Compare commits

...

14 Commits

Author SHA1 Message Date
josc146
549f32a743 release v1.6.8 2024-01-05 13:53:50 +08:00
josc146
e3b3452a73 basic abc frontend support 2024-01-05 13:47:00 +08:00
josc146
62350d975d fix finetune errorsMap ($modelInfo) 2024-01-05 12:46:14 +08:00
josc146
8d84b326b8 basic abc frontend support 2024-01-05 12:45:41 +08:00
josc146
16079a3cba abc music inference support 2024-01-05 12:44:44 +08:00
github-actions[bot]
ff330a5487 release v1.6.7 2023-12-29 04:26:57 +00:00
josc146
94b3882d30 release v1.6.7 2023-12-29 12:26:33 +08:00
josc146
81544ca8b3 rwkv5 lora finetune support (https://github.com/JL-er/RWKV-v5-lora) 2023-12-29 12:23:36 +08:00
josc146
b7f4dd835e chore 2023-12-29 00:38:33 +08:00
josc146
7e2380e4ed fix body.state 2023-12-28 23:53:58 +08:00
josc146
7f3cfd54b0 improve state cache performance 2023-12-28 22:15:31 +08:00
josc146
e083f2c629 webgpu(python) state cache 2023-12-28 20:43:57 +08:00
josc146
e33858f110 improve memory usage and speed of convert_safetensors.py 2023-12-26 23:50:51 +08:00
github-actions[bot]
da01a33152 release v1.6.6 2023-12-25 13:03:06 +00:00
40 changed files with 3122 additions and 226 deletions

View File

@@ -1,12 +1,8 @@
## Changes
- improve refreshRemoteModels
- reduce precompiled web_rwkv_py size
- webgpu(Python) max_buffer_size (12B support) and turbo
- improve role-playing effect
- update manifest.json (a lot of new models)
- bump webgpu(ai00_server) mode to v0.3.8
- improve details
- abc music inference support
- basic abc frontend support
- fix finetune errorsMap ($modelInfo)
## Install

View File

@@ -1,9 +1,8 @@
import json
import collections
import numpy
import os
import sys
import copy
import torch
from safetensors.torch import load_file, save_file
from safetensors.torch import serialize_file, load_file
import argparse
@@ -26,7 +25,7 @@ def rename_key(rename, name):
def convert_file(pt_filename: str, sf_filename: str, rename={}, transpose_names=[]):
loaded = torch.load(pt_filename, map_location="cpu")
loaded: collections.OrderedDict = torch.load(pt_filename, map_location="cpu")
if "state_dict" in loaded:
loaded = loaded["state_dict"]
@@ -44,11 +43,9 @@ def convert_file(pt_filename: str, sf_filename: str, rename={}, transpose_names=
if "time_maa" in x:
version = max(6, version)
if version == 5.1 and "midi" in pt_filename.lower():
import numpy as np
print(f"Model detected: v{version:.1f}")
np.set_printoptions(precision=4, suppress=True, linewidth=200)
kk = list(loaded.keys())
if version == 5.1:
_, n_emb = loaded["emb.weight"].shape
for k in kk:
if "time_decay" in k or "time_faaaa" in k:
@@ -57,31 +54,34 @@ def convert_file(pt_filename: str, sf_filename: str, rename={}, transpose_names=
loaded[k].unsqueeze(1).repeat(1, n_emb // loaded[k].shape[0])
)
loaded = {k: v.clone().half() for k, v in loaded.items()}
# for k, v in loaded.items():
# print(f'{k}\t{v.shape}\t{v.dtype}')
loaded = {rename_key(rename, k).lower(): v.contiguous() for k, v in loaded.items()}
# For tensors to be contiguous
for k, v in loaded.items():
for k in kk:
new_k = rename_key(rename, k).lower()
v = loaded[k].half()
del loaded[k]
for transpose_name in transpose_names:
if transpose_name in k:
loaded[k] = v.transpose(0, 1)
loaded = {k: v.clone().half().contiguous() for k, v in loaded.items()}
for k, v in loaded.items():
print(f"{k}\t{v.shape}\t{v.dtype}")
v = v.transpose(0, 1)
print(f"{new_k}\t{v.shape}\t{v.dtype}")
loaded[new_k] = {
"dtype": str(v.dtype).split(".")[-1],
"shape": v.shape,
"data": v.numpy().tobytes(),
}
dirname = os.path.dirname(sf_filename)
os.makedirs(dirname, exist_ok=True)
save_file(loaded, sf_filename, metadata={"format": "pt"})
reloaded = load_file(sf_filename)
for k in loaded:
pt_tensor = loaded[k]
sf_tensor = reloaded[k]
if not torch.equal(pt_tensor, sf_tensor):
raise RuntimeError(f"The output tensors do not match for key {k}")
serialize_file(loaded, sf_filename, metadata={"format": "pt"})
# reloaded = load_file(sf_filename)
# for k in loaded:
# pt_tensor = torch.Tensor(
# numpy.frombuffer(
# bytearray(loaded[k]["data"]),
# dtype=getattr(numpy, loaded[k]["dtype"]),
# ).reshape(loaded[k]["shape"])
# )
# sf_tensor = reloaded[k]
# if not torch.equal(pt_tensor, sf_tensor):
# raise RuntimeError(f"The output tensors do not match for key {k}")
if __name__ == "__main__":

View File

@@ -94,28 +94,19 @@ def add_state(body: AddStateBody):
state: Union[Any, None] = None
if body.state is not None:
if type(body.state) == list or type(body.state) == np.ndarray:
devices = [
(
tensor.device
if hasattr(tensor, "device")
else torch.device("cpu")
)
for tensor in body.state
]
state = (
[tensor.cpu() for tensor in body.state]
if hasattr(body.state[0], "device")
else copy.deepcopy(body.state)
)
else:
pass # WebGPU
if type(body.state) == list and hasattr(body.state[0], "device"): # torch
devices = [tensor.device for tensor in body.state]
state = [tensor.cpu() for tensor in body.state]
elif type(body.state) == np.ndarray: # rwkv.cpp
state = body.state
else: # WebGPU
state = body.state.back()
id: int = trie.insert(body.prompt)
dtrie[id] = {
"tokens": copy.deepcopy(body.tokens),
"tokens": body.tokens,
"state": state,
"logits": copy.deepcopy(body.logits),
"logits": body.logits,
"devices": devices,
}
@@ -199,12 +190,12 @@ def longest_prefix_state(body: LongestPrefixStateBody, request: Request):
except:
pass
if id != -1:
prompt: str = trie[id]
v = dtrie[id]
devices: List[torch.device] = v["devices"]
prompt: str = trie[id]
state: Union[Any, None] = v["state"]
if state is not None and type(state) == list and hasattr(state[0], "device"):
if type(state) == list and hasattr(state[0], "device"): # torch
state = [tensor.to(devices[i]) for i, tensor in enumerate(state)]
quick_log(request, body, "Hit:\n" + prompt)

View File

@@ -251,7 +251,7 @@ class RWKV(MyModule):
)
assert (
w["_strategy"] == args.strategy_string
) # if you are using a new strategy, re-convert the model
), "model has been converted and does not match current strategy; if you are using a new strategy, re-convert the model"
assert (
float(w["_version"]) >= 0.7
) # sometimes you should re-convert using latest convert_model.py

View File

@@ -342,7 +342,7 @@ class RWKV(MyModule):
)
assert (
w["_strategy"] == args.strategy_string
) # if you are using a new strategy, re-convert the model
), "model has been converted and does not match current strategy; if you are using a new strategy, re-convert the model"
assert (
float(w["_version"]) >= 0.7
) # sometimes you should re-convert using latest convert_model.py

View File

@@ -34,6 +34,25 @@ class PIPELINE_ARGS:
)
class ABC_TOKENIZER:
def __init__(self):
self.pad_token_id = 0
self.bos_token_id = 2
self.eos_token_id = 3
def encode(self, text):
ids = [ord(c) for c in text]
return ids
def decode(self, ids):
txt = "".join(
chr(idx) if idx > self.eos_token_id else ""
for idx in ids
if idx != self.eos_token_id
)
return txt
class PIPELINE:
def __init__(self, model, WORD_NAME: str):
self.model = model
@@ -48,6 +67,8 @@ class PIPELINE:
self.tokenizer = TRIE_TOKENIZER(
os.path.dirname(os.path.abspath(__file__)) + "/rwkv_vocab_v20230424.txt"
)
elif WORD_NAME == "abc_tokenizer":
self.tokenizer = ABC_TOKENIZER()
else:
if WORD_NAME.endswith(".txt"):
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))

View File

@@ -23,4 +23,9 @@ class RWKV:
self.w["emb.weight"] = [0] * wrp.peek_info(model_path).num_vocab
def forward(self, tokens: List[int], state: Union[Any, None] = None):
return wrp.v5.run_one(self.model, tokens, state)
if type(state).__name__ == "BackedState": # memory state
gpu_state = wrp.v5.ModelState(self.model, 1)
gpu_state.load(state)
else:
gpu_state = state
return wrp.v5.run_one(self.model, tokens, gpu_state)

View File

@@ -11,11 +11,6 @@ from pydantic import BaseModel, Field
from routes import state_cache
import global_var
END_OF_TEXT = 0
END_OF_LINE_DOUBLE = 535
os.environ["TORCH_EXTENSIONS_DIR"] = f"{pathlib.Path(__file__).parent.parent.resolve()}"
@@ -28,6 +23,8 @@ class RWKVType(Enum):
class AbstractRWKV(ABC):
def __init__(self, model, pipeline):
self.EOS_ID = 0
self.name = "rwkv"
self.model = model
self.pipeline = pipeline
@@ -239,9 +236,9 @@ class AbstractRWKV(ABC):
self.model_tokens = []
else:
delta_prompt = prompt[len(cache["prompt"]) :]
self.model_state = copy.deepcopy(cache["state"])
self.model_tokens = copy.deepcopy(cache["tokens"])
logits = copy.deepcopy(cache["logits"])
self.model_state = cache["state"]
self.model_tokens = cache["tokens"]
logits = cache["logits"]
prompt_token_len = 0
if delta_prompt != "":
@@ -274,7 +271,7 @@ class AbstractRWKV(ABC):
logits, temperature=self.temperature, top_p=self.top_p, top_k=self.top_k
)
if token == END_OF_TEXT:
if token == self.EOS_ID:
yield response, "", prompt_token_len, completion_token_len
break
@@ -401,7 +398,7 @@ class TextRWKV(AbstractRWKV):
def fix_tokens(self, tokens) -> List[int]:
if self.rwkv_type == RWKVType.World:
return tokens
if len(tokens) > 0 and tokens[-1] == END_OF_LINE_DOUBLE:
if len(tokens) > 0 and tokens[-1] == 535:
tokens = tokens[:-1] + [self.END_OF_LINE, self.END_OF_LINE]
return tokens
@@ -459,7 +456,7 @@ The following is a coherent verbose detailed conversation between a girl named {
pass
class MusicRWKV(AbstractRWKV):
class MusicMidiRWKV(AbstractRWKV):
def __init__(self, model, pipeline):
super().__init__(model, pipeline)
@@ -501,8 +498,45 @@ class MusicRWKV(AbstractRWKV):
return " " + delta
class MusicAbcRWKV(AbstractRWKV):
def __init__(self, model, pipeline):
super().__init__(model, pipeline)
self.EOS_ID = 3
self.max_tokens_per_generation = 500
self.temperature = 1
self.top_p = 0.8
self.top_k = 8
self.rwkv_type = RWKVType.Music
def adjust_occurrence(self, occurrence: Dict, token: int):
pass
def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int):
pass
def fix_tokens(self, tokens) -> List[int]:
return tokens
def run_rnn(
self, _tokens: List[str], newline_adj: int = 0
) -> Tuple[List[float], int]:
tokens = [int(x) for x in _tokens]
token_len = len(tokens)
self.model_tokens += tokens
out, self.model_state = self.model.forward(tokens, self.model_state)
return out, token_len
def delta_postprocess(self, delta: str) -> str:
return delta
def get_tokenizer(tokenizer_len: int):
tokenizer_dir = f"{pathlib.Path(__file__).parent.parent.resolve()}/rwkv_pip/"
if tokenizer_len < 20096:
return "abc_tokenizer"
if tokenizer_len < 50277:
return tokenizer_dir + "tokenizer-midi.json"
elif tokenizer_len < 65536:
@@ -550,7 +584,8 @@ def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV
rwkv_map: dict[str, Type[AbstractRWKV]] = {
"20B_tokenizer": TextRWKV,
"rwkv_vocab_v20230424": TextRWKV,
"tokenizer-midi": MusicRWKV,
"tokenizer-midi": MusicMidiRWKV,
"abc_tokenizer": MusicAbcRWKV,
}
tokenizer_name = os.path.splitext(os.path.basename(tokenizer))[0]
rwkv: AbstractRWKV

View File

@@ -32,6 +32,7 @@ cleaner_thread.start()
w = torch.load(model_file, map_location="cpu")
gc.collect()
vocab_size = w["emb.weight"].shape[0]
n_embd = w["emb.weight"].shape[1]
n_layer = 0
keys = list(w.keys())
@@ -52,6 +53,9 @@ for x in keys:
version = max(6, version)
if version <= expected_max_version:
print(f"--n_layer {n_layer} --n_embd {n_embd}", end="")
print(
f"v{int(version)}/train.py --vocab_size {vocab_size} --n_layer {n_layer} --n_embd {n_embd}",
end="",
)
else:
raise Exception(f"RWKV{version} is not supported")

View File

@@ -47,10 +47,10 @@ else
fi
echo "loading $loadModel"
modelInfo=$(python3 ./finetune/get_layer_and_embd.py $loadModel 4)
modelInfo=$(python3 ./finetune/get_layer_and_embd.py $loadModel 5.2)
echo $modelInfo
if [[ $modelInfo =~ "--n_layer" ]]; then
python3 ./finetune/lora/train.py $modelInfo $@ --proj_dir lora-models --data_type binidx --lora \
python3 ./finetune/lora/$modelInfo $@ --proj_dir lora-models --data_type binidx --lora \
--lora_parts=att,ffn,time,ln --strategy deepspeed_stage_2 --accelerator gpu
else
echo "modelInfo is invalid"

View File

@@ -7,6 +7,7 @@ import struct
from functools import lru_cache
from itertools import accumulate
def print_rank_0(*message):
pass
# """If distributed is initialized print only on rank 0."""
@@ -16,12 +17,14 @@ def print_rank_0(*message):
# else:
# print(*message, flush=True)
def _warmup_mmap_file(path):
pass
# with open(path, "rb") as stream:
# while stream.read(100 * 1024 * 1024):
# pass
dtypes = {
1: np.uint8,
2: np.int8,
@@ -33,18 +36,22 @@ dtypes = {
8: np.uint16,
}
def code(dtype):
for k in dtypes.keys():
if dtypes[k] == dtype:
return k
raise ValueError(dtype)
def index_file_path(prefix_path):
return prefix_path + ".idx"
def data_file_path(prefix_path):
return prefix_path + ".bin"
class MMapIndexedDataset(torch.utils.data.Dataset):
class Index(object):
_HDR_MAGIC = b"MMIDIDX\x00\x00"
@@ -100,7 +107,7 @@ class MMapIndexedDataset(torch.utils.data.Dataset):
self._file.close()
return _Writer()
def __init__(self, path, skip_warmup=False):
with open(path, "rb") as stream:
magic_test = stream.read(9)
@@ -217,8 +224,7 @@ class MMapIndexedDataset(torch.utils.data.Dataset):
elif isinstance(idx, slice):
start, stop, step = idx.indices(len(self))
if step != 1:
raise ValueError(
"Slices into indexed_dataset must be contiguous")
raise ValueError("Slices into indexed_dataset must be contiguous")
ptr = self._index._pointers[start]
sizes = self._index._sizes[idx]
offsets = list(accumulate(sizes))

