Compare commits

..

135 Commits

Author SHA1 Message Date
dependabot[bot]
3850ee4bf8 chore(deps): bump actions/download-artifact from 3 to 4
Bumps [actions/download-artifact](https://github.com/actions/download-artifact) from 3 to 4.
- [Release notes](https://github.com/actions/download-artifact/releases)
- [Commits](https://github.com/actions/download-artifact/compare/v3...v4)

---
updated-dependencies:
- dependency-name: actions/download-artifact
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-11 19:19:42 +00:00
github-actions[bot]
7fbcb5e810 release v1.7.3 2024-03-11 11:08:54 +00:00
josc146
2604d3c47b release v1.7.3 2024-03-11 19:07:08 +08:00
josc146
bb1a6191b0 prevent 'torch' has no attribute 'cuda' error in torch_gc, so user can use CPU or WebGPU (#302) 2024-03-11 19:04:19 +08:00
josc146
dd89041f72 dep_check.py now ignores GPUtil 2024-03-11 18:55:37 +08:00
josc146
91eb72e515 fix the issue where penalty_decay and global_penalty are not being passed to the backend default config when running the model through client 2024-03-11 18:52:35 +08:00
josc146
1c7436c34b fix max_tokens parameter of Chat page not being passed to backend 2024-03-11 18:52:33 +08:00
Steven Hangger
8678f376e9 fix(rwkv.cpp): add build step for librwkv.so 2024-03-07 23:51:32 +09:00
Steven Hangger
050154f406 feat(docker): add Docker support 2024-03-07 23:51:32 +09:00
dependabot[bot]
b3eae8bcfa chore(deps): bump crazy-max/ghaction-chocolatey from 2 to 3
Bumps [crazy-max/ghaction-chocolatey](https://github.com/crazy-max/ghaction-chocolatey) from 2 to 3.
- [Release notes](https://github.com/crazy-max/ghaction-chocolatey/releases)
- [Commits](https://github.com/crazy-max/ghaction-chocolatey/compare/v2...v3)

---
updated-dependencies:
- dependency-name: crazy-max/ghaction-chocolatey
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-05 13:54:36 +09:00
dependabot[bot]
c720362886 chore(deps): bump actions/setup-go from 4 to 5
Bumps [actions/setup-go](https://github.com/actions/setup-go) from 4 to 5.
- [Release notes](https://github.com/actions/setup-go/releases)
- [Commits](https://github.com/actions/setup-go/compare/v4...v5)

---
updated-dependencies:
- dependency-name: actions/setup-go
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-05 13:53:10 +09:00
dependabot[bot]
93029d3f5c chore(deps): bump actions/checkout from 3 to 4
Bumps [actions/checkout](https://github.com/actions/checkout) from 3 to 4.
- [Release notes](https://github.com/actions/checkout/releases)
- [Changelog](https://github.com/actions/checkout/blob/main/CHANGELOG.md)
- [Commits](https://github.com/actions/checkout/compare/v3...v4)

---
updated-dependencies:
- dependency-name: actions/checkout
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-05 13:53:05 +09:00
dependabot[bot]
28244a57b4 chore(deps): bump actions/setup-python from 4 to 5
Bumps [actions/setup-python](https://github.com/actions/setup-python) from 4 to 5.
- [Release notes](https://github.com/actions/setup-python/releases)
- [Commits](https://github.com/actions/setup-python/compare/v4...v5)

---
updated-dependencies:
- dependency-name: actions/setup-python
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-05 13:52:59 +09:00
dependabot[bot]
f6ba9d7451 Bump fastapi from 0.104.0 to 0.109.1 in /backend-python
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.104.0 to 0.109.1.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.104.0...0.109.1)

---
updated-dependencies:
- dependency-name: fastapi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-05 13:51:37 +09:00
dependabot[bot]
96e431e06b Bump python-multipart from 0.0.6 to 0.0.7 in /backend-python
Bumps [python-multipart](https://github.com/andrew-d/python-multipart) from 0.0.6 to 0.0.7.
- [Release notes](https://github.com/andrew-d/python-multipart/releases)
- [Changelog](https://github.com/Kludex/python-multipart/blob/master/CHANGELOG.md)
- [Commits](https://github.com/andrew-d/python-multipart/compare/0.0.6...0.0.7)

---
updated-dependencies:
- dependency-name: python-multipart
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-05 13:50:47 +09:00
josc146
cb6ddb3674 add pre-release workflow 2024-03-05 12:49:17 +08:00
josc146
07d4ba0d6b fix a generation exception caused by potentially dangerous regex being passed into the stop array 2024-03-04 21:20:53 +08:00
github-actions[bot]
ac139d5bda release v1.7.2 2024-03-02 11:48:20 +00:00
josc146
14acfc1d81 release v1.7.2 2024-03-02 19:47:53 +08:00
josc146
2947162cc4 update defaultModelConfigs 2024-03-02 19:45:14 +08:00
josc146
4f14074a75 expose global_penalty 2024-03-02 17:50:41 +08:00
josc146
53a5574080 improve parameters controllable range 2024-03-02 16:52:53 +08:00
josc146
d91c3c004d allow setting tokenChunkSize of WebGPU mode 2024-03-02 16:41:29 +08:00
github-actions[bot]
c90cefc453 release v1.7.1 2024-03-01 08:03:52 +00:00
josc146
b8abd2fef3 release v1.7.1 2024-03-01 16:03:22 +08:00
josc146
887ba06bd6 allow setting quantizedLayers of WebGPU mode; chore 2024-03-01 14:23:05 +08:00
josc146
c9513822c9 fix the issue where state cache could be modified leading to inconsistent hit results 2024-03-01 13:35:16 +08:00
josc146
e3baa0da86 improve occurrence[token] condition 2024-03-01 13:18:03 +08:00
josc146
ba9aab920e hide MPS and CUDA-Beta Options 2024-03-01 13:09:09 +08:00
josc146
b0f2ef65d9 improve occurrence[token] condition 2024-02-29 17:54:33 +08:00
josc146
c13b28561d update manifest 2024-02-29 17:21:07 +08:00
josc146
5c88ccd9e6 update manifest 2024-02-28 23:48:17 +08:00
josc146
e0a6a279b3 add python3-dev to lora fine-tune dependencies 2024-02-28 23:34:49 +08:00
josc146
9bb3a90977 enable useHfMirror by default for chinese users 2024-02-28 23:28:31 +08:00
josc146
02bbd18acf fix convert_safetensors.py for rwkv6 2024-02-28 23:25:46 +08:00
josc146
18ab8b141f disable AVOID_PENALTY_TOKENS 2024-02-28 23:12:58 +08:00
github-actions[bot]
225abc5202 release v1.7.0 2024-02-21 16:10:31 +00:00
josc146
d33dff7723 release v1.7.0 2024-02-22 01:10:01 +09:00
josc146
771027211a chore 2024-02-22 01:05:52 +09:00
josc146
94fe71b49c change AVOID_PENALTY to \n only 2024-02-22 01:04:05 +09:00
josc146
fafd9f7f6e upgrade to rwkv 0.8.25 2024-02-21 23:50:05 +08:00
josc146
85b10993ec update manifest.json 2024-02-12 14:30:36 +08:00
Guillermo Marcus
11f1d66383 fix typo in requirements.txt 2024-02-06 19:59:50 +08:00
josc146
38e89aec18 update README 2024-02-06 12:21:05 +08:00
josc146
3e336830a3 chore 2024-02-06 12:19:12 +08:00
josc146
a1ae71d221 fix /update-config can make the default value of unclearly specified fields invalid by passing in None fields 2024-02-05 22:27:02 +08:00
github-actions[bot]
0703993bfd release v1.6.9 2024-02-05 04:44:24 +00:00
josc146
50a666a350 release v1.6.9 2024-02-05 12:40:23 +08:00
josc146
9ea86ee4b1 update Related Repositories 2024-02-05 12:32:07 +08:00
josc146
94580f825e chore 2024-02-05 12:31:26 +08:00
josc146
d5cca4e542 improve macos experience 2024-02-05 00:25:04 +08:00
josc146
f1986fa9d0 feat: History Message Number 2024-02-04 23:11:23 +08:00
josc146
1c025c3d29 feat: load conversation 2024-02-04 22:03:59 +08:00
josc146
4added7390 add markdown renderer switch 2024-02-04 20:21:42 +08:00
josc146
ee5cca3ff3 chore 2024-02-04 19:34:36 +08:00
josc146
0da92ec7bf improve fine-tune performance 2024-02-04 19:33:32 +08:00
josc146
e3e075e432 add parse_api_log.py, this script can extract formatted data from api.log 2024-02-04 19:30:47 +08:00
josc146
19eeeab1e1 add AVOID_PENALTY_TOKENS 2024-02-04 16:49:46 +08:00
josc146
78238c24cf update defaultPresets 2024-02-04 16:47:34 +08:00
josc146
932281db0a add Penalty Decay slider to Chat page 2024-02-03 22:40:30 +08:00
josc146
843840baa0 expose penalty_decay, top_k 2024-02-03 22:03:10 +08:00
josc146
7cba526913 update manifest.json 2024-02-03 21:35:28 +08:00
josc146
7fe70c949e update defaultPresets 2024-02-03 21:23:04 +08:00
josc146
1c1c9e2c5f update defaultModelConfigs 2024-02-03 20:39:18 +08:00
josc146
26c2954c8e web-rwkv-py 0.1.2 (Support V4, V5 and V6) https://github.com/cryscan/web-rwkv-py 2024-02-03 20:32:23 +08:00
josc146
5329537a2f improve path processing 2024-02-03 20:29:56 +08:00
josc146
e07f0fa6e3 improve path processing 2024-02-03 15:13:24 +08:00
josc146
b077f1fe42 reduce package size 2024-02-03 13:05:02 +08:00
josc146
5f94d86558 add better custom tokenizer support and tokenizer-midipiano.json 2024-02-03 13:04:13 +08:00
josc146
947e127e34 improve path processing 2024-02-02 22:00:01 +08:00
josc146
95502b900d fix WSL2 WindowsOptionalFeature: Microsoft-Windows-Subsystem-Linux -> VirtualMachinePlatform 2024-01-31 21:35:36 +08:00
josc146
16b636ef83 add EOS state cache point 2024-01-31 21:33:27 +08:00
josc146
4339ce20d5 rename manifest tag "Main" -> "Official" 2024-01-31 21:31:54 +08:00
josc146
c31fc22b6b fix finetune errorsMap ($modelInfo) 2024-01-31 21:31:03 +08:00
josc146
7f49c6025b update manifest.json 2024-01-29 19:41:45 +08:00
github-actions[bot]
2d4f436ebf release v1.6.8 2024-01-05 05:54:16 +00:00
josc146
549f32a743 release v1.6.8 2024-01-05 13:53:50 +08:00
josc146
e3b3452a73 basic abc frontend support 2024-01-05 13:47:00 +08:00
josc146
62350d975d fix finetune errorsMap ($modelInfo) 2024-01-05 12:46:14 +08:00
josc146
8d84b326b8 basic abc frontend support 2024-01-05 12:45:41 +08:00
josc146
16079a3cba abc music inference support 2024-01-05 12:44:44 +08:00
github-actions[bot]
ff330a5487 release v1.6.7 2023-12-29 04:26:57 +00:00
josc146
94b3882d30 release v1.6.7 2023-12-29 12:26:33 +08:00
josc146
81544ca8b3 rwkv5 lora finetune support (https://github.com/JL-er/RWKV-v5-lora) 2023-12-29 12:23:36 +08:00
josc146
b7f4dd835e chore 2023-12-29 00:38:33 +08:00
josc146
7e2380e4ed fix body.state 2023-12-28 23:53:58 +08:00
josc146
7f3cfd54b0 improve state cache performance 2023-12-28 22:15:31 +08:00
josc146
e083f2c629 webgpu(python) state cache 2023-12-28 20:43:57 +08:00
josc146
e33858f110 improve memory usage and speed of convert_safetensors.py 2023-12-26 23:50:51 +08:00
github-actions[bot]
da01a33152 release v1.6.6 2023-12-25 13:03:06 +00:00
josc146
8ca920a114 release v1.6.6 2023-12-25 21:02:26 +08:00
josc146
5f3d449a66 improve Models page 2023-12-25 20:37:40 +08:00
josc146
13735e7dfb chore 2023-12-25 20:35:00 +08:00
josc146
a38d5c3a25 enable web-rwkv-py turbo 2023-12-25 20:34:35 +08:00
josc146
5bae637c67 update Related Repositories 2023-12-25 20:32:54 +08:00
josc146
12e488ba80 improve strategy 2023-12-25 19:30:57 +08:00
josc146
ad30c63c69 update Writer preset params 2023-12-25 19:30:14 +08:00
josc146
a116eff7df webgpu max_buffer_size 2023-12-25 18:08:13 +08:00
josc146
01bc355dde allow manifest customTokenizer 2023-12-25 16:57:32 +08:00
josc146
8e05f3c360 chore 2023-12-25 16:56:46 +08:00
josc146
fde988dd4e update manifest.json 2023-12-25 16:08:20 +08:00
josc146
91401ad14f * text=auto eol=lf 2023-12-24 22:51:23 +08:00
josc146
280194647c improve refreshRemoteModels 2023-12-22 14:44:27 +08:00
josc146
2e0a542f33 improve train_log.txt creation 2023-12-22 13:00:13 +08:00
josc146
b988694da7 better CopyEmbed 2023-12-22 12:47:26 +08:00
josc146
512c4d0f73 improve role-playing effect 2023-12-22 10:51:09 +08:00
josc146
5525fb1470 chore 2023-12-22 10:49:28 +08:00
josc146
4db735e026 update readme 2023-12-21 13:46:51 +08:00
josc146
c8c79c39d1 Create dependabot.yml 2023-12-21 12:56:21 +08:00
josc146
bcfb76d8ca update readme 2023-12-19 14:59:02 +08:00
josc146
2d9aaf8fc9 update readme 2023-12-18 19:55:25 +08:00
josc146
8a3905c09a reduce precompiled web_rwkv_py size 2023-12-15 16:26:01 +08:00
github-actions[bot]
54cd8a46fa release v1.6.5 2023-12-14 14:09:13 +00:00
josc146
1b83bf261a release v1.6.5 2023-12-14 22:07:17 +08:00
josc146
2a7d22dab1 Composition Option: Only Auto Play Generated Content 2023-12-14 22:06:39 +08:00
josc146
f7494b0cfb update midi_filter_config.json 2023-12-14 21:18:48 +08:00
github-actions[bot]
9ca91d59ec release v1.6.4 2023-12-14 12:40:56 +00:00
josc146
11feaa6e68 release v1.6.4 2023-12-14 20:40:24 +08:00
josc146
18d4b2304e WebGPU (Python) strategy 2023-12-14 20:39:42 +08:00
github-actions[bot]
2f45e9c33a release v1.6.3 2023-12-14 10:43:36 +00:00
josc146
f7df10cb66 release v1.6.3 2023-12-14 18:42:58 +08:00
josc146
46e9a2f5b2 add precompiled web_rwkv_py 2023-12-14 18:42:00 +08:00
josc146
69b8d2e0a1 fix refreshBuiltInModels 2023-12-14 18:37:37 +08:00
josc146
0ddd2e9fea add WebGPU Python Mode (https://github.com/cryscan/web-rwkv-py) 2023-12-14 18:37:07 +08:00
josc146
01c95f5bc4 chore 2023-12-14 14:13:12 +08:00
josc146
e0bf44d82f bump MIDI-LLM-tokenizer (fix note off) 2023-12-14 13:33:27 +08:00
josc146
f328e84ea7 update Readme_Install.txt 2023-12-13 15:23:34 +08:00
github-actions[bot]
c81f5015a1 release v1.6.2 2023-12-12 15:51:23 +00:00
josc146
e2b086e2f7 release v1.6.2 2023-12-12 23:50:56 +08:00
josc146
da632565d5 fix windows cmd waiting 2023-12-12 23:48:32 +08:00
josc146
556b667cc0 improve prompts 2023-12-12 23:27:19 +08:00
josc146
82c9825da8 rwkv.cpp python38 compatibility 2023-12-12 23:19:18 +08:00
josc146
26b30f0dbe add load failed traceback 2023-12-12 23:16:48 +08:00
josc146
be3b69c65c fix v1.6.1 CmdHelper 2023-12-12 23:04:24 +08:00
github-actions[bot]
07cab6949e release v1.6.1 2023-12-12 14:38:47 +00:00
105 changed files with 73653 additions and 764 deletions

2
.gitattributes vendored
View File

@@ -1,3 +1,5 @@
* text=auto eol=lf
backend-python/rwkv_pip/** linguist-vendored
backend-python/wkv_cuda_utils/** linguist-vendored
backend-python/get-pip.py linguist-vendored

9
.github/dependabot.yml vendored Normal file
View File

@@ -0,0 +1,9 @@
version: 2
updates:
- package-ecosystem: "github-actions"
directory: "/"
schedule:
interval: "weekly"
commit-message:
prefix: "chore"
include: "scope"

171
.github/workflows/docker.yml vendored Normal file
View File

@@ -0,0 +1,171 @@
name: Publish Docker Image
on: [push]
concurrency:
group: ${{ github.ref }}-${{ github.workflow }}
cancel-in-progress: true
jobs:
docker_build:
name: Build ${{ matrix.arch }} Image
runs-on: ubuntu-latest
strategy:
matrix:
include:
- arch: amd64
name: amd64
# - arch: arm64
# name: arm64
steps:
- name: Free up disk spaces
run: |
sudo rm -rf /usr/share/dotnet || true
sudo rm -rf /opt/ghc || true
sudo rm -rf "/usr/local/share/boost" || true
sudo rm -rf "$AGENT_TOOLSDIRECTORY" || true
- name: Get lowercase string for the repository name
id: lowercase-repo-name
uses: ASzc/change-string-case-action@v2
with:
string: ${{ github.event.repository.name }}
- name: Checkout base
uses: actions/checkout@v2
with:
fetch-depth: 0
- name: Cache Docker layers
uses: actions/cache@v2
with:
path: /tmp/.buildx-cache
key: ${{ github.ref }}-${{ matrix.arch }}
restore-keys: |
${{ github.ref }}-${{ matrix.arch }}
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
with:
platforms: linux/${{ matrix.arch }}
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
- name: Docker login
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Get commit SHA
id: vars
run: echo "::set-output name=sha_short::$(git rev-parse --short HEAD)"
- name: Build and export
id: build
if: github.ref == 'refs/heads/master'
uses: docker/build-push-action@v3
with:
push: true
platforms: linux/${{ matrix.arch }}
tags: ${{ secrets.DOCKER_USERNAME }}/${{ steps.lowercase-repo-name.outputs.lowercase }}:${{ matrix.name }}-latest
build-args: |
SHA=${{ steps.vars.outputs.sha_short }}
outputs: type=image,push=true
cache-from: type=local,src=/tmp/.buildx-cache
cache-to: type=local,dest=/tmp/.buildx-cache
- name: Replace tag without `v`
if: startsWith(github.ref, 'refs/tags/')
uses: actions/github-script@v1
id: version
with:
script: |
return context.payload.ref.replace(/\/?refs\/tags\/v/, '')
result-encoding: string
- name: Build release and export
id: build_rel
if: startsWith(github.ref, 'refs/tags/')
uses: docker/build-push-action@v3
with:
push: true
platforms: linux/${{ matrix.arch }}
tags: ${{ secrets.DOCKER_USERNAME }}/${{ steps.lowercase-repo-name.outputs.lowercase }}:${{ matrix.name }}-${{steps.version.outputs.result}}
build-args: |
SHA=${{ steps.version.outputs.result }}
outputs: type=image,push=true
cache-from: type=local,src=/tmp/.buildx-cache
cache-to: type=local,dest=/tmp/.buildx-cache
- name: Save digest
if: github.ref == 'refs/heads/master'
run: echo ${{ steps.build.outputs.digest }} > /tmp/digest.txt
- name: Save release digest
if: startsWith(github.ref, 'refs/tags/')
run: echo ${{ steps.build_rel.outputs.digest }} > /tmp/digest.txt
- name: Upload artifact
uses: actions/upload-artifact@v3
with:
name: digest_${{ matrix.name }}
path: /tmp/digest.txt
manifests:
name: Build manifests
needs: [docker_build]
runs-on: ubuntu-latest
steps:
- name: Get lowercase string for the repository name
id: lowercase-repo-name
uses: ASzc/change-string-case-action@v2
with:
string: ${{ github.event.repository.name }}
- name: Checkout base
uses: actions/checkout@v2
with:
fetch-depth: 0
# https://github.com/docker/setup-qemu-action
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
# https://github.com/docker/setup-buildx-action
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
with:
config-inline: |
[worker.oci]
max-parallelism = 1
- name: Download artifact
uses: actions/download-artifact@v4
with:
path: /tmp/images/
- name: Docker login
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Replace tag without `v`
if: startsWith(github.ref, 'refs/tags/')
uses: actions/github-script@v1
id: version
with:
script: |
return context.payload.ref.replace(/\/?refs\/tags\/v/, '')
result-encoding: string
- name: Merge and push manifest on master branch
if: github.ref == 'refs/heads/master'
run: python scripts/merge_manifest.py "${{ secrets.DOCKER_USERNAME }}/${{ steps.lowercase-repo-name.outputs.lowercase }}"
- name: Merge and push manifest on release
if: startsWith(github.ref, 'refs/tags/')
run: python scripts/merge_manifest.py "${{ secrets.DOCKER_USERNAME }}/${{ steps.lowercase-repo-name.outputs.lowercase }}" ${{steps.version.outputs.result}}

