# -*- coding: utf-8 -*- import torch from einops import rearrange from fla.ops.based.chunk_fuse import fused_chunk_based from fla.ops.based.parallel import parallel_based def naive_parallel_based(q, k, v, use_scale=True, use_norm=True): if use_scale: q = q * (q.shape[-1] ** -0.5) attn = q @ k.transpose(-2, -1) attn = 1 + attn + 1/2 * (attn ** 2) attn.masked_fill_(~torch.tril(torch.ones( q.shape[-2], q.shape[-2], dtype=torch.bool, device=q.device)), 0) o = attn @ v if use_norm: z = attn.sum(-1) return o / (z[..., None] + 1e-6) else: return o def naive_chunk_based(q, k, v, chunk_size=256): q = q * (q.shape[-1] ** -0.5) # compute normalizer. k_cumsum = torch.cumsum(k, dim=-2) kk_cumsum = torch.cumsum(k.unsqueeze(-1) * k.unsqueeze(-2), dim=-3) # first z = (q * k_cumsum).sum(-1) # second order z += (q.unsqueeze(-1) * q.unsqueeze(-2) * kk_cumsum).sum((-1, -2)) * 0.5 # zero-th order z += (torch.arange(0, q.shape[-2]).to(z.device) * 1.0 + 1.0)[None, None, :] # compute o # constant term _o = v.cumsum(-2) q = rearrange(q, 'b h (n c) d -> b h n c d', c=chunk_size) k = rearrange(k, 'b h (n c) d -> b h n c d', c=chunk_size) v = rearrange(v, 'b h (n c) d -> b h n c d', c=chunk_size) intra_chunk_attn = q @ k.transpose(-2, -1) intra_chunk_attn = intra_chunk_attn + 1/2 * (intra_chunk_attn ** 2) intra_chunk_attn.masked_fill_( ~torch.tril( torch.ones(chunk_size, chunk_size, dtype=torch.bool, device=q.device), ), 0) o = intra_chunk_attn @ v # quadractic term kv = torch.einsum( 'b h n c x, b h n c y, b h n c z -> b h n x y z', k, k, v) kv = kv.cumsum(2) kv = torch.cat([torch.zeros_like(kv[:, :, :1]), kv[:, :, :-1]], dim=2) o += 0.5 * torch.einsum('b h n x y z, b h n c x, b h n c y -> b h n c z', kv, q, q) # linear term kv = torch.einsum('b h n c x, b h n c y -> b h n x y', k, v) kv = kv.cumsum(2) kv = torch.cat([torch.zeros_like(kv[:, :, :1]), kv[:, :, :-1]], dim=2) o += torch.einsum('b h n x y, b h n c x -> b h n c y', kv, q) o = rearrange(o, 'b h n c d -> b h (n c) d') o = o + _o return o / (z[..., None] + 1e-6) if __name__ == "__main__": B = 4 H = 4 L = 128 # D = 15 dtype = torch.float32 q = (torch.randn(B, H, L, 16).cuda().to(dtype)).requires_grad_(True) k = (torch.randn(B, H, L, 16).cuda().to(dtype)).requires_grad_(True) v = torch.randn(B, H, L, 128).cuda().to(dtype).requires_grad_(True) do = torch.randn_like(v).cuda() ref = naive_parallel_based(q, k, v, True, True) ref.backward(do, retain_graph=True) ref_dq, q.grad = q.grad.clone(), None ref_dk, k.grad = k.grad.clone(), None ref_dv, v.grad = v.grad.clone(), None # tri = naive_chunk_based(q, k, v) # tri.backward(do, retain_graph=True) # tri_dq, q.grad = q.grad.clone(), None # tri_dk, k.grad = k.grad.clone(), None # tri_dv, v.grad = v.grad.clone(), None # assert ref.allclose(tri, 0, 1e-4), breakpoint() # assert ref_dq.allclose(tri_dq, 0, 1e-4), breakpoint() # assert ref_dk.allclose(tri_dk, 0, 1e-4), breakpoint() # assert ref_dv.allclose(tri_dv, 0, 1e-4), breakpoint() tri = fused_chunk_based(q, k, v, True, True) tri.backward(do, retain_graph=True) tri_dq, q.grad = q.grad.clone(), None tri_dk, k.grad = k.grad.clone(), None tri_dv, v.grad = v.grad.clone(), None print((ref-tri).abs().max()) print((ref_dq-tri_dq).abs().max()) print((ref_dk-tri_dk).abs().max()) print((ref_dv-tri_dv).abs().max()) # assert ref.allclose(tri, 0, 1e-4), breakpoint() # assert ref_dq.allclose(tri_dq, 0, 1e-4), breakpoint() # assert ref_dk.allclose(tri_dk, 0, 1e-4), breakpoint() # assert ref_dv.allclose(tri_dv, 0, 1e-4), breakpoint() tri = parallel_based(q, k, v, True, True) tri.backward(do, retain_graph=True) tri_dq, q.grad = q.grad.clone(), None tri_dk, k.grad = k.grad.clone(), None tri_dv, v.grad = v.grad.clone(), None print((ref-tri).abs().max()) print((ref_dq-tri_dq).abs().max()) print((ref_dk-tri_dk).abs().max()) print((ref_dv-tri_dv).abs().max()) # assert ref.allclose(tri, 0, 1e-4), breakpoint() # assert ref_dq.allclose(tri_dq, 0, 1e-4), breakpoint() # assert ref_dk.allclose(tri_dk, 0, 1e-4), breakpoint() # assert ref_dv.allclose(tri_dv, 0, 1e-4), breakpoint()