View File

@@ -17,9 +17,11 @@ class MyDataset(Dataset):
if args.data_type == "binidx":
self.vocab_size = args.vocab_size
rank_zero_info(f"Current vocab size = {self.vocab_size} (make sure it's correct)")
rank_zero_info(
f"Current vocab size = {self.vocab_size} (make sure it's correct)"
)
if args.data_file.endswith('/'):
if args.data_file.endswith("/"):
d_all = []
for p in os.listdir(args.data_file):
if p.endswith(".idx"):
@@ -29,33 +31,52 @@ class MyDataset(Dataset):
exit(0)
else:
self.data = MMapIndexedDataset(args.data_file)
self.data_size = len(self.data._bin_buffer) // self.data._index._dtype_size
self.data_size = (
len(self.data._bin_buffer) // self.data._index._dtype_size
)
rank_zero_info(f"Data has {self.data_size} tokens.")
if args.my_qa_mask > 0:
self.data_pile = MMapIndexedDataset('/fsx/BlinkDL/pile/pile_20B_tokenizer_text_document')
self.data_pile_size = len(self.data_pile._bin_buffer) // self.data._index._dtype_size
self.data_pile = MMapIndexedDataset(
"/fsx/BlinkDL/pile/pile_20B_tokenizer_text_document"
)
self.data_pile_size = (
len(self.data_pile._bin_buffer) // self.data._index._dtype_size
)
if args.my_pile_stage > 0:
# assert self.data_size == 332115325534 and self.vocab_size == 50277
self.samples_per_epoch = args.epoch_steps * args.real_bsz
assert self.samples_per_epoch == 40320
rank_zero_info(f"########## Pile 20b-tokenized stage {args.my_pile_stage} ##########")
rank_zero_info(
f"########## Pile 20b-tokenized stage {args.my_pile_stage} ##########"
)
dataset_slot = self.data_size // args.ctx_len
if args.my_pile_stage != 4:
assert MaybeIsPrime(args.magic_prime)
assert args.magic_prime % 3 == 2
assert args.magic_prime / dataset_slot > 0.99 and args.magic_prime / dataset_slot <= 1
assert (
args.magic_prime / dataset_slot > 0.99
and args.magic_prime / dataset_slot <= 1
)
elif args.data_type == "numpy":
self.data = np.load(args.data_file).astype("int")
self.vocab_size = args.vocab_size
rank_zero_info("Current vocab size =", self.vocab_size, "(make sure it's correct)")
rank_zero_info(
"Current vocab size =", self.vocab_size, "(make sure it's correct)"
)
self.data_size = len(self.data)
rank_zero_info(f"Data has {self.data_size} tokens.")
elif args.data_type == "uint16":
self.data = np.fromfile(args.data_file, dtype=np.uint16).astype("int32").reshape(-1, args.my_sample_len)
self.data = (
np.fromfile(args.data_file, dtype=np.uint16)
.astype("int32")
.reshape(-1, args.my_sample_len)
)
self.vocab_size = args.vocab_size
rank_zero_info("Current vocab size =", self.vocab_size, "(make sure it's correct)")
rank_zero_info(
"Current vocab size =", self.vocab_size, "(make sure it's correct)"
)
self.data_size = self.data.shape[0]
rank_zero_info(f"Data has {self.data_size} samples.")
elif args.data_type == "wds_img":
@@ -86,10 +107,14 @@ class MyDataset(Dataset):
for u in unique:
xxObj[xx] = u
xx += 1
with open(f"{args.proj_dir}/vocab.json", "w", encoding="utf-16le") as vocab_file:
with open(
f"{args.proj_dir}/vocab.json", "w", encoding="utf-16le"
) as vocab_file:
vocab_file.write(json.dumps(xxObj, ensure_ascii=False))
self.data_size = len(self.data)
rank_zero_info(f"Data has {self.data_size} tokens, {self.vocab_size} vocab size.")
rank_zero_info(
f"Data has {self.data_size} tokens, {self.vocab_size} vocab size."
)
self.stoi = {ch: i for i, ch in enumerate(unique)}
self.itos = {i: ch for i, ch in enumerate(unique)}
@@ -104,36 +129,53 @@ class MyDataset(Dataset):
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size}")
if args.data_type == "wds_img":
def init_wds(self, bias=0):
def identity(x):
return x
return x
import webdataset as wds
import torchvision.transforms as transforms
# img_transform = transforms.Compose(
# [transforms.CenterCrop(256)]
# )
img_transform = transforms.Compose([
transforms.CenterCrop(512),
transforms.Resize((args.my_img_size))
])
self.data_raw = wds.WebDataset(args.data_file, resampled=True).shuffle(10000, initial=1000, rng=random.Random(epoch*100000+rank+bias*1e9)).decode("torchrgb").to_tuple("jpg", "json", "txt").map_tuple(img_transform, identity, identity)
img_transform = transforms.Compose(
[transforms.CenterCrop(512), transforms.Resize((args.my_img_size))]
)
self.data_raw = (
wds.WebDataset(args.data_file, resampled=True)
.shuffle(
10000,
initial=1000,
rng=random.Random(epoch * 100000 + rank + bias * 1e9),
)
.decode("torchrgb")
.to_tuple("jpg", "json", "txt")
.map_tuple(img_transform, identity, identity)
)
for pp in self.data_raw.pipeline:
if 'Resampled' in str(pp):
if "Resampled" in str(pp):
pp.deterministic = True
def worker_seed():
return rank*100000+epoch+bias*1e9
return rank * 100000 + epoch + bias * 1e9
pp.worker_seed = worker_seed
self.data = iter(self.data_raw)
# print(f"WebDataset loaded for rank {rank} epoch {epoch}")
if self.data == None:
init_wds(self)
trial = 0
while trial < 10:
try:
dd = next(self.data) # jpg, json, txt
dd = next(self.data) # jpg, json, txt
break
except:
print(f'[dataloader error - epoch {epoch} rank {rank} - trying a new shuffle]')
print(
f"[dataloader error - epoch {epoch} rank {rank} - trying a new shuffle]"
)
self.error_count += 1
init_wds(self, self.error_count)
trial += 1
@@ -144,7 +186,7 @@ class MyDataset(Dataset):
return dd[0], dd[2]
else:
if args.data_type == "uint16":
i = np.random.randint(0, self.data_size-1)
i = np.random.randint(0, self.data_size - 1)
dix = self.data[i]
x = torch.tensor(dix[:-1], dtype=torch.long)
y = torch.tensor(dix[1:], dtype=torch.long)
@@ -196,7 +238,12 @@ class MyDataset(Dataset):
z_sum = 0
isGood = False
for i in range(3, ctx_len):
if dix[i] == 27 and dix[i-1] == 34 and dix[i-2] == 187 and dix[i-3] == 187:
if (
dix[i] == 27
and dix[i - 1] == 34
and dix[i - 2] == 187
and dix[i - 3] == 187
):
isGood = True
if dix[i] == 0:
isGood = False
@@ -206,7 +253,9 @@ class MyDataset(Dataset):
if z_sum == 0:
z = [1] * ctx_len
i = np.random.randint(0, self.data_pile_size - req_len)
dix = self.data_pile.get(idx=0, offset=i, length=req_len).astype(int)
dix = self.data_pile.get(
idx=0, offset=i, length=req_len
).astype(int)
z = torch.tensor(z, dtype=torch.bfloat16)
x = torch.tensor(dix[:-1], dtype=torch.long)

View File

@@ -5,6 +5,7 @@
import functools
import os, math, gc, importlib
import torch
# torch._C._jit_set_profiling_executor(True)
# torch._C._jit_set_profiling_mode(True)
import torch.nn as nn
@@ -13,7 +14,8 @@ from torch.nn import functional as F
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
from pytorch_lightning.strategies import DeepSpeedStrategy
if importlib.util.find_spec('deepspeed'):
if importlib.util.find_spec("deepspeed"):
import deepspeed
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam
@@ -28,9 +30,10 @@ LORA_CONFIG = {
try:
print('RWKV_MY_TESTING', os.environ["RWKV_MY_TESTING"])
print("RWKV_MY_TESTING", os.environ["RWKV_MY_TESTING"])
except:
os.environ["RWKV_MY_TESTING"] = ''
os.environ["RWKV_MY_TESTING"] = ""
def __nop(ob):
return ob
@@ -53,7 +56,26 @@ T_MAX = int(os.environ["RWKV_T_MAX"]) # TAKES LOTS OF VRAM!
from torch.utils.cpp_extension import load
if os.environ["RWKV_FLOAT_MODE"] == "bf16":
wkv_cuda = load(name=f"wkv_{T_MAX}_bf16", sources=["finetune/lora/cuda/wkv_op_bf16.cpp", "finetune/lora/cuda/wkv_cuda_bf16.cu"], verbose=True, extra_cuda_cflags=["-t 4", "-std=c++17", "-res-usage", "--maxrregcount 60", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-DTmax={T_MAX}"])
wkv_cuda = load(
name=f"wkv_{T_MAX}_bf16",
sources=[
"finetune/lora/v4/cuda/wkv_op_bf16.cpp",
"finetune/lora/v4/cuda/wkv_cuda_bf16.cu",
],
verbose=True,
extra_cuda_cflags=[
"-t 4",
"-std=c++17",
"-res-usage",
"--maxrregcount 60",
"--use_fast_math",
"-O3",
"-Xptxas -O3",
"--extra-device-vectorization",
f"-DTmax={T_MAX}",
],
)
class WKV(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, w, u, k, v):
@@ -66,10 +88,16 @@ if os.environ["RWKV_FLOAT_MODE"] == "bf16":
u = u.contiguous()
k = k.contiguous()
v = v.contiguous()
y = torch.empty((B, T, C), device=w.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
y = torch.empty(
(B, T, C),
device=w.device,
memory_format=torch.contiguous_format,
dtype=torch.bfloat16,
)
wkv_cuda.forward(B, T, C, w, u, k, v, y)
ctx.save_for_backward(w, u, k, v, y)
return y
@staticmethod
def backward(ctx, gy):
B = ctx.B
@@ -78,16 +106,54 @@ if os.environ["RWKV_FLOAT_MODE"] == "bf16":
assert T <= T_MAX
assert B * C % min(C, 32) == 0
w, u, k, v, y = ctx.saved_tensors
gw = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gu = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gk = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gv = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gw = torch.empty(
(B, C),
device=gy.device,
memory_format=torch.contiguous_format,
dtype=torch.bfloat16,
)
gu = torch.empty(
(B, C),
device=gy.device,
memory_format=torch.contiguous_format,
dtype=torch.bfloat16,
)
gk = torch.empty(
(B, T, C),
device=gy.device,
memory_format=torch.contiguous_format,
dtype=torch.bfloat16,
)
gv = torch.empty(
(B, T, C),
device=gy.device,
memory_format=torch.contiguous_format,
dtype=torch.bfloat16,
)
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.contiguous(), gw, gu, gk, gv)
gw = torch.sum(gw, dim=0)
gu = torch.sum(gu, dim=0)
return (None, None, None, gw, gu, gk, gv)
else:
wkv_cuda = load(name=f"wkv_{T_MAX}", sources=["finetune/lora/cuda/wkv_op.cpp", "finetune/lora/cuda/wkv_cuda.cu"], verbose=True, extra_cuda_cflags=["-res-usage", "--maxrregcount 60", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-DTmax={T_MAX}"])
wkv_cuda = load(
name=f"wkv_{T_MAX}",
sources=[
"finetune/lora/v4/cuda/wkv_op.cpp",
"finetune/lora/v4/cuda/wkv_cuda.cu",
],
verbose=True,
extra_cuda_cflags=[
"-res-usage",
"--maxrregcount 60",
"--use_fast_math",
"-O3",
"-Xptxas -O3",
"--extra-device-vectorization",
f"-DTmax={T_MAX}",
],
)
class WKV(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, w, u, k, v):
@@ -106,7 +172,9 @@ else:
u = u.float().contiguous()
k = k.float().contiguous()
v = v.float().contiguous()
y = torch.empty((B, T, C), device=w.device, memory_format=torch.contiguous_format)
y = torch.empty(
(B, T, C), device=w.device, memory_format=torch.contiguous_format
)
wkv_cuda.forward(B, T, C, w, u, k, v, y)
ctx.save_for_backward(w, u, k, v, y)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
@@ -115,6 +183,7 @@ else:
return y.half()
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
return y.bfloat16()
@staticmethod
def backward(ctx, gy):
B = ctx.B
@@ -123,14 +192,26 @@ else:
assert T <= T_MAX
assert B * C % min(C, 32) == 0
w, u, k, v, y = ctx.saved_tensors
gw = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format)
gu = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format)
gk = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format)
gv = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format)
gw = torch.empty(
(B, C), device=gy.device, memory_format=torch.contiguous_format
)
gu = torch.empty(
(B, C), device=gy.device, memory_format=torch.contiguous_format
)
gk = torch.empty(
(B, T, C), device=gy.device, memory_format=torch.contiguous_format
)
gv = torch.empty(
(B, T, C), device=gy.device, memory_format=torch.contiguous_format
)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.contiguous(), gw, gu, gk, gv)
wkv_cuda.backward(
B, T, C, w, u, k, v, y, gy.contiguous(), gw, gu, gk, gv
)
else:
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.float().contiguous(), gw, gu, gk, gv)
wkv_cuda.backward(
B, T, C, w, u, k, v, y, gy.float().contiguous(), gw, gu, gk, gv
)
gw = torch.sum(gw, dim=0)
gu = torch.sum(gu, dim=0)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
@@ -138,7 +219,15 @@ else:
elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
return (None, None, None, gw.half(), gu.half(), gk.half(), gv.half())
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
return (None, None, None, gw.bfloat16(), gu.bfloat16(), gk.bfloat16(), gv.bfloat16())
return (
None,
None,
None,
gw.bfloat16(),
gu.bfloat16(),
gk.bfloat16(),
gv.bfloat16(),
)
def RUN_CUDA(B, T, C, w, u, k, v):
@@ -151,15 +240,17 @@ def RUN_CUDA(B, T, C, w, u, k, v):
class LoraLinear(nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool):
super().__init__()
self.weight = nn.Parameter(torch.empty((out_features, in_features)))
assert bias == False, "Biased LoraLinear not supported"
r, alpha, dropout = LORA_CONFIG["r"], LORA_CONFIG[
"alpha"], LORA_CONFIG["dropout"]
r, alpha, dropout = (
LORA_CONFIG["r"],
LORA_CONFIG["alpha"],
LORA_CONFIG["dropout"],
)
self.lora_A = nn.Parameter(torch.empty(r, in_features))
self.lora_B = nn.Parameter(torch.empty(out_features, r))
self.lora_dropout = nn.Dropout(dropout)
@@ -170,9 +261,9 @@ class LoraLinear(nn.Module):
nn.init.zeros_(self.lora_B)
def forward(self, x):
return (
F.linear(x, self.weight) + self.scaling *
F.linear(F.linear(self.lora_dropout(x), self.lora_A), self.lora_B))
return F.linear(x, self.weight) + self.scaling * F.linear(
F.linear(self.lora_dropout(x), self.lora_A), self.lora_B
)
@functools.wraps(LoraLinear)
@@ -214,17 +305,23 @@ class RWKV_TimeMix(MyModule):
# fancy time_decay
decay_speed = torch.ones(args.dim_att)
for h in range(args.dim_att):
decay_speed[h] = -5 + 8 * (h / (args.dim_att - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
decay_speed[h] = -5 + 8 * (h / (args.dim_att - 1)) ** (
0.7 + 1.3 * ratio_0_to_1
)
self.time_decay = nn.Parameter(decay_speed)
# print(layer_id, self.time_decay.flatten()[:3].cpu().numpy(), '...', self.time_decay.flatten()[-3:].cpu().numpy())
# fancy time_first
zigzag = torch.tensor([(i + 1) % 3 - 1 for i in range(args.dim_att)]) * 0.5
self.time_first = nn.Parameter(torch.ones(args.dim_att) * math.log(0.3) + zigzag)
self.time_first = nn.Parameter(
torch.ones(args.dim_att) * math.log(0.3) + zigzag
)
# fancy time_mix
self.time_mix_k = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_v = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
self.time_mix_v = nn.Parameter(
torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1
)
self.time_mix_r = nn.Parameter(torch.pow(ddd, 0.5 * ratio_1_to_almost0))
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
@@ -235,8 +332,10 @@ class RWKV_TimeMix(MyModule):
self.output = nn.Linear(args.dim_att, args.n_embd, bias=False)
if 'a' in os.environ["RWKV_MY_TESTING"]:
self.register_buffer("att_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
if "a" in os.environ["RWKV_MY_TESTING"]:
self.register_buffer(
"att_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len))
)
d_qkv = args.n_embd // 16
self.qq = nn.Linear(args.n_embd, d_qkv, bias=False)
self.kk = nn.Linear(args.n_embd, d_qkv, bias=False)
@@ -245,12 +344,17 @@ class RWKV_TimeMix(MyModule):
with torch.no_grad():
self.time_mix_qq = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_kk = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_vv = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
self.time_mix_vv = nn.Parameter(
torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1
)
if "a" not in os.environ["RWKV_MY_TESTING"]:
if 'a' not in os.environ["RWKV_MY_TESTING"]:
@MyFunction
def jit_func(self, x):
xx = self.time_shift(x) # Mix x with the previous timestep to produce xk, xv, xr
xx = self.time_shift(
x
) # Mix x with the previous timestep to produce xk, xv, xr
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
@@ -263,21 +367,26 @@ class RWKV_TimeMix(MyModule):
def forward(self, x):
B, T, C = x.size() # x = (Batch,Time,Channel)
sr, k, v = self.jit_func(x)
rwkv = sr * RUN_CUDA(B, T, self.args.dim_att, self.time_decay, self.time_first, k, v)
rwkv = sr * RUN_CUDA(
B, T, self.args.dim_att, self.time_decay, self.time_first, k, v
)
return self.output(rwkv)
if 'a' in os.environ["RWKV_MY_TESTING"]:
if "a" in os.environ["RWKV_MY_TESTING"]:
@MyFunction
def QKV(self, q, k, v):
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.att_mask == 0, float('-inf'))
att = F.softmax(att, dim = -1)
att = att.masked_fill(self.att_mask == 0, float("-inf"))
att = F.softmax(att, dim=-1)
x = att @ v
return x
@MyFunction
def jit_funcQKV(self, x):
xx = self.time_shift(x) # Mix x with the previous timestep to produce xk, xv, xr
xx = self.time_shift(
x
) # Mix x with the previous timestep to produce xk, xv, xr
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
@@ -296,12 +405,16 @@ class RWKV_TimeMix(MyModule):
def forward(self, x):
B, T, C = x.size() # x = (Batch,Time,Channel)
sr, k, v, qq, kk, vv = self.jit_funcQKV(x)
rwkv = sr * RUN_CUDA(B, T, self.args.dim_att, self.time_decay, self.time_first, k, v)
rwkv = sr * RUN_CUDA(
B, T, self.args.dim_att, self.time_decay, self.time_first, k, v
)
rwkv = self.output(rwkv) + self.oo(self.QKV(qq, kk, vv))
return rwkv
########################################################################################################
class RWKV_ChannelMix(MyModule):
def __init__(self, args, layer_id):
super().__init__()
@@ -331,6 +444,7 @@ class RWKV_ChannelMix(MyModule):
kv = self.value(k)
return torch.sigmoid(self.receptance(xr)) * kv
class MishGLU(MyModule):
def __init__(self, args, layer_id):
super().__init__()
@@ -360,6 +474,7 @@ class MishGLU(MyModule):
b = self.bb(xb)
return self.value(a * F.mish(b))
########################################################################################################
# The RWKV Model with our blocks
########################################################################################################
@@ -377,15 +492,19 @@ class Block(nn.Module):
if self.layer_id == 0:
self.ln0 = nn.LayerNorm(args.n_embd)
if args.my_pos_emb > 0:
self.pos_emb_x = nn.Parameter(torch.zeros((1,args.my_pos_emb,args.n_embd)))
self.pos_emb_y = nn.Parameter(torch.zeros((args.my_pos_emb,1,args.n_embd)))
self.pos_emb_x = nn.Parameter(
torch.zeros((1, args.my_pos_emb, args.n_embd))
)
self.pos_emb_y = nn.Parameter(
torch.zeros((args.my_pos_emb, 1, args.n_embd))
)
if self.layer_id == 0 and self.args.pre_ffn > 0:
self.ffnPre = RWKV_ChannelMix(args, 0)
else:
self.att = RWKV_TimeMix(args, layer_id)
if 'g' in os.environ["RWKV_MY_TESTING"]:
if "g" in os.environ["RWKV_MY_TESTING"]:
self.ffn = MishGLU(args, layer_id)
else:
self.ffn = RWKV_ChannelMix(args, layer_id)
@@ -395,7 +514,9 @@ class Block(nn.Module):
self.tiny_q = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
self.tiny_k = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
self.tiny_v = nn.Linear(args.n_embd, args.n_embd, bias=False)
self.register_buffer("tiny_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
self.register_buffer(
"tiny_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len))
)
def forward(self, x, x_emb=None):
args = self.args
@@ -403,7 +524,7 @@ class Block(nn.Module):
if self.layer_id == 0:
x = self.ln0(x)
if args.my_pos_emb > 0:
pos_emb = (self.pos_emb_x + self.pos_emb_y).reshape(T+1, -1)[:-1,:]
pos_emb = (self.pos_emb_x + self.pos_emb_y).reshape(T + 1, -1)[:-1, :]
x = x + pos_emb
if self.layer_id == 0 and args.pre_ffn > 0:
@@ -443,13 +564,13 @@ class RWKV(pl.LightningModule):
def __init__(self, args):
super().__init__()
self.args = args
if not hasattr(args, 'dim_att'):
if not hasattr(args, "dim_att"):
args.dim_att = args.n_embd
if not hasattr(args, 'dim_ffn'):
if not hasattr(args, "dim_ffn"):
args.dim_ffn = args.n_embd * 4
if not hasattr(args, 'tiny_att_layer'):
if not hasattr(args, "tiny_att_layer"):
args.tiny_att_layer = -1
if not hasattr(args, 'tiny_att_dim'):
if not hasattr(args, "tiny_att_dim"):
args.tiny_att_dim = -1
self.emb = nn.Embedding(args.vocab_size, args.n_embd)
@@ -462,7 +583,9 @@ class RWKV(pl.LightningModule):
if args.head_qk > 0:
self.head_q = nn.Linear(args.n_embd, args.head_qk, bias=False)
self.head_k = nn.Linear(args.n_embd, args.head_qk, bias=False)
self.register_buffer("copy_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
self.register_buffer(
"copy_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len))
)
def configure_optimizers(self):
args = self.args
@@ -494,19 +617,46 @@ class RWKV(pl.LightningModule):
param_dict = {n: p for n, p in self.named_parameters()}
if args.my_pile_stage == 2:
optim_groups = [
{"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
{"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 2e-3 / args.lr_init},
{"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 3e-3 / args.lr_init},
{
"params": [param_dict[n] for n in lr_1x],
"weight_decay": 0.0,
"my_lr_scale": 1.0,
},
{
"params": [param_dict[n] for n in lr_2x],
"weight_decay": 0.0,
"my_lr_scale": 5.0,
}, # test: 2e-3 / args.lr_init},
{
"params": [param_dict[n] for n in lr_3x],
"weight_decay": 0.0,
"my_lr_scale": 5.0,
}, # test: 3e-3 / args.lr_init},
]
else:
optim_groups = [
{"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
{"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 2.0},
{"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 3.0},
{
"params": [param_dict[n] for n in lr_1x],
"weight_decay": 0.0,
"my_lr_scale": 1.0,
},
{
"params": [param_dict[n] for n in lr_2x],
"weight_decay": 0.0,
"my_lr_scale": 2.0,
},
{
"params": [param_dict[n] for n in lr_3x],
"weight_decay": 0.0,
"my_lr_scale": 3.0,
},
]
else:
optim_groups = [
{"params": [p for n, p in self.named_parameters()], "weight_decay": 0.0},
{
"params": [p for n, p in self.named_parameters()],
"weight_decay": 0.0,
},
]
for g in optim_groups:
@@ -514,8 +664,26 @@ class RWKV(pl.LightningModule):
optim_groups = [g for g in optim_groups if len(g["params"]) > 0]
if self.deepspeed_offload:
return DeepSpeedCPUAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adamw_mode=False, weight_decay=0, amsgrad=False)
return FusedAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adam_w_mode=False, weight_decay=0, amsgrad=False)
return DeepSpeedCPUAdam(
optim_groups,
lr=self.args.lr_init,
betas=self.args.betas,
eps=self.args.adam_eps,
bias_correction=True,
adamw_mode=False,
weight_decay=0,
amsgrad=False,
)
return FusedAdam(
optim_groups,
lr=self.args.lr_init,
betas=self.args.betas,
eps=self.args.adam_eps,
bias_correction=True,
adam_w_mode=False,
weight_decay=0,
amsgrad=False,
)
# return ZeroOneAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, weight_decay=0, amsgrad=False, cuda_aware=False)
@property
@@ -589,10 +757,14 @@ class RWKV(pl.LightningModule):
logits = self(idx)
if sum_mask == mask.shape[0]:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1)
)
# print('rank', self.global_rank, 'loss', loss.item())
else:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), reduction='none')
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1), reduction="none"
)
# loss_raw = loss
loss = torch.sum(loss * mask) / sum_mask
@@ -632,7 +804,14 @@ class RWKV(pl.LightningModule):
gain = 1.0
scale = 1.0
if "ln_" in n or ".ln" in n or "time_" in n or "_mask" in n or "pos_emb" in n or '.mask.' in n:
if (
"ln_" in n
or ".ln" in n
or "time_" in n
or "_mask" in n
or "pos_emb" in n
or ".mask." in n
):
m[n] = p
else:
if n == "emb.weight":
@@ -640,7 +819,19 @@ class RWKV(pl.LightningModule):
else:
if shape[0] > shape[1]:
gain = math.sqrt(shape[0] / shape[1])
for kk in [".att.key.", ".att.receptance.", ".att.output.", ".att.key.", ".ffn.value.", ".ffn.receptance.", ".ffnPre.value.", ".ffnPre.receptance.", "head_q.", '.oo.', '.rr.']:
for kk in [
".att.key.",
".att.receptance.",
".att.output.",
".att.key.",
".ffn.value.",
".ffn.receptance.",
".ffnPre.value.",
".ffnPre.receptance.",
"head_q.",
".oo.",
".rr.",
]:
if kk in n:
scale = 0
if n == "head.weight":
@@ -650,7 +841,9 @@ class RWKV(pl.LightningModule):
if "head_q." in n:
scale = 0
print(f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {str(scale).ljust(4)} {n}")
print(
f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {str(scale).ljust(4)} {n}"
)
if self.args.accelerator.upper() == "GPU":
m[n] = torch.empty((shape[0], shape[1]), device="cuda")