117
.github/workflows/pre-release.yml vendored Normal file
View File

@@ -0,0 +1,117 @@
name: pre-release
on:
workflow_dispatch:
push:
branches:
- master
paths:
- "backend-python/**"
tags-ignore:
- "v*"
jobs:
windows:
runs-on: windows-2022
steps:
- uses: actions/checkout@v4
with:
ref: master
- uses: actions/setup-go@v5
with:
go-version: '1.20.5'
- uses: actions/setup-python@v5
id: cp310
with:
python-version: '3.10'
- uses: crazy-max/ghaction-chocolatey@v3
with:
args: install upx
- run: |
Start-BitsTransfer https://github.com/josStorer/ai00_rwkv_server/releases/latest/download/webgpu_server_windows_x86_64.exe ./backend-rust/webgpu_server.exe
Start-BitsTransfer https://github.com/josStorer/web-rwkv-converter/releases/latest/download/web-rwkv-converter_windows_x86_64.exe ./backend-rust/web-rwkv-converter.exe
Start-BitsTransfer https://github.com/josStorer/LibreHardwareMonitor.Console/releases/latest/download/LibreHardwareMonitor.Console.zip ./LibreHardwareMonitor.Console.zip
Expand-Archive ./LibreHardwareMonitor.Console.zip -DestinationPath ./components/LibreHardwareMonitor.Console
Start-BitsTransfer https://www.python.org/ftp/python/3.10.11/python-3.10.11-embed-amd64.zip ./python-3.10.11-embed-amd64.zip
Expand-Archive ./python-3.10.11-embed-amd64.zip -DestinationPath ./py310
$content=Get-Content "./py310/python310._pth"; $content | ForEach-Object {if ($_.ReadCount -eq 3) {"Lib\\site-packages"} else {$_}} | Set-Content ./py310/python310._pth
./py310/python ./backend-python/get-pip.py
./py310/python -m pip install Cython==3.0.4
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../include" -Destination "py310/include" -Recurse
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../libs" -Destination "py310/libs" -Recurse
./py310/python -m pip install cyac==1.9
go install github.com/wailsapp/wails/v2/cmd/wails@latest
del ./backend-python/rwkv_pip/cpp/librwkv.dylib
del ./backend-python/rwkv_pip/cpp/librwkv.so
(Get-Content -Path ./backend-golang/app.go) -replace "//go:custom_build windows ", "" | Set-Content -Path ./backend-golang/app.go
(Get-Content -Path ./backend-golang/utils.go) -replace "//go:custom_build windows ", "" | Set-Content -Path ./backend-golang/utils.go
make
Rename-Item -Path "build/bin/RWKV-Runner.exe" -NewName "RWKV-Runner_windows_x64.exe"
- uses: actions/upload-artifact@v4
with:
name: RWKV-Runner_windows_x64.exe
path: build/bin/RWKV-Runner_windows_x64.exe
linux:
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v4
with:
ref: master
- uses: actions/setup-go@v5
with:
go-version: '1.20.5'
- run: |
wget https://github.com/josStorer/ai00_rwkv_server/releases/latest/download/webgpu_server_linux_x86_64 -O ./backend-rust/webgpu_server
wget https://github.com/josStorer/web-rwkv-converter/releases/latest/download/web-rwkv-converter_linux_x86_64 -O ./backend-rust/web-rwkv-converter
sudo apt-get update
sudo apt-get install upx
sudo apt-get install build-essential libgtk-3-dev libwebkit2gtk-4.0-dev libasound2-dev
go install github.com/wailsapp/wails/v2/cmd/wails@latest
rm ./backend-python/rwkv_pip/wkv_cuda.pyd
rm ./backend-python/rwkv_pip/rwkv5.pyd
rm ./backend-python/rwkv_pip/rwkv6.pyd
rm ./backend-python/rwkv_pip/beta/wkv_cuda.pyd
rm ./backend-python/get-pip.py
rm ./backend-python/rwkv_pip/cpp/librwkv.dylib
rm ./backend-python/rwkv_pip/cpp/rwkv.dll
rm ./backend-python/rwkv_pip/webgpu/web_rwkv_py.cp310-win_amd64.pyd
make
mv build/bin/RWKV-Runner build/bin/RWKV-Runner_linux_x64
- uses: actions/upload-artifact@v4
with:
name: RWKV-Runner_linux_x64
path: build/bin/RWKV-Runner_linux_x64
macos:
runs-on: macos-13
steps:
- uses: actions/checkout@v4
with:
ref: master
- uses: actions/setup-go@v5
with:
go-version: '1.20.5'
- run: |
wget https://github.com/josStorer/ai00_rwkv_server/releases/latest/download/webgpu_server_darwin_aarch64 -O ./backend-rust/webgpu_server
wget https://github.com/josStorer/web-rwkv-converter/releases/latest/download/web-rwkv-converter_darwin_aarch64 -O ./backend-rust/web-rwkv-converter
go install github.com/wailsapp/wails/v2/cmd/wails@latest
rm ./backend-python/rwkv_pip/wkv_cuda.pyd
rm ./backend-python/rwkv_pip/rwkv5.pyd
rm ./backend-python/rwkv_pip/rwkv6.pyd
rm ./backend-python/rwkv_pip/beta/wkv_cuda.pyd
rm ./backend-python/get-pip.py
rm ./backend-python/rwkv_pip/cpp/rwkv.dll
rm ./backend-python/rwkv_pip/cpp/librwkv.so
rm ./backend-python/rwkv_pip/webgpu/web_rwkv_py.cp310-win_amd64.pyd
make
cp build/darwin/Readme_Install.txt build/bin/Readme_Install.txt
cp build/bin/RWKV-Runner.app/Contents/MacOS/RWKV-Runner build/bin/RWKV-Runner_darwin_universal
cd build/bin && zip -r RWKV-Runner_macos_universal.zip RWKV-Runner.app Readme_Install.txt
- uses: actions/upload-artifact@v4
with:
name: RWKV-Runner_macos_universal.zip
path: build/bin/RWKV-Runner_macos_universal.zip

View File

@@ -14,7 +14,7 @@ jobs:
runs-on: ubuntu-22.04
steps:
- run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
ref: master
@@ -38,17 +38,17 @@ jobs:
runs-on: windows-2022
needs: create-draft
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
ref: master
- uses: actions/setup-go@v4
- uses: actions/setup-go@v5
with:
go-version: '1.20.5'
- uses: actions/setup-python@v4
- uses: actions/setup-python@v5
id: cp310
with:
python-version: '3.10'
- uses: crazy-max/ghaction-chocolatey@v2
- uses: crazy-max/ghaction-chocolatey@v3
with:
args: install upx
- run: |
@@ -78,10 +78,10 @@ jobs:
runs-on: ubuntu-20.04
needs: create-draft
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
ref: master
- uses: actions/setup-go@v4
- uses: actions/setup-go@v5
with:
go-version: '1.20.5'
- run: |
@@ -98,6 +98,7 @@ jobs:
rm ./backend-python/get-pip.py
rm ./backend-python/rwkv_pip/cpp/librwkv.dylib
rm ./backend-python/rwkv_pip/cpp/rwkv.dll
rm ./backend-python/rwkv_pip/webgpu/web_rwkv_py.cp310-win_amd64.pyd
make
mv build/bin/RWKV-Runner build/bin/RWKV-Runner_linux_x64
@@ -107,10 +108,10 @@ jobs:
runs-on: macos-13
needs: create-draft
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
ref: master
- uses: actions/setup-go@v4
- uses: actions/setup-go@v5
with:
go-version: '1.20.5'
- run: |
@@ -124,6 +125,7 @@ jobs:
rm ./backend-python/get-pip.py
rm ./backend-python/rwkv_pip/cpp/rwkv.dll
rm ./backend-python/rwkv_pip/cpp/librwkv.so
rm ./backend-python/rwkv_pip/webgpu/web_rwkv_py.cp310-win_amd64.pyd
make
cp build/darwin/Readme_Install.txt build/bin/Readme_Install.txt
cp build/bin/RWKV-Runner.app/Contents/MacOS/RWKV-Runner build/bin/RWKV-Runner_darwin_universal
@@ -135,5 +137,5 @@ jobs:
runs-on: ubuntu-22.04
needs: [ windows, linux, macos ]
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- run: gh release edit ${{github.ref_name}} --draft=false

1
.gitignore vendored
View File

@@ -19,7 +19,6 @@ __pycache__
/cmd-helper.bat
/install-py-dep.bat
/backend-python/wkv_cuda
/backend-python/rwkv*
*.exe
*.old
.DS_Store

View File

@@ -1,13 +1,30 @@
## Changes
- rwkv.cpp(ggml) support
- allow playing mid with external player
- allow overriding Core API URL
- chore
### Features
- add Docker support (#291) @LonghronShen
### Fixes
- fix a generation exception caused by potentially dangerous regex being passed into the stop array
- fix max_tokens parameter of Chat page not being passed to backend
- fix the issue where penalty_decay and global_penalty are not being passed to the backend default config when running
the model through client
### Improvements
- prevent 'torch' has no attribute 'cuda' error in torch_gc, so user can use CPU or WebGPU (#302)
### Chores
- bump dependencies
- add pre-release workflow
- dep_check.py now ignores GPUtil
## Install
- Windows: https://github.com/josStorer/RWKV-Runner/blob/master/build/windows/Readme_Install.txt
- MacOS: https://github.com/josStorer/RWKV-Runner/blob/master/build/darwin/Readme_Install.txt
- Linux: https://github.com/josStorer/RWKV-Runner/blob/master/build/linux/Readme_Install.txt
- Server-Deploy-Examples: https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples
- Simple Deploy Example: https://github.com/josStorer/RWKV-Runner/blob/master/README.md#simple-deploy-example
- Server Deploy Examples: https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples

55
Dockerfile Normal file
View File

@@ -0,0 +1,55 @@
FROM node:21-slim AS frontend
RUN echo "registry=https://registry.npmmirror.com/" > ~/.npmrc
WORKDIR /app
COPY manifest.json manifest.json
COPY frontend frontend
WORKDIR /app/frontend
RUN npm ci
RUN npm run build
FROM nvidia/cuda:11.6.1-devel-ubuntu20.04 AS runtime
ENV DEBIAN_FRONTEND=noninteractive
RUN apt update && \
apt install -yq git curl wget build-essential ninja-build aria2 jq software-properties-common
RUN add-apt-repository -y ppa:deadsnakes/ppa && \
add-apt-repository -y ppa:ubuntu-toolchain-r/test && \
apt install -y g++-11 python3.10 python3.10-distutils python3.10-dev && \
curl -sS http://mirrors.aliyun.com/pypi/get-pip.py | python3.10
RUN python3.10 -m pip install cmake
FROM runtime AS librwkv
WORKDIR /app
RUN git clone https://github.com/RWKV/rwkv.cpp.git && \
cd rwkv.cpp && \
git submodule update --init --recursive && \
mkdir -p build && \
cd build && \
cmake -G Ninja .. && \
cmake --build .
FROM runtime AS final
WORKDIR /app
COPY ./backend-python/requirements.txt ./backend-python/requirements.txt
RUN python3.10 -m pip install --quiet -r ./backend-python/requirements.txt
COPY . .
COPY --from=frontend /app/frontend/dist /app/frontend/dist
COPY --from=librwkv /app/rwkv.cpp/build/librwkv.so /app/backend-python/rwkv_pip/cpp/librwkv.so
EXPOSE 27777
CMD ["python3.10", "./backend-python/main.py", "--port", "27777", "--host", "0.0.0.0", "--webui"]

View File

@@ -8,7 +8,8 @@ endif
build-windows:
@echo ---- build for windows
wails build -upx -ldflags '-s -w -extldflags "-static"' -platform windows/amd64
wails build -ldflags '-s -w -extldflags "-static"' -platform windows/amd64
upx -9 --lzma ./build/bin/RWKV-Runner.exe
build-macos:
@echo ---- build for macos
@@ -16,7 +17,8 @@ build-macos:
build-linux:
@echo ---- build for linux
wails build -upx -ldflags '-s -w' -platform linux/amd64
wails build -ldflags '-s -w' -platform linux/amd64
upx -9 --lzma ./build/bin/RWKV-Runner
build-web:
@echo ---- build for web

View File

@@ -12,6 +12,7 @@ compatible with the OpenAI API, which means that every ChatGPT client is an RWKV
[![license][license-image]][license-url]
[![release][release-image]][release-url]
[![py-version][py-version-image]][py-version-url]
English | [简体中文](README_ZH.md) | [日本語](README_JA.md)
@@ -31,6 +32,10 @@ English | [简体中文](README_ZH.md) | [日本語](README_JA.md)
[release-url]: https://github.com/josStorer/RWKV-Runner/releases/latest
[py-version-image]: https://img.shields.io/pypi/pyversions/fastapi.svg
[py-version-url]: https://github.com/josStorer/RWKV-Runner/tree/master/backend-python
[download-url]: https://github.com/josStorer/RWKV-Runner/releases
[Windows-image]: https://img.shields.io/badge/-Windows-blue?logo=windows
@@ -47,13 +52,28 @@ English | [简体中文](README_ZH.md) | [日本語](README_JA.md)
</div>
#### Tip: You can deploy [backend-python](./backend-python/) on a server and use this program as a client only. Fill in your server address in the Settings `API URL`.
## Tips
#### Default configs has enabled custom CUDA kernel acceleration, which is much faster and consumes much less VRAM. If you encounter possible compatibility issues (output garbled), go to the Configs page and turn off `Use Custom CUDA kernel to Accelerate`, or try to upgrade your gpu driver.
- You can deploy [backend-python](./backend-python/) on a server and use this program as a client only. Fill in
your server address in the Settings `API URL`.
#### If Windows Defender claims this is a virus, you can try downloading [v1.3.7_win.zip](https://github.com/josStorer/RWKV-Runner/releases/download/v1.3.7/RWKV-Runner_win.zip) and letting it update automatically to the latest version, or add it to the trusted list (`Windows Security` -> `Virus & threat protection` -> `Manage settings` -> `Exclusions` -> `Add or remove exclusions` -> `Add an exclusion` -> `Folder` -> `RWKV-Runner`).
- If you are deploying and providing public services, please limit the request size through API gateway to prevent
excessive resource usage caused by submitting overly long prompts. Additionally, please restrict the upper limit of
requests' max_tokens based on your actual
situation: https://github.com/josStorer/RWKV-Runner/blob/master/backend-python/utils/rwkv.py#L567, the default is set
as le=102400, which may result in significant resource consumption for individual responses in extreme cases.
#### For different tasks, adjusting API parameters can achieve better results. For example, for translation tasks, you can try setting Temperature to 1 and Top_P to 0.3.
- Default configs has enabled custom CUDA kernel acceleration, which is much faster and consumes much less VRAM. If you
encounter possible compatibility issues (output garbled), go to the Configs page and turn
off `Use Custom CUDA kernel to Accelerate`, or try to upgrade your gpu driver.
- If Windows Defender claims this is a virus, you can try
downloading [v1.3.7_win.zip](https://github.com/josStorer/RWKV-Runner/releases/download/v1.3.7/RWKV-Runner_win.zip)
and letting it update automatically to the latest version, or add it to the trusted
list (`Windows Security` -> `Virus & threat protection` -> `Manage settings` -> `Exclusions` -> `Add or remove exclusions` -> `Add an exclusion` -> `Folder` -> `RWKV-Runner`).
- For different tasks, adjusting API parameters can achieve better results. For example, for translation tasks, you can
try setting Temperature to 1 and Top_P to 0.3.
## Features
@@ -168,6 +188,10 @@ Tip: You can download https://github.com/josStorer/sgm_plus and unzip it to the
to use it as an offline sound source. Please note that if you are compiling the program from source code, do not place
it in the source code directory.
If you don't have a MIDI keyboard, you can use virtual MIDI input software like `Virtual Midi Controller 3 LE`, along
with [loopMIDI](https://www.tobias-erichsen.de/wp-content/uploads/2020/01/loopMIDISetup_1_0_16_27.zip), to use a regular
computer keyboard as MIDI input.
### USB MIDI Connection
- USB MIDI devices are plug-and-play, and you can select your input device in the Composition page
@@ -206,12 +230,18 @@ it in the source code directory.
## Related Repositories:
- RWKV-5-World: https://huggingface.co/BlinkDL/rwkv-5-world/tree/main
- RWKV-4-World: https://huggingface.co/BlinkDL/rwkv-4-world/tree/main
- RWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main
- ChatRWKV: https://github.com/BlinkDL/ChatRWKV
- RWKV-LM: https://github.com/BlinkDL/RWKV-LM
- RWKV-LM-LoRA: https://github.com/Blealtan/RWKV-LM-LoRA
- RWKV-v5-lora: https://github.com/JL-er/RWKV-v5-lora
- MIDI-LLM-tokenizer: https://github.com/briansemrau/MIDI-LLM-tokenizer
- ai00_rwkv_server: https://github.com/cgisky1980/ai00_rwkv_server
- rwkv.cpp: https://github.com/saharNooby/rwkv.cpp
- web-rwkv-py: https://github.com/cryscan/web-rwkv-py
- web-rwkv: https://github.com/cryscan/web-rwkv
## Preview

View File

@@ -12,6 +12,7 @@
[![license][license-image]][license-url]
[![release][release-image]][release-url]
[![py-version][py-version-image]][py-version-url]
[English](README.md) | [简体中文](README_ZH.md) | 日本語
@@ -31,6 +32,10 @@
[release-url]: https://github.com/josStorer/RWKV-Runner/releases/latest
[py-version-image]: https://img.shields.io/pypi/pyversions/fastapi.svg
[py-version-url]: https://github.com/josStorer/RWKV-Runner/tree/master/backend-python
[download-url]: https://github.com/josStorer/RWKV-Runner/releases
[Windows-image]: https://img.shields.io/badge/-Windows-blue?logo=windows
@@ -47,13 +52,26 @@
</div>
#### ヒント:サーバーに[backend-python](./backend-python/)をデプロイし、このプログラムをクライアントとして使用することができます。設定された`API URL`にサーバーアドレスを入力してください。
## ヒント
#### デフォルトの設定はカスタム CUDA カーネルアクセラレーションを有効にしています。互換性の問題 (文字化けを出力する) が発生する可能性がある場合は、コンフィグページに移動し、`Use Custom CUDA kernel to Accelerate` をオフにしてください、あるいは、GPUドライバーをアップグレードしてみてください。
- サーバーに [backend-python](./backend-python/)
をデプロイし、このプログラムをクライアントとして使用することができます。設定された`API URL`にサーバーアドレスを入力してください。
#### Windows Defender がこれをウイルスだと主張する場合は、[v1.3.7_win.zip](https://github.com/josStorer/RWKV-Runner/releases/download/v1.3.7/RWKV-Runner_win.zip) をダウンロードして最新版に自動更新させるか、信頼済みリストに追加してみてください (`Windows Security` -> `Virus & threat protection` -> `Manage settings` -> `Exclusions` -> `Add or remove exclusions` -> `Add an exclusion` -> `Folder` -> `RWKV-Runner`)。
- もし、あなたがデプロイし、外部に公開するサービスを提供している場合、APIゲートウェイを使用してリクエストのサイズを制限し、
長すぎるプロンプトの提出がリソースを占有しないようにしてください。さらに、実際の状況に応じて、リクエストの max_tokens
の上限を制限してくださいhttps://github.com/josStorer/RWKV-Runner/blob/master/backend-python/utils/rwkv.py#L567
、デフォルトは le=102400 ですが、極端な場合には単一の応答が大量のリソースを消費する可能性があります。
#### 異なるタスクについては、API パラメータを調整することで、より良い結果を得ることができます。例えば、翻訳タスクの場合、Temperature を 1 に、Top_P を 0.3 に設定してみてください。
- デフォルトの設定はカスタム CUDA カーネルアクセラレーションを有効にしています。互換性の問題 (文字化けを出力する)
が発生する可能性がある場合は、コンフィグページに移動し、`Use Custom CUDA kernel to Accelerate`
をオフにしてください、あるいは、GPUドライバーをアップグレードしてみてください。
- Windows Defender
がこれをウイルスだと主張する場合は、[v1.3.7_win.zip](https://github.com/josStorer/RWKV-Runner/releases/download/v1.3.7/RWKV-Runner_win.zip)
をダウンロードして最新版に自動更新させるか、信頼済みリストに追加してみてください (`Windows Security` -> `Virus & threat protection` -> `Manage settings` -> `Exclusions` -> `Add or remove exclusions` -> `Add an exclusion` -> `Folder` -> `RWKV-Runner`)。
- 異なるタスクについては、API パラメータを調整することで、より良い結果を得ることができます。例えば、翻訳タスクの場合、Temperature
を 1 に、Top_P を 0.3 に設定してみてください。
## 特徴
@@ -167,6 +185,10 @@ Tip: You can download https://github.com/josStorer/sgm_plus and unzip it to the
to use it as an offline sound source. Please note that if you are compiling the program from source code, do not place
it in the source code directory.
MIDIキーボードをお持ちでない場合、`Virtual Midi Controller 3 LE`
などの仮想MIDI入力ソフトウェアを使用することができます。[loopMIDI](https://www.tobias-erichsen.de/wp-content/uploads/2020/01/loopMIDISetup_1_0_16_27.zip)
を組み合わせて、通常のコンピュータキーボードをMIDI入力として使用できます。
### USB MIDI Connection
- USB MIDI devices are plug-and-play, and you can select your input device in the Composition page
@@ -205,12 +227,18 @@ it in the source code directory.
## 関連リポジトリ:
- RWKV-5-World: https://huggingface.co/BlinkDL/rwkv-5-world/tree/main
- RWKV-4-World: https://huggingface.co/BlinkDL/rwkv-4-world/tree/main
- RWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main
- ChatRWKV: https://github.com/BlinkDL/ChatRWKV
- RWKV-LM: https://github.com/BlinkDL/RWKV-LM
- RWKV-LM-LoRA: https://github.com/Blealtan/RWKV-LM-LoRA
- RWKV-v5-lora: https://github.com/JL-er/RWKV-v5-lora
- MIDI-LLM-tokenizer: https://github.com/briansemrau/MIDI-LLM-tokenizer
- ai00_rwkv_server: https://github.com/cgisky1980/ai00_rwkv_server
- rwkv.cpp: https://github.com/saharNooby/rwkv.cpp
- web-rwkv-py: https://github.com/cryscan/web-rwkv-py
- web-rwkv: https://github.com/cryscan/web-rwkv
## Preview

View File

@@ -11,6 +11,7 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
[![license][license-image]][license-url]
[![release][release-image]][release-url]
[![py-version][py-version-image]][py-version-url]
[English](README.md) | 简体中文 | [日本語](README_JA.md)
@@ -30,6 +31,10 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
[release-url]: https://github.com/josStorer/RWKV-Runner/releases/latest
[py-version-image]: https://img.shields.io/pypi/pyversions/fastapi.svg
[py-version-url]: https://github.com/josStorer/RWKV-Runner/tree/master/backend-python
[download-url]: https://github.com/josStorer/RWKV-Runner/releases
[Windows-image]: https://img.shields.io/badge/-Windows-blue?logo=windows
@@ -46,13 +51,22 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
</div>
#### 小贴士:你可以在服务器部署[backend-python](./backend-python/),然后将此程序仅用作客户端,在设置的`API URL`中填入你的服务器地址
## 小贴士
#### 预设配置已经开启自定义CUDA算子加速速度更快且显存消耗更少。如果你遇到可能的兼容性(输出乱码)问题,前往配置页面,关闭`使用自定义CUDA算子加速`,或更新你的显卡驱动
- 你可以在服务器部署[backend-python](./backend-python/),然后将此程序仅用作客户端,在设置的`API URL`中填入你的服务器地址
#### 如果Windows Defender说这是一个病毒你可以尝试下载[v1.3.7_win.zip](https://github.com/josStorer/RWKV-Runner/releases/download/v1.3.7/RWKV-Runner_win.zip),然后让其自动更新到最新版,或添加信任 (`Windows Security` -> `Virus & threat protection` -> `Manage settings` -> `Exclusions` -> `Add or remove exclusions` -> `Add an exclusion` -> `Folder` -> `RWKV-Runner`)
- 如果你正在部署并对外提供公开服务请通过API网关限制请求大小避免过长的prompt提交占用资源。此外请根据你的实际情况限制请求的
max_tokens 上限: https://github.com/josStorer/RWKV-Runner/blob/master/backend-python/utils/rwkv.py#L567,
默认le=102400, 这可能导致极端情况下单个响应消耗大量资源
#### 对于不同的任务调整API参数会获得更好的效果例如对于翻译任务你可以尝试设置Temperature为1Top_P为0.3
- 预设配置已经开启自定义CUDA算子加速速度更快且显存消耗更少。如果你遇到可能的兼容性(输出乱码)
问题,前往配置页面,关闭`使用自定义CUDA算子加速`,或更新你的显卡驱动
- 如果 Windows Defender
说这是一个病毒,你可以尝试下载[v1.3.7_win.zip](https://github.com/josStorer/RWKV-Runner/releases/download/v1.3.7/RWKV-Runner_win.zip)
然后让其自动更新到最新版,或添加信任 (`Windows Security` -> `Virus & threat protection` -> `Manage settings` -> `Exclusions` -> `Add or remove exclusions` -> `Add an exclusion` -> `Folder` -> `RWKV-Runner`)
- 对于不同的任务调整API参数会获得更好的效果例如对于翻译任务你可以尝试设置Temperature为1Top_P为0.3
## 功能
@@ -161,6 +175,9 @@ for i in np.argsort(embeddings_cos_sim)[::-1]:
小贴士: 你可以下载 https://github.com/josStorer/sgm_plus, 并解压到程序的`assets/sound-font`目录, 以使用离线音源. 注意,
如果你正在从源码编译程序, 请不要将其放置在源码目录中
如果你没有MIDI键盘, 你可以使用像 `Virtual Midi Controller 3 LE` 这样的虚拟MIDI输入软件,
配合[loopMIDI](https://www.tobias-erichsen.de/wp-content/uploads/2020/01/loopMIDISetup_1_0_16_27.zip), 使用普通电脑键盘作为MIDI输入
### USB MIDI 连接
- USB MIDI设备是即插即用的, 你能够在作曲页面选择你的输入设备
@@ -192,12 +209,18 @@ for i in np.argsort(embeddings_cos_sim)[::-1]:
## 相关仓库:
- RWKV-5-World: https://huggingface.co/BlinkDL/rwkv-5-world/tree/main
- RWKV-4-World: https://huggingface.co/BlinkDL/rwkv-4-world/tree/main
- RWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main
- ChatRWKV: https://github.com/BlinkDL/ChatRWKV
- RWKV-LM: https://github.com/BlinkDL/RWKV-LM
- RWKV-LM-LoRA: https://github.com/Blealtan/RWKV-LM-LoRA
- RWKV-v5-lora: https://github.com/JL-er/RWKV-v5-lora
- MIDI-LLM-tokenizer: https://github.com/briansemrau/MIDI-LLM-tokenizer
- ai00_rwkv_server: https://github.com/cgisky1980/ai00_rwkv_server
- rwkv.cpp: https://github.com/saharNooby/rwkv.cpp
- web-rwkv-py: https://github.com/cryscan/web-rwkv-py
- web-rwkv: https://github.com/cryscan/web-rwkv
## Preview

