := Cmd("ms-windows-store://pdp/?ProductId=9PN20MSR04DW")
return err
}

View File

@@ -0,0 +1,31 @@
//go:build darwin || linux
package backend_golang
import (
"errors"
)
func (a *App) WslStart() error {
return errors.New("wsl not supported")
}
func (a *App) WslCommand(command string) error {
return errors.New("wsl not supported")
}
func (a *App) WslStop() error {
return errors.New("wsl not supported")
}
func (a *App) WslIsEnabled() error {
return errors.New("wsl not supported")
}
func (a *App) WslEnable(forceMode bool) error {
return errors.New("wsl not supported")
}
func (a *App) WslInstallUbuntu() error {
return errors.New("wsl not supported")
}

View File

@@ -219,13 +219,17 @@ def get_args():
return p.parse_args()
args = get_args()
if not args.quiet:
print(f"** {args}")
try:
args = get_args()
if not args.quiet:
print(f"** {args}")
RWKV(
getattr(args, "in"),
args.strategy,
verbose=not args.quiet,
convert_and_save_and_exit=args.out,
)
RWKV(
getattr(args, "in"),
args.strategy,
verbose=not args.quiet,
convert_and_save_and_exit=args.out,
)
except Exception as e:
with open("error.txt", "w") as f:
f.write(str(e))

View File

@@ -1,8 +1,15 @@
import midi2audio
import mido
import lm_dataformat
import ftfy
import tqdm
import tiktoken
import GPUtil
import torch
import rwkv
import numpy
import tokenizers
import fastapi
import uvicorn
import sse_starlette

View File

@@ -12,7 +12,7 @@ from utils.rwkv import *
from utils.torch import *
from utils.ngrok import *
from utils.log import log_middleware
from routes import completion, config, state_cache
from routes import completion, config, state_cache, midi
import global_var
app = FastAPI(dependencies=[Depends(log_middleware)])
@@ -27,6 +27,7 @@ app.add_middleware(
app.include_router(completion.router)
app.include_router(config.router)
app.include_router(midi.router)
app.include_router(state_cache.router)
@@ -41,12 +42,12 @@ def init():
ngrok_connect()
@app.get("/")
@app.get("/", tags=["Root"])
def read_root():
return {"Hello": "World!"}
@app.post("/exit")
@app.post("/exit", tags=["Root"])
def exit():
parent_pid = os.getpid()
parent = psutil.Process(parent_pid)
@@ -55,20 +56,9 @@ def exit():
parent.kill()
def debug():
model = RWKV(
model="../models/RWKV-4-Raven-7B-v11-Eng49%-Chn49%-Jpn1%-Other1%-20230430-ctx8192.pth",
strategy="cuda fp16",
tokens_path="20B_tokenizer.json",
)
d = model.pipeline.decode([])
print(d)
if __name__ == "__main__":
uvicorn.run(
"main:app",
port=8000 if len(sys.argv) < 2 else int(sys.argv[1]),
host="127.0.0.1" if len(sys.argv) < 3 else sys.argv[2],
)
# debug()

Binary file not shown.

View File

@@ -1,7 +1,7 @@
import asyncio
import json
from threading import Lock
from typing import List
from typing import List, Union
import base64
from fastapi import APIRouter, Request, status, HTTPException
@@ -25,7 +25,15 @@ class ChatCompletionBody(ModelConfigBody):
messages: List[Message]
model: str = "rwkv"
stream: bool = False
stop: str = None
stop: Union[str, List[str]] = [
"\n\nUser",
"\n\nQuestion",
"\n\nQ",
"\n\nHuman",
"\n\nBob",
]
user_name: str = None
assistant_name: str = None
class Config:
schema_extra = {
@@ -34,6 +42,8 @@ class ChatCompletionBody(ModelConfigBody):
"model": "rwkv",
"stream": False,
"stop": None,
"user_name": None,
"assistant_name": None,
"max_tokens": 1000,
"temperature": 1.2,
"top_p": 0.5,
@@ -44,10 +54,10 @@ class ChatCompletionBody(ModelConfigBody):
class CompletionBody(ModelConfigBody):
prompt: str
prompt: Union[str, List[str]]
model: str = "rwkv"
stream: bool = False
stop: str = None
stop: Union[str, List[str]] = None
class Config:
schema_extra = {
@@ -72,12 +82,12 @@ requests_num = 0
async def eval_rwkv(
model: RWKV,
model: AbstractRWKV,
request: Request,
body: ModelConfigBody,
prompt: str,
stream: bool,
stop: str,
stop: Union[str, List[str]],
chat_mode: bool,
):
global requests_num
@@ -95,123 +105,121 @@ async def eval_rwkv(
return
await asyncio.sleep(0.1)
else:
completion_lock.acquire()
if await request.is_disconnected():
completion_lock.release()
with completion_lock:
if await request.is_disconnected():
requests_num = requests_num - 1
print(f"{request.client} Stop Waiting (Lock)")
quick_log(
request,
None,
"Stop Waiting (Lock). RequestsNum: " + str(requests_num),
)
return
set_rwkv_config(model, global_var.get(global_var.Model_Config))
set_rwkv_config(model, body)
response, prompt_tokens, completion_tokens = "", 0, 0
for response, delta, prompt_tokens, completion_tokens in model.generate(
prompt,
stop=stop,
):
if await request.is_disconnected():
break
if stream:
yield json.dumps(
{
"object": "chat.completion.chunk"
if chat_mode
else "text_completion",
# "response": response,
"model": model.name,
"choices": [
{
"delta": {"content": delta},
"index": 0,
"finish_reason": None,
}
if chat_mode
else {
"text": delta,
"index": 0,
"finish_reason": None,
}
],
}
)
# torch_gc()
requests_num = requests_num - 1
print(f"{request.client} Stop Waiting (Lock)")
if await request.is_disconnected():
print(f"{request.client} Stop Waiting")
quick_log(
request,
body,
response + "\nStop Waiting. RequestsNum: " + str(requests_num),
)
return
quick_log(
request,
None,
"Stop Waiting (Lock). RequestsNum: " + str(requests_num),
body,
response + "\nFinished. RequestsNum: " + str(requests_num),
)
return
set_rwkv_config(model, global_var.get(global_var.Model_Config))
set_rwkv_config(model, body)
response, prompt_tokens, completion_tokens = "", 0, 0
for response, delta, prompt_tokens, completion_tokens in model.generate(
prompt,
stop=stop,
):
if await request.is_disconnected():
break
if stream:
yield json.dumps(
{
"object": "chat.completion.chunk"
if chat_mode
else "text_completion",
"response": response,
# "response": response,
"model": model.name,
"choices": [
{
"delta": {"content": delta},
"delta": {},
"index": 0,
"finish_reason": None,
"finish_reason": "stop",
}
if chat_mode
else {
"text": delta,
"text": "",
"index": 0,
"finish_reason": None,
"finish_reason": "stop",
}
],
}
)
# torch_gc()
requests_num = requests_num - 1
completion_lock.release()
if await request.is_disconnected():
print(f"{request.client} Stop Waiting")
quick_log(
request,
body,
response + "\nStop Waiting. RequestsNum: " + str(requests_num),
)
return
quick_log(
request,
body,
response + "\nFinished. RequestsNum: " + str(requests_num),
)
if stream:
yield json.dumps(
{
"object": "chat.completion.chunk"
if chat_mode
else "text_completion",
"response": response,
yield "[DONE]"
else:
yield {
"object": "chat.completion" if chat_mode else "text_completion",
# "response": response,
"model": model.name,
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
},
"choices": [
{
"delta": {},
"message": {
"role": "assistant",
"content": response,
},
"index": 0,
"finish_reason": "stop",
}
if chat_mode
else {
"text": "",
"text": response,
"index": 0,
"finish_reason": "stop",
}
],
}
)
yield "[DONE]"
else:
yield {
"object": "chat.completion" if chat_mode else "text_completion",
"response": response,
"model": model.name,
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
},
"choices": [
{
"message": {
"role": "assistant",
"content": response,
},
"index": 0,
"finish_reason": "stop",
}
if chat_mode
else {
"text": response,
"index": 0,
"finish_reason": "stop",
}
],
}
@router.post("/v1/chat/completions")
@router.post("/chat/completions")
@router.post("/v1/chat/completions", tags=["Completions"])
@router.post("/chat/completions", tags=["Completions"])
async def chat_completions(body: ChatCompletionBody, request: Request):
model: RWKV = global_var.get(global_var.Model)
model: TextRWKV = global_var.get(global_var.Model)
if model is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "model not loaded")
@@ -228,8 +236,10 @@ async def chat_completions(body: ChatCompletionBody, request: Request):
raise HTTPException(status.HTTP_400_BAD_REQUEST, "no question found")
interface = model.interface
user = model.user
bot = model.bot
user = model.user if body.user_name is None else body.user_name
bot = model.bot if body.assistant_name is None else body.assistant_name
is_raven = model.rwkv_type == RWKVType.Raven
completion_text = (
f"""
@@ -239,7 +249,7 @@ The following is a coherent verbose detailed conversation between a girl named {
{bot} likes to tell {user} a lot about herself and her opinions. \
{bot} usually gives {user} kind, helpful and informative advices.\n
"""
if user == "Bob"
if is_raven
else f"{user}{interface} hi\n\n{bot}{interface} Hi. "
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
)
@@ -247,22 +257,22 @@ The following is a coherent verbose detailed conversation between a girl named {
if message.role == "system":
completion_text = (
f"The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. "
if user == "Bob"
if is_raven
else f"{user}{interface} hi\n\n{bot}{interface} Hi. "
+ message.content.replace("\\n", "\n")
.replace("\r\n", "\n")
.replace("\n\n", "\n")
.replace("\n", " ")
.strip()
.replace("You are", f"{bot} is" if user == "Bob" else "I am")
.replace("you are", f"{bot} is" if user == "Bob" else "I am")
.replace("You're", f"{bot} is" if user == "Bob" else "I'm")
.replace("you're", f"{bot} is" if user == "Bob" else "I'm")
.replace("You", f"{bot}" if user == "Bob" else "I")
.replace("you", f"{bot}" if user == "Bob" else "I")
.replace("Your", f"{bot}'s" if user == "Bob" else "My")
.replace("your", f"{bot}'s" if user == "Bob" else "my")
.replace("", f"{bot}" if user == "Bob" else "")
.replace("You are", f"{bot} is" if is_raven else "I am")
.replace("you are", f"{bot} is" if is_raven else "I am")
.replace("You're", f"{bot} is" if is_raven else "I'm")
.replace("you're", f"{bot} is" if is_raven else "I'm")
.replace("You", f"{bot}" if is_raven else "I")
.replace("you", f"{bot}" if is_raven else "I")
.replace("Your", f"{bot}'s" if is_raven else "My")
.replace("your", f"{bot}'s" if is_raven else "my")
.replace("", f"{bot}" if is_raven else "")
+ "\n\n"
)
break
@@ -287,30 +297,40 @@ The following is a coherent verbose detailed conversation between a girl named {
)
completion_text += f"{bot}{interface}"
stop = f"\n\n{user}" if body.stop is None else body.stop
if type(body.stop) == str:
body.stop = [body.stop, f"\n\n{user}", f"\n\n{bot}"]
else:
body.stop.append(f"\n\n{user}")
body.stop.append(f"\n\n{bot}")
if body.stream:
return EventSourceResponse(
eval_rwkv(model, request, body, completion_text, body.stream, stop, True)
eval_rwkv(
model, request, body, completion_text, body.stream, body.stop, True
)
)
else:
try:
return await eval_rwkv(
model, request, body, completion_text, body.stream, stop, True
model, request, body, completion_text, body.stream, body.stop, True
).__anext__()
except StopAsyncIteration:
return None
@router.post("/v1/completions")
@router.post("/completions")
@router.post("/v1/completions", tags=["Completions"])
@router.post("/completions", tags=["Completions"])
async def completions(body: CompletionBody, request: Request):
model: RWKV = global_var.get(global_var.Model)
model: AbstractRWKV = global_var.get(global_var.Model)
if model is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "model not loaded")
if body.prompt is None or body.prompt == "":
if body.prompt is None or body.prompt == "" or body.prompt == []:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "prompt not found")
if type(body.prompt) == list:
body.prompt = body.prompt[0] # TODO: support multiple prompts
if body.stream:
return EventSourceResponse(
eval_rwkv(model, request, body, body.prompt, body.stream, body.stop, False)
@@ -325,7 +345,7 @@ async def completions(body: CompletionBody, request: Request):
class EmbeddingsBody(BaseModel):
input: str | List[str] | List[List[int]]
input: Union[str, List[str], List[List[int]]]
model: str = "rwkv"
encoding_format: str = None
fast_mode: bool = False
@@ -345,12 +365,12 @@ def embedding_base64(embedding: List[float]) -> str:
return base64.b64encode(np.array(embedding).astype(np.float32)).decode("utf-8")
@router.post("/v1/embeddings")
@router.post("/embeddings")
@router.post("/v1/engines/text-embedding-ada-002/embeddings")
@router.post("/engines/text-embedding-ada-002/embeddings")
@router.post("/v1/embeddings", tags=["Embeddings"])
@router.post("/embeddings", tags=["Embeddings"])
@router.post("/v1/engines/text-embedding-ada-002/embeddings", tags=["Embeddings"])
@router.post("/engines/text-embedding-ada-002/embeddings", tags=["Embeddings"])
async def embeddings(body: EmbeddingsBody, request: Request):
model: RWKV = global_var.get(global_var.Model)
model: AbstractRWKV = global_var.get(global_var.Model)
if model is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "model not loaded")
@@ -372,81 +392,88 @@ async def embeddings(body: EmbeddingsBody, request: Request):
return
await asyncio.sleep(0.1)
else:
completion_lock.acquire()
if await request.is_disconnected():
completion_lock.release()
requests_num = requests_num - 1
print(f"{request.client} Stop Waiting (Lock)")
quick_log(
request,
None,
"Stop Waiting (Lock). RequestsNum: " + str(requests_num),
)
return
with completion_lock:
if await request.is_disconnected():
requests_num = requests_num - 1
print(f"{request.client} Stop Waiting (Lock)")
quick_log(
request,
None,
"Stop Waiting (Lock). RequestsNum: " + str(requests_num),
)
return
base64_format = False
if body.encoding_format == "base64":
base64_format = True
base64_format = False
if body.encoding_format == "base64":
base64_format = True
embeddings = []
prompt_tokens = 0
if type(body.input) == list:
if type(body.input[0]) == list:
encoding = tiktoken.model.encoding_for_model("text-embedding-ada-002")
for i in range(len(body.input)):
if await request.is_disconnected():
break
input = encoding.decode(body.input[i])
embedding, token_len = model.get_embedding(input, body.fast_mode)
prompt_tokens = prompt_tokens + token_len
if base64_format:
embedding = embedding_base64(embedding)
embeddings.append(embedding)
else:
for i in range(len(body.input)):
if await request.is_disconnected():
break
embedding, token_len = model.get_embedding(
body.input[i], body.fast_mode
embeddings = []
prompt_tokens = 0
if type(body.input) == list:
if type(body.input[0]) == list:
encoding = tiktoken.model.encoding_for_model(
"text-embedding-ada-002"
)
prompt_tokens = prompt_tokens + token_len
if base64_format:
embedding = embedding_base64(embedding)
embeddings.append(embedding)
else:
embedding, prompt_tokens = model.get_embedding(body.input, body.fast_mode)
if base64_format:
embedding = embedding_base64(embedding)
embeddings.append(embedding)
for i in range(len(body.input)):
if await request.is_disconnected():
break
input = encoding.decode(body.input[i])
embedding, token_len = model.get_embedding(
input, body.fast_mode
)
prompt_tokens = prompt_tokens + token_len
if base64_format:
embedding = embedding_base64(embedding)
embeddings.append(embedding)
else:
for i in range(len(body.input)):
if await request.is_disconnected():
break
embedding, token_len = model.get_embedding(
body.input[i], body.fast_mode
)
prompt_tokens = prompt_tokens + token_len
if base64_format:
embedding = embedding_base64(embedding)
embeddings.append(embedding)
else:
embedding, prompt_tokens = model.get_embedding(
body.input, body.fast_mode
)
if base64_format:
embedding = embedding_base64(embedding)
embeddings.append(embedding)
requests_num = requests_num - 1
completion_lock.release()
if await request.is_disconnected():
print(f"{request.client} Stop Waiting")
requests_num = requests_num - 1
if await request.is_disconnected():
print(f"{request.client} Stop Waiting")
quick_log(
request,
None,
"Stop Waiting. RequestsNum: " + str(requests_num),
)
return
quick_log(
request,
None,
"Stop Waiting. RequestsNum: " + str(requests_num),
"Finished. RequestsNum: " + str(requests_num),
)
return
quick_log(
request,
None,
"Finished. RequestsNum: " + str(requests_num),
)
ret_data = [
{
"object": "embedding",
"index": i,
"embedding": embedding,
ret_data = [
{
"object": "embedding",
"index": i,
"embedding": embedding,
}
for i, embedding in enumerate(embeddings)
]
return {
"object": "list",
"data": ret_data,
"model": model.name,
"usage": {
"prompt_tokens": prompt_tokens,
"total_tokens": prompt_tokens,
},
}
for i, embedding in enumerate(embeddings)
]
return {
"object": "list",
"data": ret_data,
"model": model.name,
"usage": {"prompt_tokens": prompt_tokens, "total_tokens": prompt_tokens},
}

View File

@@ -6,20 +6,22 @@ from pydantic import BaseModel
from utils.rwkv import *
from utils.torch import *
import global_var
import GPUtil
router = APIRouter()
def get_tokens_path(model_path: str):
model_path = model_path.lower()
default_tokens_path = (
f"{pathlib.Path(__file__).parent.parent.resolve()}/rwkv_pip/20B_tokenizer.json"
)
tokenizer_dir = f"{pathlib.Path(__file__).parent.parent.resolve()}/rwkv_pip/"
default_tokens_path = tokenizer_dir + "20B_tokenizer.json"
if "raven" in model_path:
return default_tokens_path
elif "world" in model_path:
return "rwkv_vocab_v20230424"
elif "midi" in model_path:
return tokenizer_dir + "tokenizer-midi.json"
else:
return default_tokens_path
@@ -39,7 +41,7 @@ class SwitchModelBody(BaseModel):
}
@router.post("/switch-model")
@router.post("/switch-model", tags=["Configs"])
def switch_model(body: SwitchModelBody, response: Response, request: Request):
if global_var.get(global_var.Model_Status) is global_var.ModelStatus.Loading:
response.status_code = Status.HTTP_304_NOT_MODIFIED
@@ -52,13 +54,27 @@ def switch_model(body: SwitchModelBody, response: Response, request: Request):
if body.model == "":
return "success"
if "->" in body.strategy:
state_cache.disable_state_cache()
else:
try:
state_cache.enable_state_cache()
except HTTPException:
pass
os.environ["RWKV_CUDA_ON"] = "1" if body.customCuda else "0"
global_var.set(global_var.Model_Status, global_var.ModelStatus.Loading)
try:
global_var.set(
global_var.Model,
RWKV(
TextRWKV(
model=body.model,
strategy=body.strategy,
tokens_path=get_tokens_path(body.model),
)
if "midi" not in body.model.lower()
else MusicRWKV(
model=body.model,
strategy=body.strategy,
tokens_path=get_tokens_path(body.model),
@@ -81,7 +97,7 @@ def switch_model(body: SwitchModelBody, response: Response, request: Request):
return "success"
@router.post("/update-config")
@router.post("/update-config", tags=["Configs"])
def update_config(body: ModelConfigBody):
"""
Will not update the model config immediately, but set it when completion called to avoid modifications during generation
@@ -93,8 +109,10 @@ def update_config(body: ModelConfigBody):
return "success"
@router.get("/status")
@router.get("/status", tags=["Configs"])
def status():
import GPUtil
gpus = GPUtil.getGPUs()
if len(gpus) == 0:
device_name = "CPU"

View File

@@ -0,0 +1,131 @@
import io
from fastapi import APIRouter, HTTPException, status
from starlette.responses import StreamingResponse
from pydantic import BaseModel
from utils.midi import *
from midi2audio import FluidSynth
router = APIRouter()
class TextToMidiBody(BaseModel):
text: str
class Config:
schema_extra = {
"example": {
"text": "p:24:a p:2a:a p:31:a p:39:a p:3b:a p:45:a b:26:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:24:0 p:2a:0 p:31:0 p:39:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:26:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:2e:a p:3b:a p:45:a b:26:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:2e:0 p:3b:0 p:45:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:2e:a p:3b:a p:45:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:2e:0 p:3b:0 p:45:0 b:26:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:26:a p:2a:a p:3b:a p:45:a t14 p:26:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a b:26:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:2a:0 p:3b:0 p:45:0 b:26:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:2d:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 b:2d:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:24:a p:2e:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:24:0 p:2e:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:26:a p:2a:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:26:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:26:a p:2e:a p:31:a p:39:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:26:0 p:2e:0 p:31:0 p:39:0 p:3b:0 p:45:0 b:21:0 t2 p:26:a p:2e:a p:31:a p:39:a p:3b:a p:45:a b:21:a t14 p:26:0 p:2e:0 p:31:0 p:39:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:24:a p:2a:a p:31:a p:39:a p:3b:a p:45:a b:1f:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:24:0 p:2a:0 p:31:0 p:39:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:1f:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:2e:a p:3b:a p:45:a b:1f:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:2e:0 p:3b:0 p:45:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:2e:a p:3b:a p:45:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:2e:0 p:3b:0 p:45:0 b:1f:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:26:a p:2a:a p:3b:a p:45:a t14 p:26:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a b:1f:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:2a:0 p:3b:0 p:45:0 b:1f:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:1f:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 b:1f:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:24:a p:2e:a p:3b:a p:45:a b:26:a g:39:a g:39:a g:3e:a g:3e:a g:42:a g:42:a pi:39:a pi:3e:a pi:42:a t14 p:24:0 p:2e:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0",
}
}
@router.post("/text-to-midi", tags=["MIDI"])
def text_to_midi(body: TextToMidiBody):
vocab_config = "backend-python/utils/midi_vocab_config.json"
cfg = VocabConfig.from_json(vocab_config)
mid = convert_str_to_midi(cfg, body.text.strip())
mid_data = io.BytesIO()
mid.save(None, mid_data)
mid_data.seek(0)
return StreamingResponse(mid_data, media_type="audio/midi")
class TxtToMidiBody(BaseModel):
txt_path: str
midi_path: str
class Config:
schema_extra = {
"example": {
"txt_path": "midi/sample.txt",
"midi_path": "midi/sample.mid",
}
}
@router.post("/txt-to-midi", tags=["MIDI"])
def txt_to_midi(body: TxtToMidiBody):
if not body.midi_path.startswith("midi/"):
raise HTTPException(status.HTTP_400_BAD_REQUEST, "bad output path")
vocab_config = "backend-python/utils/midi_vocab_config.json"
cfg = VocabConfig.from_json(vocab_config)
with open(body.txt_path, "r") as f:
text = f.read()
text = text.strip()
mid = convert_str_to_midi(cfg, text)
mid.save(body.midi_path)
return "success"
class MidiToWavBody(BaseModel):
midi_path: str
wav_path: str
sound_font_path: str = "assets/default_sound_font.sf2"
class Config:
schema_extra = {
"example": {
"midi_path": "midi/sample.mid",
"wav_path": "midi/sample.wav",
"sound_font_path": "assets/default_sound_font.sf2",
}
}
@router.post("/midi-to-wav", tags=["MIDI"])
def midi_to_wav(body: MidiToWavBody):
"""
Install fluidsynth first, see more: https://github.com/FluidSynth/fluidsynth/wiki/Download#distributions
"""
if not body.wav_path.startswith("midi/"):
raise HTTPException(status.HTTP_400_BAD_REQUEST, "bad output path")
fs = FluidSynth(body.sound_font_path)
fs.midi_to_audio(body.midi_path, body.wav_path)
return "success"
class TextToWavBody(BaseModel):
text: str
wav_name: str
sound_font_path: str = "assets/default_sound_font.sf2"
class Config:
schema_extra = {
"example": {
"text": "p:24:a p:2a:a p:31:a p:39:a p:3b:a p:45:a b:26:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:24:0 p:2a:0 p:31:0 p:39:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:26:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:2e:a p:3b:a p:45:a b:26:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:2e:0 p:3b:0 p:45:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:2e:a p:3b:a p:45:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:2e:0 p:3b:0 p:45:0 b:26:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:26:a p:2a:a p:3b:a p:45:a t14 p:26:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a b:26:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:2a:0 p:3b:0 p:45:0 b:26:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:2d:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 b:2d:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:24:a p:2e:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:24:0 p:2e:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:26:a p:2a:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:26:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:26:a p:2e:a p:31:a p:39:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:26:0 p:2e:0 p:31:0 p:39:0 p:3b:0 p:45:0 b:21:0 t2 p:26:a p:2e:a p:31:a p:39:a p:3b:a p:45:a b:21:a t14 p:26:0 p:2e:0 p:31:0 p:39:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:24:a p:2a:a p:31:a p:39:a p:3b:a p:45:a b:1f:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:24:0 p:2a:0 p:31:0 p:39:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:1f:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:2e:a p:3b:a p:45:a b:1f:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:2e:0 p:3b:0 p:45:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:2e:a p:3b:a p:45:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:2e:0 p:3b:0 p:45:0 b:1f:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:26:a p:2a:a p:3b:a p:45:a t14 p:26:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a b:1f:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:2a:0 p:3b:0 p:45:0 b:1f:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:1f:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 b:1f:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:24:a p:2e:a p:3b:a p:45:a b:26:a g:39:a g:39:a g:3e:a g:3e:a g:42:a g:42:a pi:39:a pi:3e:a pi:42:a t14 p:24:0 p:2e:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0",
"wav_name": "sample",
"sound_font_path": "assets/default_sound_font.sf2",
}
}
@router.post("/text-to-wav", tags=["MIDI"])
def text_to_wav(body: TextToWavBody):
"""
Install fluidsynth first, see more: https://github.com/FluidSynth/fluidsynth/wiki/Download#distributions
"""
text = body.text.strip()
if not text.startswith("<start>"):
text = "<start> " + text
if not text.endswith("<end>"):
text = text + " <end>"
txt_path = f"midi/{body.wav_name}.txt"
midi_path = f"midi/{body.wav_name}.mid"
wav_path = f"midi/{body.wav_name}.wav"
with open(txt_path, "w") as f:
f.write(text)
txt_to_midi(TxtToMidiBody(txt_path=txt_path, midi_path=midi_path))
midi_to_wav(
MidiToWavBody(
midi_path=midi_path, wav_path=wav_path, sound_font_path=body.sound_font_path
)
)
return "success"

View File

@@ -4,8 +4,6 @@ from fastapi import APIRouter, HTTPException, Request, Response, status
from pydantic import BaseModel
import gc
import copy
import sys
import torch
router = APIRouter()
@@ -34,6 +32,32 @@ def init():
print("cyac not found")
@router.post("/disable-state-cache", tags=["State Cache"])
def disable_state_cache():
global trie, dtrie
trie = None
dtrie = {}
gc.collect()
return "success"
@router.post("/enable-state-cache", tags=["State Cache"])
def enable_state_cache():
global trie, dtrie
try:
import cyac
trie = cyac.Trie()
dtrie = {}
gc.collect()
return "success"
except ModuleNotFoundError:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "cyac not found")
class AddStateBody(BaseModel):
prompt: str
tokens: List[str]
@@ -41,12 +65,14 @@ class AddStateBody(BaseModel):
logits: Any
@router.post("/add-state")
@router.post("/add-state", tags=["State Cache"])
def add_state(body: AddStateBody):
global trie, dtrie, loop_del_trie_id
if trie is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
import torch
try:
id: int = trie.insert(body.prompt)
device: torch.device = body.state[0].device
@@ -79,12 +105,14 @@ def add_state(body: AddStateBody):
)
@router.post("/reset-state")
@router.post("/reset-state", tags=["State Cache"])
def reset_state():
global trie, dtrie
if trie is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
import cyac
trie = cyac.Trie()
dtrie = {}
gc.collect()
@@ -113,12 +141,14 @@ def _get_a_dtrie_buff_size(dtrie_v):
return 54 * len(dtrie_v["tokens"]) + 491520 + 262144 + 28 # TODO
@router.post("/longest-prefix-state")
@router.post("/longest-prefix-state", tags=["State Cache"])
def longest_prefix_state(body: LongestPrefixStateBody, request: Request):
global trie
if trie is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
import torch
id = -1
try:
for id, len in trie.prefix(body.prompt):
@@ -150,7 +180,7 @@ def longest_prefix_state(body: LongestPrefixStateBody, request: Request):
}
@router.post("/save-state")
@router.post("/save-state", tags=["State Cache"])
def save_state():
global trie
if trie is None:

20144
backend-python/rwkv_pip/tokenizer-midi.json vendored Normal file

File diff suppressed because it is too large Load Diff

685
backend-python/utils/midi.py vendored Normal file
View File

@@ -0,0 +1,685 @@
# https://github.com/briansemrau/MIDI-LLM-tokenizer
# MIT License
# Copyright (c) 2023 Brian Semrau
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import json
import random
from dataclasses import dataclass
from functools import lru_cache
from math import ceil, floor, log
from typing import Dict, Iterator, List, Optional, Tuple
import mido
@dataclass
class VocabConfig:
# Number of note events. Should be 128.
note_events: int
# Number of wait events. Configurable, must evenly divide max_wait_time.
wait_events: int
# Max wait time in milliseconds to be represented by a single token.
max_wait_time: int
# Number of velocity events. Should be 128 (or 100? need to check midi standard)
velocity_events: int
# Number of bins to quantize velocity into. Should evenly divide velocity_events.
velocity_bins: int
# Exponential scaling factor for velocity bin sizes. 1.0 = linear scaling.
velocity_exp: float
# Whether to sort tokens by instrument, note. This should improve data reducibility.
do_token_sorting: bool
# Whether tokens should be represented as combined instrument/note/velocity tokens, or separate tokens for each.
unrolled_tokens: bool
# If non-zero, notes held for this many seconds will be automatically released during str->midi decoding.
decode_end_held_note_delay: float
# If true, repeated notes will be automatically released before playing again during str->midi decoding.
decode_fix_repeated_notes: bool
# List of instrument names to use for binning. Must have at most 16 values.
bin_instrument_names: List[str]
# Indicates which bin name represents percussion instruments on MIDI channel 10.
ch10_instrument_bin_name: str
# Mapping from instrument name to bin name.
program_name_to_bin_name: Dict[str, str]
# Mapping from bin name to program name.
bin_name_to_program_name: Dict[str, str]
# Mapping from program number to instrument name.
instrument_names: Dict[str, str]
def __post_init__(self):
self.validate()
self._instrument_names_str_to_int = {
name: int(i) for i, name in self.instrument_names.items()
}
self._instrument_names_int_to_str = {
int(i): name for i, name in self.instrument_names.items()
}
self._bin_str_to_int = {
name: int(i) for i, name in enumerate(self.bin_instrument_names)
}
self._bin_int_to_instrument_int = [
self._instrument_names_str_to_int[self.bin_name_to_program_name[name]]
if name != self.ch10_instrument_bin_name
else 0
for name in self.bin_instrument_names
]
self._instrument_int_to_bin_int = [
self._bin_str_to_int[self.program_name_to_bin_name[instr]]
if self.program_name_to_bin_name[instr] != ""
else -1
for instr in self.program_name_to_bin_name.keys()
]
self._ch10_bin_int = (
self._bin_str_to_int[self.ch10_instrument_bin_name]
if self.ch10_instrument_bin_name
else -1
)
self.short_instr_bin_names = []
for instr in self.bin_instrument_names:
i = min(1, len(instr))
while instr[:i] in self.short_instr_bin_names:
i += 1
self.short_instr_bin_names.append(instr[:i])
self._short_instrument_names_str_to_int = {
name: int(i) for i, name in enumerate(self.short_instr_bin_names)
}
range_excluding_ch10 = [
(i if i < 9 else i + 1) for i in range(len(self.bin_instrument_names))
]
bins_excluding_ch10 = [
n for n in self.bin_instrument_names if n != self.ch10_instrument_bin_name
]
self.bin_channel_map = {
bin: channel
for channel, bin in zip(range_excluding_ch10, bins_excluding_ch10)
}
if self.ch10_instrument_bin_name:
self.bin_channel_map[self.ch10_instrument_bin_name] = 9
def validate(self):
if self.max_wait_time % self.wait_events != 0:
raise ValueError("max_wait_time must be exactly divisible by wait_events")
if self.velocity_bins < 2:
raise ValueError("velocity_bins must be at least 2")
if len(self.bin_instrument_names) > 16:
raise ValueError("bin_instruments must have at most 16 values")
if (
self.ch10_instrument_bin_name
and self.ch10_instrument_bin_name not in self.bin_instrument_names
):
raise ValueError("ch10_instrument_bin_name must be in bin_instruments")
if self.velocity_exp <= 0:
raise ValueError("velocity_exp must be greater than 0")
@classmethod
def from_json(cls, path: str):
with open(path, "r") as f:
config = json.load(f)
return cls(**config)
class VocabUtils:
def __init__(self, cfg: VocabConfig) -> None:
self.cfg = cfg
@lru_cache(maxsize=128)
def format_wait_token(self, wait: int) -> str:
return f"t{wait}"
@lru_cache(maxsize=128)
def format_note_token(
self, instrument_bin: int, note: int, velocity_bin: int
) -> str:
return f"{self.cfg.short_instr_bin_names[instrument_bin]}:{note:x}:{velocity_bin:x}"
def format_unrolled_note(self, note: int) -> str:
return f"n{note:x}"
def format_unrolled_velocity(self, velocity_bin: int) -> str:
return f"v{velocity_bin:x}"
def format_unrolled_instrument_bin(self, instrument_bin: int) -> str:
return f"i{self.cfg.short_instr_bin_names[instrument_bin]}"
def velocity_to_bin(self, velocity: float) -> int:
velocity = max(0, min(velocity, self.cfg.velocity_events - 1))
binsize = self.cfg.velocity_events / (self.cfg.velocity_bins - 1)
if self.cfg.velocity_exp == 1.0:
return ceil(velocity / binsize)
else:
return ceil(
(
self.cfg.velocity_events
* (
(
self.cfg.velocity_exp
** (velocity / self.cfg.velocity_events)
- 1.0
)
/ (self.cfg.velocity_exp - 1.0)
)
)
/ binsize
)
def bin_to_velocity(self, bin: int) -> int:
binsize = self.cfg.velocity_events / (self.cfg.velocity_bins - 1)
if self.cfg.velocity_exp == 1.0:
return max(0, ceil(bin * binsize - 1))
else:
return max(
0,
ceil(
self.cfg.velocity_events
* log(
((self.cfg.velocity_exp - 1) * binsize * bin)
/ self.cfg.velocity_events
+ 1,
self.cfg.velocity_exp,
)
- 1
),
)
def delta_to_wait_ids(self, delta_ms: float) -> Iterator[int]:
def roundi(f: float):
return ceil(f - 0.5)
max_wait_ms = self.cfg.max_wait_time
div = max_wait_ms / self.cfg.wait_events
# if delta_ms // max_wait_ms > 512: # arbitrary limit to avoid excessive time_shifts
# raise ValueError("delta_time is too large")
if delta_ms > max_wait_ms * 10:
delta_ms = max_wait_ms * 10 # truncate time
for _ in range(floor(delta_ms / max_wait_ms)):
yield roundi(max_wait_ms / div)
leftover_time_shift = roundi((delta_ms % max_wait_ms) / div)
if leftover_time_shift > 0:
yield leftover_time_shift
def prog_data_to_token_data(
self, program: int, channel: int, note: int, velocity: float
) -> Optional[Tuple[int, int, int]]:
if channel == 9:
if self.cfg._ch10_bin_int == -1:
return None
return self.cfg._ch10_bin_int, note, self.velocity_to_bin(velocity)
instrument_bin = self.cfg._instrument_int_to_bin_int[program]
if instrument_bin != -1:
return instrument_bin, note, self.velocity_to_bin(velocity)
return None
def prog_data_list_to_token_data_list(
self, data: List[Tuple[int, int, int, float]]
) -> Iterator[Tuple[int, int, int]]:
for d in data:
token_data = self.prog_data_to_token_data(*d)
if token_data is not None:
yield token_data
def sort_token_data(
self, data: List[Tuple[int, int, int]]
) -> List[Tuple[int, int, int]]:
# ensure order is preserved for tokens with the same instrument, note
data = [(i, n, v, x) for x, (i, n, v) in enumerate(data)]
data.sort(key=lambda x: (x[0] != self.cfg._ch10_bin_int, x[0], x[1], x[3]))
return [(i, n, v) for i, n, v, _ in data]
def data_to_wait_tokens(self, delta_ms: float) -> List[str]:
if delta_ms == 0.0:
return []
return [self.format_wait_token(i) for i in self.delta_to_wait_ids(delta_ms)]
def wait_token_to_delta(self, token: str) -> float:
return self.cfg.max_wait_time / self.cfg.wait_events * int(token[1:])
def note_token_to_data(self, token: str) -> Tuple[int, int, int]:
instr_str, note_str, velocity_str = token.strip().split(":")
instr_bin = self.cfg._short_instrument_names_str_to_int[instr_str]
note = int(note_str, base=16)
velocity = self.bin_to_velocity(int(velocity_str, base=16))
return instr_bin, note, velocity
@dataclass
class AugmentValues:
instrument_bin_remap: Dict[int, int]
velocity_mod_factor: float
transpose_semitones: int
time_stretch_factor: float
@classmethod
def default(cls) -> "AugmentValues":
return cls(
instrument_bin_remap={},
velocity_mod_factor=1.0,
transpose_semitones=0,
time_stretch_factor=1.0,
)
@dataclass
class AugmentConfig:
# The number of times to augment each MIDI file. The dataset size will be multiplied by this number.
augment_data_factor: int
# A list of instrument names to randomly swap with each other.
instrument_mixups: List[List[str]]
# A list of percentages to change the note velocity by. 0.0 = no change. 0 is included by default.
velocity_mod_pct: List[float]
# A list of semitones to transpose by. 0 is included by default.
transpose_semitones: List[int]
# A list of percentages to stretch the tempo by. 0.0 = no stretch. 0 is included by default.
time_stretch_pct: List[float]
# Random seed to use for reproducibility.
seed: int
cfg: VocabConfig
def __post_init__(self):
self.validate()
if len(self.velocity_mod_pct) == 0:
self.velocity_mod_pct = [0.0]
if len(self.transpose_semitones) == 0:
self.transpose_semitones = [0]
if len(self.time_stretch_pct) == 0:
self.time_stretch_pct = [0.0]
self._instrument_mixups_int = [
[self.cfg._bin_str_to_int[i] for i in l if i in self.cfg._bin_str_to_int]
for l in self.instrument_mixups
]
self._instrument_mixups_int = [
l for l in self._instrument_mixups_int if len(l) > 0
] # remove empty lists
self._instrument_pool_assignments = {}
self._mixup_pools = []
for pool_i, mixup_list in enumerate(self._instrument_mixups_int):
pool = set()
for i in mixup_list:
pool.add(i)
self._instrument_pool_assignments[i] = pool_i
self._mixup_pools.append(pool)
def validate(self):
if self.augment_data_factor < 1:
raise ValueError("augment_data_factor must be at least 1")
used_instruments = set()
for mixup_list in self.instrument_mixups:
for n in mixup_list:
if n in used_instruments:
raise ValueError(f"Duplicate instrument name: {n}")
used_instruments.add(n)
@classmethod
def from_json(cls, path: str, cfg: VocabConfig):
with open(path, "r") as f:
config = json.load(f)
config["cfg"] = cfg
if "seed" not in config:
config["seed"] = random.randint(0, 2**32 - 1)
return cls(**config)
def get_augment_values(self, filename: str) -> Iterator[AugmentValues]:
# first yield default values
yield AugmentValues.default()
rng = random.Random(self.seed + hash(filename))
for _ in range(int(self.augment_data_factor - 1)):
# randomize order for each pool
randomized_pools = [list(pool) for pool in self._mixup_pools]
for pool in randomized_pools:
rng.shuffle(pool)
# distribute reassignments
instrument_bin_remap = {}
for i, pool in enumerate(randomized_pools):
for j, instrument in enumerate(pool):
instrument_bin_remap[instrument] = randomized_pools[i - 1][j]
yield AugmentValues(
instrument_bin_remap=instrument_bin_remap,
velocity_mod_factor=1.0 + rng.choice(self.velocity_mod_pct),
transpose_semitones=rng.choice(self.transpose_semitones),
time_stretch_factor=1.0 + rng.choice(self.time_stretch_pct),
)
def mix_volume(velocity: int, volume: int, expression: int) -> float:
return velocity * (volume / 127.0) * (expression / 127.0)
def convert_midi_to_str(
cfg: VocabConfig, mid: mido.MidiFile, augment: AugmentValues = None
) -> str:
utils = VocabUtils(cfg)
if augment is None:
augment = AugmentValues.default()
# filter out unknown meta messages before merge (https://github.com/mido/mido/pull/286)
for i in range(len(mid.tracks)):
mid.tracks[i] = [msg for msg in mid.tracks[i] if msg.type != "unknown_meta"]
if len(mid.tracks) > 1:
mid.tracks = [mido.merge_tracks(mid.tracks)]
delta_time_ms = 0.0
tempo = 500000
channel_program = {i: 0 for i in range(16)}
channel_volume = {i: 127 for i in range(16)}
channel_expression = {
i: 127 for i in range(16)
} # unlikely to be useful. expression usually modifies an already played note.
channel_notes = {i: {} for i in range(16)}
channel_pedal_on = {i: False for i in range(16)}
channel_pedal_events = {
i: {} for i in range(16)
} # {channel: {(note, program) -> True}}
started_flag = False
output = ["<start>"]
token_data_buffer: List[
Tuple[int, int, int, float]
] = [] # need to sort notes between wait tokens
def flush_token_data_buffer():
nonlocal token_data_buffer, output, cfg, utils, augment
token_data = [
x for x in utils.prog_data_list_to_token_data_list(token_data_buffer)
]
if augment.instrument_bin_remap or augment.transpose_semitones:
# TODO put transpose in a real function
raw_transpose = (
lambda bin, n: n + augment.transpose_semitones
if bin != cfg._ch10_bin_int
else n
)
octave_shift_if_oob = (
lambda n: n + 12 if n < 0 else n - 12 if n >= cfg.note_events else n
)
# TODO handle ranges beyond 12
# octave_shift_if_oob = lambda n: 0 if n < 0 else (n - cfg.note_events) % 12 + cfg.note_events if n >= cfg.note_events else n
transpose = lambda bin, n: octave_shift_if_oob(raw_transpose(bin, n))
token_data = [
(augment.instrument_bin_remap.get(i, i), transpose(i, n), v)
for i, n, v in token_data
]
if cfg.do_token_sorting:
token_data = utils.sort_token_data(token_data)
if cfg.unrolled_tokens:
for t in token_data:
output += [
utils.format_unrolled_instrument_bin(t[0]),
utils.format_unrolled_note(t[1]),
utils.format_unrolled_velocity(t[2]),
]
else:
output += [utils.format_note_token(*t) for t in token_data]
token_data_buffer = []
def consume_note_program_data(prog: int, chan: int, note: int, vel: float):
nonlocal output, started_flag, delta_time_ms, cfg, utils, token_data_buffer
is_token_valid = (
utils.prog_data_to_token_data(prog, chan, note, vel) is not None
)
if not is_token_valid:
return
if started_flag:
wait_tokens = utils.data_to_wait_tokens(delta_time_ms)
if len(wait_tokens) > 0:
flush_token_data_buffer()
output += wait_tokens
delta_time_ms = 0.0
token_data_buffer.append((prog, chan, note, vel * augment.velocity_mod_factor))
started_flag = True
for msg in mid.tracks[0]:
time_ms = mido.tick2second(msg.time, mid.ticks_per_beat, tempo) * 1000.0
delta_time_ms += time_ms
t = msg.type
if msg.is_meta:
if t == "set_tempo":
tempo = msg.tempo * augment.time_stretch_factor
continue
def handle_note_off(ch, prog, n):
if channel_pedal_on[ch]:
channel_pedal_events[ch][(n, prog)] = True
else:
consume_note_program_data(prog, ch, n, 0)
if n in channel_notes[ch]:
del channel_notes[ch][n]
if t == "program_change":
channel_program[msg.channel] = msg.program
elif t == "note_on":
if msg.velocity == 0:
handle_note_off(msg.channel, channel_program[msg.channel], msg.note)
else:
if (msg.note, channel_program[msg.channel]) in channel_pedal_events[
msg.channel
]:
del channel_pedal_events[msg.channel][
(msg.note, channel_program[msg.channel])
]
consume_note_program_data(
channel_program[msg.channel],
msg.channel,
msg.note,
mix_volume(
msg.velocity,
channel_volume[msg.channel],
channel_expression[msg.channel],
),
)
channel_notes[msg.channel][msg.note] = True
elif t == "note_off":
handle_note_off(msg.channel, channel_program[msg.channel], msg.note)
elif t == "control_change":
if msg.control == 7 or msg.control == 39: # volume
channel_volume[msg.channel] = msg.value
elif msg.control == 11: # expression
channel_expression[msg.channel] = msg.value
elif msg.control == 64: # sustain pedal
channel_pedal_on[msg.channel] = msg.value >= 64
if not channel_pedal_on[msg.channel]:
for note, program in channel_pedal_events[msg.channel]:
handle_note_off(msg.channel, program, note)
channel_pedal_events[msg.channel] = {}
elif msg.control == 123: # all notes off
for channel in channel_notes.keys():
for note in list(channel_notes[channel]).copy():
handle_note_off(channel, channel_program[channel], note)
else:
pass
flush_token_data_buffer()
output.append("<end>")
return " ".join(output)
def generate_program_change_messages(cfg: VocabConfig):
for bin_name, channel in cfg.bin_channel_map.items():
if channel == 9:
continue
program = cfg._instrument_names_str_to_int[
cfg.bin_name_to_program_name[bin_name]
]
yield mido.Message("program_change", program=program, time=0, channel=channel)
yield mido.Message("program_change", program=0, time=0, channel=9)
@dataclass
class DecodeState:
total_time: float # milliseconds
delta_accum: float # milliseconds
current_bin: int
current_note: int
active_notes: Dict[Tuple[int, int], float] # { (channel, note): time started, ... }
def token_to_midi_message(
utils: VocabUtils, token: str, state: DecodeState, end_token_pause: float = 3.0
) -> Iterator[Tuple[Optional[mido.Message], DecodeState]]:
if state is None:
state = DecodeState(
total_time=0.0,
delta_accum=0.0,
current_bin=utils.cfg._short_instrument_names_str_to_int[
utils.cfg.short_instr_bin_names[0]
],
current_note=0,
active_notes={},
)
token = token.strip()
if not token:
yield None, state
return
if token == "<end>":
d = end_token_pause * 1000.0
state.delta_accum += d
state.total_time += d
if utils.cfg.decode_end_held_note_delay != 0.0:
# end held notes
for (channel, note), start_time in list(state.active_notes.items()).copy():
ticks = int(mido.second2tick(state.delta_accum / 1000.0, 480, 500000))
state.delta_accum = 0.0
del state.active_notes[(channel, note)]
yield mido.Message(
"note_off", note=note, time=ticks, channel=channel
), state
yield None, state
return
if token.startswith("<"):
yield None, state
return
if utils.cfg.unrolled_tokens:
if token[0] == "t":
d = utils.wait_token_to_delta(token)
state.delta_accum += d
state.total_time += d
elif token[0] == "n":
state.current_note = int(token[1:], base=16)
elif token[0] == "i":
state.current_bin = utils.cfg._short_instrument_names_str_to_int[token[1:]]
elif token[0] == "v":
current_velocity = utils.bin_to_velocity(int(token[1:], base=16))
channel = utils.cfg.bin_channel_map[
utils.cfg.bin_instrument_names[state.current_bin]
]
ticks = int(mido.second2tick(state.delta_accum / 1000.0, 480, 500000))
state.delta_accum = 0.0
if current_velocity > 0:
yield mido.Message(
"note_on",
note=state.current_note,
velocity=current_velocity,
time=ticks,
channel=channel,
), state
else:
yield mido.Message(
"note_off",
note=state.current_note,
velocity=0,
time=ticks,
channel=channel,
), state
else:
if token[0] == "t" and token[1].isdigit(): # wait token
d = utils.wait_token_to_delta(token)
state.delta_accum += d
state.total_time += d
if utils.cfg.decode_end_held_note_delay != 0.0:
# remove notes that have been held for too long
for (channel, note), start_time in list(
state.active_notes.items()
).copy():
if (
state.total_time - start_time
> utils.cfg.decode_end_held_note_delay * 1000.0
):
ticks = int(
mido.second2tick(state.delta_accum / 1000.0, 480, 500000)
)
state.delta_accum = 0.0
del state.active_notes[(channel, note)]
yield mido.Message(
"note_off", note=note, time=ticks, channel=channel
), state
return
else: # note token
bin, note, velocity = utils.note_token_to_data(token)
channel = utils.cfg.bin_channel_map[utils.cfg.bin_instrument_names[bin]]
ticks = int(mido.second2tick(state.delta_accum / 1000.0, 480, 500000))
state.delta_accum = 0.0
if velocity > 0:
if utils.cfg.decode_fix_repeated_notes:
if (channel, note) in state.active_notes:
del state.active_notes[(channel, note)]
yield mido.Message(
"note_off", note=note, time=ticks, channel=channel
), state
ticks = 0
state.active_notes[(channel, note)] = state.total_time
yield mido.Message(
"note_on", note=note, velocity=velocity, time=ticks, channel=channel
), state
return
else:
if (channel, note) in state.active_notes:
del state.active_notes[(channel, note)]
yield mido.Message(
"note_off", note=note, time=ticks, channel=channel
), state
return
yield None, state
def str_to_midi_messages(utils: VocabUtils, data: str) -> Iterator[mido.Message]:
state = None
for token in data.split(" "):
for msg, new_state in token_to_midi_message(utils, token, state):
state = new_state
if msg is not None:
yield msg
def convert_str_to_midi(
cfg: VocabConfig, data: str, meta_text: str = "Generated by MIDI-LLM-tokenizer"
) -> mido.MidiFile:
utils = VocabUtils(cfg)
mid = mido.MidiFile()
track = mido.MidiTrack()
mid.tracks.append(track)
tempo = 500000
if meta_text:
track.append(mido.MetaMessage("text", text=meta_text, time=0))
track.append(mido.MetaMessage("set_tempo", tempo=tempo, time=0))
for msg in generate_program_change_messages(cfg):
track.append(msg)
# data = data.replace("<start>", "").replace("<end>", "").replace("<pad>", "").strip()
for msg in str_to_midi_messages(utils, data):
track.append(msg)
track.append(mido.MetaMessage("end_of_track", time=0))
return mid