View File

@@ -5,15 +5,17 @@ import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
from .model import LORA_CONFIG
def my_save(dd, ff):
if '14b-run1' not in ff:
if "14b-run1" not in ff:
torch.save(dd, ff)
else:
fn = ff.split('/')[-1]
fff = '/dev/shm/' + fn
fn = ff.split("/")[-1]
fff = "/dev/shm/" + fn
torch.save(dd, fff)
subprocess.Popen(f" aws s3 mv {fff} s3://rwkv-14b-4k/{fn} --quiet", shell=True)
class train_callback(pl.Callback):
def __init__(self, args):
super().__init__()
@@ -38,7 +40,9 @@ class train_callback(pl.Callback):
if args.lr_final == 0 or args.lr_init == 0: # linear decay
lr = args.lr_init + (args.lr_final - args.lr_init) * progress
else: # exp decay
lr = args.lr_init * math.exp(math.log(args.lr_final / args.lr_init) * pow(progress, 1))
lr = args.lr_init * math.exp(
math.log(args.lr_final / args.lr_init) * pow(progress, 1)
)
if trainer.global_step < w_step:
lr = lr * (0.2 + 0.8 * trainer.global_step / w_step)
@@ -60,7 +64,9 @@ class train_callback(pl.Callback):
trainer.my_loss_sum = 0
trainer.my_loss_count = 0
trainer.my_log = open(args.proj_dir + "/train_log.txt", "a")
trainer.my_log.write(f"NEW RUN {args.my_timestamp}\n{vars(self.args)}\n")
trainer.my_log.write(
f"NEW RUN {args.my_timestamp}\n{vars(self.args)}\n"
)
try:
print(f"\n{trainer.strategy.config}\n")
trainer.my_log.write(f"{trainer.strategy.config}\n")
@@ -70,6 +76,7 @@ class train_callback(pl.Callback):
if len(args.wandb) > 0:
print("Login to wandb...")
import wandb
wandb.init(
project=args.wandb,
name=args.run_name + " " + args.my_timestamp,
@@ -102,20 +109,26 @@ class train_callback(pl.Callback):
# self.log("s", real_step, prog_bar=True, on_step=True)
if len(args.wandb) > 0:
lll = {"loss": trainer.my_loss, "lr": trainer.my_lr, "Gtokens": real_step * token_per_step / 1e9}
lll = {
"loss": trainer.my_loss,
"lr": trainer.my_lr,
"Gtokens": real_step * token_per_step / 1e9,
}
if kt_s > 0:
lll["kt/s"] = kt_s
trainer.my_wandb.log(lll, step=int(real_step))
if args.magic_prime > 0:
expand_factor = 2 if args.my_qa_mask > 0 else 1
if int(real_step) == int(args.magic_prime * expand_factor // args.real_bsz) - 1:
if (
int(real_step)
== int(args.magic_prime * expand_factor // args.real_bsz) - 1
):
to_save_dict = pl_module.state_dict()
my_save(
to_save_dict,
f"{args.proj_dir}/rwkv-final.pth",
)
def on_train_epoch_start(self, trainer, pl_module):
args = self.args
dataset = trainer.train_dataloader.dataset.datasets
@@ -128,24 +141,28 @@ class train_callback(pl.Callback):
def on_train_epoch_end(self, trainer, pl_module):
args = self.args
if trainer.is_global_zero: # logging & save state_dict
if (args.epoch_save > 0 and trainer.current_epoch % args.epoch_save == 0) or trainer.current_epoch == args.epoch_count - 1:
if args.data_type == 'wds_img':
if (
args.epoch_save > 0 and trainer.current_epoch % args.epoch_save == 0
) or trainer.current_epoch == args.epoch_count - 1:
if args.data_type == "wds_img":
raw_dict = pl_module.state_dict()
to_save_dict = {}
for k in raw_dict:
if k.startswith('encoder.') or k.startswith('decoder.'):
if k.startswith("encoder.") or k.startswith("decoder."):
to_save_dict[k] = raw_dict[k]
else:
to_save_dict = pl_module.state_dict()
if args.lora:
enable_time_finetune = 'time' in LORA_CONFIG["parts"]
enable_ln_finetune = 'ln' in LORA_CONFIG["parts"]
enable_time_finetune = "time" in LORA_CONFIG["parts"]
enable_ln_finetune = "ln" in LORA_CONFIG["parts"]
lora_dict = {}
for name, state in to_save_dict.items():
if ('.lora_' in name
or (enable_time_finetune and '.time_' in name)
or (enable_ln_finetune and '.ln' in name)):
if (
".lora_" in name
or (enable_time_finetune and ".time_" in name)
or (enable_ln_finetune and ".ln" in name)
):
lora_dict[name] = state
to_save_dict = lora_dict
@@ -155,8 +172,10 @@ class train_callback(pl.Callback):
f"{args.proj_dir}/rwkv-{args.epoch_begin + trainer.current_epoch}.pth",
)
except Exception as e:
print('Error\n\n', e, '\n\n')
trainer.my_log.write(f"{args.epoch_begin + trainer.current_epoch} {trainer.my_epoch_loss:.6f} {math.exp(trainer.my_epoch_loss):.4f} {trainer.my_lr:.8f} {datetime.datetime.now()} {trainer.current_epoch}\n")
print("Error\n\n", e, "\n\n")
trainer.my_log.write(
f"{args.epoch_begin + trainer.current_epoch} {trainer.my_epoch_loss:.6f} {math.exp(trainer.my_epoch_loss):.4f} {trainer.my_lr:.8f} {datetime.datetime.now()} {trainer.current_epoch}\n"
)
trainer.my_log.flush()
trainer.my_loss_sum = 0
@@ -178,22 +197,22 @@ def generate_init_weight(model, init_weight_name):
mm[k] = src.reshape(mm[k].shape)
except:
tmp = mm[k].squeeze().clone()
print(k, src.shape, '-->', mm[k].shape)
print(k, src.shape, "-->", mm[k].shape)
ss = src.shape[0]
dd = tmp.shape[0]
for i in range(dd):
pos = i / dd * ss
if pos >= ss - 1:
tmp[i] = src[ss-1]
tmp[i] = src[ss - 1]
else:
p0 = int(math.floor(pos))
ii = pos - p0
tmp[i] = src[p0] * (1-ii) + src[p0+1] * (ii)
tmp[i] = src[p0] * (1 - ii) + src[p0 + 1] * (ii)
mm[k] = tmp.reshape(mm[k].shape)
sss = src.squeeze().float().cpu().numpy()
print(sss[:10], '...', sss[-10:])
print(sss[:10], "...", sss[-10:])
mmm = mm[k].squeeze().float().cpu().numpy()
print(mmm[:10], '...', mmm[-10:])
print(mmm[:10], "...", mmm[-10:])
print(f"Save to {init_weight_name}...")
torch.save(mm, init_weight_name)

View File

@@ -6,6 +6,7 @@ from torch.nn import functional as F
time_slot = {}
time_ref = time.time_ns()
def record_time(name):
if name not in time_slot:
time_slot[name] = 1e20
@@ -13,20 +14,23 @@ def record_time(name):
if tt < time_slot[name]:
time_slot[name] = tt
class TOKENIZER():
def __init__(self, WORD_NAME, UNKNOWN_CHAR='\ue083'):
if 'list' in str(type(WORD_NAME)):
class TOKENIZER:
def __init__(self, WORD_NAME, UNKNOWN_CHAR="\ue083"):
if "list" in str(type(WORD_NAME)):
self.charMode = False
if WORD_NAME[0] == WORD_NAME[1]:
from transformers import PreTrainedTokenizerFast
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=WORD_NAME[0])
else:
from transformers import GPT2TokenizerFast
self.tokenizer = GPT2TokenizerFast(WORD_NAME[0], WORD_NAME[1])
self.vocab_size = len(self.tokenizer)
else:
self.charMode = True
with open(WORD_NAME + '.json', "r", encoding="utf-16") as result_file:
with open(WORD_NAME + ".json", "r", encoding="utf-16") as result_file:
self.word_table = json.load(result_file)
self.vocab_size = len(self.word_table)
@@ -37,23 +41,25 @@ class TOKENIZER():
self.UNKNOWN_CHAR = self.stoi[UNKNOWN_CHAR]
def refine_context(self, context):
context = context.strip().split('\n')
context = context.strip().split("\n")
for c in range(len(context)):
context[c] = context[c].strip().strip('\u3000').strip('\r')
context = list(filter(lambda c: c != '', context))
context = '\n' + ('\n'.join(context)).strip()
if context == '':
context = '\n'
context[c] = context[c].strip().strip("\u3000").strip("\r")
context = list(filter(lambda c: c != "", context))
context = "\n" + ("\n".join(context)).strip()
if context == "":
context = "\n"
return context
def sample_logits(self, out, x, ctx_len, temperature=1.0, top_p_usual=None, top_p_newline=None):
def sample_logits(
self, out, x, ctx_len, temperature=1.0, top_p_usual=None, top_p_newline=None
):
# out[self.UNKNOWN_CHAR] = -float('Inf')
lastChar = int(x[-1])
probs = F.softmax(out, dim=-1)
if self.charMode:
if self.itos[lastChar] == '\n':
if self.itos[lastChar] == "\n":
top_p = top_p_newline
else:
top_p = top_p_usual
@@ -81,6 +87,7 @@ class TOKENIZER():
out = torch.multinomial(probs, num_samples=1)[0]
return out
def MaybeIsPrime(number):
if FermatPrimalityTest(number) and MillerRabinPrimalityTest(number):
return True
@@ -121,7 +128,9 @@ def MillerRabinPrimalityTest(number):
if (randomNumberWithPower != 1) and (randomNumberWithPower != number - 1):
iterationNumber = 1
while (iterationNumber <= timesTwoDividNumber - 1) and (randomNumberWithPower != number - 1):
while (iterationNumber <= timesTwoDividNumber - 1) and (
randomNumberWithPower != number - 1
):
randomNumberWithPower = pow(randomNumberWithPower, 2, number)
iterationNumber = iterationNumber + 1
if randomNumberWithPower != (number - 1):

View File

@@ -184,7 +184,7 @@ if __name__ == "__main__":
args.num_sanity_val_steps = 0
args.check_val_every_n_epoch = int(1e20)
args.log_every_n_steps = int(1e20)
args.max_epochs = args.epoch_count # continue forever
args.max_epochs = args.epoch_count # -1 continue forever
args.betas = (args.beta1, args.beta2)
args.real_bsz = int(args.num_nodes) * int(args.devices) * args.micro_bsz
os.environ["RWKV_T_MAX"] = str(args.ctx_len)
@@ -373,7 +373,7 @@ if __name__ == "__main__":
for param in module.parameters():
param.requires_grad = True
elif enable_time_finetune and any(
n.startswith("time") for n, _ in module.named_parameters()
n.startswith("time") for n, _ in module.named_parameters()
):
for pname, param in module.named_parameters():
if pname.startswith("time"):
@@ -381,7 +381,7 @@ if __name__ == "__main__":
param.requires_grad = True
if (
len(args.load_model) == 0 or args.my_pile_stage == 1
len(args.load_model) == 0 or args.my_pile_stage == 1
): # shall we build the initial weights?
init_weight_name = f"{args.proj_dir}/rwkv-init.pth"
generate_init_weight(model, init_weight_name) # save initial weights
@@ -423,8 +423,8 @@ if __name__ == "__main__":
)
if (
args.lr_init > 1e-4
or trainer.world_size * args.micro_bsz * trainer.accumulate_grad_batches < 8
args.lr_init > 1e-4
or trainer.world_size * args.micro_bsz * trainer.accumulate_grad_batches < 8
):
if "I_KNOW_WHAT_IM_DOING" in os.environ:
if trainer.global_rank == 0:
@@ -459,10 +459,10 @@ if __name__ == "__main__":
if "deepspeed" in args.strategy:
trainer.strategy.config["zero_optimization"]["allgather_bucket_size"] = (
args.ds_bucket_mb * 1000 * 1000
args.ds_bucket_mb * 1000 * 1000
)
trainer.strategy.config["zero_optimization"]["reduce_bucket_size"] = (
args.ds_bucket_mb * 1000 * 1000
args.ds_bucket_mb * 1000 * 1000
)
# must set shuffle=False, persistent_workers=False (because worker is in another thread)