View File

@@ -1,7 +1,9 @@
package backend_golang
import (
"archive/zip"
"bufio"
"bytes"
"context"
"errors"
"io"
@@ -10,6 +12,7 @@ import (
"os/exec"
"path/filepath"
"runtime"
"strings"
"syscall"
"time"
@@ -23,6 +26,7 @@ type App struct {
ctx context.Context
HasConfigData bool
ConfigData map[string]any
Dev bool
exDir string
cmdPrefix string
}
@@ -39,10 +43,20 @@ func (a *App) OnStartup(ctx context.Context) {
a.exDir = ""
a.cmdPrefix = ""
if runtime.GOOS == "darwin" {
ex, _ := os.Executable()
a.exDir = filepath.Dir(ex) + "/../../../"
a.cmdPrefix = "cd " + a.exDir + " && "
ex, err := os.Executable()
if err == nil {
if runtime.GOOS == "darwin" {
a.exDir = filepath.Dir(ex) + "/../../../"
a.cmdPrefix = "cd " + a.exDir + " && "
} else {
a.exDir = filepath.Dir(ex) + "/"
a.cmdPrefix = "cd " + a.exDir + " && "
}
if a.Dev {
a.exDir = ""
} else {
os.Chdir(a.exDir)
}
}
os.Chmod(a.exDir+"backend-rust/webgpu_server", 0777)
@@ -50,9 +64,12 @@ func (a *App) OnStartup(ctx context.Context) {
os.Mkdir(a.exDir+"models", os.ModePerm)
os.Mkdir(a.exDir+"lora-models", os.ModePerm)
os.Mkdir(a.exDir+"finetune/json2binidx_tool/data", os.ModePerm)
f, err := os.Create(a.exDir + "lora-models/train_log.txt")
if err == nil {
f.Close()
trainLogPath := "lora-models/train_log.txt"
if !a.FileExists(trainLogPath) {
f, err := os.Create(a.exDir + trainLogPath)
if err == nil {
f.Close()
}
}
a.downloadLoop()
@@ -146,6 +163,7 @@ func (a *App) UpdateApp(url string) (broken bool, err error) {
ticker := time.NewTicker(250 * time.Millisecond)
defer ticker.Stop()
// update progress
go func() {
for {
<-ticker.C
@@ -165,13 +183,35 @@ func (a *App) UpdateApp(url string) (broken bool, err error) {
}
}
}()
err = selfupdate.Apply(pr, selfupdate.Options{})
var updateFile io.Reader = pr
// extract macos binary from zip
if strings.HasSuffix(url, ".zip") && runtime.GOOS == "darwin" {
zipBytes, err := io.ReadAll(pr)
if err != nil {
return false, err
}
archive, err := zip.NewReader(bytes.NewReader(zipBytes), int64(len(zipBytes)))
if err != nil {
return false, err
}
file, err := archive.Open("RWKV-Runner.app/Contents/MacOS/RWKV-Runner")
if err != nil {
return false, err
}
defer file.Close()
updateFile = file
}
// apply update
err = selfupdate.Apply(updateFile, selfupdate.Options{})
if err != nil {
if rerr := selfupdate.RollbackError(err); rerr != nil {
return true, rerr
}
return false, err
}
// restart app
if runtime.GOOS == "windows" {
name, err := os.Executable()
if err != nil {

View File

@@ -10,7 +10,11 @@ import (
)
func (a *App) DownloadFile(path string, url string) error {
_, err := grab.Get(a.exDir+path, url)
absPath, err := a.GetAbsPath(path)
if err != nil {
return err
}
_, err = grab.Get(absPath, url)
if err != nil {
return err
}
@@ -88,11 +92,15 @@ func (a *App) ContinueDownload(url string) {
}
func (a *App) AddToDownloadList(path string, url string) {
if !existsInDownloadList(a.exDir+path, url) {
absPath, err := a.GetAbsPath(path)
if err != nil {
return
}
if !existsInDownloadList(absPath, url) {
downloadList = append(downloadList, &DownloadStatus{
resp: nil,
Name: filepath.Base(path),
Path: a.exDir + path,
Path: absPath,
Url: url,
Downloading: false,
})

View File

@@ -14,27 +14,55 @@ import (
wruntime "github.com/wailsapp/wails/v2/pkg/runtime"
)
func (a *App) GetAbsPath(path string) (string, error) {
var absPath string
var err error
if filepath.IsAbs(path) {
absPath = filepath.Clean(path)
} else {
absPath, err = filepath.Abs(filepath.Join(a.exDir, path))
if err != nil {
return "", err
}
}
absPath = strings.ReplaceAll(absPath, "/", string(os.PathSeparator))
println("GetAbsPath:", absPath)
return absPath, nil
}
func (a *App) SaveFile(path string, savedContent []byte) error {
if err := os.WriteFile(a.exDir+path, savedContent, 0644); err != nil {
absPath, err := a.GetAbsPath(path)
if err != nil {
return err
}
if err := os.WriteFile(absPath, savedContent, 0644); err != nil {
return err
}
return nil
}
func (a *App) SaveJson(fileName string, jsonData any) error {
func (a *App) SaveJson(path string, jsonData any) error {
text, err := json.MarshalIndent(jsonData, "", " ")
if err != nil {
return err
}
if err := os.WriteFile(a.exDir+fileName, text, 0644); err != nil {
absPath, err := a.GetAbsPath(path)
if err != nil {
return err
}
if err := os.WriteFile(absPath, text, 0644); err != nil {
return err
}
return nil
}
func (a *App) ReadJson(fileName string) (any, error) {
file, err := os.ReadFile(a.exDir + fileName)
func (a *App) ReadJson(path string) (any, error) {
absPath, err := a.GetAbsPath(path)
if err != nil {
return nil, err
}
file, err := os.ReadFile(absPath)
if err != nil {
return nil, err
}
@@ -48,8 +76,12 @@ func (a *App) ReadJson(fileName string) (any, error) {
return data, nil
}
func (a *App) FileExists(fileName string) bool {
_, err := os.Stat(a.exDir + fileName)
func (a *App) FileExists(path string) bool {
absPath, err := a.GetAbsPath(path)
if err != nil {
return false
}
_, err = os.Stat(absPath)
return err == nil
}
@@ -60,8 +92,12 @@ type FileInfo struct {
ModTime string `json:"modTime"`
}
func (a *App) ReadFileInfo(fileName string) (*FileInfo, error) {
info, err := os.Stat(a.exDir + fileName)
func (a *App) ReadFileInfo(path string) (*FileInfo, error) {
absPath, err := a.GetAbsPath(path)
if err != nil {
return nil, err
}
info, err := os.Stat(absPath)
if err != nil {
return nil, err
}
@@ -74,7 +110,11 @@ func (a *App) ReadFileInfo(fileName string) (*FileInfo, error) {
}
func (a *App) ListDirFiles(dirPath string) ([]FileInfo, error) {
files, err := os.ReadDir(a.exDir + dirPath)
absDirPath, err := a.GetAbsPath(dirPath)
if err != nil {
return nil, err
}
files, err := os.ReadDir(absDirPath)
if err != nil {
return nil, err
}
@@ -96,7 +136,11 @@ func (a *App) ListDirFiles(dirPath string) ([]FileInfo, error) {
}
func (a *App) DeleteFile(path string) error {
err := os.Remove(a.exDir + path)
absPath, err := a.GetAbsPath(path)
if err != nil {
return err
}
err = os.Remove(absPath)
if err != nil {
return err
}
@@ -104,18 +148,27 @@ func (a *App) DeleteFile(path string) error {
}
func (a *App) CopyFile(src string, dst string) error {
sourceFile, err := os.Open(a.exDir + src)
absSrc, err := a.GetAbsPath(src)
if err != nil {
return err
}
absDst, err := a.GetAbsPath(dst)
if err != nil {
return err
}
sourceFile, err := os.Open(absSrc)
if err != nil {
return err
}
defer sourceFile.Close()
err = os.MkdirAll(a.exDir+dst[:strings.LastIndex(dst, "/")], 0755)
err = os.MkdirAll(filepath.Dir(absDst), 0755)
if err != nil {
return err
}
destFile, err := os.Create(a.exDir + dst)
destFile, err := os.Create(absDst)
if err != nil {
return err
}
@@ -166,14 +219,8 @@ func (a *App) OpenOpenFileDialog(filterPattern string) (string, error) {
return path, nil
}
func (a *App) OpenFileFolder(path string, relative bool) error {
var absPath string
var err error
if relative {
absPath, err = filepath.Abs(a.exDir + path)
} else {
absPath, err = filepath.Abs(path)
}
func (a *App) OpenFileFolder(path string) error {
absPath, err := a.GetAbsPath(path)
if err != nil {
return err
}
@@ -204,6 +251,10 @@ func (a *App) OpenFileFolder(path string, relative bool) error {
}
func (a *App) StartFile(path string) error {
_, err := CmdHelper(path)
cmd, err := CmdHelper(true, path)
if err != nil {
return err
}
err = cmd.Start()
return err
}

View File

@@ -1,3 +1,4 @@
// Considering some whitespace and multilingual support, the functions in rwkv.go should always be executed with cwd as RWKV-Runner, and never use a.GetAbsPath() here.
package backend_golang
import (
@@ -10,15 +11,19 @@ import (
"strings"
)
func (a *App) StartServer(python string, port int, host string, webui bool, rwkvBeta bool, rwkvcpp bool) (string, error) {
var err error
func (a *App) StartServer(python string, port int, host string, webui bool, rwkvBeta bool, rwkvcpp bool, webgpu bool) (string, error) {
execFile := "./backend-python/main.py"
_, err := os.Stat(execFile)
if err != nil {
return "", err
}
if python == "" {
python, err = GetPython()
}
if err != nil {
return "", err
}
args := []string{python, "./backend-python/main.py"}
args := []string{python, execFile}
if webui {
args = append(args, "--webui")
}
@@ -28,35 +33,85 @@ func (a *App) StartServer(python string, port int, host string, webui bool, rwkv
if rwkvcpp {
args = append(args, "--rwkv.cpp")
}
if webgpu {
args = append(args, "--webgpu")
}
args = append(args, "--port", strconv.Itoa(port), "--host", host)
return Cmd(args...)
}
func (a *App) StartWebGPUServer(port int, host string) (string, error) {
args := []string{"./backend-rust/webgpu_server"}
var execFile string
execFiles := []string{"./backend-rust/webgpu_server", "./backend-rust/webgpu_server.exe"}
for _, file := range execFiles {
_, err := os.Stat(file)
if err == nil {
execFile = file
break
}
}
if execFile == "" {
return "", errors.New(execFiles[0] + " not found")
}
args := []string{execFile}
args = append(args, "--port", strconv.Itoa(port), "--ip", host)
return Cmd(args...)
}
func (a *App) ConvertModel(python string, modelPath string, strategy string, outPath string) (string, error) {
var err error
execFile := "./backend-python/convert_model.py"
_, err := os.Stat(execFile)
if err != nil {
return "", err
}
if python == "" {
python, err = GetPython()
}
if err != nil {
return "", err
}
return Cmd(python, "./backend-python/convert_model.py", "--in", modelPath, "--out", outPath, "--strategy", strategy)
return Cmd(python, execFile, "--in", modelPath, "--out", outPath, "--strategy", strategy)
}
func (a *App) ConvertSafetensors(modelPath string, outPath string) (string, error) {
args := []string{"./backend-rust/web-rwkv-converter"}
var execFile string
execFiles := []string{"./backend-rust/web-rwkv-converter", "./backend-rust/web-rwkv-converter.exe"}
for _, file := range execFiles {
_, err := os.Stat(file)
if err == nil {
execFile = file
break
}
}
if execFile == "" {
return "", errors.New(execFiles[0] + " not found")
}
args := []string{execFile}
args = append(args, "--input", modelPath, "--output", outPath)
return Cmd(args...)
}
func (a *App) ConvertSafetensorsWithPython(python string, modelPath string, outPath string) (string, error) {
execFile := "./backend-python/convert_safetensors.py"
_, err := os.Stat(execFile)
if err != nil {
return "", err
}
if python == "" {
python, err = GetPython()
}
if err != nil {
return "", err
}
return Cmd(python, execFile, "--input", modelPath, "--output", outPath)
}
func (a *App) ConvertGGML(python string, modelPath string, outPath string, Q51 bool) (string, error) {
var err error
execFile := "./backend-python/convert_pytorch_to_ggml.py"
_, err := os.Stat(execFile)
if err != nil {
return "", err
}
if python == "" {
python, err = GetPython()
}
@@ -67,11 +122,15 @@ func (a *App) ConvertGGML(python string, modelPath string, outPath string, Q51 b
if Q51 {
dataType = "Q5_1"
}
return Cmd(python, "./backend-python/convert_pytorch_to_ggml.py", modelPath, outPath, dataType)
return Cmd(python, execFile, modelPath, outPath, dataType)
}
func (a *App) ConvertData(python string, input string, outputPrefix string, vocab string) (string, error) {
var err error
execFile := "./finetune/json2binidx_tool/tools/preprocess_data.py"
_, err := os.Stat(execFile)
if err != nil {
return "", err
}
if python == "" {
python, err = GetPython()
}
@@ -115,19 +174,23 @@ func (a *App) ConvertData(python string, input string, outputPrefix string, voca
return "", err
}
return Cmd(python, "./finetune/json2binidx_tool/tools/preprocess_data.py", "--input", input, "--output-prefix", outputPrefix, "--vocab", vocab,
return Cmd(python, execFile, "--input", input, "--output-prefix", outputPrefix, "--vocab", vocab,
"--tokenizer-type", tokenizerType, "--dataset-impl", "mmap", "--append-eod")
}
func (a *App) MergeLora(python string, useGpu bool, loraAlpha int, baseModel string, loraPath string, outputPath string) (string, error) {
var err error
execFile := "./finetune/lora/merge_lora.py"
_, err := os.Stat(execFile)
if err != nil {
return "", err
}
if python == "" {
python, err = GetPython()
}
if err != nil {
return "", err
}
args := []string{python, "./finetune/lora/merge_lora.py"}
args := []string{python, execFile}
if useGpu {
args = append(args, "--use-gpu")
}
@@ -143,9 +206,9 @@ func (a *App) DepCheck(python string) error {
if err != nil {
return err
}
out, err := exec.Command(python, a.exDir+"./backend-python/dep_check.py").CombinedOutput()
out, err := exec.Command(python, a.exDir+"backend-python/dep_check.py").CombinedOutput()
if err != nil {
return errors.New("DepCheck Error: " + string(out))
return errors.New("DepCheck Error: " + string(out) + " GError: " + err.Error())
}
return nil
}
@@ -171,7 +234,7 @@ func (a *App) InstallPyDep(python string, cnMirror bool) (string, error) {
if !cnMirror {
installScript = strings.Replace(installScript, " -i https://pypi.tuna.tsinghua.edu.cn/simple", "", -1)
}
err = os.WriteFile("./install-py-dep.bat", []byte(installScript), 0644)
err = os.WriteFile(a.exDir+"install-py-dep.bat", []byte(installScript), 0644)
if err != nil {
return "", err
}

View File

@@ -3,6 +3,7 @@ package backend_golang
import (
"archive/zip"
"bufio"
"crypto/sha256"
"embed"
"errors"
"fmt"
@@ -18,18 +19,23 @@ import (
"syscall"
)
func CmdHelper(args ...string) (*exec.Cmd, error) {
func CmdHelper(hideWindow bool, args ...string) (*exec.Cmd, error) {
if runtime.GOOS != "windows" {
return nil, errors.New("unsupported OS")
}
filename := "./cmd-helper.bat"
_, err := os.Stat(filename)
ex, err := os.Executable()
if err != nil {
if err := os.WriteFile(filename, []byte("start %*"), 0644); err != nil {
return nil, err
}
exDir := filepath.Dir(ex) + "/"
path := exDir + "cmd-helper.bat"
_, err = os.Stat(path)
if err != nil {
if err := os.WriteFile(path, []byte("start %*"), 0644); err != nil {
return nil, err
}
}
cmdHelper, err := filepath.Abs(filename)
cmdHelper, err := filepath.Abs(path)
if err != nil {
return nil, err
}
@@ -43,22 +49,21 @@ func CmdHelper(args ...string) (*exec.Cmd, error) {
}
cmd := exec.Command(cmdHelper, args...)
cmd.SysProcAttr = &syscall.SysProcAttr{}
//go:custom_build windows cmd.SysProcAttr.HideWindow = true
err = cmd.Start()
if err != nil {
return nil, err
}
//go:custom_build windows cmd.SysProcAttr.HideWindow = hideWindow
return cmd, nil
}
func Cmd(args ...string) (string, error) {
switch platform := runtime.GOOS; platform {
case "windows":
cmd, err := CmdHelper(args...)
cmd, err := CmdHelper(true, args...)
if err != nil {
return "", err
}
_, err = cmd.CombinedOutput()
if err != nil {
return "", err
}
cmd.Wait()
return "", nil
case "darwin":
ex, err := os.Executable()
@@ -86,16 +91,18 @@ func Cmd(args ...string) (string, error) {
}
func CopyEmbed(efs embed.FS) error {
prefix := ""
ex, err := os.Executable()
if err != nil {
return err
}
var prefix string
if runtime.GOOS == "darwin" {
ex, err := os.Executable()
if err != nil {
return err
}
prefix = filepath.Dir(ex) + "/../../../"
} else {
prefix = filepath.Dir(ex) + "/"
}
err := fs.WalkDir(efs, ".", func(path string, d fs.DirEntry, err error) error {
err = fs.WalkDir(efs, ".", func(path string, d fs.DirEntry, err error) error {
if d.IsDir() {
return nil
}
@@ -113,9 +120,19 @@ func CopyEmbed(efs embed.FS) error {
return err
}
err = os.WriteFile(path, content, 0644)
if err != nil {
return err
executeWrite := true
existedContent, err := os.ReadFile(path)
if err == nil {
if fmt.Sprintf("%x", sha256.Sum256(existedContent)) == fmt.Sprintf("%x", sha256.Sum256(content)) {
executeWrite = false
}
}
if executeWrite {
err = os.WriteFile(path, content, 0644)
if err != nil {
return err
}
}
return nil
@@ -126,13 +143,19 @@ func CopyEmbed(efs embed.FS) error {
func GetPython() (string, error) {
switch platform := runtime.GOOS; platform {
case "windows":
_, err := os.Stat("py310/python.exe")
ex, err := os.Executable()
if err != nil {
_, err := os.Stat("python-3.10.11-embed-amd64.zip")
return "", err
}
exDir := filepath.Dir(ex) + "/"
pyexe := exDir + "py310/python.exe"
_, err = os.Stat(pyexe)
if err != nil {
_, err := os.Stat(exDir + "python-3.10.11-embed-amd64.zip")
if err != nil {
return "", errors.New("python zip not found")
} else {
err := Unzip("python-3.10.11-embed-amd64.zip", "py310")
err := Unzip(exDir+"python-3.10.11-embed-amd64.zip", exDir+"py310")
if err != nil {
return "", errors.New("failed to unzip python")
} else {

View File

@@ -9,7 +9,6 @@ import (
"io"
"os"
"os/exec"
"path/filepath"
"strings"
"time"
@@ -133,26 +132,20 @@ func (a *App) WslStop() error {
}
func (a *App) WslIsEnabled() error {
ex, err := os.Executable()
if err != nil {
return err
}
exDir := filepath.Dir(ex)
data, err := os.ReadFile(exDir + "/wsl.state")
data, err := os.ReadFile(a.exDir + "wsl.state")
if err == nil {
if strings.Contains(string(data), "Enabled") {
return nil
}
}
cmd := `-Command (Get-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Linux).State | Out-File -Encoding utf8 -FilePath ` + exDir + "/wsl.state"
_, err = su.ShellExecute(su.RUNAS, "powershell", cmd, exDir)
cmd := `-Command (Get-WindowsOptionalFeature -Online -FeatureName VirtualMachinePlatform).State | Out-File -Encoding utf8 -FilePath ` + a.exDir + "wsl.state"
_, err = su.ShellExecute(su.RUNAS, "powershell", cmd, a.exDir)
if err != nil {
return err
}
time.Sleep(2 * time.Second)
data, err = os.ReadFile(exDir + "/wsl.state")
data, err = os.ReadFile(a.exDir + "wsl.state")
if err != nil {
return err
}
@@ -164,13 +157,13 @@ func (a *App) WslIsEnabled() error {
}
func (a *App) WslEnable(forceMode bool) error {
cmd := `/online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux`
cmd := `/online /enable-feature /featurename:VirtualMachinePlatform`
_, err := su.ShellExecute(su.RUNAS, "dism", cmd, `C:\`)
if err != nil {
return err
}
if forceMode {
os.WriteFile("./wsl.state", []byte("Enabled"), 0644)
os.WriteFile(a.exDir+"wsl.state", []byte("Enabled"), 0644)
}
return nil
}

View File

@@ -1,9 +1,8 @@
import json
import collections
import numpy
import os
import sys
import copy
import torch
from safetensors.torch import load_file, save_file
from safetensors.torch import serialize_file, load_file
import argparse
@@ -26,35 +25,65 @@ def rename_key(rename, name):
def convert_file(pt_filename: str, sf_filename: str, rename={}, transpose_names=[]):
loaded = torch.load(pt_filename, map_location="cpu")
loaded: collections.OrderedDict = torch.load(pt_filename, map_location="cpu")
if "state_dict" in loaded:
loaded = loaded["state_dict"]
loaded = {k: v.clone().half() for k, v in loaded.items()}
# for k, v in loaded.items():
# print(f'{k}\t{v.shape}\t{v.dtype}')
kk = list(loaded.keys())
version = 4
for x in kk:
if "ln_x" in x:
version = max(5, version)
if "gate.weight" in x:
version = max(5.1, version)
if int(version) == 5 and "att.time_decay" in x:
if len(loaded[x].shape) > 1:
if loaded[x].shape[1] > 1:
version = max(5.2, version)
if "time_maa" in x:
version = max(6, version)
loaded = {rename_key(rename, k).lower(): v.contiguous() for k, v in loaded.items()}
# For tensors to be contiguous
for k, v in loaded.items():
for transpose_name in transpose_names:
if transpose_name in k:
loaded[k] = v.transpose(0, 1)
print(f"Model detected: v{version:.1f}")
loaded = {k: v.clone().half().contiguous() for k, v in loaded.items()}
if version == 5.1:
_, n_emb = loaded["emb.weight"].shape
for k in kk:
if "time_decay" in k or "time_faaaa" in k:
# print(k, mm[k].shape)
loaded[k] = (
loaded[k].unsqueeze(1).repeat(1, n_emb // loaded[k].shape[0])
)
for k, v in loaded.items():
print(f"{k}\t{v.shape}\t{v.dtype}")
with torch.no_grad():
for k in kk:
new_k = rename_key(rename, k).lower()
v = loaded[k].half()
del loaded[k]
for transpose_name in transpose_names:
if transpose_name in new_k:
dims = len(v.shape)
v = v.transpose(dims - 2, dims - 1)
print(f"{new_k}\t{v.shape}\t{v.dtype}")
loaded[new_k] = {
"dtype": str(v.dtype).split(".")[-1],
"shape": v.shape,
"data": v.numpy().tobytes(),
}
dirname = os.path.dirname(sf_filename)
os.makedirs(dirname, exist_ok=True)
save_file(loaded, sf_filename, metadata={"format": "pt"})
reloaded = load_file(sf_filename)
for k in loaded:
pt_tensor = loaded[k]
sf_tensor = reloaded[k]
if not torch.equal(pt_tensor, sf_tensor):
raise RuntimeError(f"The output tensors do not match for key {k}")
serialize_file(loaded, sf_filename, metadata={"format": "pt"})
# reloaded = load_file(sf_filename)
# for k in loaded:
# pt_tensor = torch.Tensor(
# numpy.frombuffer(
# bytearray(loaded[k]["data"]),
# dtype=getattr(numpy, loaded[k]["dtype"]),
# ).reshape(loaded[k]["shape"])
# )
# sf_tensor = reloaded[k]
# if not torch.equal(pt_tensor, sf_tensor):
# raise RuntimeError(f"The output tensors do not match for key {k}")
if __name__ == "__main__":