View File

@@ -0,0 +1,303 @@
{
"note_events": 128,
"wait_events": 125,
"max_wait_time": 1000,
"velocity_events": 128,
"velocity_bins": 12,
"velocity_exp": 0.5,
"do_token_sorting": true,
"unrolled_tokens": false,
"decode_end_held_note_delay": 5.0,
"decode_fix_repeated_notes": true,
"bin_instrument_names": [
"percussion",
"drum",
"tuba",
"marimba",
"bass",
"guitar",
"violin",
"trumpet",
"piano",
"sax",
"flute",
"lead",
"pad"
],
"ch10_instrument_bin_name": "percussion",
"program_name_to_bin_name": {
"Acoustic Grand Piano": "piano",
"Bright Acoustic Piano": "piano",
"Electric Grand Piano": "piano",
"Honky-tonk Piano": "piano",
"Electric Piano 1 (Rhodes Piano)": "piano",
"Electric Piano 2 (Chorused Piano)": "piano",
"Harpsichord": "piano",
"Clavinet": "piano",
"Celesta": "marimba",
"Glockenspiel": "marimba",
"Music Box": "marimba",
"Vibraphone": "marimba",
"Marimba": "marimba",
"Xylophone": "marimba",
"Tubular Bells": "marimba",
"Dulcimer (Santur)": "marimba",
"Drawbar Organ (Hammond)": "marimba",
"Percussive Organ": "piano",
"Rock Organ": "piano",
"Church Organ": "piano",
"Reed Organ": "piano",
"Accordion (French)": "piano",
"Harmonica": "piano",
"Tango Accordion (Band neon)": "piano",
"Acoustic Guitar (nylon)": "guitar",
"Acoustic Guitar (steel)": "guitar",
"Electric Guitar (jazz)": "guitar",
"Electric Guitar (clean)": "guitar",
"Electric Guitar (muted)": "guitar",
"Overdriven Guitar": "guitar",
"Distortion Guitar": "guitar",
"Guitar harmonics": "guitar",
"Acoustic Bass": "bass",
"Electric Bass (fingered)": "bass",
"Electric Bass (picked)": "bass",
"Fretless Bass": "bass",
"Slap Bass 1": "bass",
"Slap Bass 2": "bass",
"Synth Bass 1": "bass",
"Synth Bass 2": "bass",
"Violin": "violin",
"Viola": "violin",
"Cello": "bass",
"Contrabass": "bass",
"Tremolo Strings": "violin",
"Pizzicato Strings": "violin",
"Orchestral Harp": "violin",
"Timpani": "drum",
"String Ensemble 1 (strings)": "violin",
"String Ensemble 2 (slow strings)": "violin",
"SynthStrings 1": "violin",
"SynthStrings 2": "violin",
"Choir Aahs": "violin",
"Voice Oohs": "violin",
"Synth Voice": "violin",
"Orchestra Hit": "",
"Trumpet": "trumpet",
"Trombone": "tuba",
"Tuba": "tuba",
"Muted Trumpet": "trumpet",
"French Horn": "trumpet",
"Brass Section": "trumpet",
"SynthBrass 1": "trumpet",
"SynthBrass 2": "trumpet",
"Soprano Sax": "sax",
"Alto Sax": "sax",
"Tenor Sax": "sax",
"Baritone Sax": "sax",
"Oboe": "sax",
"English Horn": "trumpet",
"Bassoon": "sax",
"Clarinet": "sax",
"Piccolo": "flute",
"Flute": "flute",
"Recorder": "flute",
"Pan Flute": "flute",
"Blown Bottle": "flute",
"Shakuhachi": "flute",
"Whistle": "flute",
"Ocarina": "flute",
"Lead 1 (square wave)": "lead",
"Lead 2 (sawtooth wave)": "lead",
"Lead 3 (calliope)": "lead",
"Lead 4 (chiffer)": "lead",
"Lead 5 (charang)": "lead",
"Lead 6 (voice solo)": "violin",
"Lead 7 (fifths)": "lead",
"Lead 8 (bass + lead)": "lead",
"Pad 1 (new age Fantasia)": "pad",
"Pad 2 (warm)": "pad",
"Pad 3 (polysynth)": "pad",
"Pad 4 (choir space voice)": "violin",
"Pad 5 (bowed glass)": "pad",
"Pad 6 (metallic pro)": "pad",
"Pad 7 (halo)": "pad",
"Pad 8 (sweep)": "pad",
"FX 1 (rain)": "",
"FX 2 (soundtrack)": "",
"FX 3 (crystal)": "",
"FX 4 (atmosphere)": "",
"FX 5 (brightness)": "",
"FX 6 (goblins)": "",
"FX 7 (echoes, drops)": "",
"FX 8 (sci-fi, star theme)": "",
"Sitar": "guitar",
"Banjo": "guitar",
"Shamisen": "guitar",
"Koto": "guitar",
"Kalimba": "guitar",
"Bag pipe": "sax",
"Fiddle": "violin",
"Shanai": "sax",
"Tinkle Bell": "marimba",
"Agogo": "marimba",
"Steel Drums": "marimba",
"Woodblock": "marimba",
"Taiko Drum": "drum",
"Melodic Tom": "drum",
"Synth Drum": "drum",
"Reverse Cymbal": "",
"Guitar Fret Noise": "",
"Breath Noise": "",
"Seashore": "",
"Bird Tweet": "",
"Telephone Ring": "",
"Helicopter": "",
"Applause": "",
"Gunshot": ""
},
"bin_name_to_program_name": {
"piano": "Acoustic Grand Piano",
"marimba": "Marimba",
"drum": "Synth Drum",
"guitar": "Acoustic Guitar (steel)",
"bass": "Acoustic Bass",
"violin": "Violin",
"percussion": "",
"trumpet": "Trumpet",
"tuba": "Tuba",
"sax": "Tenor Sax",
"flute": "Flute",
"lead": "Lead 1 (square wave)",
"pad": "Pad 1 (new age Fantasia)"
},
"instrument_names": {
"0": "Acoustic Grand Piano",
"1": "Bright Acoustic Piano",
"2": "Electric Grand Piano",
"3": "Honky-tonk Piano",
"4": "Electric Piano 1 (Rhodes Piano)",
"5": "Electric Piano 2 (Chorused Piano)",
"6": "Harpsichord",
"7": "Clavinet",
"8": "Celesta",
"9": "Glockenspiel",
"10": "Music Box",
"11": "Vibraphone",
"12": "Marimba",
"13": "Xylophone",
"14": "Tubular Bells",
"15": "Dulcimer (Santur)",
"16": "Drawbar Organ (Hammond)",
"17": "Percussive Organ",
"18": "Rock Organ",
"19": "Church Organ",
"20": "Reed Organ",
"21": "Accordion (French)",
"22": "Harmonica",
"23": "Tango Accordion (Band neon)",
"24": "Acoustic Guitar (nylon)",
"25": "Acoustic Guitar (steel)",
"26": "Electric Guitar (jazz)",
"27": "Electric Guitar (clean)",
"28": "Electric Guitar (muted)",
"29": "Overdriven Guitar",
"30": "Distortion Guitar",
"31": "Guitar harmonics",
"32": "Acoustic Bass",
"33": "Electric Bass (fingered)",
"34": "Electric Bass (picked)",
"35": "Fretless Bass",
"36": "Slap Bass 1",
"37": "Slap Bass 2",
"38": "Synth Bass 1",
"39": "Synth Bass 2",
"40": "Violin",
"41": "Viola",
"42": "Cello",
"43": "Contrabass",
"44": "Tremolo Strings",
"45": "Pizzicato Strings",
"46": "Orchestral Harp",
"47": "Timpani",
"48": "String Ensemble 1 (strings)",
"49": "String Ensemble 2 (slow strings)",
"50": "SynthStrings 1",
"51": "SynthStrings 2",
"52": "Choir Aahs",
"53": "Voice Oohs",
"54": "Synth Voice",
"55": "Orchestra Hit",
"56": "Trumpet",
"57": "Trombone",
"58": "Tuba",
"59": "Muted Trumpet",
"60": "French Horn",
"61": "Brass Section",
"62": "SynthBrass 1",
"63": "SynthBrass 2",
"64": "Soprano Sax",
"65": "Alto Sax",
"66": "Tenor Sax",
"67": "Baritone Sax",
"68": "Oboe",
"69": "English Horn",
"70": "Bassoon",
"71": "Clarinet",
"72": "Piccolo",
"73": "Flute",
"74": "Recorder",
"75": "Pan Flute",
"76": "Blown Bottle",
"77": "Shakuhachi",
"78": "Whistle",
"79": "Ocarina",
"80": "Lead 1 (square wave)",
"81": "Lead 2 (sawtooth wave)",
"82": "Lead 3 (calliope)",
"83": "Lead 4 (chiffer)",
"84": "Lead 5 (charang)",
"85": "Lead 6 (voice solo)",
"86": "Lead 7 (fifths)",
"87": "Lead 8 (bass + lead)",
"88": "Pad 1 (new age Fantasia)",
"89": "Pad 2 (warm)",
"90": "Pad 3 (polysynth)",
"91": "Pad 4 (choir space voice)",
"92": "Pad 5 (bowed glass)",
"93": "Pad 6 (metallic pro)",
"94": "Pad 7 (halo)",
"95": "Pad 8 (sweep)",
"96": "FX 1 (rain)",
"97": "FX 2 (soundtrack)",
"98": "FX 3 (crystal)",
"99": "FX 4 (atmosphere)",
"100": "FX 5 (brightness)",
"101": "FX 6 (goblins)",
"102": "FX 7 (echoes, drops)",
"103": "FX 8 (sci-fi, star theme)",
"104": "Sitar",
"105": "Banjo",
"106": "Shamisen",
"107": "Koto",
"108": "Kalimba",
"109": "Bag pipe",
"110": "Fiddle",
"111": "Shanai",
"112": "Tinkle Bell",
"113": "Agogo",
"114": "Steel Drums",
"115": "Woodblock",
"116": "Taiko Drum",
"117": "Melodic Tom",
"118": "Synth Drum",
"119": "Reverse Cymbal",
"120": "Guitar Fret Noise",
"121": "Breath Noise",
"122": "Seashore",
"123": "Bird Tweet",
"124": "Telephone Ring",
"125": "Helicopter",
"126": "Applause",
"127": "Gunshot"
}
}

View File

@@ -1,27 +1,34 @@
from abc import ABC, abstractmethod
from enum import Enum, auto
import os
import pathlib
import copy
from typing import Dict, List, Tuple
import re
from typing import Dict, Iterable, List, Tuple, Union
from utils.log import quick_log
from fastapi import HTTPException
from pydantic import BaseModel, Field
import torch
import numpy as np
from rwkv_pip.utils import PIPELINE
from routes import state_cache
END_OF_TEXT = 0
END_OF_LINE = 187
END_OF_LINE_DOUBLE = 535
os.environ["TORCH_EXTENSIONS_DIR"] = f"{pathlib.Path(__file__).parent.parent.resolve()}"
class RWKV:
def __init__(self, model: str, strategy: str, tokens_path: str) -> None:
class RWKVType(Enum):
Raven = auto()
World = auto()
Music = auto()
class AbstractRWKV(ABC):
def __init__(self, model: str, strategy: str, tokens_path: str):
from rwkv.model import RWKV as Model # dynamic import to make RWKV_CUDA_ON work
from rwkv_pip.utils import PIPELINE
filename, _ = os.path.splitext(os.path.basename(model))
self.name = filename
@@ -29,98 +36,54 @@ class RWKV:
self.pipeline = PIPELINE(self.model, tokens_path)
self.model_state = None
self.model_tokens = []
self.CHUNK_LEN = 256
self.rwkv_type: RWKVType = None
self.max_tokens_per_generation = 500
self.temperature = 1
self.top_p = 0.5
self.penalty_alpha_presence = 0.4
self.penalty_alpha_frequency = 0.4
self.top_p = 0.3
self.top_k = 0
self.penalty_alpha_presence = 0
self.penalty_alpha_frequency = 1
self.interface = ":"
if "rwkv_vocab" in tokens_path:
self.user = "Question"
self.bot = "Answer"
else:
self.user = "Bob"
self.bot = "Alice"
@abstractmethod
def adjust_occurrence(self, occurrence: Dict, token: int):
pass
self.AVOID_REPEAT_TOKENS = []
AVOID_REPEAT = ""
for i in AVOID_REPEAT:
dd = self.pipeline.encode(i)
assert len(dd) == 1
self.AVOID_REPEAT_TOKENS += dd
self.preload()
def preload(self):
interface = self.interface
user = self.user
bot = self.bot
preset_system = (
f"""
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
{bot} is very intelligent, creative and friendly. \
{bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \
{bot} likes to tell {user} a lot about herself and her opinions. \
{bot} usually gives {user} kind, helpful and informative advices.\n
"""
if self.user == "Bob"
else f"{user}{interface} hi\n\n{bot}{interface} Hi. "
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
)
logits, _ = self.run_rnn(self.fix_tokens(self.pipeline.encode(preset_system)))
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=preset_system,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
@abstractmethod
def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int):
pass
# Model only saw '\n\n' as [187, 187] before, but the tokenizer outputs [535] for it at the end
def fix_tokens(self, tokens):
if len(tokens) > 0 and tokens[-1] == END_OF_LINE_DOUBLE:
tokens = tokens[:-1] + [END_OF_LINE, END_OF_LINE]
return tokens
@abstractmethod
def fix_tokens(self, tokens) -> List[int]:
pass
def run_rnn(self, _tokens: List[str], newline_adj: int = 0):
tokens = [int(x) for x in _tokens]
token_len = len(tokens)
self.model_tokens += tokens
@abstractmethod
def run_rnn(
self, _tokens: List[str], newline_adj: int = 0
) -> Tuple[List[float], int]:
pass
while len(tokens) > 0:
out, self.model_state = self.model.forward(
tokens[: self.CHUNK_LEN], self.model_state
)
tokens = tokens[self.CHUNK_LEN :]
out[END_OF_LINE] += newline_adj # adjust \n probability
if self.model_tokens[-1] in self.AVOID_REPEAT_TOKENS:
out[self.model_tokens[-1]] = -999999999
return out, token_len
@abstractmethod
def delta_postprocess(self, delta: str) -> str:
pass
def get_embedding(self, input: str, fast_mode: bool) -> Tuple[List[float], int]:
if fast_mode:
embedding, token_len = self.fast_embedding(
embedding, token_len = self.__fast_embedding(
self.fix_tokens(self.pipeline.encode(input)), None
)
else:
self.model_state = None
self.model_tokens = []
_, token_len = self.run_rnn(self.fix_tokens(self.pipeline.encode(input)))
embedding = self.model_state[-5].tolist()
embedding = self.model_state[-11].tolist()
embedding = (embedding / np.linalg.norm(embedding)).tolist()
return embedding, token_len
def fast_embedding(self, tokens: List[str], state):
def __fast_embedding(self, tokens: List[str], state):
import torch
tokens = [int(x) for x in tokens]
token_len = len(tokens)
self = self.model
@@ -257,7 +220,9 @@ The following is a coherent verbose detailed conversation between a girl named {
return state[0].tolist(), token_len
def generate(self, prompt: str, stop: str = None):
def generate(
self, prompt: str, stop: Union[str, List[str]] = None
) -> Iterable[Tuple[str, str, int, int]]:
quick_log(None, None, "Generation Prompt:\n" + prompt)
cache = None
delta_prompt = prompt
@@ -301,44 +266,60 @@ The following is a coherent verbose detailed conversation between a girl named {
completion_token_len = 0
response = ""
for i in range(self.max_tokens_per_generation):
for n in occurrence:
logits[n] -= (
self.penalty_alpha_presence
+ occurrence[n] * self.penalty_alpha_frequency
)
self.adjust_forward_logits(logits, occurrence, i)
token = self.pipeline.sample_logits(
logits, temperature=self.temperature, top_p=self.top_p
logits, temperature=self.temperature, top_p=self.top_p, top_k=self.top_k
)
if token == END_OF_TEXT:
yield response, "", prompt_token_len, completion_token_len
break
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
self.adjust_occurrence(occurrence, token)
logits, _ = self.run_rnn([token])
completion_token_len = completion_token_len + 1
delta: str = self.pipeline.decode(self.model_tokens[out_last:])
delta: str = self.delta_postprocess(
self.pipeline.decode(self.model_tokens[out_last:])
)
if "\ufffd" not in delta: # avoid utf-8 display issues
response += delta
if stop is not None:
if stop in response:
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
if type(stop) == str:
if stop in response:
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
)
except HTTPException:
pass
response = response.split(stop)[0]
yield response, "", prompt_token_len, completion_token_len
break
except HTTPException:
pass
response = response.split(stop)[0]
yield response, "", prompt_token_len, completion_token_len
break
elif type(stop) == list:
stop_exist_regex = "|".join(stop)
matched = re.search(stop_exist_regex, response)
if matched:
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
response = response.split(matched.group())[0]
yield response, "", prompt_token_len, completion_token_len
break
out_last = begin + i + 1
if i == self.max_tokens_per_generation - 1:
try:
@@ -355,6 +336,167 @@ The following is a coherent verbose detailed conversation between a girl named {
yield response, delta, prompt_token_len, completion_token_len
class TextRWKV(AbstractRWKV):
def __init__(self, model: str, strategy: str, tokens_path: str) -> None:
super().__init__(model, strategy, tokens_path)
self.CHUNK_LEN = 256
self.max_tokens_per_generation = 500
self.temperature = 1
self.top_p = 0.3
self.top_k = 0
self.penalty_alpha_presence = 0
self.penalty_alpha_frequency = 1
self.interface = ":"
if "world" in self.name.lower():
self.rwkv_type = RWKVType.World
self.user = "Question"
self.bot = "Answer"
self.END_OF_LINE = 11
else:
self.rwkv_type = RWKVType.Raven
self.user = "Bob"
self.bot = "Alice"
self.END_OF_LINE = 187
self.AVOID_REPEAT_TOKENS = []
AVOID_REPEAT = ""
for i in AVOID_REPEAT:
dd = self.pipeline.encode(i)
assert len(dd) == 1
self.AVOID_REPEAT_TOKENS += dd
self.__preload()
def adjust_occurrence(self, occurrence: Dict, token: int):
for xxx in occurrence:
occurrence[xxx] *= 0.996
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int):
for n in occurrence:
logits[n] -= (
self.penalty_alpha_presence
+ occurrence[n] * self.penalty_alpha_frequency
)
if i == 0:
for token in self.model_tokens:
token = int(token)
for xxx in occurrence:
occurrence[xxx] *= 0.996
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
# Model only saw '\n\n' as [187, 187] before, but the tokenizer outputs [535] for it at the end
def fix_tokens(self, tokens) -> List[int]:
if self.rwkv_type == RWKVType.World:
return tokens
if len(tokens) > 0 and tokens[-1] == END_OF_LINE_DOUBLE:
tokens = tokens[:-1] + [self.END_OF_LINE, self.END_OF_LINE]
return tokens
def run_rnn(
self, _tokens: List[str], newline_adj: int = 0
) -> Tuple[List[float], int]:
tokens = [int(x) for x in _tokens]
token_len = len(tokens)
self.model_tokens += tokens
while len(tokens) > 0:
out, self.model_state = self.model.forward(
tokens[: self.CHUNK_LEN], self.model_state
)
tokens = tokens[self.CHUNK_LEN :]
out[self.END_OF_LINE] += newline_adj # adjust \n probability
if self.model_tokens[-1] in self.AVOID_REPEAT_TOKENS:
out[self.model_tokens[-1]] = -999999999
return out, token_len
def delta_postprocess(self, delta: str) -> str:
return delta
def __preload(self):
interface = self.interface
user = self.user
bot = self.bot
preset_system = (
f"""
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
{bot} is very intelligent, creative and friendly. \
{bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \
{bot} likes to tell {user} a lot about herself and her opinions. \
{bot} usually gives {user} kind, helpful and informative advices.\n
"""
if self.rwkv_type == RWKVType.Raven
else f"{user}{interface} hi\n\n{bot}{interface} Hi. "
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
)
logits, _ = self.run_rnn(self.fix_tokens(self.pipeline.encode(preset_system)))
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=preset_system,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
class MusicRWKV(AbstractRWKV):
def __init__(self, model: str, strategy: str, tokens_path: str):
super().__init__(model, strategy, tokens_path)
self.max_tokens_per_generation = 500
self.temperature = 1
self.top_p = 0.8
self.top_k = 8
self.rwkv_type = RWKVType.Music
def adjust_occurrence(self, occurrence: Dict, token: int):
for n in occurrence:
occurrence[n] *= 0.997 #### decay repetition penalty
if token >= 128 or token == 127:
occurrence[token] = 1 + (occurrence[token] if token in occurrence else 0)
else:
occurrence[token] = 0.3 + (occurrence[token] if token in occurrence else 0)
def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int):
for n in occurrence:
logits[n] -= 0 + occurrence[n] * 0.5
logits[0] += (i - 2000) / 500 # try not to be too short or too long
logits[127] -= 1 # avoid "t125"
def fix_tokens(self, tokens) -> List[int]:
return tokens
def run_rnn(
self, _tokens: List[str], newline_adj: int = 0
) -> Tuple[List[float], int]:
tokens = [int(x) for x in _tokens]
token_len = len(tokens)
self.model_tokens += tokens
out, self.model_state = self.model.forward(tokens, self.model_state)
return out, token_len
def delta_postprocess(self, delta: str) -> str:
return " " + delta
class ModelConfigBody(BaseModel):
max_tokens: int = Field(default=None, gt=0, le=102400)
temperature: float = Field(default=None, ge=0, le=2)
@@ -374,7 +516,7 @@ class ModelConfigBody(BaseModel):
}
def set_rwkv_config(model: RWKV, body: ModelConfigBody):
def set_rwkv_config(model: AbstractRWKV, body: ModelConfigBody):
if body.max_tokens is not None:
model.max_tokens_per_generation = body.max_tokens
if body.temperature is not None:
@@ -390,7 +532,7 @@ def set_rwkv_config(model: RWKV, body: ModelConfigBody):
model.penalty_alpha_frequency = body.frequency_penalty
def get_rwkv_config(model: RWKV) -> ModelConfigBody:
def get_rwkv_config(model: AbstractRWKV) -> ModelConfigBody:
return ModelConfigBody(
max_tokens=model.max_tokens_per_generation,
temperature=model.temperature,

BIN
build/appicon.png vendored

Binary file not shown.

Before

Width:  |  Height:  |  Size: 120 KiB

After

Width:  |  Height:  |  Size: 83 KiB

BIN
build/windows/icon.ico vendored

Binary file not shown.

Before

Width:  |  Height:  |  Size: 167 KiB

After

Width:  |  Height:  |  Size: 175 KiB

View File

@@ -0,0 +1,7 @@
{"text": "1:This is the first document."}
{"text": "2:Hello\nWorld"}
{"text": "3:1+1=2\n1+2=3\n2+2=4"}
{"text": "4:You will be training the GPT version because it's paralleziable and faster to train."}
{"text": "5:Read the inference code in src/model.py and try using the final hidden state(.xx .aa .bb)"}
{"text": "6:You can fine-tune the model with longer ctxLen and it can quickly adapt to longer ctxLens."}
{"text": "7:Consider RWKV 14B. The state has 200 vectors, that is, 5 vectors for each block: fp16 (xx), fp32 (aa), fp32 (bb), fp32 (pp), fp16 (xx)."}

View File

@@ -0,0 +1,41 @@
import torch
import sys
import time
import os
import threading
import gc
def file_cleaner(file):
last_pos = 0
def cleaner():
nonlocal last_pos
while True:
time.sleep(0.1)
pos = file.tell()
if pos > last_pos:
os.posix_fadvise(
file.fileno(), last_pos, pos - last_pos, os.POSIX_FADV_DONTNEED
)
last_pos = pos
return cleaner
model_file = open(sys.argv[1], "rb")
cleaner = file_cleaner(model_file)
cleaner_thread = threading.Thread(target=cleaner, daemon=True)
cleaner_thread.start()
w = torch.load(model_file, map_location="cpu")
gc.collect()
n_embd = w["emb.weight"].shape[1]
n_layer = 0
keys = list(w.keys())
for x in keys:
layer_id = int(x.split(".")[1]) if ("blocks." in x) else 0
n_layer = max(n_layer, layer_id + 1)
print(f"--n_layer {n_layer} --n_embd {n_embd}", end="")

View File

@@ -0,0 +1,52 @@
if [[ ${cnMirror} == 1 ]]; then
export PIP_INDEX_URL="https://pypi.tuna.tsinghua.edu.cn/simple"
if grep -q "mirrors.aliyun.com" /etc/apt/sources.list; then
echo "apt cnMirror already set"
else
sudo sed -i 's/http:\/\/archive.ubuntu.com\/ubuntu\//http:\/\/mirrors.aliyun.com\/ubuntu\//g' /etc/apt/sources.list
sudo apt update
fi
fi
if dpkg -s "gcc" >/dev/null 2>&1; then
echo "gcc installed"
else
sudo apt -y install gcc
fi
if dpkg -s "python3-pip" >/dev/null 2>&1; then
echo "pip installed"
else
sudo apt -y install python3-pip
fi
if dpkg -s "ninja-build" >/dev/null 2>&1; then
echo "ninja installed"
else
sudo apt -y install ninja-build
fi
if dpkg -s "cuda" >/dev/null 2>&1 && dpkg -s "cuda" | grep Version | awk '{print $2}' | grep -q "12"; then
echo "cuda 12 installed"
else
wget -N https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin
sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget -N https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda-repo-wsl-ubuntu-12-2-local_12.2.0-1_amd64.deb
sudo dpkg -i cuda-repo-wsl-ubuntu-12-2-local_12.2.0-1_amd64.deb
sudo cp /var/cuda-repo-wsl-ubuntu-12-2-local/cuda-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cuda
fi
if python3 -c "import pkg_resources; pkg_resources.require(open('./finetune/requirements.txt',mode='r'))" &>/dev/null; then
echo "requirements satisfied"
else
python3 -m pip install -r ./finetune/requirements.txt
fi
echo "loading $loadModel"
modelInfo=$(python3 ./finetune/get_layer_and_embd.py $loadModel)
echo $modelInfo
python3 ./finetune/lora/train.py $modelInfo $@ --proj_dir lora-models --data_type binidx --lora \
--lora_parts=att,ffn,time,ln --strategy deepspeed_stage_2 --accelerator gpu

View File

@@ -0,0 +1,597 @@
# Copyright (c) 2021, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# copied from fairseq/fairseq/data/indexed_dataset.py
# Removed IndexedRawTextDataset since it relied on Fairseq dictionary
# other slight modifications to remove fairseq dependencies
# Added document index to index file and made it accessible.
# An empty sentence no longer separates documents.
import os
import shutil
import struct
from functools import lru_cache
from itertools import accumulate
import numpy as np
import torch
def __best_fitting_dtype(vocab_size=None):
if vocab_size is not None and vocab_size < 65500:
return np.uint16
else:
return np.int32
def infer_dataset_impl(path):
if IndexedDataset.exists(path):
with open(index_file_path(path), "rb") as f:
magic = f.read(8)
if magic == IndexedDataset._HDR_MAGIC:
return "cached"
elif magic == MMapIndexedDataset.Index._HDR_MAGIC[:8]:
return "mmap"
else:
return None
else:
print(f"Dataset does not exist: {path}")
print(
"Path should be a basename that both .idx and .bin can be appended to get full filenames."
)
return None
def make_builder(out_file, impl, vocab_size=None):
if impl == "mmap":
return MMapIndexedDatasetBuilder(
out_file, dtype=__best_fitting_dtype(vocab_size)
)
else:
return IndexedDatasetBuilder(out_file)
def make_dataset(path, impl, skip_warmup=False):
if not IndexedDataset.exists(path):
print(f"Dataset does not exist: {path}")
print(
"Path should be a basename that both .idx and .bin can be appended to get full filenames."
)
return None
if impl == "infer":
impl = infer_dataset_impl(path)
if impl == "lazy" and IndexedDataset.exists(path):
return IndexedDataset(path)
elif impl == "cached" and IndexedDataset.exists(path):
return IndexedCachedDataset(path)
elif impl == "mmap" and MMapIndexedDataset.exists(path):
return MMapIndexedDataset(path, skip_warmup)
print(f"Unknown dataset implementation: {impl}")
return None
def dataset_exists(path, impl):
if impl == "mmap":
return MMapIndexedDataset.exists(path)
else:
return IndexedDataset.exists(path)
def read_longs(f, n):
a = np.empty(n, dtype=np.int64)
f.readinto(a)
return a
def write_longs(f, a):
f.write(np.array(a, dtype=np.int64))
dtypes = {
1: np.uint8,
2: np.int8,
3: np.int16,
4: np.int32,
5: np.int64,
6: np.float32,
7: np.float64,
8: np.uint16,
}
def code(dtype):
for k in dtypes.keys():
if dtypes[k] == dtype:
return k
raise ValueError(dtype)
def index_file_path(prefix_path):
return prefix_path + ".idx"
def data_file_path(prefix_path):
return prefix_path + ".bin"
def create_doc_idx(sizes):
doc_idx = [0]
for i, s in enumerate(sizes):
if s == 0:
doc_idx.append(i + 1)
return doc_idx
class IndexedDataset(torch.utils.data.Dataset):
"""Loader for IndexedDataset"""
_HDR_MAGIC = b"TNTIDX\x00\x00"
def __init__(self, path):
super().__init__()
self.path = path
self.data_file = None
self.read_index(path)
def read_index(self, path):
with open(index_file_path(path), "rb") as f:
magic = f.read(8)
assert magic == self._HDR_MAGIC, (
"Index file doesn't match expected format. "
"Make sure that --dataset-impl is configured properly."
)
version = f.read(8)
assert struct.unpack("<Q", version) == (1,)
code, self.element_size = struct.unpack("<QQ", f.read(16))
self.dtype = dtypes[code]
self._len, self.s = struct.unpack("<QQ", f.read(16))
self.doc_count = struct.unpack("<Q", f.read(8))
self.dim_offsets = read_longs(f, self._len + 1)
self.data_offsets = read_longs(f, self._len + 1)
self.sizes = read_longs(f, self.s)
self.doc_idx = read_longs(f, self.doc_count)
def read_data(self, path):
self.data_file = open(data_file_path(path), "rb", buffering=0)
def check_index(self, i):
if i < 0 or i >= self._len:
raise IndexError("index out of range")
def __del__(self):
if self.data_file:
self.data_file.close()
# @lru_cache(maxsize=8)
def __getitem__(self, idx):
if not self.data_file:
self.read_data(self.path)
if isinstance(idx, int):
i = idx
self.check_index(i)
tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]]
a = np.empty(tensor_size, dtype=self.dtype)
self.data_file.seek(self.data_offsets[i] * self.element_size)
self.data_file.readinto(a)
return a
elif isinstance(idx, slice):
start, stop, step = idx.indices(len(self))
if step != 1:
raise ValueError("Slices into indexed_dataset must be contiguous")
sizes = self.sizes[self.dim_offsets[start] : self.dim_offsets[stop]]
size = sum(sizes)
a = np.empty(size, dtype=self.dtype)
self.data_file.seek(self.data_offsets[start] * self.element_size)
self.data_file.readinto(a)
offsets = list(accumulate(sizes))
sents = np.split(a, offsets[:-1])
return sents
def __len__(self):
return self._len
def num_tokens(self, index):
return self.sizes[index]
def size(self, index):
return self.sizes[index]
@staticmethod
def exists(path):
return os.path.exists(index_file_path(path)) and os.path.exists(
data_file_path(path)
)
@property
def supports_prefetch(self):
return False # avoid prefetching to save memory
class IndexedCachedDataset(IndexedDataset):
def __init__(self, path):
super().__init__(path)
self.cache = None
self.cache_index = {}
@property
def supports_prefetch(self):
return True
def prefetch(self, indices):
if all(i in self.cache_index for i in indices):
return
if not self.data_file:
self.read_data(self.path)
indices = sorted(set(indices))
total_size = 0
for i in indices:
total_size += self.data_offsets[i + 1] - self.data_offsets[i]
self.cache = np.empty(total_size, dtype=self.dtype)
ptx = 0
self.cache_index.clear()
for i in indices:
self.cache_index[i] = ptx
size = self.data_offsets[i + 1] - self.data_offsets[i]
a = self.cache[ptx : ptx + size]
self.data_file.seek(self.data_offsets[i] * self.element_size)
self.data_file.readinto(a)
ptx += size
if self.data_file:
# close and delete data file after prefetch so we can pickle
self.data_file.close()
self.data_file = None
# @lru_cache(maxsize=8)
def __getitem__(self, idx):
if isinstance(idx, int):
i = idx
self.check_index(i)
tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]]
a = np.empty(tensor_size, dtype=self.dtype)
ptx = self.cache_index[i]
np.copyto(a, self.cache[ptx : ptx + a.size])
return a
elif isinstance(idx, slice):
# Hack just to make this work, can optimizer later if necessary
sents = []
for i in range(*idx.indices(len(self))):
sents.append(self[i])
return sents
class IndexedDatasetBuilder(object):
element_sizes = {
np.uint8: 1,
np.int8: 1,
np.int16: 2,
np.int32: 4,
np.int64: 8,
np.float32: 4,
np.float64: 8,
}
def __init__(self, out_file, dtype=np.int32):
self.out_file = open(out_file, "wb")
self.dtype = dtype
self.data_offsets = [0]
self.dim_offsets = [0]
self.sizes = []
self.element_size = self.element_sizes[self.dtype]
self.doc_idx = [0]
def add_item(self, np_array):
assert isinstance(np_array, np.ndarray) and np_array.dtype == self.dtype
bytes = self.out_file.write(np_array)
self.data_offsets.append(self.data_offsets[-1] + bytes / self.element_size)
for s in np_array.shape:
self.sizes.append(s)
self.dim_offsets.append(self.dim_offsets[-1] + len(np_array.shape))
def end_document(self):
self.doc_idx.append(len(self.sizes))
def merge_file_(self, another_file):
index = IndexedDataset(another_file)
assert index.dtype == self.dtype
begin = self.data_offsets[-1]
for offset in index.data_offsets[1:]:
self.data_offsets.append(begin + offset)
self.sizes.extend(index.sizes)
begin = self.dim_offsets[-1]
for dim_offset in index.dim_offsets[1:]:
self.dim_offsets.append(begin + dim_offset)
with open(data_file_path(another_file), "rb") as f:
while True:
data = f.read(1024)
if data:
self.out_file.write(data)
else:
break
def finalize(self, index_file):
self.out_file.close()
index = open(index_file, "wb")
index.write(b"TNTIDX\x00\x00")
index.write(struct.pack("<Q", 1))
index.write(struct.pack("<QQ", code(self.dtype), self.element_size))
index.write(struct.pack("<QQ", len(self.data_offsets) - 1, len(self.sizes)))
index.write(struct.pack("<Q", len(self.doc_idx)))
write_longs(index, self.dim_offsets)
write_longs(index, self.data_offsets)
write_longs(index, self.sizes)
write_longs(index, self.doc_idx)
index.close()
def _warmup_mmap_file(path):
with open(path, "rb") as stream:
while stream.read(100 * 1024 * 1024):
pass
class MMapIndexedDataset(torch.utils.data.Dataset):
class Index(object):
_HDR_MAGIC = b"MMIDIDX\x00\x00"
@classmethod
def writer(cls, path, dtype):
class _Writer(object):
def __enter__(self):
self._file = open(path, "wb")
# Write Magic string so we can check the file format then opening it again.
self._file.write(cls._HDR_MAGIC)
# Write version number
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", 1))
# Little endian unsigned 8 Bit integer
self._file.write(struct.pack("<B", code(dtype)))
return self
@staticmethod
def _get_pointers(sizes):
pointers = np.zeros(len(sizes), dtype=np.int64)
sizes = np.array(sizes, dtype=np.int64)
np.cumsum(sizes[:-1], out=pointers[1:])
pointers = pointers * dtype().itemsize
return pointers
def write(self, sizes, doc_idx):
pointers = self._get_pointers(sizes)
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", len(sizes)))
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", len(doc_idx)))
sizes = np.array(sizes, dtype=np.int32)
self._file.write(sizes.tobytes(order="C"))
del sizes
pointers = np.array(pointers, dtype=np.int64)
self._file.write(pointers.tobytes(order="C"))
del pointers
doc_idx = np.array(doc_idx, dtype=np.int64)
self._file.write(doc_idx.tobytes(order="C"))
def __exit__(self, exc_type, exc_val, exc_tb):
self._file.close()
return _Writer()
def __init__(self, path, skip_warmup=False):
with open(path, "rb") as stream:
magic_test = stream.read(9)
assert self._HDR_MAGIC == magic_test, (
"Index file doesn't match expected format. "
"Make sure that --dataset-impl is configured properly."
)
# Little endian unsigned 64 Bit integer
version = struct.unpack("<Q", stream.read(8))
assert (1,) == version
# Little endian unsigned 8 Bit integer
(dtype_code,) = struct.unpack("<B", stream.read(1))
self._dtype = dtypes[dtype_code]
self._dtype_size = self._dtype().itemsize
self._len = struct.unpack("<Q", stream.read(8))[0]
self._doc_count = struct.unpack("<Q", stream.read(8))[0]
offset = stream.tell()
if not skip_warmup:
print(" warming up index mmap file...")
_warmup_mmap_file(path)
self._bin_buffer_mmap = np.memmap(path, mode="r", order="C")
self._bin_buffer = memoryview(self._bin_buffer_mmap)
print(" reading sizes...")
self._sizes = np.frombuffer(
self._bin_buffer, dtype=np.int32, count=self._len, offset=offset
)
print(" reading pointers...")
self._pointers = np.frombuffer(
self._bin_buffer,
dtype=np.int64,
count=self._len,
offset=offset + self._sizes.nbytes,
)
print(" reading document index...")
self._doc_idx = np.frombuffer(
self._bin_buffer,
dtype=np.int64,
count=self._doc_count,
offset=offset + self._sizes.nbytes + self._pointers.nbytes,
)
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
@property
def dtype(self):
return self._dtype
@property
def sizes(self):
return self._sizes
@property
def doc_idx(self):
return self._doc_idx
@lru_cache(maxsize=8)
def __getitem__(self, i):
return self._pointers[i], self._sizes[i]
def __len__(self):
return self._len
def __init__(self, path, skip_warmup=False):
super().__init__()
self._path = None
self._index = None
self._bin_buffer = None
self._do_init(path, skip_warmup)
def __getstate__(self):
return self._path
def __setstate__(self, state):
self._do_init(state)
def _do_init(self, path, skip_warmup):
self._path = path
self._index = self.Index(index_file_path(self._path), skip_warmup)
if not skip_warmup:
print(" warming up data mmap file...")
_warmup_mmap_file(data_file_path(self._path))
print(" creating numpy buffer of mmap...")
self._bin_buffer_mmap = np.memmap(
data_file_path(self._path), mode="r", order="C"
)
print(" creating memory view of numpy buffer...")
self._bin_buffer = memoryview(self._bin_buffer_mmap)
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
del self._index
def __len__(self):
return len(self._index)
# @lru_cache(maxsize=8)
def __getitem__(self, idx):
if isinstance(idx, int):
ptr, size = self._index[idx]
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
)
return np_array
elif isinstance(idx, slice):
start, stop, step = idx.indices(len(self))
if step != 1:
raise ValueError("Slices into indexed_dataset must be contiguous")
ptr = self._index._pointers[start]
sizes = self._index._sizes[idx]
offsets = list(accumulate(sizes))
total_size = sum(sizes)
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=total_size, offset=ptr
)
sents = np.split(np_array, offsets[:-1])
return sents
def get(self, idx, offset=0, length=None):
"""Retrieves a single item from the dataset with the option to only
return a portion of the item.
get(idx) is the same as [idx] but get() does not support slicing.
"""
ptr, size = self._index[idx]
if length is None:
length = size - offset
ptr += offset * np.dtype(self._index.dtype).itemsize
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=length, offset=ptr
)
return np_array
@property
def sizes(self):
return self._index.sizes
@property
def doc_idx(self):
return self._index.doc_idx
def get_doc_idx(self):
return self._index._doc_idx
def set_doc_idx(self, doc_idx_):
self._index._doc_idx = doc_idx_
@property
def supports_prefetch(self):
return False
@staticmethod
def exists(path):
return os.path.exists(index_file_path(path)) and os.path.exists(
data_file_path(path)
)
class MMapIndexedDatasetBuilder(object):
def __init__(self, out_file, dtype=np.int64):
self._data_file = open(out_file, "wb")
self._dtype = dtype
self._sizes = []
self._doc_idx = [0]
@property
def dtype(self):
return self._dtype
def add_item(self, np_array):
assert isinstance(np_array, np.ndarray) and np_array.dtype == self.dtype
self._data_file.write(np_array.tobytes(order="C"))
self._sizes.append(np_array.size)
def end_document(self):
self._doc_idx.append(len(self._sizes))
def merge_file_(self, another_file):
# Concatenate index
index = MMapIndexedDataset.Index(index_file_path(another_file))
assert index.dtype == self._dtype
for size in index.sizes:
self._sizes.append(size)
# Concatenate data
with open(data_file_path(another_file), "rb") as f:
shutil.copyfileobj(f, self._data_file)
def finalize(self, index_file):
self._data_file.close()
with MMapIndexedDataset.Index.writer(index_file, self._dtype) as index:
index.write(self._sizes, self._doc_idx)