202
finetune/lora/v5/cuda/wkv5_cuda.cu vendored Normal file
View File

@@ -0,0 +1,202 @@
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
template <typename F>
__global__ void kernel_forward(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u,
F *__restrict__ const _y)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_w += h*_N_;
_u += h*_N_;
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
float state[_N_] = {0};
__syncthreads();
w[i] = _w[i];
u[i] = float(_u[i]);
__syncthreads();
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
{
__syncthreads();
r[i] = float(_r[t]);
k[i] = float(_k[t]);
__syncthreads();
const float v = float(_v[t]);
float y = 0;
#pragma unroll
for (int j = 0; j < _N_; j+=4)
{
const float4& r_ = (float4&)(r[j]);
const float4& k_ = (float4&)(k[j]);
const float4& w_ = (float4&)(w[j]);
const float4& u_ = (float4&)(u[j]);
float4& s = (float4&)(state[j]);
float4 x;
x.x = k_.x * v;
x.y = k_.y * v;
x.z = k_.z * v;
x.w = k_.w * v;
y += r_.x * (u_.x * x.x + s.x);
y += r_.y * (u_.y * x.y + s.y);
y += r_.z * (u_.z * x.z + s.z);
y += r_.w * (u_.w * x.w + s.w);
s.x = s.x * w_.x + x.x;
s.y = s.y * w_.y + x.y;
s.z = s.z * w_.z + x.z;
s.w = s.w * w_.w + x.w;
}
_y[t] = F(y);
}
}
template <typename F>
__global__ void kernel_backward(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const float *__restrict__ __w, const F *__restrict__ _u, const F *__restrict__ const _gy,
F *__restrict__ const _gr, F *__restrict__ const _gk, F *__restrict__ const _gv, F *__restrict__ const _gw, F *__restrict__ const _gu)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_w += h*_N_;
_u += h*_N_;
__w += h*_N_;
__shared__ float w_[_N_], u_[_N_];
__shared__ float r[_N_], k[_N_], v[_N_], gy[_N_];
__syncthreads();
w_[i] = _w[i];
u_[i] = float(_u[i]);
__syncthreads();
const float w = w_[i];
const float ww = __w[i];
const float u = u_[i];
float state[_N_] = {0}, saaaa[_N_] = {0}, sbbbb[_N_] = {0}, scccc[_N_] = {0}, sdddd[_N_] = {0};
float gw = 0, gu = 0;
const int t000 = b*T*C + h*_N_ + i;
const int t111 = (b+1)*T*C + h*_N_ + i;
const int t222 = t111 - 2*C;
for (int t = t000; t < t111; t += C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float k = float(_k[t]);
float gr = 0, gu_ = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = state[j];
float x = k * v[j];
gr += (u * x + s) * gy[j];
gu_ += x * gy[j];
s = s * w + x;
}
_gr[t] = F(gr);
gu += float(_r[t]) * gu_;
}
_gu[b*C + h*_N_ + i] = F(gu);
for (int t = t000; t < t222; t += C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t + 2*C]);
__syncthreads();
const float k = float(_k[t]);
float gw_ = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = saaaa[j];
float& s2 = sbbbb[j];
float x = k * v[j];
float tmp = w * (x + s);
s = tmp;
s2 = tmp + w * s2;
gw_ += s2 * gy[j];
}
gw += float(_r[t + 2*C]) * gw_;
}
_gw[b*C + h*_N_ + i] = F(ww * gw);
for (int t = t111 - C; t >= t000; t -= C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float rr = float(_r[t]);
float gk = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
float x = rr * gy[j];
gk += (u * x + s) * v[j];
s = x + s * w;
}
_gk[t] = F(gk);
}
for (int t = t111 - C; t >= t000; t -= C)
{
__syncthreads();
r[i] = float(_r[t]);
k[i] = float(_k[t]);
__syncthreads();
const float gyy = float(_gy[t]);
float gv = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = sdddd[j];
float x = gyy * r[j];
gv += (u_[j] * x + s) * k[j];
s = x + s * w_[j];
}
_gv[t] = F(gv);
}
}
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, y);
}
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, float *ww, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_backward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, ww, u, gy, gr, gk, gv, gw, gu);
}

22
finetune/lora/v5/cuda/wkv5_op.cpp vendored Normal file
View File

@@ -0,0 +1,22 @@
#include <torch/extension.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y);
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, float *ww, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu);
void forward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
cuda_forward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), y.data_ptr<bf16>());
}
void backward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &ww, torch::Tensor &u, torch::Tensor &gy, torch::Tensor &gr, torch::Tensor &gk, torch::Tensor &gv, torch::Tensor &gw, torch::Tensor &gu) {
cuda_backward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), ww.data_ptr<float>(), u.data_ptr<bf16>(), gy.data_ptr<bf16>(), gr.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>());
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "wkv5 forward");
m.def("backward", &backward, "wkv5 backward");
}
TORCH_LIBRARY(wkv5, m) {
m.def("forward", forward);
m.def("backward", backward);
}

0
finetune/lora/v5/src/__init__.py vendored Normal file
View File

303
finetune/lora/v5/src/binidx.py vendored Normal file
View File

@@ -0,0 +1,303 @@
from lib2to3.pgen2 import token
import os
import torch
import numpy as np
import shutil
import struct
from functools import lru_cache
from itertools import accumulate
def print_rank_0(*message):
pass
# """If distributed is initialized print only on rank 0."""
# if torch.distributed.is_initialized():
# if torch.distributed.get_rank() == 0:
# print(*message, flush=True)
# else:
# print(*message, flush=True)
def _warmup_mmap_file(path):
pass
# with open(path, "rb") as stream:
# while stream.read(100 * 1024 * 1024):
# pass
dtypes = {
1: np.uint8,
2: np.int8,
3: np.int16,
4: np.int32,
5: np.int64,
6: float,
7: np.double,
8: np.uint16,
}
def code(dtype):
for k in dtypes.keys():
if dtypes[k] == dtype:
return k
raise ValueError(dtype)
def index_file_path(prefix_path):
return prefix_path + ".idx"
def data_file_path(prefix_path):
return prefix_path + ".bin"
class MMapIndexedDataset(torch.utils.data.Dataset):
class Index(object):
_HDR_MAGIC = b"MMIDIDX\x00\x00"
@classmethod
def writer(cls, path, dtype):
class _Writer(object):
def __enter__(self):
self._file = open(path, "wb")
# Write Magic string so we can check the file format then opening it again.
self._file.write(cls._HDR_MAGIC)
# Write version number
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", 1))
# Little endian unsigned 8 Bit integer
self._file.write(struct.pack("<B", code(dtype)))
return self
@staticmethod
def _get_pointers(sizes):
dtype_size = dtype().itemsize
address = 0
pointers = []
for size in sizes:
pointers.append(address)
address += size * dtype_size
return pointers
def write(self, sizes, doc_idx):
pointers = self._get_pointers(sizes)
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", len(sizes)))
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", len(doc_idx)))
sizes = np.array(sizes, dtype=np.int32)
self._file.write(sizes.tobytes(order="C"))
del sizes
pointers = np.array(pointers, dtype=np.int64)
self._file.write(pointers.tobytes(order="C"))
del pointers
doc_idx = np.array(doc_idx, dtype=np.int64)
self._file.write(doc_idx.tobytes(order="C"))
def __exit__(self, exc_type, exc_val, exc_tb):
self._file.close()
return _Writer()
def __init__(self, path, skip_warmup=False):
with open(path, "rb") as stream:
magic_test = stream.read(9)
assert self._HDR_MAGIC == magic_test, (
"Index file doesn't match expected format. "
"Make sure that --dataset-impl is configured properly."
)
# Little endian unsigned 64 Bit integer
version = struct.unpack("<Q", stream.read(8))
assert (1,) == version
# Little endian unsigned 8 Bit integer
(dtype_code,) = struct.unpack("<B", stream.read(1))
self._dtype = dtypes[dtype_code]
self._dtype_size = self._dtype().itemsize
self._len = struct.unpack("<Q", stream.read(8))[0]
self._doc_count = struct.unpack("<Q", stream.read(8))[0]
offset = stream.tell()
if not skip_warmup:
print_rank_0(" warming up index mmap file...")
_warmup_mmap_file(path)
self._bin_buffer_mmap = np.memmap(path, mode="r", order="C")
self._bin_buffer = memoryview(self._bin_buffer_mmap)
print_rank_0(" reading sizes...")
self._sizes = np.frombuffer(
self._bin_buffer, dtype=np.int32, count=self._len, offset=offset
)
print_rank_0(" reading pointers...")
self._pointers = np.frombuffer(
self._bin_buffer,
dtype=np.int64,
count=self._len,
offset=offset + self._sizes.nbytes,
)
print_rank_0(" reading document index...")
self._doc_idx = np.frombuffer(
self._bin_buffer,
dtype=np.int64,
count=self._doc_count,
offset=offset + self._sizes.nbytes + self._pointers.nbytes,
)
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
@property
def dtype(self):
return self._dtype
@property
def sizes(self):
return self._sizes
@property
def doc_idx(self):
return self._doc_idx
@lru_cache(maxsize=8)
def __getitem__(self, i):
return self._pointers[i], self._sizes[i]
def __len__(self):
return self._len
def __init__(self, path, skip_warmup=False):
super().__init__()
self._path = None
self._index = None
self._bin_buffer = None
self._do_init(path, skip_warmup)
def __getstate__(self):
return self._path
def __setstate__(self, state):
self._do_init(state)
def _do_init(self, path, skip_warmup):
self._path = path
self._index = self.Index(index_file_path(self._path), skip_warmup)
if not skip_warmup:
print_rank_0(" warming up data mmap file...")
_warmup_mmap_file(data_file_path(self._path))
print_rank_0(" creating numpy buffer of mmap...")
self._bin_buffer_mmap = np.memmap(
data_file_path(self._path), mode="r", order="C"
)
print_rank_0(" creating memory view of numpy buffer...")
self._bin_buffer = memoryview(self._bin_buffer_mmap)
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
del self._index
def __len__(self):
return len(self._index)
# @lru_cache(maxsize=8)
def __getitem__(self, idx):
if isinstance(idx, int):
ptr, size = self._index[idx]
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
)
return np_array
elif isinstance(idx, slice):
start, stop, step = idx.indices(len(self))
if step != 1:
raise ValueError("Slices into indexed_dataset must be contiguous")
ptr = self._index._pointers[start]
sizes = self._index._sizes[idx]
offsets = list(accumulate(sizes))
total_size = sum(sizes)
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=total_size, offset=ptr
)
sents = np.split(np_array, offsets[:-1])
return sents
def get(self, idx, offset=0, length=None):
"""Retrieves a single item from the dataset with the option to only
return a portion of the item.
get(idx) is the same as [idx] but get() does not support slicing.
"""
ptr, size = self._index[idx]
if length is None:
length = size - offset
ptr += offset * np.dtype(self._index.dtype).itemsize
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=length, offset=ptr
)
return np_array
def pad(self, idx, length=None):
ptr, size = self._index[idx]
try:
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=length, offset=ptr
)
except:
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
)
ptr0, _ = self._index[0]
np_array0 = np.frombuffer(
self._bin_buffer,
dtype=self._index.dtype,
count=length - size,
offset=ptr0,
)
np_array = np.append(np_array, np_array0)
return np_array
def only(self, idx):
ptr, size = self._index[idx]
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
)
return np_array
@property
def sizes(self):
return self._index.sizes
@property
def doc_idx(self):
return self._index.doc_idx
def get_doc_idx(self):
return self._index._doc_idx
def set_doc_idx(self, doc_idx_):
self._index._doc_idx = doc_idx_
@property
def supports_prefetch(self):
return False
@staticmethod
def exists(path):
return os.path.exists(index_file_path(path)) and os.path.exists(
data_file_path(path)
)

241
finetune/lora/v5/src/dataset.py vendored Normal file
View File

@@ -0,0 +1,241 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import json, math, random, os, sys
import numpy as np
import torch
from torch.utils.data import Dataset
from pytorch_lightning.utilities import rank_zero_info
from .binidx import MMapIndexedDataset
from .utils import MaybeIsPrime
class MyDataset(Dataset):
def __init__(self, args):
self.args = args
if args.data_type == "binidx":
self.vocab_size = args.vocab_size
rank_zero_info(
f"Current vocab size = {self.vocab_size} (make sure it's correct)"
)
if args.my_pile_version == 1:
self.data = MMapIndexedDataset(args.data_file)
self.data_size = (
len(self.data._bin_buffer) // self.data._index._dtype_size
)
rank_zero_info(f"Data has {self.data_size} tokens.")
elif args.my_pile_version == 2:
data_list = (
open(args.data_file, "r", encoding="utf-8")
.read()
.strip()
.split("\n")
)
data_list = [i.strip().split(" ") for i in data_list]
self.data = []
self.data_size = int(data_list[-1][-1])
rank_zero_info(f"Data has {self.data_size} chunks.")
for d in data_list:
data = MMapIndexedDataset(d[0])
data_size = len(data._bin_buffer) // data._index._dtype_size
assert (data_size - args.ctx_len) == int(d[1])
self.data += [[int(d[-1]), int(d[1]), data]]
# rank_zero_info(self.data)
if args.my_qa_mask > 0:
# self.data_pile = MMapIndexedDataset('/fsx/pile/pile_20B_tokenizer_text_document')
self.data_pile = MMapIndexedDataset(
"/fsx/pile_deduped/pile_0.87_deduped_text_document"
)
self.data_pile_size = (
len(self.data_pile._bin_buffer) // self.data._index._dtype_size
)
else:
self.data_pile = None
self.data_pile_size = 0
if args.my_pile_stage > 0:
# assert self.data_size == 332115325534 and self.vocab_size == 50277
self.samples_per_epoch = args.epoch_steps * args.real_bsz
assert self.samples_per_epoch == 40320
rank_zero_info(
f"########## Pile 20b-tokenized stage {args.my_pile_stage} ##########"
)
dataset_slot = self.data_size // args.ctx_len
if args.my_pile_stage != 4:
assert MaybeIsPrime(args.magic_prime)
assert args.magic_prime % 3 == 2
assert (
args.magic_prime / dataset_slot > 0.99
and args.magic_prime / dataset_slot <= 1
)
elif args.data_type == "numpy":
self.data = np.load(args.data_file).astype("int")
self.vocab_size = args.vocab_size
rank_zero_info(
f"Current vocab size = {self.vocab_size} (make sure it's correct)"
)
self.data_size = len(self.data)
rank_zero_info(f"Data has {self.data_size} tokens.")
elif args.data_type == "uint16":
self.data = (
np.fromfile(args.data_file, dtype=np.uint16)
.astype("int32")
.reshape(-1, args.my_sample_len)
)
self.vocab_size = args.vocab_size
rank_zero_info(
f"Current vocab size = {self.vocab_size} (make sure it's correct)"
)
self.data_size = self.data.shape[0]
rank_zero_info(f"Data has {self.data_size} samples.")
else:
if args.data_type == "dummy":
rank_zero_info("Building dummy data...")
self.data = ""
for i in range(100000):
aa = (i) % 10000
bb = (i * i) % 10000
cc = aa + bb
self.data += f".{aa}+{bb}={cc}."
else:
self.data = open(args.data_file, "r", encoding=args.data_type).read()
rank_zero_info("Building token list...")
unique = sorted(list(set(self.data)))
self.vocab_size = len(unique)
# rank_zero_info()
# for u in unique:
# print(u, end=' ')
# rank_zero_info('\n\n')
xx = 0
xxObj = {}
for u in unique:
xxObj[xx] = u
xx += 1
with open(
f"{args.proj_dir}/vocab.json", "w", encoding="utf-8"
) as vocab_file:
vocab_file.write(json.dumps(xxObj, ensure_ascii=False))
self.data_size = len(self.data)
rank_zero_info(
f"Data has {self.data_size} tokens, {self.vocab_size} vocab size."
)
self.stoi = {ch: i for i, ch in enumerate(unique)}
self.itos = {i: ch for i, ch in enumerate(unique)}
def __len__(self):
return self.args.epoch_steps * self.args.micro_bsz
def __getitem__(self, idx):
args = self.args
rank = self.global_rank
epoch = self.real_epoch
world_size = self.world_size
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size}")
if args.data_type == "uint16":
i = np.random.randint(0, self.data_size - 1)
dix = self.data[i]
x = torch.tensor(dix[:-1], dtype=torch.long)
y = torch.tensor(dix[1:], dtype=torch.long)
else:
ctx_len = args.ctx_len
req_len = ctx_len + 1
magic_prime = args.magic_prime
data = self.data
if args.my_pile_stage > 0:
ii = 1 + epoch * self.samples_per_epoch + (idx * world_size) + rank
if args.my_qa_mask > 0:
ii_orig = ii
if ii % 2 == 0:
ii = -1
data = self.data_pile
else:
ii = ii // 2
if data == self.data_pile:
i = np.random.randint(0, self.data_pile_size - req_len)
else:
if args.my_pile_stage == 4 or ii < args.my_random_steps:
# cheat: pick a random spot in dataset
if args.my_pile_version == 1:
i = np.random.randint(0, self.data_size - req_len)
else:
i = np.random.randint(0, self.data_size)
else:
ii = ii - args.my_random_steps
factor = (math.sqrt(5) - 1) / 2
factor = int(magic_prime * factor)
i = ((factor * ii * ii * ii) % magic_prime) * ctx_len
i = i + args.my_pile_shift
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size} ii {ii} pos {round(i / self.data_size, 3)}")
else:
# cheat: pick a random spot in dataset
i = np.random.randint(0, self.data_size - req_len)
if args.data_type == "binidx":
if args.my_pile_version == 1:
dix = data.get(idx=0, offset=i, length=req_len).astype(int)
else:
# self.data : cutoff, chunk_count, data
for j in range(len(data)):
if i < data[j][0]:
ii = i
i = (i - (data[j - 1][0] if j > 0 else 0)) % data[j][1]
dix = (
data[j][2]
.get(idx=0, offset=i, length=req_len)
.astype(int)
)
# print(ii, j, i)
break
elif args.data_type == "numpy":
dix = data[i : i + req_len]
else:
dix = [self.stoi[s] for s in data[i : i + req_len]]
if args.my_qa_mask == 1:
if data == self.data_pile:
z = [1] * ctx_len
else:
z = [0] * ctx_len
z_sum = 0
isGood = False
for i in range(3, ctx_len):
if (
dix[i] == 27
and dix[i - 1] == 34
and dix[i - 2] == 187
and dix[i - 3] == 187
):
isGood = True
if dix[i] == 0:
isGood = False
if isGood:
z[i] = 1
z_sum += 1
if z_sum == 0:
z = [1] * ctx_len
i = np.random.randint(0, self.data_pile_size - req_len)
dix = self.data_pile.get(
idx=0, offset=i, length=req_len
).astype(int)
z = torch.tensor(z, dtype=torch.bfloat16)
x = torch.tensor(dix[:-1], dtype=torch.long)
y = torch.tensor(dix[1:], dtype=torch.long)
# if ii_orig < 50:
# # if rank == 1:
# print('rank', rank, 'i', ii_orig, ii, i, 'x', x[:5], '...', x[-5:])
# else:
# exit(0)
if args.my_qa_mask == 1:
return x, y, z
return x, y

