# -*- coding: utf-8 -*- # Copyright (c) 2024, Yu Zhang, Songlin Yang from typing import Optional, Tuple import torch import triton import triton.language as tl from torch.cuda.amp import custom_bwd, custom_fwd from fla.utils import contiguous @triton.jit def fused_recurrent_gated_abc_fwd_kernel( q, k, v, gk, gv, o, h0, ht, s_k_h, s_v_h, scale, B: tl.constexpr, H: tl.constexpr, T: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, STORE_FINAL_STATE: tl.constexpr, REVERSE: tl.constexpr, USE_GK: tl.constexpr, USE_GV: tl.constexpr, ): # indices i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0) p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0) p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0) p_o = o + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0) if USE_GK: p_gk = gk + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0) if USE_GV: p_gv = gv + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0) mask_bk = (i_k * BK + tl.arange(0, BK)) < K mask_bv = (i_v * BV + tl.arange(0, BV)) < V h = tl.zeros([BV, BK], dtype=tl.float32) mask_kv = mask_bk[None, :] & mask_bv[:, None] if USE_INITIAL_STATE: p_h0 = h0 + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None]) h += tl.load(p_h0, mask=mask_kv, other=0).to(tl.float32) for _ in range(0, T): b_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32) b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32) if USE_GK: b_gk = tl.load(p_gk, mask=mask_bk, other=0).to(tl.float32) h = h * b_gk[None, :] if USE_GV: b_gv = tl.load(p_gv, mask=mask_bv, other=0).to(tl.float32) h = h * b_gv[:, None] h += b_k[None, :] * b_v[:, None] b_o = h * b_q[None, :] b_o = tl.sum(b_o, axis=1) tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_bv) p_q += -K if REVERSE else K p_k += -K if REVERSE else K p_o += -V if REVERSE else V p_v += -V if REVERSE else V if USE_GK: p_gk += -K if REVERSE else K if USE_GV: p_gv += -V if REVERSE else V if STORE_FINAL_STATE: p_ht = ht + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None]) tl.store(p_ht, h.to(p_ht.dtype.element_ty), mask=mask_kv) @triton.jit def fused_recurrent_gated_abc_bwd_kernel( q, k, v, gk, gv, do, dq, dk, dv, h0, s_k_h, s_v_h, scale, B: tl.constexpr, H: tl.constexpr, T: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, REVERSE: tl.constexpr, USE_GK: tl.constexpr, USE_GV: tl.constexpr, ): i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0) p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0) p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0) p_do = do + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0) p_dq = dq + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0) if USE_GK: p_gk = gk + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0) if USE_GV: p_gv = gv + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0) mask_bk = i_k * BK + tl.arange(0, BK) < K mask_bv = i_v * BV + tl.arange(0, BV) < V mask_kv = mask_bk[:, None] & mask_bv[None, :] h = tl.zeros([BK, BV], dtype=tl.float32) if USE_INITIAL_STATE: p_h0 = h0 + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[:, None]) * V + (i_v * BV + tl.arange(0, BV)[None, :]) h += tl.load(p_h0, mask=mask_kv, other=0).to(tl.float32) for _ in range(0, T): b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32) b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32) b_do = tl.load(p_do, mask=mask_bv, other=0).to(tl.float32) if USE_GK: b_gk = tl.load(p_gk, mask=mask_bk, other=0).to(tl.float32) h = h * b_gk[:, None] if USE_GV: b_gv = tl.load(p_gv, mask=mask_bv, other=0).to(tl.float32) h = h * b_gv[None, :] h += b_k[:, None] * b_v[None, :] b_dq = tl.sum(h * b_do[None, :], axis=1) * scale tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), mask=mask_bk) p_k += -K if REVERSE else K p_v += -V if REVERSE else V p_q += -K if REVERSE else K p_do += -V if REVERSE else V p_dq += -K if REVERSE else K if USE_GK: p_gk += -K if REVERSE else K if USE_GV: p_gv += -V if REVERSE else V # sync threads tl.debug_barrier() p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T - 1) * K if not REVERSE else 0) p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T - 1) * K if not REVERSE else 0) p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T - 1) * V if not REVERSE else 0) p_do = do + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T - 1) * V if not REVERSE else 0) p_dk = dk + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange(0, BK) + ((T - 1) * K if not REVERSE else 0) p_dv = dv + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV) + ((T - 1) * V if not REVERSE else 0) if USE_GK: p_gk = gk + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T - 1) * K if not REVERSE else 0) if USE_GV: p_gv = gv + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T - 1) * V if not REVERSE else 0) b_dh = tl.zeros([BK, BV], dtype=tl.float32) for _ in range(T): b_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32) b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32) b_do = tl.load(p_do, mask=mask_bv, other=0).to(tl.float32) b_dh += b_q[:, None] * b_do[None, :] b_dk = tl.sum(b_dh * b_v[None, :], axis=1) b_dv = tl.sum(b_dh * b_k[:, None], axis=0) if USE_GK: b_gk = tl.load(p_gk, mask=mask_bk, other=0).to(tl.float32) b_dh *= b_gk[:, None] if USE_GV: b_gv = tl.load(p_gv, mask=mask_bv, other=0).to(tl.float32) b_dh *= b_gv[None, :] tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), mask=mask_bk) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), mask=mask_bv) p_q += K if REVERSE else -K p_k += K if REVERSE else -K p_v += V if REVERSE else -V p_do += V if REVERSE else -V p_dk += K if REVERSE else -K p_dv += V if REVERSE else -V if USE_GK: p_gk += K if REVERSE else -K if USE_GV: p_gv += V if REVERSE else -V class FusedRecurrentGatedABCFunction(torch.autograd.Function): @staticmethod @contiguous @custom_fwd def forward(ctx, q, k, v, s, g, scale=None, initial_state=None, output_final_state=False, reverse=False): B, H, T, K, V, M = *q.shape, v.shape[-1], s.shape[-1] # default scale if scale is None: scale = K ** -0.5 BK, BV, BM = min(K, 32), min(V, 32), min(M, 32) NK, NV, NM = triton.cdiv(K, BK), triton.cdiv(V, BV), triton.cdiv(M, BM) num_stages = 1 num_warps = 1 g = g.float().exp() final_state = (None, None) if output_final_state: final_state = (q.new_empty(B, H, K, M), q.new_empty(B, H, M, V)) ok = q.new_empty(NK, B, H, T, M, dtype=torch.float) gk, gv = None, g grid = (NM, NK, B * H) fused_recurrent_gated_abc_fwd_kernel[grid]( q, k, s, gk, gv, ok, initial_state[0], final_state[0], k.stride(1), s.stride(1), scale=scale, B=B, H=H, T=T, K=K, V=M, BK=BK, BV=BM, USE_INITIAL_STATE=initial_state[0] is not None, STORE_FINAL_STATE=final_state[0] is not None, USE_GK=False, USE_GV=True, REVERSE=reverse, num_warps=num_warps, num_stages=num_stages ) ok = ok.sum(0) qv = ok.softmax(-1, dtype=torch.float) ov = q.new_empty(NM, B, H, T, V, dtype=torch.float) gk, gv = g, None grid = (NV, NM, B * H) fused_recurrent_gated_abc_fwd_kernel[grid]( qv, s, v, gk, gv, ov, initial_state[1], final_state[1], s.stride(1), v.stride(1), scale=1., B=B, H=H, T=T, K=M, V=V, BK=BM, BV=BV, USE_INITIAL_STATE=initial_state[0] is not None, STORE_FINAL_STATE=final_state[0] is not None, USE_GK=True, USE_GV=False, REVERSE=reverse, num_warps=num_warps, num_stages=num_stages ) ov = ov.sum(0) ctx.save_for_backward(q, k, v, s, g, qv, *initial_state, ok) ctx.scale = scale ctx.reverse = reverse # we do not need the gradient of the final state from the next chunk # similiar to Trunctated BPTT if final_state is not None: final_state = tuple(i.detach() for i in final_state) return ov.to(q.dtype), final_state @staticmethod @contiguous @custom_bwd def backward(ctx, do, dht=None): q, k, v, s, g, qv, *initial_state, ok = ctx.saved_tensors B, H, T, K, V, M = *q.shape, v.shape[-1], s.shape[-1] V = v.shape[-1] scale = ctx.scale BK, BV, BM = min(K, 32), min(V, 32), min(M, 32) NK, NV, NM = triton.cdiv(K, BK), triton.cdiv(V, BV), triton.cdiv(M, BM) num_stages = 1 num_warps = 1 dqv = q.new_empty(NV, B, H, T, M, dtype=torch.float) dsv = q.new_empty(NV, B, H, T, M, dtype=torch.float) dv = q.new_empty(NM, B, H, T, V, dtype=torch.float) gk, gv = g, None grid = (NV, NM, B * H) fused_recurrent_gated_abc_bwd_kernel[grid]( qv, s, v, gk, gv, do, dqv, dsv, dv, initial_state[1], s.stride(1), v.stride(1), scale=1., B=B, H=H, T=T, K=M, V=V, BK=BM, BV=BV, num_warps=num_warps, num_stages=num_stages, USE_INITIAL_STATE=initial_state[1] is not None, REVERSE=ctx.reverse, USE_GK=gk is not None, USE_GV=gv is not None ) dqv = dqv.sum(0) dsv = dsv.sum(0) dv = dv.sum(0) dgk = dqv * qv.float() - dsv * s.float() dgk_cumsum = dgk.cumsum(-2) dgk = dgk + dgk_cumsum[:, :, -1, None] - dgk_cumsum dok = qv * (dqv - (qv * dqv).sum(-1, True)) dq = q.new_empty(NM, B, H, T, K, dtype=torch.float) dk = q.new_empty(NM, B, H, T, K, dtype=torch.float) dsk = q.new_empty(NK, B, H, T, M, dtype=torch.float) gk, gv = None, g grid = (NM, NK, B * H) fused_recurrent_gated_abc_bwd_kernel[grid]( q, k, s, gk, gv, dok, dq, dk, dsk, initial_state[0], q.stride(1), s.stride(1), scale=scale, B=B, H=H, T=T, K=K, V=M, BK=BK, BV=BM, num_warps=num_warps, num_stages=num_stages, USE_INITIAL_STATE=initial_state[0] is not None, REVERSE=ctx.reverse, USE_GK=gk is not None, USE_GV=gv is not None ) dq = dq.sum(0) dk = dk.sum(0) dsk = dsk.sum(0) dgv = dok.float() * ok.float() - dsk * s.float() dgv_cumsum = dgv.cumsum(-2) dgv = dgv + dgv_cumsum[:, :, -1, None] - dgv_cumsum ds = dsk.add_(dsv) dg = dgk.add_(dgv) return dq.to(q), dk.to(k), dv.to(v), ds.to(s), dg.to(g), None, None, None, None def fused_recurrent_gated_abc( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, s: torch.Tensor, g: Optional[torch.Tensor] = None, scale: Optional[int] = None, initial_state: Optional[Tuple[torch.Tensor]] = None, output_final_state: Optional[bool] = False ) -> Tuple[torch.Tensor, torch.Tensor]: r""" Args: q (torch.Tensor): queries of shape `(B, H, T, K)` k (torch.Tensor): keys of shape `(B, H, T, K)` v (torch.Tensor): values of shape `(B, H, T, V)` g (torch.Tensor): Forget gates of shape `(B, H, T, M)` applied to keys. If not provided, this function is equivalent to vanilla ABC. scale (Optional[int]): Scale factor for attention scores. If not provided, it will default to `1 / sqrt(K)`. Default: `None`. initial_state (Optional[Tuple[torch.Tensor]]): Initial state tuple having tensors of shape `(B, H, K, V)`. Default: `None`. output_final_state (Optional[bool]): Whether to output the final state tuple, having tensors of shape `(B, H, K, V)`. Default: `False`. """ if initial_state is not None: initial_state = tuple(i.detach() for i in initial_state) if g is None: # TODO: this 3 steps took huge amount of time, ought to be optimized z = s.float().logcumsumexp(2) g = torch.cat((z[:, :, :1], z[:, :, :-1]), 2) - z s = torch.exp(s - z).to(k.dtype) if scale is None: scale = q.shape[-1] ** -0.5 ov, final_state = FusedRecurrentGatedABCFunction.apply(q, k, v, s, g, scale, initial_state, output_final_state) return ov, final_state