View File

@@ -7,7 +7,6 @@ import lm_dataformat
import ftfy
import tqdm
import tiktoken
import GPUtil
import torch
import rwkv

View File

@@ -5,6 +5,7 @@ Model = "model"
Model_Status = "model_status"
Model_Config = "model_config"
Deploy_Mode = "deploy_mode"
Midi_Vocab_Config_Type = "midi_vocab_config_type"
class ModelStatus(Enum):
@@ -13,11 +14,17 @@ class ModelStatus(Enum):
Working = 3
class MidiVocabConfig(Enum):
Default = auto()
Piano = auto()
def init():
global GLOBALS
GLOBALS = {}
set(Model_Status, ModelStatus.Offline)
set(Deploy_Mode, False)
set(Midi_Vocab_Config_Type, MidiVocabConfig.Default)
def set(key, value):

View File

@@ -37,6 +37,11 @@ def get_args(args: Union[Sequence[str], None] = None):
action="store_true",
help="whether to use rwkv.cpp (default: False)",
)
group.add_argument(
"--webgpu",
action="store_true",
help="whether to use webgpu (default: False)",
)
args = parser.parse_args(args)
return args

View File

@@ -1,9 +1,9 @@
torch
torchvision
torchaudio
rwkv==0.8.22
rwkv==0.8.25
langchain==0.0.322
fastapi==0.104.0
fastapi==0.109.1
uvicorn==0.23.2
sse-starlette==1.6.5
pydantic==2.4.2
@@ -19,7 +19,7 @@ midi2audio==0.1.1
mido==1.3.0
safetensors==0.4.0
PyMuPDF==1.23.5
python-multipart==0.0.6
python-multipart==0.0.7
Cython==3.0.4
cyac==1.9
torch_directml==0.1.13.1.dev230413
torch-directml==0.1.13.1.dev230413

View File

@@ -1,9 +1,9 @@
torch
torchvision
torchaudio
rwkv==0.8.22
rwkv==0.8.25
langchain==0.0.322
fastapi==0.104.0
fastapi==0.109.1
uvicorn==0.23.2
sse-starlette==1.6.5
pydantic==2.4.2
@@ -19,5 +19,5 @@ midi2audio==0.1.1
mido==1.3.0
safetensors==0.4.0
PyMuPDF==1.23.5
python-multipart==0.0.6
python-multipart==0.0.7
Cython==3.0.4

View File

@@ -8,7 +8,6 @@ import base64
from fastapi import APIRouter, Request, status, HTTPException
from sse_starlette.sse import EventSourceResponse
from pydantic import BaseModel, Field
import numpy as np
import tiktoken
from utils.rwkv import *
from utils.log import quick_log
@@ -71,10 +70,10 @@ class ChatCompletionBody(ModelConfigBody):
"assistant_name": None,
"presystem": True,
"max_tokens": 1000,
"temperature": 1.2,
"top_p": 0.5,
"presence_penalty": 0.4,
"frequency_penalty": 0.4,
"temperature": 1,
"top_p": 0.3,
"presence_penalty": 0,
"frequency_penalty": 1,
}
}
}
@@ -95,10 +94,10 @@ class CompletionBody(ModelConfigBody):
"stream": False,
"stop": None,
"max_tokens": 100,
"temperature": 1.2,
"top_p": 0.5,
"presence_penalty": 0.4,
"frequency_penalty": 0.4,
"temperature": 1,
"top_p": 0.3,
"presence_penalty": 0,
"frequency_penalty": 1,
}
}
}
@@ -145,6 +144,7 @@ async def eval_rwkv(
return
set_rwkv_config(model, global_var.get(global_var.Model_Config))
set_rwkv_config(model, body)
print(get_rwkv_config(model))
response, prompt_tokens, completion_tokens = "", 0, 0
for response, delta, prompt_tokens, completion_tokens in model.generate(
@@ -156,23 +156,27 @@ async def eval_rwkv(
if stream:
yield json.dumps(
{
"object": "chat.completion.chunk"
if chat_mode
else "text_completion",
"object": (
"chat.completion.chunk"
if chat_mode
else "text_completion"
),
# "response": response,
"model": model.name,
"choices": [
{
"delta": {"content": delta},
"index": 0,
"finish_reason": None,
}
if chat_mode
else {
"text": delta,
"index": 0,
"finish_reason": None,
}
(
{
"delta": {"content": delta},
"index": 0,
"finish_reason": None,
}
if chat_mode
else {
"text": delta,
"index": 0,
"finish_reason": None,
}
)
],
}
)
@@ -194,23 +198,25 @@ async def eval_rwkv(
if stream:
yield json.dumps(
{
"object": "chat.completion.chunk"
if chat_mode
else "text_completion",
"object": (
"chat.completion.chunk" if chat_mode else "text_completion"
),
# "response": response,
"model": model.name,
"choices": [
{
"delta": {},
"index": 0,
"finish_reason": "stop",
}
if chat_mode
else {
"text": "",
"index": 0,
"finish_reason": "stop",
}
(
{
"delta": {},
"index": 0,
"finish_reason": "stop",
}
if chat_mode
else {
"text": "",
"index": 0,
"finish_reason": "stop",
}
)
],
}
)
@@ -226,20 +232,22 @@ async def eval_rwkv(
"total_tokens": prompt_tokens + completion_tokens,
},
"choices": [
{
"message": {
"role": Role.Assistant.value,
"content": response,
},
"index": 0,
"finish_reason": "stop",
}
if chat_mode
else {
"text": response,
"index": 0,
"finish_reason": "stop",
}
(
{
"message": {
"role": Role.Assistant.value,
"content": response,
},
"index": 0,
"finish_reason": "stop",
}
if chat_mode
else {
"text": response,
"index": 0,
"finish_reason": "stop",
}
)
],
}
@@ -335,6 +343,8 @@ The following is a coherent verbose detailed conversation between a girl named {
body.stop.append(f"\n\n{bot_code}")
elif body.stop is None:
body.stop = default_stop
if not body.presystem:
body.stop.append("\n\n")
if body.stream:
return EventSourceResponse(
@@ -396,6 +406,8 @@ class EmbeddingsBody(BaseModel):
def embedding_base64(embedding: List[float]) -> str:
import numpy as np
return base64.b64encode(np.array(embedding).astype(np.float32)).decode("utf-8")

View File

@@ -74,6 +74,10 @@ def switch_model(body: SwitchModelBody, response: Response, request: Request):
)
except Exception as e:
print(e)
import traceback
print(traceback.format_exc())
quick_log(request, body, f"Exception: {e}")
global_var.set(global_var.Model_Status, global_var.ModelStatus.Offline)
raise HTTPException(
@@ -82,32 +86,53 @@ def switch_model(body: SwitchModelBody, response: Response, request: Request):
if body.deploy:
global_var.set(global_var.Deploy_Mode, True)
if global_var.get(global_var.Model_Config) is None:
global_var.set(
global_var.Model_Config, get_rwkv_config(global_var.get(global_var.Model))
)
saved_model_config = global_var.get(global_var.Model_Config)
init_model_config = get_rwkv_config(global_var.get(global_var.Model))
if saved_model_config is not None:
merge_model(init_model_config, saved_model_config)
global_var.set(global_var.Model_Config, init_model_config)
global_var.set(global_var.Model_Status, global_var.ModelStatus.Working)
return "success"
def merge_model(to_model: BaseModel, from_model: BaseModel):
from_model_fields = [x for x in from_model.dict().keys()]
to_model_fields = [x for x in to_model.dict().keys()]
for field_name in from_model_fields:
if field_name in to_model_fields:
from_value = getattr(from_model, field_name)
if from_value is not None:
setattr(to_model, field_name, from_value)
@router.post("/update-config", tags=["Configs"])
def update_config(body: ModelConfigBody):
"""
Will not update the model config immediately, but set it when completion called to avoid modifications during generation
"""
print(body)
global_var.set(global_var.Model_Config, body)
model_config = global_var.get(global_var.Model_Config)
if model_config is None:
model_config = ModelConfigBody()
global_var.set(global_var.Model_Config, model_config)
merge_model(model_config, body)
print("Updated Model Config:", model_config)
return "success"
@router.get("/status", tags=["Configs"])
def status():
import GPUtil
try:
import GPUtil
gpus = GPUtil.getGPUs()
gpus = GPUtil.getGPUs()
except:
gpus = []
if len(gpus) == 0:
device_name = "CPU"
else:

View File

@@ -23,7 +23,11 @@ class TextToMidiBody(BaseModel):
@router.post("/text-to-midi", tags=["MIDI"])
def text_to_midi(body: TextToMidiBody):
vocab_config = "backend-python/utils/midi_vocab_config.json"
vocab_config_type = global_var.get(global_var.Midi_Vocab_Config_Type)
if vocab_config_type == global_var.MidiVocabConfig.Piano:
vocab_config = "backend-python/utils/vocab_config_piano.json"
else:
vocab_config = "backend-python/utils/midi_vocab_config.json"
cfg = VocabConfig.from_json(vocab_config)
mid = convert_str_to_midi(cfg, body.text.strip())
mid_data = io.BytesIO()
@@ -35,12 +39,20 @@ def text_to_midi(body: TextToMidiBody):
@router.post("/midi-to-text", tags=["MIDI"])
async def midi_to_text(file_data: UploadFile):
vocab_config = "backend-python/utils/midi_vocab_config.json"
vocab_config_type = global_var.get(global_var.Midi_Vocab_Config_Type)
if vocab_config_type == global_var.MidiVocabConfig.Piano:
vocab_config = "backend-python/utils/vocab_config_piano.json"
else:
vocab_config = "backend-python/utils/midi_vocab_config.json"
cfg = VocabConfig.from_json(vocab_config)
filter_config = "backend-python/utils/midi_filter_config.json"
filter_cfg = FilterConfig.from_json(filter_config)
mid = mido.MidiFile(file=file_data.file)
text = convert_midi_to_str(cfg, mid)
output_list = convert_midi_to_str(cfg, filter_cfg, mid)
if len(output_list) == 0:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "bad midi file")
return {"text": text}
return {"text": output_list[0]}
class TxtToMidiBody(BaseModel):
@@ -65,7 +77,11 @@ def txt_to_midi(body: TxtToMidiBody):
if not body.midi_path.startswith("midi/"):
raise HTTPException(status.HTTP_400_BAD_REQUEST, "bad output path")
vocab_config = "backend-python/utils/midi_vocab_config.json"
vocab_config_type = global_var.get(global_var.Midi_Vocab_Config_Type)
if vocab_config_type == global_var.MidiVocabConfig.Piano:
vocab_config = "backend-python/utils/vocab_config_piano.json"
else:
vocab_config = "backend-python/utils/midi_vocab_config.json"
cfg = VocabConfig.from_json(vocab_config)
with open(body.txt_path, "r") as f:
text = f.read()

View File

@@ -76,6 +76,31 @@ class AddStateBody(BaseModel):
logits: Any
def copy_tensor_to_cpu(tensors):
import torch
import numpy as np
devices: List[torch.device] = []
copied: Union[Any, None] = None
tensors_type = type(tensors)
if tensors_type == list:
if hasattr(tensors[0], "device"): # torch state
devices = [tensor.device for tensor in tensors]
copied = [tensor.cpu() for tensor in tensors]
else: # WebGPU logits
copied = tensors
elif tensors_type == torch.Tensor: # torch logits
devices = [tensors.device]
copied = tensors.cpu()
elif tensors_type == np.ndarray: # rwkv.cpp
copied = tensors
else: # WebGPU state
copied = tensors.back()
return copied, devices
# @router.post("/add-state", tags=["State Cache"])
def add_state(body: AddStateBody):
global trie, dtrie, loop_del_trie_id
@@ -87,20 +112,28 @@ def add_state(body: AddStateBody):
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
import torch
import numpy as np
try:
devices: List[torch.device] = []
logits_device: Union[torch.device, None] = None
state: Union[Any, None] = None
logits: Union[Any, None] = None
if body.state is not None:
state, devices = copy_tensor_to_cpu(body.state)
if body.logits is not None:
logits, logits_devices = copy_tensor_to_cpu(body.logits)
if len(logits_devices) > 0:
logits_device = logits_devices[0]
id: int = trie.insert(body.prompt)
devices: List[torch.device] = [
(tensor.device if hasattr(tensor, "device") else torch.device("cpu"))
for tensor in body.state
]
dtrie[id] = {
"tokens": copy.deepcopy(body.tokens),
"state": [tensor.cpu() for tensor in body.state]
if hasattr(body.state[0], "device")
else copy.deepcopy(body.state),
"logits": copy.deepcopy(body.logits),
"tokens": body.tokens,
"state": state,
"logits": logits,
"devices": devices,
"logits_device": logits_device,
}
if len(trie) >= max_trie_len:
@@ -118,6 +151,7 @@ def add_state(body: AddStateBody):
)
return "success"
except Exception as e:
print(e) # should not happen
raise HTTPException(
status.HTTP_400_BAD_REQUEST, f"insert failed, bad prompt.\n{e}"
)
@@ -174,6 +208,7 @@ def longest_prefix_state(body: LongestPrefixStateBody, request: Request):
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
import torch
import numpy as np
id = -1
try:
@@ -182,18 +217,35 @@ def longest_prefix_state(body: LongestPrefixStateBody, request: Request):
except:
pass
if id != -1:
v = dtrie[id]
devices: List[torch.device] = v["devices"]
prompt: str = trie[id]
v = dtrie[id]
tokens: List[Union[str, int]] = copy.deepcopy(v["tokens"])
devices: List[torch.device] = v["devices"]
logits_device: Union[torch.device, None] = v["logits_device"]
state: Union[Any, None] = v["state"]
logits: Union[Any, None] = v["logits"]
if type(state) == list and hasattr(state[0], "device"): # torch
state = [
tensor.to(devices[i])
if devices[i] != torch.device("cpu")
else tensor.clone()
for i, tensor in enumerate(state)
]
logits = (
logits.to(logits_device)
if logits_device != torch.device("cpu")
else logits.clone()
)
else: # rwkv.cpp, WebGPU
logits = np.copy(logits)
quick_log(request, body, "Hit:\n" + prompt)
return {
"prompt": prompt,
"tokens": v["tokens"],
"state": [tensor.to(devices[i]) for i, tensor in enumerate(v["state"])]
if hasattr(v["state"][0], "device")
else v["state"],
"logits": v["logits"],
"tokens": tokens,
"state": state,
"logits": logits,
}
else:
return {"prompt": "", "tokens": [], "state": None, "logits": None}

View File

@@ -251,7 +251,7 @@ class RWKV(MyModule):
)
assert (
w["_strategy"] == args.strategy_string
) # if you are using a new strategy, re-convert the model
), "model has been converted and does not match current strategy; if you are using a new strategy, re-convert the model"
assert (
float(w["_version"]) >= 0.7
) # sometimes you should re-convert using latest convert_model.py

View File

@@ -1,4 +1,4 @@
from typing import Any, List
from typing import Any, List, Union
from . import rwkv_cpp_model
from . import rwkv_cpp_shared_library
@@ -10,5 +10,5 @@ class RWKV:
self.w = {} # fake weight
self.w["emb.weight"] = [0] * self.model.n_vocab
def forward(self, tokens: List[int], state: Any | None):
def forward(self, tokens: List[int], state: Union[Any, None] = None):
return self.model.eval_sequence_in_chunks(tokens, state, use_numpy=True)

View File

@@ -342,7 +342,7 @@ class RWKV(MyModule):
)
assert (
w["_strategy"] == args.strategy_string
) # if you are using a new strategy, re-convert the model
), "model has been converted and does not match current strategy; if you are using a new strategy, re-convert the model"
assert (
float(w["_version"]) >= 0.7
) # sometimes you should re-convert using latest convert_model.py
@@ -552,7 +552,12 @@ class RWKV(MyModule):
elif ".ln_x" in x: # need fp32 for group_norm
w[x] = w[x].float()
else:
if (len(w[x].shape) == 2) and ("emb" not in x):
if (
(len(w[x].shape) == 2)
and ("emb" not in x)
and ("_w1" not in x)
and ("_w2" not in x)
):
if WTYPE != torch.uint8:
w[x] = w[x].to(dtype=WTYPE)
else:

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -34,6 +34,25 @@ class PIPELINE_ARGS:
)
class ABC_TOKENIZER:
def __init__(self):
self.pad_token_id = 0
self.bos_token_id = 2
self.eos_token_id = 3
def encode(self, text):
ids = [ord(c) for c in text]
return ids
def decode(self, ids):
txt = "".join(
chr(idx) if idx > self.eos_token_id else ""
for idx in ids
if idx != self.eos_token_id
)
return txt
class PIPELINE:
def __init__(self, model, WORD_NAME: str):
self.model = model
@@ -48,6 +67,8 @@ class PIPELINE:
self.tokenizer = TRIE_TOKENIZER(
os.path.dirname(os.path.abspath(__file__)) + "/rwkv_vocab_v20230424.txt"
)
elif WORD_NAME == "abc_tokenizer":
self.tokenizer = ABC_TOKENIZER()
else:
if WORD_NAME.endswith(".txt"):
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
@@ -84,6 +105,8 @@ class PIPELINE:
return e / e.sum(axis=axis, keepdims=True)
def sample_logits(self, logits, temperature=1.0, top_p=0.85, top_k=0):
if type(logits) == list:
logits = np.array(logits)
np_logits = type(logits) == np.ndarray
if np_logits:
probs = self.np_softmax(logits, axis=-1)
@@ -148,10 +171,17 @@ class PIPELINE:
all_tokens += [token]
for xxx in occurrence:
occurrence[xxx] *= args.alpha_decay
ttt = self.decode([token])
www = 1
if ttt in " \t0123456789":
www = 0
# elif ttt in '\r\n,.;?!"\':+-*/=#@$%^&_`~|<>\\()[]{},。;“”:?!()【】':
# www = 0.5
if token not in occurrence:
occurrence[token] = 1
occurrence[token] = www
else:
occurrence[token] += 1
occurrence[token] += www
# print(occurrence) # debug
# output

52
backend-python/rwkv_pip/webgpu/model.py vendored Normal file
View File

@@ -0,0 +1,52 @@
from typing import Any, List, Union
try:
import web_rwkv_py as wrp
except ModuleNotFoundError:
try:
from . import web_rwkv_py as wrp
except ImportError:
raise ModuleNotFoundError(
"web_rwkv_py not found, install it from https://github.com/cryscan/web-rwkv-py"
)
class RWKV:
def __init__(self, model_path: str, strategy: str = None):
self.info = wrp.peek_info(model_path)
self.w = {} # fake weight
self.w["emb.weight"] = [0] * self.info.num_vocab
self.version = str(self.info.version).lower()
self.wrp = getattr(wrp, self.version)
layer = (
int(s.lstrip("layer"))
for s in strategy.split()
for s in s.split(",")
if s.startswith("layer")
)
chunk_size = (
int(s.lstrip("chunk"))
for s in strategy.split()
for s in s.split(",")
if s.startswith("chunk")
)
args = {
"file": model_path,
"turbo": True,
"quant": next(layer, 31) if "i8" in strategy else 0,
"quant_nf4": next(layer, 26) if "i4" in strategy else 0,
"token_chunk_size": next(chunk_size, 32),
"lora": None,
}
self.model = self.wrp.Model(**args)
def forward(self, tokens: List[int], state: Union[Any, None] = None):
if type(state).__name__ == "BackedState": # memory state
gpu_state = self.wrp.ModelState(self.model, 1)
gpu_state.load(state)
else:
gpu_state = state
return self.wrp.run_one(self.model, tokens, gpu_state)

Binary file not shown.

