RWKV-Runner/finetune/lora/v6/fla/ops/abc/recurrent_fuse.py
2024-05-28 22:35:47 +08:00

389 lines
14 KiB
Python
Vendored

# -*- coding: utf-8 -*-
# Copyright (c) 2024, Yu Zhang, Songlin Yang
from typing import Optional, Tuple
import torch
import triton
import triton.language as tl
from torch.cuda.amp import custom_bwd, custom_fwd
from fla.utils import contiguous
@triton.jit
def fused_recurrent_gated_abc_fwd_kernel(
q,
k,
v,
gk,
gv,
o,
h0,
ht,
s_k_h,
s_v_h,
scale,
B: tl.constexpr,
H: tl.constexpr,
T: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
USE_INITIAL_STATE: tl.constexpr,
STORE_FINAL_STATE: tl.constexpr,
REVERSE: tl.constexpr,
USE_GK: tl.constexpr,
USE_GV: tl.constexpr,
):
# indices
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0)
p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0)
p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0)
p_o = o + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0)
if USE_GK:
p_gk = gk + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0)
if USE_GV:
p_gv = gv + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0)
mask_bk = (i_k * BK + tl.arange(0, BK)) < K
mask_bv = (i_v * BV + tl.arange(0, BV)) < V
h = tl.zeros([BV, BK], dtype=tl.float32)
mask_kv = mask_bk[None, :] & mask_bv[:, None]
if USE_INITIAL_STATE:
p_h0 = h0 + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None])
h += tl.load(p_h0, mask=mask_kv, other=0).to(tl.float32)
for _ in range(0, T):
b_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale
b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32)
b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32)
if USE_GK:
b_gk = tl.load(p_gk, mask=mask_bk, other=0).to(tl.float32)
h = h * b_gk[None, :]
if USE_GV:
b_gv = tl.load(p_gv, mask=mask_bv, other=0).to(tl.float32)
h = h * b_gv[:, None]
h += b_k[None, :] * b_v[:, None]
b_o = h * b_q[None, :]
b_o = tl.sum(b_o, axis=1)
tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_bv)
p_q += -K if REVERSE else K
p_k += -K if REVERSE else K
p_o += -V if REVERSE else V
p_v += -V if REVERSE else V
if USE_GK:
p_gk += -K if REVERSE else K
if USE_GV:
p_gv += -V if REVERSE else V
if STORE_FINAL_STATE:
p_ht = ht + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None])
tl.store(p_ht, h.to(p_ht.dtype.element_ty), mask=mask_kv)
@triton.jit
def fused_recurrent_gated_abc_bwd_kernel(
q,
k,
v,
gk,
gv,
do,
dq,
dk,
dv,
h0,
s_k_h,
s_v_h,
scale,
B: tl.constexpr,
H: tl.constexpr,
T: tl.constexpr,
K: tl.constexpr,
V: tl.constexpr,
BK: tl.constexpr,
BV: tl.constexpr,
USE_INITIAL_STATE: tl.constexpr,
REVERSE: tl.constexpr,
USE_GK: tl.constexpr,
USE_GV: tl.constexpr,
):
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0)
p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0)
p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0)
p_do = do + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0)
p_dq = dq + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0)
if USE_GK:
p_gk = gk + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0)
if USE_GV:
p_gv = gv + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0)
mask_bk = i_k * BK + tl.arange(0, BK) < K
mask_bv = i_v * BV + tl.arange(0, BV) < V
mask_kv = mask_bk[:, None] & mask_bv[None, :]
h = tl.zeros([BK, BV], dtype=tl.float32)
if USE_INITIAL_STATE:
p_h0 = h0 + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[:, None]) * V + (i_v * BV + tl.arange(0, BV)[None, :])
h += tl.load(p_h0, mask=mask_kv, other=0).to(tl.float32)
for _ in range(0, T):
b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32)
b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32)
b_do = tl.load(p_do, mask=mask_bv, other=0).to(tl.float32)
if USE_GK:
b_gk = tl.load(p_gk, mask=mask_bk, other=0).to(tl.float32)
h = h * b_gk[:, None]
if USE_GV:
b_gv = tl.load(p_gv, mask=mask_bv, other=0).to(tl.float32)
h = h * b_gv[None, :]
h += b_k[:, None] * b_v[None, :]
b_dq = tl.sum(h * b_do[None, :], axis=1) * scale
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), mask=mask_bk)
p_k += -K if REVERSE else K
p_v += -V if REVERSE else V
p_q += -K if REVERSE else K
p_do += -V if REVERSE else V
p_dq += -K if REVERSE else K
if USE_GK:
p_gk += -K if REVERSE else K
if USE_GV:
p_gv += -V if REVERSE else V
# sync threads
tl.debug_barrier()
p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T - 1) * K if not REVERSE else 0)
p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T - 1) * K if not REVERSE else 0)
p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T - 1) * V if not REVERSE else 0)
p_do = do + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T - 1) * V if not REVERSE else 0)
p_dk = dk + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange(0, BK) + ((T - 1) * K if not REVERSE else 0)
p_dv = dv + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV) + ((T - 1) * V if not REVERSE else 0)
if USE_GK:
p_gk = gk + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T - 1) * K if not REVERSE else 0)
if USE_GV:
p_gv = gv + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T - 1) * V if not REVERSE else 0)
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
for _ in range(T):
b_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale
b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32)
b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32)
b_do = tl.load(p_do, mask=mask_bv, other=0).to(tl.float32)
b_dh += b_q[:, None] * b_do[None, :]
b_dk = tl.sum(b_dh * b_v[None, :], axis=1)
b_dv = tl.sum(b_dh * b_k[:, None], axis=0)
if USE_GK:
b_gk = tl.load(p_gk, mask=mask_bk, other=0).to(tl.float32)
b_dh *= b_gk[:, None]
if USE_GV:
b_gv = tl.load(p_gv, mask=mask_bv, other=0).to(tl.float32)
b_dh *= b_gv[None, :]
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), mask=mask_bk)
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), mask=mask_bv)
p_q += K if REVERSE else -K
p_k += K if REVERSE else -K
p_v += V if REVERSE else -V
p_do += V if REVERSE else -V
p_dk += K if REVERSE else -K
p_dv += V if REVERSE else -V
if USE_GK:
p_gk += K if REVERSE else -K
if USE_GV:
p_gv += V if REVERSE else -V
class FusedRecurrentGatedABCFunction(torch.autograd.Function):
@staticmethod
@contiguous
@custom_fwd
def forward(ctx, q, k, v, s, g, scale=None, initial_state=None, output_final_state=False, reverse=False):
B, H, T, K, V, M = *q.shape, v.shape[-1], s.shape[-1]
# default scale
if scale is None:
scale = K ** -0.5
BK, BV, BM = min(K, 32), min(V, 32), min(M, 32)
NK, NV, NM = triton.cdiv(K, BK), triton.cdiv(V, BV), triton.cdiv(M, BM)
num_stages = 1
num_warps = 1
g = g.float().exp()
final_state = (None, None)
if output_final_state:
final_state = (q.new_empty(B, H, K, M), q.new_empty(B, H, M, V))
ok = q.new_empty(NK, B, H, T, M, dtype=torch.float)
gk, gv = None, g
grid = (NM, NK, B * H)
fused_recurrent_gated_abc_fwd_kernel[grid](
q, k, s, gk, gv, ok, initial_state[0], final_state[0],
k.stride(1),
s.stride(1),
scale=scale,
B=B, H=H, T=T, K=K, V=M, BK=BK, BV=BM,
USE_INITIAL_STATE=initial_state[0] is not None,
STORE_FINAL_STATE=final_state[0] is not None,
USE_GK=False,
USE_GV=True,
REVERSE=reverse,
num_warps=num_warps,
num_stages=num_stages
)
ok = ok.sum(0)
qv = ok.softmax(-1, dtype=torch.float)
ov = q.new_empty(NM, B, H, T, V, dtype=torch.float)
gk, gv = g, None
grid = (NV, NM, B * H)
fused_recurrent_gated_abc_fwd_kernel[grid](
qv, s, v, gk, gv, ov, initial_state[1], final_state[1],
s.stride(1),
v.stride(1),
scale=1.,
B=B, H=H, T=T, K=M, V=V, BK=BM, BV=BV,
USE_INITIAL_STATE=initial_state[0] is not None,
STORE_FINAL_STATE=final_state[0] is not None,
USE_GK=True,
USE_GV=False,