819
finetune/lora/v5/src/model.py vendored Normal file
View File

@@ -0,0 +1,819 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import functools
import os, math, gc, importlib
import torch
# torch._C._jit_set_profiling_executor(True)
# torch._C._jit_set_profiling_mode(True)
import torch.nn as nn
from torch.utils.checkpoint import checkpoint as torch_checkpoint
from torch.nn import functional as F
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
from pytorch_lightning.strategies import DeepSpeedStrategy
if importlib.util.find_spec("deepspeed"):
import deepspeed
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam
# from deepspeed.runtime.fp16.onebit.zoadam import ZeroOneAdam
# lora-config
LORA_CONFIG = {
"r": 0,
"alpha": 0,
"dropout": 0,
"parts": {"att", "ln", "time"},
}
try:
print("RWKV_MY_TESTING", os.environ["RWKV_MY_TESTING"])
except:
os.environ["RWKV_MY_TESTING"] = ""
def __nop(ob):
return ob
MyModule = nn.Module
MyFunction = __nop
if os.environ["RWKV_JIT_ON"] == "1":
MyModule = torch.jit.ScriptModule
MyFunction = torch.jit.script_method
########################################################################################################
# CUDA Kernel
########################################################################################################
from torch.utils.cpp_extension import load
HEAD_SIZE = int(os.environ["RWKV_HEAD_SIZE_A"])
wkv5_cuda = load(
name="wkv5",
sources=[
"finetune/lora/v5/cuda/wkv5_op.cpp",
f"finetune/lora/v5/cuda/wkv5_cuda.cu",
],
verbose=True,
extra_cuda_cflags=[
"-res-usage",
"--use_fast_math",
"-O3",
"-Xptxas -O3",
"--extra-device-vectorization",
f"-D_N_={HEAD_SIZE}",
],
)
class WKV_5(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, H, r, k, v, w, u):
with torch.no_grad():
assert r.dtype == torch.bfloat16
assert k.dtype == torch.bfloat16
assert v.dtype == torch.bfloat16
assert w.dtype == torch.bfloat16
assert u.dtype == torch.bfloat16
assert HEAD_SIZE == C // H
ctx.B = B
ctx.T = T
ctx.C = C
ctx.H = H
assert r.is_contiguous()
assert k.is_contiguous()
assert v.is_contiguous()
assert w.is_contiguous()
assert u.is_contiguous()
ew = (-torch.exp(w.float())).contiguous()
eew = (torch.exp(ew)).contiguous()
ctx.save_for_backward(r, k, v, eew, ew, u)
y = torch.empty(
(B, T, C),
device=r.device,
dtype=torch.bfloat16,
memory_format=torch.contiguous_format,
) # .uniform_(-1, 1)
wkv5_cuda.forward(B, T, C, H, r, k, v, eew, u, y)
return y
@staticmethod
def backward(ctx, gy):
with torch.no_grad():
assert gy.dtype == torch.bfloat16
B = ctx.B
T = ctx.T
C = ctx.C
H = ctx.H
assert gy.is_contiguous()
r, k, v, eew, ew, u = ctx.saved_tensors
gr = torch.empty(
(B, T, C),
device=gy.device,
requires_grad=False,
dtype=torch.bfloat16,
memory_format=torch.contiguous_format,
) # .uniform_(-1, 1)
gk = torch.empty(
(B, T, C),
device=gy.device,
requires_grad=False,
dtype=torch.bfloat16,
memory_format=torch.contiguous_format,
) # .uniform_(-1, 1)
gv = torch.empty(
(B, T, C),
device=gy.device,
requires_grad=False,
dtype=torch.bfloat16,
memory_format=torch.contiguous_format,
) # .uniform_(-1, 1)
gw = torch.empty(
(B, C),
device=gy.device,
requires_grad=False,
dtype=torch.bfloat16,
memory_format=torch.contiguous_format,
) # .uniform_(-1, 1)
gu = torch.empty(
(B, C),
device=gy.device,
requires_grad=False,
dtype=torch.bfloat16,
memory_format=torch.contiguous_format,
) # .uniform_(-1, 1)
wkv5_cuda.backward(B, T, C, H, r, k, v, eew, ew, u, gy, gr, gk, gv, gw, gu)
gw = torch.sum(gw, 0).view(H, C // H)
gu = torch.sum(gu, 0).view(H, C // H)
return (None, None, None, None, gr, gk, gv, gw, gu)
def RUN_CUDA_RWKV5(B, T, C, H, r, k, v, w, u):
return WKV_5.apply(B, T, C, H, r, k, v, w, u)
#################################################################
class LoraLinear(nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool):
super().__init__()
self.weight = nn.Parameter(torch.empty((out_features, in_features)))
assert bias == False, "Biased LoraLinear not supported"
r, alpha, dropout = (
LORA_CONFIG["r"],
LORA_CONFIG["alpha"],
LORA_CONFIG["dropout"],
)
self.lora_A = nn.Parameter(torch.empty(r, in_features))
self.lora_B = nn.Parameter(torch.empty(out_features, r))
self.lora_dropout = nn.Dropout(dropout)
self.scaling = alpha / r
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
nn.init.zeros_(self.lora_B)
def forward(self, x):
return F.linear(x, self.weight) + self.scaling * F.linear(
F.linear(self.lora_dropout(x), self.lora_A), self.lora_B
)
@functools.wraps(LoraLinear)
def make_linear_att(*args, **kwargs):
if "att" in LORA_CONFIG["parts"] and LORA_CONFIG["r"] > 0:
return LoraLinear(*args, **kwargs)
else:
return nn.Linear(*args, **kwargs)
@functools.wraps(LoraLinear)
def make_linear_ffn(*args, **kwargs):
if "ffn" in LORA_CONFIG["parts"] and LORA_CONFIG["r"] > 0:
return LoraLinear(*args, **kwargs)
else:
return nn.Linear(*args, **kwargs)
########################################################################################################
class RWKV_TimeMix_RWKV5(MyModule):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.head_size = args.head_size_a
assert HEAD_SIZE == self.head_size # change HEAD_SIZE to match args.head_size_a
self.n_head = args.dim_att // self.head_size
assert args.dim_att % self.n_head == 0
self.head_size_divisor = args.head_size_divisor
with torch.no_grad():
ratio_0_to_1 = layer_id / (args.n_layer - 1) # 0 to 1
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer) # 1 to ~0
ddd = torch.ones(1, 1, args.n_embd)
for i in range(args.n_embd):
ddd[0, 0, i] = i / args.n_embd
# fancy time_mix
self.time_mix_k = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_v = nn.Parameter(
torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1
)
self.time_mix_r = nn.Parameter(torch.pow(ddd, 0.5 * ratio_1_to_almost0))
self.time_mix_g = nn.Parameter(torch.pow(ddd, 0.5 * ratio_1_to_almost0))
# fancy time_decay
decay_speed = torch.ones(args.dim_att)
for n in range(args.dim_att):
decay_speed[n] = -6 + 5 * (n / (args.dim_att - 1)) ** (
0.7 + 1.3 * ratio_0_to_1
)
self.time_decay = nn.Parameter(
decay_speed.reshape(self.n_head, self.head_size)
)
# print(layer_id, self.time_decay.flatten()[:3].cpu().numpy(), '...', self.time_decay.flatten()[-3:].cpu().numpy())
tmp = torch.zeros(args.dim_att)
for n in range(args.dim_att):
zigzag = ((n + 1) % 3 - 1) * 0.1
tmp[n] = ratio_0_to_1 * (1 - (n / (args.dim_att - 1))) + zigzag
self.time_faaaa = nn.Parameter(tmp.reshape(self.n_head, self.head_size))
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.receptance = make_linear_att(args.n_embd, args.dim_att, bias=False)
self.key = make_linear_att(args.n_embd, args.dim_att, bias=False)
self.value = make_linear_att(args.n_embd, args.dim_att, bias=False)
self.output = nn.Linear(args.dim_att, args.n_embd, bias=False)
self.gate = make_linear_att(args.n_embd, args.dim_att, bias=False)
self.ln_x = nn.GroupNorm(self.n_head, args.dim_att)
@MyFunction
def jit_func(self, x):
B, T, C = x.size()
xx = self.time_shift(
x
) # Mix x with the previous timestep to produce xk, xv, xr
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
xg = x * self.time_mix_g + xx * (1 - self.time_mix_g)
r = self.receptance(xr)
k = self.key(xk)
v = self.value(xv)
g = F.silu(self.gate(xg))
return r, k, v, g
@MyFunction
def jit_func_2(self, x, g):
B, T, C = x.size()
x = x.view(B * T, C)
x = self.ln_x(x / self.head_size_divisor).view(B, T, C)
x = self.output(x * g)
return x
def forward(self, x):
B, T, C = x.size()
H = self.n_head
r, k, v, g = self.jit_func(x)
x = RUN_CUDA_RWKV5(B, T, C, H, r, k, v, w=self.time_decay, u=self.time_faaaa)
return self.jit_func_2(x, g)
########################################################################################################
class RWKV_ChannelMix(MyModule):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
with torch.no_grad(): # fancy init of time_mix
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer) # 1 to ~0
ddd = torch.ones(1, 1, args.n_embd)
for i in range(args.n_embd):
ddd[0, 0, i] = i / args.n_embd
self.time_mix_k = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_r = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.key = make_linear_ffn(args.n_embd, args.dim_ffn, bias=False)
self.receptance = make_linear_ffn(args.n_embd, args.n_embd, bias=False)
self.value = make_linear_ffn(args.dim_ffn, args.n_embd, bias=False)
@MyFunction
def forward(self, x):
xx = self.time_shift(x)
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
k = self.key(xk)
k = torch.relu(k) ** 2
kv = self.value(k)
return torch.sigmoid(self.receptance(xr)) * kv
class MishGLU(MyModule):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
with torch.no_grad():
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer)
x = torch.ones(1, 1, args.n_embd)
for i in range(args.n_embd):
x[0, 0, i] = i / args.n_embd
self.time_mix_k = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
self.time_mix_r = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
self.aa = nn.Linear(args.n_embd, args.dim_ffn, bias=False)
self.bb = nn.Linear(args.n_embd, args.dim_ffn, bias=False)
self.value = nn.Linear(args.dim_ffn, args.n_embd, bias=False)
@MyFunction
def forward(self, x):
xx = self.time_shift(x)
xa = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xb = x * self.time_mix_r + xx * (1 - self.time_mix_r)
a = self.aa(xa)
b = self.bb(xb)
return self.value(a * F.mish(b))
########################################################################################################
# The RWKV Model with our blocks
########################################################################################################
class Block(nn.Module):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.ln1 = nn.LayerNorm(args.n_embd)
self.ln2 = nn.LayerNorm(args.n_embd)
if self.layer_id == 0:
self.ln0 = nn.LayerNorm(args.n_embd)
if args.my_pos_emb > 0:
self.pos_emb_x = nn.Parameter(
torch.zeros((1, args.my_pos_emb, args.n_embd))
)
self.pos_emb_y = nn.Parameter(
torch.zeros((args.my_pos_emb, 1, args.n_embd))
)
if self.layer_id == 0 and self.args.pre_ffn > 0:
self.ffnPre = RWKV_ChannelMix(args, 0)
else:
self.att = RWKV_TimeMix_RWKV5(args, layer_id)
if "g" in os.environ["RWKV_MY_TESTING"]:
self.ffn = MishGLU(args, layer_id)
else:
self.ffn = RWKV_ChannelMix(args, layer_id)
if args.tiny_att_dim > 0 and self.layer_id == args.tiny_att_layer:
self.tiny_ln = nn.LayerNorm(args.n_embd)
self.tiny_q = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
self.tiny_k = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
self.tiny_v = nn.Linear(args.n_embd, args.n_embd, bias=False)
self.register_buffer(
"tiny_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len))
)
if args.dropout > 0:
self.drop0 = nn.Dropout(p=args.dropout)
self.drop1 = nn.Dropout(p=args.dropout)
def forward(self, x, x_emb=None):
args = self.args
B, T, C = x.size()
if self.layer_id == 0:
x = self.ln0(x)
if args.my_pos_emb > 0:
pos_emb = (self.pos_emb_x + self.pos_emb_y).reshape(T + 1, -1)[:-1, :]
x = x + pos_emb
if self.args.dropout == 0:
if self.layer_id == 0 and args.pre_ffn > 0:
x = x + self.ffnPre(self.ln1(x))
else:
x = x + self.att(self.ln1(x))
x = x + self.ffn(self.ln2(x))
else:
if self.layer_id == 0 and args.pre_ffn > 0:
x = self.drop0(x + self.ffnPre(self.ln1(x)))
else:
x = self.drop0(x + self.att(self.ln1(x)))
x = self.drop1(x + self.ffn(self.ln2(x)))
if args.tiny_att_dim > 0 and self.layer_id == args.tiny_att_layer:
xx = self.tiny_ln(x)
q = self.tiny_q(xx)[:, :T, :]
k = self.tiny_k(xx)[:, :T, :]
c = (q @ k.transpose(-2, -1)) * (args.tiny_att_dim ** (-0.5))
c = c.masked_fill(self.tiny_mask[:T, :T] == 0, 0)
x = x + c @ self.tiny_v(x_emb)
return x
class L2Wrap(torch.autograd.Function):
@staticmethod
def forward(ctx, loss, y):
ctx.save_for_backward(y)
return loss
@staticmethod
def backward(ctx, grad_output):
y = ctx.saved_tensors[0]
# to encourage the logits to be close to 0
factor = 1e-4 / (y.shape[0] * y.shape[1])
maxx, ids = torch.max(y, -1, keepdim=True)
gy = torch.zeros_like(y)
gy.scatter_(-1, ids, maxx * factor)
return (grad_output, gy)
class RWKV(pl.LightningModule):
def __init__(self, args):
super().__init__()
self.args = args
if not hasattr(args, "dim_att"):
args.dim_att = args.n_embd
if not hasattr(args, "dim_ffn"):
args.dim_ffn = args.n_embd * 4
if not hasattr(args, "tiny_att_layer"):
args.tiny_att_layer = -1
if not hasattr(args, "tiny_att_dim"):
args.tiny_att_dim = -1
assert args.n_embd % 32 == 0
assert args.dim_att % 32 == 0
assert args.dim_ffn % 32 == 0
self.emb = nn.Embedding(args.vocab_size, args.n_embd)
self.blocks = nn.ModuleList([Block(args, i) for i in range(args.n_layer)])
self.ln_out = nn.LayerNorm(args.n_embd)
self.head = nn.Linear(args.n_embd, args.vocab_size, bias=False)
if args.head_qk > 0:
self.head_q = nn.Linear(args.n_embd, args.head_qk, bias=False)
self.head_k = nn.Linear(args.n_embd, args.head_qk, bias=False)
self.register_buffer(
"copy_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len))
)
if args.dropout > 0:
self.drop0 = nn.Dropout(p=args.dropout)
def configure_optimizers(self):
args = self.args
lr_decay = set()
lr_1x = set()
lr_2x = set()
lr_3x = set()
for n, p in self.named_parameters():
if ("time_mix" in n) and (args.layerwise_lr > 0):
if args.my_pile_stage == 2:
lr_2x.add(n)
else:
lr_1x.add(n)
elif ("time_decay" in n) and (args.layerwise_lr > 0):
if args.my_pile_stage == 2:
lr_3x.add(n)
else:
lr_2x.add(n)
elif ("time_faaaa" in n) and (args.layerwise_lr > 0):
if args.my_pile_stage == 2:
lr_2x.add(n)
else:
lr_1x.add(n)
elif ("time_first" in n) and (args.layerwise_lr > 0):
lr_3x.add(n)
elif (len(p.squeeze().shape) >= 2) and (args.weight_decay > 0):
lr_decay.add(n)
else:
lr_1x.add(n)
lr_decay = sorted(list(lr_decay))
lr_1x = sorted(list(lr_1x))
lr_2x = sorted(list(lr_2x))
lr_3x = sorted(list(lr_3x))
# print('decay', lr_decay)
# print('1x', lr_1x)
# print('2x', lr_2x)
# print('3x', lr_3x)
param_dict = {n: p for n, p in self.named_parameters()}
if args.layerwise_lr > 0:
if args.my_pile_stage == 2:
optim_groups = [
{
"params": [param_dict[n] for n in lr_1x],
"weight_decay": 0.0,
"my_lr_scale": 1.0,
},
{
"params": [param_dict[n] for n in lr_2x],
"weight_decay": 0.0,
"my_lr_scale": 5.0,
}, # test: 2e-3 / args.lr_init},
{
"params": [param_dict[n] for n in lr_3x],
"weight_decay": 0.0,
"my_lr_scale": 5.0,
}, # test: 3e-3 / args.lr_init},
]
else:
optim_groups = [
{
"params": [param_dict[n] for n in lr_1x],
"weight_decay": 0.0,
"my_lr_scale": 1.0,
},
{
"params": [param_dict[n] for n in lr_2x],
"weight_decay": 0.0,
"my_lr_scale": 2.0,
},
{
"params": [param_dict[n] for n in lr_3x],
"weight_decay": 0.0,
"my_lr_scale": 3.0,
},
]
else:
optim_groups = [
{
"params": [param_dict[n] for n in lr_1x],
"weight_decay": 0.0,
"my_lr_scale": 1.0,
}
]
if args.weight_decay > 0:
optim_groups += [
{
"params": [param_dict[n] for n in lr_decay],
"weight_decay": args.weight_decay,
"my_lr_scale": 1.0,
}
]
if self.deepspeed_offload:
return DeepSpeedCPUAdam(
optim_groups,
lr=self.args.lr_init,
betas=self.args.betas,
eps=self.args.adam_eps,
bias_correction=True,
adamw_mode=True,
amsgrad=False,
)
return FusedAdam(
optim_groups,
lr=self.args.lr_init,
betas=self.args.betas,
eps=self.args.adam_eps,
bias_correction=True,
adam_w_mode=True,
amsgrad=False,
)
else:
if self.deepspeed_offload:
return DeepSpeedCPUAdam(
optim_groups,
lr=self.args.lr_init,
betas=self.args.betas,
eps=self.args.adam_eps,
bias_correction=True,
adamw_mode=False,
weight_decay=0,
amsgrad=False,
)
return FusedAdam(
optim_groups,
lr=self.args.lr_init,
betas=self.args.betas,
eps=self.args.adam_eps,
bias_correction=True,
adam_w_mode=False,
weight_decay=0,
amsgrad=False,
)
# return ZeroOneAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, weight_decay=0, amsgrad=False, cuda_aware=False)
@property
def deepspeed_offload(self) -> bool:
strategy = self.trainer.strategy
if isinstance(strategy, DeepSpeedStrategy):
cfg = strategy.config["zero_optimization"]
return cfg.get("offload_optimizer") or cfg.get("offload_param")
return False
def forward(self, idx):
args = self.args
B, T = idx.size()
assert T <= args.ctx_len, "Cannot forward, model ctx_len is exhausted."
x = self.emb(idx)
x_emb = x
if args.dropout > 0:
x = self.drop0(x)
if args.tiny_att_dim > 0:
for block in self.blocks:
if args.grad_cp == 1:
if args.lora:
x = torch_checkpoint(block, x, x_emb, use_reentrant=False)
else:
x = deepspeed.checkpointing.checkpoint(block, x, x_emb)
else:
x = block(x, x_emb)
else:
for block in self.blocks:
if args.grad_cp == 1:
if args.lora:
x = torch_checkpoint(block, x, x_emb, use_reentrant=False)
else:
x = deepspeed.checkpointing.checkpoint(block, x)
else:
x = block(x)
x = self.ln_out(x)
if args.head_qk > 0:
q = self.head_q(x)[:, :T, :]
k = self.head_k(x)[:, :T, :]
c = (q @ k.transpose(-2, -1)) * (1.0 / args.head_qk)
c = c.masked_fill(self.copy_mask[:T, :T] == 0, 0)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
c = c @ F.one_hot(idx, num_classes=args.vocab_size)
elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
c = c @ F.one_hot(idx, num_classes=args.vocab_size).half()
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
c = c @ F.one_hot(idx, num_classes=args.vocab_size).bfloat16()
x = self.head(x) + c
else:
x = self.head(x)
return x
def training_step(self, batch, batch_idx):
args = self.args
if args.my_qa_mask != 1:
idx, targets = batch
logits = self(idx)
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
# if '0' in os.environ["RWKV_MY_TESTING"]:
# print('logits', logits)
# torch.set_printoptions(threshold=10000)
# print('idx', idx)
# exit(0)
else:
idx, targets, mask = batch
mask = mask.view(-1)
sum_mask = torch.sum(mask).item()
# if sum_mask == 0:
# return torch.tensor([0.0], requires_grad=True)
logits = self(idx)
if sum_mask == mask.shape[0]:
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1)
)
# print('rank', self.global_rank, 'loss', loss.item())
else:
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1), reduction="none"
)
# loss_raw = loss
loss = torch.sum(loss * mask) / sum_mask
# torch.set_printoptions(threshold=10000)
# if True: #self.global_rank == 1:
# tmp = ''
# sss = 0
# ccc = 0
# for i in range(mask.shape[0]):
# if mask[i] > 0:
# tmp += str(idx.view(-1)[i].item()) + ','
# sss += loss_raw.view(-1)[i].float().item()
# ccc += 1
# print('rank', self.global_rank, 'loss', loss.item(), 'lavg', sss / ccc)#, 'tmp', tmp, 'input', idx)
return L2Wrap.apply(loss, logits)
def training_step_end(self, batch_parts):
if pl.__version__[0] != "2":
all = self.all_gather(batch_parts)
if self.trainer.is_global_zero:
self.trainer.my_loss_all = all
def generate_init_weight(self):
print(
f"""
############################################################################
#
# Init model weight (slow for large models)...
#
############################################################################
"""
)
m = {}
for n in self.state_dict():
p = self.state_dict()[n]
shape = p.shape
gain = 1.0
scale = 1.0
if (
"ln_" in n
or ".ln" in n
or "time_" in n
or "_mask" in n
or "pos_emb" in n
or ".mask." in n
):
if "ln_x.weight" in n:
layer_scale = (1 + int(n.split(".")[1])) / self.args.n_layer
m[n] = (p * 0.0) + (layer_scale**0.7)
else:
m[n] = p
else:
if n == "emb.weight":
scale = -1 * self.args.lr_init
else:
if shape[0] > shape[1]:
gain = math.sqrt(shape[0] / shape[1])
zero = [
".att.output.",
".ffn.value.",
".ffn.receptance.",
".ffnPre.value.",
".ffnPre.receptance.",
"head_q.",
".oo.",
".rr.",
]
for kk in zero:
if kk in n:
scale = 0
if n == "head.weight":
scale = 0.5
if "head_k." in n:
scale = 0.1
if "head_q." in n:
scale = 0
print(
f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {str(scale).ljust(4)} {n}"
)
if self.args.accelerator.upper() == "GPU":
m[n] = torch.empty((shape[0], shape[1]), device="cuda")
else:
m[n] = torch.empty((shape[0], shape[1]))
if scale == 0:
nn.init.zeros_(m[n])
elif scale < 0:
nn.init.uniform_(m[n], a=scale, b=-scale)
else:
nn.init.orthogonal_(m[n], gain=gain * scale)
m[n] = m[n].cpu()
if os.environ["RWKV_FLOAT_MODE"] == "fp16":
m[n] = m[n].half()
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
m[n] = m[n].bfloat16()
# if n == "emb.weight":
# print(m[n])
gc.collect()
torch.cuda.empty_cache()
return m