View File

@@ -52,6 +52,8 @@ class VocabConfig:
bin_name_to_program_name: Dict[str, str]
# Mapping from program number to instrument name.
instrument_names: Dict[str, str]
# Manual override for velocity bins. Each element is the max velocity value for that bin by index.
velocity_bins_override: Optional[List[int]] = None
def __post_init__(self):
self.validate()
@@ -116,6 +118,12 @@ class VocabConfig:
raise ValueError("velocity_bins must be at least 2")
if len(self.bin_instrument_names) > 16:
raise ValueError("bin_instruments must have at most 16 values")
if self.velocity_bins_override:
print("VocabConfig is using velocity_bins_override. Ignoring velocity_exp.")
if len(self.velocity_bins_override) != self.velocity_bins:
raise ValueError(
"velocity_bins_override must have same length as velocity_bins"
)
if (
self.ch10_instrument_bin_name
and self.ch10_instrument_bin_name not in self.bin_instrument_names
@@ -156,6 +164,11 @@ class VocabUtils:
def velocity_to_bin(self, velocity: float) -> int:
velocity = max(0, min(velocity, self.cfg.velocity_events - 1))
if self.cfg.velocity_bins_override:
for i, v in enumerate(self.cfg.velocity_bins_override):
if velocity <= v:
return i
return 0
binsize = self.cfg.velocity_events / (self.cfg.velocity_bins - 1)
if self.cfg.velocity_exp == 1.0:
return ceil(velocity / binsize)
@@ -176,6 +189,8 @@ class VocabUtils:
)
def bin_to_velocity(self, bin: int) -> int:
if self.cfg.velocity_bins_override:
return self.cfg.velocity_bins_override[bin]
binsize = self.cfg.velocity_events / (self.cfg.velocity_bins - 1)
if self.cfg.velocity_exp == 1.0:
return max(0, ceil(bin * binsize - 1))
@@ -358,13 +373,32 @@ class AugmentConfig:
)
@dataclass
class FilterConfig:
# Whether to filter out MIDI files with duplicate MD5 hashes.
deduplicate_md5: bool
# Minimum time delay between notes in a file before splitting into multiple documents.
piece_split_delay: float
# Minimum length of a piece in milliseconds.
min_piece_length: float
@classmethod
def from_json(cls, path: str):
with open(path, "r") as f:
config = json.load(f)
return cls(**config)
def mix_volume(velocity: int, volume: int, expression: int) -> float:
return velocity * (volume / 127.0) * (expression / 127.0)
def convert_midi_to_str(
cfg: VocabConfig, mid: mido.MidiFile, augment: AugmentValues = None
) -> str:
cfg: VocabConfig,
filter_cfg: FilterConfig,
mid: mido.MidiFile,
augment: AugmentValues = None,
) -> List[str]:
utils = VocabUtils(cfg)
if augment is None:
augment = AugmentValues.default()
@@ -390,7 +424,9 @@ def convert_midi_to_str(
} # {channel: {(note, program) -> True}}
started_flag = False
output_list = []
output = ["<start>"]
output_length_ms = 0.0
token_data_buffer: List[
Tuple[int, int, int, float]
] = [] # need to sort notes between wait tokens
@@ -432,16 +468,33 @@ def convert_midi_to_str(
token_data_buffer = []
def consume_note_program_data(prog: int, chan: int, note: int, vel: float):
nonlocal output, started_flag, delta_time_ms, cfg, utils, token_data_buffer
nonlocal output, output_length_ms, started_flag, delta_time_ms, cfg, utils, token_data_buffer
is_token_valid = (
utils.prog_data_to_token_data(prog, chan, note, vel) is not None
)
if not is_token_valid:
return
if delta_time_ms > filter_cfg.piece_split_delay * 1000.0:
# check if any notes are still held
silent = True
for channel in channel_notes.keys():
if len(channel_notes[channel]) > 0:
silent = False
break
if silent:
flush_token_data_buffer()
output.append("<end>")
if output_length_ms > filter_cfg.min_piece_length * 1000.0:
output_list.append(" ".join(output))
output = ["<start>"]
output_length_ms = 0.0
started_flag = False
if started_flag:
wait_tokens = utils.data_to_wait_tokens(delta_time_ms)
if len(wait_tokens) > 0:
flush_token_data_buffer()
output_length_ms += delta_time_ms
output += wait_tokens
delta_time_ms = 0.0
token_data_buffer.append((prog, chan, note, vel * augment.velocity_mod_factor))
@@ -510,7 +563,9 @@ def convert_midi_to_str(
flush_token_data_buffer()
output.append("<end>")
return " ".join(output)
if output_length_ms > filter_cfg.min_piece_length * 1000.0:
output_list.append(" ".join(output))
return output_list
def generate_program_change_messages(cfg: VocabConfig):
@@ -633,10 +688,10 @@ def token_to_midi_message(
if utils.cfg.decode_fix_repeated_notes:
if (channel, note) in state.active_notes:
del state.active_notes[(channel, note)]
yield mido.Message(
"note_off", note=note, time=ticks, channel=channel
), state
ticks = 0
yield mido.Message(
"note_off", note=note, time=ticks, channel=channel
), state
ticks = 0
state.active_notes[(channel, note)] = state.total_time
yield mido.Message(
"note_on", note=note, velocity=velocity, time=ticks, channel=channel

View File

@@ -0,0 +1,5 @@
{
"deduplicate_md5": true,
"piece_split_delay": 10000,
"min_piece_length": 0
}

View File

@@ -4,19 +4,13 @@ import os
import pathlib
import copy
import re
from typing import Dict, Iterable, List, Tuple, Union, Type
from typing import Dict, Iterable, List, Tuple, Union, Type, Callable
from utils.log import quick_log
from fastapi import HTTPException
from pydantic import BaseModel, Field
import numpy as np
from routes import state_cache
import global_var
END_OF_TEXT = 0
END_OF_LINE_DOUBLE = 535
os.environ["TORCH_EXTENSIONS_DIR"] = f"{pathlib.Path(__file__).parent.parent.resolve()}"
@@ -29,6 +23,8 @@ class RWKVType(Enum):
class AbstractRWKV(ABC):
def __init__(self, model, pipeline):
self.EOS_ID = 0
self.name = "rwkv"
self.model = model
self.pipeline = pipeline
@@ -43,6 +39,8 @@ class AbstractRWKV(ABC):
self.top_k = 0
self.penalty_alpha_presence = 0
self.penalty_alpha_frequency = 1
self.penalty_decay = 0.996
self.global_penalty = False
@abstractmethod
def adjust_occurrence(self, occurrence: Dict, token: int):
@@ -68,6 +66,8 @@ class AbstractRWKV(ABC):
pass
def get_embedding(self, input: str, fast_mode: bool) -> Tuple[List[float], int]:
import numpy as np
if fast_mode:
embedding, token_len = self.__fast_embedding(
self.fix_tokens(self.pipeline.encode(input)), None
@@ -222,6 +222,8 @@ class AbstractRWKV(ABC):
def generate(
self, prompt: str, stop: Union[str, List[str], None] = None
) -> Iterable[Tuple[str, str, int, int]]:
import numpy as np
quick_log(None, None, "Generation Prompt:\n" + prompt)
cache = None
delta_prompt = prompt
@@ -231,14 +233,14 @@ class AbstractRWKV(ABC):
)
except HTTPException:
pass
if cache is None or cache["prompt"] == "":
if cache is None or cache["prompt"] == "" or cache["state"] is None:
self.model_state = None
self.model_tokens = []
else:
delta_prompt = prompt[len(cache["prompt"]) :]
self.model_state = copy.deepcopy(cache["state"])
self.model_tokens = copy.deepcopy(cache["tokens"])
logits = copy.deepcopy(cache["logits"])
self.model_state = cache["state"]
self.model_tokens = cache["tokens"]
logits = cache["logits"]
prompt_token_len = 0
if delta_prompt != "":
@@ -271,7 +273,18 @@ class AbstractRWKV(ABC):
logits, temperature=self.temperature, top_p=self.top_p, top_k=self.top_k
)
if token == END_OF_TEXT:
if token == self.EOS_ID:
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
yield response, "", prompt_token_len, completion_token_len
break
@@ -302,22 +315,25 @@ class AbstractRWKV(ABC):
yield response, "", prompt_token_len, completion_token_len
break
elif type(stop) == list:
stop_exist_regex = "|".join(stop)
matched = re.search(stop_exist_regex, response)
if matched:
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
exit_flag = False
for s in stop:
if s in response:
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
)
except HTTPException:
pass
response = response.split(matched.group())[0]
yield response, "", prompt_token_len, completion_token_len
except HTTPException:
pass
exit_flag = True
response = response.split(s)[0]
yield response, "", prompt_token_len, completion_token_len
break
if exit_flag:
break
out_last = begin + i + 1
if i == self.max_tokens_per_generation - 1:
@@ -360,18 +376,24 @@ class TextRWKV(AbstractRWKV):
self.bot = "Assistant"
self.END_OF_LINE = 11
self.AVOID_REPEAT_TOKENS = []
self.AVOID_REPEAT_TOKENS = set()
AVOID_REPEAT = ""
for i in AVOID_REPEAT:
dd = self.pipeline.encode(i)
assert len(dd) == 1
self.AVOID_REPEAT_TOKENS += dd
self.AVOID_REPEAT_TOKENS.add(dd[0])
self.AVOID_PENALTY_TOKENS = set()
AVOID_PENALTY = '\n,.:?!,。:?!"“”<>[]{}/\\|;~`@#$%^&*()_+-=0123456789 '
for i in AVOID_PENALTY:
dd = self.pipeline.encode(i)
if len(dd) == 1:
self.AVOID_PENALTY_TOKENS.add(dd[0])
self.__preload()
def adjust_occurrence(self, occurrence: Dict, token: int):
for xxx in occurrence:
occurrence[xxx] *= 0.996
occurrence[xxx] *= self.penalty_decay
if token not in occurrence:
occurrence[token] = 1
else:
@@ -379,26 +401,24 @@ class TextRWKV(AbstractRWKV):
def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int):
for n in occurrence:
# if n not in self.AVOID_PENALTY_TOKENS:
logits[n] -= (
self.penalty_alpha_presence
+ occurrence[n] * self.penalty_alpha_frequency
)
if i == 0:
# set global_penalty to False to get the same generated results as the official RWKV Gradio
if self.global_penalty and i == 0:
for token in self.model_tokens:
token = int(token)
for xxx in occurrence:
occurrence[xxx] *= 0.996
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
if token not in self.AVOID_PENALTY_TOKENS:
self.adjust_occurrence(occurrence, token)
# Model only saw '\n\n' as [187, 187] before, but the tokenizer outputs [535] for it at the end
def fix_tokens(self, tokens) -> List[int]:
if self.rwkv_type == RWKVType.World:
return tokens
if len(tokens) > 0 and tokens[-1] == END_OF_LINE_DOUBLE:
if len(tokens) > 0 and tokens[-1] == 535:
tokens = tokens[:-1] + [self.END_OF_LINE, self.END_OF_LINE]
return tokens
@@ -456,7 +476,7 @@ The following is a coherent verbose detailed conversation between a girl named {
pass
class MusicRWKV(AbstractRWKV):
class MusicMidiRWKV(AbstractRWKV):
def __init__(self, model, pipeline):
super().__init__(model, pipeline)
@@ -498,8 +518,47 @@ class MusicRWKV(AbstractRWKV):
return " " + delta
class MusicAbcRWKV(AbstractRWKV):
def __init__(self, model, pipeline):
super().__init__(model, pipeline)
self.EOS_ID = 3
self.max_tokens_per_generation = 500
self.temperature = 1
self.top_p = 0.8
self.top_k = 8
self.rwkv_type = RWKVType.Music
def adjust_occurrence(self, occurrence: Dict, token: int):
pass
def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int):
pass
def fix_tokens(self, tokens) -> List[int]:
return tokens
def run_rnn(
self, _tokens: List[str], newline_adj: int = 0
) -> Tuple[List[float], int]:
tokens = [int(x) for x in _tokens]
token_len = len(tokens)
self.model_tokens += tokens
out, self.model_state = self.model.forward(tokens, self.model_state)
return out, token_len
def delta_postprocess(self, delta: str) -> str:
return delta
def get_tokenizer(tokenizer_len: int):
tokenizer_dir = f"{pathlib.Path(__file__).parent.parent.resolve()}/rwkv_pip/"
if tokenizer_len < 2176:
return "abc_tokenizer"
if tokenizer_len < 20096:
return tokenizer_dir + "tokenizer-midipiano.json"
if tokenizer_len < 50277:
return tokenizer_dir + "tokenizer-midi.json"
elif tokenizer_len < 65536:
@@ -508,9 +567,44 @@ def get_tokenizer(tokenizer_len: int):
return "rwkv_vocab_v20230424"
def get_model_path(model_path: str) -> str:
if os.path.isabs(model_path):
return model_path
working_dir: pathlib.Path = pathlib.Path(os.path.abspath(os.getcwd()))
parent_paths: List[pathlib.Path] = [
working_dir, # [cwd](RWKV-Runner)/models/xxx
working_dir.parent, # [cwd](backend-python)/../models/xxx
pathlib.Path(
os.path.abspath(__file__)
).parent.parent, # backend-python/models/xxx
pathlib.Path(
os.path.abspath(__file__)
).parent.parent.parent, # RWKV-Runner/models/xxx
]
child_paths: List[Callable[[pathlib.Path], pathlib.Path]] = [
lambda p: p / model_path,
lambda p: p / "build" / "bin" / model_path, # for dev
]
for parent_path in parent_paths:
for child_path in child_paths:
full_path: pathlib.Path = child_path(parent_path)
if os.path.isfile(full_path):
return str(full_path)
return model_path
def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV:
model = get_model_path(model)
rwkv_beta = global_var.get(global_var.Args).rwkv_beta
rwkv_cpp = getattr(global_var.get(global_var.Args), "rwkv.cpp")
webgpu = global_var.get(global_var.Args).webgpu
if "midi" in model.lower() or "abc" in model.lower():
os.environ["RWKV_RESCALE_LAYER"] = "999"
@@ -526,6 +620,11 @@ def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV
from rwkv_pip.cpp.model import (
RWKV as Model,
)
elif webgpu:
print("Using webgpu")
from rwkv_pip.webgpu.model import (
RWKV as Model,
)
else:
from rwkv_pip.model import (
RWKV as Model,
@@ -541,14 +640,30 @@ def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV
rwkv_map: dict[str, Type[AbstractRWKV]] = {
"20B_tokenizer": TextRWKV,
"rwkv_vocab_v20230424": TextRWKV,
"tokenizer-midi": MusicRWKV,
"tokenizer-midi": MusicMidiRWKV,
"tokenizer-midipiano": MusicMidiRWKV,
"abc_tokenizer": MusicAbcRWKV,
}
tokenizer_name = os.path.splitext(os.path.basename(tokenizer))[0]
global_var.set(
global_var.Midi_Vocab_Config_Type,
(
global_var.MidiVocabConfig.Piano
if tokenizer_name == "tokenizer-midipiano"
else global_var.MidiVocabConfig.Default
),
)
rwkv: AbstractRWKV
if tokenizer_name in rwkv_map:
rwkv = rwkv_map[tokenizer_name](model, pipeline)
else:
rwkv = TextRWKV(model, pipeline)
tokenizer_name = tokenizer_name.lower()
if "music" in tokenizer_name or "midi" in tokenizer_name:
rwkv = MusicMidiRWKV(model, pipeline)
elif "abc" in tokenizer_name:
rwkv = MusicAbcRWKV(model, pipeline)
else:
rwkv = TextRWKV(model, pipeline)
rwkv.name = filename
return rwkv
@@ -556,19 +671,24 @@ def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV
class ModelConfigBody(BaseModel):
max_tokens: int = Field(default=None, gt=0, le=102400)
temperature: float = Field(default=None, ge=0, le=2)
temperature: float = Field(default=None, ge=0, le=3)
top_p: float = Field(default=None, ge=0, le=1)
presence_penalty: float = Field(default=None, ge=-2, le=2)
frequency_penalty: float = Field(default=None, ge=-2, le=2)
penalty_decay: float = Field(default=None, ge=0.99, le=0.999)
top_k: int = Field(default=None, ge=0, le=25)
global_penalty: bool = Field(default=None)
model_config = {
"json_schema_extra": {
"example": {
"max_tokens": 1000,
"temperature": 1.2,
"top_p": 0.5,
"presence_penalty": 0.4,
"frequency_penalty": 0.4,
"temperature": 1,
"top_p": 0.3,
"presence_penalty": 0,
"frequency_penalty": 1,
"penalty_decay": 0.996,
"global_penalty": False,
}
}
}
@@ -588,6 +708,12 @@ def set_rwkv_config(model: AbstractRWKV, body: ModelConfigBody):
model.penalty_alpha_presence = body.presence_penalty
if body.frequency_penalty is not None:
model.penalty_alpha_frequency = body.frequency_penalty
if body.penalty_decay is not None:
model.penalty_decay = body.penalty_decay
if body.top_k is not None:
model.top_k = body.top_k
if body.global_penalty is not None:
model.global_penalty = body.global_penalty
def get_rwkv_config(model: AbstractRWKV) -> ModelConfigBody:
@@ -597,4 +723,7 @@ def get_rwkv_config(model: AbstractRWKV) -> ModelConfigBody:
top_p=model.top_p,
presence_penalty=model.penalty_alpha_presence,
frequency_penalty=model.penalty_alpha_frequency,
penalty_decay=model.penalty_decay,
top_k=model.top_k,
global_penalty=model.global_penalty,
)

View File

@@ -19,9 +19,12 @@ def set_torch():
def torch_gc():
import torch
try:
import torch
if torch.cuda.is_available():
with torch.cuda.device(0):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
if torch.cuda.is_available():
with torch.cuda.device(0):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
except:
pass # prevent 'torch' has no attribute 'cuda' error, so user can use CPU or WebGPU

View File

@@ -0,0 +1,279 @@
{
"note_events": 128,
"wait_events": 125,
"max_wait_time": 1000,
"velocity_events": 128,
"velocity_bins": 16,
"velocity_exp": 0.33,
"do_token_sorting": true,
"unrolled_tokens": false,
"decode_end_held_note_delay": 5.0,
"decode_fix_repeated_notes": true,
"bin_instrument_names": [
"piano"
],
"ch10_instrument_bin_name": "",
"program_name_to_bin_name": {
"Acoustic Grand Piano": "piano",
"Bright Acoustic Piano": "piano",
"Electric Grand Piano": "piano",
"Honky-tonk Piano": "piano",
"Electric Piano 1 (Rhodes Piano)": "piano",
"Electric Piano 2 (Chorused Piano)": "piano",
"Harpsichord": "piano",
"Clavinet": "piano",
"Celesta": "",
"Glockenspiel": "",
"Music Box": "",
"Vibraphone": "",
"Marimba": "",
"Xylophone": "",
"Tubular Bells": "",
"Dulcimer (Santur)": "",
"Drawbar Organ (Hammond)": "",
"Percussive Organ": "piano",
"Rock Organ": "piano",
"Church Organ": "piano",
"Reed Organ": "piano",
"Accordion (French)": "piano",
"Harmonica": "piano",
"Tango Accordion (Band neon)": "piano",
"Acoustic Guitar (nylon)": "",
"Acoustic Guitar (steel)": "",
"Electric Guitar (jazz)": "",
"Electric Guitar (clean)": "",
"Electric Guitar (muted)": "",
"Overdriven Guitar": "",
"Distortion Guitar": "",
"Guitar harmonics": "",
"Acoustic Bass": "",
"Electric Bass (fingered)": "",
"Electric Bass (picked)": "",
"Fretless Bass": "",
"Slap Bass 1": "",
"Slap Bass 2": "",
"Synth Bass 1": "",
"Synth Bass 2": "",
"Violin": "",
"Viola": "",
"Cello": "",
"Contrabass": "",
"Tremolo Strings": "",
"Pizzicato Strings": "",
"Orchestral Harp": "",
"Timpani": "",
"String Ensemble 1 (strings)": "",
"String Ensemble 2 (slow strings)": "",
"SynthStrings 1": "",
"SynthStrings 2": "",
"Choir Aahs": "",
"Voice Oohs": "",
"Synth Voice": "",
"Orchestra Hit": "",
"Trumpet": "",
"Trombone": "",
"Tuba": "",
"Muted Trumpet": "",
"French Horn": "",
"Brass Section": "",
"SynthBrass 1": "",
"SynthBrass 2": "",
"Soprano Sax": "",
"Alto Sax": "",
"Tenor Sax": "",
"Baritone Sax": "",
"Oboe": "",
"English Horn": "",
"Bassoon": "",
"Clarinet": "",
"Piccolo": "",
"Flute": "",
"Recorder": "",
"Pan Flute": "",
"Blown Bottle": "",
"Shakuhachi": "",
"Whistle": "",
"Ocarina": "",
"Lead 1 (square wave)": "",
"Lead 2 (sawtooth wave)": "",
"Lead 3 (calliope)": "",
"Lead 4 (chiffer)": "",
"Lead 5 (charang)": "",
"Lead 6 (voice solo)": "",
"Lead 7 (fifths)": "",
"Lead 8 (bass + lead)": "",
"Pad 1 (new age Fantasia)": "",
"Pad 2 (warm)": "",
"Pad 3 (polysynth)": "",
"Pad 4 (choir space voice)": "",
"Pad 5 (bowed glass)": "",
"Pad 6 (metallic pro)": "",
"Pad 7 (halo)": "",
"Pad 8 (sweep)": "",
"FX 1 (rain)": "",
"FX 2 (soundtrack)": "",
"FX 3 (crystal)": "",
"FX 4 (atmosphere)": "",
"FX 5 (brightness)": "",
"FX 6 (goblins)": "",
"FX 7 (echoes, drops)": "",
"FX 8 (sci-fi, star theme)": "",
"Sitar": "",
"Banjo": "",
"Shamisen": "",
"Koto": "",
"Kalimba": "",
"Bag pipe": "",
"Fiddle": "",
"Shanai": "",
"Tinkle Bell": "",
"Agogo": "",
"Steel Drums": "",
"Woodblock": "",
"Taiko Drum": "",
"Melodic Tom": "",
"Synth Drum": "",
"Reverse Cymbal": "",
"Guitar Fret Noise": "",
"Breath Noise": "",
"Seashore": "",
"Bird Tweet": "",
"Telephone Ring": "",
"Helicopter": "",
"Applause": "",
"Gunshot": ""
},
"bin_name_to_program_name": {
"piano": "Acoustic Grand Piano"
},
"instrument_names": {
"0": "Acoustic Grand Piano",
"1": "Bright Acoustic Piano",
"2": "Electric Grand Piano",
"3": "Honky-tonk Piano",
"4": "Electric Piano 1 (Rhodes Piano)",
"5": "Electric Piano 2 (Chorused Piano)",
"6": "Harpsichord",
"7": "Clavinet",
"8": "Celesta",
"9": "Glockenspiel",
"10": "Music Box",
"11": "Vibraphone",
"12": "Marimba",
"13": "Xylophone",
"14": "Tubular Bells",
"15": "Dulcimer (Santur)",
"16": "Drawbar Organ (Hammond)",
"17": "Percussive Organ",
"18": "Rock Organ",
"19": "Church Organ",
"20": "Reed Organ",
"21": "Accordion (French)",
"22": "Harmonica",
"23": "Tango Accordion (Band neon)",
"24": "Acoustic Guitar (nylon)",
"25": "Acoustic Guitar (steel)",
"26": "Electric Guitar (jazz)",
"27": "Electric Guitar (clean)",
"28": "Electric Guitar (muted)",
"29": "Overdriven Guitar",
"30": "Distortion Guitar",
"31": "Guitar harmonics",
"32": "Acoustic Bass",
"33": "Electric Bass (fingered)",
"34": "Electric Bass (picked)",
"35": "Fretless Bass",
"36": "Slap Bass 1",
"37": "Slap Bass 2",
"38": "Synth Bass 1",
"39": "Synth Bass 2",
"40": "Violin",
"41": "Viola",
"42": "Cello",
"43": "Contrabass",
"44": "Tremolo Strings",
"45": "Pizzicato Strings",
"46": "Orchestral Harp",
"47": "Timpani",
"48": "String Ensemble 1 (strings)",
"49": "String Ensemble 2 (slow strings)",
"50": "SynthStrings 1",
"51": "SynthStrings 2",
"52": "Choir Aahs",
"53": "Voice Oohs",
"54": "Synth Voice",
"55": "Orchestra Hit",
"56": "Trumpet",
"57": "Trombone",
"58": "Tuba",
"59": "Muted Trumpet",
"60": "French Horn",
"61": "Brass Section",
"62": "SynthBrass 1",
"63": "SynthBrass 2",
"64": "Soprano Sax",
"65": "Alto Sax",
"66": "Tenor Sax",
"67": "Baritone Sax",
"68": "Oboe",
"69": "English Horn",
"70": "Bassoon",
"71": "Clarinet",
"72": "Piccolo",
"73": "Flute",
"74": "Recorder",
"75": "Pan Flute",
"76": "Blown Bottle",
"77": "Shakuhachi",
"78": "Whistle",
"79": "Ocarina",
"80": "Lead 1 (square wave)",
"81": "Lead 2 (sawtooth wave)",
"82": "Lead 3 (calliope)",
"83": "Lead 4 (chiffer)",
"84": "Lead 5 (charang)",
"85": "Lead 6 (voice solo)",
"86": "Lead 7 (fifths)",
"87": "Lead 8 (bass + lead)",
"88": "Pad 1 (new age Fantasia)",
"89": "Pad 2 (warm)",
"90": "Pad 3 (polysynth)",
"91": "Pad 4 (choir space voice)",
"92": "Pad 5 (bowed glass)",
"93": "Pad 6 (metallic pro)",
"94": "Pad 7 (halo)",
"95": "Pad 8 (sweep)",
"96": "FX 1 (rain)",
"97": "FX 2 (soundtrack)",
"98": "FX 3 (crystal)",
"99": "FX 4 (atmosphere)",
"100": "FX 5 (brightness)",
"101": "FX 6 (goblins)",
"102": "FX 7 (echoes, drops)",
"103": "FX 8 (sci-fi, star theme)",
"104": "Sitar",
"105": "Banjo",
"106": "Shamisen",
"107": "Koto",
"108": "Kalimba",
"109": "Bag pipe",
"110": "Fiddle",
"111": "Shanai",
"112": "Tinkle Bell",
"113": "Agogo",
"114": "Steel Drums",
"115": "Woodblock",
"116": "Taiko Drum",
"117": "Melodic Tom",
"118": "Synth Drum",
"119": "Reverse Cymbal",
"120": "Guitar Fret Noise",
"121": "Breath Noise",
"122": "Seashore",
"123": "Bird Tweet",
"124": "Telephone Ring",
"125": "Helicopter",
"126": "Applause",
"127": "Gunshot"
}
}