REVERSE=reverse,
num_warps=num_warps,
num_stages=num_stages
)
ov = ov.sum(0)
ctx.save_for_backward(q, k, v, s, g, qv, *initial_state, ok)
ctx.scale = scale
ctx.reverse = reverse
# we do not need the gradient of the final state from the next chunk
# similiar to Trunctated BPTT
if final_state is not None:
final_state = tuple(i.detach() for i in final_state)
return ov.to(q.dtype), final_state
@staticmethod
@contiguous
@custom_bwd
def backward(ctx, do, dht=None):
q, k, v, s, g, qv, *initial_state, ok = ctx.saved_tensors
B, H, T, K, V, M = *q.shape, v.shape[-1], s.shape[-1]
V = v.shape[-1]
scale = ctx.scale
BK, BV, BM = min(K, 32), min(V, 32), min(M, 32)
NK, NV, NM = triton.cdiv(K, BK), triton.cdiv(V, BV), triton.cdiv(M, BM)
num_stages = 1
num_warps = 1
dqv = q.new_empty(NV, B, H, T, M, dtype=torch.float)
dsv = q.new_empty(NV, B, H, T, M, dtype=torch.float)
dv = q.new_empty(NM, B, H, T, V, dtype=torch.float)
gk, gv = g, None
grid = (NV, NM, B * H)
fused_recurrent_gated_abc_bwd_kernel[grid](
qv, s, v, gk, gv, do, dqv, dsv, dv, initial_state[1],
s.stride(1),
v.stride(1),
scale=1.,
B=B, H=H, T=T, K=M, V=V, BK=BM, BV=BV,
num_warps=num_warps,
num_stages=num_stages,
USE_INITIAL_STATE=initial_state[1] is not None,
REVERSE=ctx.reverse,
USE_GK=gk is not None,
USE_GV=gv is not None
)
dqv = dqv.sum(0)
dsv = dsv.sum(0)
dv = dv.sum(0)
dgk = dqv * qv.float() - dsv * s.float()
dgk_cumsum = dgk.cumsum(-2)
dgk = dgk + dgk_cumsum[:, :, -1, None] - dgk_cumsum
dok = qv * (dqv - (qv * dqv).sum(-1, True))
dq = q.new_empty(NM, B, H, T, K, dtype=torch.float)
dk = q.new_empty(NM, B, H, T, K, dtype=torch.float)
dsk = q.new_empty(NK, B, H, T, M, dtype=torch.float)
gk, gv = None, g
grid = (NM, NK, B * H)
fused_recurrent_gated_abc_bwd_kernel[grid](
q, k, s, gk, gv, dok, dq, dk, dsk, initial_state[0],
q.stride(1),
s.stride(1),
scale=scale,
B=B, H=H, T=T, K=K, V=M, BK=BK, BV=BM,
num_warps=num_warps,
num_stages=num_stages,
USE_INITIAL_STATE=initial_state[0] is not None,
REVERSE=ctx.reverse,
USE_GK=gk is not None,
USE_GV=gv is not None
)
dq = dq.sum(0)
dk = dk.sum(0)
dsk = dsk.sum(0)
dgv = dok.float() * ok.float() - dsk * s.float()
dgv_cumsum = dgv.cumsum(-2)
dgv = dgv + dgv_cumsum[:, :, -1, None] - dgv_cumsum
ds = dsk.add_(dsv)
dg = dgk.add_(dgv)
return dq.to(q), dk.to(k), dv.to(v), ds.to(s), dg.to(g), None, None, None, None
def fused_recurrent_gated_abc(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
s: torch.Tensor,
g: Optional[torch.Tensor] = None,
scale: Optional[int] = None,
initial_state: Optional[Tuple[torch.Tensor]] = None,
output_final_state: Optional[bool] = False
) -> Tuple[torch.Tensor, torch.Tensor]:
r"""
Args:
q (torch.Tensor):
queries of shape `(B, H, T, K)`
k (torch.Tensor):
keys of shape `(B, H, T, K)`
v (torch.Tensor):
values of shape `(B, H, T, V)`
g (torch.Tensor):
Forget gates of shape `(B, H, T, M)` applied to keys.
If not provided, this function is equivalent to vanilla ABC.
scale (Optional[int]):
Scale factor for attention scores.
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
initial_state (Optional[Tuple[torch.Tensor]]):
Initial state tuple having tensors of shape `(B, H, K, V)`. Default: `None`.
output_final_state (Optional[bool]):
Whether to output the final state tuple, having tensors of shape `(B, H, K, V)`. Default: `False`.
"""
if initial_state is not None:
initial_state = tuple(i.detach() for i in initial_state)
if g is None:
# TODO: this 3 steps took huge amount of time, ought to be optimized
z = s.float().logcumsumexp(2)
g = torch.cat((z[:, :, :1], z[:, :, :-1]), 2) - z
s = torch.exp(s - z).to(k.dtype)
if scale is None:
scale = q.shape[-1] ** -0.5
ov, final_state = FusedRecurrentGatedABCFunction.apply(q, k, v, s, g, scale, initial_state, output_final_state)
return ov, final_state