RWKV-Runner/finetune/lora/v6/fla/ops/based/naive.py
2024-05-28 22:35:47 +08:00

133 lines
4.4 KiB
Python
Vendored

# -*- coding: utf-8 -*-
import torch
from einops import rearrange
from fla.ops.based.chunk_fuse import fused_chunk_based
from fla.ops.based.parallel import parallel_based
def naive_parallel_based(q, k, v, use_scale=True, use_norm=True):
if use_scale:
q = q * (q.shape[-1] ** -0.5)
attn = q @ k.transpose(-2, -1)
attn = 1 + attn + 1/2 * (attn ** 2)
attn.masked_fill_(~torch.tril(torch.ones(
q.shape[-2], q.shape[-2], dtype=torch.bool, device=q.device)), 0)
o = attn @ v
if use_norm:
z = attn.sum(-1)
return o / (z[..., None] + 1e-6)
else:
return o
def naive_chunk_based(q, k, v, chunk_size=256):
q = q * (q.shape[-1] ** -0.5)
# compute normalizer.
k_cumsum = torch.cumsum(k, dim=-2)
kk_cumsum = torch.cumsum(k.unsqueeze(-1) * k.unsqueeze(-2), dim=-3)
# first
z = (q * k_cumsum).sum(-1)
# second order
z += (q.unsqueeze(-1) * q.unsqueeze(-2) * kk_cumsum).sum((-1, -2)) * 0.5
# zero-th order
z += (torch.arange(0, q.shape[-2]).to(z.device) * 1.0 + 1.0)[None, None, :]
# compute o
# constant term
_o = v.cumsum(-2)
q = rearrange(q, 'b h (n c) d -> b h n c d', c=chunk_size)
k = rearrange(k, 'b h (n c) d -> b h n c d', c=chunk_size)
v = rearrange(v, 'b h (n c) d -> b h n c d', c=chunk_size)
intra_chunk_attn = q @ k.transpose(-2, -1)
intra_chunk_attn = intra_chunk_attn + 1/2 * (intra_chunk_attn ** 2)
intra_chunk_attn.masked_fill_(
~torch.tril(
torch.ones(chunk_size, chunk_size,
dtype=torch.bool, device=q.device),
), 0)
o = intra_chunk_attn @ v
# quadractic term
kv = torch.einsum(
'b h n c x, b h n c y, b h n c z -> b h n x y z', k, k, v)
kv = kv.cumsum(2)
kv = torch.cat([torch.zeros_like(kv[:, :, :1]), kv[:, :, :-1]], dim=2)
o += 0.5 * torch.einsum('b h n x y z, b h n c x, b h n c y -> b h n c z', kv, q, q)
# linear term
kv = torch.einsum('b h n c x, b h n c y -> b h n x y', k, v)
kv = kv.cumsum(2)
kv = torch.cat([torch.zeros_like(kv[:, :, :1]), kv[:, :, :-1]], dim=2)
o += torch.einsum('b h n x y, b h n c x -> b h n c y', kv, q)
o = rearrange(o, 'b h n c d -> b h (n c) d')
o = o + _o
return o / (z[..., None] + 1e-6)
if __name__ == "__main__":
B = 4
H = 4
L = 128
# D = 15
dtype = torch.float32
q = (torch.randn(B, H, L, 16).cuda().to(dtype)).requires_grad_(True)
k = (torch.randn(B, H, L, 16).cuda().to(dtype)).requires_grad_(True)
v = torch.randn(B, H, L, 128).cuda().to(dtype).requires_grad_(True)
do = torch.randn_like(v).cuda()
ref = naive_parallel_based(q, k, v, True, True)
ref.backward(do, retain_graph=True)
ref_dq, q.grad = q.grad.clone(), None
ref_dk, k.grad = k.grad.clone(), None
ref_dv, v.grad = v.grad.clone(), None
# tri = naive_chunk_based(q, k, v)
# tri.backward(do, retain_graph=True)
# tri_dq, q.grad = q.grad.clone(), None
# tri_dk, k.grad = k.grad.clone(), None
# tri_dv, v.grad = v.grad.clone(), None
# assert ref.allclose(tri, 0, 1e-4), breakpoint()
# assert ref_dq.allclose(tri_dq, 0, 1e-4), breakpoint()
# assert ref_dk.allclose(tri_dk, 0, 1e-4), breakpoint()
# assert ref_dv.allclose(tri_dv, 0, 1e-4), breakpoint()
tri = fused_chunk_based(q, k, v, True, True)
tri.backward(do, retain_graph=True)
tri_dq, q.grad = q.grad.clone(), None
tri_dk, k.grad = k.grad.clone(), None
tri_dv, v.grad = v.grad.clone(), None
print((ref-tri).abs().max())
print((ref_dq-tri_dq).abs().max())
print((ref_dk-tri_dk).abs().max())
print((ref_dv-tri_dv).abs().max())
# assert ref.allclose(tri, 0, 1e-4), breakpoint()
# assert ref_dq.allclose(tri_dq, 0, 1e-4), breakpoint()
# assert ref_dk.allclose(tri_dk, 0, 1e-4), breakpoint()
# assert ref_dv.allclose(tri_dv, 0, 1e-4), breakpoint()
tri = parallel_based(q, k, v, True, True)
tri.backward(do, retain_graph=True)
tri_dq, q.grad = q.grad.clone(), None
tri_dk, k.grad = k.grad.clone(), None
tri_dv, v.grad = v.grad.clone(), None
print((ref-tri).abs().max())
print((ref_dq-tri_dq).abs().max())
print((ref_dk-tri_dk).abs().max())
print((ref_dv-tri_dv).abs().max())
# assert ref.allclose(tri, 0, 1e-4), breakpoint()
# assert ref_dq.allclose(tri_dq, 0, 1e-4), breakpoint()
# assert ref_dk.allclose(tri_dk, 0, 1e-4), breakpoint()
# assert ref_dv.allclose(tri_dv, 0, 1e-4), breakpoint()