View File

@@ -1,3 +1,8 @@
Client Download URL:
客户端下载地址:
クライアントのダウンロードURL:
https://github.com/josStorer/RWKV-Runner/releases/latest/download/RWKV-Runner_macos_universal.zip
For Mac and Linux users, please manually install Python 3.10 (usually the latest systems come with it built-in). You can specify the Python interpreter to use in Settings. (which python3)
对于Mac和Linux用户请手动安装 Python3.10 (通常最新的系统已经内置了). 你可以在设置中指定使用的Python解释器. (which python3)
MacおよびLinuxのユーザーの方は、Python3.10を手動でインストールしてください(通常、最新のシステムには既に組み込まれています)。 設定メニューで使用するPythonインタプリタを指定することができます。 (which python3)

View File

@@ -1,3 +1,8 @@
Client Download URL:
客户端下载地址:
クライアントのダウンロードURL:
https://github.com/josStorer/RWKV-Runner/releases/latest/download/RWKV-Runner_linux_x64
For Mac and Linux users, please manually install Python 3.10 (usually the latest systems come with it built-in). You can specify the Python interpreter to use in Settings.
对于Mac和Linux用户请手动安装 Python3.10 (通常最新的系统已经内置了). 你可以在设置中指定使用的Python解释器.
MacおよびLinuxのユーザーの方は、Python3.10を手動でインストールしてください(通常、最新のシステムには既に組み込まれています)。 設定メニューで使用するPythonインタプリタを指定することができます。

View File

@@ -1,3 +1,8 @@
Client Download URL:
客户端下载地址:
クライアントのダウンロードURL:
https://github.com/josStorer/RWKV-Runner/releases/latest/download/RWKV-Runner_windows_x64.exe
Please execute this program in an empty directory. All related dependencies will be placed in this directory.
请将本程序放在一个空目录内执行, 所有相关依赖均会放置于此目录.
このプログラムを空のディレクトリで実行してください。関連するすべての依存関係は、このディレクトリに配置されます。

18
docker-compose.yml Normal file
View File

@@ -0,0 +1,18 @@
services:
rmkv_runner:
image: rwkv-runner:latest
build: .
# Append "--rwkv.cpp" parameter to use rwkv.cpp
# command: python3.10 ./backend-python/main.py --port 27777 --host 0.0.0.0 --webui --rwkv.cpp
volumes:
- /mnt:/mnt
ports:
- "27777:27777"
# Comment the following lines if use rwkv.cpp
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]

View File

@@ -19,14 +19,15 @@ document.querySelectorAll('.grid.h-10.grid-cols-12.place-content-center.gap-x-3.
if (!data.name.endsWith('.bin') && !data.name.endsWith('.pth'))
return
data.desc = {en: '', zh: ''}
data.desc = { en: '', zh: '', ja: '' }
const rawText = await (await fetch(e.children[1].href.replace('/resolve/', '/raw/'))).text()
data.size = parseInt(extractValue(rawText, 'size'))
data.SHA256 = extractValue(rawText, 'oid sha256:')
data.lastUpdated = e.children[3].children[0].getAttribute('datetime')
data.url = e.children[1].href.replace('/resolve/', '/blob/')
data.downloadUrl = e.children[1].href
data.url = e.children[1].href.replace('/resolve/', '/blob/').replace('?download=true', '')
data.downloadUrl = e.children[1].href.replace('?download=true', '')
data.tags = []
modelsJson.push(data)
})

View File

@@ -32,6 +32,7 @@ cleaner_thread.start()
w = torch.load(model_file, map_location="cpu")
gc.collect()
vocab_size = w["emb.weight"].shape[0]
n_embd = w["emb.weight"].shape[1]
n_layer = 0
keys = list(w.keys())
@@ -52,6 +53,9 @@ for x in keys:
version = max(6, version)
if version <= expected_max_version:
print(f"--n_layer {n_layer} --n_embd {n_embd}", end="")
print(
f"v{int(version)}/train.py --vocab_size {vocab_size} --n_layer {n_layer} --n_embd {n_embd}",
end="",
)
else:
raise Exception(f"RWKV{version} is not supported")

View File

@@ -22,6 +22,12 @@ else
sudo apt -y install python3-pip
fi
if dpkg -s "python3-dev" >/dev/null 2>&1; then
echo "python3-dev installed"
else
sudo apt -y install python3-dev
fi
if dpkg -s "ninja-build" >/dev/null 2>&1; then
echo "ninja installed"
else
@@ -47,11 +53,12 @@ else
fi
echo "loading $loadModel"
modelInfo=$(python3 ./finetune/get_layer_and_embd.py $loadModel 4)
modelInfo=$(python3 ./finetune/get_layer_and_embd.py $loadModel 5.2)
echo $modelInfo
if [[ $modelInfo =~ "--n_layer" ]]; then
python3 ./finetune/lora/train.py $modelInfo $@ --proj_dir lora-models --data_type binidx --lora \
--lora_parts=att,ffn,time,ln --strategy deepspeed_stage_2 --accelerator gpu
sudo rm -rf /root/.cache/torch_extensions
python3 ./finetune/lora/$modelInfo $@ --proj_dir lora-models --data_type binidx --lora \
--lora_parts=att,ffn,time,ln --strategy deepspeed_stage_2 --accelerator gpu --ds_bucket_mb 2
else
echo "modelInfo is invalid"
exit 1

View File

@@ -7,6 +7,7 @@ import struct
from functools import lru_cache
from itertools import accumulate
def print_rank_0(*message):
pass
# """If distributed is initialized print only on rank 0."""
@@ -16,12 +17,14 @@ def print_rank_0(*message):
# else:
# print(*message, flush=True)
def _warmup_mmap_file(path):
pass
# with open(path, "rb") as stream:
# while stream.read(100 * 1024 * 1024):
# pass
dtypes = {
1: np.uint8,
2: np.int8,
@@ -33,18 +36,22 @@ dtypes = {
8: np.uint16,
}
def code(dtype):
for k in dtypes.keys():
if dtypes[k] == dtype:
return k
raise ValueError(dtype)
def index_file_path(prefix_path):
return prefix_path + ".idx"
def data_file_path(prefix_path):
return prefix_path + ".bin"
class MMapIndexedDataset(torch.utils.data.Dataset):
class Index(object):
_HDR_MAGIC = b"MMIDIDX\x00\x00"
@@ -100,7 +107,7 @@ class MMapIndexedDataset(torch.utils.data.Dataset):
self._file.close()
return _Writer()
def __init__(self, path, skip_warmup=False):
with open(path, "rb") as stream:
magic_test = stream.read(9)
@@ -217,8 +224,7 @@ class MMapIndexedDataset(torch.utils.data.Dataset):
elif isinstance(idx, slice):
start, stop, step = idx.indices(len(self))
if step != 1:
raise ValueError(
"Slices into indexed_dataset must be contiguous")
raise ValueError("Slices into indexed_dataset must be contiguous")
ptr = self._index._pointers[start]
sizes = self._index._sizes[idx]
offsets = list(accumulate(sizes))

View File

@@ -17,9 +17,11 @@ class MyDataset(Dataset):
if args.data_type == "binidx":
self.vocab_size = args.vocab_size
rank_zero_info(f"Current vocab size = {self.vocab_size} (make sure it's correct)")
rank_zero_info(
f"Current vocab size = {self.vocab_size} (make sure it's correct)"
)
if args.data_file.endswith('/'):
if args.data_file.endswith("/"):
d_all = []
for p in os.listdir(args.data_file):
if p.endswith(".idx"):
@@ -29,33 +31,52 @@ class MyDataset(Dataset):
exit(0)
else:
self.data = MMapIndexedDataset(args.data_file)
self.data_size = len(self.data._bin_buffer) // self.data._index._dtype_size
self.data_size = (
len(self.data._bin_buffer) // self.data._index._dtype_size
)
rank_zero_info(f"Data has {self.data_size} tokens.")
if args.my_qa_mask > 0:
self.data_pile = MMapIndexedDataset('/fsx/BlinkDL/pile/pile_20B_tokenizer_text_document')
self.data_pile_size = len(self.data_pile._bin_buffer) // self.data._index._dtype_size
self.data_pile = MMapIndexedDataset(
"/fsx/BlinkDL/pile/pile_20B_tokenizer_text_document"
)
self.data_pile_size = (
len(self.data_pile._bin_buffer) // self.data._index._dtype_size
)
if args.my_pile_stage > 0:
# assert self.data_size == 332115325534 and self.vocab_size == 50277
self.samples_per_epoch = args.epoch_steps * args.real_bsz
assert self.samples_per_epoch == 40320
rank_zero_info(f"########## Pile 20b-tokenized stage {args.my_pile_stage} ##########")
rank_zero_info(
f"########## Pile 20b-tokenized stage {args.my_pile_stage} ##########"
)
dataset_slot = self.data_size // args.ctx_len
if args.my_pile_stage != 4:
assert MaybeIsPrime(args.magic_prime)
assert args.magic_prime % 3 == 2
assert args.magic_prime / dataset_slot > 0.99 and args.magic_prime / dataset_slot <= 1
assert (
args.magic_prime / dataset_slot > 0.99
and args.magic_prime / dataset_slot <= 1
)
elif args.data_type == "numpy":
self.data = np.load(args.data_file).astype("int")
self.vocab_size = args.vocab_size
rank_zero_info("Current vocab size =", self.vocab_size, "(make sure it's correct)")
rank_zero_info(
"Current vocab size =", self.vocab_size, "(make sure it's correct)"
)
self.data_size = len(self.data)
rank_zero_info(f"Data has {self.data_size} tokens.")
elif args.data_type == "uint16":
self.data = np.fromfile(args.data_file, dtype=np.uint16).astype("int32").reshape(-1, args.my_sample_len)
self.data = (
np.fromfile(args.data_file, dtype=np.uint16)
.astype("int32")
.reshape(-1, args.my_sample_len)
)
self.vocab_size = args.vocab_size
rank_zero_info("Current vocab size =", self.vocab_size, "(make sure it's correct)")
rank_zero_info(
"Current vocab size =", self.vocab_size, "(make sure it's correct)"
)
self.data_size = self.data.shape[0]
rank_zero_info(f"Data has {self.data_size} samples.")
elif args.data_type == "wds_img":
@@ -86,10 +107,14 @@ class MyDataset(Dataset):
for u in unique:
xxObj[xx] = u
xx += 1
with open(f"{args.proj_dir}/vocab.json", "w", encoding="utf-16le") as vocab_file:
with open(
f"{args.proj_dir}/vocab.json", "w", encoding="utf-16le"
) as vocab_file:
vocab_file.write(json.dumps(xxObj, ensure_ascii=False))
self.data_size = len(self.data)
rank_zero_info(f"Data has {self.data_size} tokens, {self.vocab_size} vocab size.")
rank_zero_info(
f"Data has {self.data_size} tokens, {self.vocab_size} vocab size."
)
self.stoi = {ch: i for i, ch in enumerate(unique)}
self.itos = {i: ch for i, ch in enumerate(unique)}
@@ -104,36 +129,53 @@ class MyDataset(Dataset):
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size}")
if args.data_type == "wds_img":
def init_wds(self, bias=0):
def identity(x):
return x
return x
import webdataset as wds
import torchvision.transforms as transforms
# img_transform = transforms.Compose(
# [transforms.CenterCrop(256)]
# )
img_transform = transforms.Compose([
transforms.CenterCrop(512),
transforms.Resize((args.my_img_size))
])
self.data_raw = wds.WebDataset(args.data_file, resampled=True).shuffle(10000, initial=1000, rng=random.Random(epoch*100000+rank+bias*1e9)).decode("torchrgb").to_tuple("jpg", "json", "txt").map_tuple(img_transform, identity, identity)
img_transform = transforms.Compose(
[transforms.CenterCrop(512), transforms.Resize((args.my_img_size))]
)
self.data_raw = (
wds.WebDataset(args.data_file, resampled=True)
.shuffle(
10000,
initial=1000,
rng=random.Random(epoch * 100000 + rank + bias * 1e9),
)
.decode("torchrgb")
.to_tuple("jpg", "json", "txt")
.map_tuple(img_transform, identity, identity)
)
for pp in self.data_raw.pipeline:
if 'Resampled' in str(pp):
if "Resampled" in str(pp):
pp.deterministic = True
def worker_seed():
return rank*100000+epoch+bias*1e9
return rank * 100000 + epoch + bias * 1e9
pp.worker_seed = worker_seed
self.data = iter(self.data_raw)
# print(f"WebDataset loaded for rank {rank} epoch {epoch}")
if self.data == None:
init_wds(self)
trial = 0
while trial < 10:
try:
dd = next(self.data) # jpg, json, txt
dd = next(self.data) # jpg, json, txt
break
except:
print(f'[dataloader error - epoch {epoch} rank {rank} - trying a new shuffle]')
print(
f"[dataloader error - epoch {epoch} rank {rank} - trying a new shuffle]"
)
self.error_count += 1
init_wds(self, self.error_count)
trial += 1
@@ -144,7 +186,7 @@ class MyDataset(Dataset):
return dd[0], dd[2]
else:
if args.data_type == "uint16":
i = np.random.randint(0, self.data_size-1)
i = np.random.randint(0, self.data_size - 1)
dix = self.data[i]
x = torch.tensor(dix[:-1], dtype=torch.long)
y = torch.tensor(dix[1:], dtype=torch.long)
@@ -196,7 +238,12 @@ class MyDataset(Dataset):
z_sum = 0
isGood = False
for i in range(3, ctx_len):
if dix[i] == 27 and dix[i-1] == 34 and dix[i-2] == 187 and dix[i-3] == 187:
if (
dix[i] == 27
and dix[i - 1] == 34
and dix[i - 2] == 187
and dix[i - 3] == 187
):
isGood = True
if dix[i] == 0:
isGood = False
@@ -206,7 +253,9 @@ class MyDataset(Dataset):
if z_sum == 0:
z = [1] * ctx_len
i = np.random.randint(0, self.data_pile_size - req_len)
dix = self.data_pile.get(idx=0, offset=i, length=req_len).astype(int)
dix = self.data_pile.get(
idx=0, offset=i, length=req_len
).astype(int)
z = torch.tensor(z, dtype=torch.bfloat16)
x = torch.tensor(dix[:-1], dtype=torch.long)