View File

@@ -0,0 +1,250 @@
# Copyright (c) 2021, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Processing data for pretraining."""
import os
import sys
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
import argparse
import multiprocessing
import lm_dataformat as lmd
import numpy as np
sys.path.append(
os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))
)
import time
import tqdm
import ftfy
from tokenizer import build_tokenizer
import indexed_dataset
from threading import Semaphore
class Encoder(object):
def __init__(self, args):
self.args = args
def initializer(self):
# Use Encoder class as a container for global data
Encoder.tokenizer = build_tokenizer(self.args)
def encode(self, text):
if self.args.ftfy:
text = ftfy.fix_text(text)
ids = {}
for key in self.args.jsonl_keys:
doc_ids = []
text_ids = Encoder.tokenizer.tokenize(text)
if len(text_ids) > 0:
doc_ids.append(text_ids)
if self.args.append_eod:
doc_ids[-1].append(Encoder.tokenizer.eod)
ids[key] = doc_ids
return ids, len(text)
def get_args():
parser = argparse.ArgumentParser()
group = parser.add_argument_group(title="input data")
group.add_argument(
"--input",
type=str,
required=True,
help="Path to input jsonl files or lmd archive(s) - if using multiple archives, put them in a comma separated "
"list",
)
group.add_argument(
"--jsonl-keys",
nargs="+",
default=["text"],
help="space separate listed of keys to extract from jsonl. Defa",
)
group.add_argument(
"--num-docs",
default=None,
help="Optional: Number of documents in the input data (if known) for an accurate progress bar.",
type=int,
)
group = parser.add_argument_group(title="tokenizer")
group.add_argument(
"--tokenizer-type",
type=str,
required=True,
choices=[
"HFGPT2Tokenizer",
"HFTokenizer",
"GPT2BPETokenizer",
"CharLevelTokenizer",
"TiktokenTokenizer",
"RWKVTokenizer",
],
help="What type of tokenizer to use.",
)
group.add_argument(
"--vocab-file", type=str, default=None, help="Path to the vocab file"
)
group.add_argument(
"--merge-file",
type=str,
default=None,
help="Path to the BPE merge file (if necessary).",
)
group.add_argument(
"--append-eod",
action="store_true",
help="Append an <eod> token to the end of a document.",
)
group.add_argument("--ftfy", action="store_true", help="Use ftfy to clean text")
group = parser.add_argument_group(title="output data")
group.add_argument(
"--output-prefix",
type=str,
required=True,
help="Path to binary output file without suffix",
)
group.add_argument(
"--dataset-impl",
type=str,
default="mmap",
choices=["lazy", "cached", "mmap"],
help="Dataset implementation to use. Default: mmap",
)
group = parser.add_argument_group(title="runtime")
group.add_argument(
"--workers", type=int, default=1, help="Number of worker processes to launch"
)
group.add_argument(
"--log-interval",
type=int,
default=100,
help="Interval between progress updates",
)
args = parser.parse_args()
args.keep_empty = False
# some default/dummy values for the tokenizer
args.rank = 0
args.make_vocab_size_divisible_by = 128
args.model_parallel_size = 1
return args
def yield_from_files(fnames: list, semaphore):
"""
Iterator over input documents using lm_dataformat. Should be able to handle jsons / texts /
other compressed formats. Also filters out empty documents.
:param fnames: list of filenames
"""
def yielder(fname, semaphore):
for f in filter(lambda x: x, lmd.Reader(fname).stream_data()):
semaphore.acquire()
yield f
for fname in fnames:
semaphore.acquire()
yield from yielder(fname, semaphore)
def main():
args = get_args()
encoder = Encoder(args)
tokenizer = build_tokenizer(args)
print(f"Vocab size: {tokenizer.vocab_size}")
print(f"Output prefix: {args.output_prefix}")
# build a semaphore object to stop `yield_from_files` from getting ahead of encoder.encode and
# hence building up memory
semaphore = Semaphore(10000 + args.workers)
# use multiprocessing to iterate over input documents
fin = yield_from_files(args.input.split(","), semaphore)
if args.workers > 1:
pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer)
encoded_docs = pool.imap(encoder.encode, fin, chunksize=25)
else:
encoder.initializer()
encoded_docs = (encoder.encode(doc) for doc in fin)
# make a dataset builder for each key in args.jsonl_keys
# each key will output to a different file beginning with args.output_prefix
output_bin_files = {}
output_idx_files = {}
builders = {}
for key in args.jsonl_keys:
output_bin_files[key] = "{}_{}_{}.bin".format(
args.output_prefix, key, "document"
)
output_idx_files[key] = "{}_{}_{}.idx".format(
args.output_prefix, key, "document"
)
builders[key] = indexed_dataset.make_builder(
output_bin_files[key],
impl=args.dataset_impl,
vocab_size=tokenizer.vocab_size,
)
# actually do tokenization
proc_start = time.time()
total_bytes_processed = 0
pbar = tqdm.tqdm()
for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1):
total_bytes_processed += bytes_processed
# release semaphore so `yield_from_files` can add another file to the buffer
semaphore.release()
# add each tokenized document / sentence
for key, sentences in doc.items():
for sentence in sentences:
builders[key].add_item(np.array(sentence, dtype=builders[key].dtype))
# separate with eos token
builders[key].end_document()
# log progress
if i % args.log_interval == 0:
current = time.time()
elapsed = current - proc_start
mbs = total_bytes_processed / elapsed / 1024 / 1024
pbar.set_description(
f"Processed {i}{'' if args.num_docs is None else '/' + str(args.num_docs)} documents ({i / elapsed:0.2f} docs/s, {mbs:0.2f} MB/s)."
)
if i != 0:
pbar.update(args.log_interval)
# save output file
for key in args.jsonl_keys:
builders[key].finalize(output_idx_files[key])
if __name__ == "__main__":
try:
main()
except Exception as e:
with open("error.txt", "w") as f:
f.write(str(e))

View File

@@ -0,0 +1,232 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
# Source: https://github.com/BlinkDL/ChatRWKV/blob/main/tokenizer/rwkv_tokenizer.py
########################################################################################################
import os, sys, time, random
print('''
#######################################################################################################################
This tokenizer is not used in any RWKV models yet. I plan to use it for the future multilang RWKV models.
Benefits:
* Good support of most languages, from European to CJK to Arabic and Hindi and more.
* Clean vocab. Good for code too. Vocab size = 65525 (use 0 for <|endoftext|>).
* Good at numbers: the numerical tokens are '0'~'9', '10'~'99', ' 0'~' 9', ' 10'~' 99'.
* Very easy tokenization:
** The input text must be in UTF-8.
** Greedy encoding: always pick the longest (in bytes) token (with the highest id) that matches your UTF-8 bytes.
* The tokenization result is surprisingly good, because the vocab respects word boundaries and UTF-8 boundaries.
For 10x faster speed:
mypyc rwkv_tokenizer.py
python3 -c "import rwkv_tokenizer"
#######################################################################################################################
''')
########################################################################################################
# Tokenizer #1 (reference, naive, slow)
########################################################################################################
class RWKV_TOKENIZER():
table = None # : list[list[list[bytes]]] = None
good = None # : list[set[int]]
wlen = None # : list[int]
def __init__(self, file_name):
self.vocab_size = 65525
self.idx2token = {}
sorted = [] # must be already sorted
lines = open(file_name, "r", encoding="utf-8").readlines()
for l in lines:
idx = int(l[:l.index(' ')])
x = eval(l[l.index(' '):l.rindex(' ')])
x = x.encode("utf-8") if isinstance(x, str) else x
assert isinstance(x, bytes)
assert len(x) == int(l[l.rindex(' '):])
sorted += [x]
self.idx2token[idx] = x
self.token2idx = {}
for k, v in self.idx2token.items():
self.token2idx[v] = int(k)
# precompute some tables for fast matching
self.table = [[[] for j in range(256)] for i in range(256)]
self.good = [set() for i in range(256)]
self.wlen = [0 for i in range(256)]
for i in reversed(range(len(sorted))): # reverse order - match longer tokens first
s = sorted[i]
if len(s) >= 2:
s0 = int(s[0])
s1 = int(s[1])
self.table[s0][s1] += [s]
self.wlen[s0] = max(self.wlen[s0], len(s))
self.good[s0].add(s1)
def encodeBytes(self, src: bytes):
src_len: int = len(src)
tokens = []
i: int = 0
while i < src_len:
s: bytes = src[i : i + 1]
if i < src_len - 1:
s1: int = int(src[i + 1])
s0: int = int(src[i])
if s1 in self.good[s0]:
sss: bytes = src[i : i + self.wlen[s0]]
try:
s = next(filter(sss.startswith, self.table[s0][s1]))
except:
pass
tokens.append(self.token2idx[s])
i += len(s)
return tokens
def decodeBytes(self, tokens):
return b''.join(map(lambda i: self.idx2token[i], tokens))
def encode(self, src: str):
return self.encodeBytes(src.encode("utf-8"))
def decode(self, tokens):
return self.decodeBytes(tokens).decode('utf-8')
def token_to_id(self, token):
return self.token2idx[token]
def get_vocab_size(self):
return self.vocab_size
def get_vocab(self):
return self.idx2token
def printTokens(self, tokens):
for i in tokens:
s = self.idx2token[i]
try:
s = s.decode('utf-8')
except:
pass
print(f'{repr(s)}{i}', end=' ')
# print(repr(s), i)
print()
########################################################################################################
# Tokenizer #2 (trie, faster) https://github.com/TkskKurumi/ChatRWKV-TRIE-Tokenizer
########################################################################################################
class TRIE:
__slots__ = tuple("ch,to,values,front".split(","))
to:list
values:set
def __init__(self, front=None, ch=None):
self.ch = ch
self.to = [None for ch in range(256)]
self.values = set()
self.front = front
def __repr__(self):
fr = self
ret = []
while(fr!=None):
if(fr.ch!=None):
ret.append(fr.ch)
fr = fr.front
return "<TRIE %s %s>"%(ret[::-1], self.values)
def add(self, key:bytes, idx:int=0, val=None):
if(idx == len(key)):
if(val is None):
val = key
self.values.add(val)
return self
ch = key[idx]
if(self.to[ch] is None):
self.to[ch] = TRIE(front=self, ch=ch)
return self.to[ch].add(key, idx=idx+1, val=val)
def find_longest(self, key:bytes, idx:int=0):
u:TRIE = self
ch:int = key[idx]
while(u.to[ch] is not None):
u = u.to[ch]
idx += 1
if(u.values):
ret = idx, u, u.values
if(idx==len(key)):
break
ch = key[idx]
return ret
class TRIE_TOKENIZER():
def __init__(self, file_name):
self.vocab_size = 65525
self.idx2token = {}
sorted = [] # must be already sorted
with open(file_name, "r", encoding="utf-8") as f:
lines = f.readlines()
for l in lines:
idx = int(l[:l.index(' ')])
x = eval(l[l.index(' '):l.rindex(' ')])
x = x.encode("utf-8") if isinstance(x, str) else x
assert isinstance(x, bytes)
assert len(x) == int(l[l.rindex(' '):])
sorted += [x]
self.idx2token[idx] = x
self.token2idx = {}
for k,v in self.idx2token.items():
self.token2idx[v] = int(k)
self.root = TRIE()
for t, i in self.token2idx.items():
_ = self.root.add(t, val=(t, i))
def encodeBytes(self, src:bytes):
idx:int = 0
tokens = []
while (idx < len(src)):
_idx:int = idx
idx, _, values = self.root.find_longest(src, idx)
assert(idx != _idx)
_, token = next(iter(values))
tokens.append(token)
return tokens
def decodeBytes(self, tokens):
return b''.join(map(lambda i: self.idx2token[i], tokens))
def encode(self, src):
return self.encodeBytes(src.encode("utf-8"))
def decode(self, tokens):
return self.decodeBytes(tokens).decode('utf-8')
def get_vocab_size(self):
return self.vocab_size
def get_vocab(self):
return self.idx2token
def printTokens(self, tokens):
for i in tokens:
s = self.idx2token[i]
try:
s = s.decode('utf-8')
except:
pass
print(f'{repr(s)}{i}', end=' ')
print()

View File

@@ -0,0 +1,205 @@
# Copyright (c) 2021, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Megatron tokenizers."""
from abc import ABC
from abc import abstractmethod
from tokenizers import Tokenizer
from rwkv_tokenizer import RWKV_TOKENIZER, TRIE_TOKENIZER
from typing import List, Union
def build_tokenizer(args):
"""Initialize tokenizer."""
if args.rank == 0:
print("> building {} tokenizer ...".format(args.tokenizer_type), flush=True)
# Select and instantiate the tokenizer.
if args.tokenizer_type.lower() == "HFTokenizer".lower():
assert args.vocab_file is not None
tokenizer = HFTokenizer(args.vocab_file)
elif args.tokenizer_type.lower() == "RWKVTokenizer".lower():
assert args.vocab_file is not None
tokenizer = RWKVTokenizer(args.vocab_file)
else:
raise NotImplementedError(
"{} tokenizer is not " "implemented.".format(args.tokenizer_type)
)
# Add vocab size.
args.padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size, args)
return tokenizer
def _vocab_size_with_padding(orig_vocab_size, args):
"""Pad vocab size so it is divisible by model parallel size and
still having GPU friendly size."""
after = orig_vocab_size
multiple = args.make_vocab_size_divisible_by * args.model_parallel_size
while (after % multiple) != 0:
after += 1
if args.rank == 0:
print(
" > padded vocab (size: {}) with {} dummy tokens "
"(new size: {})".format(orig_vocab_size, after - orig_vocab_size, after),
flush=True,
)
return after
class AbstractTokenizer(ABC):
"""Abstract class for tokenizer."""
def __init__(self, name):
self.name = name
super().__init__()
@property
@abstractmethod
def vocab_size(self):
pass
@property
@abstractmethod
def vocab(self):
"""Dictionary from vocab text token to id token."""
pass
@property
@abstractmethod
def inv_vocab(self):
"""Dictionary from vocab id token to text token."""
pass
@abstractmethod
def tokenize(self, text):
pass
def detokenize(self, token_ids):
raise NotImplementedError(
"detokenizer is not implemented for {} " "tokenizer".format(self.name)
)
@property
def cls(self):
raise NotImplementedError(
"CLS is not provided for {} " "tokenizer".format(self.name)
)
@property
def sep(self):
raise NotImplementedError(
"SEP is not provided for {} " "tokenizer".format(self.name)
)
@property
def pad(self):
raise NotImplementedError(
"PAD is not provided for {} " "tokenizer".format(self.name)
)
@property
def eod(self):
raise NotImplementedError(
"EOD is not provided for {} " "tokenizer".format(self.name)
)
@property
def mask(self):
raise NotImplementedError(
"MASK is not provided for {} " "tokenizer".format(self.name)
)
class HFTokenizer(AbstractTokenizer):
"""Designed to Integrate HF's Tokenizer library."""
def __init__(self, vocab_file):
name = "HFTokenizer"
super().__init__(name)
self.tokenizer = Tokenizer.from_file(vocab_file)
self.eod_id = self.tokenizer.token_to_id("<|endoftext|>")
self.pad_id = self.tokenizer.token_to_id("<|padding|>")
@property
def vocab_size(self):
return self.tokenizer.get_vocab_size()
@property
def vocab(self):
return self.tokenizer.get_vocab()
@property
def inv_vocab(self):
return self.tokenizer.decoder
def tokenize(self, text: str):
return self.tokenizer.encode(text).ids
def tokenize_batch(self, text_batch: Union[List[str], str]):
return self.tokenizer.encode_batch(text_batch)
def detokenize(self, token_ids):
return self.tokenizer.decode(token_ids)
@property
def eod(self):
return self.eod_id
class RWKVTokenizer(AbstractTokenizer):
"""RWKV Worlds Tokenizer."""
def __init__(self, vocab_file='rwkv_vocab_v20230424.txt'):
name = "RWKVTokenizer"
super().__init__(name)
self.tokenizer = TRIE_TOKENIZER(vocab_file)
self.eod_id = 0 # self.tokenizer.token_to_id("<|endoftext|>")
# self.pad_id = self.tokenizer.token_to_id("<|padding|>")
@property
def vocab_size(self):
return self.tokenizer.get_vocab_size()
@property
def vocab(self):
return self.tokenizer.get_vocab()
@property
def inv_vocab(self):
return self.tokenizer.decode
def tokenize(self, text: str):
return self.tokenizer.encode(text)
def tokenize_batch(self, text_batch: Union[List[str], str]):
return self.tokenizer.encode_batch(text_batch)
def detokenize(self, token_ids):
return self.tokenizer.decode(token_ids)
@property
def eod(self):
return self.eod_id

133
finetune/lora/cuda/wkv_cuda.cu vendored Normal file
View File

@@ -0,0 +1,133 @@
#include <stdio.h>
#include <assert.h>
#define MIN_VALUE (-1e38)
template <typename F>
__global__ void kernel_forward(const int B, const int T, const int C,
const F *__restrict__ const _w, const F *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
F *__restrict__ const _y) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
F u = _u[_c];
F w = _w[_c];
const F *__restrict__ const k = _k + _offset;
const F *__restrict__ const v = _v + _offset;
F *__restrict__ const y = _y + _offset;
// aa and bb are running sums divided by exp(pp) (to avoid overflow)
F aa = 0, bb = 0, pp = MIN_VALUE;
for (int i = 0; i < T; i++) {
const int ii = i * C;
const F kk = k[ii];
const F vv = v[ii];
F ww = u + kk;
F p = max(pp, ww);
F e1 = exp(pp - p);
F e2 = exp(ww - p);
y[ii] = (e1 * aa + e2 * vv) / (e1 * bb + e2);
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
}
template <typename F>
__global__ void kernel_backward(const int B, const int T, const int C,
const F *__restrict__ const _w, const F *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
const F *__restrict__ const _y, const F *__restrict__ const _gy,
F *__restrict__ const _gw, F *__restrict__ const _gu, F *__restrict__ const _gk, F *__restrict__ const _gv) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
F u = _u[_c];
F w = _w[_c];
const F *__restrict__ const k = _k + _offset;
const F *__restrict__ const v = _v + _offset;
const F *__restrict__ const y = _y + _offset;
const F *__restrict__ const gy = _gy + _offset;
F *__restrict__ const gk = _gk + _offset;
F *__restrict__ const gv = _gv + _offset;
F q[Tmax], r[Tmax];
F gw = 0, gu = 0, aa = 0, bb = 0, ga = 0, gb = 0, pp = MIN_VALUE;
for (int i = 0; i < T; i++) {
const int ii = i * C;
const F kk = k[ii];
const F vv = v[ii];
const F yy = y[ii];
F ww = u + kk;
F p = max(pp, ww);
F e1 = exp(pp - p);
F e2 = exp(ww - p);
const F qq = gy[ii] / (e1 * bb + e2);
gw += (ga - gb * yy) * e1 * qq;
gu += (vv - yy) * e2 * qq;
q[i] = qq;
r[i] = ww - p;
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
ga = e1 * (aa + ga);
gb = e1 * (bb + gb);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
const int _offsetBC = _b * C + _c;
_gw[_offsetBC] = gw * _w[_c]; // multiply by w because of w -> -exp(w) in python forward()
_gu[_offsetBC] = gu;
aa = 0, bb = 0, pp = MIN_VALUE;
for (int i = T - 1; i >= 0; i--) {
const int ii = i * C;
const F kk = k[ii];
const F vv = v[ii];
const F yy = y[ii];
const F qq = q[i];
const F rr = r[i];
F e1 = qq * exp(rr);
F e2 = exp(kk + pp);
gk[ii] = e1 * (vv - yy) + e2 * (aa * vv + bb);
gv[ii] = e1 + e2 * aa;
const F ww = w + pp;
const F www = rr - u - kk;
const F p = max(ww, www);
e1 = exp(ww - p);
e2 = qq * exp(www - p);
aa = e1 * aa + e2;
bb = e1 * bb - e2 * yy;
pp = p;
}
}
void cuda_forward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y);
}
void cuda_backward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y, float *gy, float *gw, float *gu, float *gk, float *gv) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_backward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, gy, gw, gu, gk, gv);
}

132
finetune/lora/cuda/wkv_cuda_bf16.cu vendored Normal file
View File

@@ -0,0 +1,132 @@
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
#define MIN_VALUE (-1e38)
typedef at::BFloat16 bf16;
__global__ void kernel_forward(const int B, const int T, const int C,
const float *__restrict__ const _w, const bf16 *__restrict__ const _u, const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v,
bf16 *__restrict__ const _y) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
float u = float(_u[_c]);
float w = _w[_c];
const bf16 *__restrict__ const k = _k + _offset;
const bf16 *__restrict__ const v = _v + _offset;
bf16 *__restrict__ const y = _y + _offset;
// aa and bb are running sums divided by exp(pp) (to avoid overflow)
float aa = 0, bb = 0, pp = MIN_VALUE;
for (int i = 0; i < T; i++) {
const int ii = i * C;
const float kk = float(k[ii]);
const float vv = float(v[ii]);
float ww = u + kk;
float p = max(pp, ww);
float e1 = exp(pp - p);
float e2 = exp(ww - p);
y[ii] = bf16((e1 * aa + e2 * vv) / (e1 * bb + e2));
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
}
__global__ void kernel_backward(const int B, const int T, const int C,
const float *__restrict__ const _w, const bf16 *__restrict__ const _u, const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v,
const bf16 *__restrict__ const _y, const bf16 *__restrict__ const _gy,
bf16 *__restrict__ const _gw, bf16 *__restrict__ const _gu, bf16 *__restrict__ const _gk, bf16 *__restrict__ const _gv) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
float u = float(_u[_c]);
float w = _w[_c];
const bf16 *__restrict__ const k = _k + _offset;
const bf16 *__restrict__ const v = _v + _offset;
const bf16 *__restrict__ const y = _y + _offset;
const bf16 *__restrict__ const gy = _gy + _offset;
bf16 *__restrict__ const gk = _gk + _offset;
bf16 *__restrict__ const gv = _gv + _offset;
float q[Tmax], r[Tmax];
float gw = 0, gu = 0, aa = 0, bb = 0, ga = 0, gb = 0, pp = MIN_VALUE;
for (int i = 0; i < T; i++) {
const int ii = i * C;
const float kk = float(k[ii]);
const float vv = float(v[ii]);
const float yy = float(y[ii]);
float ww = u + kk;
float p = max(pp, ww);
float e1 = exp(pp - p);
float e2 = exp(ww - p);
const float qq = float(gy[ii]) / (e1 * bb + e2);
gw += (ga - gb * yy) * e1 * qq;
gu += (vv - yy) * e2 * qq;
q[i] = qq;
r[i] = ww - p;
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
ga = e1 * (aa + ga);
gb = e1 * (bb + gb);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
const int _offsetBC = _b * C + _c;
_gw[_offsetBC] = bf16(gw * _w[_c]); // multiply by w because of w -> -exp(w) in python forward()
_gu[_offsetBC] = bf16(gu);
aa = 0, bb = 0, pp = MIN_VALUE;
for (int i = T - 1; i >= 0; i--) {
const int ii = i * C;
const float kk = float(k[ii]);
const float vv = float(v[ii]);
const float yy = float(y[ii]);
const float qq = q[i];
const float rr = r[i];
float e1 = qq * exp(rr);
float e2 = exp(kk + pp);
gk[ii] = bf16(e1 * (vv - yy) + e2 * (aa * vv + bb));
gv[ii] = bf16(e1 + e2 * aa);
const float ww = w + pp;
const float www = rr - u - kk;
const float p = max(ww, www);
e1 = exp(ww - p);
e2 = qq * exp(www - p);
aa = e1 * aa + e2;
bb = e1 * bb - e2 * yy;
pp = p;
}
}
void cuda_forward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y);
}
void cuda_backward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, bf16 *gy, bf16 *gw, bf16 *gu, bf16 *gk, bf16 *gv) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_backward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, gy, gw, gu, gk, gv);
}

21
finetune/lora/cuda/wkv_op.cpp vendored Normal file
View File

@@ -0,0 +1,21 @@
#include <torch/extension.h>
void cuda_forward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y);
void cuda_backward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y, float *gy, float *gw, float *gu, float *gk, float *gv);
void forward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y) {
cuda_forward(B, T, C, w.data_ptr<float>(), u.data_ptr<float>(), k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>());
}
void backward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y, torch::Tensor &gy, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gk, torch::Tensor &gv) {
cuda_backward(B, T, C, w.data_ptr<float>(), u.data_ptr<float>(), k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>(), gy.data_ptr<float>(), gw.data_ptr<float>(), gu.data_ptr<float>(), gk.data_ptr<float>(), gv.data_ptr<float>());
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "wkv forward");
m.def("backward", &backward, "wkv backward");
}
TORCH_LIBRARY(wkv, m) {
m.def("forward", forward);
m.def("backward", backward);
}

25
finetune/lora/cuda/wkv_op_bf16.cpp vendored Normal file
View File

@@ -0,0 +1,25 @@
#include <torch/extension.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
void cuda_forward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y);
void cuda_backward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, bf16 *gy, bf16 *gw, bf16 *gu, bf16 *gk, bf16 *gv);
void forward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y) {
cuda_forward(B, T, C, w.data_ptr<float>(), u.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), y.data_ptr<bf16>());
}
void backward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y,
torch::Tensor &gy, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gk, torch::Tensor &gv) {
cuda_backward(B, T, C, w.data_ptr<float>(), u.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), y.data_ptr<bf16>(),
gy.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>());
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "wkv forward");
m.def("backward", &backward, "wkv backward");
}
TORCH_LIBRARY(wkv, m) {
m.def("forward", forward);
m.def("backward", backward);
}

68
finetune/lora/merge_lora.py vendored Normal file
View File

@@ -0,0 +1,68 @@
from collections import OrderedDict
import os
import sys
from typing import Dict
import typing
import torch
try:
if "-h" in sys.argv or "--help" in sys.argv:
print(
f"Usage: python3 {sys.argv[0]} [--use-gpu] <lora_alpha> <base_model.pth> <lora_checkpoint.pth> <output.pth>"
)
if sys.argv[1] == "--use-gpu":
device = "cuda"
lora_alpha, base_model, lora, output = (
float(sys.argv[2]),
sys.argv[3],
sys.argv[4],
sys.argv[5],
)
else:
device = "cpu"
lora_alpha, base_model, lora, output = (
float(sys.argv[1]),
sys.argv[2],
sys.argv[3],
sys.argv[4],
)
with torch.no_grad():
w: Dict[str, torch.Tensor] = torch.load(base_model, map_location="cpu")
# merge LoRA-only slim checkpoint into the main weights
w_lora: Dict[str, torch.Tensor] = torch.load(lora, map_location="cpu")
for k in w_lora.keys():
w[k] = w_lora[k]
output_w: typing.OrderedDict[str, torch.Tensor] = OrderedDict()
# merge LoRA weights
keys = list(w.keys())
for k in keys:
if k.endswith(".weight"):
prefix = k[: -len(".weight")]
lora_A = prefix + ".lora_A"
lora_B = prefix + ".lora_B"
if lora_A in keys:
assert lora_B in keys
print(f"merging {lora_A} and {lora_B} into {k}")
assert w[lora_B].shape[1] == w[lora_A].shape[0]
lora_r = w[lora_B].shape[1]
w[k] = w[k].to(device=device)
w[lora_A] = w[lora_A].to(device=device)
w[lora_B] = w[lora_B].to(device=device)
w[k] += w[lora_B] @ w[lora_A] * (lora_alpha / lora_r)
output_w[k] = w[k].to(device="cpu", copy=True)
del w[k]
del w[lora_A]
del w[lora_B]
continue
if "lora" not in k:
print(f"retaining {k}")
output_w[k] = w[k].clone()
del w[k]
torch.save(output_w, output)
except Exception as e:
with open("error.txt", "w") as f:
f.write(str(e))

0
finetune/lora/src/__init__.py vendored Normal file
View File

269
finetune/lora/src/binidx.py vendored Normal file
View File

@@ -0,0 +1,269 @@
from lib2to3.pgen2 import token
import os
import torch
import numpy as np
import shutil
import struct
from functools import lru_cache
from itertools import accumulate
def print_rank_0(*message):
pass
# """If distributed is initialized print only on rank 0."""
# if torch.distributed.is_initialized():
# if torch.distributed.get_rank() == 0:
# print(*message, flush=True)
# else:
# print(*message, flush=True)
def _warmup_mmap_file(path):
pass
# with open(path, "rb") as stream:
# while stream.read(100 * 1024 * 1024):
# pass
dtypes = {
1: np.uint8,
2: np.int8,
3: np.int16,
4: np.int32,
5: np.int64,
6: float,
7: np.double,
8: np.uint16,
}
def code(dtype):
for k in dtypes.keys():
if dtypes[k] == dtype:
return k
raise ValueError(dtype)
def index_file_path(prefix_path):
return prefix_path + ".idx"
def data_file_path(prefix_path):
return prefix_path + ".bin"
class MMapIndexedDataset(torch.utils.data.Dataset):
class Index(object):
_HDR_MAGIC = b"MMIDIDX\x00\x00"
@classmethod
def writer(cls, path, dtype):
class _Writer(object):
def __enter__(self):
self._file = open(path, "wb")
# Write Magic string so we can check the file format then opening it again.
self._file.write(cls._HDR_MAGIC)
# Write version number
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", 1))
# Little endian unsigned 8 Bit integer
self._file.write(struct.pack("<B", code(dtype)))
return self
@staticmethod
def _get_pointers(sizes):
dtype_size = dtype().itemsize
address = 0
pointers = []
for size in sizes:
pointers.append(address)
address += size * dtype_size
return pointers
def write(self, sizes, doc_idx):
pointers = self._get_pointers(sizes)
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", len(sizes)))
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", len(doc_idx)))
sizes = np.array(sizes, dtype=np.int32)
self._file.write(sizes.tobytes(order="C"))
del sizes
pointers = np.array(pointers, dtype=np.int64)
self._file.write(pointers.tobytes(order="C"))
del pointers
doc_idx = np.array(doc_idx, dtype=np.int64)
self._file.write(doc_idx.tobytes(order="C"))
def __exit__(self, exc_type, exc_val, exc_tb):
self._file.close()
return _Writer()
def __init__(self, path, skip_warmup=False):
with open(path, "rb") as stream:
magic_test = stream.read(9)
assert self._HDR_MAGIC == magic_test, (
"Index file doesn't match expected format. "
"Make sure that --dataset-impl is configured properly."
)
# Little endian unsigned 64 Bit integer
version = struct.unpack("<Q", stream.read(8))
assert (1,) == version
# Little endian unsigned 8 Bit integer
(dtype_code,) = struct.unpack("<B", stream.read(1))
self._dtype = dtypes[dtype_code]
self._dtype_size = self._dtype().itemsize
self._len = struct.unpack("<Q", stream.read(8))[0]
self._doc_count = struct.unpack("<Q", stream.read(8))[0]
offset = stream.tell()
if not skip_warmup:
print_rank_0(" warming up index mmap file...")
_warmup_mmap_file(path)
self._bin_buffer_mmap = np.memmap(path, mode="r", order="C")
self._bin_buffer = memoryview(self._bin_buffer_mmap)
print_rank_0(" reading sizes...")
self._sizes = np.frombuffer(
self._bin_buffer, dtype=np.int32, count=self._len, offset=offset
)
print_rank_0(" reading pointers...")
self._pointers = np.frombuffer(
self._bin_buffer,
dtype=np.int64,
count=self._len,
offset=offset + self._sizes.nbytes,
)
print_rank_0(" reading document index...")
self._doc_idx = np.frombuffer(
self._bin_buffer,
dtype=np.int64,
count=self._doc_count,
offset=offset + self._sizes.nbytes + self._pointers.nbytes,
)
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
@property
def dtype(self):
return self._dtype
@property
def sizes(self):
return self._sizes
@property
def doc_idx(self):
return self._doc_idx
@lru_cache(maxsize=8)
def __getitem__(self, i):
return self._pointers[i], self._sizes[i]
def __len__(self):
return self._len
def __init__(self, path, skip_warmup=False):
super().__init__()
self._path = None
self._index = None
self._bin_buffer = None
self._do_init(path, skip_warmup)
def __getstate__(self):
return self._path
def __setstate__(self, state):
self._do_init(state)
def _do_init(self, path, skip_warmup):
self._path = path
self._index = self.Index(index_file_path(self._path), skip_warmup)
if not skip_warmup:
print_rank_0(" warming up data mmap file...")
_warmup_mmap_file(data_file_path(self._path))
print_rank_0(" creating numpy buffer of mmap...")
self._bin_buffer_mmap = np.memmap(
data_file_path(self._path), mode="r", order="C"
)
print_rank_0(" creating memory view of numpy buffer...")
self._bin_buffer = memoryview(self._bin_buffer_mmap)
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
del self._index
def __len__(self):
return len(self._index)
# @lru_cache(maxsize=8)
def __getitem__(self, idx):
if isinstance(idx, int):
ptr, size = self._index[idx]
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
)
return np_array
elif isinstance(idx, slice):
start, stop, step = idx.indices(len(self))
if step != 1:
raise ValueError(
"Slices into indexed_dataset must be contiguous")
ptr = self._index._pointers[start]
sizes = self._index._sizes[idx]
offsets = list(accumulate(sizes))
total_size = sum(sizes)
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=total_size, offset=ptr
)
sents = np.split(np_array, offsets[:-1])
return sents
def get(self, idx, offset=0, length=None):
"""Retrieves a single item from the dataset with the option to only
return a portion of the item.
get(idx) is the same as [idx] but get() does not support slicing.
"""
ptr, size = self._index[idx]
if length is None:
length = size - offset
ptr += offset * np.dtype(self._index.dtype).itemsize
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=length, offset=ptr
)
return np_array
@property
def sizes(self):
return self._index.sizes
@property
def doc_idx(self):
return self._index.doc_idx
def get_doc_idx(self):
return self._index._doc_idx
def set_doc_idx(self, doc_idx_):
self._index._doc_idx = doc_idx_
@property
def supports_prefetch(self):
return False
@staticmethod
def exists(path):
return os.path.exists(index_file_path(path)) and os.path.exists(
data_file_path(path)
)

224
finetune/lora/src/dataset.py vendored Normal file
View File

@@ -0,0 +1,224 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import json, math, random, os, sys
import numpy as np
import torch
from torch.utils.data import Dataset
from pytorch_lightning.utilities import rank_zero_info
from .binidx import MMapIndexedDataset
from .utils import MaybeIsPrime
class MyDataset(Dataset):
def __init__(self, args):
self.args = args
if args.data_type == "binidx":
self.vocab_size = args.vocab_size
rank_zero_info(f"Current vocab size = {self.vocab_size} (make sure it's correct)")
if args.data_file.endswith('/'):
d_all = []
for p in os.listdir(args.data_file):
if p.endswith(".idx"):
d_all += [p[:-4]]
d_all.sort()
rank_zero_info(d_all)
exit(0)
else:
self.data = MMapIndexedDataset(args.data_file)
self.data_size = len(self.data._bin_buffer) // self.data._index._dtype_size
rank_zero_info(f"Data has {self.data_size} tokens.")
if args.my_qa_mask > 0:
self.data_pile = MMapIndexedDataset('/fsx/BlinkDL/pile/pile_20B_tokenizer_text_document')
self.data_pile_size = len(self.data_pile._bin_buffer) // self.data._index._dtype_size
if args.my_pile_stage > 0:
# assert self.data_size == 332115325534 and self.vocab_size == 50277
self.samples_per_epoch = args.epoch_steps * args.real_bsz
assert self.samples_per_epoch == 40320
rank_zero_info(f"########## Pile 20b-tokenized stage {args.my_pile_stage} ##########")
dataset_slot = self.data_size // args.ctx_len
if args.my_pile_stage != 4:
assert MaybeIsPrime(args.magic_prime)
assert args.magic_prime % 3 == 2
assert args.magic_prime / dataset_slot > 0.99 and args.magic_prime / dataset_slot <= 1
elif args.data_type == "numpy":
self.data = np.load(args.data_file).astype("int")
self.vocab_size = args.vocab_size
rank_zero_info("Current vocab size =", self.vocab_size, "(make sure it's correct)")
self.data_size = len(self.data)
rank_zero_info(f"Data has {self.data_size} tokens.")
elif args.data_type == "uint16":
self.data = np.fromfile(args.data_file, dtype=np.uint16).astype("int32").reshape(-1, args.my_sample_len)
self.vocab_size = args.vocab_size
rank_zero_info("Current vocab size =", self.vocab_size, "(make sure it's correct)")
self.data_size = self.data.shape[0]
rank_zero_info(f"Data has {self.data_size} samples.")
elif args.data_type == "wds_img":
self.vocab_size = -1
self.data_size = -1
self.data = None
self.error_count = 0
else:
if args.data_type == "dummy":
rank_zero_info("Building dummy data...")
self.data = ""
for i in range(100000):
aa = (i) % 10000
bb = (i * i) % 10000
cc = aa + bb
self.data += f".{aa}+{bb}={cc}."
else:
self.data = open(args.data_file, "r", encoding=args.data_type).read()
rank_zero_info("Building token list...")
unique = sorted(list(set(self.data)))
self.vocab_size = len(unique)
# rank_zero_info()
# for u in unique:
# print(u, end=' ')
# rank_zero_info('\n\n')
xx = 0
xxObj = {}
for u in unique:
xxObj[xx] = u
xx += 1
with open(f"{args.proj_dir}/vocab.json", "w", encoding="utf-16le") as vocab_file:
vocab_file.write(json.dumps(xxObj, ensure_ascii=False))
self.data_size = len(self.data)
rank_zero_info(f"Data has {self.data_size} tokens, {self.vocab_size} vocab size.")
self.stoi = {ch: i for i, ch in enumerate(unique)}
self.itos = {i: ch for i, ch in enumerate(unique)}
def __len__(self):
return self.args.epoch_steps * self.args.micro_bsz
def __getitem__(self, idx):
args = self.args
rank = self.global_rank
epoch = self.real_epoch
world_size = self.world_size
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size}")
if args.data_type == "wds_img":
def init_wds(self, bias=0):
def identity(x):
return x
import webdataset as wds
import torchvision.transforms as transforms
# img_transform = transforms.Compose(
# [transforms.CenterCrop(256)]
# )
img_transform = transforms.Compose([
transforms.CenterCrop(512),
transforms.Resize((args.my_img_size))
])
self.data_raw = wds.WebDataset(args.data_file, resampled=True).shuffle(10000, initial=1000, rng=random.Random(epoch*100000+rank+bias*1e9)).decode("torchrgb").to_tuple("jpg", "json", "txt").map_tuple(img_transform, identity, identity)
for pp in self.data_raw.pipeline:
if 'Resampled' in str(pp):
pp.deterministic = True
def worker_seed():
return rank*100000+epoch+bias*1e9
pp.worker_seed = worker_seed
self.data = iter(self.data_raw)
# print(f"WebDataset loaded for rank {rank} epoch {epoch}")
if self.data == None:
init_wds(self)
trial = 0
while trial < 10:
try:
dd = next(self.data) # jpg, json, txt
break
except:
print(f'[dataloader error - epoch {epoch} rank {rank} - trying a new shuffle]')
self.error_count += 1
init_wds(self, self.error_count)
trial += 1
pass
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size} {dd[2]}")
# with open(f"sample_{rank}.txt", "a", encoding="utf-8") as tmp:
# tmp.write(f"epoch {epoch} idx {idx} rank {rank}/{world_size} {int(dd[1]['key'])}\n")
return dd[0], dd[2]
else:
if args.data_type == "uint16":
i = np.random.randint(0, self.data_size-1)
dix = self.data[i]
x = torch.tensor(dix[:-1], dtype=torch.long)
y = torch.tensor(dix[1:], dtype=torch.long)
else:
ctx_len = args.ctx_len
req_len = ctx_len + 1
magic_prime = args.magic_prime
data = self.data
if args.my_pile_stage > 0 and args.my_pile_stage != 4:
ii = 1 + epoch * self.samples_per_epoch + (idx * world_size) + rank
if args.my_qa_mask > 0:
ii_orig = ii
if ii % 2 == 0:
ii = (ii // 2) * args.magic_prime
if args.ctx_len == 1024:
magic_prime = 324331313
elif args.ctx_len == 2048:
magic_prime = 162165671
elif args.ctx_len == 4096:
magic_prime = 81082817
data = self.data_pile
else:
ii = ii // 2
factor = (math.sqrt(5) - 1) / 2
factor = int(magic_prime * factor)
i = ((factor * ii * ii * ii) % magic_prime) * ctx_len
if (args.my_qa_mask == 0) or (data == self.data_pile):
i = i + args.my_pile_shift
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size} ii {ii} pos {round(i / self.data_size, 3)}")
else:
# cheat: pick a random spot in dataset
i = np.random.randint(0, self.data_size - req_len)
if args.data_type == "binidx":
dix = data.get(idx=0, offset=i, length=req_len).astype(int)
elif args.data_type == "numpy":
dix = data[i : i + req_len]
else:
dix = [self.stoi[s] for s in data[i : i + req_len]]
if args.my_qa_mask == 1:
if data == self.data_pile:
z = [1] * ctx_len
else:
z = [0] * ctx_len
z_sum = 0
isGood = False
for i in range(3, ctx_len):
if dix[i] == 27 and dix[i-1] == 34 and dix[i-2] == 187 and dix[i-3] == 187:
isGood = True
if dix[i] == 0:
isGood = False
if isGood:
z[i] = 1
z_sum += 1
if z_sum == 0:
z = [1] * ctx_len
i = np.random.randint(0, self.data_pile_size - req_len)
dix = self.data_pile.get(idx=0, offset=i, length=req_len).astype(int)
z = torch.tensor(z, dtype=torch.bfloat16)
x = torch.tensor(dix[:-1], dtype=torch.long)
y = torch.tensor(dix[1:], dtype=torch.long)
# if ii_orig < 50:
# # if rank == 1:
# print('rank', rank, 'i', ii_orig, ii, i, 'x', x[:5], '...', x[-5:])
# else:
# exit(0)
if args.my_qa_mask == 1:
return x, y, z
return x, y