310
finetune/lora/v5/src/trainer.py vendored Normal file
View File

@@ -0,0 +1,310 @@
import os, math, time, datetime, subprocess
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
from .model import LORA_CONFIG
def my_save(args, trainer, dd, ff):
if "14b-run1" in ff:
fn = ff.split("/")[-1]
fff = "/dev/shm/" + fn
torch.save(dd, fff)
subprocess.Popen(f" aws s3 mv {fff} s3://rwkv-14b-4k/{fn} --quiet", shell=True)
elif ("world/14b" in ff) or ("world/7b" in ff):
aa = ff.split("/")[1]
fn = ff.split("/")[-1]
fff = f"/dev/shm/{aa}-{fn}"
torch.save(dd, fff)
subprocess.Popen(
f" aws s3 mv {fff} s3://rwkv-world/{aa}-{fn} --quiet", shell=True
)
else:
if "deepspeed_stage_3" in args.strategy:
trainer.save_checkpoint(ff, weights_only=True)
else:
torch.save(dd, ff)
class train_callback(pl.Callback):
def __init__(self, args):
super().__init__()
self.args = args
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx):
args = self.args
# if args.cuda_cleanup > 0:
# torch.cuda.empty_cache()
real_step = trainer.global_step + args.epoch_begin * args.epoch_steps
# LR schedule
w_step = args.warmup_steps
if args.lr_final == args.lr_init or args.epoch_count == 0:
lr = args.lr_init
else:
decay_step = real_step - args.my_pile_edecay * args.epoch_steps
decay_total = (args.epoch_count - args.my_pile_edecay) * args.epoch_steps
progress = (decay_step - w_step + 1) / (decay_total - w_step)
progress = min(1, max(0, progress))
if args.lr_final == 0 or args.lr_init == 0: # linear decay
lr = args.lr_init + (args.lr_final - args.lr_init) * progress
else: # exp decay
lr = args.lr_init * math.exp(
math.log(args.lr_final / args.lr_init) * pow(progress, 1)
)
# if trainer.is_global_zero:
# print(trainer.global_step, decay_step, decay_total, w_step, progress, lr)
if args.my_exit_tokens != 0: # cosine decay
real_tokens = real_step * args.ctx_len * args.real_bsz
warmup_tokens = w_step * args.ctx_len * args.real_bsz
progress = (real_tokens - warmup_tokens) / (
abs(args.my_exit_tokens) - warmup_tokens
)
progress = max(0, min(1, progress))
lr_final_factor = args.lr_final / args.lr_init
lr_mult = (0.5 + lr_final_factor / 2) + (
0.5 - lr_final_factor / 2
) * math.cos(math.pi * progress)
if args.my_exit_tokens > 0:
lr = args.lr_init * lr_mult
else:
lr = (lr + args.lr_init * lr_mult) / 2
if progress >= 1:
if (trainer.is_global_zero) or ("deepspeed_stage_3" in args.strategy):
my_save(
args,
trainer,
pl_module.state_dict(),
f"{args.proj_dir}/rwkv-final.pth",
)
exit(0)
if trainer.global_step < w_step:
lr = lr * (0.2 + 0.8 * trainer.global_step / w_step)
if args.weight_decay_final > 0:
wd_now = args.weight_decay * math.exp(
math.log(args.weight_decay_final / args.weight_decay) * progress
)
else:
wd_now = args.weight_decay
for param_group in trainer.optimizers[0].param_groups:
if param_group["weight_decay"] > 0:
param_group["weight_decay"] = wd_now
if args.layerwise_lr > 0:
param_group["lr"] = lr * param_group["my_lr_scale"]
# print(param_group["lr"], param_group["my_lr_scale"])
else:
param_group["lr"] = lr
trainer.my_lr = lr
trainer.my_wd = wd_now
# rank_zero_info(f"{real_step} {lr}")
if trainer.global_step == 0:
if trainer.is_global_zero: # logging
trainer.my_loss_sum = 0
trainer.my_loss_count = 0
trainer.my_log = open(args.proj_dir + "/train_log.txt", "a")
trainer.my_log.write(
f"NEW RUN {args.my_timestamp}\n{vars(self.args)}\n"
)
try:
print(f"\n{trainer.strategy.config}\n")
trainer.my_log.write(f"{trainer.strategy.config}\n")
except:
pass
trainer.my_log.flush()
if len(args.wandb) > 0:
print("Login to wandb...")
import wandb
wandb.init(
project=args.wandb,
name=args.run_name + " " + args.my_timestamp,
config=args,
save_code=False,
)
trainer.my_wandb = wandb
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
args = self.args
token_per_step = args.ctx_len * args.real_bsz
real_step = trainer.global_step + args.epoch_begin * args.epoch_steps
if trainer.is_global_zero: # logging
t_now = time.time_ns()
kt_s = 0
try:
t_cost = (t_now - trainer.my_time_ns) / 1e9
kt_s = token_per_step / t_cost / 1000
self.log("REAL it/s", 1.0 / t_cost, prog_bar=True, on_step=True)
self.log("Kt/s", kt_s, prog_bar=True, on_step=True)
except:
pass
trainer.my_time_ns = t_now
if pl.__version__[0] == "2":
trainer.my_loss = outputs["loss"]
else:
trainer.my_loss = trainer.my_loss_all.float().mean().item()
trainer.my_loss_sum += trainer.my_loss
trainer.my_loss_count += 1
trainer.my_epoch_loss = trainer.my_loss_sum / trainer.my_loss_count
self.log("lr", trainer.my_lr, prog_bar=True, on_step=True)
self.log("loss", trainer.my_epoch_loss, prog_bar=True, on_step=True)
# self.log("s", real_step, prog_bar=True, on_step=True)
if len(args.wandb) > 0:
lll = {
"loss": trainer.my_loss,
"lr": trainer.my_lr,
"wd": trainer.my_wd,
"Gtokens": real_step * token_per_step / 1e9,
}
if kt_s > 0:
lll["kt/s"] = kt_s
trainer.my_wandb.log(lll, step=int(real_step))
if (trainer.is_global_zero) or (
"deepspeed_stage_3" in args.strategy
): # save pth
if args.magic_prime > 0:
expand_factor = 2 if args.my_qa_mask > 0 else 1
if int(real_step) == int(
args.magic_prime * expand_factor // args.real_bsz
) - 1 + int(args.my_random_steps):
to_save_dict = pl_module.state_dict()
my_save(
args,
trainer,
to_save_dict,
f"{args.proj_dir}/rwkv-final.pth",
)
# if args.batch_save==batch_idx :
# to_save_dict = pl_module.state_dict()
# for name, state in to_save_dict.items():
# if 'img' in name:
# to_save_dict[name] = state
# try:
# my_save(
# args, trainer,
# to_save_dict,
# f"{args.proj_dir}/rwkv-{args.epoch_begin + trainer.current_epoch}-{batch_idx}.pth",
# )
# except Exception as e:
# print('Error\n\n', e, '\n\n')
def on_train_epoch_start(self, trainer, pl_module):
args = self.args
if pl.__version__[0] == "2":
dataset = trainer.train_dataloader.dataset
else:
dataset = trainer.train_dataloader.dataset.datasets
assert "MyDataset" in str(dataset)
dataset.global_rank = trainer.global_rank
dataset.real_epoch = int(args.epoch_begin + trainer.current_epoch)
dataset.world_size = trainer.world_size
# print(f'########## world_size {dataset.world_size} global_rank {dataset.global_rank} real_epoch {dataset.real_epoch} ##########')
def on_train_epoch_end(self, trainer, pl_module):
args = self.args
to_save_dict = {}
if (trainer.is_global_zero) or (
"deepspeed_stage_3" in args.strategy
): # save pth
if (
args.epoch_save > 0 and trainer.current_epoch % args.epoch_save == 0
) or (trainer.current_epoch == args.epoch_count - 1):
if args.data_type == "wds_img":
raw_dict = pl_module.state_dict()
for k in raw_dict:
if k.startswith("encoder.") or k.startswith("decoder."):
to_save_dict[k] = raw_dict[k]
else:
to_save_dict = pl_module.state_dict()
if args.data_type == "img" and not args.lora:
for name, state in to_save_dict.items():
if "img" in name:
to_save_dict[name] = state
if args.lora:
enable_time_finetune = "time" in LORA_CONFIG["parts"]
enable_ln_finetune = "ln" in LORA_CONFIG["parts"]
lora_dict = {}
for name, state in to_save_dict.items():
if "img" in name:
lora_dict[name] = state
if (
".lora_" in name
or (enable_time_finetune and ".time_" in name)
or (enable_ln_finetune and ".ln" in name)
):
lora_dict[name] = state
to_save_dict = lora_dict
try:
my_save(
args,
trainer,
to_save_dict,
f"{args.proj_dir}/rwkv-{args.epoch_begin + trainer.current_epoch}.pth",
)
except Exception as e:
print("Error\n\n", e, "\n\n")
if trainer.is_global_zero: # logging
trainer.my_log.write(
f"{args.epoch_begin + trainer.current_epoch} {trainer.my_epoch_loss:.6f} {math.exp(trainer.my_epoch_loss):.4f} {trainer.my_lr:.8f} {datetime.datetime.now()} {trainer.current_epoch}\n"
)
trainer.my_log.flush()
trainer.my_loss_sum = 0
trainer.my_loss_count = 0
if (args.epoch_begin + trainer.current_epoch) >= args.my_exit:
exit(0)
@rank_zero_only
def generate_init_weight(model, init_weight_name):
mm = model.generate_init_weight()
if model.args.my_pile_stage == 1:
if len(model.args.load_model) > 0:
print(f"Combine weights from {model.args.load_model}...")
load_dict = torch.load(model.args.load_model, map_location="cpu")
for k in load_dict:
try:
assert k in mm
except:
print("missing", k)
exit(0)
src = load_dict[k]
try:
mm[k] = src.reshape(mm[k].shape)
except:
tmp = mm[k].squeeze().clone()
print(k, src.shape, "-->", mm[k].shape)
ss = src.shape[0]
dd = tmp.shape[0]
for i in range(dd):
pos = i / dd * ss
if pos >= ss - 1:
tmp[i] = src[ss - 1]
else:
p0 = int(math.floor(pos))
ii = pos - p0
tmp[i] = src[p0] * (1 - ii) + src[p0 + 1] * (ii)
mm[k] = tmp.reshape(mm[k].shape)
sss = src.squeeze().float().cpu().numpy()
print(sss[:10], "...", sss[-10:])
mmm = mm[k].squeeze().float().cpu().numpy()
print(mmm[:10], "...", mmm[-10:])
print(f"Save to {init_weight_name}...")
torch.save(mm, init_weight_name)
if model.args.my_pile_stage == 1:
print("Done. Now go for stage 2.")
exit(0)