View File

@@ -5,6 +5,7 @@
import functools
import os, math, gc, importlib
import torch
# torch._C._jit_set_profiling_executor(True)
# torch._C._jit_set_profiling_mode(True)
import torch.nn as nn
@@ -13,7 +14,8 @@ from torch.nn import functional as F
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
from pytorch_lightning.strategies import DeepSpeedStrategy
if importlib.util.find_spec('deepspeed'):
if importlib.util.find_spec("deepspeed"):
import deepspeed
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam
@@ -28,9 +30,10 @@ LORA_CONFIG = {
try:
print('RWKV_MY_TESTING', os.environ["RWKV_MY_TESTING"])
print("RWKV_MY_TESTING", os.environ["RWKV_MY_TESTING"])
except:
os.environ["RWKV_MY_TESTING"] = ''
os.environ["RWKV_MY_TESTING"] = ""
def __nop(ob):
return ob
@@ -53,7 +56,26 @@ T_MAX = int(os.environ["RWKV_T_MAX"]) # TAKES LOTS OF VRAM!
from torch.utils.cpp_extension import load
if os.environ["RWKV_FLOAT_MODE"] == "bf16":
wkv_cuda = load(name=f"wkv_{T_MAX}_bf16", sources=["finetune/lora/cuda/wkv_op_bf16.cpp", "finetune/lora/cuda/wkv_cuda_bf16.cu"], verbose=True, extra_cuda_cflags=["-t 4", "-std=c++17", "-res-usage", "--maxrregcount 60", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-DTmax={T_MAX}"])
wkv_cuda = load(
name=f"wkv_{T_MAX}_bf16",
sources=[
"finetune/lora/v4/cuda/wkv_op_bf16.cpp",
"finetune/lora/v4/cuda/wkv_cuda_bf16.cu",
],
verbose=True,
extra_cuda_cflags=[
"-t 4",
"-std=c++17",
"-res-usage",
"--maxrregcount 60",
"--use_fast_math",
"-O3",
"-Xptxas -O3",
"--extra-device-vectorization",
f"-DTmax={T_MAX}",
],
)
class WKV(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, w, u, k, v):
@@ -66,10 +88,16 @@ if os.environ["RWKV_FLOAT_MODE"] == "bf16":
u = u.contiguous()
k = k.contiguous()
v = v.contiguous()
y = torch.empty((B, T, C), device=w.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
y = torch.empty(
(B, T, C),
device=w.device,
memory_format=torch.contiguous_format,
dtype=torch.bfloat16,
)
wkv_cuda.forward(B, T, C, w, u, k, v, y)
ctx.save_for_backward(w, u, k, v, y)
return y
@staticmethod
def backward(ctx, gy):
B = ctx.B
@@ -78,16 +106,54 @@ if os.environ["RWKV_FLOAT_MODE"] == "bf16":
assert T <= T_MAX
assert B * C % min(C, 32) == 0
w, u, k, v, y = ctx.saved_tensors
gw = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gu = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gk = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gv = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gw = torch.empty(
(B, C),
device=gy.device,
memory_format=torch.contiguous_format,
dtype=torch.bfloat16,
)
gu = torch.empty(
(B, C),
device=gy.device,
memory_format=torch.contiguous_format,
dtype=torch.bfloat16,
)
gk = torch.empty(
(B, T, C),
device=gy.device,
memory_format=torch.contiguous_format,
dtype=torch.bfloat16,
)
gv = torch.empty(
(B, T, C),
device=gy.device,
memory_format=torch.contiguous_format,
dtype=torch.bfloat16,
)
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.contiguous(), gw, gu, gk, gv)
gw = torch.sum(gw, dim=0)
gu = torch.sum(gu, dim=0)
return (None, None, None, gw, gu, gk, gv)
else:
wkv_cuda = load(name=f"wkv_{T_MAX}", sources=["finetune/lora/cuda/wkv_op.cpp", "finetune/lora/cuda/wkv_cuda.cu"], verbose=True, extra_cuda_cflags=["-res-usage", "--maxrregcount 60", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-DTmax={T_MAX}"])
wkv_cuda = load(
name=f"wkv_{T_MAX}",
sources=[
"finetune/lora/v4/cuda/wkv_op.cpp",
"finetune/lora/v4/cuda/wkv_cuda.cu",
],
verbose=True,
extra_cuda_cflags=[
"-res-usage",
"--maxrregcount 60",
"--use_fast_math",
"-O3",
"-Xptxas -O3",
"--extra-device-vectorization",
f"-DTmax={T_MAX}",
],
)
class WKV(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, w, u, k, v):
@@ -106,7 +172,9 @@ else:
u = u.float().contiguous()
k = k.float().contiguous()
v = v.float().contiguous()
y = torch.empty((B, T, C), device=w.device, memory_format=torch.contiguous_format)
y = torch.empty(
(B, T, C), device=w.device, memory_format=torch.contiguous_format
)
wkv_cuda.forward(B, T, C, w, u, k, v, y)
ctx.save_for_backward(w, u, k, v, y)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
@@ -115,6 +183,7 @@ else:
return y.half()
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
return y.bfloat16()
@staticmethod
def backward(ctx, gy):
B = ctx.B
@@ -123,14 +192,26 @@ else:
assert T <= T_MAX
assert B * C % min(C, 32) == 0
w, u, k, v, y = ctx.saved_tensors
gw = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format)
gu = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format)
gk = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format)
gv = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format)
gw = torch.empty(
(B, C), device=gy.device, memory_format=torch.contiguous_format
)
gu = torch.empty(
(B, C), device=gy.device, memory_format=torch.contiguous_format
)
gk = torch.empty(
(B, T, C), device=gy.device, memory_format=torch.contiguous_format
)
gv = torch.empty(
(B, T, C), device=gy.device, memory_format=torch.contiguous_format
)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.contiguous(), gw, gu, gk, gv)
wkv_cuda.backward(
B, T, C, w, u, k, v, y, gy.contiguous(), gw, gu, gk, gv
)
else:
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.float().contiguous(), gw, gu, gk, gv)
wkv_cuda.backward(
B, T, C, w, u, k, v, y, gy.float().contiguous(), gw, gu, gk, gv
)
gw = torch.sum(gw, dim=0)
gu = torch.sum(gu, dim=0)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
@@ -138,7 +219,15 @@ else:
elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
return (None, None, None, gw.half(), gu.half(), gk.half(), gv.half())
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
return (None, None, None, gw.bfloat16(), gu.bfloat16(), gk.bfloat16(), gv.bfloat16())
return (
None,
None,
None,
gw.bfloat16(),
gu.bfloat16(),
gk.bfloat16(),
gv.bfloat16(),
)
def RUN_CUDA(B, T, C, w, u, k, v):
@@ -151,15 +240,17 @@ def RUN_CUDA(B, T, C, w, u, k, v):
class LoraLinear(nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool):
super().__init__()
self.weight = nn.Parameter(torch.empty((out_features, in_features)))
assert bias == False, "Biased LoraLinear not supported"
r, alpha, dropout = LORA_CONFIG["r"], LORA_CONFIG[
"alpha"], LORA_CONFIG["dropout"]
r, alpha, dropout = (
LORA_CONFIG["r"],
LORA_CONFIG["alpha"],
LORA_CONFIG["dropout"],
)
self.lora_A = nn.Parameter(torch.empty(r, in_features))
self.lora_B = nn.Parameter(torch.empty(out_features, r))
self.lora_dropout = nn.Dropout(dropout)
@@ -170,9 +261,9 @@ class LoraLinear(nn.Module):
nn.init.zeros_(self.lora_B)
def forward(self, x):
return (
F.linear(x, self.weight) + self.scaling *
F.linear(F.linear(self.lora_dropout(x), self.lora_A), self.lora_B))
return F.linear(x, self.weight) + self.scaling * F.linear(
F.linear(self.lora_dropout(x), self.lora_A), self.lora_B
)
@functools.wraps(LoraLinear)
@@ -214,17 +305,23 @@ class RWKV_TimeMix(MyModule):
# fancy time_decay
decay_speed = torch.ones(args.dim_att)
for h in range(args.dim_att):
decay_speed[h] = -5 + 8 * (h / (args.dim_att - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
decay_speed[h] = -5 + 8 * (h / (args.dim_att - 1)) ** (
0.7 + 1.3 * ratio_0_to_1
)
self.time_decay = nn.Parameter(decay_speed)
# print(layer_id, self.time_decay.flatten()[:3].cpu().numpy(), '...', self.time_decay.flatten()[-3:].cpu().numpy())
# fancy time_first
zigzag = torch.tensor([(i + 1) % 3 - 1 for i in range(args.dim_att)]) * 0.5
self.time_first = nn.Parameter(torch.ones(args.dim_att) * math.log(0.3) + zigzag)
self.time_first = nn.Parameter(
torch.ones(args.dim_att) * math.log(0.3) + zigzag
)
# fancy time_mix
self.time_mix_k = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_v = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
self.time_mix_v = nn.Parameter(
torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1
)
self.time_mix_r = nn.Parameter(torch.pow(ddd, 0.5 * ratio_1_to_almost0))
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
@@ -235,8 +332,10 @@ class RWKV_TimeMix(MyModule):
self.output = nn.Linear(args.dim_att, args.n_embd, bias=False)
if 'a' in os.environ["RWKV_MY_TESTING"]:
self.register_buffer("att_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
if "a" in os.environ["RWKV_MY_TESTING"]:
self.register_buffer(
"att_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len))
)
d_qkv = args.n_embd // 16
self.qq = nn.Linear(args.n_embd, d_qkv, bias=False)
self.kk = nn.Linear(args.n_embd, d_qkv, bias=False)
@@ -245,12 +344,17 @@ class RWKV_TimeMix(MyModule):
with torch.no_grad():
self.time_mix_qq = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_kk = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_vv = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
self.time_mix_vv = nn.Parameter(
torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1
)
if "a" not in os.environ["RWKV_MY_TESTING"]:
if 'a' not in os.environ["RWKV_MY_TESTING"]:
@MyFunction
def jit_func(self, x):
xx = self.time_shift(x) # Mix x with the previous timestep to produce xk, xv, xr
xx = self.time_shift(
x
) # Mix x with the previous timestep to produce xk, xv, xr
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
@@ -263,21 +367,26 @@ class RWKV_TimeMix(MyModule):
def forward(self, x):
B, T, C = x.size() # x = (Batch,Time,Channel)
sr, k, v = self.jit_func(x)
rwkv = sr * RUN_CUDA(B, T, self.args.dim_att, self.time_decay, self.time_first, k, v)
rwkv = sr * RUN_CUDA(
B, T, self.args.dim_att, self.time_decay, self.time_first, k, v
)
return self.output(rwkv)
if 'a' in os.environ["RWKV_MY_TESTING"]:
if "a" in os.environ["RWKV_MY_TESTING"]:
@MyFunction
def QKV(self, q, k, v):
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.att_mask == 0, float('-inf'))
att = F.softmax(att, dim = -1)
att = att.masked_fill(self.att_mask == 0, float("-inf"))
att = F.softmax(att, dim=-1)
x = att @ v
return x
@MyFunction
def jit_funcQKV(self, x):
xx = self.time_shift(x) # Mix x with the previous timestep to produce xk, xv, xr
xx = self.time_shift(
x
) # Mix x with the previous timestep to produce xk, xv, xr
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
@@ -296,12 +405,16 @@ class RWKV_TimeMix(MyModule):
def forward(self, x):
B, T, C = x.size() # x = (Batch,Time,Channel)
sr, k, v, qq, kk, vv = self.jit_funcQKV(x)
rwkv = sr * RUN_CUDA(B, T, self.args.dim_att, self.time_decay, self.time_first, k, v)
rwkv = sr * RUN_CUDA(
B, T, self.args.dim_att, self.time_decay, self.time_first, k, v
)
rwkv = self.output(rwkv) + self.oo(self.QKV(qq, kk, vv))
return rwkv
########################################################################################################
class RWKV_ChannelMix(MyModule):
def __init__(self, args, layer_id):
super().__init__()
@@ -331,6 +444,7 @@ class RWKV_ChannelMix(MyModule):
kv = self.value(k)
return torch.sigmoid(self.receptance(xr)) * kv
class MishGLU(MyModule):
def __init__(self, args, layer_id):
super().__init__()
@@ -360,6 +474,7 @@ class MishGLU(MyModule):
b = self.bb(xb)
return self.value(a * F.mish(b))
########################################################################################################
# The RWKV Model with our blocks
########################################################################################################
@@ -377,15 +492,19 @@ class Block(nn.Module):
if self.layer_id == 0:
self.ln0 = nn.LayerNorm(args.n_embd)
if args.my_pos_emb > 0:
self.pos_emb_x = nn.Parameter(torch.zeros((1,args.my_pos_emb,args.n_embd)))
self.pos_emb_y = nn.Parameter(torch.zeros((args.my_pos_emb,1,args.n_embd)))
self.pos_emb_x = nn.Parameter(
torch.zeros((1, args.my_pos_emb, args.n_embd))
)
self.pos_emb_y = nn.Parameter(
torch.zeros((args.my_pos_emb, 1, args.n_embd))
)
if self.layer_id == 0 and self.args.pre_ffn > 0:
self.ffnPre = RWKV_ChannelMix(args, 0)
else:
self.att = RWKV_TimeMix(args, layer_id)
if 'g' in os.environ["RWKV_MY_TESTING"]:
if "g" in os.environ["RWKV_MY_TESTING"]:
self.ffn = MishGLU(args, layer_id)
else:
self.ffn = RWKV_ChannelMix(args, layer_id)
@@ -395,7 +514,9 @@ class Block(nn.Module):
self.tiny_q = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
self.tiny_k = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
self.tiny_v = nn.Linear(args.n_embd, args.n_embd, bias=False)
self.register_buffer("tiny_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
self.register_buffer(
"tiny_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len))
)
def forward(self, x, x_emb=None):
args = self.args
@@ -403,7 +524,7 @@ class Block(nn.Module):
if self.layer_id == 0:
x = self.ln0(x)
if args.my_pos_emb > 0:
pos_emb = (self.pos_emb_x + self.pos_emb_y).reshape(T+1, -1)[:-1,:]
pos_emb = (self.pos_emb_x + self.pos_emb_y).reshape(T + 1, -1)[:-1, :]
x = x + pos_emb
if self.layer_id == 0 and args.pre_ffn > 0:
@@ -443,13 +564,13 @@ class RWKV(pl.LightningModule):
def __init__(self, args):
super().__init__()
self.args = args
if not hasattr(args, 'dim_att'):
if not hasattr(args, "dim_att"):
args.dim_att = args.n_embd
if not hasattr(args, 'dim_ffn'):
if not hasattr(args, "dim_ffn"):
args.dim_ffn = args.n_embd * 4
if not hasattr(args, 'tiny_att_layer'):
if not hasattr(args, "tiny_att_layer"):
args.tiny_att_layer = -1
if not hasattr(args, 'tiny_att_dim'):
if not hasattr(args, "tiny_att_dim"):
args.tiny_att_dim = -1
self.emb = nn.Embedding(args.vocab_size, args.n_embd)
@@ -462,7 +583,9 @@ class RWKV(pl.LightningModule):
if args.head_qk > 0:
self.head_q = nn.Linear(args.n_embd, args.head_qk, bias=False)
self.head_k = nn.Linear(args.n_embd, args.head_qk, bias=False)
self.register_buffer("copy_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
self.register_buffer(
"copy_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len))
)
def configure_optimizers(self):
args = self.args
@@ -494,19 +617,46 @@ class RWKV(pl.LightningModule):
param_dict = {n: p for n, p in self.named_parameters()}
if args.my_pile_stage == 2:
optim_groups = [
{"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
{"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 2e-3 / args.lr_init},
{"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 3e-3 / args.lr_init},
{
"params": [param_dict[n] for n in lr_1x],
"weight_decay": 0.0,
"my_lr_scale": 1.0,
},
{
"params": [param_dict[n] for n in lr_2x],
"weight_decay": 0.0,
"my_lr_scale": 5.0,
}, # test: 2e-3 / args.lr_init},
{
"params": [param_dict[n] for n in lr_3x],
"weight_decay": 0.0,
"my_lr_scale": 5.0,
}, # test: 3e-3 / args.lr_init},
]
else:
optim_groups = [
{"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
{"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 2.0},
{"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 3.0},
{
"params": [param_dict[n] for n in lr_1x],
"weight_decay": 0.0,
"my_lr_scale": 1.0,
},
{
"params": [param_dict[n] for n in lr_2x],
"weight_decay": 0.0,
"my_lr_scale": 2.0,
},
{
"params": [param_dict[n] for n in lr_3x],
"weight_decay": 0.0,
"my_lr_scale": 3.0,
},
]
else:
optim_groups = [
{"params": [p for n, p in self.named_parameters()], "weight_decay": 0.0},
{
"params": [p for n, p in self.named_parameters()],
"weight_decay": 0.0,
},
]
for g in optim_groups:
@@ -514,8 +664,26 @@ class RWKV(pl.LightningModule):
optim_groups = [g for g in optim_groups if len(g["params"]) > 0]
if self.deepspeed_offload:
return DeepSpeedCPUAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adamw_mode=False, weight_decay=0, amsgrad=False)
return FusedAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adam_w_mode=False, weight_decay=0, amsgrad=False)
return DeepSpeedCPUAdam(
optim_groups,
lr=self.args.lr_init,
betas=self.args.betas,
eps=self.args.adam_eps,
bias_correction=True,
adamw_mode=False,
weight_decay=0,
amsgrad=False,
)
return FusedAdam(
optim_groups,
lr=self.args.lr_init,
betas=self.args.betas,
eps=self.args.adam_eps,
bias_correction=True,
adam_w_mode=False,
weight_decay=0,
amsgrad=False,
)
# return ZeroOneAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, weight_decay=0, amsgrad=False, cuda_aware=False)
@property
@@ -589,10 +757,14 @@ class RWKV(pl.LightningModule):
logits = self(idx)
if sum_mask == mask.shape[0]:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1)
)
# print('rank', self.global_rank, 'loss', loss.item())
else:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), reduction='none')
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1), reduction="none"
)
# loss_raw = loss
loss = torch.sum(loss * mask) / sum_mask
@@ -632,7 +804,14 @@ class RWKV(pl.LightningModule):
gain = 1.0
scale = 1.0
if "ln_" in n or ".ln" in n or "time_" in n or "_mask" in n or "pos_emb" in n or '.mask.' in n:
if (
"ln_" in n
or ".ln" in n
or "time_" in n
or "_mask" in n
or "pos_emb" in n
or ".mask." in n
):
m[n] = p
else:
if n == "emb.weight":
@@ -640,7 +819,19 @@ class RWKV(pl.LightningModule):
else:
if shape[0] > shape[1]:
gain = math.sqrt(shape[0] / shape[1])
for kk in [".att.key.", ".att.receptance.", ".att.output.", ".att.key.", ".ffn.value.", ".ffn.receptance.", ".ffnPre.value.", ".ffnPre.receptance.", "head_q.", '.oo.', '.rr.']:
for kk in [
".att.key.",
".att.receptance.",
".att.output.",
".att.key.",
".ffn.value.",
".ffn.receptance.",
".ffnPre.value.",
".ffnPre.receptance.",
"head_q.",
".oo.",
".rr.",
]:
if kk in n:
scale = 0
if n == "head.weight":
@@ -650,7 +841,9 @@ class RWKV(pl.LightningModule):
if "head_q." in n:
scale = 0
print(f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {str(scale).ljust(4)} {n}")
print(
f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {str(scale).ljust(4)} {n}"
)
if self.args.accelerator.upper() == "GPU":
m[n] = torch.empty((shape[0], shape[1]), device="cuda")

View File

@@ -5,15 +5,17 @@ import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
from .model import LORA_CONFIG
def my_save(dd, ff):
if '14b-run1' not in ff:
if "14b-run1" not in ff:
torch.save(dd, ff)
else:
fn = ff.split('/')[-1]
fff = '/dev/shm/' + fn
fn = ff.split("/")[-1]
fff = "/dev/shm/" + fn
torch.save(dd, fff)
subprocess.Popen(f" aws s3 mv {fff} s3://rwkv-14b-4k/{fn} --quiet", shell=True)
class train_callback(pl.Callback):
def __init__(self, args):
super().__init__()
@@ -38,7 +40,9 @@ class train_callback(pl.Callback):
if args.lr_final == 0 or args.lr_init == 0: # linear decay
lr = args.lr_init + (args.lr_final - args.lr_init) * progress
else: # exp decay
lr = args.lr_init * math.exp(math.log(args.lr_final / args.lr_init) * pow(progress, 1))
lr = args.lr_init * math.exp(
math.log(args.lr_final / args.lr_init) * pow(progress, 1)
)
if trainer.global_step < w_step:
lr = lr * (0.2 + 0.8 * trainer.global_step / w_step)
@@ -60,7 +64,9 @@ class train_callback(pl.Callback):
trainer.my_loss_sum = 0
trainer.my_loss_count = 0
trainer.my_log = open(args.proj_dir + "/train_log.txt", "a")
trainer.my_log.write(f"NEW RUN {args.my_timestamp}\n{vars(self.args)}\n")
trainer.my_log.write(
f"NEW RUN {args.my_timestamp}\n{vars(self.args)}\n"
)
try:
print(f"\n{trainer.strategy.config}\n")
trainer.my_log.write(f"{trainer.strategy.config}\n")
@@ -70,6 +76,7 @@ class train_callback(pl.Callback):
if len(args.wandb) > 0:
print("Login to wandb...")
import wandb
wandb.init(
project=args.wandb,
name=args.run_name + " " + args.my_timestamp,
@@ -102,20 +109,26 @@ class train_callback(pl.Callback):
# self.log("s", real_step, prog_bar=True, on_step=True)
if len(args.wandb) > 0:
lll = {"loss": trainer.my_loss, "lr": trainer.my_lr, "Gtokens": real_step * token_per_step / 1e9}
lll = {
"loss": trainer.my_loss,
"lr": trainer.my_lr,
"Gtokens": real_step * token_per_step / 1e9,
}
if kt_s > 0:
lll["kt/s"] = kt_s
trainer.my_wandb.log(lll, step=int(real_step))
if args.magic_prime > 0:
expand_factor = 2 if args.my_qa_mask > 0 else 1
if int(real_step) == int(args.magic_prime * expand_factor // args.real_bsz) - 1:
if (
int(real_step)
== int(args.magic_prime * expand_factor // args.real_bsz) - 1
):
to_save_dict = pl_module.state_dict()
my_save(
to_save_dict,
f"{args.proj_dir}/rwkv-final.pth",
)
def on_train_epoch_start(self, trainer, pl_module):
args = self.args
dataset = trainer.train_dataloader.dataset.datasets
@@ -128,24 +141,28 @@ class train_callback(pl.Callback):
def on_train_epoch_end(self, trainer, pl_module):
args = self.args
if trainer.is_global_zero: # logging & save state_dict
if (args.epoch_save > 0 and trainer.current_epoch % args.epoch_save == 0) or trainer.current_epoch == args.epoch_count - 1:
if args.data_type == 'wds_img':
if (
args.epoch_save > 0 and trainer.current_epoch % args.epoch_save == 0
) or trainer.current_epoch == args.epoch_count - 1:
if args.data_type == "wds_img":
raw_dict = pl_module.state_dict()
to_save_dict = {}
for k in raw_dict:
if k.startswith('encoder.') or k.startswith('decoder.'):
if k.startswith("encoder.") or k.startswith("decoder."):
to_save_dict[k] = raw_dict[k]
else:
to_save_dict = pl_module.state_dict()
if args.lora:
enable_time_finetune = 'time' in LORA_CONFIG["parts"]
enable_ln_finetune = 'ln' in LORA_CONFIG["parts"]
enable_time_finetune = "time" in LORA_CONFIG["parts"]
enable_ln_finetune = "ln" in LORA_CONFIG["parts"]
lora_dict = {}
for name, state in to_save_dict.items():
if ('.lora_' in name
or (enable_time_finetune and '.time_' in name)
or (enable_ln_finetune and '.ln' in name)):
if (
".lora_" in name
or (enable_time_finetune and ".time_" in name)
or (enable_ln_finetune and ".ln" in name)
):
lora_dict[name] = state
to_save_dict = lora_dict
@@ -155,8 +172,10 @@ class train_callback(pl.Callback):
f"{args.proj_dir}/rwkv-{args.epoch_begin + trainer.current_epoch}.pth",
)
except Exception as e:
print('Error\n\n', e, '\n\n')
trainer.my_log.write(f"{args.epoch_begin + trainer.current_epoch} {trainer.my_epoch_loss:.6f} {math.exp(trainer.my_epoch_loss):.4f} {trainer.my_lr:.8f} {datetime.datetime.now()} {trainer.current_epoch}\n")
print("Error\n\n", e, "\n\n")
trainer.my_log.write(
f"{args.epoch_begin + trainer.current_epoch} {trainer.my_epoch_loss:.6f} {math.exp(trainer.my_epoch_loss):.4f} {trainer.my_lr:.8f} {datetime.datetime.now()} {trainer.current_epoch}\n"
)
trainer.my_log.flush()
trainer.my_loss_sum = 0
@@ -178,22 +197,22 @@ def generate_init_weight(model, init_weight_name):
mm[k] = src.reshape(mm[k].shape)
except:
tmp = mm[k].squeeze().clone()
print(k, src.shape, '-->', mm[k].shape)
print(k, src.shape, "-->", mm[k].shape)
ss = src.shape[0]
dd = tmp.shape[0]
for i in range(dd):
pos = i / dd * ss
if pos >= ss - 1:
tmp[i] = src[ss-1]
tmp[i] = src[ss - 1]
else:
p0 = int(math.floor(pos))
ii = pos - p0
tmp[i] = src[p0] * (1-ii) + src[p0+1] * (ii)
tmp[i] = src[p0] * (1 - ii) + src[p0 + 1] * (ii)
mm[k] = tmp.reshape(mm[k].shape)
sss = src.squeeze().float().cpu().numpy()
print(sss[:10], '...', sss[-10:])
print(sss[:10], "...", sss[-10:])
mmm = mm[k].squeeze().float().cpu().numpy()
print(mmm[:10], '...', mmm[-10:])
print(mmm[:10], "...", mmm[-10:])
print(f"Save to {init_weight_name}...")
torch.save(mm, init_weight_name)

View File

@@ -6,6 +6,7 @@ from torch.nn import functional as F
time_slot = {}
time_ref = time.time_ns()
def record_time(name):
if name not in time_slot:
time_slot[name] = 1e20
@@ -13,20 +14,23 @@ def record_time(name):
if tt < time_slot[name]:
time_slot[name] = tt
class TOKENIZER():
def __init__(self, WORD_NAME, UNKNOWN_CHAR='\ue083'):
if 'list' in str(type(WORD_NAME)):
class TOKENIZER:
def __init__(self, WORD_NAME, UNKNOWN_CHAR="\ue083"):
if "list" in str(type(WORD_NAME)):
self.charMode = False
if WORD_NAME[0] == WORD_NAME[1]:
from transformers import PreTrainedTokenizerFast
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=WORD_NAME[0])
else:
from transformers import GPT2TokenizerFast
self.tokenizer = GPT2TokenizerFast(WORD_NAME[0], WORD_NAME[1])
self.vocab_size = len(self.tokenizer)
else:
self.charMode = True
with open(WORD_NAME + '.json', "r", encoding="utf-16") as result_file:
with open(WORD_NAME + ".json", "r", encoding="utf-16") as result_file:
self.word_table = json.load(result_file)
self.vocab_size = len(self.word_table)
@@ -37,23 +41,25 @@ class TOKENIZER():
self.UNKNOWN_CHAR = self.stoi[UNKNOWN_CHAR]
def refine_context(self, context):
context = context.strip().split('\n')
context = context.strip().split("\n")
for c in range(len(context)):
context[c] = context[c].strip().strip('\u3000').strip('\r')
context = list(filter(lambda c: c != '', context))
context = '\n' + ('\n'.join(context)).strip()
if context == '':
context = '\n'
context[c] = context[c].strip().strip("\u3000").strip("\r")
context = list(filter(lambda c: c != "", context))
context = "\n" + ("\n".join(context)).strip()
if context == "":
context = "\n"
return context
def sample_logits(self, out, x, ctx_len, temperature=1.0, top_p_usual=None, top_p_newline=None):
def sample_logits(
self, out, x, ctx_len, temperature=1.0, top_p_usual=None, top_p_newline=None
):
# out[self.UNKNOWN_CHAR] = -float('Inf')
lastChar = int(x[-1])
probs = F.softmax(out, dim=-1)
if self.charMode:
if self.itos[lastChar] == '\n':
if self.itos[lastChar] == "\n":
top_p = top_p_newline
else:
top_p = top_p_usual
@@ -81,6 +87,7 @@ class TOKENIZER():
out = torch.multinomial(probs, num_samples=1)[0]
return out
def MaybeIsPrime(number):
if FermatPrimalityTest(number) and MillerRabinPrimalityTest(number):
return True
@@ -121,7 +128,9 @@ def MillerRabinPrimalityTest(number):
if (randomNumberWithPower != 1) and (randomNumberWithPower != number - 1):
iterationNumber = 1
while (iterationNumber <= timesTwoDividNumber - 1) and (randomNumberWithPower != number - 1):
while (iterationNumber <= timesTwoDividNumber - 1) and (
randomNumberWithPower != number - 1
):
randomNumberWithPower = pow(randomNumberWithPower, 2, number)
iterationNumber = iterationNumber + 1
if randomNumberWithPower != (number - 1):

View File

@@ -184,7 +184,7 @@ if __name__ == "__main__":
args.num_sanity_val_steps = 0
args.check_val_every_n_epoch = int(1e20)
args.log_every_n_steps = int(1e20)
args.max_epochs = args.epoch_count # continue forever
args.max_epochs = args.epoch_count # -1 continue forever
args.betas = (args.beta1, args.beta2)
args.real_bsz = int(args.num_nodes) * int(args.devices) * args.micro_bsz
os.environ["RWKV_T_MAX"] = str(args.ctx_len)
@@ -373,7 +373,7 @@ if __name__ == "__main__":
for param in module.parameters():
param.requires_grad = True
elif enable_time_finetune and any(
n.startswith("time") for n, _ in module.named_parameters()
n.startswith("time") for n, _ in module.named_parameters()
):
for pname, param in module.named_parameters():
if pname.startswith("time"):
@@ -381,7 +381,7 @@ if __name__ == "__main__":
param.requires_grad = True
if (
len(args.load_model) == 0 or args.my_pile_stage == 1
len(args.load_model) == 0 or args.my_pile_stage == 1
): # shall we build the initial weights?
init_weight_name = f"{args.proj_dir}/rwkv-init.pth"
generate_init_weight(model, init_weight_name) # save initial weights
@@ -423,8 +423,8 @@ if __name__ == "__main__":
)
if (
args.lr_init > 1e-4
or trainer.world_size * args.micro_bsz * trainer.accumulate_grad_batches < 8
args.lr_init > 1e-4
or trainer.world_size * args.micro_bsz * trainer.accumulate_grad_batches < 8
):
if "I_KNOW_WHAT_IM_DOING" in os.environ:
if trainer.global_rank == 0:
@@ -459,10 +459,10 @@ if __name__ == "__main__":
if "deepspeed" in args.strategy:
trainer.strategy.config["zero_optimization"]["allgather_bucket_size"] = (
args.ds_bucket_mb * 1000 * 1000
args.ds_bucket_mb * 1000 * 1000
)
trainer.strategy.config["zero_optimization"]["reduce_bucket_size"] = (
args.ds_bucket_mb * 1000 * 1000
args.ds_bucket_mb * 1000 * 1000
)
# must set shuffle=False, persistent_workers=False (because worker is in another thread)