678
finetune/lora/src/model.py vendored Normal file
View File

@@ -0,0 +1,678 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import functools
import os, math, gc, importlib
import torch
# torch._C._jit_set_profiling_executor(True)
# torch._C._jit_set_profiling_mode(True)
import torch.nn as nn
from torch.utils.checkpoint import checkpoint as torch_checkpoint
from torch.nn import functional as F
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
from pytorch_lightning.strategies import DeepSpeedStrategy
if importlib.util.find_spec('deepspeed'):
import deepspeed
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam
# from deepspeed.runtime.fp16.onebit.zoadam import ZeroOneAdam
LORA_CONFIG = {
"r": 0,
"alpha": 0,
"dropout": 0,
"parts": {"att", "ln", "time"},
}
try:
print('RWKV_MY_TESTING', os.environ["RWKV_MY_TESTING"])
except:
os.environ["RWKV_MY_TESTING"] = ''
def __nop(ob):
return ob
MyModule = nn.Module
MyFunction = __nop
if os.environ["RWKV_JIT_ON"] == "1":
MyModule = torch.jit.ScriptModule
MyFunction = torch.jit.script_method
########################################################################################################
# CUDA Kernel
########################################################################################################
T_MAX = int(os.environ["RWKV_T_MAX"]) # TAKES LOTS OF VRAM!
# it's possible to go beyond CUDA limitations if you slice the ctx and pass the hidden state in each slice
from torch.utils.cpp_extension import load
if os.environ["RWKV_FLOAT_MODE"] == "bf16":
wkv_cuda = load(name=f"wkv_{T_MAX}_bf16", sources=["finetune/lora/cuda/wkv_op_bf16.cpp", "finetune/lora/cuda/wkv_cuda_bf16.cu"], verbose=True, extra_cuda_cflags=["-t 4", "-std=c++17", "-res-usage", "--maxrregcount 60", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-DTmax={T_MAX}"])
class WKV(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, w, u, k, v):
ctx.B = B
ctx.T = T
ctx.C = C
assert T <= T_MAX
assert B * C % min(C, 32) == 0
w = -torch.exp(w.float().contiguous())
u = u.contiguous()
k = k.contiguous()
v = v.contiguous()
y = torch.empty((B, T, C), device=w.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
wkv_cuda.forward(B, T, C, w, u, k, v, y)
ctx.save_for_backward(w, u, k, v, y)
return y
@staticmethod
def backward(ctx, gy):
B = ctx.B
T = ctx.T
C = ctx.C
assert T <= T_MAX
assert B * C % min(C, 32) == 0
w, u, k, v, y = ctx.saved_tensors
gw = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gu = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gk = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gv = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.contiguous(), gw, gu, gk, gv)
gw = torch.sum(gw, dim=0)
gu = torch.sum(gu, dim=0)
return (None, None, None, gw, gu, gk, gv)
else:
wkv_cuda = load(name=f"wkv_{T_MAX}", sources=["finetune/lora/cuda/wkv_op.cpp", "finetune/lora/cuda/wkv_cuda.cu"], verbose=True, extra_cuda_cflags=["-res-usage", "--maxrregcount 60", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-DTmax={T_MAX}"])
class WKV(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, w, u, k, v):
ctx.B = B
ctx.T = T
ctx.C = C
assert T <= T_MAX
assert B * C % min(C, 32) == 0
if "32" in os.environ["RWKV_FLOAT_MODE"]:
w = -torch.exp(w.contiguous())
u = u.contiguous()
k = k.contiguous()
v = v.contiguous()
else:
w = -torch.exp(w.float().contiguous())
u = u.float().contiguous()
k = k.float().contiguous()
v = v.float().contiguous()
y = torch.empty((B, T, C), device=w.device, memory_format=torch.contiguous_format)
wkv_cuda.forward(B, T, C, w, u, k, v, y)
ctx.save_for_backward(w, u, k, v, y)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
return y
elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
return y.half()
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
return y.bfloat16()
@staticmethod
def backward(ctx, gy):
B = ctx.B
T = ctx.T
C = ctx.C
assert T <= T_MAX
assert B * C % min(C, 32) == 0
w, u, k, v, y = ctx.saved_tensors
gw = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format)
gu = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format)
gk = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format)
gv = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.contiguous(), gw, gu, gk, gv)
else:
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.float().contiguous(), gw, gu, gk, gv)
gw = torch.sum(gw, dim=0)
gu = torch.sum(gu, dim=0)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
return (None, None, None, gw, gu, gk, gv)
elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
return (None, None, None, gw.half(), gu.half(), gk.half(), gv.half())
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
return (None, None, None, gw.bfloat16(), gu.bfloat16(), gk.bfloat16(), gv.bfloat16())
def RUN_CUDA(B, T, C, w, u, k, v):
return WKV.apply(B, T, C, w, u, k, v)
########################################################################################################
# LoRA
########################################################################################################
class LoraLinear(nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool):
super().__init__()
self.weight = nn.Parameter(torch.empty((out_features, in_features)))
assert bias == False, "Biased LoraLinear not supported"
r, alpha, dropout = LORA_CONFIG["r"], LORA_CONFIG[
"alpha"], LORA_CONFIG["dropout"]
self.lora_A = nn.Parameter(torch.empty(r, in_features))
self.lora_B = nn.Parameter(torch.empty(out_features, r))
self.lora_dropout = nn.Dropout(dropout)
self.scaling = alpha / r
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
nn.init.zeros_(self.lora_B)
def forward(self, x):
return (
F.linear(x, self.weight) + self.scaling *
F.linear(F.linear(self.lora_dropout(x), self.lora_A), self.lora_B))
@functools.wraps(LoraLinear)
def make_linear_att(*args, **kwargs):
if "att" in LORA_CONFIG["parts"] and LORA_CONFIG["r"] > 0:
return LoraLinear(*args, **kwargs)
else:
return nn.Linear(*args, **kwargs)
@functools.wraps(LoraLinear)
def make_linear_ffn(*args, **kwargs):
if "ffn" in LORA_CONFIG["parts"] and LORA_CONFIG["r"] > 0:
return LoraLinear(*args, **kwargs)
else:
return nn.Linear(*args, **kwargs)
########################################################################################################
# RWKV: RWKV Time-mix + RWKV Channel-mix
########################################################################################################
class RWKV_TimeMix(MyModule):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.ctx_len = args.ctx_len
self.n_embd = args.n_embd
with torch.no_grad(): # fancy init
ratio_0_to_1 = layer_id / (args.n_layer - 1) # 0 to 1
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer) # 1 to ~0
ddd = torch.ones(1, 1, args.n_embd)
for i in range(args.n_embd):
ddd[0, 0, i] = i / args.n_embd
# fancy time_decay
decay_speed = torch.ones(args.dim_att)
for h in range(args.dim_att):
decay_speed[h] = -5 + 8 * (h / (args.dim_att - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
self.time_decay = nn.Parameter(decay_speed)
# print(layer_id, self.time_decay.flatten()[:3].cpu().numpy(), '...', self.time_decay.flatten()[-3:].cpu().numpy())
# fancy time_first
zigzag = torch.tensor([(i + 1) % 3 - 1 for i in range(args.dim_att)]) * 0.5
self.time_first = nn.Parameter(torch.ones(args.dim_att) * math.log(0.3) + zigzag)
# fancy time_mix
self.time_mix_k = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_v = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
self.time_mix_r = nn.Parameter(torch.pow(ddd, 0.5 * ratio_1_to_almost0))
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.key = make_linear_att(args.n_embd, args.dim_att, bias=False)
self.value = make_linear_att(args.n_embd, args.dim_att, bias=False)
self.receptance = make_linear_att(args.n_embd, args.dim_att, bias=False)
self.output = nn.Linear(args.dim_att, args.n_embd, bias=False)
if 'a' in os.environ["RWKV_MY_TESTING"]:
self.register_buffer("att_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
d_qkv = args.n_embd // 16
self.qq = nn.Linear(args.n_embd, d_qkv, bias=False)
self.kk = nn.Linear(args.n_embd, d_qkv, bias=False)
self.vv = nn.Linear(args.n_embd, d_qkv, bias=False)
self.oo = nn.Linear(d_qkv, args.n_embd, bias=False)
with torch.no_grad():
self.time_mix_qq = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_kk = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_vv = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
if 'a' not in os.environ["RWKV_MY_TESTING"]:
@MyFunction
def jit_func(self, x):
xx = self.time_shift(x) # Mix x with the previous timestep to produce xk, xv, xr
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
k = self.key(xk)
v = self.value(xv)
r = self.receptance(xr)
sr = torch.sigmoid(r)
return sr, k, v
def forward(self, x):
B, T, C = x.size() # x = (Batch,Time,Channel)
sr, k, v = self.jit_func(x)
rwkv = sr * RUN_CUDA(B, T, self.args.dim_att, self.time_decay, self.time_first, k, v)
return self.output(rwkv)
if 'a' in os.environ["RWKV_MY_TESTING"]:
@MyFunction
def QKV(self, q, k, v):
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.att_mask == 0, float('-inf'))
att = F.softmax(att, dim = -1)
x = att @ v
return x
@MyFunction
def jit_funcQKV(self, x):
xx = self.time_shift(x) # Mix x with the previous timestep to produce xk, xv, xr
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
xqq = x * self.time_mix_qq + xx * (1 - self.time_mix_qq)
xkk = x * self.time_mix_kk + xx * (1 - self.time_mix_kk)
xvv = x * self.time_mix_vv + xx * (1 - self.time_mix_vv)
k = self.key(xk)
v = self.value(xv)
r = self.receptance(xr)
sr = torch.sigmoid(r)
qq = self.qq(xqq)
kk = self.kk(xkk)
vv = self.vv(xvv)
return sr, k, v, qq, kk, vv
def forward(self, x):
B, T, C = x.size() # x = (Batch,Time,Channel)
sr, k, v, qq, kk, vv = self.jit_funcQKV(x)
rwkv = sr * RUN_CUDA(B, T, self.args.dim_att, self.time_decay, self.time_first, k, v)
rwkv = self.output(rwkv) + self.oo(self.QKV(qq, kk, vv))
return rwkv
########################################################################################################
class RWKV_ChannelMix(MyModule):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
with torch.no_grad(): # fancy init of time_mix
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer) # 1 to ~0
ddd = torch.ones(1, 1, args.n_embd)
for i in range(args.n_embd):
ddd[0, 0, i] = i / args.n_embd
self.time_mix_k = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_r = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.key = make_linear_ffn(args.n_embd, args.dim_ffn, bias=False)
self.receptance = make_linear_ffn(args.n_embd, args.n_embd, bias=False)
self.value = make_linear_ffn(args.dim_ffn, args.n_embd, bias=False)
@MyFunction
def forward(self, x):
xx = self.time_shift(x)
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
k = self.key(xk)
k = torch.square(torch.relu(k))
kv = self.value(k)
return torch.sigmoid(self.receptance(xr)) * kv
class MishGLU(MyModule):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
with torch.no_grad():
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer)
x = torch.ones(1, 1, args.n_embd)
for i in range(args.n_embd):
x[0, 0, i] = i / args.n_embd
self.time_mix_k = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
self.time_mix_r = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
self.aa = nn.Linear(args.n_embd, args.dim_ffn, bias=False)
self.bb = nn.Linear(args.n_embd, args.dim_ffn, bias=False)
self.value = nn.Linear(args.dim_ffn, args.n_embd, bias=False)
@MyFunction
def forward(self, x):
xx = self.time_shift(x)
xa = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xb = x * self.time_mix_r + xx * (1 - self.time_mix_r)
a = self.aa(xa)
b = self.bb(xb)
return self.value(a * F.mish(b))
########################################################################################################
# The RWKV Model with our blocks
########################################################################################################
class Block(nn.Module):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.ln1 = nn.LayerNorm(args.n_embd)
self.ln2 = nn.LayerNorm(args.n_embd)
if self.layer_id == 0:
self.ln0 = nn.LayerNorm(args.n_embd)
if args.my_pos_emb > 0:
self.pos_emb_x = nn.Parameter(torch.zeros((1,args.my_pos_emb,args.n_embd)))
self.pos_emb_y = nn.Parameter(torch.zeros((args.my_pos_emb,1,args.n_embd)))
if self.layer_id == 0 and self.args.pre_ffn > 0:
self.ffnPre = RWKV_ChannelMix(args, 0)
else:
self.att = RWKV_TimeMix(args, layer_id)
if 'g' in os.environ["RWKV_MY_TESTING"]:
self.ffn = MishGLU(args, layer_id)
else:
self.ffn = RWKV_ChannelMix(args, layer_id)
if args.tiny_att_dim > 0 and self.layer_id == args.tiny_att_layer:
self.tiny_ln = nn.LayerNorm(args.n_embd)
self.tiny_q = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
self.tiny_k = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
self.tiny_v = nn.Linear(args.n_embd, args.n_embd, bias=False)
self.register_buffer("tiny_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
def forward(self, x, x_emb=None):
args = self.args
B, T, C = x.size()
if self.layer_id == 0:
x = self.ln0(x)
if args.my_pos_emb > 0:
pos_emb = (self.pos_emb_x + self.pos_emb_y).reshape(T+1, -1)[:-1,:]
x = x + pos_emb
if self.layer_id == 0 and args.pre_ffn > 0:
x = x + self.ffnPre(self.ln1(x))
else:
x = x + self.att(self.ln1(x))
x = x + self.ffn(self.ln2(x))
if args.tiny_att_dim > 0 and self.layer_id == args.tiny_att_layer:
xx = self.tiny_ln(x)
q = self.tiny_q(xx)[:, :T, :]
k = self.tiny_k(xx)[:, :T, :]
c = (q @ k.transpose(-2, -1)) * (args.tiny_att_dim ** (-0.5))
c = c.masked_fill(self.tiny_mask[:T, :T] == 0, 0)
x = x + c @ self.tiny_v(x_emb)
return x
class L2Wrap(torch.autograd.Function):
@staticmethod
def forward(ctx, loss, y):
ctx.save_for_backward(y)
return loss
@staticmethod
def backward(ctx, grad_output):
y = ctx.saved_tensors[0]
# to encourage the logits to be close to 0
factor = 1e-4 / (y.shape[0] * y.shape[1])
maxx, ids = torch.max(y, -1, keepdim=True)
gy = torch.zeros_like(y)
gy.scatter_(-1, ids, maxx * factor)
return (grad_output, gy)
class RWKV(pl.LightningModule):
def __init__(self, args):
super().__init__()
self.args = args
if not hasattr(args, 'dim_att'):
args.dim_att = args.n_embd
if not hasattr(args, 'dim_ffn'):
args.dim_ffn = args.n_embd * 4
if not hasattr(args, 'tiny_att_layer'):
args.tiny_att_layer = -1
if not hasattr(args, 'tiny_att_dim'):
args.tiny_att_dim = -1
self.emb = nn.Embedding(args.vocab_size, args.n_embd)
self.blocks = nn.ModuleList([Block(args, i) for i in range(args.n_layer)])
self.ln_out = nn.LayerNorm(args.n_embd)
self.head = nn.Linear(args.n_embd, args.vocab_size, bias=False)
if args.head_qk > 0:
self.head_q = nn.Linear(args.n_embd, args.head_qk, bias=False)
self.head_k = nn.Linear(args.n_embd, args.head_qk, bias=False)
self.register_buffer("copy_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
def configure_optimizers(self):
args = self.args
if args.layerwise_lr > 0:
lr_1x = set()
lr_2x = set()
lr_3x = set()
for n, p in self.named_parameters():
if "time_mix" in n:
if args.my_pile_stage == 2:
lr_2x.add(n)
else:
lr_1x.add(n)
elif "time_decay" in n:
if args.my_pile_stage == 2:
lr_3x.add(n)
else:
lr_2x.add(n)
elif "time_first" in n:
lr_3x.add(n)
else:
lr_1x.add(n)
lr_1x = sorted(list(lr_1x))
lr_2x = sorted(list(lr_2x))
lr_3x = sorted(list(lr_3x))
# print('1x', lr_1x)
# print('2x', lr_2x)
# print('3x', lr_3x)
param_dict = {n: p for n, p in self.named_parameters()}
if args.my_pile_stage == 2:
optim_groups = [
{"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
{"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 2e-3 / args.lr_init},
{"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 3e-3 / args.lr_init},
]
else:
optim_groups = [
{"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
{"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 2.0},
{"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 3.0},
]
else:
optim_groups = [
{"params": [p for n, p in self.named_parameters()], "weight_decay": 0.0},
]
for g in optim_groups:
g["params"] = [p for p in g["params"] if p.requires_grad]
optim_groups = [g for g in optim_groups if len(g["params"]) > 0]
if self.deepspeed_offload:
return DeepSpeedCPUAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adamw_mode=False, weight_decay=0, amsgrad=False)
return FusedAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adam_w_mode=False, weight_decay=0, amsgrad=False)
# return ZeroOneAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, weight_decay=0, amsgrad=False, cuda_aware=False)
@property
def deepspeed_offload(self) -> bool:
strategy = self.trainer.strategy
if isinstance(strategy, DeepSpeedStrategy):
cfg = strategy.config["zero_optimization"]
return cfg.get("offload_optimizer") or cfg.get("offload_param")
return False
def forward(self, idx):
args = self.args
B, T = idx.size()
assert T <= args.ctx_len, "Cannot forward, model ctx_len is exhausted."
x = self.emb(idx)
x_emb = x
if args.tiny_att_dim > 0:
for block in self.blocks:
if args.grad_cp == 1:
if args.lora:
x = torch_checkpoint(block, x, x_emb, use_reentrant=False)
else:
x = deepspeed.checkpointing.checkpoint(block, x, x_emb)
else:
x = block(x, x_emb)
else:
for block in self.blocks:
if args.grad_cp == 1:
if args.lora:
x = torch_checkpoint(block, x, x_emb, use_reentrant=False)
else:
x = deepspeed.checkpointing.checkpoint(block, x)
else:
x = block(x)
x = self.ln_out(x)
if args.head_qk > 0:
q = self.head_q(x)[:, :T, :]
k = self.head_k(x)[:, :T, :]
c = (q @ k.transpose(-2, -1)) * (1.0 / args.head_qk)
c = c.masked_fill(self.copy_mask[:T, :T] == 0, 0)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
c = c @ F.one_hot(idx, num_classes=args.vocab_size)
elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
c = c @ F.one_hot(idx, num_classes=args.vocab_size).half()
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
c = c @ F.one_hot(idx, num_classes=args.vocab_size).bfloat16()
x = self.head(x) + c
else:
x = self.head(x)
return x
def training_step(self, batch, batch_idx):
args = self.args
if args.my_qa_mask != 1:
idx, targets = batch
logits = self(idx)
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
else:
idx, targets, mask = batch
mask = mask.view(-1)
sum_mask = torch.sum(mask).item()
# if sum_mask == 0:
# return torch.tensor([0.0], requires_grad=True)
logits = self(idx)
if sum_mask == mask.shape[0]:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
# print('rank', self.global_rank, 'loss', loss.item())
else:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), reduction='none')
# loss_raw = loss
loss = torch.sum(loss * mask) / sum_mask
# torch.set_printoptions(threshold=10000)
# if True: #self.global_rank == 1:
# tmp = ''
# sss = 0
# ccc = 0
# for i in range(mask.shape[0]):
# if mask[i] > 0:
# tmp += str(idx.view(-1)[i].item()) + ','
# sss += loss_raw.view(-1)[i].float().item()
# ccc += 1
# print('rank', self.global_rank, 'loss', loss.item(), 'lavg', sss / ccc)#, 'tmp', tmp, 'input', idx)
return L2Wrap.apply(loss, logits)
def training_step_end(self, batch_parts):
all = self.all_gather(batch_parts)
if self.trainer.is_global_zero:
self.trainer.my_loss_all = all
def generate_init_weight(self):
print(
f"""
############################################################################
#
# Init model weight (slow for large models)...
#
############################################################################
"""
)
m = {}
for n in self.state_dict():
p = self.state_dict()[n]
shape = p.shape
gain = 1.0
scale = 1.0
if "ln_" in n or ".ln" in n or "time_" in n or "_mask" in n or "pos_emb" in n or '.mask.' in n:
m[n] = p
else:
if n == "emb.weight":
scale = -1 * self.args.lr_init
else:
if shape[0] > shape[1]:
gain = math.sqrt(shape[0] / shape[1])
for kk in [".att.key.", ".att.receptance.", ".att.output.", ".att.key.", ".ffn.value.", ".ffn.receptance.", ".ffnPre.value.", ".ffnPre.receptance.", "head_q.", '.oo.', '.rr.']:
if kk in n:
scale = 0
if n == "head.weight":
scale = 0.5
if "head_k." in n:
scale = 0.1
if "head_q." in n:
scale = 0
print(f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {str(scale).ljust(4)} {n}")
if self.args.accelerator.upper() == "GPU":
m[n] = torch.empty((shape[0], shape[1]), device="cuda")
else:
m[n] = torch.empty((shape[0], shape[1]))
if scale == 0:
nn.init.zeros_(m[n])
elif scale < 0:
nn.init.uniform_(m[n], a=scale, b=-scale)
else:
nn.init.orthogonal_(m[n], gain=gain * scale)
m[n] = m[n].cpu()
if os.environ["RWKV_FLOAT_MODE"] == "fp16":
m[n] = m[n].half()
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
m[n] = m[n].bfloat16()
# if n == "emb.weight":
# print(m[n])
gc.collect()
torch.cuda.empty_cache()
return m

203
finetune/lora/src/trainer.py vendored Normal file
View File

@@ -0,0 +1,203 @@
import os, math, time, datetime, subprocess
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
from .model import LORA_CONFIG
def my_save(dd, ff):
if '14b-run1' not in ff:
torch.save(dd, ff)
else:
fn = ff.split('/')[-1]
fff = '/dev/shm/' + fn
torch.save(dd, fff)
subprocess.Popen(f" aws s3 mv {fff} s3://rwkv-14b-4k/{fn} --quiet", shell=True)
class train_callback(pl.Callback):
def __init__(self, args):
super().__init__()
self.args = args
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx):
args = self.args
# if args.cuda_cleanup > 0:
# torch.cuda.empty_cache()
real_step = trainer.global_step + args.epoch_begin * args.epoch_steps
# LR schedule
w_step = args.warmup_steps
if args.lr_final == args.lr_init or args.epoch_count == 0:
lr = args.lr_init
else:
decay_step = real_step - args.my_pile_edecay * args.epoch_steps
decay_total = (args.epoch_count - args.my_pile_edecay) * args.epoch_steps
progress = (decay_step - w_step + 1) / (decay_total - w_step)
progress = min(1, max(0, progress))
if args.lr_final == 0 or args.lr_init == 0: # linear decay
lr = args.lr_init + (args.lr_final - args.lr_init) * progress
else: # exp decay
lr = args.lr_init * math.exp(math.log(args.lr_final / args.lr_init) * pow(progress, 1))
if trainer.global_step < w_step:
lr = lr * (0.2 + 0.8 * trainer.global_step / w_step)
# if trainer.is_global_zero:
# print(trainer.global_step, decay_step, decay_total, w_step, progress, lr)
for param_group in trainer.optimizers[0].param_groups:
if args.layerwise_lr > 0:
param_group["lr"] = lr * param_group["my_lr_scale"]
# print(param_group["lr"], param_group["my_lr_scale"])
else:
param_group["lr"] = lr
trainer.my_lr = lr
# rank_zero_info(f"{real_step} {lr}")
if trainer.global_step == 0:
if trainer.is_global_zero: # logging
trainer.my_loss_sum = 0
trainer.my_loss_count = 0
trainer.my_log = open(args.proj_dir + "/train_log.txt", "a")
trainer.my_log.write(f"NEW RUN {args.my_timestamp}\n{vars(self.args)}\n")
try:
print(f"\n{trainer.strategy.config}\n")
trainer.my_log.write(f"{trainer.strategy.config}\n")
except:
pass
trainer.my_log.flush()
if len(args.wandb) > 0:
print("Login to wandb...")
import wandb
wandb.init(
project=args.wandb,
name=args.run_name + " " + args.my_timestamp,
config=args,
save_code=False,
)
trainer.my_wandb = wandb
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
args = self.args
if trainer.is_global_zero: # logging
t_now = time.time_ns()
token_per_step = args.ctx_len * args.real_bsz
real_step = trainer.global_step + args.epoch_begin * args.epoch_steps
kt_s = 0
try:
t_cost = (t_now - trainer.my_time_ns) / 1e9
kt_s = token_per_step / t_cost / 1000
self.log("REAL it/s", 1.0 / t_cost, prog_bar=True, on_step=True)
self.log("Kt/s", kt_s, prog_bar=True, on_step=True)
except:
pass
trainer.my_time_ns = t_now
trainer.my_loss = trainer.my_loss_all.float().mean().item()
trainer.my_loss_sum += trainer.my_loss
trainer.my_loss_count += 1
trainer.my_epoch_loss = trainer.my_loss_sum / trainer.my_loss_count
self.log("lr", trainer.my_lr, prog_bar=True, on_step=True)
self.log("loss", trainer.my_epoch_loss, prog_bar=True, on_step=True)
# self.log("s", real_step, prog_bar=True, on_step=True)
if len(args.wandb) > 0:
lll = {"loss": trainer.my_loss, "lr": trainer.my_lr, "Gtokens": real_step * token_per_step / 1e9}
if kt_s > 0:
lll["kt/s"] = kt_s
trainer.my_wandb.log(lll, step=int(real_step))
if args.magic_prime > 0:
expand_factor = 2 if args.my_qa_mask > 0 else 1
if int(real_step) == int(args.magic_prime * expand_factor // args.real_bsz) - 1:
to_save_dict = pl_module.state_dict()
my_save(
to_save_dict,
f"{args.proj_dir}/rwkv-final.pth",
)
def on_train_epoch_start(self, trainer, pl_module):
args = self.args
dataset = trainer.train_dataloader.dataset.datasets
assert "MyDataset" in str(dataset)
dataset.global_rank = trainer.global_rank
dataset.real_epoch = int(args.epoch_begin + trainer.current_epoch)
dataset.world_size = trainer.world_size
# print(f'########## world_size {dataset.world_size} global_rank {dataset.global_rank} real_epoch {dataset.real_epoch} ##########')
def on_train_epoch_end(self, trainer, pl_module):
args = self.args
if trainer.is_global_zero: # logging & save state_dict
if (args.epoch_save > 0 and trainer.current_epoch % args.epoch_save == 0) or trainer.current_epoch == args.epoch_count - 1:
if args.data_type == 'wds_img':
raw_dict = pl_module.state_dict()
to_save_dict = {}
for k in raw_dict:
if k.startswith('encoder.') or k.startswith('decoder.'):
to_save_dict[k] = raw_dict[k]
else:
to_save_dict = pl_module.state_dict()
if args.lora:
enable_time_finetune = 'time' in LORA_CONFIG["parts"]
enable_ln_finetune = 'ln' in LORA_CONFIG["parts"]
lora_dict = {}
for name, state in to_save_dict.items():
if ('.lora_' in name
or (enable_time_finetune and '.time_' in name)
or (enable_ln_finetune and '.ln' in name)):
lora_dict[name] = state
to_save_dict = lora_dict
try:
my_save(
to_save_dict,
f"{args.proj_dir}/rwkv-{args.epoch_begin + trainer.current_epoch}.pth",
)
except Exception as e:
print('Error\n\n', e, '\n\n')
trainer.my_log.write(f"{args.epoch_begin + trainer.current_epoch} {trainer.my_epoch_loss:.6f} {math.exp(trainer.my_epoch_loss):.4f} {trainer.my_lr:.8f} {datetime.datetime.now()} {trainer.current_epoch}\n")
trainer.my_log.flush()
trainer.my_loss_sum = 0
trainer.my_loss_count = 0
@rank_zero_only
def generate_init_weight(model, init_weight_name):
mm = model.generate_init_weight()
if model.args.my_pile_stage == 1:
if len(model.args.load_model) > 0:
print(f"Combine weights from {model.args.load_model}...")
load_dict = torch.load(model.args.load_model, map_location="cpu")
for k in load_dict:
assert k in mm
src = load_dict[k]
try:
mm[k] = src.reshape(mm[k].shape)
except:
tmp = mm[k].squeeze().clone()
print(k, src.shape, '-->', mm[k].shape)
ss = src.shape[0]
dd = tmp.shape[0]
for i in range(dd):
pos = i / dd * ss
if pos >= ss - 1:
tmp[i] = src[ss-1]
else:
p0 = int(math.floor(pos))
ii = pos - p0
tmp[i] = src[p0] * (1-ii) + src[p0+1] * (ii)
mm[k] = tmp.reshape(mm[k].shape)
sss = src.squeeze().float().cpu().numpy()
print(sss[:10], '...', sss[-10:])
mmm = mm[k].squeeze().float().cpu().numpy()
print(mmm[:10], '...', mmm[-10:])
print(f"Save to {init_weight_name}...")
torch.save(mm, init_weight_name)
if model.args.my_pile_stage == 1:
print("Done. Now go for stage 2.")
exit(0)

130
finetune/lora/src/utils.py vendored Normal file
View File

@@ -0,0 +1,130 @@
import json, time, random, os
import numpy as np
import torch
from torch.nn import functional as F
time_slot = {}
time_ref = time.time_ns()
def record_time(name):
if name not in time_slot:
time_slot[name] = 1e20
tt = (time.time_ns() - time_ref) / 1e9
if tt < time_slot[name]:
time_slot[name] = tt
class TOKENIZER():
def __init__(self, WORD_NAME, UNKNOWN_CHAR='\ue083'):
if 'list' in str(type(WORD_NAME)):
self.charMode = False
if WORD_NAME[0] == WORD_NAME[1]:
from transformers import PreTrainedTokenizerFast
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=WORD_NAME[0])
else:
from transformers import GPT2TokenizerFast
self.tokenizer = GPT2TokenizerFast(WORD_NAME[0], WORD_NAME[1])
self.vocab_size = len(self.tokenizer)
else:
self.charMode = True
with open(WORD_NAME + '.json', "r", encoding="utf-16") as result_file:
self.word_table = json.load(result_file)
self.vocab_size = len(self.word_table)
self.stoi = {v: int(k) for k, v in self.word_table.items()}
self.itos = {int(k): v for k, v in self.word_table.items()}
self.UNKNOWN_CHAR = self.stoi[UNKNOWN_CHAR]
def refine_context(self, context):
context = context.strip().split('\n')
for c in range(len(context)):
context[c] = context[c].strip().strip('\u3000').strip('\r')
context = list(filter(lambda c: c != '', context))
context = '\n' + ('\n'.join(context)).strip()
if context == '':
context = '\n'
return context
def sample_logits(self, out, x, ctx_len, temperature=1.0, top_p_usual=None, top_p_newline=None):
# out[self.UNKNOWN_CHAR] = -float('Inf')
lastChar = int(x[-1])
probs = F.softmax(out, dim=-1)
if self.charMode:
if self.itos[lastChar] == '\n':
top_p = top_p_newline
else:
top_p = top_p_usual
else:
top_p = top_p_usual
if os.environ["RWKV_RUN_DEVICE"] == "cpu":
probs = probs.numpy()
sorted_probs = np.sort(probs)[::-1]
cumulative_probs = np.cumsum(sorted_probs)
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
probs[probs < cutoff] = 0
if temperature != 1.0:
probs = probs.pow(1.0 / temperature)
probs = probs / np.sum(probs)
out = np.random.choice(a=len(probs), p=probs)
return out
else:
sorted_probs = torch.sort(probs, descending=True)[0]
cumulative_probs = torch.cumsum(sorted_probs, dim=-1).cpu().numpy()
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
probs[probs < cutoff] = 0
if temperature != 1.0:
probs = probs.pow(1.0 / temperature)
out = torch.multinomial(probs, num_samples=1)[0]
return out
def MaybeIsPrime(number):
if FermatPrimalityTest(number) and MillerRabinPrimalityTest(number):
return True
else:
return False
def FermatPrimalityTest(number):
if number > 1:
for time in range(3):
randomNumber = random.randint(2, number) - 1
if pow(randomNumber, number - 1, number) != 1:
return False
return True
else:
return False
def MillerRabinPrimalityTest(number):
if number == 2:
return True
elif number == 1 or number % 2 == 0:
return False
oddPartOfNumber = number - 1
timesTwoDividNumber = 0
while oddPartOfNumber % 2 == 0:
oddPartOfNumber = oddPartOfNumber // 2
timesTwoDividNumber = timesTwoDividNumber + 1
for time in range(3):
while True:
randomNumber = random.randint(2, number) - 1
if randomNumber != 0 and randomNumber != 1:
break
randomNumberWithPower = pow(randomNumber, oddPartOfNumber, number)
if (randomNumberWithPower != 1) and (randomNumberWithPower != number - 1):
iterationNumber = 1
while (iterationNumber <= timesTwoDividNumber - 1) and (randomNumberWithPower != number - 1):
randomNumberWithPower = pow(randomNumberWithPower, 2, number)
iterationNumber = iterationNumber + 1
if randomNumberWithPower != (number - 1):
return False
return True

479
finetune/lora/train.py vendored Normal file
View File

@@ -0,0 +1,479 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
if __name__ == "__main__":
from argparse import ArgumentParser
from pytorch_lightning import Trainer
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
rank_zero_info("########## work in progress ##########")
########################################################################################################
#
# example: train a simple L12-D768 RWKV on dummy data
#
# python train.py --load_model "" --wandb "" --proj_dir "out" \
# --data_file "" --data_type "dummy" --vocab_size 0 \
# --ctx_len 128 --epoch_steps 1000 --epoch_count 20 --epoch_begin 0 --epoch_save 10 \
# --micro_bsz 16 --n_layer 12 --n_embd 768 --pre_ffn 0 --head_qk 0 \
# --lr_init 6e-4 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
# --accelerator gpu --devices 1 --precision bf16 --strategy ddp_find_unused_parameters_false --grad_cp 0
# example: train a simple L6-D512 RWKV from scratch on enwik8
#
# python train.py --load_model "" --wandb "" --proj_dir "out" \
# --data_file "../data/enwik8" --data_type "utf-8" --vocab_size 0 \
# --ctx_len 512 --epoch_steps 5000 --epoch_count 500 --epoch_begin 0 --epoch_save 5 \
# --micro_bsz 12 --n_layer 6 --n_embd 512 --pre_ffn 0 --head_qk 0 \
# --lr_init 8e-4 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
# --accelerator gpu --devices 1 --precision bf16 --strategy ddp_find_unused_parameters_false --grad_cp 0
# example: fine-tune RWKV 1.5B using 8xA100 40G = 1.76it/s = 115k token/s, VRAM 37477M
#
# python train.py --load_model "/fsx/BlinkDL/CODE/FP16/out_1b2/all-8040.pth" --wandb "" --proj_dir "out" \
# --data_file "../data/train.npy" --data_type "numpy" --vocab_size 50277 \
# --ctx_len 1024 --epoch_steps 1000 --epoch_count 1000 --epoch_begin 0 --epoch_save 5 \
# --micro_bsz 8 --n_layer 24 --n_embd 2048 --pre_ffn 0 --head_qk 0 \
# --lr_init 1e-5 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.999 --adam_eps 1e-8 \
# --accelerator gpu --devices 8 --precision bf16 --strategy deepspeed_stage_2 --grad_cp 0
# example: fine-tune RWKV 1.5B using 1 GPU fp16 (VRAM 16G) NOTE: fp16 might overflow
#
# python train.py --load_model "/fsx/BlinkDL/CODE/FP16/out_1b2/all-8040.pth" --wandb "" --proj_dir "out" \
# --data_file "../data/train.npy" --data_type "numpy" --vocab_size 50277 \
# --ctx_len 1024 --epoch_steps 200 --epoch_count 1000 --epoch_begin 0 --epoch_save 1 \
# --micro_bsz 11 --n_layer 24 --n_embd 2048 --pre_ffn 0 --head_qk 0 \
# --lr_init 1e-5 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.999 --adam_eps 1e-8 \
# --accelerator gpu --devices 1 --precision fp16 --strategy deepspeed_stage_2_offload --grad_cp 1
parser = ArgumentParser()
parser.add_argument("--load_model", default="", type=str) # full path, with .pth
parser.add_argument(
"--wandb", default="", type=str
) # wandb project name. if "" then don't use wandb
parser.add_argument("--proj_dir", default="out", type=str)
parser.add_argument("--random_seed", default="-1", type=int)
parser.add_argument("--data_file", default="", type=str)
parser.add_argument("--data_type", default="utf-8", type=str)
parser.add_argument(
"--vocab_size", default=0, type=int
) # vocab_size = 0 means auto (for char-level LM and .txt data)
parser.add_argument("--ctx_len", default=1024, type=int)
parser.add_argument(
"--epoch_steps", default=1000, type=int
) # a mini "epoch" has [epoch_steps] steps
parser.add_argument(
"--epoch_count", default=500, type=int
) # train for this many "epochs". will continue afterwards with lr = lr_final
parser.add_argument(
"--epoch_begin", default=0, type=int
) # if you load a model trained for x "epochs", set epoch_begin = x
parser.add_argument(
"--epoch_save", default=5, type=int
) # save the model every [epoch_save] "epochs"
parser.add_argument(
"--micro_bsz", default=12, type=int
) # micro batch size (batch size per GPU)
parser.add_argument("--n_layer", default=6, type=int)
parser.add_argument("--n_embd", default=512, type=int)
parser.add_argument("--dim_att", default=0, type=int)
parser.add_argument("--dim_ffn", default=0, type=int)
parser.add_argument(
"--pre_ffn", default=0, type=int
) # replace first att layer by ffn (sometimes better)
parser.add_argument("--head_qk", default=0, type=int) # my headQK trick
parser.add_argument("--tiny_att_dim", default=0, type=int) # tiny attention dim
parser.add_argument(
"--tiny_att_layer", default=-999, type=int
) # tiny attention @ which layer
parser.add_argument(
"--lr_init", default=6e-4, type=float
) # 6e-4 for L12-D768, 4e-4 for L24-D1024, 3e-4 for L24-D2048
parser.add_argument("--lr_final", default=1e-5, type=float)
parser.add_argument(
"--warmup_steps", default=0, type=int
) # try 50 if you load a model
parser.add_argument("--beta1", default=0.9, type=float)
parser.add_argument(
"--beta2", default=0.99, type=float
) # use 0.999 when your model is close to convergence
parser.add_argument("--adam_eps", default=1e-8, type=float)
parser.add_argument(
"--grad_cp", default=0, type=int
) # gradient checkpt: saves VRAM, but slower
parser.add_argument("--my_pile_stage", default=0, type=int) # my special pile mode
parser.add_argument(
"--my_pile_shift", default=-1, type=int
) # my special pile mode - text shift
parser.add_argument("--my_pile_edecay", default=0, type=int)
parser.add_argument(
"--layerwise_lr", default=1, type=int
) # layerwise lr for faster convergence (but slower it/s)
parser.add_argument(
"--ds_bucket_mb", default=200, type=int
) # deepspeed bucket size in MB. 200 seems enough
# parser.add_argument("--cuda_cleanup", default=0, type=int) # extra cuda cleanup (sometimes helpful)
parser.add_argument("--my_img_version", default=0, type=str)
parser.add_argument("--my_img_size", default=0, type=int)
parser.add_argument("--my_img_bit", default=0, type=int)
parser.add_argument("--my_img_clip", default="x", type=str)
parser.add_argument("--my_img_clip_scale", default=1, type=float)
parser.add_argument("--my_img_l1_scale", default=0, type=float)
parser.add_argument("--my_img_encoder", default="x", type=str)
# parser.add_argument("--my_img_noise_scale", default=0, type=float)
parser.add_argument("--my_sample_len", default=0, type=int)
parser.add_argument("--my_ffn_shift", default=1, type=int)
parser.add_argument("--my_att_shift", default=1, type=int)
parser.add_argument("--my_pos_emb", default=0, type=int)
parser.add_argument("--load_partial", default=0, type=int)
parser.add_argument("--magic_prime", default=0, type=int)
parser.add_argument("--my_qa_mask", default=0, type=int)
parser.add_argument("--my_testing", default="", type=str)
parser.add_argument("--lora", action="store_true")
parser.add_argument("--lora_load", default="", type=str)
parser.add_argument("--lora_r", default=8, type=int)
parser.add_argument("--lora_alpha", default=32, type=float)
parser.add_argument("--lora_dropout", default=0.01, type=float)
parser.add_argument("--lora_parts", default="att,ln,time", type=str)
parser = Trainer.add_argparse_args(parser)
args = parser.parse_args()
########################################################################################################
import os, warnings, math, datetime, sys, time, importlib
import numpy as np
import torch
from torch.utils.data import DataLoader
if "deepspeed" in args.strategy:
import deepspeed
import pytorch_lightning as pl
from pytorch_lightning import seed_everything
if args.random_seed >= 0:
print(
f"########## WARNING: GLOBAL SEED {args.random_seed} THIS WILL AFFECT MULTIGPU SAMPLING ##########\n"
* 3
)
seed_everything(args.random_seed)
np.set_printoptions(precision=4, suppress=True, linewidth=200)
warnings.filterwarnings(
"ignore", ".*Consider increasing the value of the `num_workers` argument*"
)
warnings.filterwarnings(
"ignore", ".*The progress bar already tracks a metric with the*"
)
# os.environ["WDS_SHOW_SEED"] = "1"
args.my_timestamp = datetime.datetime.today().strftime("%Y-%m-%d-%H-%M-%S")
args.enable_checkpointing = False
args.replace_sampler_ddp = False
args.logger = False
args.gradient_clip_val = 1.0
args.num_sanity_val_steps = 0
args.check_val_every_n_epoch = int(1e20)
args.log_every_n_steps = int(1e20)
args.max_epochs = -1 # continue forever
args.betas = (args.beta1, args.beta2)
args.real_bsz = int(args.num_nodes) * int(args.devices) * args.micro_bsz
os.environ["RWKV_T_MAX"] = str(args.ctx_len)
os.environ["RWKV_MY_TESTING"] = args.my_testing
if args.dim_att <= 0:
args.dim_att = args.n_embd
if args.dim_ffn <= 0:
args.dim_ffn = args.n_embd * 4
if args.data_type == "wds_img":
args.run_name = f"v{args.my_img_version}-{args.my_img_size}-{args.my_img_bit}bit-{args.my_img_clip}x{args.my_img_clip_scale}"
args.proj_dir = f"{args.proj_dir}-{args.run_name}"
else:
args.run_name = (
f"{args.vocab_size} ctx{args.ctx_len} L{args.n_layer} D{args.n_embd}"
)
if not os.path.exists(args.proj_dir):
os.makedirs(args.proj_dir)
if args.my_pile_stage > 0:
magic_prime_bak = args.magic_prime
if args.ctx_len == 1024:
args.magic_prime = 324331313
args.epoch_count = 8043
elif args.ctx_len == 2048:
args.magic_prime = 162165671
args.epoch_count = 4021
elif args.ctx_len == 4096:
args.magic_prime = 81082817
args.epoch_count = 2010
if args.my_pile_shift < 0:
if args.ctx_len == 1024:
args.my_pile_shift = 0
elif args.ctx_len == 2048:
args.my_pile_shift = 512
elif args.ctx_len == 4096:
args.my_pile_shift = 768
if magic_prime_bak > 0:
args.magic_prime = magic_prime_bak
args.epoch_steps = 40320 // args.real_bsz
assert args.epoch_steps * args.real_bsz == 40320
if args.my_pile_stage == 2:
assert args.lr_final == args.lr_init
if args.my_pile_stage >= 2: # find latest saved model
list_p = []
for p in os.listdir(args.proj_dir):
if p.startswith("rwkv") and p.endswith(".pth"):
p = ((p.split("-"))[1].split("."))[0]
if p == "init":
p = -1
else:
p = int(p)
list_p += [p]
list_p.sort()
max_p = list_p[-1]
if len(list_p) > 1:
args.my_pile_prev_p = list_p[-2] # in case max_p is corrupted
if max_p == -1:
args.load_model = f"{args.proj_dir}/rwkv-init.pth"
else:
args.load_model = f"{args.proj_dir}/rwkv-{max_p}.pth"
if args.my_pile_stage == 2:
args.warmup_steps = 10
else:
args.warmup_steps = 30
args.epoch_begin = max_p + 1
samples_per_epoch = args.epoch_steps * args.real_bsz
tokens_per_epoch = samples_per_epoch * args.ctx_len
rank_zero_info(
f"""
############################################################################
#
# RWKV-4 {args.precision.upper()} on {args.num_nodes}x{args.devices} {args.accelerator.upper()}, bsz {args.num_nodes}x{args.devices}x{args.micro_bsz}={args.real_bsz}, {args.strategy} {'with grad_cp' if args.grad_cp > 0 else ''}
#
# Data = {args.data_file} ({args.data_type}), ProjDir = {args.proj_dir}
#
# Epoch = {args.epoch_begin} to {args.epoch_begin + args.epoch_count - 1} (will continue afterwards), save every {args.epoch_save} epoch
#
# Each "epoch" = {args.epoch_steps} steps, {samples_per_epoch} samples, {tokens_per_epoch} tokens
#
# Model = {args.n_layer} n_layer, {args.n_embd} n_embd, {args.ctx_len} ctx_len
# LoRA = {f'enabled, {args.lora_r} r, {args.lora_alpha} alpha, {args.lora_dropout} dropout, on {args.lora_parts}' if args.lora else 'disabled'}
#
# Adam = lr {args.lr_init} to {args.lr_final}, warmup {args.warmup_steps} steps, beta {args.betas}, eps {args.adam_eps}
#
# Found torch {torch.__version__}, recommend 1.13.1+cu117 or newer
# Found deepspeed {deepspeed.__version__ if importlib.util.find_spec('deepspeed') else 'None'}, recommend 0.7.0 (faster than newer versions)
# Found pytorch_lightning {pl.__version__}, recommend 1.9.1 or newer
#
############################################################################
"""
)
rank_zero_info(str(vars(args)) + "\n")
assert args.data_type in [
"utf-8",
"utf-16le",
"numpy",
"binidx",
"dummy",
"wds_img",
"uint16",
]
if args.lr_final == 0 or args.lr_init == 0:
rank_zero_info(
"\n\nNote: lr_final = 0 or lr_init = 0. Using linear LR schedule instead.\n\n"
)
assert args.precision in ["fp32", "tf32", "fp16", "bf16"]
os.environ["RWKV_FLOAT_MODE"] = args.precision
if args.precision == "fp32":
for i in range(10):
rank_zero_info(
"\n\nNote: you are using fp32 (very slow). Try bf16 / tf32 for faster training.\n\n"
)
if args.precision == "fp16":
rank_zero_info(
"\n\nNote: you are using fp16 (might overflow). Try bf16 / tf32 for stable training.\n\n"
)
os.environ["RWKV_JIT_ON"] = "1"
if "deepspeed_stage_3" in args.strategy:
os.environ["RWKV_JIT_ON"] = "0"
if args.lora and args.grad_cp == 1:
print(
"!!!!! LoRA Warning: Gradient Checkpointing requires JIT off, disabling it"
)
os.environ["RWKV_JIT_ON"] = "0"
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = True
if args.precision == "fp32":
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_tf32 = False
else:
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
if "32" in args.precision:
args.precision = 32
elif args.precision == "fp16":
args.precision = 16
else:
args.precision = "bf16"
########################################################################################################
from src.trainer import train_callback, generate_init_weight
from src.dataset import MyDataset
train_data = MyDataset(args)
args.vocab_size = train_data.vocab_size
if args.data_type == "wds_img":
from src.model_img import RWKV_IMG
assert args.lora, "LoRA not yet supported for RWKV_IMG"
model = RWKV_IMG(args)
else:
from src.model import RWKV, LORA_CONFIG, LoraLinear
if args.lora:
assert args.lora_r > 0, "LoRA should have its `r` > 0"
LORA_CONFIG["r"] = args.lora_r
LORA_CONFIG["alpha"] = args.lora_alpha
LORA_CONFIG["dropout"] = args.lora_dropout
LORA_CONFIG["parts"] = set(str(args.lora_parts).split(","))
enable_time_finetune = "time" in LORA_CONFIG["parts"]
enable_ln_finetune = "ln" in LORA_CONFIG["parts"]
model = RWKV(args)
# only train lora parameters
if args.lora:
model.requires_grad_(False)
for name, module in model.named_modules():
# have to check param name since it may have been wrapped by torchscript
if any(n.startswith("lora_") for n, _ in module.named_parameters()):
print(f" LoRA training module {name}")
for pname, param in module.named_parameters():
param.requires_grad = "lora_" in pname
elif enable_ln_finetune and ".ln" in name:
print(f" LoRA additionally training module {name}")
for param in module.parameters():
param.requires_grad = True
elif enable_time_finetune and any(
n.startswith("time") for n, _ in module.named_parameters()
):
for pname, param in module.named_parameters():
if pname.startswith("time"):
print(f" LoRA additionally training parameter {pname}")
param.requires_grad = True
if (
len(args.load_model) == 0 or args.my_pile_stage == 1
): # shall we build the initial weights?
init_weight_name = f"{args.proj_dir}/rwkv-init.pth"
generate_init_weight(model, init_weight_name) # save initial weights
args.load_model = init_weight_name
rank_zero_info(f"########## Loading {args.load_model}... ##########")
try:
load_dict = torch.load(args.load_model, map_location="cpu")
model.load_state_dict(load_dict, strict=(not args.lora))
except:
rank_zero_info(f"Bad checkpoint {args.load_model}")
if args.my_pile_stage >= 2: # try again using another checkpoint
max_p = args.my_pile_prev_p
if max_p == -1:
args.load_model = f"{args.proj_dir}/rwkv-init.pth"
else:
args.load_model = f"{args.proj_dir}/rwkv-{max_p}.pth"
args.epoch_begin = max_p + 1
rank_zero_info(f"Trying {args.load_model}")
load_dict = torch.load(args.load_model, map_location="cpu")
model.load_state_dict(load_dict, strict=(not args.lora))
if args.load_partial == 1:
load_keys = load_dict.keys()
for k in model.state_dict():
if k not in load_keys:
load_dict[k] = model.state_dict()[k]
model.load_state_dict(load_dict, strict=(not args.lora))
# If using LoRA, the LoRA keys might be missing in the original model
# model.load_state_dict(load_dict, strict=(not args.lora))
if os.path.isfile(args.lora_load):
model.load_state_dict(
torch.load(args.lora_load, map_location="cpu"), strict=False
)
trainer: Trainer = Trainer.from_argparse_args(
args,
callbacks=[train_callback(args)],
)
if (
args.lr_init > 1e-4
or trainer.world_size * args.micro_bsz * trainer.accumulate_grad_batches < 8
):
if "I_KNOW_WHAT_IM_DOING" in os.environ:
if trainer.global_rank == 0:
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
print(
f" WARNING: you are using too large LR ({args.lr_init} > 1e-4) or too small global batch size ({trainer.world_size} * {args.micro_bsz} * {trainer.accumulate_grad_batches} < 8)"
)
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
else:
if trainer.global_rank == 0:
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
print(
f" ERROR: you are using too large LR ({args.lr_init} > 1e-4) or too small global batch size ({trainer.world_size} * {args.micro_bsz} * {trainer.accumulate_grad_batches} < 8)"
)
print(
f" Unless you are sure this is what you want, adjust them accordingly"
)
print(
f' (to suppress this, set environment variable "I_KNOW_WHAT_IM_DOING")'
)
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
exit(0)
if trainer.global_rank == 0:
for n in model.state_dict():
shape = model.state_dict()[n].shape
shape = [i for i in shape if i != 1]
if len(shape) > 1:
print(f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {n}")
else:
print(f"{str(shape[0]).ljust(5)} {n}")
if "deepspeed" in args.strategy:
trainer.strategy.config["zero_optimization"]["allgather_bucket_size"] = (
args.ds_bucket_mb * 1000 * 1000
)
trainer.strategy.config["zero_optimization"]["reduce_bucket_size"] = (
args.ds_bucket_mb * 1000 * 1000
)
# must set shuffle=False, persistent_workers=False (because worker is in another thread)
data_loader = DataLoader(
train_data,
shuffle=False,
pin_memory=True,
batch_size=args.micro_bsz,
num_workers=1,
persistent_workers=False,
drop_last=True,
)
trainer.fit(model, data_loader)