139
finetune/lora/v5/src/utils.py vendored Normal file
View File

@@ -0,0 +1,139 @@
import json, time, random, os
import numpy as np
import torch
from torch.nn import functional as F
time_slot = {}
time_ref = time.time_ns()
def record_time(name):
if name not in time_slot:
time_slot[name] = 1e20
tt = (time.time_ns() - time_ref) / 1e9
if tt < time_slot[name]:
time_slot[name] = tt
class TOKENIZER:
def __init__(self, WORD_NAME, UNKNOWN_CHAR="\ue083"):
if "list" in str(type(WORD_NAME)):
self.charMode = False
if WORD_NAME[0] == WORD_NAME[1]:
from transformers import PreTrainedTokenizerFast
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=WORD_NAME[0])
else:
from transformers import GPT2TokenizerFast
self.tokenizer = GPT2TokenizerFast(WORD_NAME[0], WORD_NAME[1])
self.vocab_size = len(self.tokenizer)
else:
self.charMode = True
with open(WORD_NAME + ".json", "r", encoding="utf-16") as result_file:
self.word_table = json.load(result_file)
self.vocab_size = len(self.word_table)
self.stoi = {v: int(k) for k, v in self.word_table.items()}
self.itos = {int(k): v for k, v in self.word_table.items()}
self.UNKNOWN_CHAR = self.stoi[UNKNOWN_CHAR]
def refine_context(self, context):
context = context.strip().split("\n")
for c in range(len(context)):
context[c] = context[c].strip().strip("\u3000").strip("\r")
context = list(filter(lambda c: c != "", context))
context = "\n" + ("\n".join(context)).strip()
if context == "":
context = "\n"
return context
def sample_logits(
self, out, x, ctx_len, temperature=1.0, top_p_usual=None, top_p_newline=None
):
# out[self.UNKNOWN_CHAR] = -float('Inf')
lastChar = int(x[-1])
probs = F.softmax(out, dim=-1)
if self.charMode:
if self.itos[lastChar] == "\n":
top_p = top_p_newline
else:
top_p = top_p_usual
else:
top_p = top_p_usual
if os.environ["RWKV_RUN_DEVICE"] == "cpu":
probs = probs.numpy()
sorted_probs = np.sort(probs)[::-1]
cumulative_probs = np.cumsum(sorted_probs)
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
probs[probs < cutoff] = 0
if temperature != 1.0:
probs = probs.pow(1.0 / temperature)
probs = probs / np.sum(probs)
out = np.random.choice(a=len(probs), p=probs)
return out
else:
sorted_probs = torch.sort(probs, descending=True)[0]
cumulative_probs = torch.cumsum(sorted_probs, dim=-1).cpu().numpy()
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
probs[probs < cutoff] = 0
if temperature != 1.0:
probs = probs.pow(1.0 / temperature)
out = torch.multinomial(probs, num_samples=1)[0]
return out
def MaybeIsPrime(number):
if FermatPrimalityTest(number) and MillerRabinPrimalityTest(number):
return True
else:
return False
def FermatPrimalityTest(number):
if number > 1:
for time in range(3):
randomNumber = random.randint(2, number) - 1
if pow(randomNumber, number - 1, number) != 1:
return False
return True
else:
return False
def MillerRabinPrimalityTest(number):
if number == 2:
return True
elif number == 1 or number % 2 == 0:
return False
oddPartOfNumber = number - 1
timesTwoDividNumber = 0
while oddPartOfNumber % 2 == 0:
oddPartOfNumber = oddPartOfNumber // 2
timesTwoDividNumber = timesTwoDividNumber + 1
for time in range(3):
while True:
randomNumber = random.randint(2, number) - 1
if randomNumber != 0 and randomNumber != 1:
break
randomNumberWithPower = pow(randomNumber, oddPartOfNumber, number)
if (randomNumberWithPower != 1) and (randomNumberWithPower != number - 1):
iterationNumber = 1
while (iterationNumber <= timesTwoDividNumber - 1) and (
randomNumberWithPower != number - 1
):
randomNumberWithPower = pow(randomNumberWithPower, 2, number)
iterationNumber = iterationNumber + 1
if randomNumberWithPower != (number - 1):
return False
return True

436
finetune/lora/v5/train.py vendored Normal file
View File

@@ -0,0 +1,436 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import logging
logging.basicConfig(level=logging.INFO)
if __name__ == "__main__":
from argparse import ArgumentParser
from pytorch_lightning import Trainer
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
import pytorch_lightning as pl
rank_zero_info("########## work in progress ##########")
parser = ArgumentParser()
parser.add_argument("--load_model", default="", type=str) # full path, with .pth
parser.add_argument(
"--wandb", default="", type=str
) # wandb project name. if "" then don't use wandb
parser.add_argument("--proj_dir", default="out", type=str)
parser.add_argument("--random_seed", default="-1", type=int)
parser.add_argument("--data_file", default="", type=str)
parser.add_argument("--data_type", default="utf-8", type=str)
parser.add_argument(
"--vocab_size", default=0, type=int
) # vocab_size = 0 means auto (for char-level LM and .txt data)
parser.add_argument("--ctx_len", default=1024, type=int)
parser.add_argument(
"--epoch_steps", default=1000, type=int
) # a mini "epoch" has [epoch_steps] steps
parser.add_argument(
"--epoch_count", default=500, type=int
) # train for this many "epochs". will continue afterwards with lr = lr_final
parser.add_argument(
"--epoch_begin", default=0, type=int
) # if you load a model trained for x "epochs", set epoch_begin = x
parser.add_argument(
"--epoch_save", default=5, type=int
) # save the model every [epoch_save] "epochs"
parser.add_argument(
"--micro_bsz", default=12, type=int
) # micro batch size (batch size per GPU)
parser.add_argument("--n_layer", default=6, type=int)
parser.add_argument("--n_embd", default=512, type=int)
parser.add_argument("--dim_att", default=0, type=int)
parser.add_argument("--dim_ffn", default=0, type=int)
parser.add_argument(
"--pre_ffn", default=0, type=int
) # replace first att layer by ffn (sometimes better)
parser.add_argument("--head_qk", default=0, type=int) # my headQK trick
parser.add_argument("--tiny_att_dim", default=0, type=int) # tiny attention dim
parser.add_argument(
"--tiny_att_layer", default=-999, type=int
) # tiny attention @ which layer
parser.add_argument(
"--lr_init", default=6e-4, type=float
) # 6e-4 for L12-D768, 4e-4 for L24-D1024, 3e-4 for L24-D2048
parser.add_argument("--lr_final", default=1e-5, type=float)
parser.add_argument(
"--warmup_steps", default=-1, type=int
) # try 50 if you load a model
parser.add_argument("--beta1", default=0.9, type=float)
parser.add_argument(
"--beta2", default=0.99, type=float
) # use 0.999 when your model is close to convergence
parser.add_argument("--adam_eps", default=1e-8, type=float)
parser.add_argument(
"--grad_cp", default=0, type=int
) # gradient checkpt: saves VRAM, but slower
parser.add_argument(
"--dropout", default=0, type=float
) # try 0.01 / 0.02 / 0.05 / 0.1
parser.add_argument(
"--weight_decay", default=0, type=float
) # try 0.1 / 0.01 / 0.001
parser.add_argument("--weight_decay_final", default=-1, type=float)
parser.add_argument(
"--my_pile_version", default=1, type=int
) # my special pile version
parser.add_argument("--my_pile_stage", default=0, type=int) # my special pile mode
parser.add_argument(
"--my_pile_shift", default=-1, type=int
) # my special pile mode - text shift
parser.add_argument("--my_pile_edecay", default=0, type=int)
parser.add_argument(
"--layerwise_lr", default=1, type=int
) # layerwise lr for faster convergence (but slower it/s)
parser.add_argument(
"--ds_bucket_mb", default=200, type=int
) # deepspeed bucket size in MB. 200 seems enough
# parser.add_argument("--cuda_cleanup", default=0, type=int) # extra cuda cleanup (sometimes helpful)
parser.add_argument("--my_sample_len", default=0, type=int)
parser.add_argument("--my_ffn_shift", default=1, type=int)
parser.add_argument("--my_att_shift", default=1, type=int)
parser.add_argument(
"--head_size_a", default=64, type=int
) # can try larger values for larger models
parser.add_argument("--head_size_divisor", default=8, type=int)
parser.add_argument("--my_pos_emb", default=0, type=int)
parser.add_argument("--load_partial", default=0, type=int)
parser.add_argument("--magic_prime", default=0, type=int)
parser.add_argument("--my_qa_mask", default=0, type=int)
parser.add_argument("--my_random_steps", default=0, type=int)
parser.add_argument("--my_testing", default="", type=str)
parser.add_argument("--my_exit", default=99999999, type=int)
parser.add_argument("--my_exit_tokens", default=0, type=int)
# LORA
parser.add_argument("--emb", action="store_true")
parser.add_argument("--lora", action="store_true")
parser.add_argument("--lora_load", default="", type=str)
parser.add_argument("--lora_r", default=8, type=int)
parser.add_argument("--lora_alpha", default=32, type=float)
parser.add_argument("--lora_dropout", default=0.01, type=float)
parser.add_argument("--lora_parts", default="att,ln,time", type=str)
if pl.__version__[0] == "2":
parser.add_argument("--accelerator", default="gpu", type=str)
parser.add_argument("--strategy", default="auto", type=str)
parser.add_argument("--devices", default=1, type=int)
parser.add_argument("--num_nodes", default=1, type=int)
parser.add_argument("--precision", default="fp16", type=str)
parser.add_argument("--accumulate_grad_batches", default=1, type=int)
else:
parser = Trainer.add_argparse_args(parser)
args = parser.parse_args()
########################################################################################################
import os, warnings, math, datetime, sys, time
import numpy as np
import torch
from torch.utils.data import DataLoader
if "deepspeed" in args.strategy:
import deepspeed
from pytorch_lightning import seed_everything
if args.random_seed >= 0:
print(
f"########## WARNING: GLOBAL SEED {args.random_seed} THIS WILL AFFECT MULTIGPU SAMPLING ##########\n"
* 3
)
seed_everything(args.random_seed)
np.set_printoptions(precision=4, suppress=True, linewidth=200)
warnings.filterwarnings(
"ignore", ".*Consider increasing the value of the `num_workers` argument*"
)
warnings.filterwarnings(
"ignore", ".*The progress bar already tracks a metric with the*"
)
# os.environ["WDS_SHOW_SEED"] = "1"
args.my_timestamp = datetime.datetime.today().strftime("%Y-%m-%d-%H-%M-%S")
args.enable_checkpointing = False
args.replace_sampler_ddp = False
args.logger = False
args.gradient_clip_val = 1.0
args.num_sanity_val_steps = 0
args.check_val_every_n_epoch = int(1e20)
args.log_every_n_steps = int(1e20)
args.max_epochs = args.epoch_count # -1 continue forever
args.betas = (args.beta1, args.beta2)
args.real_bsz = int(args.num_nodes) * int(args.devices) * args.micro_bsz
os.environ["RWKV_MY_TESTING"] = args.my_testing
os.environ["RWKV_HEAD_SIZE_A"] = str(args.head_size_a)
if args.dim_att <= 0:
args.dim_att = args.n_embd
if args.dim_ffn <= 0:
args.dim_ffn = int((args.n_embd * 3.5) // 32 * 32) # default = 3.5x emb size
if args.data_type == "wds_img":
args.run_name = f"v{args.my_img_version}-{args.my_img_size}-{args.my_img_bit}bit-{args.my_img_clip}x{args.my_img_clip_scale}"
args.proj_dir = f"{args.proj_dir}-{args.run_name}"
else:
args.run_name = (
f"{args.vocab_size} ctx{args.ctx_len} L{args.n_layer} D{args.n_embd}"
)
if not os.path.exists(args.proj_dir):
os.makedirs(args.proj_dir)
if args.my_pile_stage > 0:
magic_prime_bak = args.magic_prime
if args.my_pile_shift < 0:
args.my_pile_shift = 0
if magic_prime_bak > 0:
args.magic_prime = magic_prime_bak
if args.my_qa_mask == 2:
args.epoch_count = 2 * args.magic_prime // 40320
else:
args.epoch_count = args.magic_prime // 40320
args.epoch_steps = 40320 // args.real_bsz
assert args.epoch_steps * args.real_bsz == 40320
# if args.my_pile_stage == 2:
# assert args.lr_final == args.lr_init
if args.my_pile_stage >= 2: # find latest saved model
list_p = []
for p in os.listdir(args.proj_dir):
if p.startswith("rwkv") and p.endswith(".pth"):
p = ((p.split("-"))[1].split("."))[0]
if p != "final":
if p == "init":
p = -1
else:
p = int(p)
list_p += [p]
list_p.sort()
max_p = list_p[-1]
if len(list_p) > 1:
args.my_pile_prev_p = list_p[-2] # in case max_p is corrupted
if max_p == -1:
args.load_model = f"{args.proj_dir}/rwkv-init.pth"
else:
args.load_model = f"{args.proj_dir}/rwkv-{max_p}.pth"
if args.warmup_steps < 0:
if args.my_pile_stage == 2:
args.warmup_steps = 10
else:
args.warmup_steps = 30
args.epoch_begin = max_p + 1
samples_per_epoch = args.epoch_steps * args.real_bsz
tokens_per_epoch = samples_per_epoch * args.ctx_len
try:
deepspeed_version = deepspeed.__version__
except:
deepspeed_version = None
pass
rank_zero_info(
f"""
############################################################################
#
# RWKV-5 {args.precision.upper()} on {args.num_nodes}x{args.devices} {args.accelerator.upper()}, bsz {args.num_nodes}x{args.devices}x{args.micro_bsz}={args.real_bsz}, {args.strategy} {'with grad_cp' if args.grad_cp > 0 else ''}
#
# Data = {args.data_file} ({args.data_type}), ProjDir = {args.proj_dir}
#
# Epoch = {args.epoch_begin} to {args.epoch_begin + args.epoch_count - 1}, save every {args.epoch_save} epoch
#
# Each "epoch" = {args.epoch_steps} steps, {samples_per_epoch} samples, {tokens_per_epoch} tokens
#
# Model = {args.n_layer} n_layer, {args.n_embd} n_embd, {args.ctx_len} ctx_len
#
# Adam = lr {args.lr_init} to {args.lr_final}, warmup {args.warmup_steps} steps, beta {args.betas}, eps {args.adam_eps}
#
# Found torch {torch.__version__}, recommend 1.13.1+cu117 or newer
# Found deepspeed {deepspeed_version}, recommend 0.7.0 (faster than newer versions)
# Found pytorch_lightning {pl.__version__}, recommend 1.9.5
#
############################################################################
"""
)
rank_zero_info(str(vars(args)) + "\n")
assert args.data_type in ["utf-8", "utf-16le", "numpy", "binidx", "dummy", "uint16"]
if args.lr_final == 0 or args.lr_init == 0:
rank_zero_info(
"\n\nNote: lr_final = 0 or lr_init = 0. Using linear LR schedule instead.\n\n"
)
assert args.precision in ["fp32", "tf32", "fp16", "bf16"]
os.environ["RWKV_FLOAT_MODE"] = args.precision
if args.precision == "fp32":
for i in range(10):
rank_zero_info(
"\n\nNote: you are using fp32 (very slow). Try bf16 / tf32 for faster training.\n\n"
)
if args.precision == "fp16":
rank_zero_info(
"\n\nNote: you are using fp16 (might overflow). Try bf16 / tf32 for stable training.\n\n"
)
os.environ["RWKV_JIT_ON"] = "0"
if "deepspeed_stage_3" in args.strategy:
os.environ["RWKV_JIT_ON"] = "0"
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = True
if args.precision == "fp32":
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_tf32 = False
else:
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
if "32" in args.precision:
args.precision = 32
elif args.precision == "fp16":
args.precision = 16
else:
args.precision = "bf16"
########################################################################################################
from src.trainer import train_callback, generate_init_weight
from src.dataset import MyDataset
train_data = MyDataset(args)
args.vocab_size = train_data.vocab_size
from src.model import RWKV, LORA_CONFIG, LoraLinear
if args.lora:
assert args.lora_r > 0, "LoRA should have its `r` > 0"
LORA_CONFIG["r"] = args.lora_r
LORA_CONFIG["alpha"] = args.lora_alpha
LORA_CONFIG["dropout"] = args.lora_dropout
LORA_CONFIG["parts"] = set(str(args.lora_parts).split(","))
enable_time_finetune = "time" in LORA_CONFIG["parts"]
enable_ln_finetune = "ln" in LORA_CONFIG["parts"]
model = RWKV(args)
# only train lora parameters
if args.lora:
model.requires_grad_(False)
for name, module in model.named_modules():
if any(n.startswith("lora_") for n, _ in module.named_parameters()):
print(f" LoRA additionally training module {name}")
for pname, param in module.named_parameters():
param.requires_grad = "lora_" in pname
elif enable_ln_finetune and ".ln" in name:
print(f" LoRA additionally training module {name}")
for param in module.parameters():
param.requires_grad = True
elif enable_time_finetune and any(
n.startswith("time") for n, _ in module.named_parameters()
):
for pname, param in module.named_parameters():
if pname.startswith("time"):
print(f" LoRA additionally training parameter {pname}")
param.requires_grad = True
if (
len(args.load_model) == 0 or args.my_pile_stage == 1
): # shall we build the initial weights?
init_weight_name = f"{args.proj_dir}/rwkv-init.pth"
generate_init_weight(model, init_weight_name) # save initial weights
args.load_model = init_weight_name
rank_zero_info(f"########## Loading {args.load_model}... ##########")
try:
load_dict = torch.load(args.load_model, map_location="cpu")
load_keys = list(load_dict.keys())
for k in load_keys:
if k.startswith("_forward_module."):
load_dict[k.replace("_forward_module.", "")] = load_dict[k]
del load_dict[k]
except:
rank_zero_info(f"Bad checkpoint {args.load_model}")
if args.my_pile_stage >= 2: # try again using another checkpoint
max_p = args.my_pile_prev_p
if max_p == -1:
args.load_model = f"{args.proj_dir}/rwkv-init.pth"
else:
args.load_model = f"{args.proj_dir}/rwkv-{max_p}.pth"
args.epoch_begin = max_p + 1
rank_zero_info(f"Trying {args.load_model}")
load_dict = torch.load(args.load_model, map_location="cpu")
if args.load_partial == 1:
load_keys = load_dict.keys()
for k in model.state_dict():
if k not in load_keys:
load_dict[k] = model.state_dict()[k]
# model.load_state_dict(load_dict)
model.load_state_dict(load_dict, strict=(not args.lora))
if os.path.isfile(args.lora_load):
model.load_state_dict(
torch.load(args.lora_load, map_location="cpu"), strict=False
)
if pl.__version__[0] == "2":
trainer = Trainer(
accelerator=args.accelerator,
strategy=args.strategy,
devices=args.devices,
num_nodes=args.num_nodes,
precision=args.precision,
logger=args.logger,
callbacks=[train_callback(args)],
max_epochs=args.max_epochs,
check_val_every_n_epoch=args.check_val_every_n_epoch,
num_sanity_val_steps=args.num_sanity_val_steps,
log_every_n_steps=args.log_every_n_steps,
enable_checkpointing=args.enable_checkpointing,
accumulate_grad_batches=args.accumulate_grad_batches,
gradient_clip_val=args.gradient_clip_val,
)
else:
trainer = Trainer.from_argparse_args(
args,
callbacks=[train_callback(args)],
)
if trainer.global_rank == 0:
for n in model.state_dict():
shape = model.state_dict()[n].shape
shape = [i for i in shape if i != 1]
if len(shape) > 1:
print(f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {n}")
else:
print(f"{str(shape[0]).ljust(5)} {n}")
if "deepspeed" in args.strategy:
trainer.strategy.config["zero_optimization"]["allgather_bucket_size"] = (
args.ds_bucket_mb * 1000 * 1000
)
trainer.strategy.config["zero_optimization"]["reduce_bucket_size"] = (
args.ds_bucket_mb * 1000 * 1000
)
# must set shuffle=False, persistent_workers=False (because worker is in another thread)
data_loader = DataLoader(
train_data,
shuffle=False,
pin_memory=True,
batch_size=args.micro_bsz,
num_workers=1,
persistent_workers=False,
drop_last=True,
)
trainer.fit(model, data_loader)