View File

@@ -0,0 +1,3 @@
torch==1.13.1
pytorch_lightning==1.9.5
deepspeed

File diff suppressed because it is too large Load Diff

View File

@@ -11,14 +11,19 @@
"dependencies": {
"@fluentui/react-components": "^9.20.0",
"@fluentui/react-icons": "^2.0.201",
"@magenta/music": "^1.23.1",
"@microsoft/fetch-event-source": "^2.0.1",
"@primer/octicons-react": "^19.1.0",
"chart.js": "^4.3.0",
"classnames": "^2.3.2",
"github-markdown-css": "^5.2.0",
"html-midi-player": "^1.5.0",
"i18next": "^22.4.15",
"mobx": "^6.9.0",
"mobx-react-lite": "^3.4.3",
"react": "^18.2.0",
"react-beautiful-dnd": "^13.1.1",
"react-chartjs-2": "^5.2.0",
"react-dom": "^18.2.0",
"react-i18next": "^12.2.2",
"react-markdown": "^8.0.7",
@@ -34,6 +39,7 @@
},
"devDependencies": {
"@types/react": "^18.2.6",
"@types/react-beautiful-dnd": "^13.1.4",
"@types/react-dom": "^18.2.4",
"@types/uuid": "^9.0.1",
"@vitejs/plugin-react": "^4.0.0",

View File

@@ -28,10 +28,10 @@ import { FC, useEffect, useState } from 'react';
import { Route, Routes, useLocation, useNavigate } from 'react-router';
import { pages } from './pages';
import { useMediaQuery } from 'usehooks-ts';
import { ToastContainer } from 'react-toastify';
import commonStore from './stores/commonStore';
import { observer } from 'mobx-react-lite';
import { useTranslation } from 'react-i18next';
import { CustomToastContainer } from './components/CustomToastContainer';
const App: FC = observer(() => {
const { t } = useTranslation();
@@ -87,21 +87,7 @@ const App: FC = observer(() => {
</Routes>
</div>
</div>
<ToastContainer
style={{
width: '350px'
}}
position="top-center"
autoClose={4000}
pauseOnHover={true}
hideProgressBar={true}
newestOnTop={true}
closeOnClick={false}
rtl={false}
pauseOnFocusLoss={false}
draggable={false}
theme={commonStore.settings.darkMode ? 'dark' : 'light'}
/>
<CustomToastContainer />
</FluentProvider>
);
});

View File

@@ -0,0 +1,244 @@
{
"Home": "ホーム",
"Train": "トレーニング",
"About": "約",
"Settings": "設定",
"Go to chat page": "チャットページに移動する",
"Manage your configs": "あなたの設定を管理する",
"Manage models": "モデルの管理",
"Run": "実行",
"Offline": "オフライン",
"Starting": "起動中",
"Loading": "モデルを読み込み中",
"Working": "動作中",
"Stop": "停止",
"Enable High Precision For Last Layer": "最後の層で高精度を有効にする",
"Stored Layers": "メモリ層読み込み",
"Precision": "精度",
"Device": "デバイス",
"Convert model with these configs. Using a converted model will greatly improve the loading speed, but model parameters of the converted model cannot be modified.": "これらの設定でモデルを変換します。変換されたモデルを使用すると、読み込み速度が大幅に向上しますが、変換したモデルのパラメータを変更することはできません。",
"Manage Models": "モデルの管理",
"Model": "モデル",
"Model Parameters": "モデルのパラメータ",
"Frequency Penalty": "周波数のペナルティ",
"Presence Penalty": "存在のペナルティ",
"Top_P": "Top_P",
"Temperature": "温度",
"Max Response Token": "最大レスポンストークン",
"API Port": "API ポート",
"Hover your mouse over the text to view a detailed description. Settings marked with * will take effect immediately after being saved.": "マウスをテキストに一定時間置いて詳細な説明を表示します。 * が付いている設定は保存後すぐに有効化されます。",
"Default API Parameters": "デフォルトのAPIパラメータ",
"Provide JSON file URLs for the models manifest. Separate URLs with semicolons. The \"models\" field in JSON files will be parsed into the following table.": "モデルマニフェストのためのJSONファイルURLを提供します。URLはセミコロンで分割します。JSONファイルの\"models\"フィールドは次の表に解析されます。",
"Config Name": "構成名",
"Refresh": "リフレッシュ",
"Save Config": "構成を保存",
"Model Source Manifest List": "モデルソースマニフェストリスト",
"Models": "モデル",
"Delete Config": "設定を削除",
"Help": "ヘルプ",
"Version": "バージョン",
"New Config": "新たな設定",
"Open Url": "URLを開く",
"Download": "ダウンロード",
"Open Folder": "フォルダを開く",
"Configs": "設定",
"Automatic Updates Check": "自動更新チェック",
"Updates Check Error": "更新チェックエラー",
"Introduction": "序文",
"Dark Mode": "ダークモード",
"Language": "言語",
"In Development": "開発中",
"Chat": "チャット",
"Convert": "変更",
"Actions": "行動",
"Last updated": "最後に更新",
"Desc": "説明",
"Size": "サイズ",
"File": "ファイル",
"Config Saved": "設定が保存されました",
"Downloading": "ダウンロード中",
"Loading Model": "モデルを読み込んでいます",
"Startup Completed": "起動完了",
"Failed to switch model": "モデルの切り替えに失敗しました",
"Start Converting": "変換を開始",
"Convert Success": "変換成功",
"Convert Failed": "変換失敗",
"Model Not Found": "モデルが見つかりません",
"Model Status": "モデルの状態",
"Clear": "クリア",
"Send": "送信",
"Type your message here": "ここにメッセージを入力してください",
"Copy": "コピー",
"Read Aloud": "読み上げ",
"Hello! I'm RWKV, an open-source and commercially usable large language model.": "こんにちは私はRWKV、オープンソースで商用利用可能な大規模な言語モデルです。",
"This tool's API is compatible with OpenAI API. It can be used with any ChatGPT tool you like. Go to the settings of some ChatGPT tool, replace the 'https://api.openai.com' part in the API address with '": "このツールのAPIはOpenAI APIと互換性があります。 お好きなChatGPTツールで使用することができます。いくつかのChatGPTツールの設定に移動し、APIアドレスの 'https://api.openai.com' 部分を '",
"New Version Available": "新しいバージョンが存在します",
"Update": "更新",
"Please click the button in the top right corner to start the model": "右上角のボタンをクリックしてモデルを起動してください",
"Update Error": "更新エラー",
"Open the following URL with your browser to view the API documentation": "以下のURLをブラウザで開いてAPIドキュメンテーションを確認してください",
"By default, the maximum number of tokens that can be answered in a single response, it can be changed by the user by specifying API parameters.": "デフォルトでは、一度に回答できるトークンの最大数は、APIパラメータを指定することでユーザーが変更できます。",
"Sampling temperature, it's like giving alcohol to a model, the higher the stronger the randomness and creativity, while the lower, the more focused and deterministic it will be.": "サンプリング温度は、モデルにアルコールを与えるようなもので、高いほどランダム性と創造性が強く、低いほど焦点を絞り、決定論的になります。",
"Just like feeding sedatives to the model. Consider the results of the top n% probability mass, 0.1 considers the top 10%, with higher quality but more conservative, 1 considers all results, with lower quality but more diverse.": "モデルに鎮静剤を与えるようなもの。上位nの確率質量の結果を考えてみてください。0.1は上位10を考えており、質が高いが保守的で、1は全ての結果を考慮しており、質は低いが多様性があります。",
"Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.": "ポジティヴ値は、新しいトークンが今までのテキストに出現していたかどうかに基づいてこれらをペナルティとし、新しいトピックについて話す可能性を増加させます。",
"Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.": "ポジティブ値は、新しいトークンが既存のテキストでどれだけ頻繁に使われているかに基づいてペナルティを与え、モデルが同じ行を完全に繰り返す可能性を減らします。",
"int8 uses less VRAM, but has slightly lower quality. fp16 has higher quality, and fp32 has the best quality.": "int8はVRAMの使用量が少ないですが、質が若干低いです。fp16は高品質、fp32は最高品質です。",
"Number of the neural network layers loaded into VRAM, the more you load, the faster the speed, but it consumes more VRAM. (If your VRAM is not enough, it will fail to load)": "VRAMにロードされるニューラルネットワークの層の数。ロードする量が多いほど速度は速くなりますが、VRAMを多く消費します。(VRAMが不足している場合、ロードに失敗します)",
"Whether to use CPU to calculate the last output layer of the neural network with FP32 precision to obtain better quality.": "ネットワークの最終出力層をFP32精度で計算するためにCPUを使用するかどうか。",
"Downloads": "ダウンロード",
"Pause": "ポーズ",
"Continue": "続行",
"Resume": "続行",
"Check": "確認",
"Model file not found": "モデルファイルが見つかりません",
"Can not find download url": "ダウンロードURLが見つかりません",
"Python target not found, would you like to download it?": "Pythonターゲットが見つかりません、ダウンロードしますか",
"Python dependencies are incomplete, would you like to install them?": "Pythonの依存関係が不完全です、インストールしますか",
"Install": "インストール",
"This is the latest version": "これは最新バージョンです",
"Use Tsinghua Pip Mirrors": "清華大学Pipミラーサーバーを使用",
"Model Config Exception": "モデル設定例外",
"Use Gitee Updates Source": "Gitee更新ソースを使用",
"Use Custom CUDA kernel to Accelerate": "カスタムCUDAカーネルを使用して加速",
"Enabling this option can greatly improve inference speed and save some VRAM, but there may be compatibility issues. If it fails to start, please turn off this option.": "このオプションを有効にすると、推論速度が大幅に向上し、一部のVRAMを節約できますが、互換性の問題が生じる可能性があります。起動に失敗した場合は、このオプションをオフにしてください。",
"Supported custom cuda file not found": "対応しているカスタムCUDAファイルが見つかりません",
"Failed to copy custom cuda file": "カスタムCUDAファイルのコピーに失敗しました",
"Downloading update, please wait. If it is not completed, please manually download the program from GitHub and replace the original program.": "更新をダウンロード中です、お待ちください。完了しない場合は、GitHubから手動でプログラムをダウンロードし、元のプログラムを置き換えてください。",
"Completion": "補完",
"Parameters": "パラメータ",
"Stop Sequences": "シーケンスを停止",
"When this content appears in the response result, the generation will end.": "この内容が応答結果に表示されると、生成が終了します。",
"Reset": "リセット",
"Generate": "生成",
"Writer": "ライター",
"Translator": "翻訳者",
"Catgirl": "ネコガール",
"Code Generation": "コード生成",
"Werewolf": "人狼",
"Instruction": "指示",
"Blank": "空白",
"The following is an epic science fiction masterpiece that is immortalized, with delicate descriptions and grand depictions of interstellar civilization wars.\nChapter 1.\n": "以下は、壮大な描写と共に、不滅のエピックサイエンスフィクションの傑作で、星間文明戦争が繊細に描かれています。\n第1章\n",
"The following is a conversation between a cat girl and her owner. The cat girl is a humanized creature that behaves like a cat but is humanoid. At the end of each sentence in the dialogue, she will add \"Meow~\". In the following content, User represents the owner and Assistant represents the cat girl.\n\nUser: Hello.\n\nAssistant: I'm here, meow~.\n\nUser: Can you tell jokes?": "以下は、猫少女とその飼い主との会話です。猫少女は、猫のように振る舞いながらもヒトの姿をした生物です。会話の各文の終わりには必ず「にゃ〜」とつけています。以下の文章では、Userが飼い主、Assistantが猫少女を表しています。\n\nUser: こんにちは。\n\nAssistant: ここにいますよ、にゃ〜。\n\nUser: 笑い話を話せますか?",
"When response finished, inject this content.": "応答終了時に、この内容を注入します。",
"Inject start text": "開始テキストを注入",
"Inject end text": "終了テキストを注入",
"Before the response starts, inject this content.": "応答が始まる前に、この内容を注入します。",
"There is currently a game of Werewolf with six players, including a Seer (who can check identities at night), two Werewolves (who can choose someone to kill at night), a Bodyguard (who can choose someone to protect at night), two Villagers (with no special abilities), and a game host. User will play as Player 1, Assistant will play as Players 2-6 and the game host, and they will begin playing together. Every night, the host will ask User for his action and simulate the actions of the other players. During the day, the host will oversee the voting process and ask User for his vote. \n\nAssistant: Next, I will act as the game host and assign everyone their roles, including randomly assigning yours. Then, I will simulate the actions of Players 2-6 and let you know what happens each day. Based on your assigned role, you can tell me your actions and I will let you know the corresponding results each day.\n\nUser: Okay, I understand. Let's begin. Please assign me a role. Am I the Seer, Werewolf, Villager, or Bodyguard?\n\nAssistant: You are the Seer. Now that night has fallen, please choose a player to check his identity.\n\nUser: Tonight, I want to check Player 2 and find out his role.": "現在、6人のプレイヤーが参加する人狼ゲームが行われています。その中には、夜に任意のプレイヤーの正体を確認できる占い師、夜に誰かを殺すことができる人狼2名、夜に誰かを守ることができるボディガード、特殊な能力を持っていない村人2名、そしてゲームのホストがいます。Userはプレイヤー1として、Assistantはプレーヤー2から6まで及びゲームのホストとして参加し、一緒にゲームを始めます。ホストは毎晩、Userに彼の行動を問い、他のプレーヤーの行動をシミュレートします。昼には、ホストが投票プロセスを監督し、Userに彼の投票を求めます。\n\nAssistant: 次に、私はゲームのホストとして参加者全員に役割を割り当てることになります。それには、あなたの役割もランダムに割り当てます。その後、私はプレーヤー2から6の行動をシミュレートし、毎日何が起こったかを報告します。あなたに割り当てられた役割に基づいて、あなたの行動を教えてください。私は毎日、それに対する結果を報告します。\n\nUser: 了解しました。では、始めましょう。私の役割を割り当ててください。占い師、人狼、村人、ボディーガードのいずれなのでしょうか?\n\nAssistant: あなたの役割は占い師です。今夜が来たので、誰の正体を確認するか選んでください。\n\nUser: 今夜、プレイヤー2の役割を確認したい。",
"Writer, Translator, Role-playing": "ライター、翻訳者、ロールプレイング",
"Chinese Kongfu": "中国武術",
"Allow external access to the API (service must be restarted)": "APIへの外部アクセスを許可する (サービスを再起動する必要があります)",
"Custom": "カスタム",
"Reset All Configs": "すべての設定をリセット",
"Cancel": "キャンセル",
"Confirm": "確認",
"Are you sure you want to reset all configs? This will obtain the latest preset configs, but will override your custom configs and cannot be undone.": "本当にすべての設定をリセットしますか?これにより最新のプリセット設定が取得されますが、カスタム設定は上書きされ、元に戻すことはできません。",
"Advanced": "高度な",
"Custom Python Path": "カスタムPythonパス",
"Custom Models Path": "カスタムモデルパス",
"Microsoft Visual C++ Redistributable is not installed, would you like to download it?": "Microsoft Visual C++ 再頒布可能パッケージがインストールされていません。ダウンロードしますか?",
"File Path Cannot Contain Space": "ファイルのパスにスペースを含めることはできません",
"Current Strategy": "現在の戦略",
"MacOS is not yet supported for performing this operation, please do it manually.": "MacOSはまだこの操作を実行するサポートがありませんので、手動で行ってください。",
"Linux is not yet supported for performing this operation, please do it manually.": "Linuxはまだこの操作を実行するサポートがありませんので、手動で行ってください。",
"On Linux system, you must manually install python dependencies.": "Linuxシステムでは、pythonの依存関係を手動でインストールする必要があります。",
"Update completed, please restart the program.": "更新が完了したら、プログラムを再起動してください。",
"Are you sure you want to reset this page? It cannot be undone.": "本当にこのページをリセットしてもよろしいですか?元に戻すことはできません。",
"Model file download is not complete": "モデルファイルのダウンロードが完了していません",
"Error": "エラー",
"Are you sure you want to clear the conversation? It cannot be undone.": "会話をクリアしてもよろしいですか?元に戻すことはできません。",
"Save": "保存",
"Conversation Saved": "会話が保存されました",
"Open": "開く",
"DPI Scaling": "DPIスケーリング",
"Restart the app to apply DPI Scaling.": "DPIスケーリングを適用するためにアプリを再起動してください。",
"Restart": "再起動",
"API Chat Model Name": "APIチャットモデル名",
"API Completion Model Name": "API完成モデル名",
"Localhost": "ローカルホスト",
"Retry": "リトライ",
"Delete": "削除",
"Edit": "編集",
"Memory is not enough, try to increase the virtual memory or use a smaller model.": "メモリが不足しています。仮想メモリを増やすか、もしくは小さなモデルを使ってみてください",
"Bad PyTorch version, please reinstall PyTorch with cuda.": "不適切なPyTorchのバージョンです。cudaと共にPyTorchを再インストールしてください。",
"The model file is corrupted, please download again.": "モデルファイルが破損しています。再度ダウンロードしてください。",
"Found no NVIDIA driver, please install the latest driver.": "NVIDIAのドライバが見つかりません。最新版のドライバをインストールしてください。",
"VRAM is not enough, please reduce stored layers or use a lower precision in Configs page.": "VRAMが足りません。設定ページで保存されているレイヤーを減らすか、精度を下げてください。",
"Failed to enable custom CUDA kernel, ninja is required to load C++ extensions. You may be using the CPU version of PyTorch, please reinstall PyTorch with CUDA. Or if you are using a custom Python interpreter, you must compile the CUDA kernel by yourself or disable Custom CUDA kernel acceleration.": "カスタムCUDAカーネルの有効化に失敗しました。C++拡張を読み込むためにはNinjaが必要です。あなたは恐らくCPU版のPyTorchを使用しており、CUDA版のPyTorchを再インストールする必要があります。または、あなたがカスタムPythonインタプリタを使用している場合は、CUDAカーネルを自分でコンパイルするか、カスタムCUDAカーネルのアクセラレーションを無効にする必要があります。",
"Presets": "プリセット",
"Online": "オンライン",
"english": "英語",
"chinese": "中国語",
"default": "デフォルト",
"japanese": "日本語",
"New Preset": "新規プリセット",
"Import": "インポート",
"Name": "名前",
"Imported successfully": "インポート成功",
"Failed to import. Please copy a preset to the clipboard.": "インポートに失敗しました。プリセットをクリップボードにコピーしてください。",
"Clipboard is empty.": "クリップボードが空です。",
"Successfully copied to clipboard.": "クリップボードにコピーしました。",
"Edit Messages": "メッセージの編集",
"Go Back": "戻る",
"Description": "説明",
"Avatar Url": "アバターURL",
"Welcome Message": "ウェルカムメッセージ",
"Display Preset Messages": "プリセットメッセージの表示",
"Tag": "タグ",
"Activate": "アクティブ化",
"New": "新規",
"user": "ユーザー",
"assistant": "アシスタント",
"system": "システム",
"Regenerate": "再生成",
"LoRA Finetune": "LoRAの微調整",
"Command Stopped": "コマンドが停止しました",
"Please convert data first.": "先にデータを変換してください。",
"Ubuntu is not installed, do you want to install it?": "Ubuntuがインストールされていません、インストールしますか",
"Install Ubuntu": "Ubuntuをインストール",
"Please install Ubuntu using Microsoft Store, after installation click the Open button in Microsoft Store and then click the Train button": "UbuntuをMicrosoftストアからインストールすることができます。インストールが完了したら、MicrosoftストアのOpenボタンを押し、Trainボタンを押してください",
"WSL is not enabled, do you want to enable it?": "WSLが有効になっていません、有効化しますか",
"Enable WSL": "WSLを有効化",
"After installation, please restart your computer to enable WSL": "インストールが完了したら、WSLを有効化するためにコンピュータを再起動してください",
"Data Process": "データ処理",
"Data Path": "データパス",
"Vocab Path": "語彙パス",
"Train Parameters": "トレーニングパラメータ",
"Base Model": "基本モデル",
"LoRA Model": "LoRAモデル",
"Merge Model": "モデルの統合",
"Devices": "デバイス",
"Gradient Checkpoint": "勾配チェックポイント",
"Context Length": "コンテキストの長さ",
"Epoch Steps": "エポックステップ数",
"Epoch Count": "エポックの数",
"Epoch Begin": "エポックの起点",
"Epoch Save": "エポックの保存",
"Learning Rate Init": "初期学習率",
"Learning Rate Final": "最終学習率",
"Micro Batch Size": "マイクロバッチサイズ",
"Accumulate Gradient Batches": "勾配バッチの累計",
"Warmup Steps": "ウォームアップステップ",
"Pre-FFN": "FFNの前処理",
"None": "なし",
"Merge model successfully": "モデルのマージが成功しました",
"Convert Data successfully": "データ変換に成功しました",
"Please select a LoRA model": "LoRAモデルを選択してください",
"You are using sample data for training. For formal training, please make sure to create your own jsonl file.": "トレーニングにはサンプルデータを使用しています。正式なトレーニングのためには、自身でjsonlファイルを作成してください。",
"WSL is not running, please retry. If it keeps happening, it means you may be using an outdated version of WSL, run \"wsl --update\" to update.": "WSLが実行されていません、もう一度試してください。これが続く場合、古いバージョンのWSLを使用している可能性があります。\"wsl --update\"を実行して更新してください。",
"Memory is not enough, try to increase the virtual memory or use a smaller base model.": "メモリが不足しています、仮想メモリを増やすか小さなベースモデルを使用してみてください。",
"VRAM is not enough": "ビデオRAMが不足しています",
"Training data is not enough, reduce context length or add more data for training": "トレーニングデータが不足しています、コンテキストの長さを減らすか、トレーニング用のデータをさらに追加してください",
"You are using WSL 1 for training, please upgrade to WSL 2. e.g. Run \"wsl --set-version Ubuntu-22.04 2\"": "トレーニングにWSL 1を使用しています、WSL 2にアップグレードしてください。例:\"wsl --set-version Ubuntu-22.04 2\"を実行する",
"Matched CUDA is not installed": "対応するCUDAがインストールされていません",
"Failed to convert data": "データの変換に失敗しました",
"Failed to merge model": "モデルのマージに失敗しました",
"The data path should be a directory or a file in jsonl format (more formats will be supported in the future).\n\nWhen you provide a directory path, all the txt files within that directory will be automatically converted into training data. This is commonly used for large-scale training in writing, code generation, or knowledge bases.\n\nThe jsonl format file can be referenced at https://github.com/Abel2076/json2binidx_tool/blob/main/sample.jsonl.\nYou can also write it similar to OpenAI's playground format, as shown in https://platform.openai.com/playground/p/default-chat.\nEven for multi-turn conversations, they must be written in a single line using `\\n` to indicate line breaks. If they are different dialogues or topics, they should be written in separate lines.": "データのパスはディレクトリまたはjsonl形式のファイルでなければなりません将来的にはより多くの形式がサポートされる予定です。ディレクトリパスを提供した場合、そのディレクトリ内のすべてのtxtファイルが自動的にトレーニングデータに変換されます。これは大規模なライティング、コード生成、または知識ベースのトレーニングで一般的に使用されます。jsonl形式のファイルは、https://github.com/Abel2076/json2binidx_tool/blob/main/sample.jsonl を参照してください。\nhttps://platform.openai.com/playground/p/default-chat のように、OpenAIのプレイグラウンド形式に似た形式で書くこともできます。複数ターンの対話であっても、一行で書く必要があり、行の区切りを示すために`\\n`を使用します。それらが異なる対話やトピックであれば、それらは別々の行に書かれるべきです。",
"Size mismatch for blocks. You are attempting to continue training from the LoRA model, but it does not match the base model. Please set LoRA model to None.": "ブロックのサイズが一致しません。LoRAモデルからトレーニングを続けようとしていますが、それはベースモデルと一致しません。LoRAモデルをNoneに設定してください。",
"Instruction: Write a story using the following information\n\nInput: A man named Alex chops a tree down\n\nResponse:": "Instruction: Write a story using the following information\n\nInput: アレックスという男が木を切り倒す\n\nResponse:",
"Composition": "作曲",
"Use Local Sound Font": "ローカルサウンドフォントを使用する",
"Auto Play At The End": "最後に自動再生",
"No File to save": "保存するファイルがありません",
"File Saved": "ファイルが保存されました",
"Failed to load local sound font, please check if the files exist - assets/sound-font": "ローカルサウンドフォントの読み込みに失敗しました、ファイルが存在するか確認してください - assets/sound-font"
}

View File

@@ -1,9 +1,10 @@
import zhHans from './zh-hans/main.json';
import ja from './ja/main.json';
export const resources = {
zh: {
translation: zhHans
}
},
// de: {
// translation: de,
// },
@@ -19,9 +20,9 @@ export const resources = {
// it: {
// translation: it,
// },
// ja: {
// translation: ja,
// },
ja: {
translation: ja
}
// ko: {
// translation: ko,
// },

View File

@@ -70,7 +70,7 @@
"Type your message here": "在此输入消息",
"Copy": "复制",
"Read Aloud": "朗读",
"Hello! I'm RWKV, an open-source and commercially usable large language model.": "你好! 我是RWKV, 一个开源可商用的大语言模型.",
"Hello! I'm RWKV, an open-source and commercially usable large language model.": "你好我是RWKV一个开源可商用的大语言模型",
"This tool's API is compatible with OpenAI API. It can be used with any ChatGPT tool you like. Go to the settings of some ChatGPT tool, replace the 'https://api.openai.com' part in the API address with '": "本工具的API与OpenAI API兼容. 因此可以配合任意你喜欢的ChatGPT工具使用. 打开某个ChatGPT工具的设置, 将API地址中的'https://api.openai.com'部分替换为'",
"New Version Available": "新版本可用",
"Update": "更新",
@@ -104,7 +104,7 @@
"Supported custom cuda file not found": "没有找到支持的自定义cuda文件",
"Failed to copy custom cuda file": "自定义cuda文件复制失败",
"Downloading update, please wait. If it is not completed, please manually download the program from GitHub and replace the original program.": "正在下载更新请等待。如果一直未完成请从Github手动下载并覆盖原程序",
"Completion": "补全",
"Completion": "续写",
"Parameters": "参数",
"Stop Sequences": "停止词",
"When this content appears in the response result, the generation will end.": "响应结果出现该内容时就结束生成",
@@ -113,17 +113,17 @@
"Writer": "写作",
"Translator": "翻译",
"Catgirl": "猫娘",
"Explain Code": "代码解释",
"Code Generation": "代码生成",
"Werewolf": "狼人杀",
"Instruction": "指令",
"Blank": "空白",
"The following is an epic science fiction masterpiece that is immortalized, with delicate descriptions and grand depictions of interstellar civilization wars.\nChapter 1.\n": "以下是不朽的科幻史诗巨著,描写细腻,刻画了宏大的星际文明战争。\n第一章\n",
"The following is a conversation between a cat girl and her owner. The cat girl is a humanized creature that behaves like a cat but is humanoid. At the end of each sentence in the dialogue, she will add \"Meow~\". In the following content, Bob represents the owner and Alice represents the cat girl.\n\nBob: Hello.\n\nAlice: I'm here, meow~.\n\nBob: Can you tell jokes?": "以下是一位猫娘的主人和猫娘的对话内容,猫娘是一种拟人化的生物,其行为似猫但类人,在每一句对话末尾都会加上\"喵~\"。以下内容中,Bob代表主人Alice代表猫娘。\n\nBob: 你好\n\nAlice: 主人我在哦,喵~\n\nBob: 你会讲笑话吗?",
"The following is an epic science fiction masterpiece that is immortalized, with delicate descriptions and grand depictions of interstellar civilization wars.\nChapter 1.\n": "《背影》\n我与父亲不相见已二年余了我最不能忘记的是他的背影。\n那年冬天祖母死了父亲的差使也交卸了正是祸不单行的日子。我从北京到徐州打算",
"The following is a conversation between a cat girl and her owner. The cat girl is a humanized creature that behaves like a cat but is humanoid. At the end of each sentence in the dialogue, she will add \"Meow~\". In the following content, User represents the owner and Assistant represents the cat girl.\n\nUser: Hello.\n\nAssistant: I'm here, meow~.\n\nUser: Can you tell jokes?": "以下是一位猫娘的主人和猫娘的对话内容,猫娘是一种拟人化的生物,其行为似猫但类人,在每一句对话末尾都会加上\"喵~\"。以下内容中,User代表主人Assistant代表猫娘。\n\nUser: 你好\n\nAssistant: 主人我在哦,喵~\n\nUser: 你会讲笑话吗?",
"When response finished, inject this content.": "响应结束时,插入此内容到末尾",
"Inject start text": "起始注入文本",
"Inject end text": "结尾注入文本",
"Before the response starts, inject this content.": "响应开始前,在开头插入此内容",
"There is currently a game of Werewolf with six players, including a Seer (who can check identities at night), two Werewolves (who can choose someone to kill at night), a Bodyguard (who can choose someone to protect at night), two Villagers (with no special abilities), and a game host. Bob will play as Player 1, Alice will play as Players 2-6 and the game host, and they will begin playing together. Every night, the host will ask Bob for his action and simulate the actions of the other players. During the day, the host will oversee the voting process and ask Bob for his vote. \n\nAlice: Next, I will act as the game host and assign everyone their roles, including randomly assigning yours. Then, I will simulate the actions of Players 2-6 and let you know what happens each day. Based on your assigned role, you can tell me your actions and I will let you know the corresponding results each day.\n\nBob: Okay, I understand. Let's begin. Please assign me a role. Am I the Seer, Werewolf, Villager, or Bodyguard?\n\nAlice: You are the Seer. Now that night has fallen, please choose a player to check his identity.\n\nBob: Tonight, I want to check Player 2 and find out his role.": "现在有一场六人狼人杀游戏,包括一名预言家(可以在夜晚查验身份),两名狼人(可以在夜晚选择杀人),一名守卫(可以在夜晚选择要守护的人),两名平民(无技能),一名主持人,以下内容中Bob将扮演其中的1号玩家Alice来扮演2-6号玩家以及主持人并开始与Bob进行游戏,主持人每晚都会询问Bob的行动,并模拟其他人的行动,在白天则要主持投票,并同样询问Bob投票对象,公布投票结果。\n\nAlice: 接下来我将首先作为主持人进行角色分配并给你赋予随机的角色之后我将模拟2-6号玩家进行行动告知你每天的动态根据你被分配的角色你可以回复我你做的行动我会告诉你每天对应的结果\n\nBob: 好的,我明白了,那么开始吧。请先给我一个角色身份。我是预言家,狼人,平民,守卫中的哪一个呢?\n\nAlice: 你的身份是预言家。现在夜晚降临,请选择你要查验的玩家。\n\nBob: 今晚我要验2号玩家他是什么身份",
"There is currently a game of Werewolf with six players, including a Seer (who can check identities at night), two Werewolves (who can choose someone to kill at night), a Bodyguard (who can choose someone to protect at night), two Villagers (with no special abilities), and a game host. User will play as Player 1, Assistant will play as Players 2-6 and the game host, and they will begin playing together. Every night, the host will ask User for his action and simulate the actions of the other players. During the day, the host will oversee the voting process and ask User for his vote. \n\nAssistant: Next, I will act as the game host and assign everyone their roles, including randomly assigning yours. Then, I will simulate the actions of Players 2-6 and let you know what happens each day. Based on your assigned role, you can tell me your actions and I will let you know the corresponding results each day.\n\nUser: Okay, I understand. Let's begin. Please assign me a role. Am I the Seer, Werewolf, Villager, or Bodyguard?\n\nAssistant: You are the Seer. Now that night has fallen, please choose a player to check his identity.\n\nUser: Tonight, I want to check Player 2 and find out his role.": "现在有一场六人狼人杀游戏,包括一名预言家(可以在夜晚查验身份),两名狼人(可以在夜晚选择杀人),一名守卫(可以在夜晚选择要守护的人),两名平民(无技能),一名主持人,以下内容中User将扮演其中的1号玩家Assistant来扮演2-6号玩家以及主持人并开始与User进行游戏,主持人每晚都会询问User的行动,并模拟其他人的行动,在白天则要主持投票,并同样询问User投票对象,公布投票结果。\n\nAssistant: 接下来我将首先作为主持人进行角色分配并给你赋予随机的角色之后我将模拟2-6号玩家进行行动告知你每天的动态根据你被分配的角色你可以回复我你做的行动我会告诉你每天对应的结果\n\nUser: 好的,我明白了,那么开始吧。请先给我一个角色身份。我是预言家,狼人,平民,守卫中的哪一个呢?\n\nAssistant: 你的身份是预言家。现在夜晚降临,请选择你要查验的玩家。\n\nUser: 今晚我要验2号玩家他是什么身份",
"Writer, Translator, Role-playing": "写作,翻译,角色扮演",
"Chinese Kongfu": "情境冒险",
"Allow external access to the API (service must be restarted)": "允许外部访问API (必须重启服务)",
@@ -153,9 +153,92 @@
"Restart the app to apply DPI Scaling.": "重启应用以使显示缩放生效",
"Restart": "重启",
"API Chat Model Name": "API聊天模型名",
"API Completion Model Name": "API补全模型名",
"API Completion Model Name": "API续写模型名",
"Localhost": "本地",
"Retry": "重试",
"Delete": "删除",
"Edit": "编辑"
"Edit": "编辑",
"Memory is not enough, try to increase the virtual memory or use a smaller model.": "内存不足,尝试增加虚拟内存,或使用一个更小规模的模型",
"Bad PyTorch version, please reinstall PyTorch with cuda.": "错误的PyTorch版本请重新安装CUDA版本的PyTorch",
"The model file is corrupted, please download again.": "模型文件损坏,请重新下载",
"Found no NVIDIA driver, please install the latest driver.": "没有找到NVIDIA驱动请安装最新驱动",
"VRAM is not enough, please reduce stored layers or use a lower precision in Configs page.": "显存不足,请在配置页面减少载入显存层数,或使用更低的精度",
"Failed to enable custom CUDA kernel, ninja is required to load C++ extensions. You may be using the CPU version of PyTorch, please reinstall PyTorch with CUDA. Or if you are using a custom Python interpreter, you must compile the CUDA kernel by yourself or disable Custom CUDA kernel acceleration.": "自定义CUDA算子开启失败需要安装Ninja来读取C++扩展。你可能正在使用CPU版本的PyTorch请重新安装CUDA版本的PyTorch。如果你正在使用自定义Python解释器你必须自己编译CUDA算子或禁用自定义CUDA算子加速",
"Presets": "预设",
"Online": "在线",
"english": "英文",
"chinese": "中文",
"default": "默认",
"japanese": "日文",
"New Preset": "新建预设",
"Import": "导入",
"Name": "名称",
"Imported successfully": "导入成功",
"Failed to import. Please copy a preset to the clipboard.": "导入失败。请复制一个预设到剪贴板",
"Clipboard is empty.": "剪贴板没有内容",
"Successfully copied to clipboard.": "成功复制到剪贴板",
"Edit Messages": "编辑对话",
"Go Back": "返回",
"Description": "描述",
"Avatar Url": "头像图片地址",
"Welcome Message": "欢迎语",
"Display Preset Messages": "显示预设中的对话",
"Tag": "标签",
"Activate": "激活",
"New": "新建",
"user": "用户",
"assistant": "AI",
"system": "系统",
"Regenerate": "重新生成",
"LoRA Finetune": "LoRA微调",
"Command Stopped": "命令已终止",
"Please convert data first.": "请先转换数据",
"Ubuntu is not installed, do you want to install it?": "Ubuntu未安装是否安装",
"Install Ubuntu": "安装Ubuntu",
"Please install Ubuntu using Microsoft Store, after installation click the Open button in Microsoft Store and then click the Train button": "请用Microsoft Store安装Ubuntu安装完成后点击Microsoft Store界面的“打开”按钮然后点击“训练”按钮",
"WSL is not enabled, do you want to enable it?": "WSL未启用是否启用",
"Enable WSL": "启用WSL",
"After installation, please restart your computer to enable WSL": "安装完成后请重启电脑以启用WSL",
"Data Process": "数据处理",
"Data Path": "数据路径",
"Vocab Path": "词表路径",
"Train Parameters": "训练参数",
"Base Model": "基底模型",
"LoRA Model": "LoRA模型",
"Merge Model": "合并模型",
"Devices": "显卡数量",
"Gradient Checkpoint": "梯度检查点标志",
"Context Length": "上下文长度",
"Epoch Steps": "每轮训练步数",
"Epoch Count": "训练轮次",
"Epoch Begin": "起始轮次",
"Epoch Save": "保存间隔轮次",
"Learning Rate Init": "初始学习率",
"Learning Rate Final": "最终学习率",
"Micro Batch Size": "微批次大小",
"Accumulate Gradient Batches": "梯度累积批次",
"Warmup Steps": "学习率预热步数",
"Pre-FFN": "前馈网络预处理",
"None": "空",
"Merge model successfully": "合并模型成功",
"Convert Data successfully": "数据转换成功",
"Please select a LoRA model": "请选择一个LoRA模型",
"You are using sample data for training. For formal training, please make sure to create your own jsonl file.": "你正在使用示例数据训练对于正式训练场合请务必创建你自己的jsonl训练数据",
"WSL is not running, please retry. If it keeps happening, it means you may be using an outdated version of WSL, run \"wsl --update\" to update.": "WSL没有运行请重试。如果一直出现此错误意味着你可能正在使用旧版本的WSL请在cmd执行\"wsl --update\"以更新",
"Memory is not enough, try to increase the virtual memory or use a smaller base model.": "内存不足,尝试增加虚拟内存,或使用一个更小规模的基底模型",
"VRAM is not enough": "显存不足",
"Training data is not enough, reduce context length or add more data for training": "训练数据不足,请减小上下文长度或增加训练数据",
"You are using WSL 1 for training, please upgrade to WSL 2. e.g. Run \"wsl --set-version Ubuntu-22.04 2\"": "你正在使用WSL 1进行训练请升级到WSL 2。例如运行\"wsl --set-version Ubuntu-22.04 2\"",
"Matched CUDA is not installed": "未安装匹配的CUDA",
"Failed to convert data": "数据转换失败",
"Failed to merge model": "合并模型失败",
"The data path should be a directory or a file in jsonl format (more formats will be supported in the future).\n\nWhen you provide a directory path, all the txt files within that directory will be automatically converted into training data. This is commonly used for large-scale training in writing, code generation, or knowledge bases.\n\nThe jsonl format file can be referenced at https://github.com/Abel2076/json2binidx_tool/blob/main/sample.jsonl.\nYou can also write it similar to OpenAI's playground format, as shown in https://platform.openai.com/playground/p/default-chat.\nEven for multi-turn conversations, they must be written in a single line using `\\n` to indicate line breaks. If they are different dialogues or topics, they should be written in separate lines.": "数据路径必须是一个文件夹或者jsonl格式文件 (未来会支持更多格式)\n\n当你填写的路径是一个文件夹时该文件夹内的所有txt文件会被自动转换为训练数据通常这用于大批量训练写作代码生成或知识库\n\njsonl文件的格式参考 https://github.com/Abel2076/json2binidx_tool/blob/main/sample.jsonl\n你也可以仿照openai的playground编写参考 https://platform.openai.com/playground/p/default-chat\n即使是多轮对话也必须写在一行用`\\n`表示换行,如果是不同对话或主题,则另起一行",
"Size mismatch for blocks. You are attempting to continue training from the LoRA model, but it does not match the base model. Please set LoRA model to None.": "尺寸不匹配块。你正在尝试从LoRA模型继续训练但该LoRA模型与基底模型不匹配请将LoRA模型设为空",
"Instruction: Write a story using the following information\n\nInput: A man named Alex chops a tree down\n\nResponse:": "Instruction: Write a story using the following information\n\nInput: 艾利克斯砍倒了一棵树\n\nResponse:",
"Composition": "作曲",
"Use Local Sound Font": "使用本地音色资源",
"Auto Play At The End": "结束时自动播放",
"No File to save": "无文件可保存",
"File Saved": "文件已保存",
"Failed to load local sound font, please check if the files exist - assets/sound-font": "加载本地音色资源失败,请检查文件是否存在 - assets/sound-font"
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

View File

@@ -0,0 +1,17 @@
import commonStore from '../stores/commonStore';
import { ToastContainer } from 'react-toastify';
export const CustomToastContainer = () =>
<ToastContainer
style={{ width: '350px' }}
position="top-center"
autoClose={4000}
pauseOnHover={true}
hideProgressBar={true}
newestOnTop={true}
closeOnClick={false}
rtl={false}
pauseOnFocusLoss={false}
draggable={false}
theme={commonStore.settings.darkMode ? 'dark' : 'light'}
/>;

View File

@@ -11,6 +11,7 @@ import {
} from '@fluentui/react-components';
import { ToolTipButton } from './ToolTipButton';
import { useTranslation } from 'react-i18next';
import MarkdownRender from './MarkdownRender';
export const DialogButton: FC<{
text?: string | null
@@ -19,12 +20,13 @@ export const DialogButton: FC<{
className?: string,
title: string,
contentText: string,
onConfirm: () => void,
markdown?: boolean,
onConfirm?: () => void,
size?: 'small' | 'medium' | 'large',
shape?: 'rounded' | 'circular' | 'square',
appearance?: 'secondary' | 'primary' | 'outline' | 'subtle' | 'transparent',
}> = ({
text, icon, tooltip, className, title, contentText,
text, icon, tooltip, className, title, contentText, markdown,
onConfirm, size, shape, appearance
}) => {
const { t } = useTranslation();
@@ -41,7 +43,11 @@ export const DialogButton: FC<{
<DialogBody>
<DialogTitle>{title}</DialogTitle>
<DialogContent>
{contentText}
{
markdown ?
<MarkdownRender>{contentText}</MarkdownRender> :
contentText
}
</DialogContent>
<DialogActions>
<DialogTrigger disableButtonEnhancement>

View File

@@ -4,7 +4,7 @@ import { useTranslation } from 'react-i18next';
import { ArrowReset20Regular } from '@fluentui/react-icons';
import commonStore from '../stores/commonStore';
import { defaultModelConfigs, defaultModelConfigsMac } from '../pages/defaultModelConfigs';
import { defaultModelConfigs, defaultModelConfigsMac } from '../pages/defaultConfigs';
export const ResetConfigsButton: FC<{ afterConfirm?: () => void }> = ({ afterConfirm }) => {
const { t } = useTranslation();

View File

@@ -1,23 +1,16 @@
import React, { FC, MouseEventHandler, ReactElement } from 'react';
import commonStore, { ModelStatus } from '../stores/commonStore';
import {
AddToDownloadList,
CopyFile,
DepCheck,
FileExists,
InstallPyDep,
StartServer
} from '../../wailsjs/go/backend_golang/App';
import { AddToDownloadList, CopyFile, FileExists, StartServer } from '../../wailsjs/go/backend_golang/App';
import { Button } from '@fluentui/react-components';
import { observer } from 'mobx-react-lite';
import { exit, getStatus, readRoot, switchModel, updateConfig } from '../apis';
import { toast } from 'react-toastify';
import { getStrategy, getSupportedCustomCudaFile, saveCache, toastWithButton } from '../utils';
import { checkDependencies, getStrategy, getSupportedCustomCudaFile, toastWithButton } from '../utils';
import { useTranslation } from 'react-i18next';
import { ToolTipButton } from './ToolTipButton';
import { Play16Regular, Stop16Regular } from '@fluentui/react-icons';
import { useNavigate } from 'react-router';
import { BrowserOpenURL, WindowShow } from '../../wailsjs/runtime/runtime';
import { WindowShow } from '../../wailsjs/runtime/runtime';
const mainButtonText = {
[ModelStatus.Offline]: 'Run',
@@ -57,53 +50,9 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
return;
}
if (!commonStore.depComplete) {
let depErrorMsg = '';
await DepCheck(commonStore.settings.customPythonPath).catch((e) => {
depErrorMsg = e.message || e;
WindowShow();
if (depErrorMsg === 'python zip not found') {
toastWithButton(t('Python target not found, would you like to download it?'), t('Download'), () => {
toastWithButton(`${t('Downloading')} Python`, t('Check'), () => {
navigate({ pathname: '/downloads' });
}, { autoClose: 3000 });
AddToDownloadList('python-3.10.11-embed-amd64.zip', 'https://www.python.org/ftp/python/3.10.11/python-3.10.11-embed-amd64.zip');
});
} else if (depErrorMsg.includes('DepCheck Error')) {
if (depErrorMsg.includes('vc_redist')) {
toastWithButton(t('Microsoft Visual C++ Redistributable is not installed, would you like to download it?'), t('Download'), () => {
BrowserOpenURL('https://aka.ms/vs/16/release/vc_redist.x64.exe');
});
} else {
toast(depErrorMsg, { type: 'info', position: 'bottom-left' });
if (commonStore.platform != 'linux')
toastWithButton(t('Python dependencies are incomplete, would you like to install them?'), t('Install'), () => {
InstallPyDep(commonStore.settings.customPythonPath, commonStore.settings.cnMirror).catch((e) => {
const errMsg = e.message || e;
toast(t('Error') + ' - ' + errMsg, { type: 'error' });
});
setTimeout(WindowShow, 1000);
}, {
autoClose: 8000
});
else
toastWithButton(t('On Linux system, you must manually install python dependencies.'), t('Check'), () => {
BrowserOpenURL('https://github.com/josStorer/RWKV-Runner/blob/master/build/linux/Readme_Install.txt');
});
}
} else {
toast(depErrorMsg, { type: 'error' });
}
});
if (depErrorMsg) {
commonStore.setStatus({ status: ModelStatus.Offline });
return;
}
commonStore.setDepComplete(true);
if (commonStore.platform === 'windows')
CopyFile('./backend-python/wkv_cuda_utils/wkv_cuda_model.py', './py310/Lib/site-packages/rwkv/model.py');
saveCache();
}
const ok = await checkDependencies(navigate);
if (!ok)
return;
const currentModelSource = commonStore.modelSourceList.find(item => item.name === modelName);
@@ -126,7 +75,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
showDownloadPrompt(t('Model file not found'), modelName);
commonStore.setStatus({ status: ModelStatus.Offline });
return;
} else if (!currentModelSource?.isLocal) {
} else if (!currentModelSource?.isComplete) {
showDownloadPrompt(t('Model file download is not complete'), modelName);
commonStore.setStatus({ status: ModelStatus.Offline });
return;
@@ -200,18 +149,36 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
}).then(async (r) => {
if (r.ok) {
commonStore.setStatus({ status: ModelStatus.Working });
toastWithButton(t('Startup Completed'), t('Chat'), () => {
navigate({ pathname: '/chat' });
}, { type: 'success', autoClose: 3000 });
let buttonNameMap = {
'novel': 'Completion',
'midi': 'Composition'
};
let buttonName = 'Chat';
buttonName = Object.entries(buttonNameMap).find(([key, value]) => modelName.toLowerCase().includes(key))?.[1] || buttonName;
const buttonFn = () => {
navigate({ pathname: '/' + buttonName.toLowerCase() });
};
toastWithButton(t('Startup Completed'), t(buttonName), buttonFn, { type: 'success', autoClose: 3000 });
} else if (r.status === 304) {
toast(t('Loading Model'), { type: 'info' });
} else {
commonStore.setStatus({ status: ModelStatus.Offline });
toast(t('Failed to switch model') + ' - ' + await r.text(), { type: 'error' });
const error = await r.text();
const errorsMap = {
'not enough memory': 'Memory is not enough, try to increase the virtual memory or use a smaller model.',
'not compiled with CUDA': 'Bad PyTorch version, please reinstall PyTorch with cuda.',
'invalid header or archive is corrupted': 'The model file is corrupted, please download again.',
'no NVIDIA driver': 'Found no NVIDIA driver, please install the latest driver.',
'CUDA out of memory': 'VRAM is not enough, please reduce stored layers or use a lower precision in Configs page.',
'Ninja is required to load C++ extensions': 'Failed to enable custom CUDA kernel, ninja is required to load C++ extensions. You may be using the CPU version of PyTorch, please reinstall PyTorch with CUDA. Or if you are using a custom Python interpreter, you must compile the CUDA kernel by yourself or disable Custom CUDA kernel acceleration.'
};
const matchedError = Object.entries(errorsMap).find(([key, _]) => error.includes(key));
const message = matchedError ? t(matchedError[1]) : error;
toast(t('Failed to switch model') + ' - ' + message, { autoClose: 5000, type: 'error' });
}
}).catch((e) => {
commonStore.setStatus({ status: ModelStatus.Offline });
toast(t('Failed to switch model') + ' - ' + e.message || e, { type: 'error' });
toast(t('Failed to switch model') + ' - ' + (e.message || e), { type: 'error' });
});
}
}).catch(() => {

View File

@@ -1,4 +1,4 @@
import React, { FC, MouseEventHandler, ReactElement } from 'react';
import React, { CSSProperties, FC, MouseEventHandler, ReactElement } from 'react';
import { Button, Tooltip } from '@fluentui/react-components';
export const ToolTipButton: FC<{
@@ -6,6 +6,7 @@ export const ToolTipButton: FC<{
desc: string,
icon?: ReactElement,
className?: string,
style?: CSSProperties,
size?: 'small' | 'medium' | 'large',
shape?: 'rounded' | 'circular' | 'square';
appearance?: 'secondary' | 'primary' | 'outline' | 'subtle' | 'transparent';
@@ -17,6 +18,7 @@ export const ToolTipButton: FC<{
desc,
icon,
className,
style,
size,
shape,
appearance,
@@ -26,8 +28,8 @@ export const ToolTipButton: FC<{
}) => {
return (
<Tooltip content={desc} showDelay={showDelay} hideDelay={0} relationship="label">
<Button className={className} disabled={disabled} icon={icon} onClick={onClick} size={size} shape={shape}
appearance={appearance}>{text}</Button>
<Button style={style} className={className} disabled={disabled} icon={icon} onClick={onClick} size={size}
shape={shape} appearance={appearance}>{text}</Button>
</Tooltip>
);
};

View File

@@ -6,6 +6,7 @@ import App from './App';
import { HashRouter } from 'react-router-dom';
import { startup } from './startup';
import './_locales/i18n-react';
import 'html-midi-player';
import { WindowShow } from '../wailsjs/runtime';
startup().then(() => {

View File

@@ -7,8 +7,7 @@ import { v4 as uuid } from 'uuid';
import classnames from 'classnames';
import { fetchEventSource } from '@microsoft/fetch-event-source';
import { KebabHorizontalIcon, PencilIcon, SyncIcon, TrashIcon } from '@primer/octicons-react';
import { ConversationPair } from '../utils/get-conversation-pairs';
import logo from '../assets/images/logo.jpg';
import logo from '../assets/images/logo.png';
import MarkdownRender from '../components/MarkdownRender';
import { ToolTipButton } from '../components/ToolTipButton';
import { ArrowCircleUp28Regular, Delete28Regular, RecordStop28Regular, Save28Regular } from '@fluentui/react-icons';
@@ -19,6 +18,8 @@ import { WorkHeader } from '../components/WorkHeader';
import { DialogButton } from '../components/DialogButton';
import { OpenFileFolder, OpenSaveFileDialog } from '../../wailsjs/go/backend_golang/App';
import { toastWithButton } from '../utils';
import { PresetsButton } from './PresetsManager/PresetsButton';
import { useMediaQuery } from 'usehooks-ts';
export const userName = 'M E';
export const botName = 'A I';
@@ -49,6 +50,13 @@ export type Conversation = {
[uuid: string]: MessageItem
}
export type Role = 'assistant' | 'user' | 'system';
export type ConversationMessage = {
role: Role;
content: string;
}
let chatSseController: AbortController | null = null;
const MoreUtilsButton: FC<{ uuid: string, setEditing: (editing: boolean) => void }> = observer(({
@@ -123,7 +131,7 @@ const ChatMessageItem: FC<{
<Avatar
color={messageItem.color}
name={messageItem.sender}
image={messageItem.avatarImg ? { src: messageItem.avatarImg } : undefined}
image={(commonStore.activePreset && messageItem.sender === botName) ? { src: commonStore.activePreset.avatarImg } : messageItem.avatarImg ? { src: messageItem.avatarImg } : undefined}
/>
<div
className={classnames(
@@ -175,7 +183,10 @@ const ChatPanel: FC = observer(() => {
const { t } = useTranslation();
const bodyRef = useRef<HTMLDivElement>(null);
const inputRef = useRef<HTMLTextAreaElement>(null);
const port = commonStore.getCurrentModelConfig().apiParameters.apiPort;
const mq = useMediaQuery('(min-width: 640px)');
const currentConfig = commonStore.getCurrentModelConfig();
const apiParams = currentConfig.apiParameters;
const port = apiParams.apiPort;
let lastMessageId: string;
let generating: boolean = false;
@@ -255,7 +266,7 @@ const ChatPanel: FC = observer(() => {
let endIndex = endUuid ? (commonStore.conversationOrder.indexOf(endUuid) + (includeEndUuid ? 1 : 0)) : commonStore.conversationOrder.length;
let targetRange = commonStore.conversationOrder.slice(startIndex, endIndex);
const messages: ConversationPair[] = [];
const messages: ConversationMessage[] = [];
targetRange.forEach((uuid, index) => {
if (uuid === welcomeUuid)
return;
@@ -299,12 +310,14 @@ const ChatPanel: FC = observer(() => {
body: JSON.stringify({
messages,
stream: true,
model: commonStore.settings.apiChatModelName // 'gpt-3.5-turbo'
model: commonStore.settings.apiChatModelName, // 'gpt-3.5-turbo'
temperature: apiParams.temperature,
top_p: apiParams.topP
}),
signal: chatSseController?.signal,
onmessage(e) {
scrollToBottom();
if (e.data === '[DONE]') {
if (e.data.trim() === '[DONE]') {
commonStore.conversation[answerId!].done = true;
commonStore.conversation[answerId!].content = commonStore.conversation[answerId!].content.trim();
commonStore.setConversation(commonStore.conversation);
@@ -357,10 +370,11 @@ const ChatPanel: FC = observer(() => {
<ChatMessageItem key={uuid} uuid={uuid} onSubmit={onSubmit} />
)}
</div>
<div className="flex items-end gap-2">
<div className={classnames('flex items-end', mq ? 'gap-2' : '')}>
<PresetsButton tab="Chat" size={mq ? 'large' : 'small'} shape="circular" appearance="subtle" />
<DialogButton tooltip={t('Clear')}
icon={<Delete28Regular />}
size="large" shape="circular" appearance="subtle" title={t('Clear')}
size={mq ? 'large' : 'small'} shape="circular" appearance="subtle" title={t('Clear')}
contentText={t('Are you sure you want to clear the conversation? It cannot be undone.')}
onConfirm={() => {
if (generating)
@@ -370,6 +384,7 @@ const ChatPanel: FC = observer(() => {
}} />
<Textarea
ref={inputRef}
style={{ minWidth: 0 }}
className="grow"
resize="vertical"
placeholder={t('Type your message here')!}
@@ -379,7 +394,7 @@ const ChatPanel: FC = observer(() => {
/>
<ToolTipButton desc={generating ? t('Stop') : t('Send')}
icon={generating ? <RecordStop28Regular /> : <ArrowCircleUp28Regular />}
size="large" shape="circular" appearance="subtle"
size={mq ? 'large' : 'small'} shape="circular" appearance="subtle"
onClick={(e) => {
if (generating) {
chatSseController?.abort();
@@ -395,21 +410,28 @@ const ChatPanel: FC = observer(() => {
}} />
<ToolTipButton desc={t('Save')}
icon={<Save28Regular />}
size="large" shape="circular" appearance="subtle"
size={mq ? 'large' : 'small'} shape="circular" appearance="subtle"
onClick={() => {
let savedContent: string = '';
const isWorldModel = commonStore.getCurrentModelConfig().modelParameters.modelName.toLowerCase().includes('world');
const user = isWorldModel ? 'Question' : 'Bob';
const bot = isWorldModel ? 'Answer' : 'Alice';
commonStore.conversationOrder.forEach((uuid) => {
if (uuid === welcomeUuid)
return;
const messageItem = commonStore.conversation[uuid];
savedContent += `**${messageItem.sender}**\n - ${new Date(messageItem.time).toLocaleString()}\n\n${messageItem.content}\n\n`;
if (messageItem.type !== MessageType.Error) {
savedContent += `${messageItem.sender === userName ? user : bot}: ${messageItem.content}\n\n`;
}
});
OpenSaveFileDialog('*.md', 'conversation.md', savedContent).then((path) => {
OpenSaveFileDialog('*.txt', 'conversation.txt', savedContent).then((path) => {
if (path)
toastWithButton(t('Conversation Saved'), t('Open'), () => {
OpenFileFolder(path, false);
});
}).catch(e => {
toast(t('Error') + ' - ' + e.message || e, { type: 'error', autoClose: 2500 });
toast(t('Error') + ' - ' + (e.message || e), { type: 'error', autoClose: 2500 });
});
}} />
</div>

View File

@@ -10,6 +10,10 @@ import commonStore, { ModelStatus } from '../stores/commonStore';
import { fetchEventSource } from '@microsoft/fetch-event-source';
import { toast } from 'react-toastify';
import { DialogButton } from '../components/DialogButton';
import { PresetsButton } from './PresetsManager/PresetsButton';
import { ToolTipButton } from '../components/ToolTipButton';
import { ArrowSync20Regular } from '@fluentui/react-icons';
import { defaultPresets } from './defaultConfigs';
export type CompletionParams = Omit<ApiParameters, 'apiPort'> & {
stop: string,
@@ -23,113 +27,6 @@ export type CompletionPreset = {
params: CompletionParams
}
export const defaultPresets: CompletionPreset[] = [{
name: 'Writer',
prompt: 'The following is an epic science fiction masterpiece that is immortalized, with delicate descriptions and grand depictions of interstellar civilization wars.\nChapter 1.\n',
params: {
maxResponseToken: 500,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4,
stop: '\\n\\nBob',
injectStart: '',
injectEnd: ''
}
}, {
name: 'Translator',
prompt: 'Translate this into Chinese.\n\nEnglish: What rooms do you have available?',
params: {
maxResponseToken: 500,
temperature: 1,
topP: 0.3,
presencePenalty: 0.4,
frequencyPenalty: 0.4,
stop: '\\nEnglish',
injectStart: '\\nChinese: ',
injectEnd: '\\nEnglish: '
}
}, {
name: 'Catgirl',
prompt: 'The following is a conversation between a cat girl and her owner. The cat girl is a humanized creature that behaves like a cat but is humanoid. At the end of each sentence in the dialogue, she will add \"Meow~\". In the following content, Bob represents the owner and Alice represents the cat girl.\n\nBob: Hello.\n\nAlice: I\'m here, meow~.\n\nBob: Can you tell jokes?',
params: {
maxResponseToken: 500,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4,
stop: '\\n\\nBob',
injectStart: '\\n\\nAlice: ',
injectEnd: '\\n\\nBob: '
}
}, {
name: 'Chinese Kongfu',
prompt: 'Bob: 请你扮演一个文本冒险游戏,我是游戏主角。这是一个玄幻修真世界,有四大门派。我输入我的行动,请你显示行动结果,并具体描述环境。我的第一个行动是“醒来”,请开始故事。',
params: {
maxResponseToken: 500,
temperature: 1.1,
topP: 0.7,
presencePenalty: 0.3,
frequencyPenalty: 0.3,
stop: '\\n\\nBob',
injectStart: '\\n\\nAlice: ',
injectEnd: '\\n\\nBob: '
}
}, {
// }, {
// name: 'Explain Code',
// prompt: 'export async function startup() {\n FileExists(\'cache.json\').then((exists) => {\n if (exists)\n downloadProgramFiles();\n else {\n deleteDynamicProgramFiles().then(downloadProgramFiles);\n }\n });\n EventsOn(\'downloadList\', (data) => {\n if (data)\n commonStore.setDownloadList(data);\n });\n\n initCache().then(initRemoteText);\n\n await initConfig();\n\n if (commonStore.settings.autoUpdatesCheck) // depends on config settings\n checkUpdate();\n\n getStatus(1000).then(status => { // depends on config api port\n if (status)\n commonStore.setStatus(status);\n });\n}\n\n\"\"\"\nHere\'s what the above code is doing, explained in a concise way:\n',
// params: {
// maxResponseToken: 500,
// temperature: 0.8,
// topP: 0.7,
// presencePenalty: 0.4,
// frequencyPenalty: 0.4,
// stop: '\\n\\n',
// injectStart: '',
// injectEnd: ''
// }
// }, {
name: 'Werewolf',
prompt: 'There is currently a game of Werewolf with six players, including a Seer (who can check identities at night), two Werewolves (who can choose someone to kill at night), a Bodyguard (who can choose someone to protect at night), two Villagers (with no special abilities), and a game host. Bob will play as Player 1, Alice will play as Players 2-6 and the game host, and they will begin playing together. Every night, the host will ask Bob for his action and simulate the actions of the other players. During the day, the host will oversee the voting process and ask Bob for his vote. \n\nAlice: Next, I will act as the game host and assign everyone their roles, including randomly assigning yours. Then, I will simulate the actions of Players 2-6 and let you know what happens each day. Based on your assigned role, you can tell me your actions and I will let you know the corresponding results each day.\n\nBob: Okay, I understand. Let\'s begin. Please assign me a role. Am I the Seer, Werewolf, Villager, or Bodyguard?\n\nAlice: You are the Seer. Now that night has fallen, please choose a player to check his identity.\n\nBob: Tonight, I want to check Player 2 and find out his role.',
params: {
maxResponseToken: 500,
temperature: 1.2,
topP: 0.4,
presencePenalty: 0.5,
frequencyPenalty: 0.5,
stop: '\\n\\nBob',
injectStart: '\\n\\nAlice: ',
injectEnd: '\\n\\nBob: '
}
}, {
name: 'Instruction',
prompt: 'Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n# Instruction:\nWrite a story using the following information\n\n# Input:\nA man named Alex chops a tree down\n\n# Response:\n',
params: {
maxResponseToken: 500,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4,
stop: '',
injectStart: '',
injectEnd: ''
}
}, {
name: 'Blank',
prompt: '',
params: {
maxResponseToken: 500,
temperature: 1,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4,
stop: '',
injectStart: '',
injectEnd: ''
}
}];
let completionSseController: AbortController | null = null;
const CompletionPanel: FC = observer(() => {
@@ -149,6 +46,7 @@ const CompletionPanel: FC = observer(() => {
}, []);
const setPreset = (preset: CompletionPreset) => {
commonStore.setCompletionSubmittedPrompt(t(preset.prompt));
commonStore.setCompletionPreset({
...preset,
prompt: t(preset.prompt)
@@ -180,6 +78,8 @@ const CompletionPanel: FC = observer(() => {
};
const onSubmit = (prompt: string) => {
commonStore.setCompletionSubmittedPrompt(prompt);
if (commonStore.status.status === ModelStatus.Offline && !commonStore.settings.apiUrl) {
toast(t('Please click the button in the top right corner to start the model'), { type: 'warning' });
commonStore.setCompletionGenerating(false);
@@ -214,7 +114,7 @@ const CompletionPanel: FC = observer(() => {
signal: completionSseController?.signal,
onmessage(e) {
scrollToBottom();
if (e.data === '[DONE]') {
if (e.data.trim() === '[DONE]') {
commonStore.setCompletionGenerating(false);
return;
}
@@ -226,8 +126,8 @@ const CompletionPanel: FC = observer(() => {
return;
}
if (data.choices && Array.isArray(data.choices) && data.choices.length > 0) {
answer += data.choices[0].text;
setPrompt(prompt + answer.trim() + params.injectEnd.replaceAll('\\n', '\n'));
answer += data.choices[0]?.text || data.choices[0]?.delta?.content || '';
setPrompt(prompt + answer.replace(/\s+$/, '') + params.injectEnd.replaceAll('\\n', '\n'));
}
},
async onopen(response) {
@@ -258,22 +158,29 @@ const CompletionPanel: FC = observer(() => {
ref={inputRef}
className="grow"
value={prompt}
onChange={(e) => setPrompt(e.target.value)}
onChange={(e) => {
commonStore.setCompletionSubmittedPrompt(e.target.value);
setPrompt(e.target.value);
}}
/>
<div className="flex flex-col gap-1 max-h-48 sm:max-w-sm sm:max-h-full">
<Dropdown style={{ minWidth: 0 }}
value={t(commonStore.completionPreset!.name)!}
selectedOptions={[commonStore.completionPreset!.name]}
onOptionSelect={(_, data) => {
if (data.optionValue) {
setPreset(defaultPresets.find((preset) => preset.name === data.optionValue)!);
<div className="flex gap-2">
<Dropdown style={{ minWidth: 0 }}
className="grow"
value={t(commonStore.completionPreset!.name)!}
selectedOptions={[commonStore.completionPreset!.name]}
onOptionSelect={(_, data) => {
if (data.optionValue) {
setPreset(defaultPresets.find((preset) => preset.name === data.optionValue)!);
}
}}>
{
defaultPresets.map((preset) =>
<Option key={preset.name} value={preset.name}>{t(preset.name)!}</Option>)
}
}}>
{
defaultPresets.map((preset) =>
<Option key={preset.name} value={preset.name}>{t(preset.name)!}</Option>)
}
</Dropdown>
</Dropdown>
<PresetsButton tab="Completion" />
</div>
<div className="flex flex-col gap-1 overflow-x-hidden overflow-y-auto p-1">
<Labeled flex breakline label={t('Max Response Token')}
desc={t('By default, the maximum number of tokens that can be answered in a single response, it can be changed by the user by specifying API parameters.')}
@@ -363,6 +270,12 @@ const CompletionPanel: FC = observer(() => {
</div>
<div className="grow" />
<div className="flex justify-between gap-2">
<ToolTipButton desc={t('Regenerate')} icon={<ArrowSync20Regular />} onClick={() => {
completionSseController?.abort();
commonStore.setCompletionGenerating(true);
setPrompt(commonStore.completionSubmittedPrompt);
onSubmit(commonStore.completionSubmittedPrompt);
}} />
<DialogButton className="grow" text={t('Reset')} title={t('Reset')}
contentText={t('Are you sure you want to reset this page? It cannot be undone.')}
onConfirm={() => {

View File

@@ -0,0 +1,345 @@
import React, { FC, useEffect, useRef } from 'react';
import { observer } from 'mobx-react-lite';
import { WorkHeader } from '../components/WorkHeader';
import { Button, Checkbox, Textarea } from '@fluentui/react-components';
import { Labeled } from '../components/Labeled';
import { ValuedSlider } from '../components/ValuedSlider';
import { useTranslation } from 'react-i18next';
import commonStore, { ModelStatus } from '../stores/commonStore';
import { fetchEventSource } from '@microsoft/fetch-event-source';
import { toast } from 'react-toastify';
import { DialogButton } from '../components/DialogButton';
import { ToolTipButton } from '../components/ToolTipButton';
import { ArrowSync20Regular, Save28Regular } from '@fluentui/react-icons';
import { PlayerElement, VisualizerElement } from 'html-midi-player';
import * as mm from '@magenta/music/esm/core.js';
import { NoteSequence } from '@magenta/music/esm/protobuf.js';
import { defaultCompositionPrompt } from './defaultConfigs';
import { FileExists, OpenFileFolder, OpenSaveFileDialogBytes } from '../../wailsjs/go/backend_golang/App';
import { toastWithButton } from '../utils';
export type CompositionParams = {
prompt: string,
maxResponseToken: number,
temperature: number,
topP: number,
autoPlay: boolean,
useLocalSoundFont: boolean,
midi: ArrayBuffer | null,
ns: NoteSequence | null
}
let compositionSseController: AbortController | null = null;
const CompositionPanel: FC = observer(() => {
const { t } = useTranslation();
const inputRef = useRef<HTMLTextAreaElement>(null);
const port = commonStore.getCurrentModelConfig().apiParameters.apiPort;
const visualizerRef = useRef<VisualizerElement>(null);
const playerRef = useRef<PlayerElement>(null);
const scrollToBottom = () => {
if (inputRef.current)
inputRef.current.scrollTop = inputRef.current.scrollHeight;
};
const params = commonStore.compositionParams;
const setParams = (newParams: Partial<CompositionParams>) => {
commonStore.setCompositionParams({
...commonStore.compositionParams,
...newParams
});
};
const setPrompt = (prompt: string) => {
setParams({
prompt
});
if (!commonStore.compositionGenerating)
generateNs(false);
};
const updateNs = (ns: NoteSequence | null) => {
if (playerRef.current) {
playerRef.current.noteSequence = ns;
playerRef.current.reload();
}
if (visualizerRef.current) {
visualizerRef.current.noteSequence = ns;
visualizerRef.current.reload();
}
};
const setSoundFont = async () => {
let soundUrl: string;
if (commonStore.compositionParams.useLocalSoundFont)
soundUrl = 'assets/sound-font';
else
soundUrl = !commonStore.settings.giteeUpdatesSource ?
`https://raw.githubusercontent.com/josStorer/sgm_plus/master` :
`https://gitee.com/josc146/sgm_plus/raw/master`;
const fallbackUrl = 'https://cdn.jsdelivr.net/gh/josstorer/sgm_plus';
await fetch(soundUrl + '/soundfont.json').then(r => {
if (!r.ok)
soundUrl = fallbackUrl;
}).catch(() => soundUrl = fallbackUrl);
if (playerRef.current) {
playerRef.current.soundFont = soundUrl;
}
};
useEffect(() => {
if (inputRef.current)
inputRef.current.style.height = '100%';
scrollToBottom();
if (playerRef.current && visualizerRef.current) {
playerRef.current.addVisualizer(visualizerRef.current);
playerRef.current.addEventListener('start', () => {
visualizerRef.current?.reload();
});
setSoundFont().then(() => {
updateNs(params.ns);
});
const button = playerRef.current.shadowRoot?.querySelector('.controls .play') as HTMLElement | null;
if (button)
button.style.background = '#f2f5f6';
}
}, []);
const generateNs = (autoPlay: boolean) => {
fetch(commonStore.settings.apiUrl ?
commonStore.settings.apiUrl + '/text-to-midi' :
`http://127.0.0.1:${port}/text-to-midi`, {
method: 'POST',
headers: {
'Content-Type': 'application/json'
},
body: JSON.stringify({
'text': commonStore.compositionParams.prompt.replaceAll(/<pad>|<start>|<end>/g, '').replaceAll(' ', ' ').trim()
})
}).then(r => {
r.arrayBuffer().then(midi => {
const ns = mm.midiToSequenceProto(midi);
setParams({
midi,
ns
});
updateNs(ns);
if (autoPlay) {
playerRef.current?.start();
}
});
});
};
const onSubmit = (prompt: string) => {
commonStore.setCompositionSubmittedPrompt(prompt);
if (commonStore.status.status === ModelStatus.Offline && !commonStore.settings.apiUrl) {
toast(t('Please click the button in the top right corner to start the model'), { type: 'warning' });
commonStore.setCompositionGenerating(false);
return;
}
let answer = '';
compositionSseController = new AbortController();
fetchEventSource( // https://api.openai.com/v1/completions || http://127.0.0.1:${port}/completions
commonStore.settings.apiUrl ?
commonStore.settings.apiUrl + '/v1/completions' :
`http://127.0.0.1:${port}/completions`,
{
method: 'POST',
headers: {
'Content-Type': 'application/json',
Authorization: `Bearer ${commonStore.settings.apiKey}`
},
body: JSON.stringify({
prompt,
stream: true,
model: commonStore.settings.apiCompletionModelName, // 'text-davinci-003'
max_tokens: params.maxResponseToken,
temperature: params.temperature,
top_p: params.topP
}),
signal: compositionSseController?.signal,
onmessage(e) {
scrollToBottom();
if (e.data.trim() === '[DONE]') {
commonStore.setCompositionGenerating(false);
generateNs(commonStore.compositionParams.autoPlay);
return;
}
let data;
try {
data = JSON.parse(e.data);
} catch (error) {
console.debug('json error', error);
return;
}
if (data.choices && Array.isArray(data.choices) && data.choices.length > 0) {
answer += data.choices[0]?.text || data.choices[0]?.delta?.content || '';
setPrompt(prompt + answer.replace(/\s+$/, ''));
}
},
async onopen(response) {
if (response.status !== 200) {
toast(response.statusText + '\n' + (await response.text()), {
type: 'error'
});
}
},
onclose() {
console.log('Connection closed');
},
onerror(err) {
err = err.message || err;
if (err && !err.includes('ReadableStreamDefaultReader'))
toast(err, {
type: 'error'
});
commonStore.setCompositionGenerating(false);
throw err;
}
});
};
return (
<div className="flex flex-col gap-2 overflow-hidden grow">
<div className="flex flex-col sm:flex-row gap-2 overflow-hidden grow">
<Textarea
ref={inputRef}
className="grow"
value={params.prompt}
onChange={(e) => {
commonStore.setCompositionSubmittedPrompt(e.target.value);
setPrompt(e.target.value);
}}
/>
<div className="flex flex-col gap-1 max-h-48 sm:max-w-sm sm:max-h-full overflow-x-hidden overflow-y-auto p-1">
<Labeled flex breakline label={t('Max Response Token')}
desc={t('By default, the maximum number of tokens that can be answered in a single response, it can be changed by the user by specifying API parameters.')}
content={
<ValuedSlider value={params.maxResponseToken} min={100} max={4100}
step={100}
input
onChange={(e, data) => {
setParams({
maxResponseToken: data.value
});
}} />
} />
<Labeled flex breakline label={t('Temperature')}
desc={t('Sampling temperature, it\'s like giving alcohol to a model, the higher the stronger the randomness and creativity, while the lower, the more focused and deterministic it will be.')}
content={
<ValuedSlider value={params.temperature} min={0} max={2} step={0.1}
input
onChange={(e, data) => {
setParams({
temperature: data.value
});
}} />
} />
<Labeled flex breakline label={t('Top_P')}
desc={t('Just like feeding sedatives to the model. Consider the results of the top n% probability mass, 0.1 considers the top 10%, with higher quality but more conservative, 1 considers all results, with lower quality but more diverse.')}
content={
<ValuedSlider value={params.topP} min={0} max={1} step={0.1} input
onChange={(e, data) => {
setParams({
topP: data.value
});
}} />
} />
<div className="grow" />
<Checkbox className="select-none"
size="large" label={t('Use Local Sound Font')} checked={params.useLocalSoundFont}
onChange={async (_, data) => {
if (data.checked) {
if (!await FileExists('assets/sound-font/accordion/instrument.json')) {
toast(t('Failed to load local sound font, please check if the files exist - assets/sound-font'),
{ type: 'warning' });
return;
}
}
setParams({
useLocalSoundFont: data.checked as boolean
});
setSoundFont();
}} />
<Checkbox className="select-none"
size="large" label={t('Auto Play At The End')} checked={params.autoPlay} onChange={(_, data) => {
setParams({
autoPlay: data.checked as boolean
});
}} />
<div className="flex justify-between gap-2">
<ToolTipButton desc={t('Regenerate')} icon={<ArrowSync20Regular />} onClick={() => {
compositionSseController?.abort();
commonStore.setCompositionGenerating(true);
setPrompt(commonStore.compositionSubmittedPrompt);
onSubmit(commonStore.compositionSubmittedPrompt);
}} />
<DialogButton className="grow" text={t('Reset')} title={t('Reset')}
contentText={t('Are you sure you want to reset this page? It cannot be undone.')}
onConfirm={() => {
commonStore.setCompositionSubmittedPrompt(defaultCompositionPrompt);
setPrompt(defaultCompositionPrompt);
}} />
<Button className="grow" appearance="primary" onClick={() => {
if (commonStore.compositionGenerating) {
compositionSseController?.abort();
commonStore.setCompositionGenerating(false);
generateNs(params.autoPlay);
} else {
commonStore.setCompositionGenerating(true);
onSubmit(params.prompt);
}
}}>{!commonStore.compositionGenerating ? t('Generate') : t('Stop')}</Button>
</div>
</div>
</div>
<div className="flex flex-col">
<div className="ml-auto mr-auto">
<midi-visualizer
ref={visualizerRef}
type="waterfall"
/>
</div>
<div className="flex">
<midi-player
ref={playerRef}
style={{ width: '100%' }}
/>
<Button icon={<Save28Regular />}
onClick={() => {
if (params.midi) {
OpenSaveFileDialogBytes('*.mid', 'music.mid', Array.from(new Uint8Array(params.midi))).then((path) => {
if (path)
toastWithButton(t('File Saved'), t('Open'), () => {
OpenFileFolder(path, false);
});
}).catch((e: any) => {
toast(t('Error') + ' - ' + (e.message || e), { type: 'error', autoClose: 2500 });
});
} else {
toast(t('No File to save'), { type: 'warning', autoClose: 1500 });
}
}}
>
{t('Save')}
</Button>
</div>
</div>
</div>
);
});
export const Composition: FC = observer(() => {
return (
<div className="flex flex-col gap-1 p-2 h-full overflow-hidden">
<WorkHeader />
<CompositionPanel />
</div>
);
});

View File

@@ -13,8 +13,8 @@ import { Page } from '../components/Page';
import { useNavigate } from 'react-router';
import { RunButton } from '../components/RunButton';
import { updateConfig } from '../apis';
import { ConvertModel, FileExists } from '../../wailsjs/go/backend_golang/App';
import { getStrategy, refreshLocalModels } from '../utils';
import { ConvertModel, FileExists, GetPyError } from '../../wailsjs/go/backend_golang/App';
import { getStrategy } from '../utils';
import { useTranslation } from 'react-i18next';
import { WindowShow } from '../../wailsjs/runtime/runtime';
import strategyImg from '../assets/images/strategy.jpg';
@@ -224,12 +224,12 @@ export const Configs: FC = observer(() => {
modelName: data.value
});
}}>
{!commonStore.modelSourceList.find(item => item.name === selectedConfig.modelParameters.modelName)?.isLocal
{!commonStore.modelSourceList.find(item => item.name === selectedConfig.modelParameters.modelName)?.isComplete
&& <option key={-1}
value={selectedConfig.modelParameters.modelName}>{selectedConfig.modelParameters.modelName}
</option>}
{commonStore.modelSourceList.map((modelItem, index) =>
modelItem.isLocal && <option key={index} value={modelItem.name}>{modelItem.name}</option>
modelItem.isComplete && <option key={index} value={modelItem.name}>{modelItem.name}</option>
)}
</Select>
<ToolTipButton desc={t('Manage Models')} icon={<DataUsageSettings20Regular />} onClick={() => {
@@ -253,9 +253,12 @@ export const Configs: FC = observer(() => {
const strategy = getStrategy(selectedConfig);
const newModelPath = modelPath + '-' + strategy.replace(/[:> *+]/g, '-');
toast(t('Start Converting'), { autoClose: 1000, type: 'info' });
ConvertModel(commonStore.settings.customPythonPath, modelPath, strategy, newModelPath).then(() => {
toast(`${t('Convert Success')} - ${newModelPath}`, { type: 'success' });
refreshLocalModels({ models: commonStore.modelSourceList }, false);
ConvertModel(commonStore.settings.customPythonPath, modelPath, strategy, newModelPath).then(async () => {
if (!await FileExists(newModelPath + '.pth')) {
toast(t('Convert Failed') + ' - ' + await GetPyError(), { type: 'error' });
} else {
toast(`${t('Convert Success')} - ${newModelPath}`, { type: 'success' });
}
}).catch(e => {
const errMsg = e.message || e;
if (errMsg.includes('path contains space'))
@@ -328,7 +331,8 @@ export const Configs: FC = observer(() => {
}
{
displayStrategyImg &&
<img style={{ width: '80vh', height: 'auto', zIndex: 100 }} className="fixed left-0 top-0"
<img style={{ width: '80vh', height: 'auto', zIndex: 100 }}
className="fixed left-0 top-0 rounded-xl select-none"
src={commonStore.settings.language === 'zh' ? strategyZhImg : strategyImg} />
}
{

View File

@@ -1,13 +1,13 @@
import React, { FC, useEffect } from 'react';
import React, { FC } from 'react';
import { useTranslation } from 'react-i18next';
import { Page } from '../components/Page';
import { observer } from 'mobx-react-lite';
import commonStore from '../stores/commonStore';
import { Divider, Field, ProgressBar } from '@fluentui/react-components';
import { bytesToGb, bytesToKb, bytesToMb, refreshLocalModels } from '../utils';
import { bytesToGb, bytesToKb, bytesToMb } from '../utils';
import { ToolTipButton } from '../components/ToolTipButton';
import { Folder20Regular, Pause20Regular, Play20Regular } from '@fluentui/react-icons';
import { ContinueDownload, OpenFileFolder, PauseDownload } from '../../wailsjs/go/backend_golang/App';
import { AddToDownloadList, OpenFileFolder, PauseDownload } from '../../wailsjs/go/backend_golang/App';
export type DownloadStatus = {
name: string;
@@ -23,17 +23,28 @@ export type DownloadStatus = {
export const Downloads: FC = observer(() => {
const { t } = useTranslation();
const finishedModelsLen = commonStore.downloadList.filter((status) => status.done && status.name.endsWith('.pth')).length;
useEffect(() => {
if (finishedModelsLen > 0)
refreshLocalModels({ models: commonStore.modelSourceList }, false);
console.log('finishedModelsLen:', finishedModelsLen);
}, [finishedModelsLen]);
let displayList = commonStore.downloadList.slice();
const downloadListNames = displayList.map(s => s.name);
commonStore.lastUnfinishedModelDownloads.forEach((status) => {
const unfinishedIndex = downloadListNames.indexOf(status.name);
if (unfinishedIndex === -1) {
displayList.push(status);
} else {
const unfinishedStatus = displayList[unfinishedIndex];
if (unfinishedStatus.transferred < status.transferred) {
status.downloading = unfinishedStatus.downloading;
delete displayList[unfinishedIndex];
displayList.push(status);
}
}
});
displayList = displayList.reverse();
return (
<Page title={t('Downloads')} content={
<div className="flex flex-col gap-2 overflow-y-auto overflow-x-hidden p-1">
{commonStore.downloadList.slice().reverse().map((status, index) => {
{displayList.map((status, index) => {
const downloadProgress = `${status.progress.toFixed(2)}%`;
const downloadSpeed = `${status.downloading ? bytesToMb(status.speed) : '0'}MB/s`;
let downloadDetails: string;
@@ -59,7 +70,7 @@ export const Downloads: FC = observer(() => {
if (status.downloading)
PauseDownload(status.url);
else
ContinueDownload(status.url);
AddToDownloadList(status.path, status.url);
}} />}
<ToolTipButton desc={t('Open Folder')} icon={<Folder20Regular />} onClick={() => {
OpenFileFolder(status.path, false);

View File

@@ -27,11 +27,13 @@ export type ModelSourceItem = {
name: string;
size: number;
lastUpdated: string;
desc?: { [lang: string]: string; };
desc?: { [lang: string]: string | undefined; };
SHA256?: string;
url?: string;
downloadUrl?: string;
isComplete?: boolean;
isLocal?: boolean;
localSize?: number;
lastUpdatedMs?: number;
hide?: boolean;
};
@@ -61,10 +63,10 @@ const columns: TableColumnDefinition<ModelSourceItem>[] = [
const lang: string = commonStore.settings.language;
if (a.desc && b.desc) {
if (lang in a.desc && lang in b.desc)
return b.desc[lang].localeCompare(a.desc[lang]);
else if ('en' in a.desc && 'en' in b.desc)
return b.desc['en'].localeCompare(a.desc['en']);
if (lang in a.desc && lang in b.desc && a.desc[lang] && b.desc[lang])
return b.desc[lang]!.localeCompare(a.desc[lang]!);
else if ('en' in a.desc && 'en' in b.desc && a.desc['en'] && b.desc['en'])
return b.desc['en']!.localeCompare(a.desc['en']!);
}
return 0;
},
@@ -125,7 +127,7 @@ const columns: TableColumnDefinition<ModelSourceItem>[] = [
createTableColumn<ModelSourceItem>({
columnId: 'actions',
compare: (a, b) => {
return a.isLocal ? -1 : 1;
return a.isComplete ? -1 : 1;
},
renderHeaderCell: () => {
const { t } = useTranslation();
@@ -140,12 +142,12 @@ const columns: TableColumnDefinition<ModelSourceItem>[] = [
<TableCellLayout>
<div className="flex gap-1">
{
item.isLocal &&
item.isComplete &&
<ToolTipButton desc={t('Open Folder')} icon={<Folder20Regular />} onClick={() => {
OpenFileFolder(`${commonStore.settings.customModelsPath}/${item.name}`, true);
}} />
}
{item.downloadUrl && !item.isLocal &&
{item.downloadUrl && !item.isComplete &&
<ToolTipButton desc={t('Download')} icon={<ArrowDownload20Regular />} onClick={() => {
toastWithButton(`${t('Downloading')} ${item.name}`, t('Check'), () => {
navigate({ pathname: '/downloads' });
@@ -203,7 +205,7 @@ export const Models: FC = observer(() => {
<div className="overflow-y-auto overflow-x-hidden">
<DataGridBody<ModelSourceItem>>
{({ item, rowId }) => (
(!item.hide || item.isLocal) &&
(!item.hide || item.isComplete) &&
<DataGridRow<ModelSourceItem> key={rowId}>
{({ renderCell }) => (
<DataGridCell>{renderCell(item)}</DataGridCell>