View File

@@ -13,6 +13,7 @@
"@magenta/music": "^1.23.1",
"@microsoft/fetch-event-source": "^2.0.1",
"@primer/octicons-react": "^19.1.0",
"abcjs": "^6.2.3",
"chart.js": "^4.3.0",
"classnames": "^2.3.2",
"file-saver": "^2.0.5",
@@ -2690,6 +2691,15 @@
"integrity": "sha512-nne9/IiQ/hzIhY6pdDnbBtz7DjPTKrY00P/zvPSm5pOFkl6xuGrGnXn/VtTNNfNtAfZ9/1RtehkszU9qcTii0Q==",
"optional": true
},
"node_modules/abcjs": {
"version": "6.2.3",
"resolved": "https://registry.npmjs.org/abcjs/-/abcjs-6.2.3.tgz",
"integrity": "sha512-epu8C1yRkxV7Ss9hS0Bu72rairl1p2sR3hviVowjtdDJvb5GRE0SrB4TtN4HBbaoYhvxGnSZQxGULfQlW3o3RQ==",
"funding": {
"type": "github",
"url": "https://github.com/sponsors/paulrosen"
}
},
"node_modules/acorn": {
"version": "7.4.1",
"resolved": "https://registry.npmjs.org/acorn/-/acorn-7.4.1.tgz",

View File

@@ -14,6 +14,7 @@
"@magenta/music": "^1.23.1",
"@microsoft/fetch-event-source": "^2.0.1",
"@primer/octicons-react": "^19.1.0",
"abcjs": "^6.2.3",
"chart.js": "^4.3.0",
"classnames": "^2.3.2",
"file-saver": "^2.0.5",

View File

@@ -323,5 +323,6 @@
"Core API URL": "コアAPI URL",
"Override core API URL(/chat/completions and /completions). If you don't know what this is, leave it blank.": "コアAPI URLを上書きします(/chat/completions と /completions)。何であるかわからない場合は空白のままにしてください。",
"Please change Strategy to CPU (rwkv.cpp) to use ggml format": "StrategyをCPU (rwkv.cpp)に変更して、ggml形式を使用してください",
"Only Auto Play Generated Content": "生成されたコンテンツのみ自動再生"
"Only Auto Play Generated Content": "生成されたコンテンツのみ自動再生",
"Model has been converted and does not match current strategy. If you are using a new strategy, re-convert the model.": "モデルが変換され、現在の戦略と一致しません。新しい戦略を使用している場合は、モデルを再変換してください。"
}

View File

@@ -323,5 +323,6 @@
"Core API URL": "核心 API URL",
"Override core API URL(/chat/completions and /completions). If you don't know what this is, leave it blank.": "覆盖核心的 API URL (/chat/completions 和 /completions)。如果你不知道这是什么,请留空",
"Please change Strategy to CPU (rwkv.cpp) to use ggml format": "请将Strategy改为CPU (rwkv.cpp)以使用ggml格式",
"Only Auto Play Generated Content": "仅自动播放新生成的内容"
"Only Auto Play Generated Content": "仅自动播放新生成的内容",
"Model has been converted and does not match current strategy. If you are using a new strategy, re-convert the model.": "所选模型已被转换过并且不匹配当前的Strategy。如果你正在使用新的Strategy请重新转换模型"
}

View File

@@ -19,6 +19,7 @@ import { useNavigate } from 'react-router';
import { WindowShow } from '../../wailsjs/runtime';
import { convertToGGML, convertToSt } from '../utils/convert-model';
import { Precision } from '../types/configs';
import { defaultCompositionABCPrompt, defaultCompositionPrompt } from '../pages/defaultConfigs';
const mainButtonText = {
[ModelStatus.Offline]: 'Run',
@@ -257,6 +258,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
commonStore.setStatus({ status: ModelStatus.Working });
let buttonNameMap = {
'novel': 'Completion',
'abc': 'Composition',
'midi': 'Composition'
};
let buttonName = 'Chat';
@@ -264,6 +266,13 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
const buttonFn = () => {
navigate({ pathname: '/' + buttonName.toLowerCase() });
};
if (modelName.toLowerCase().includes('abc') && commonStore.compositionParams.prompt === defaultCompositionPrompt) {
commonStore.setCompositionParams({
...commonStore.compositionParams,
prompt: defaultCompositionABCPrompt
});
commonStore.setCompositionSubmittedPrompt(defaultCompositionABCPrompt);
}
if (modelConfig.modelParameters.device.startsWith('CUDA') &&
modelConfig.modelParameters.storedLayers < modelConfig.modelParameters.maxStoredLayers &&
@@ -282,7 +291,8 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
'invalid header or archive is corrupted': 'The model file is corrupted, please download again.',
'no NVIDIA driver': 'Found no NVIDIA driver, please install the latest driver. If you are not using an Nvidia GPU, please switch the \'Strategy\' to WebGPU or CPU in the Configs page.',
'CUDA out of memory': 'VRAM is not enough, please reduce stored layers or use a lower precision in Configs page.',
'Ninja is required to load C++ extensions': 'Failed to enable custom CUDA kernel, ninja is required to load C++ extensions. You may be using the CPU version of PyTorch, please reinstall PyTorch with CUDA. Or if you are using a custom Python interpreter, you must compile the CUDA kernel by yourself or disable Custom CUDA kernel acceleration.'
'Ninja is required to load C++ extensions': 'Failed to enable custom CUDA kernel, ninja is required to load C++ extensions. You may be using the CPU version of PyTorch, please reinstall PyTorch with CUDA. Or if you are using a custom Python interpreter, you must compile the CUDA kernel by yourself or disable Custom CUDA kernel acceleration.',
're-convert the model': 'Model has been converted and does not match current strategy. If you are using a new strategy, re-convert the model.'
};
const matchedError = Object.entries(errorsMap).find(([key, _]) => error.includes(key));
const message = matchedError ? t(matchedError[1]) : error;

View File

@@ -15,12 +15,13 @@ import { ArrowSync20Regular, Save28Regular } from '@fluentui/react-icons';
import { PlayerElement, VisualizerElement } from 'html-midi-player';
import * as mm from '@magenta/music/esm/core.js';
import { NoteSequence } from '@magenta/music/esm/protobuf.js';
import { defaultCompositionPrompt } from './defaultConfigs';
import { defaultCompositionABCPrompt, defaultCompositionPrompt } from './defaultConfigs';
import {
CloseMidiPort,
FileExists,
OpenFileFolder,
OpenMidiPort,
OpenSaveFileDialog,
OpenSaveFileDialogBytes,
SaveFile,
StartFile
@@ -36,7 +37,9 @@ const CompositionPanel: FC = observer(() => {
const { t } = useTranslation();
const mq = useMediaQuery('(min-width: 640px)');
const inputRef = useRef<HTMLTextAreaElement>(null);
const port = commonStore.getCurrentModelConfig().apiParameters.apiPort;
const modelConfig = commonStore.getCurrentModelConfig();
const port = modelConfig.apiParameters.apiPort;
const isABC = modelConfig.modelParameters.modelName.toLowerCase().includes('abc');
const visualizerRef = useRef<VisualizerElement>(null);
const playerRef = useRef<PlayerElement>(null);
@@ -133,6 +136,13 @@ const CompositionPanel: FC = observer(() => {
}, [commonStore.midiPorts]);
const generateNs = (autoPlay: boolean) => {
if (commonStore.getCurrentModelConfig().modelParameters.modelName.toLowerCase().includes('abc')) {
import('abcjs').then(ABCJS => {
ABCJS.renderAbc('abc-paper', commonStore.compositionParams.prompt, { responsive: 'resize' });
});
return;
}
fetch(getServerRoot(port) + '/text-to-midi', {
method: 'POST',
headers: {
@@ -370,11 +380,13 @@ const CompositionPanel: FC = observer(() => {
<DialogButton className="grow" text={t('Reset')} title={t('Reset')}
contentText={t('Are you sure you want to reset this page? It cannot be undone.')}
onConfirm={() => {
commonStore.setCompositionSubmittedPrompt(defaultCompositionPrompt);
const isABC = commonStore.getCurrentModelConfig().modelParameters.modelName.toLowerCase().includes('abc');
const defaultPrompt = isABC ? defaultCompositionABCPrompt : defaultCompositionPrompt;
commonStore.setCompositionSubmittedPrompt(defaultPrompt);
setParams({
generationStartTime: 0
});
setPrompt(defaultCompositionPrompt);
setPrompt(defaultPrompt);
}} />
<Button className="grow" appearance="primary" onClick={() => {
if (commonStore.compositionGenerating) {
@@ -394,18 +406,33 @@ const CompositionPanel: FC = observer(() => {
</div>
<div className="flex flex-col">
<div className="ml-auto mr-auto">
<midi-visualizer
ref={visualizerRef}
type="waterfall"
/>
{isABC ? <div /> :
<midi-visualizer
ref={visualizerRef}
type="waterfall"
/>}
</div>
<div className="flex">
<midi-player
ref={playerRef}
style={{ width: '100%' }}
/>
{isABC ? <div className="flex flex-col overflow-y-auto grow m-1" style={{ maxHeight: '260px' }}>
<div id="abc-paper" />
</div> :
<midi-player
ref={playerRef}
style={{ width: '100%' }}
/>}
<Button icon={<Save28Regular />} size={mq ? 'large' : 'medium'} appearance={mq ? 'secondary' : 'subtle'}
onClick={() => {
if (isABC) {
OpenSaveFileDialog('*.txt', 'abc-music.txt', commonStore.compositionParams.prompt).then((path) => {
if (path)
toastWithButton(t('File Saved'), t('Open'), () => {
OpenFileFolder(path, false);
});
}).catch((e) => {
toast(t('Error') + ' - ' + (e.message || e), { type: 'error', autoClose: 2500 });
});
return;
}
if (params.midi) {
OpenSaveFileDialogBytes('*.mid', 'music.mid', Array.from(new Uint8Array(params.midi))).then((path) => {
if (path)

View File

@@ -131,7 +131,7 @@ const showError = (e: any) => {
};
const errorsMap = Object.entries({
'python3 ./finetune/lora/train.py': 'Memory is not enough, try to increase the virtual memory (Swap of WSL) or use a smaller base model.',
'python3 ./finetune/lora/$modelInfo': 'Memory is not enough, try to increase the virtual memory (Swap of WSL) or use a smaller base model.',
'cuda out of memory': 'VRAM is not enough',
'valueerror: high <= 0': 'Training data is not enough, reduce context length or add more data for training',
'+= \'+ptx\'': 'Can not find an Nvidia GPU. Perhaps the gpu driver of windows is too old, or you are using WSL 1 for training, please upgrade to WSL 2. e.g. Run "wsl --set-version Ubuntu-22.04 2"',
@@ -299,7 +299,6 @@ const LoraFinetune: FC = observer(() => {
(loraParams.baseModel ? `--load_model models/${loraParams.baseModel} ` : '') +
(loraParams.loraLoad ? `--lora_load lora-models/${loraParams.loraLoad} ` : '') +
`--data_file ${convertedDataPath} ` +
`--vocab_size ${loraParams.baseModel.toLowerCase().includes('world') ? '65536' : '50277'} ` +
`--ctx_len ${ctxLen} --epoch_steps ${loraParams.epochSteps} --epoch_count ${loraParams.epochCount} ` +
`--epoch_begin ${loraParams.epochBegin} --epoch_save ${loraParams.epochSave} ` +
`--micro_bsz ${loraParams.microBsz} --accumulate_grad_batches ${loraParams.accumGradBatches} ` +

View File

@@ -2,6 +2,17 @@ import { CompletionPreset } from '../types/completion';
import { ModelConfig } from '../types/configs';
export const defaultCompositionPrompt = '<pad>';
export const defaultCompositionABCPrompt='S:3\n' +
'B:9\n' +
'E:4\n' +
'B:9\n' +
'E:4\n' +
'E:4\n' +
'B:9\n' +
'L:1/8\n' +
'M:3/4\n' +
'K:D\n' +
' Bc |"G" d2 cB"A" A2 FE |"Bm" F2 B4 F^G |'
export const defaultPresets: CompletionPreset[] = [{
name: 'Writer',

View File

@@ -49,7 +49,7 @@ export async function startup() {
async function initRemoteText() {
await fetch('https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/manifest.json', { cache: 'no-cache' })
.then(r => r.json()).then((data) => {
if (data.version > manifest.version) {
if (data.version >= manifest.version) {
if (data.introduction)
commonStore.setIntroduction(data.introduction);
if (data.about)

View File

@@ -1,5 +1,5 @@
{
"version": "1.6.5",
"version": "1.6.7",
"introduction": {
"en": "RWKV is an open-source, commercially usable large language model with high flexibility and great potential for development.\n### About This Tool\nThis tool aims to lower the barrier of entry for using large language models, making it accessible to everyone. It provides fully automated dependency and model management. You simply need to click and run, following the instructions, to deploy a local large language model. The tool itself is very compact and only requires a single executable file for one-click deployment.\nAdditionally, this tool offers an interface that is fully compatible with the OpenAI API. This means you can use any ChatGPT client as a client for RWKV, enabling capability expansion beyond just chat functionality.\n### Preset Configuration Rules at the Bottom\nThis tool comes with a series of preset configurations to reduce complexity. The naming rules for each configuration represent the following in order: device - required VRAM/memory - model size - model language.\nFor example, \"GPU-8G-3B-EN\" indicates that this configuration is for a graphics card with 8GB of VRAM, a model size of 3 billion parameters, and it uses an English language model.\nLarger model sizes have higher performance and VRAM requirements. Among configurations with the same model size, those with higher VRAM usage will have faster runtime.\nFor example, if you have 12GB of VRAM but running the \"GPU-12G-7B-EN\" configuration is slow, you can downgrade to \"GPU-8G-3B-EN\" for a significant speed improvement.\n### About RWKV\nRWKV is an RNN with Transformer-level LLM performance, which can also be directly trained like a GPT transformer (parallelizable). And it's 100% attention-free. You only need the hidden state at position t to compute the state at position t+1. You can use the \"GPT\" mode to quickly compute the hidden state for the \"RNN\" mode.<br/>So it's combining the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, \"infinite\" ctx_len, and free sentence embedding (using the final hidden state).",
"zh": "RWKV是一个开源且允许商用的大语言模型灵活性很高且极具发展潜力。\n### 关于本工具\n本工具旨在降低大语言模型的使用门槛做到人人可用本工具提供了全自动化的依赖和模型管理你只需要直接点击运行跟随引导即可完成本地大语言模型的部署工具本身体积极小只需要一个exe即可完成一键部署。\n此外本工具提供了与OpenAI API完全兼容的接口这意味着你可以把任意ChatGPT客户端用作RWKV的客户端实现能力拓展而不局限于聊天。\n### 底部的预设配置规则\n本工具内置了一系列预设配置以降低使用难度每个配置名的规则依次代表着设备-所需显存/内存-模型规模-模型语言。\n例如GPU-8G-3B-CN表示该配置用于显卡需要8G显存模型规模为30亿参数使用的是中文模型。\n模型规模越大性能要求越高显存要求也越高而同样模型规模的配置中显存占用越高的运行速度越快。\n例如当你有12G显存但运行GPU-12G-7B-CN配置速度比较慢可降级成GPU-8G-3B-CN将会大幅提速。\n### 关于RWKV\nRWKV是具有Transformer级别LLM性能的RNN也可以像GPT Transformer一样直接进行训练可并行化。而且它是100% attention-free的。你只需在位置t处获得隐藏状态即可计算位置t + 1处的状态。你可以使用“GPT”模式快速计算用于“RNN”模式的隐藏状态。\n因此它将RNN和Transformer的优点结合起来 - 高性能、快速推理、节省显存、快速训练、“无限”上下文长度以及免费的语句嵌入(使用最终隐藏状态)。"
@@ -1214,6 +1214,24 @@
"Music"
]
},
{
"name": "RWKV-4-ABC-82M-v1-20230805-ctx1024.pth",
"desc": {
"en": "Music ABC 82M v1",
"zh": "作曲 ABC 82M v1",
"ja": "作曲 ABC 82M v1"
},
"size": 164183345,
"SHA256": "4c83859f387bc3953d19890338a3e50ea7f2278e1bbb9d6eae9b773c81958a01",
"lastUpdated": "2023-08-06T05:46:55",
"url": "https://huggingface.co/BlinkDL/rwkv-4-music/blob/main/RWKV-4-ABC-82M-v1-20230805-ctx1024.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-music/resolve/main/RWKV-4-ABC-82M-v1-20230805-ctx1024.pth",
"tags": [
"Main",
"RWKV-4",
"Music"
]
},
{
"name": "RWKV-5-MIDI-120M-v1-20230728-ctx4096.pth",
"desc": {
@@ -1249,6 +1267,24 @@
"RWKV-5",
"Music"
]
},
{
"name": "RWKV-5-ABC-82M-v1-20230901-ctx1024.pth",
"desc": {
"en": "RWKV-5 Music ABC 82M v1",
"zh": "RWKV-5 作曲 ABC 82M v1",
"ja": "RWKV-5 作曲 ABC 82M v1"
},
"size": 164222002,
"SHA256": "5bf9ae32e4ef05c3851d6010709c6c00dda926d110766b9a712bc48c0a53e098",
"lastUpdated": "2023-09-02T06:55:12",
"url": "https://huggingface.co/BlinkDL/rwkv-5-music/blob/main/RWKV-5-ABC-82M-v1-20230901-ctx1024.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-5-music/resolve/main/RWKV-5-ABC-82M-v1-20230901-ctx1024.pth",
"tags": [
"Main",
"RWKV-5",
"Music"
]
}
]
}