View File

@@ -0,0 +1,154 @@
import React, { FC, useState } from 'react';
import { DragDropContext, Draggable, Droppable, DropResult } from 'react-beautiful-dnd';
import commonStore from '../../stores/commonStore';
import { Preset } from './PresetsButton';
import { observer } from 'mobx-react-lite';
import { v4 as uuid } from 'uuid';
import { Button, Card, Dropdown, Option, Textarea } from '@fluentui/react-components';
import { useTranslation } from 'react-i18next';
import { ToolTipButton } from '../../components/ToolTipButton';
import { Delete20Regular, ReOrderDotsVertical20Regular } from '@fluentui/react-icons';
import { ConversationMessage, Role } from '../Chat';
type Item = {
id: string;
role: Role;
content: string;
}
const getItems = (messages: ConversationMessage[]) =>
messages.map((message, index) => ({
id: uuid(),
role: message.role,
content: message.content
})) as Item[];
const reorder = (list: Item[], startIndex: number, endIndex: number) => {
const result = Array.from(list);
const [removed] = result.splice(startIndex, 1);
result.splice(endIndex, 0, removed);
return result;
};
export const MessagesEditor: FC = observer(() => {
const { t } = useTranslation();
const editingPreset = commonStore.editingPreset!;
const setEditingPreset = (newParams: Partial<Preset>) => {
commonStore.setEditingPreset({
...editingPreset,
...newParams
});
};
const [items, setItems] = useState(getItems(editingPreset.messages));
const updateItems = (items: Item[]) => {
setEditingPreset({
messages: items.map(item => ({
role: item.role,
content: item.content
}))
});
setItems(items);
};
const onDragEnd = (result: DropResult) => {
if (!result.destination) {
return;
}
const newItems = reorder(
items,
result.source.index,
result.destination.index
);
updateItems(newItems);
};
const createNewItem = () => {
const newItems: Item[] = [...items, {
id: uuid(),
role: 'assistant',
content: ''
}];
updateItems(newItems);
};
const deleteItem = (id: string) => {
const newItems: Item[] = items.filter(item => item.id !== id);
updateItems(newItems);
};
return (
<div className="grid grid-cols-1 gap-2 overflow-hidden">
<Button style={{ width: '100%' }} onClick={createNewItem}>{t('New')}</Button>
<div className="overflow-x-hidden overflow-y-auto p-2">
<DragDropContext onDragEnd={onDragEnd}>
<Droppable droppableId="droppable">
{(provided, snapshot) => (
<div
{...provided.droppableProps}
ref={provided.innerRef}
>
{items.map((item, index) => (
<Draggable key={item.id} draggableId={item.id} index={index}>
{(provided, snapshot) => (
<div
ref={provided.innerRef}
{...provided.draggableProps}
{...provided.dragHandleProps}
style={provided.draggableProps.style}
className="select-none mb-2"
>
<div className="flex">
<Card appearance="outline"
style={{ borderTopRightRadius: 0, borderBottomRightRadius: 0 }}>
<ReOrderDotsVertical20Regular />
</Card>
<Dropdown style={{ minWidth: 0, borderRadius: 0 }} listbox={{ style: { minWidth: 0 } }}
value={t(item.role)!}
selectedOptions={[item.role]}
onOptionSelect={(_, data) => {
if (data.optionValue) {
items[index] = {
...item,
role: data.optionValue as Role
};
updateItems([...items]);
}
}}>
<Option value="user">{t('user')!}</Option>
<Option value="assistant">{t('assistant')!}</Option>
{/* TODO <Option value="system">{t('system')!}</Option>*/}
</Dropdown>
<Textarea resize="vertical" className="grow" value={item.content}
style={{ minWidth: 0, borderRadius: 0 }}
onChange={(e, data) => {
items[index] = {
...item,
content: data.value
};
updateItems([...items]);
}}></Textarea>
<ToolTipButton
style={{ borderTopLeftRadius: 0, borderBottomLeftRadius: 0 }} desc={t('Delete')}
icon={<Delete20Regular />} onClick={() => {
deleteItem(item.id);
}} />
</div>
</div>
)}
</Draggable>
))}
{provided.placeholder}
</div>
)}
</Droppable>
</DragDropContext>
</div>
</div>
);
});

View File

@@ -0,0 +1,431 @@
// TODO refactor
import React, { FC, PropsWithChildren, ReactElement, useState } from 'react';
import {
Button,
Dialog,
DialogBody,
DialogContent,
DialogSurface,
DialogTrigger,
Input,
Switch,
Tab,
TabList,
Text
} from '@fluentui/react-components';
import {
Accessibility28Regular,
Chat20Regular,
ClipboardEdit20Regular,
Delete20Regular,
Dismiss20Regular,
Edit20Regular,
Globe20Regular
} from '@fluentui/react-icons';
import { ToolTipButton } from '../../components/ToolTipButton';
import { useTranslation } from 'react-i18next';
import { botName, Conversation, ConversationMessage, MessageType, userName } from '../Chat';
import { SelectTabEventHandler } from '@fluentui/react-tabs';
import { Labeled } from '../../components/Labeled';
import commonStore from '../../stores/commonStore';
import logo from '../../assets/images/logo.png';
import { observer } from 'mobx-react-lite';
import { MessagesEditor } from './MessagesEditor';
import { ClipboardGetText, ClipboardSetText } from '../../../wailsjs/runtime';
import { toast } from 'react-toastify';
import { CustomToastContainer } from '../../components/CustomToastContainer';
import { v4 as uuid } from 'uuid';
export type PresetType = 'chat' | 'completion' | 'chatInCompletion'
export type Preset = {
name: string,
tag: string,
// if name and sourceUrl are same, it will be overridden when importing
sourceUrl: string,
desc: string,
avatarImg: string,
type: PresetType,
// chat
welcomeMessage: string,
messages: ConversationMessage[],
displayPresetMessages: boolean,
// completion
prompt: string,
stop: string,
injectStart: string,
injectEnd: string,
}
export const defaultPreset: Preset = {
name: 'RWKV',
tag: 'default',
sourceUrl: '',
desc: '',
avatarImg: logo,
type: 'chat',
welcomeMessage: '',
displayPresetMessages: true,
messages: [],
prompt: '',
stop: '',
injectStart: '',
injectEnd: ''
};
const setActivePreset = (preset: Preset) => {
commonStore.setActivePreset(preset);
//TODO if (preset.displayPresetMessages) {
const conversation: Conversation = {};
const conversationOrder: string[] = [];
for (const message of preset.messages) {
const newUuid = uuid();
conversationOrder.push(newUuid);
conversation[newUuid] = {
sender: message.role === 'user' ? userName : botName,
type: MessageType.Normal,
color: message.role === 'user' ? 'brand' : 'colorful',
time: new Date().toISOString(),
content: message.content,
side: message.role === 'user' ? 'right' : 'left',
done: true
};
}
commonStore.setConversation(conversation);
commonStore.setConversationOrder(conversationOrder);
//}
};
export const PresetCardFrame: FC<PropsWithChildren & { onClick?: () => void }> = (props) => {
return <Button
className="flex flex-col gap-1 w-32 h-56 break-all"
style={{ minWidth: 0, borderRadius: '0.75rem', justifyContent: 'unset' }}
onClick={props.onClick}
>
{props.children}
</Button>;
};
export const PresetCard: FC<{
avatarImg: string,
name: string,
desc: string,
tag: string,
editable: boolean,
presetIndex: number,
onClick?: () => void
}> = observer(({
avatarImg, name, desc, tag, editable, presetIndex, onClick
}) => {
const { t } = useTranslation();
return <PresetCardFrame onClick={onClick}>
<img src={avatarImg} className="rounded-xl select-none ml-auto mr-auto h-28" />
<Text size={400}>{name}</Text>
<Text size={200} style={{
overflow: 'hidden', textOverflow: 'ellipsis',
display: '-webkit-box', WebkitLineClamp: 3, WebkitBoxOrient: 'vertical'
}}>{desc}</Text>
<div className="grow" />
<div className="flex justify-between w-full items-end">
<div className="text-xs font-thin text-gray-500">{t(tag)}</div>
{editable ?
<ChatPresetEditor presetIndex={presetIndex} triggerButton={
<ToolTipButton size="small" appearance="transparent" desc={t('Edit')} icon={<Edit20Regular />}
onClick={() => {
commonStore.setEditingPreset({ ...commonStore.presets[presetIndex] });
}} />
} />
: <div />
}
</div>
</PresetCardFrame>;
});
export const ChatPresetEditor: FC<{
triggerButton: ReactElement,
presetIndex: number
}> = observer(({ triggerButton, presetIndex }) => {
const { t } = useTranslation();
const [editingMessages, setEditingMessages] = useState(false);
if (!commonStore.editingPreset)
commonStore.setEditingPreset({ ...defaultPreset });
const editingPreset = commonStore.editingPreset!;
const setEditingPreset = (newParams: Partial<Preset>) => {
commonStore.setEditingPreset({
...editingPreset,
...newParams
});
};
const importPreset = () => {
ClipboardGetText().then((text) => {
try {
const preset = JSON.parse(text);
setEditingPreset(preset);
toast(t('Imported successfully'), {
type: 'success',
autoClose: 1000
});
} catch (e) {
toast(t('Failed to import. Please copy a preset to the clipboard.'), {
type: 'error',
autoClose: 2500
});
}
}).catch(() => {
toast(t('Clipboard is empty.'), {
type: 'info',
autoClose: 1000
});
});
};
const copyPreset = () => {
ClipboardSetText(JSON.stringify(editingPreset)).then((success) => {
if (success)
toast(t('Successfully copied to clipboard.'), {
type: 'success',
autoClose: 1000
});
});
};
const savePreset = () => {
if (presetIndex === -1) {
commonStore.setPresets([...commonStore.presets, { ...editingPreset }]);
setEditingPreset(defaultPreset);
} else {
commonStore.presets[presetIndex] = editingPreset;
commonStore.setPresets(commonStore.presets);
}
};
const activatePreset = () => {
savePreset();
setActivePreset(editingPreset);
};
const deletePreset = () => {
commonStore.presets.splice(presetIndex, 1);
commonStore.setPresets(commonStore.presets);
};
return <Dialog>
<DialogTrigger disableButtonEnhancement>
{triggerButton}
</DialogTrigger>
<DialogSurface style={{
paddingTop: 0,
maxWidth: '80vw',
maxHeight: '80vh',
width: '500px',
height: '100%'
}}>
<DialogBody style={{ height: '100%', overflow: 'hidden' }}>
<DialogContent className="flex flex-col gap-1 overflow-hidden">
<CustomToastContainer />
<div className="flex justify-between">{
presetIndex === -1
? <div />
: <DialogTrigger disableButtonEnhancement>
<Button appearance="subtle" icon={<Delete20Regular />} onClick={deletePreset} />
</DialogTrigger>
}
<DialogTrigger disableButtonEnhancement>
<Button appearance="subtle" icon={<Dismiss20Regular />} />
</DialogTrigger>
</div>
<img src={editingPreset.avatarImg} className="rounded-xl select-none ml-auto mr-auto h-28" />
<Labeled flex breakline label={t('Name')}
content={
<div className="flex gap-2">
<Input className="grow" value={editingPreset.name} onChange={(e, data) => {
setEditingPreset({
name: data.value
});
}} />
<Button onClick={() => {
setEditingMessages(!editingMessages);
}}>{!editingMessages ? t('Edit Messages') : t('Go Back')}</Button>
</div>
} />
{
editingMessages ?
<MessagesEditor /> :
<div className="flex flex-col gap-1 p-2 overflow-x-hidden overflow-y-auto">
<Labeled flex breakline label={t('Description')}
content={
<Input value={editingPreset.desc} onChange={(e, data) => {
setEditingPreset({
desc: data.value
});
}} />
} />
<Labeled flex breakline label={t('Avatar Url')}
content={
<Input value={editingPreset.avatarImg} onChange={(e, data) => {
setEditingPreset({
avatarImg: data.value
});
}} />
} />
<Labeled flex breakline label={t('Welcome Message')}
content={
<Input disabled value={editingPreset.welcomeMessage} onChange={(e, data) => {
setEditingPreset({
welcomeMessage: data.value
});
}} />
} />
<Labeled flex spaceBetween label={t('Display Preset Messages')}
content={
<Switch disabled checked={editingPreset.displayPresetMessages}
onChange={(e, data) => {
setEditingPreset({
displayPresetMessages: data.checked
});
}} />
} />
<Labeled flex breakline label={t('Tag')}
content={
<Input value={editingPreset.tag} onChange={(e, data) => {
setEditingPreset({
tag: data.value
});
}} />
} />
</div>
}
<div className="grow" />
<div className="flex justify-between">
<Button onClick={importPreset}>{t('Import')}</Button>
<Button onClick={copyPreset}>{t('Copy')}</Button>
</div>
<div className="flex justify-between">
<DialogTrigger disableButtonEnhancement>
<Button appearance="primary" onClick={savePreset}>{t('Save')}</Button>
</DialogTrigger>
<DialogTrigger disableButtonEnhancement>
<Button appearance="primary" onClick={activatePreset}>{t('Activate')}</Button>
</DialogTrigger>
</div>
</DialogContent>
</DialogBody>
</DialogSurface>
</Dialog>;
});
export const ChatPresets: FC = observer(() => {
const { t } = useTranslation();
return <div className="flex flex-wrap gap-2">
<ChatPresetEditor presetIndex={-1} triggerButton={
<PresetCardFrame>
<div className="h-full flex items-center">
{t('New Preset')}
</div>
</PresetCardFrame>}
/>
{/*TODO <PresetCardFrame>*/}
{/* <div className="h-full flex items-center">*/}
{/* {t('Import')}*/}
{/* </div>*/}
{/*</PresetCardFrame>*/}
<PresetCard
presetIndex={-1}
editable={false}
onClick={() => {
setActivePreset(defaultPreset);
}} avatarImg={defaultPreset.avatarImg} name={defaultPreset.name} desc={defaultPreset.desc} tag={defaultPreset.tag}
/>
{commonStore.presets.map((preset, index) => {
return <PresetCard
presetIndex={index}
editable={true}
onClick={() => {
setActivePreset(preset);
}}
key={index} avatarImg={preset.avatarImg} name={preset.name} desc={preset.desc} tag={preset.tag}
/>;
})}
</div>;
});
type PresetsNavigationItem = {
icon: ReactElement;
element: ReactElement;
};
const pages: { [label: string]: PresetsNavigationItem } = {
Chat: {
icon: <Chat20Regular />,
element: <ChatPresets />
},
Completion: {
icon: <ClipboardEdit20Regular />,
element: <div>In Development</div>
},
Online: {
icon: <Globe20Regular />,
element: <div>In Development</div>
}
};
export const PresetsManager: FC<{ initTab: string }> = ({ initTab }) => {
const { t } = useTranslation();
const [tab, setTab] = useState(initTab);
const selectTab: SelectTabEventHandler = (e, data) =>
typeof data.value === 'string' ? setTab(data.value) : null;
return <div className="flex flex-col gap-2 w-full h-full">
<div className="flex justify-between">
<TabList
size="small"
appearance="subtle"
selectedValue={tab}
onTabSelect={selectTab}
>
{Object.entries(pages).map(([label, { icon }]) => (
<Tab icon={icon} key={label} value={label}>
{t(label)}
</Tab>
))}
</TabList>
<DialogTrigger disableButtonEnhancement>
<Button appearance="subtle" icon={<Dismiss20Regular />} />
</DialogTrigger>
</div>
<div className="grow overflow-x-hidden overflow-y-auto">
{pages[tab].element}
</div>
</div>;
};
export const PresetsButton: FC<{
tab: string,
size?: 'small' | 'medium' | 'large',
shape?: 'rounded' | 'circular' | 'square';
appearance?: 'secondary' | 'primary' | 'outline' | 'subtle' | 'transparent';
}> = ({ tab, size, shape, appearance }) => {
const { t } = useTranslation();
return <Dialog>
<DialogTrigger disableButtonEnhancement>
<ToolTipButton desc={t('Presets')} size={size} shape={shape} appearance={appearance}
icon={<Accessibility28Regular />} />
</DialogTrigger>
<DialogSurface style={{ paddingTop: 0, maxWidth: '90vw', width: 'fit-content' }}>
<DialogBody>
<DialogContent>
<CustomToastContainer />
<PresetsManager initTab={tab} />
</DialogContent>
</DialogBody>
</DialogSurface>
</Dialog>;
};

View File

@@ -19,7 +19,8 @@ import { RestartApp } from '../../wailsjs/go/backend_golang/App';
export const Languages = {
dev: 'English', // i18n default
zh: '简体中文'
zh: '简体中文',
ja: '日本語'
};
export type Language = keyof typeof Languages;
@@ -166,6 +167,7 @@ export const Settings: FC = observer(() => {
content={
<Input className="grow" placeholder="./py310/python" value={commonStore.settings.customPythonPath}
onChange={(e, data) => {
commonStore.setDepComplete(false);
commonStore.setSettings({
customPythonPath: data.value
});

View File

@@ -1,13 +1,609 @@
import React, { FC } from 'react';
import { Text } from '@fluentui/react-components';
import React, { FC, ReactElement, useEffect, useRef, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { Button, Dropdown, Input, Option, Select, Switch, Tab, TabList } from '@fluentui/react-components';
import {
ConvertData,
FileExists,
GetPyError,
MergeLora,
OpenFileFolder,
WslCommand,
WslEnable,
WslInstallUbuntu,
WslIsEnabled,
WslStart,
WslStop
} from '../../wailsjs/go/backend_golang/App';
import { toast } from 'react-toastify';
import commonStore from '../stores/commonStore';
import { observer } from 'mobx-react-lite';
import { SelectTabEventHandler } from '@fluentui/react-tabs';
import { checkDependencies, toastWithButton } from '../utils';
import { Section } from '../components/Section';
import { Labeled } from '../components/Labeled';
import { ToolTipButton } from '../components/ToolTipButton';
import { DataUsageSettings20Regular, Folder20Regular } from '@fluentui/react-icons';
import { useNavigate } from 'react-router';
import { Precision } from './Configs';
import {
CategoryScale,
Chart as ChartJS,
Legend,
LinearScale,
LineElement,
PointElement,
Title,
Tooltip
} from 'chart.js';
import { Line } from 'react-chartjs-2';
import { ChartJSOrUndefined } from 'react-chartjs-2/dist/types';
import { WindowShow } from '../../wailsjs/runtime';
import { t } from 'i18next';
import { DialogButton } from '../components/DialogButton';
ChartJS.register(
CategoryScale,
LinearScale,
PointElement,
LineElement,
Tooltip,
Title,
Legend
);
const parseLossData = (data: string) => {
const regex = /Epoch (\d+):\s+(\d+%)\|[\s\S]*\| (\d+)\/(\d+) \[(\S+)<(\S+),\s+(\S+), loss=(\S+),[\s\S]*\]/g;
const matches = Array.from(data.matchAll(regex));
if (matches.length === 0)
return false;
const lastMatch = matches[matches.length - 1];
const epoch = parseInt(lastMatch[1]);
const loss = parseFloat(lastMatch[8]);
commonStore.setChartTitle(`Epoch ${epoch}: ${lastMatch[2]} - ${lastMatch[3]}/${lastMatch[4]} - ${lastMatch[5]}/${lastMatch[6]} - ${lastMatch[7]} Loss=${loss}`);
addLossDataToChart(epoch, loss);
return true;
};
let chartLine: ChartJSOrUndefined<'line', (number | null)[], string>;
const addLossDataToChart = (epoch: number, loss: number) => {
const epochIndex = commonStore.chartData.labels!.findIndex(l => l.includes(epoch.toString()));
if (epochIndex === -1) {
if (epoch === 0) {
commonStore.chartData.labels!.push('Init');
commonStore.chartData.datasets[0].data = [...commonStore.chartData.datasets[0].data, loss];
}
commonStore.chartData.labels!.push('Epoch ' + epoch.toString());
commonStore.chartData.datasets[0].data = [...commonStore.chartData.datasets[0].data, loss];
} else {
if (chartLine) {
const newData = [...commonStore.chartData.datasets[0].data];
newData[epochIndex] = loss;
chartLine.data.datasets[0].data = newData;
chartLine.update();
}
}
commonStore.setChartData(commonStore.chartData);
};
export type DataProcessParameters = {
dataPath: string;
vocabPath: string;
}
export type LoraFinetunePrecision = 'bf16' | 'fp16' | 'tf32';
export type LoraFinetuneParameters = {
baseModel: string;
ctxLen: number;
epochSteps: number;
epochCount: number;
epochBegin: number;
epochSave: number;
microBsz: number;
accumGradBatches: number;
preFfn: boolean;
headQk: boolean;
lrInit: string;
lrFinal: string;
warmupSteps: number;
beta1: number;
beta2: number;
adamEps: string;
devices: number;
precision: LoraFinetunePrecision;
gradCp: boolean;
loraR: number;
loraAlpha: number;
loraDropout: number;
loraLoad: string
}
const loraFinetuneParametersOptions: Array<[key: keyof LoraFinetuneParameters, type: string, name: string]> = [
['devices', 'number', 'Devices'],
['precision', 'LoraFinetunePrecision', 'Precision'],
['gradCp', 'boolean', 'Gradient Checkpoint'],
['ctxLen', 'number', 'Context Length'],
['epochSteps', 'number', 'Epoch Steps'],
['epochCount', 'number', 'Epoch Count'],
['epochBegin', 'number', 'Epoch Begin'],
['epochSave', 'number', 'Epoch Save'],
['lrInit', 'string', 'Learning Rate Init'],
['lrFinal', 'string', 'Learning Rate Final'],
['microBsz', 'number', 'Micro Batch Size'],
['accumGradBatches', 'number', 'Accumulate Gradient Batches'],
['warmupSteps', 'number', 'Warmup Steps'],
['adamEps', 'string', 'Adam Epsilon'],
['beta1', 'number', 'Beta 1'],
['beta2', 'number', 'Beta 2'],
['loraR', 'number', 'LoRA R'],
['loraAlpha', 'number', 'LoRA Alpha'],
['loraDropout', 'number', 'LoRA Dropout'],
['beta1', 'any', ''],
['preFfn', 'boolean', 'Pre-FFN'],
['headQk', 'boolean', 'Head QK']
];
const showError = (e: any) => {
const msg = e.message || e;
if (msg === 'wsl not running') {
toast(t('WSL is not running, please retry. If it keeps happening, it means you may be using an outdated version of WSL, run "wsl --update" to update.'), { type: 'error' });
} else {
toast(t(msg), { type: 'error', toastId: 'train_error' });
}
};
const errorsMap = Object.entries({
'python3 ./finetune/lora/train.py': 'Memory is not enough, try to increase the virtual memory or use a smaller base model.',
'cuda out of memory': 'VRAM is not enough',
'valueerror: high <= 0': 'Training data is not enough, reduce context length or add more data for training',
'+= \'+ptx\'': 'You are using WSL 1 for training, please upgrade to WSL 2. e.g. Run "wsl --set-version Ubuntu-22.04 2"',
'size mismatch for blocks': 'Size mismatch for blocks. You are attempting to continue training from the LoRA model, but it does not match the base model. Please set LoRA model to None.',
'cuda_home environment variable is not set': 'Matched CUDA is not installed',
'unsupported gpu architecture': 'Matched CUDA is not installed',
'error building extension \'fused_adam\'': 'Matched CUDA is not installed'
});
export const wslHandler = (data: string) => {
if (data) {
addWslMessage(data);
const ok = parseLossData(data);
if (!ok)
for (const [key, value] of errorsMap) {
if (data.toLowerCase().includes(key)) {
showError(value);
return;
}
}
}
};
const addWslMessage = (message: string) => {
const newData = commonStore.wslStdout + '\n' + message;
let lines = newData.split('\n');
const result = lines.slice(-100).join('\n');
commonStore.setWslStdout(result);
};
const TerminalDisplay: FC = observer(() => {
const bodyRef = useRef<HTMLDivElement>(null);
const scrollToBottom = () => {
if (bodyRef.current)
bodyRef.current.scrollTop = bodyRef.current.scrollHeight;
};
useEffect(() => {
scrollToBottom();
});
return (
<div ref={bodyRef} className="grow overflow-x-hidden overflow-y-auto border-gray-500 border-2 rounded-md">
<div className="whitespace-pre-line">
{commonStore.wslStdout}
</div>
</div>
);
});
const Terminal: FC = observer(() => {
const { t } = useTranslation();
const [input, setInput] = useState('');
const handleKeyDown = (e: any) => {
e.stopPropagation();
if (e.keyCode === 13) {
e.preventDefault();
if (!input) return;
WslStart().then(() => {
addWslMessage('WSL> ' + input);
setInput('');
WslCommand(input).catch(showError);
}).catch(showError);
}
};
return (
<div className="flex flex-col h-full gap-4">
<TerminalDisplay />
<div className="flex gap-2 items-center">
WSL:
<Input className="grow" value={input} onChange={(e) => {
setInput(e.target.value);
}} onKeyDown={handleKeyDown}></Input>
<Button onClick={() => {
WslStop().then(() => {
toast(t('Command Stopped'), { type: 'success' });
}).catch(showError);
}}>
{t('Stop')}
</Button>
</div>
</div>
);
});
const LoraFinetune: FC = observer(() => {
const { t } = useTranslation();
const navigate = useNavigate();
const chartRef = useRef<ChartJSOrUndefined<'line', (number | null)[], string>>(null);
const dataParams = commonStore.dataProcessParams;
const loraParams = commonStore.loraFinetuneParams;
if (chartRef.current)
chartLine = chartRef.current;
const setDataParams = (newParams: Partial<DataProcessParameters>) => {
commonStore.setDataProcessParams({
...dataParams,
...newParams
});
};
const setLoraParams = (newParams: Partial<LoraFinetuneParameters>) => {
commonStore.setLoraFinetuneParameters({
...loraParams,
...newParams
});
};
useEffect(() => {
if (loraParams.baseModel === '')
setLoraParams({
baseModel: commonStore.modelSourceList.find(m => m.isComplete)?.name || ''
});
}, []);
const StartLoraFinetune = async () => {
const ok = await checkDependencies(navigate);
if (!ok)
return;
const convertedDataPath = './finetune/json2binidx_tool/data/' +
dataParams.dataPath.replace(/[\/\\]$/, '').split(/[\/\\]/).pop()!.split('.')[0] +
'_text_document';
if (!await FileExists(convertedDataPath + '.idx')) {
toast(t('Please convert data first.'), { type: 'error' });
return;
}
WslIsEnabled().then(() => {
WslStart().then(() => {
setTimeout(WindowShow, 1000);
let ctxLen = loraParams.ctxLen;
if (dataParams.dataPath === 'finetune/data/sample.jsonl') {
ctxLen = 150;
toast(t('You are using sample data for training. For formal training, please make sure to create your own jsonl file.'), {
type: 'info',
autoClose: 6000
});
}
commonStore.setChartData({
labels: [],
datasets: [
{
label: 'Loss',
data: [],
borderColor: 'rgb(53, 162, 235)',
backgroundColor: 'rgba(53, 162, 235, 0.5)'
}
]
});
WslCommand(`export cnMirror=${commonStore.settings.cnMirror ? '1' : '0'} ` +
`&& export loadModel=models/${loraParams.baseModel} ` +
`&& sed -i 's/\\r$//' finetune/install-wsl-dep-and-train.sh ` +
`&& chmod +x finetune/install-wsl-dep-and-train.sh && ./finetune/install-wsl-dep-and-train.sh ` +
(loraParams.baseModel ? `--load_model models/${loraParams.baseModel} ` : '') +
(loraParams.loraLoad ? `--lora_load lora-models/${loraParams.loraLoad} ` : '') +
`--data_file ${convertedDataPath} ` +
`--vocab_size ${loraParams.baseModel.toLowerCase().includes('world') ? '65536' : '50277'} ` +
`--ctx_len ${ctxLen} --epoch_steps ${loraParams.epochSteps} --epoch_count ${loraParams.epochCount} ` +
`--epoch_begin ${loraParams.epochBegin} --epoch_save ${loraParams.epochSave} ` +
`--micro_bsz ${loraParams.microBsz} --accumulate_grad_batches ${loraParams.accumGradBatches} ` +
`--pre_ffn ${loraParams.preFfn ? '1' : '0'} --head_qk ${loraParams.headQk ? '1' : '0'} --lr_init ${loraParams.lrInit} --lr_final ${loraParams.lrFinal} ` +
`--warmup_steps ${loraParams.warmupSteps} ` +
`--beta1 ${loraParams.beta1} --beta2 ${loraParams.beta2} --adam_eps ${loraParams.adamEps} ` +
`--devices ${loraParams.devices} --precision ${loraParams.precision} ` +
`--grad_cp ${loraParams.gradCp ? '1' : '0'} ` +
`--lora_r ${loraParams.loraR} --lora_alpha ${loraParams.loraAlpha} --lora_dropout ${loraParams.loraDropout}`).catch(showError);
}).catch(e => {
const msg = e.message || e;
if (msg === 'ubuntu not found') {
WindowShow();
toastWithButton(t('Ubuntu is not installed, do you want to install it?'), t('Install Ubuntu'), () => {
WslInstallUbuntu().then(() => {
WindowShow();
toast(t('Please install Ubuntu using Microsoft Store, after installation click the Open button in Microsoft Store and then click the Train button'), {
type: 'info',
autoClose: 10000
});
});
});
}
});
}).catch(e => {
const msg = e.message || e;
const enableWsl = (forceMode: boolean) => {
WindowShow();
toastWithButton(t('WSL is not enabled, do you want to enable it?'), t('Enable WSL'), () => {
WslEnable(forceMode).then(() => {
WindowShow();
toast(t('After installation, please restart your computer to enable WSL'), {
type: 'info',
autoClose: false
});
}).catch(showError);
});
};
if (msg === 'wsl is not enabled') {
enableWsl(false);
} else if (msg.includes('wsl.state: The system cannot find the file')) {
enableWsl(true);
} else {
showError(msg);
}
});
};
return (
<div className="flex flex-col h-full w-full gap-2">
{(commonStore.wslStdout.length > 0 || commonStore.chartData.labels!.length !== 0) &&
<div className="flex" style={{ height: '35%' }}>
{commonStore.wslStdout.length > 0 && commonStore.chartData.labels!.length === 0 && <TerminalDisplay />}
{commonStore.chartData.labels!.length !== 0 &&
<Line ref={chartRef} data={commonStore.chartData} options={{
responsive: true,
showLine: true,
plugins: {
legend: {
position: 'right',
align: 'start'
},
title: {
display: true,
text: commonStore.chartTitle
}
},
scales: {
y: {
beginAtZero: true
}
},
maintainAspectRatio: false
}} style={{ width: '100%' }} />}
</div>
}
<div>
<Section
title={t('Data Process')}
content={
<div className="flex flex-col gap-2">
<div className="flex gap-2 items-center">
{t('Data Path')}
<Input className="grow" style={{ minWidth: 0 }} value={dataParams.dataPath}
onChange={(e, data) => {
setDataParams({ dataPath: data.value });
}} />
<DialogButton text={t('Help')} title={t('Help')} markdown
contentText={t('The data path should be a directory or a file in jsonl format (more formats will be supported in the future).\n\n' +
'When you provide a directory path, all the txt files within that directory will be automatically converted into training data. ' +
'This is commonly used for large-scale training in writing, code generation, or knowledge bases.\n\n' +
'The jsonl format file can be referenced at https://github.com/Abel2076/json2binidx_tool/blob/main/sample.jsonl.\n' +
'You can also write it similar to OpenAI\'s playground format, as shown in https://platform.openai.com/playground/p/default-chat.\n' +
'Even for multi-turn conversations, they must be written in a single line using `\\n` to indicate line breaks. ' +
'If they are different dialogues or topics, they should be written in separate lines.')} />
<ToolTipButton desc={t('Open Folder')} icon={<Folder20Regular />} onClick={() => {
OpenFileFolder(dataParams.dataPath, false);
}} />
</div>
<div className="flex gap-2 items-center">
{t('Vocab Path')}
<Input className="grow" style={{ minWidth: 0 }} value={dataParams.vocabPath}
onChange={(e, data) => {
setDataParams({ vocabPath: data.value });
}} />
<Button appearance="secondary" onClick={async () => {
const ok = await checkDependencies(navigate);
if (!ok)
return;
const outputPrefix = './finetune/json2binidx_tool/data/' +
dataParams.dataPath.replace(/[\/\\]$/, '').split(/[\/\\]/).pop()!.split('.')[0];
ConvertData(commonStore.settings.customPythonPath,
dataParams.dataPath.replaceAll('\\', '/'),
outputPrefix,
dataParams.vocabPath).then(async () => {
if (!await FileExists(outputPrefix + '_text_document.idx')) {
toast(t('Failed to convert data') + ' - ' + await GetPyError(), { type: 'error' });
} else {
toast(t('Convert Data successfully'), { type: 'success' });
}
}).catch(showError);
}}>{t('Convert')}</Button>
</div>
</div>
}
/>
</div>
<Section
title={t('Train Parameters')}
content={
<div className="grid grid-cols-1 sm:grid-cols-2 gap-2">
<div className="flex gap-2 items-center">
{t('Base Model')}
<Select style={{ minWidth: 0 }} className="grow"
value={loraParams.baseModel}
onChange={(e, data) => {
setLoraParams({
baseModel: data.value
});
}}>
{commonStore.modelSourceList.map((modelItem, index) =>
modelItem.isComplete && <option key={index} value={modelItem.name}>{modelItem.name}</option>
)}
</Select>
<ToolTipButton desc={t('Manage Models')} icon={<DataUsageSettings20Regular />} onClick={() => {
navigate({ pathname: '/models' });
}} />
</div>
<div className="flex gap-2 items-center">
{t('LoRA Model')}
<Select style={{ minWidth: 0 }} className="grow"
value={loraParams.loraLoad}
onChange={(e, data) => {
setLoraParams({
loraLoad: data.value
});
}}>
<option value="">{t('None')}</option>
{commonStore.loraModels.map((name, index) =>
<option key={index} value={name}>{name}</option>
)}
</Select>
<Button onClick={async () => {
const ok = await checkDependencies(navigate);
if (!ok)
return;
if (loraParams.loraLoad) {
const outputPath = `models/${loraParams.baseModel}-LoRA-${loraParams.loraLoad}`;
MergeLora(commonStore.settings.customPythonPath, true, loraParams.loraAlpha,
'models/' + loraParams.baseModel, 'lora-models/' + loraParams.loraLoad,
outputPath).then(async () => {
if (!await FileExists(outputPath)) {
toast(t('Failed to merge model') + ' - ' + await GetPyError(), { type: 'error' });
} else {
toast(t('Merge model successfully'), { type: 'success' });
}
}).catch(showError);
} else {
toast(t('Please select a LoRA model'), { type: 'info' });
}
}}>{t('Merge Model')}</Button>
</div>
{
loraFinetuneParametersOptions.map(([key, type, name], index) => {
return (
<Labeled key={index} label={t(name)} content={
type === 'number' ?
<Input type="number" className="grow" value={loraParams[key].toString()}
onChange={(e, data) => {
setLoraParams({
[key]: Number(data.value)
});
}} /> :
type === 'boolean' ?
<Switch className="grow" checked={loraParams[key] as boolean}
onChange={(e, data) => {
setLoraParams({
[key]: data.checked
});
}} /> :
type === 'string' ?
<Input className="grow" value={loraParams[key].toString()}
onChange={(e, data) => {
setLoraParams({
[key]: data.value
});
}} /> :
type === 'LoraFinetunePrecision' ?
<Dropdown style={{ minWidth: 0 }} className="grow"
value={loraParams[key].toString()}
selectedOptions={[loraParams[key].toString()]}
onOptionSelect={(_, data) => {
if (data.optionText) {
setLoraParams({
precision: data.optionText as LoraFinetunePrecision
});
}
}}
>
<Option>bf16</Option>
<Option>fp16</Option>
<Option>tf32</Option>
</Dropdown>
: <div />
} />
);
})
}
</div>
}
/>
<div className="grow" />
<div className="flex gap-2">
<div className="grow" />
<Button appearance="secondary" size="large" onClick={() => {
WslStop().then(() => {
toast(t('Command Stopped'), { type: 'success' });
}).catch(showError);
}}>{t('Stop')}</Button>
<Button appearance="primary" size="large" onClick={StartLoraFinetune}>{t('Train')}</Button>
</div>
</div>
);
});
type TrainNavigationItem = {
element: ReactElement;
};
const pages: { [label: string]: TrainNavigationItem } = {
'LoRA Finetune': {
element: <LoraFinetune />
},
WSL: {
element: <Terminal />
}
};
export const Train: FC = () => {
const { t } = useTranslation();
const [tab, setTab] = useState('LoRA Finetune');
return (
<div className="flex flex-col box-border gap-5 p-2">
<Text size={600}>{t('In Development')}</Text>
const selectTab: SelectTabEventHandler = (e, data) =>
typeof data.value === 'string' ? setTab(data.value) : null;
return <div className="flex flex-col gap-2 w-full h-full">
<TabList
size="small"
appearance="subtle"
selectedValue={tab}
onTabSelect={selectTab}
>
{Object.entries(pages).map(([label]) => (
<Tab key={label} value={label}>
{t(label)}
</Tab>
))}
</TabList>
<div className="grow overflow-hidden">
{pages[tab].element}
</div>
);
</div>;
};

View File

@@ -8,6 +8,7 @@ import {
DocumentSettings20Regular,
Home20Regular,
Info20Regular,
MusicNote220Regular,
Settings20Regular,
Storage20Regular
} from '@fluentui/react-icons';
@@ -19,6 +20,7 @@ import { Settings } from './Settings';
import { About } from './About';
import { Downloads } from './Downloads';
import { Completion } from './Completion';
import { Composition } from './Composition';
type NavigationItem = {
label: string;
@@ -50,6 +52,13 @@ export const pages: NavigationItem[] = [
element: <Completion />,
top: true
},
{
label: 'Composition',
path: '/composition',
icon: <MusicNote220Regular />,
element: <Composition />,
top: true
},
{
label: 'Configs',
path: '/configs',

View File

@@ -1,10 +1,12 @@
import commonStore, { Platform } from './stores/commonStore';
import { GetPlatform, ReadJson } from '../wailsjs/go/backend_golang/App';
import { Cache, checkUpdate, downloadProgramFiles, LocalConfig, refreshModels } from './utils';
import { GetPlatform, ListDirFiles, ReadJson } from '../wailsjs/go/backend_golang/App';
import { Cache, checkUpdate, downloadProgramFiles, LocalConfig, refreshLocalModels, refreshModels } from './utils';
import { getStatus } from './apis';
import { EventsOn } from '../wailsjs/runtime';
import manifest from '../../manifest.json';
import { defaultModelConfigs, defaultModelConfigsMac } from './pages/defaultModelConfigs';
import { defaultModelConfigs, defaultModelConfigsMac } from './pages/defaultConfigs';
import { Preset } from './pages/PresetsManager/PresetsButton';
import { wslHandler } from './pages/Train';
export async function startup() {
downloadProgramFiles();
@@ -12,11 +14,19 @@ export async function startup() {
if (data)
commonStore.setDownloadList(data);
});
EventsOn('wsl', wslHandler);
EventsOn('wslerr', (e) => {
console.log(e);
});
initLocalModelsNotify();
initLoraModels();
initPresets();
await GetPlatform().then(p => commonStore.setPlatform(p as Platform));
await initConfig();
initCache().then(initRemoteText); // depends on config customModelsPath
initCache(true).then(initRemoteText); // depends on config customModelsPath
if (commonStore.settings.autoUpdatesCheck) // depends on config settings
checkUpdate();
@@ -47,6 +57,12 @@ async function initConfig() {
if (configData.settings)
commonStore.setSettings(configData.settings, false);
if (configData.dataProcessParams)
commonStore.setDataProcessParams(configData.dataProcessParams, false);
if (configData.loraFinetuneParams)
commonStore.setLoraFinetuneParameters(configData.loraFinetuneParams, false);
if (configData.modelConfigs && Array.isArray(configData.modelConfigs))
commonStore.setModelConfigs(configData.modelConfigs, false);
else throw new Error('Invalid config.json');
@@ -58,11 +74,46 @@ async function initConfig() {
});
}
async function initCache() {
async function initCache(initUnfinishedModels: boolean) {
await ReadJson('cache.json').then((cacheData: Cache) => {
if (cacheData.depComplete)
commonStore.setDepComplete(cacheData.depComplete);
if (cacheData.version === manifest.version && cacheData.depComplete)
commonStore.setDepComplete(cacheData.depComplete, false);
}).catch(() => {
});
await refreshModels(false);
}
await refreshModels(false, initUnfinishedModels);
}
async function initPresets() {
await ReadJson('presets.json').then((presets: Preset[]) => {
commonStore.setPresets(presets, false);
}).catch(() => {
});
}
async function initLoraModels() {
const refreshLoraModels = () => {
ListDirFiles('lora-models').then((data) => {
if (!data) return;
const loraModels = [];
for (const f of data) {
if (!f.isDir && f.name.endsWith('.pth')) {
loraModels.push(f.name);
}
}
commonStore.setLoraModels(loraModels);
});
};
refreshLoraModels();
EventsOn('fsnotify', (data: string) => {
if (data.includes('lora-models'))
refreshLoraModels();
});
}
async function initLocalModelsNotify() {
EventsOn('fsnotify', (data: string) => {
if (data.includes('models') && !data.includes('lora-models'))
refreshLocalModels({ models: commonStore.modelSourceList }, false); //TODO fix bug that only add models
});
}

View File

@@ -1,5 +1,5 @@
import { makeAutoObservable } from 'mobx';
import { getUserLanguage, isSystemLightMode, saveConfigs } from '../utils';
import { getUserLanguage, isSystemLightMode, saveCache, saveConfigs, savePresets } from '../utils';
import { WindowSetDarkTheme, WindowSetLightTheme } from '../../wailsjs/runtime';
import manifest from '../../../manifest.json';
import { ModelConfig } from '../pages/Configs';
@@ -11,8 +11,12 @@ import { IntroductionContent } from '../pages/Home';
import { AboutContent } from '../pages/About';
import i18n from 'i18next';
import { CompletionPreset } from '../pages/Completion';
import { defaultModelConfigs, defaultModelConfigsMac } from '../pages/defaultModelConfigs';
import { defaultCompositionPrompt, defaultModelConfigs, defaultModelConfigsMac } from '../pages/defaultConfigs';
import commonStore from './commonStore';
import { Preset } from '../pages/PresetsManager/PresetsButton';
import { DataProcessParameters, LoraFinetuneParameters } from '../pages/Train';
import { ChartData } from 'chart.js';
import { CompositionParams } from '../pages/Composition';
export enum ModelStatus {
Offline,
@@ -29,6 +33,8 @@ export type Status = {
export type Platform = 'windows' | 'darwin' | 'linux';
const labels = ['January', 'February', 'March', 'April', 'May', 'June', 'July'];
class CommonStore {
// global
status: Status = {
@@ -38,15 +44,33 @@ class CommonStore {
};
depComplete: boolean = false;
platform: Platform = 'windows';
// presets manager
editingPreset: Preset | null = null;
presets: Preset[] = [];
// home
introduction: IntroductionContent = manifest.introduction;
// chat
currentInput: string = '';
conversation: Conversation = {};
conversationOrder: string[] = [];
activePreset: Preset | null = null;
// completion
completionPreset: CompletionPreset | null = null;
completionGenerating: boolean = false;
completionSubmittedPrompt: string = '';
// composition
compositionParams: CompositionParams = {
prompt: defaultCompositionPrompt,
maxResponseToken: 200,
temperature: 1,
topP: 0.8,
autoPlay: true,
useLocalSoundFont: false,
midi: null,
ns: null
};
compositionGenerating: boolean = false;
compositionSubmittedPrompt: string = defaultCompositionPrompt;
// configs
currentModelConfigIndex: number = 0;
modelConfigs: ModelConfig[] = [];
@@ -55,6 +79,41 @@ class CommonStore {
modelSourceList: ModelSourceItem[] = [];
// downloads
downloadList: DownloadStatus[] = [];
lastUnfinishedModelDownloads: DownloadStatus[] = [];
// train
wslStdout: string = '';
chartTitle: string = '';
chartData: ChartData<'line', (number | null)[], string> = { labels: [], datasets: [] };
loraModels: string[] = [];
dataProcessParams: DataProcessParameters = {
dataPath: 'finetune/data/sample.jsonl',
vocabPath: 'backend-python/rwkv_pip/rwkv_vocab_v20230424.txt'
};
loraFinetuneParams: LoraFinetuneParameters = {
baseModel: '',
ctxLen: 1024,
epochSteps: 200,
epochCount: 20,
epochBegin: 0,
epochSave: 2,
microBsz: 1,
accumGradBatches: 8,
preFfn: false,
headQk: false,
lrInit: '5e-5',
lrFinal: '5e-5',
warmupSteps: 0,
beta1: 0.9,
beta2: 0.999,
adamEps: '1e-8',
devices: 1,
precision: 'bf16',
gradCp: false,
loraR: 8,
loraAlpha: 32,
loraDropout: 0.01,
loraLoad: ''
};
// settings
advancedCollapsed: boolean = true;
settings: SettingsType = {
@@ -162,8 +221,10 @@ class CommonStore {
this.about = value;
};
setDepComplete = (value: boolean) => {
setDepComplete = (value: boolean, inSaveCache: boolean = true) => {
this.depComplete = value;
if (inSaveCache)
saveCache();
};
setDownloadList = (value: DownloadStatus[]) => {
@@ -197,6 +258,68 @@ class CommonStore {
setAdvancedCollapsed(value: boolean) {
this.advancedCollapsed = value;
}
setLastUnfinishedModelDownloads(value: DownloadStatus[]) {
this.lastUnfinishedModelDownloads = value;
}
setEditingPreset(value: Preset) {
this.editingPreset = value;
}
setPresets(value: Preset[], savePreset: boolean = true) {
this.presets = value;
if (savePreset)
savePresets();
}
setActivePreset(value: Preset) {
this.activePreset = value;
}
setCompletionSubmittedPrompt(value: string) {
this.completionSubmittedPrompt = value;
}
setCompositionParams(value: CompositionParams) {
this.compositionParams = value;
}
setCompositionGenerating(value: boolean) {
this.compositionGenerating = value;
}
setCompositionSubmittedPrompt(value: string) {
this.compositionSubmittedPrompt = value;
}
setWslStdout(value: string) {
this.wslStdout = value;
}
setDataProcessParams(value: DataProcessParameters, saveConfig: boolean = true) {
this.dataProcessParams = value;
if (saveConfig)
saveConfigs();
}
setLoraFinetuneParameters(value: LoraFinetuneParameters, saveConfig: boolean = true) {
this.loraFinetuneParams = value;
if (saveConfig)
saveConfigs();
}
setChartTitle(value: string) {
this.chartTitle = value;
}
setChartData(value: ChartData<'line', (number | null)[], string>) {
this.chartData = value;
}
setLoraModels(value: string[]) {
this.loraModels = value;
}
}
export default new CommonStore();

View File

@@ -28,6 +28,7 @@ body {
/* Works on Chrome, Edge, and Safari */
*::-webkit-scrollbar {
width: 9px;
height: 9px;
}
*::-webkit-scrollbar-thumb {
@@ -92,3 +93,22 @@ body {
}
}
}
midi-player {
&::part(control-panel) {
background: none;
}
}
midi-visualizer {
$instrument-colors: #007bff, #20c997, #dc3545, #6610f2, #ffc107, #e83e8c, #17a2b8, #fd7e14, #28a745;
svg {
@for $i from 0 to 200 {
$color: nth($instrument-colors, ($i % length($instrument-colors)) + 1);
rect.note[data-instrument="#{$i}"] {
fill: $color;
}
}
}
}

View File

@@ -0,0 +1,9 @@
declare module JSX {
import { PlayerElement } from 'html-midi-player';
import { VisualizerElement } from 'html-midi-player';
interface IntrinsicElements {
'midi-player': PlayerElement;
'midi-visualizer': VisualizerElement;
}
}

View File

@@ -1,27 +0,0 @@
export type Record = {
question: string;
answer: string;
}
export type ConversationPair = {
role: string;
content: string;
}
export function getConversationPairs(records: Record[], isCompletion: boolean): string | ConversationPair[] {
let pairs;
if (isCompletion) {
pairs = '';
for (const record of records) {
pairs += 'Human: ' + record.question + '\nAI: ' + record.answer + '\n';
}
} else {
pairs = [];
for (const record of records) {
pairs.push({ role: 'user', content: record.question });
pairs.push({ role: 'assistant', content: record.answer });
}
}
return pairs;
}

View File

@@ -1,6 +1,9 @@
import {
AddToDownloadList,
CopyFile,
DeleteFile,
DepCheck,
InstallPyDep,
ListDirFiles,
ReadFileInfo,
ReadJson,
@@ -8,7 +11,7 @@ import {
UpdateApp
} from '../../wailsjs/go/backend_golang/App';
import manifest from '../../../manifest.json';
import commonStore from '../stores/commonStore';
import commonStore, { ModelStatus } from '../stores/commonStore';
import { toast } from 'react-toastify';
import { t } from 'i18next';
import { ToastOptions } from 'react-toastify/dist/types';
@@ -16,8 +19,13 @@ import { Button } from '@fluentui/react-components';
import { Language, Languages, SettingsType } from '../pages/Settings';
import { ModelSourceItem } from '../pages/Models';
import { ModelConfig, ModelParameters } from '../pages/Configs';
import { DownloadStatus } from '../pages/Downloads';
import { DataProcessParameters, LoraFinetuneParameters } from '../pages/Train';
import { BrowserOpenURL, WindowShow } from '../../wailsjs/runtime';
import { NavigateFunction } from 'react-router';
export type Cache = {
version: string
models: ModelSourceItem[]
depComplete: boolean
}
@@ -26,7 +34,9 @@ export type LocalConfig = {
modelSourceManifestList: string
currentModelConfigIndex: number
modelConfigs: ModelConfig[]
settings: SettingsType
settings: SettingsType,
dataProcessParams: DataProcessParameters,
loraFinetuneParams: LoraFinetuneParameters
}
export async function refreshBuiltInModels(readCache: boolean = false) {
@@ -47,9 +57,11 @@ export async function refreshBuiltInModels(readCache: boolean = false) {
return cache;
}
export async function refreshLocalModels(cache: { models: ModelSourceItem[] }, filter: boolean = true) {
export async function refreshLocalModels(cache: {
models: ModelSourceItem[]
}, filter: boolean = true, initUnfinishedModels: boolean = false) {
if (filter)
cache.models = cache.models.filter(m => !m.isLocal); //TODO BUG cause local but in manifest files to be removed, so currently cache is disabled
cache.models = cache.models.filter(m => !m.isComplete); //TODO BUG cause local but in manifest files to be removed, so currently cache is disabled
await ListDirFiles(commonStore.settings.customModelsPath).then((data) => {
cache.models.push(...data.flatMap(d => {
@@ -58,8 +70,9 @@ export async function refreshLocalModels(cache: { models: ModelSourceItem[] }, f
name: d.name,
size: d.size,
lastUpdated: d.modTime,
isComplete: true,
isLocal: true
}];
}] as ModelSourceItem[];
return [];
}));
}).catch(() => {
@@ -80,17 +93,43 @@ export async function refreshLocalModels(cache: { models: ModelSourceItem[] }, f
} else {
cache.models[i] = Object.assign({}, cache.models[j], cache.models[i]);
}
} // else is bad local file
} // else is not complete local file
cache.models[i].isLocal = true;
cache.models[i].localSize = cache.models[j].size;
cache.models.splice(j, 1);
j--;
}
}
}
commonStore.setModelSourceList(cache.models);
if (initUnfinishedModels)
initLastUnfinishedModelDownloads();
await saveCache().catch(() => {
});
}
function initLastUnfinishedModelDownloads() {
const list: DownloadStatus[] = [];
commonStore.modelSourceList.forEach((item) => {
if (item.isLocal && !item.isComplete) {
list.push(
{
name: item.name,
path: `${commonStore.settings.customModelsPath}/${item.name}`,
url: item.downloadUrl!,
transferred: item.localSize!,
size: item.size,
speed: 0,
progress: item.localSize! / item.size * 100,
downloading: false,
done: false
}
);
}
});
commonStore.setLastUnfinishedModelDownloads(list);
}
export async function refreshRemoteModels(cache: { models: ModelSourceItem[] }) {
const manifestUrls = commonStore.modelSourceManifestList.split(/[,;\n]/);
const requests = manifestUrls.filter(url => url.endsWith('.json')).map(
@@ -116,9 +155,9 @@ export async function refreshRemoteModels(cache: { models: ModelSourceItem[] })
});
}
export const refreshModels = async (readCache: boolean = false) => {
export const refreshModels = async (readCache: boolean = false, initUnfinishedModels: boolean = false) => {
const cache = await refreshBuiltInModels(readCache);
await refreshLocalModels(cache);
await refreshLocalModels(cache, false, initUnfinishedModels);
await refreshRemoteModels(cache);
};
@@ -163,19 +202,26 @@ export const saveConfigs = async () => {
modelSourceManifestList: commonStore.modelSourceManifestList,
currentModelConfigIndex: commonStore.currentModelConfigIndex,
modelConfigs: commonStore.modelConfigs,
settings: commonStore.settings
settings: commonStore.settings,
dataProcessParams: commonStore.dataProcessParams,
loraFinetuneParams: commonStore.loraFinetuneParams
};
return SaveJson('config.json', data);
};
export const saveCache = async () => {
const data: Cache = {
version: manifest.version,
models: commonStore.modelSourceList,
depComplete: commonStore.depComplete
};
return SaveJson('cache.json', data);
};
export const savePresets = async () => {
return SaveJson('presets.json', commonStore.presets);
};
export function getUserLanguage(): Language {
// const l = navigator.language.toLowerCase();
// if (['zh-hk', 'zh-mo', 'zh-tw', 'zh-cht', 'zh-hant'].includes(l)) return 'zhHant'
@@ -270,7 +316,7 @@ export async function checkUpdate(notifyEvenLatest: boolean = false) {
}
);
}).catch((e) => {
toast(t('Update Error') + ' - ' + e.message || e, {
toast(t('Update Error') + ' - ' + (e.message || e), {
type: 'error',
position: 'bottom-left',
autoClose: false
@@ -302,10 +348,60 @@ export async function checkUpdate(notifyEvenLatest: boolean = false) {
}
}
).catch((e) => {
toast(t('Updates Check Error') + ' - ' + e.message || e, { type: 'error', position: 'bottom-left' });
toast(t('Updates Check Error') + ' - ' + (e.message || e), { type: 'error', position: 'bottom-left' });
});
}
export const checkDependencies = async (navigate: NavigateFunction) => {
if (!commonStore.depComplete) {
let depErrorMsg = '';
await DepCheck(commonStore.settings.customPythonPath).catch((e) => {
depErrorMsg = e.message || e;
WindowShow();
if (depErrorMsg === 'python zip not found') {
toastWithButton(t('Python target not found, would you like to download it?'), t('Download'), () => {
toastWithButton(`${t('Downloading')} Python`, t('Check'), () => {
navigate({ pathname: '/downloads' });
}, { autoClose: 3000 });
AddToDownloadList('python-3.10.11-embed-amd64.zip', 'https://www.python.org/ftp/python/3.10.11/python-3.10.11-embed-amd64.zip');
});
} else if (depErrorMsg.includes('DepCheck Error')) {
if (depErrorMsg.includes('vc_redist') || depErrorMsg.includes('DLL load failed while importing')) {
toastWithButton(t('Microsoft Visual C++ Redistributable is not installed, would you like to download it?'), t('Download'), () => {
BrowserOpenURL('https://aka.ms/vs/16/release/vc_redist.x64.exe');
});
} else {
toast(depErrorMsg, { type: 'info', position: 'bottom-left' });
if (commonStore.platform != 'linux')
toastWithButton(t('Python dependencies are incomplete, would you like to install them?'), t('Install'), () => {
InstallPyDep(commonStore.settings.customPythonPath, commonStore.settings.cnMirror).catch((e) => {
const errMsg = e.message || e;
toast(t('Error') + ' - ' + errMsg, { type: 'error' });
});
setTimeout(WindowShow, 1000);
}, {
autoClose: 8000
});
else
toastWithButton(t('On Linux system, you must manually install python dependencies.'), t('Check'), () => {
BrowserOpenURL('https://github.com/josStorer/RWKV-Runner/blob/master/build/linux/Readme_Install.txt');
});
}
} else {
toast(depErrorMsg, { type: 'error' });
}
});
if (depErrorMsg) {
commonStore.setStatus({ status: ModelStatus.Offline });
return false;
}
commonStore.setDepComplete(true);
if (commonStore.platform === 'windows')
CopyFile('./backend-python/wkv_cuda_utils/wkv_cuda_model.py', './py310/Lib/site-packages/rwkv/model.py');
}
return true;
};
export function toastWithButton(text: string, buttonText: string, onClickButton: () => void, options?: ToastOptions) {
let triggered = false;
const id = toast(

View File

@@ -6,6 +6,8 @@ export function AddToDownloadList(arg1:string,arg2:string):Promise<void>;
export function ContinueDownload(arg1:string):Promise<void>;
export function ConvertData(arg1:string,arg2:string,arg3:string,arg4:string):Promise<string>;
export function ConvertModel(arg1:string,arg2:string,arg3:string,arg4:string):Promise<string>;
export function CopyFile(arg1:string,arg2:string):Promise<void>;
@@ -20,14 +22,20 @@ export function FileExists(arg1:string):Promise<boolean>;
export function GetPlatform():Promise<string>;
export function GetPyError():Promise<string>;
export function InstallPyDep(arg1:string,arg2:boolean):Promise<string>;
export function ListDirFiles(arg1:string):Promise<Array<backend_golang.FileInfo>>;
export function MergeLora(arg1:string,arg2:boolean,arg3:number,arg4:string,arg5:string,arg6:string):Promise<string>;
export function OpenFileFolder(arg1:string,arg2:boolean):Promise<void>;
export function OpenSaveFileDialog(arg1:string,arg2:string,arg3:string):Promise<string>;
export function OpenSaveFileDialogBytes(arg1:string,arg2:string,arg3:Array<number>):Promise<string>;
export function PauseDownload(arg1:string):Promise<void>;
export function ReadFileInfo(arg1:string):Promise<backend_golang.FileInfo>;
@@ -41,3 +49,15 @@ export function SaveJson(arg1:string,arg2:any):Promise<void>;
export function StartServer(arg1:string,arg2:number,arg3:string):Promise<string>;
export function UpdateApp(arg1:string):Promise<boolean>;
export function WslCommand(arg1:string):Promise<void>;
export function WslEnable(arg1:boolean):Promise<void>;
export function WslInstallUbuntu():Promise<void>;
export function WslIsEnabled():Promise<void>;
export function WslStart():Promise<void>;
export function WslStop():Promise<void>;

View File

@@ -10,6 +10,10 @@ export function ContinueDownload(arg1) {
return window['go']['backend_golang']['App']['ContinueDownload'](arg1);
}
export function ConvertData(arg1, arg2, arg3, arg4) {
return window['go']['backend_golang']['App']['ConvertData'](arg1, arg2, arg3, arg4);
}
export function ConvertModel(arg1, arg2, arg3, arg4) {
return window['go']['backend_golang']['App']['ConvertModel'](arg1, arg2, arg3, arg4);
}
@@ -38,6 +42,10 @@ export function GetPlatform() {
return window['go']['backend_golang']['App']['GetPlatform']();
}
export function GetPyError() {
return window['go']['backend_golang']['App']['GetPyError']();
}
export function InstallPyDep(arg1, arg2) {
return window['go']['backend_golang']['App']['InstallPyDep'](arg1, arg2);
}
@@ -46,6 +54,10 @@ export function ListDirFiles(arg1) {
return window['go']['backend_golang']['App']['ListDirFiles'](arg1);
}
export function MergeLora(arg1, arg2, arg3, arg4, arg5, arg6) {
return window['go']['backend_golang']['App']['MergeLora'](arg1, arg2, arg3, arg4, arg5, arg6);
}
export function OpenFileFolder(arg1, arg2) {
return window['go']['backend_golang']['App']['OpenFileFolder'](arg1, arg2);
}
@@ -54,6 +66,10 @@ export function OpenSaveFileDialog(arg1, arg2, arg3) {
return window['go']['backend_golang']['App']['OpenSaveFileDialog'](arg1, arg2, arg3);
}
export function OpenSaveFileDialogBytes(arg1, arg2, arg3) {
return window['go']['backend_golang']['App']['OpenSaveFileDialogBytes'](arg1, arg2, arg3);
}
export function PauseDownload(arg1) {
return window['go']['backend_golang']['App']['PauseDownload'](arg1);
}
@@ -81,3 +97,27 @@ export function StartServer(arg1, arg2, arg3) {
export function UpdateApp(arg1) {
return window['go']['backend_golang']['App']['UpdateApp'](arg1);
}
export function WslCommand(arg1) {
return window['go']['backend_golang']['App']['WslCommand'](arg1);
}
export function WslEnable(arg1) {
return window['go']['backend_golang']['App']['WslEnable'](arg1);
}
export function WslInstallUbuntu() {
return window['go']['backend_golang']['App']['WslInstallUbuntu']();
}
export function WslIsEnabled() {
return window['go']['backend_golang']['App']['WslIsEnabled']();
}
export function WslStart() {
return window['go']['backend_golang']['App']['WslStart']();
}
export function WslStop() {
return window['go']['backend_golang']['App']['WslStop']();
}

7
go.mod
View File

@@ -5,12 +5,14 @@ go 1.20
require (
github.com/cavaliergopher/grab/v3 v3.0.1
github.com/minio/selfupdate v0.6.0
github.com/ubuntu/gowsl v0.0.0-20230615094051-94945650cc1e
github.com/wailsapp/wails/v2 v2.5.1
)
require (
aead.dev/minisign v0.2.0 // indirect
github.com/bep/debounce v1.2.1 // indirect
github.com/fsnotify/fsnotify v1.6.0
github.com/go-ole/go-ole v1.2.6 // indirect
github.com/google/uuid v1.3.0 // indirect
github.com/jchv/go-winloader v0.0.0-20210711035445-715c2860da7e // indirect
@@ -21,17 +23,20 @@ require (
github.com/leaanthony/slicer v1.6.0 // indirect
github.com/mattn/go-colorable v0.1.13 // indirect
github.com/mattn/go-isatty v0.0.18 // indirect
github.com/nyaosorg/go-windows-su v0.2.1
github.com/pkg/browser v0.0.0-20210911075715-681adbf594b8 // indirect
github.com/pkg/errors v0.9.1 // indirect
github.com/rivo/uniseg v0.4.4 // indirect
github.com/samber/lo v1.38.1 // indirect
github.com/sirupsen/logrus v1.9.0 // indirect
github.com/tkrajina/go-reflector v0.5.6 // indirect
github.com/ubuntu/decorate v0.0.0-20230125165522-2d5b0a9bb117 // indirect
github.com/valyala/bytebufferpool v1.0.0 // indirect
github.com/valyala/fasttemplate v1.2.2 // indirect
github.com/wailsapp/mimetype v1.4.1 // indirect
golang.org/x/crypto v0.9.0 // indirect
golang.org/x/exp v0.0.0-20230515195305-f3d0a9c9a5cc // indirect
golang.org/x/net v0.10.0 // indirect
golang.org/x/sys v0.8.0 // indirect
golang.org/x/sys v0.9.0 // indirect
golang.org/x/text v0.9.0 // indirect
)

19
go.sum
View File

@@ -1,5 +1,6 @@
aead.dev/minisign v0.2.0 h1:kAWrq/hBRu4AARY6AlciO83xhNnW9UaC8YipS2uhLPk=
aead.dev/minisign v0.2.0/go.mod h1:zdq6LdSd9TbuSxchxwhpA9zEb9YXcVGoE8JakuiGaIQ=
github.com/0xrawsec/golang-utils v1.3.2 h1:ww4jrtHRSnX9xrGzJYbalx5nXoZewy4zPxiY+ubJgtg=
github.com/bep/debounce v1.2.1 h1:v67fRdBA9UQu2NhLFXrSg0Brw7CexQekrBwDMM8bzeY=
github.com/bep/debounce v1.2.1/go.mod h1:H8yggRPQKLUhUoqrJC1bO2xNya7vanpDl7xR3ISbCJ0=
github.com/cavaliergopher/grab/v3 v3.0.1 h1:4z7TkBfmPjmLAAmkkAZNX/6QJ1nNFdv3SdIHXju0Fr4=
@@ -7,6 +8,8 @@ github.com/cavaliergopher/grab/v3 v3.0.1/go.mod h1:1U/KNnD+Ft6JJiYoYBAimKH2XrYpt
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/fsnotify/fsnotify v1.6.0 h1:n+5WquG0fcWoWp6xPWfHdbskMCQaFnG6PfBrh1Ky4HY=
github.com/fsnotify/fsnotify v1.6.0/go.mod h1:sl3t1tCWJFWoRz9R8WJCbQihKKwmorjAbSClcnxKAGw=
github.com/go-ole/go-ole v1.2.6 h1:/Fpf6oFPoeFik9ty7siob0G6Ke8QvQEuVcuChpwXzpY=
github.com/go-ole/go-ole v1.2.6/go.mod h1:pprOEPIfldk/42T2oK7lQ4v4JSDwmV0As9GaiUsvbm0=
github.com/google/uuid v1.3.0 h1:t6JiXgmwXMjEs8VusXIJk2BXHsn+wx8BZdTaoZ5fu7I=
@@ -37,6 +40,8 @@ github.com/mattn/go-isatty v0.0.18 h1:DOKFKCQ7FNG2L1rbrmstDN4QVRdS89Nkh85u68Uwp9
github.com/mattn/go-isatty v0.0.18/go.mod h1:W+V8PltTTMOvKvAeJH7IuucS94S2C6jfK/D7dTCTo3Y=
github.com/minio/selfupdate v0.6.0 h1:i76PgT0K5xO9+hjzKcacQtO7+MjJ4JKA8Ak8XQ9DDwU=
github.com/minio/selfupdate v0.6.0/go.mod h1:bO02GTIPCMQFTEvE5h4DjYB58bCoZ35XLeBf0buTDdM=
github.com/nyaosorg/go-windows-su v0.2.1 h1:5V0XavLyjOqPUp7psxxCvBISaneU4XmFPSMlejSl5sc=
github.com/nyaosorg/go-windows-su v0.2.1/go.mod h1:fWKxSCXwGuDuW6ne0kLp/Cj0joXNDDw01G3LseQJYS0=
github.com/pkg/browser v0.0.0-20210911075715-681adbf594b8 h1:KoWmjvw+nsYOo29YJK9vDA65RGE3NrOnUtO7a+RF9HU=
github.com/pkg/browser v0.0.0-20210911075715-681adbf594b8/go.mod h1:HKlIX3XHQyzLZPlr7++PzdhaXEj94dEiJgZDTsxEqUI=
github.com/pkg/errors v0.9.1 h1:FEBLx1zS214owpjy7qsBeixbURkuhQAwrK5UwLGTwt4=
@@ -48,11 +53,17 @@ github.com/rivo/uniseg v0.4.4 h1:8TfxU8dW6PdqD27gjM8MVNuicgxIjxpm4K7x4jp8sis=
github.com/rivo/uniseg v0.4.4/go.mod h1:FN3SvrM+Zdj16jyLfmOkMNblXMcoc8DfTHruCPUcx88=
github.com/samber/lo v1.38.1 h1:j2XEAqXKb09Am4ebOg31SpvzUTTs6EN3VfgeLUhPdXM=
github.com/samber/lo v1.38.1/go.mod h1:+m/ZKRl6ClXCE2Lgf3MsQlWfh4bn1bz6CXEOxnEXnEA=
github.com/sirupsen/logrus v1.9.0 h1:trlNQbNUG3OdDrDil03MCb1H2o9nJ1x4/5LYw7byDE0=
github.com/sirupsen/logrus v1.9.0/go.mod h1:naHLuLoDiP4jHNo9R0sCBMtWGeIprob74mVsIT4qYEQ=
github.com/stretchr/objx v0.1.0/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME=
github.com/stretchr/testify v1.7.0/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/h/Wwjteg=
github.com/stretchr/testify v1.8.1 h1:w7B6lhMri9wdJUVmEZPGGhZzrYTPvgJArz7wNPgYKsk=
github.com/stretchr/testify v1.8.4 h1:CcVxjf3Q8PM0mHUKJCdn+eZZtm5yQwehR5yeSVQQcUk=
github.com/tkrajina/go-reflector v0.5.6 h1:hKQ0gyocG7vgMD2M3dRlYN6WBBOmdoOzJ6njQSepKdE=
github.com/tkrajina/go-reflector v0.5.6/go.mod h1:ECbqLgccecY5kPmPmXg1MrHW585yMcDkVl6IvJe64T4=
github.com/ubuntu/decorate v0.0.0-20230125165522-2d5b0a9bb117 h1:XQpsQG5lqRJlx4mUVHcJvyyc1rdTI9nHvwrdfcuy8aM=
github.com/ubuntu/decorate v0.0.0-20230125165522-2d5b0a9bb117/go.mod h1:mx0TjbqsaDD9DUT5gA1s3hw47U6RIbbIBfvGzR85K0g=
github.com/ubuntu/gowsl v0.0.0-20230615094051-94945650cc1e h1:5hJ4Z9ISvbDUWL7TDvfoYp0bXsaX42WjAUJzyZ8NMCI=
github.com/ubuntu/gowsl v0.0.0-20230615094051-94945650cc1e/go.mod h1:tu2rOgQGt6bZce1OE8G75Ca8+NvNmTNOvplLolr326I=
github.com/valyala/bytebufferpool v1.0.0 h1:GqA5TC/0021Y/b9FG4Oi9Mr3q7XYx6KllzawFIhcdPw=
github.com/valyala/bytebufferpool v1.0.0/go.mod h1:6bBcMArwyJ5K/AmCkWv1jt77kVWyCJ6HpOuEn7z0Csc=
github.com/valyala/fasttemplate v1.2.1/go.mod h1:KHLXt3tVN2HBp8eijSv/kGJopbvo7S+qRAEEKiv+SiQ=
@@ -86,10 +97,12 @@ golang.org/x/sys v0.0.0-20210616045830-e2b7044e8c71/go.mod h1:oPkhp1MJrh7nUepCBc
golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20210927094055-39ccf1dd6fa6/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20211103235746-7861aae1554b/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220715151400-c0bba94af5f8/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220811171246-fbc7d0a398ab/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220908164124-27713097b956/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.8.0 h1:EBmGv8NaZBZTWvrbjNoL6HVt+IVy3QDQpJs7VRIw3tU=
golang.org/x/sys v0.8.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.9.0 h1:KS/R3tvhPqvJvwcKfnBHJwwthS11LRhmM5D59eEXa0s=
golang.org/x/sys v0.9.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/term v0.0.0-20201117132131-f5c789dd3221/go.mod h1:Nr5EML6q2oocZ2LXRh80K7BxOlk5/8JxuGnuhpl+muw=
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=

39
main.go
View File

@@ -2,6 +2,8 @@ package main
import (
"embed"
"fmt"
"net/http"
"os"
"runtime/debug"
"strings"
@@ -14,6 +16,27 @@ import (
"github.com/wailsapp/wails/v2/pkg/options/windows"
)
type FileLoader struct {
http.Handler
}
func NewFileLoader() *FileLoader {
return &FileLoader{}
}
func (h *FileLoader) ServeHTTP(res http.ResponseWriter, req *http.Request) {
var err error
requestedFilename := strings.TrimPrefix(req.URL.Path, "/")
println("Requesting file:", requestedFilename)
fileData, err := os.ReadFile(requestedFilename)
if err != nil {
res.WriteHeader(http.StatusBadRequest)
res.Write([]byte(fmt.Sprintf("Could not load file %s", requestedFilename)))
}
res.Write(fileData)
}
//go:embed all:frontend/dist
var assets embed.FS
@@ -26,12 +49,23 @@ var cyacInfo embed.FS
//go:embed backend-python
var py embed.FS
//go:embed finetune
var finetune embed.FS
//go:embed midi
var midi embed.FS
//go:embed assets/sound-font
var midiAssets embed.FS
func main() {
if buildInfo, ok := debug.ReadBuildInfo(); !ok || strings.Contains(buildInfo.String(), "-ldflags") {
backend.CopyEmbed(cyac)
backend.CopyEmbed(cyacInfo)
backend.CopyEmbed(py)
os.Mkdir("models", os.ModePerm)
backend.CopyEmbed(finetune)
backend.CopyEmbed(midi)
backend.CopyEmbed(midiAssets)
}
// Create an instance of the app structure
@@ -61,7 +95,8 @@ func main() {
IsZoomControlEnabled: true,
},
AssetServer: &assetserver.Options{
Assets: assets,
Assets: assets,
Handler: NewFileLoader(),
},
OnStartup: app.OnStartup,
Bind: []any{

View File

@@ -1,12 +1,12 @@
{
"version": "1.2.7",
"version": "1.4.2",
"introduction": {
"en": "RWKV is an open-source, commercially usable large language model with high flexibility and great potential for development.\n### About This Tool\nThis tool aims to lower the barrier of entry for using large language models, making it accessible to everyone. It provides fully automated dependency and model management. You simply need to click and run, following the instructions, to deploy a local large language model. The tool itself is very compact and only requires a single executable file for one-click deployment.\nAdditionally, this tool offers an interface that is fully compatible with the OpenAI API. This means you can use any ChatGPT client as a client for RWKV, enabling capability expansion beyond just chat functionality.\n### Preset Configuration Rules at the Bottom\nThis tool comes with a series of preset configurations to reduce complexity. The naming rules for each configuration represent the following in order: device - required VRAM/memory - model size - model language.\nFor example, \"GPU-8G-3B-EN\" indicates that this configuration is for a graphics card with 8GB of VRAM, a model size of 3 billion parameters, and it uses an English language model.\nLarger model sizes have higher performance and VRAM requirements. Among configurations with the same model size, those with higher VRAM usage will have faster runtime.\nFor example, if you have 12GB of VRAM but running the \"GPU-12G-7B-EN\" configuration is slow, you can downgrade to \"GPU-8G-3B-EN\" for a significant speed improvement.\n### About RWKV\nRWKV is an RNN with Transformer-level LLM performance, which can also be directly trained like a GPT transformer (parallelizable). And it's 100% attention-free. You only need the hidden state at position t to compute the state at position t+1. You can use the \"GPT\" mode to quickly compute the hidden state for the \"RNN\" mode.<br/>So it's combining the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, \"infinite\" ctx_len, and free sentence embedding (using the final hidden state).",
"zh": "RWKV是一个开源且允许商用的大语言模型灵活性很高且极具发展潜力。\n### 关于本工具\n本工具旨在降低大语言模型的使用门槛做到人人可用本工具提供了全自动化的依赖和模型管理你只需要直接点击运行跟随引导即可完成本地大语言模型的部署工具本身体积极小只需要一个exe即可完成一键部署。\n此外本工具提供了与OpenAI API完全兼容的接口这意味着你可以把任意ChatGPT客户端用作RWKV的客户端实现能力拓展而不局限于聊天。\n### 底部的预设配置规则\n本工具内置了一系列预设配置以降低使用难度每个配置名的规则依次代表着设备-所需显存/内存-模型规模-模型语言。\n例如GPU-8G-3B-CN表示该配置用于显卡需要8G显存模型规模为30亿参数使用的是中文模型。\n模型规模越大性能要求越高显存要求也越高而同样模型规模的配置中显存占用越高的运行速度越快。\n例如当你有12G显存但运行GPU-12G-7B-CN配置速度比较慢可降级成GPU-8G-3B-CN将会大幅提速。\n### 关于RWKV\nRWKV是具有Transformer级别LLM性能的RNN也可以像GPT Transformer一样直接进行训练可并行化。而且它是100% attention-free的。你只需在位置t处获得隐藏状态即可计算位置t + 1处的状态。你可以使用“GPT”模式快速计算用于“RNN”模式的隐藏状态。\n因此它将RNN和Transformer的优点结合起来 - 高性能、快速推理、节省显存、快速训练、“无限”上下文长度以及免费的语句嵌入(使用最终隐藏状态)。"
},
"about": {
"en": "<div align=\"center\">\n\nProject Source Code:\nhttps://github.com/josStorer/RWKV-Runner\nAuthor: [@josStorer](https://github.com/josStorer)\nFAQs: https://github.com/josStorer/RWKV-Runner/wiki/FAQs\n\nRelated Repositories:\nRWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main\nChatRWKV: https://github.com/BlinkDL/ChatRWKV\nRWKV-LM: https://github.com/BlinkDL/RWKV-LM\n\n</div>",
"zh": "<div align=\"center\">\n\n本项目源码:\nhttps://github.com/josStorer/RWKV-Runner\n作者: [@josStorer](https://github.com/josStorer)\n演示与常见问题说明视频: https://www.bilibili.com/video/BV1hM4y1v76R\n疑难解答: https://www.bilibili.com/read/cv23921171\n\n相关仓库:\nRWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main\nChatRWKV: https://github.com/BlinkDL/ChatRWKV\nRWKV-LM: https://github.com/BlinkDL/RWKV-LM\n\n</div>"
"en": "<div align=\"center\">\n\nProject Source Code:\nhttps://github.com/josStorer/RWKV-Runner\nAuthor: [@josStorer](https://github.com/josStorer)\nFAQs: https://github.com/josStorer/RWKV-Runner/wiki/FAQs\n\nRelated Repositories:\nRWKV-4-World: https://huggingface.co/BlinkDL/rwkv-4-world/tree/main\nRWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main\nChatRWKV: https://github.com/BlinkDL/ChatRWKV\nRWKV-LM: https://github.com/BlinkDL/RWKV-LM\nRWKV-LM-LoRA: https://github.com/Blealtan/RWKV-LM-LoRA\nMIDI-LLM-tokenizer: https://github.com/briansemrau/MIDI-LLM-tokenizer\n\n</div>",
"zh": "<div align=\"center\">\n\n本项目源码:\nhttps://github.com/josStorer/RWKV-Runner\n作者: [@josStorer](https://github.com/josStorer)\n演示与常见问题说明视频: https://www.bilibili.com/video/BV1hM4y1v76R\n疑难解答: https://www.bilibili.com/read/cv23921171\n\n相关仓库:\nRWKV-4-World: https://huggingface.co/BlinkDL/rwkv-4-world/tree/main\nRWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main\nChatRWKV: https://github.com/BlinkDL/ChatRWKV\nRWKV-LM: https://github.com/BlinkDL/RWKV-LM\nRWKV-LM-LoRA: https://github.com/Blealtan/RWKV-LM-LoRA\nMIDI-LLM-tokenizer: https://github.com/briansemrau/MIDI-LLM-tokenizer\n\n</div>"
},
"programFiles": [
{
@@ -19,7 +19,8 @@
"name": "RWKV-4-World-CHNtuned-0.1B-v1-20230617-ctx4096.pth",
"desc": {
"en": "Global Languages 0.1B v1 Enhanced Chinese",
"zh": "全球语言 0.1B v1 中文增强"
"zh": "全球语言 0.1B v1 中文增强",
"ja": "グローバル言語 0.1B v1 中国語強化"
},
"size": 385594610,
"SHA256": "a3888f9958d378ee6d4976ae1c02edb698f4382e426086febafb4a69417b9080",
@@ -31,7 +32,8 @@
"name": "RWKV-4-World-0.1B-v1-20230520-ctx4096.pth",
"desc": {
"en": "Global Languages 0.1B v1",
"zh": "全球语言 0.1B v1"
"zh": "全球语言 0.1B v1",
"ja": "グローバル言語 0.1B v1"
},
"size": 385594610,
"SHA256": "a10ef99df2a8f8a6801edf4fc92a9c49bedd63dcb900d3e5667a2136b3d671e7",
@@ -43,7 +45,8 @@
"name": "RWKV-4-World-CHNtuned-0.4B-v1-20230618-ctx4096.pth",
"desc": {
"en": "Global Languages 0.4B v1 Enhanced Chinese",
"zh": "全球语言 0.4B v1 中文增强"
"zh": "全球语言 0.4B v1 中文增强",
"ja": "グローバル言語 0.4B v1 中国語強化"
},
"size": 923362866,
"SHA256": "dbd5302cbee596bbc900f97eb10b2af3001a7f2c7e4d8643bf8683b2cdbdd324",
@@ -55,7 +58,8 @@
"name": "RWKV-4-World-0.4B-v1-20230529-ctx4096.pth",
"desc": {
"en": "Global Languages 0.4B v1",
"zh": "全球语言 0.4B v1"
"zh": "全球语言 0.4B v1",
"ja": "グローバル言語 0.4B v1"
},
"size": 923362866,
"SHA256": "4b4a2733cf5e5dc97dd62106f391d99895d16b11c5ccd10c89f28c52067a4919",
@@ -67,7 +71,8 @@
"name": "RWKV-4-World-CHNtuned-1.5B-v1-20230620-ctx4096.pth",
"desc": {
"en": "Global Languages 1.5B v1 Enhanced Chinese",
"zh": "全球语言 1.5B v1 中文增强"
"zh": "全球语言 1.5B v1 中文增强",
"ja": "グローバル言語 1.5B v1 中国語強化"
},
"size": 3155281586,
"SHA256": "9f31f2ed5fe52dcf2d50208eb2efd764b9674dba2adb1baeff61997b4390a26b",
@@ -118,7 +123,8 @@
"name": "RWKV-4-World-1.5B-v1-fixed-20230612-ctx4096.pth",
"desc": {
"en": "Global Languages 1.5B v1 fixed",
"zh": "全球语言 1.5B v1 修复"
"zh": "全球语言 1.5B v1 修复",
"ja": "グローバル言語 1.5B v1"
},
"size": 3155281586,
"SHA256": "71f0c3229f9227cbcb8ae5fee6461197129a57e26366c4d23a49058417b046c9",
@@ -182,7 +188,8 @@
"name": "RWKV-4-World-3B-v1-20230619-ctx4096.pth",
"desc": {
"en": "Global Languages 3B v1",
"zh": "全球语言 3B v1"
"zh": "全球语言 3B v1",
"ja": "グローバル言語 3B v1"
},
"size": 6125597618,
"SHA256": "1b227af317fa25b6939ab3c7cd321226ca48b8fe4bbbd2df3db669f1482c54ba",
@@ -190,6 +197,19 @@
"url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-3B-v1-20230619-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-3B-v1-20230619-ctx4096.pth"
},
{
"name": "RWKV-4-World-CHNtuned-3B-v1-20230625-ctx4096.pth",
"desc": {
"en": "Global Languages 3B v1 Enhanced Chinese",
"zh": "全球语言 3B v1 中文增强",
"ja": "グローバル言語 3B v1 中国語強化"
},
"size": 6125597618,
"SHA256": "7d3b5a4d0e9780a3e3d9ae7c2defbe8564d240bc9a238db4ba70cfb66dc33888",
"lastUpdated": "2023-06-25T14:53:27",
"url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-CHNtuned-3B-v1-20230625-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-CHNtuned-3B-v1-20230625-ctx4096.pth"
},
{
"name": "RWKV-4-World-7B-v1-OnlyForTest_30%_trained-20230529-ctx4096.pth",
"desc": {
@@ -265,7 +285,60 @@
"SHA256": "dfb56e8ba32907cb47df83c8d702e7f350d9ad50a59b71b031da4681637588b3",
"lastUpdated": "2023-06-19T01:28:17",
"url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-7B-v1-OnlyForTest_84%25_trained-20230618-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-7B-v1-OnlyForTest_84%25_trained-20230618-ctx4096.pth"
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-7B-v1-OnlyForTest_84%25_trained-20230618-ctx4096.pth",
"hide": true
},
{
"name": "RWKV-4-World-7B-v1-20230626-ctx4096.pth",
"desc": {
"en": "Global Languages 7B v1",
"zh": "全球语言 7B v1",
"ja": "グローバル言語 7B v1"
},
"size": 15035393586,
"SHA256": "db7b011247a0fe4389e1d76e3d6a904185f85d509c8a44ad18bf401094efc293",
"lastUpdated": "2023-06-26T16:40:04",
"url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-7B-v1-20230626-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-7B-v1-20230626-ctx4096.pth"
},
{
"name": "RWKV-4-World-CHNtuned-7B-v1-20230709-ctx4096.pth",
"desc": {
"en": "Global Languages 7B v1 Enhanced Chinese",
"zh": "全球语言 7B v1 中文增强",
"ja": "グローバル言語 7B v1 中国語強化"
},
"size": 15035393458,
"SHA256": "52d33e8352a40158d21425fee4f68df1515d6324056f788d2c78a366ef578ffa",
"lastUpdated": "2023-07-09T18:23:33",
"url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-CHNtuned-7B-v1-20230709-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-CHNtuned-7B-v1-20230709-ctx4096.pth"
},
{
"name": "Readflow-RWKV-4-World-CHNtuned-7B-v1-20230709-ctx32k.pth",
"desc": {
"en": "Global Languages 7B v1 Enhanced Chinese Ctx32k Summary Ability",
"zh": "全球语言 7B v1 中文增强 32k上下文 总结能力",
"ja": "グローバル言語 7B v1 中国語強化 32kコンテキスト まとめる能力"
},
"size": 15035391543,
"SHA256": "1bd1de8cdbd56b67e1374588fe5d202884049c71278ffcb12f5c4efbdb422ee1",
"lastUpdated": "2023-07-20T06:11:29",
"url": "https://huggingface.co/xiaol/readflow-rwkv-4-world-ctx32k/blob/main/Readflow-RWKV-4-World-CHNtuned-7B-v1-20230709-ctx32k.pth",
"downloadUrl": "https://huggingface.co/xiaol/readflow-rwkv-4-world-ctx32k/resolve/main/Readflow-RWKV-4-World-CHNtuned-7B-v1-20230709-ctx32k.pth"
},
{
"name": "RWKV-4-World-JPNtuned-7B-v1-20230718-ctx4096.pth",
"desc": {
"en": "Global Languages 7B v1 Enhanced Japanese",
"zh": "全球语言 7B v1 日文增强",
"ja": "グローバル言語 7B v1 日本語強化"
},
"size": 15035393458,
"SHA256": "3e4c7664ce893ac1f6bb59cd76664fb5c872cb076bb82dbd534db0555b6e9fa5",
"lastUpdated": "2023-07-18T20:01:12",
"url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-JPNtuned-7B-v1-20230718-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-JPNtuned-7B-v1-20230718-ctx4096.pth"
},
{
"name": "RWKV-4-Novel-7B-v1-ChnEng-ChnPro-20230410-ctx4096.pth",
@@ -489,6 +562,32 @@
"lastUpdated": "2023-05-23T11:22:41",
"url": "https://huggingface.co/BlinkDL/rwkv-4-raven/blob/main/RWKV-4-Raven-14B-v12-Eng98%25-Other2%25-20230523-ctx8192.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-raven/resolve/main/RWKV-4-Raven-14B-v12-Eng98%25-Other2%25-20230523-ctx8192.pth"
},
{
"name": "RWKV-4-MIDI-120M-v1-20230714-ctx4096.pth",
"desc": {
"en": "Music 120M v1",
"zh": "作曲 120M v1",
"ja": "作曲 120M v1"
},
"size": 239224753,
"SHA256": "161d27dcf50d0958d230601ba1e0f8e7dd9c236105e92d2b833496412ace430c",
"lastUpdated": "2023-07-15T08:03:36",
"url": "https://huggingface.co/BlinkDL/rwkv-4-music/blob/main/RWKV-4-MIDI-120M-v1-20230714-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-music/resolve/main/RWKV-4-MIDI-120M-v1-20230714-ctx4096.pth"
},
{
"name": "RWKV-4-MIDI-560M-v1-20230717-ctx4096.pth",
"desc": {
"en": "Music 560M v1",
"zh": "作曲 560M v1",
"ja": "作曲 560M v1"
},
"size": 1130577457,
"SHA256": "62b21841b24af38ef176e9e9d895d9fff730cea8aa0623f53a1784d74ce828d6",
"lastUpdated": "2023-07-17T15:02:08",
"url": "https://huggingface.co/BlinkDL/rwkv-4-music/blob/main/RWKV-4-MIDI-560M-v1-20230717-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-music/resolve/main/RWKV-4-MIDI-560M-v1-20230717-ctx4096.pth"
}
]
}

1
midi/sample.txt Normal file
View File

@@ -0,0 +1 @@
<start> p:24:a p:2a:a p:31:a p:39:a p:3b:a p:45:a b:26:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:24:0 p:2a:0 p:31:0 p:39:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:26:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:2e:a p:3b:a p:45:a b:26:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:2e:0 p:3b:0 p:45:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:2e:a p:3b:a p:45:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:2e:0 p:3b:0 p:45:0 b:26:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:26:a p:2a:a p:3b:a p:45:a t14 p:26:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a b:26:a g:3e:a g:3e:a g:42:a g:42:a g:45:a g:45:a pi:3e:a pi:42:a pi:45:a t14 p:2a:0 p:3b:0 p:45:0 b:26:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:2d:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 b:2d:0 g:3e:0 g:3e:0 g:42:0 g:42:0 g:45:0 g:45:0 pi:3e:0 pi:42:0 pi:45:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:24:a p:2e:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:24:0 p:2e:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:26:a p:2a:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:26:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:26:a p:2e:a p:31:a p:39:a p:3b:a p:45:a b:21:a g:39:a g:39:a g:3d:a g:3d:a g:40:a g:40:a pi:39:a pi:3d:a pi:40:a t14 p:26:0 p:2e:0 p:31:0 p:39:0 p:3b:0 p:45:0 b:21:0 t2 p:26:a p:2e:a p:31:a p:39:a p:3b:a p:45:a b:21:a t14 p:26:0 p:2e:0 p:31:0 p:39:0 p:3b:0 p:45:0 b:21:0 g:39:0 g:39:0 g:3d:0 g:3d:0 g:40:0 g:40:0 pi:39:0 pi:3d:0 pi:40:0 t2 p:24:a p:2a:a p:31:a p:39:a p:3b:a p:45:a b:1f:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:24:0 p:2a:0 p:31:0 p:39:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 p:45:0 b:1f:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:2e:a p:3b:a p:45:a b:1f:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:2e:0 p:3b:0 p:45:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:2e:a p:3b:a p:45:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:2e:0 p:3b:0 p:45:0 b:1f:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:26:a p:2a:a p:3b:a p:45:a t14 p:26:0 p:2a:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a b:1f:a g:3b:a g:3b:a g:3e:a g:3e:a g:43:a g:43:a pi:3b:a pi:3e:a pi:43:a t14 p:2a:0 p:3b:0 p:45:0 b:1f:0 t2 p:24:a p:2a:a p:3b:a p:45:a b:1f:a t14 p:24:0 p:2a:0 p:3b:0 p:45:0 b:1f:0 g:3b:0 g:3b:0 g:3e:0 g:3e:0 g:43:0 g:43:0 pi:3b:0 pi:3e:0 pi:43:0 t2 p:24:a p:2e:a p:3b:a p:45:a b:26:a g:39:a g:39:a g:3e:a g:3e:a g:42:a g:42:a pi:39:a pi:3e:a pi:42:a t14 p:24:0 p:2e:0 p:3b:0 p:45:0 t2 p:2a:a p:3b:a p:45:a t14 p:2a:0 p:3b:0 <end>

View File

@@ -2,5 +2,8 @@
- ^backend-python/wkv_cuda_utils/
- ^backend-python/get-pip\.py
- ^backend-python/convert_model\.py
- ^backend-python/utils/midi\.py
- ^build/
- ^finetune/lora/
- ^finetune/json2binidx_tool/
- ^frontend/wailsjs/