202
finetune/lora/v5/cuda/wkv5_cuda.cu vendored Normal file
View File

@@ -0,0 +1,202 @@
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
template <typename F>
__global__ void kernel_forward(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u,
F *__restrict__ const _y)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_w += h*_N_;
_u += h*_N_;
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
float state[_N_] = {0};
__syncthreads();
w[i] = _w[i];
u[i] = float(_u[i]);
__syncthreads();
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
{
__syncthreads();
r[i] = float(_r[t]);
k[i] = float(_k[t]);
__syncthreads();
const float v = float(_v[t]);
float y = 0;
#pragma unroll
for (int j = 0; j < _N_; j+=4)
{
const float4& r_ = (float4&)(r[j]);
const float4& k_ = (float4&)(k[j]);
const float4& w_ = (float4&)(w[j]);
const float4& u_ = (float4&)(u[j]);
float4& s = (float4&)(state[j]);
float4 x;
x.x = k_.x * v;
x.y = k_.y * v;
x.z = k_.z * v;
x.w = k_.w * v;
y += r_.x * (u_.x * x.x + s.x);
y += r_.y * (u_.y * x.y + s.y);
y += r_.z * (u_.z * x.z + s.z);
y += r_.w * (u_.w * x.w + s.w);
s.x = s.x * w_.x + x.x;
s.y = s.y * w_.y + x.y;
s.z = s.z * w_.z + x.z;
s.w = s.w * w_.w + x.w;
}
_y[t] = F(y);
}
}
template <typename F>
__global__ void kernel_backward(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const float *__restrict__ __w, const F *__restrict__ _u, const F *__restrict__ const _gy,
F *__restrict__ const _gr, F *__restrict__ const _gk, F *__restrict__ const _gv, F *__restrict__ const _gw, F *__restrict__ const _gu)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_w += h*_N_;
_u += h*_N_;
__w += h*_N_;
__shared__ float w_[_N_], u_[_N_];
__shared__ float r[_N_], k[_N_], v[_N_], gy[_N_];
__syncthreads();
w_[i] = _w[i];
u_[i] = float(_u[i]);
__syncthreads();
const float w = w_[i];
const float ww = __w[i];
const float u = u_[i];
float state[_N_] = {0}, saaaa[_N_] = {0}, sbbbb[_N_] = {0}, scccc[_N_] = {0}, sdddd[_N_] = {0};
float gw = 0, gu = 0;
const int t000 = b*T*C + h*_N_ + i;
const int t111 = (b+1)*T*C + h*_N_ + i;
const int t222 = t111 - 2*C;
for (int t = t000; t < t111; t += C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float k = float(_k[t]);
float gr = 0, gu_ = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = state[j];
float x = k * v[j];
gr += (u * x + s) * gy[j];
gu_ += x * gy[j];
s = s * w + x;
}
_gr[t] = F(gr);
gu += float(_r[t]) * gu_;
}
_gu[b*C + h*_N_ + i] = F(gu);
for (int t = t000; t < t222; t += C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t + 2*C]);
__syncthreads();
const float k = float(_k[t]);
float gw_ = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = saaaa[j];
float& s2 = sbbbb[j];
float x = k * v[j];
float tmp = w * (x + s);
s = tmp;
s2 = tmp + w * s2;
gw_ += s2 * gy[j];
}
gw += float(_r[t + 2*C]) * gw_;
}
_gw[b*C + h*_N_ + i] = F(ww * gw);
for (int t = t111 - C; t >= t000; t -= C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float rr = float(_r[t]);
float gk = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
float x = rr * gy[j];
gk += (u * x + s) * v[j];
s = x + s * w;
}
_gk[t] = F(gk);
}
for (int t = t111 - C; t >= t000; t -= C)
{
__syncthreads();
r[i] = float(_r[t]);
k[i] = float(_k[t]);
__syncthreads();
const float gyy = float(_gy[t]);
float gv = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = sdddd[j];
float x = gyy * r[j];
gv += (u_[j] * x + s) * k[j];
s = x + s * w_[j];
}
_gv[t] = F(gv);
}
}
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, y);
}
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, float *ww, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_backward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, ww, u, gy, gr, gk, gv, gw, gu);
}

22
finetune/lora/v5/cuda/wkv5_op.cpp vendored Normal file
View File

@@ -0,0 +1,22 @@
#include <torch/extension.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y);
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, float *ww, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu);
void forward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
cuda_forward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), y.data_ptr<bf16>());
}
void backward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &ww, torch::Tensor &u, torch::Tensor &gy, torch::Tensor &gr, torch::Tensor &gk, torch::Tensor &gv, torch::Tensor &gw, torch::Tensor &gu) {
cuda_backward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), ww.data_ptr<float>(), u.data_ptr<bf16>(), gy.data_ptr<bf16>(), gr.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>());
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "wkv5 forward");
m.def("backward", &backward, "wkv5 backward");
}
TORCH_LIBRARY(wkv5, m) {
m.def("forward", forward);
m.def("backward", backward);
}

0
finetune/lora/v5/src/__init__.py vendored Normal file
View File

303
finetune/lora/v5/src/binidx.py vendored Normal file
View File

@@ -0,0 +1,303 @@
from lib2to3.pgen2 import token
import os
import torch
import numpy as np
import shutil
import struct
from functools import lru_cache
from itertools import accumulate
def print_rank_0(*message):
pass
# """If distributed is initialized print only on rank 0."""
# if torch.distributed.is_initialized():
# if torch.distributed.get_rank() == 0:
# print(*message, flush=True)
# else:
# print(*message, flush=True)
def _warmup_mmap_file(path):
pass
# with open(path, "rb") as stream:
# while stream.read(100 * 1024 * 1024):
# pass
dtypes = {
1: np.uint8,
2: np.int8,
3: np.int16,
4: np.int32,
5: np.int64,
6: float,
7: np.double,
8: np.uint16,
}
def code(dtype):
for k in dtypes.keys():
if dtypes[k] == dtype:
return k
raise ValueError(dtype)
def index_file_path(prefix_path):
return prefix_path + ".idx"
def data_file_path(prefix_path):
return prefix_path + ".bin"
class MMapIndexedDataset(torch.utils.data.Dataset):
class Index(object):
_HDR_MAGIC = b"MMIDIDX\x00\x00"
@classmethod
def writer(cls, path, dtype):
class _Writer(object):
def __enter__(self):
self._file = open(path, "wb")
# Write Magic string so we can check the file format then opening it again.
self._file.write(cls._HDR_MAGIC)
# Write version number
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", 1))
# Little endian unsigned 8 Bit integer
self._file.write(struct.pack("<B", code(dtype)))
return self
@staticmethod
def _get_pointers(sizes):
dtype_size = dtype().itemsize
address = 0
pointers = []
for size in sizes:
pointers.append(address)
address += size * dtype_size
return pointers
def write(self, sizes, doc_idx):
pointers = self._get_pointers(sizes)
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", len(sizes)))
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", len(doc_idx)))
sizes = np.array(sizes, dtype=np.int32)
self._file.write(sizes.tobytes(order="C"))
del sizes
pointers = np.array(pointers, dtype=np.int64)
self._file.write(pointers.tobytes(order="C"))
del pointers
doc_idx = np.array(doc_idx, dtype=np.int64)
self._file.write(doc_idx.tobytes(order="C"))
def __exit__(self, exc_type, exc_val, exc_tb):
self._file.close()
return _Writer()
def __init__(self, path, skip_warmup=False):
with open(path, "rb") as stream:
magic_test = stream.read(9)
assert self._HDR_MAGIC == magic_test, (
"Index file doesn't match expected format. "
"Make sure that --dataset-impl is configured properly."
)
# Little endian unsigned 64 Bit integer
version = struct.unpack("<Q", stream.read(8))
assert (1,) == version
# Little endian unsigned 8 Bit integer
(dtype_code,) = struct.unpack("<B", stream.read(1))
self._dtype = dtypes[dtype_code]
self._dtype_size = self._dtype().itemsize
self._len = struct.unpack("<Q", stream.read(8))[0]
self._doc_count = struct.unpack("<Q", stream.read(8))[0]
offset = stream.tell()
if not skip_warmup:
print_rank_0(" warming up index mmap file...")
_warmup_mmap_file(path)
self._bin_buffer_mmap = np.memmap(path, mode="r", order="C")
self._bin_buffer = memoryview(self._bin_buffer_mmap)
print_rank_0(" reading sizes...")
self._sizes = np.frombuffer(
self._bin_buffer, dtype=np.int32, count=self._len, offset=offset
)
print_rank_0(" reading pointers...")
self._pointers = np.frombuffer(
self._bin_buffer,
dtype=np.int64,
count=self._len,
offset=offset + self._sizes.nbytes,
)
print_rank_0(" reading document index...")
self._doc_idx = np.frombuffer(
self._bin_buffer,
dtype=np.int64,
count=self._doc_count,
offset=offset + self._sizes.nbytes + self._pointers.nbytes,
)
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
@property
def dtype(self):
return self._dtype
@property
def sizes(self):
return self._sizes
@property
def doc_idx(self):
return self._doc_idx
@lru_cache(maxsize=8)
def __getitem__(self, i):
return self._pointers[i], self._sizes[i]
def __len__(self):
return self._len
def __init__(self, path, skip_warmup=False):
super().__init__()
self._path = None
self._index = None
self._bin_buffer = None
self._do_init(path, skip_warmup)
def __getstate__(self):
return self._path
def __setstate__(self, state):
self._do_init(state)
def _do_init(self, path, skip_warmup):
self._path = path
self._index = self.Index(index_file_path(self._path), skip_warmup)
if not skip_warmup:
print_rank_0(" warming up data mmap file...")
_warmup_mmap_file(data_file_path(self._path))
print_rank_0(" creating numpy buffer of mmap...")
self._bin_buffer_mmap = np.memmap(
data_file_path(self._path), mode="r", order="C"
)
print_rank_0(" creating memory view of numpy buffer...")
self._bin_buffer = memoryview(self._bin_buffer_mmap)
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
del self._index
def __len__(self):
return len(self._index)
# @lru_cache(maxsize=8)
def __getitem__(self, idx):
if isinstance(idx, int):
ptr, size = self._index[idx]
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
)
return np_array
elif isinstance(idx, slice):
start, stop, step = idx.indices(len(self))
if step != 1:
raise ValueError("Slices into indexed_dataset must be contiguous")
ptr = self._index._pointers[start]
sizes = self._index._sizes[idx]
offsets = list(accumulate(sizes))
total_size = sum(sizes)
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=total_size, offset=ptr
)
sents = np.split(np_array, offsets[:-1])
return sents
def get(self, idx, offset=0, length=None):
"""Retrieves a single item from the dataset with the option to only
return a portion of the item.
get(idx) is the same as [idx] but get() does not support slicing.
"""
ptr, size = self._index[idx]
if length is None:
length = size - offset
ptr += offset * np.dtype(self._index.dtype).itemsize
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=length, offset=ptr
)
return np_array
def pad(self, idx, length=None):
ptr, size = self._index[idx]
try:
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=length, offset=ptr
)
except:
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
)
ptr0, _ = self._index[0]
np_array0 = np.frombuffer(
self._bin_buffer,
dtype=self._index.dtype,
count=length - size,
offset=ptr0,
)
np_array = np.append(np_array, np_array0)
return np_array
def only(self, idx):
ptr, size = self._index[idx]
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
)
return np_array
@property
def sizes(self):
return self._index.sizes
@property
def doc_idx(self):
return self._index.doc_idx
def get_doc_idx(self):
return self._index._doc_idx
def set_doc_idx(self, doc_idx_):
self._index._doc_idx = doc_idx_
@property
def supports_prefetch(self):
return False
@staticmethod
def exists(path):
return os.path.exists(index_file_path(path)) and os.path.exists(
data_file_path(path)
)

241
finetune/lora/v5/src/dataset.py vendored Normal file
View File

@@ -0,0 +1,241 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import json, math, random, os, sys
import numpy as np
import torch
from torch.utils.data import Dataset
from pytorch_lightning.utilities import rank_zero_info
from .binidx import MMapIndexedDataset
from .utils import MaybeIsPrime
class MyDataset(Dataset):
def __init__(self, args):
self.args = args
if args.data_type == "binidx":
self.vocab_size = args.vocab_size
rank_zero_info(
f"Current vocab size = {self.vocab_size} (make sure it's correct)"
)
if args.my_pile_version == 1:
self.data = MMapIndexedDataset(args.data_file)
self.data_size = (
len(self.data._bin_buffer) // self.data._index._dtype_size
)
rank_zero_info(f"Data has {self.data_size} tokens.")
elif args.my_pile_version == 2:
data_list = (
open(args.data_file, "r", encoding="utf-8")
.read()
.strip()
.split("\n")
)
data_list = [i.strip().split(" ") for i in data_list]
self.data = []
self.data_size = int(data_list[-1][-1])
rank_zero_info(f"Data has {self.data_size} chunks.")
for d in data_list:
data = MMapIndexedDataset(d[0])
data_size = len(data._bin_buffer) // data._index._dtype_size
assert (data_size - args.ctx_len) == int(d[1])
self.data += [[int(d[-1]), int(d[1]), data]]
# rank_zero_info(self.data)
if args.my_qa_mask > 0:
# self.data_pile = MMapIndexedDataset('/fsx/pile/pile_20B_tokenizer_text_document')
self.data_pile = MMapIndexedDataset(
"/fsx/pile_deduped/pile_0.87_deduped_text_document"
)
self.data_pile_size = (
len(self.data_pile._bin_buffer) // self.data._index._dtype_size
)
else:
self.data_pile = None
self.data_pile_size = 0
if args.my_pile_stage > 0:
# assert self.data_size == 332115325534 and self.vocab_size == 50277
self.samples_per_epoch = args.epoch_steps * args.real_bsz
assert self.samples_per_epoch == 40320
rank_zero_info(
f"########## Pile 20b-tokenized stage {args.my_pile_stage} ##########"
)
dataset_slot = self.data_size // args.ctx_len
if args.my_pile_stage != 4:
assert MaybeIsPrime(args.magic_prime)
assert args.magic_prime % 3 == 2
assert (
args.magic_prime / dataset_slot > 0.99
and args.magic_prime / dataset_slot <= 1
)
elif args.data_type == "numpy":
self.data = np.load(args.data_file).astype("int")
self.vocab_size = args.vocab_size
rank_zero_info(
f"Current vocab size = {self.vocab_size} (make sure it's correct)"
)
self.data_size = len(self.data)
rank_zero_info(f"Data has {self.data_size} tokens.")
elif args.data_type == "uint16":
self.data = (
np.fromfile(args.data_file, dtype=np.uint16)
.astype("int32")
.reshape(-1, args.my_sample_len)
)
self.vocab_size = args.vocab_size
rank_zero_info(
f"Current vocab size = {self.vocab_size} (make sure it's correct)"
)
self.data_size = self.data.shape[0]
rank_zero_info(f"Data has {self.data_size} samples.")
else:
if args.data_type == "dummy":
rank_zero_info("Building dummy data...")
self.data = ""
for i in range(100000):
aa = (i) % 10000
bb = (i * i) % 10000
cc = aa + bb
self.data += f".{aa}+{bb}={cc}."
else:
self.data = open(args.data_file, "r", encoding=args.data_type).read()
rank_zero_info("Building token list...")
unique = sorted(list(set(self.data)))
self.vocab_size = len(unique)
# rank_zero_info()
# for u in unique:
# print(u, end=' ')
# rank_zero_info('\n\n')
xx = 0
xxObj = {}
for u in unique:
xxObj[xx] = u
xx += 1
with open(
f"{args.proj_dir}/vocab.json", "w", encoding="utf-8"
) as vocab_file:
vocab_file.write(json.dumps(xxObj, ensure_ascii=False))
self.data_size = len(self.data)
rank_zero_info(
f"Data has {self.data_size} tokens, {self.vocab_size} vocab size."
)
self.stoi = {ch: i for i, ch in enumerate(unique)}
self.itos = {i: ch for i, ch in enumerate(unique)}
def __len__(self):
return self.args.epoch_steps * self.args.micro_bsz
def __getitem__(self, idx):
args = self.args
rank = self.global_rank
epoch = self.real_epoch
world_size = self.world_size
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size}")
if args.data_type == "uint16":
i = np.random.randint(0, self.data_size - 1)
dix = self.data[i]
x = torch.tensor(dix[:-1], dtype=torch.long)
y = torch.tensor(dix[1:], dtype=torch.long)
else:
ctx_len = args.ctx_len
req_len = ctx_len + 1
magic_prime = args.magic_prime
data = self.data
if args.my_pile_stage > 0:
ii = 1 + epoch * self.samples_per_epoch + (idx * world_size) + rank
if args.my_qa_mask > 0:
ii_orig = ii
if ii % 2 == 0:
ii = -1
data = self.data_pile
else:
ii = ii // 2
if data == self.data_pile:
i = np.random.randint(0, self.data_pile_size - req_len)
else:
if args.my_pile_stage == 4 or ii < args.my_random_steps:
# cheat: pick a random spot in dataset
if args.my_pile_version == 1:
i = np.random.randint(0, self.data_size - req_len)
else:
i = np.random.randint(0, self.data_size)
else:
ii = ii - args.my_random_steps
factor = (math.sqrt(5) - 1) / 2
factor = int(magic_prime * factor)
i = ((factor * ii * ii * ii) % magic_prime) * ctx_len
i = i + args.my_pile_shift
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size} ii {ii} pos {round(i / self.data_size, 3)}")
else:
# cheat: pick a random spot in dataset
i = np.random.randint(0, self.data_size - req_len)
if args.data_type == "binidx":
if args.my_pile_version == 1:
dix = data.get(idx=0, offset=i, length=req_len).astype(int)
else:
# self.data : cutoff, chunk_count, data
for j in range(len(data)):
if i < data[j][0]:
ii = i
i = (i - (data[j - 1][0] if j > 0 else 0)) % data[j][1]
dix = (
data[j][2]
.get(idx=0, offset=i, length=req_len)
.astype(int)
)
# print(ii, j, i)
break
elif args.data_type == "numpy":
dix = data[i : i + req_len]
else:
dix = [self.stoi[s] for s in data[i : i + req_len]]
if args.my_qa_mask == 1:
if data == self.data_pile:
z = [1] * ctx_len
else:
z = [0] * ctx_len
z_sum = 0
isGood = False
for i in range(3, ctx_len):
if (
dix[i] == 27
and dix[i - 1] == 34
and dix[i - 2] == 187
and dix[i - 3] == 187
):
isGood = True
if dix[i] == 0:
isGood = False
if isGood:
z[i] = 1
z_sum += 1
if z_sum == 0:
z = [1] * ctx_len
i = np.random.randint(0, self.data_pile_size - req_len)
dix = self.data_pile.get(
idx=0, offset=i, length=req_len
).astype(int)
z = torch.tensor(z, dtype=torch.bfloat16)
x = torch.tensor(dix[:-1], dtype=torch.long)
y = torch.tensor(dix[1:], dtype=torch.long)
# if ii_orig < 50:
# # if rank == 1:
# print('rank', rank, 'i', ii_orig, ii, i, 'x', x[:5], '...', x[-5:])
# else:
# exit(0)
if args.my_qa_mask == 1:
return x, y, z
return x, y

819
finetune/lora/v5/src/model.py vendored Normal file
View File

@@ -0,0 +1,819 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import functools
import os, math, gc, importlib
import torch
# torch._C._jit_set_profiling_executor(True)
# torch._C._jit_set_profiling_mode(True)
import torch.nn as nn
from torch.utils.checkpoint import checkpoint as torch_checkpoint
from torch.nn import functional as F
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
from pytorch_lightning.strategies import DeepSpeedStrategy
if importlib.util.find_spec("deepspeed"):
import deepspeed
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam
# from deepspeed.runtime.fp16.onebit.zoadam import ZeroOneAdam
# lora-config
LORA_CONFIG = {
"r": 0,
"alpha": 0,
"dropout": 0,
"parts": {"att", "ln", "time"},
}
try:
print("RWKV_MY_TESTING", os.environ["RWKV_MY_TESTING"])
except:
os.environ["RWKV_MY_TESTING"] = ""
def __nop(ob):
return ob
MyModule = nn.Module
MyFunction = __nop
if os.environ["RWKV_JIT_ON"] == "1":
MyModule = torch.jit.ScriptModule
MyFunction = torch.jit.script_method
########################################################################################################
# CUDA Kernel
########################################################################################################
from torch.utils.cpp_extension import load
HEAD_SIZE = int(os.environ["RWKV_HEAD_SIZE_A"])
wkv5_cuda = load(
name="wkv5",
sources=[
"finetune/lora/v5/cuda/wkv5_op.cpp",
f"finetune/lora/v5/cuda/wkv5_cuda.cu",
],
verbose=True,
extra_cuda_cflags=[
"-res-usage",
"--use_fast_math",
"-O3",
"-Xptxas -O3",
"--extra-device-vectorization",
f"-D_N_={HEAD_SIZE}",
],
)
class WKV_5(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, H, r, k, v, w, u):
with torch.no_grad():
assert r.dtype == torch.bfloat16
assert k.dtype == torch.bfloat16
assert v.dtype == torch.bfloat16
assert w.dtype == torch.bfloat16
assert u.dtype == torch.bfloat16
assert HEAD_SIZE == C // H
ctx.B = B
ctx.T = T
ctx.C = C
ctx.H = H
assert r.is_contiguous()
assert k.is_contiguous()
assert v.is_contiguous()
assert w.is_contiguous()
assert u.is_contiguous()
ew = (-torch.exp(w.float())).contiguous()
eew = (torch.exp(ew)).contiguous()
ctx.save_for_backward(r, k, v, eew, ew, u)
y = torch.empty(
(B, T, C),
device=r.device,
dtype=torch.bfloat16,
memory_format=torch.contiguous_format,
) # .uniform_(-1, 1)
wkv5_cuda.forward(B, T, C, H, r, k, v, eew, u, y)
return y
@staticmethod
def backward(ctx, gy):
with torch.no_grad():
assert gy.dtype == torch.bfloat16
B = ctx.B
T = ctx.T
C = ctx.C
H = ctx.H
assert gy.is_contiguous()
r, k, v, eew, ew, u = ctx.saved_tensors
gr = torch.empty(
(B, T, C),
device=gy.device,
requires_grad=False,
dtype=torch.bfloat16,
memory_format=torch.contiguous_format,
) # .uniform_(-1, 1)
gk = torch.empty(
(B, T, C),
device=gy.device,
requires_grad=False,
dtype=torch.bfloat16,
memory_format=torch.contiguous_format,
) # .uniform_(-1, 1)
gv = torch.empty(
(B, T, C),
device=gy.device,
requires_grad=False,
dtype=torch.bfloat16,
memory_format=torch.contiguous_format,
) # .uniform_(-1, 1)
gw = torch.empty(
(B, C),
device=gy.device,
requires_grad=False,
dtype=torch.bfloat16,
memory_format=torch.contiguous_format,
) # .uniform_(-1, 1)
gu = torch.empty(
(B, C),
device=gy.device,
requires_grad=False,
dtype=torch.bfloat16,
memory_format=torch.contiguous_format,
) # .uniform_(-1, 1)
wkv5_cuda.backward(B, T, C, H, r, k, v, eew, ew, u, gy, gr, gk, gv, gw, gu)
gw = torch.sum(gw, 0).view(H, C // H)
gu = torch.sum(gu, 0).view(H, C // H)
return (None, None, None, None, gr, gk, gv, gw, gu)
def RUN_CUDA_RWKV5(B, T, C, H, r, k, v, w, u):
return WKV_5.apply(B, T, C, H, r, k, v, w, u)
#################################################################
class LoraLinear(nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool):
super().__init__()
self.weight = nn.Parameter(torch.empty((out_features, in_features)))
assert bias == False, "Biased LoraLinear not supported"
r, alpha, dropout = (
LORA_CONFIG["r"],
LORA_CONFIG["alpha"],
LORA_CONFIG["dropout"],
)
self.lora_A = nn.Parameter(torch.empty(r, in_features))
self.lora_B = nn.Parameter(torch.empty(out_features, r))
self.lora_dropout = nn.Dropout(dropout)
self.scaling = alpha / r
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
nn.init.zeros_(self.lora_B)
def forward(self, x):
return F.linear(x, self.weight) + self.scaling * F.linear(
F.linear(self.lora_dropout(x), self.lora_A), self.lora_B
)
@functools.wraps(LoraLinear)
def make_linear_att(*args, **kwargs):
if "att" in LORA_CONFIG["parts"] and LORA_CONFIG["r"] > 0:
return LoraLinear(*args, **kwargs)
else:
return nn.Linear(*args, **kwargs)
@functools.wraps(LoraLinear)
def make_linear_ffn(*args, **kwargs):
if "ffn" in LORA_CONFIG["parts"] and LORA_CONFIG["r"] > 0:
return LoraLinear(*args, **kwargs)
else:
return nn.Linear(*args, **kwargs)
########################################################################################################
class RWKV_TimeMix_RWKV5(MyModule):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.head_size = args.head_size_a
assert HEAD_SIZE == self.head_size # change HEAD_SIZE to match args.head_size_a
self.n_head = args.dim_att // self.head_size
assert args.dim_att % self.n_head == 0
self.head_size_divisor = args.head_size_divisor
with torch.no_grad():
ratio_0_to_1 = layer_id / (args.n_layer - 1) # 0 to 1
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer) # 1 to ~0
ddd = torch.ones(1, 1, args.n_embd)
for i in range(args.n_embd):
ddd[0, 0, i] = i / args.n_embd
# fancy time_mix
self.time_mix_k = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_v = nn.Parameter(
torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1
)
self.time_mix_r = nn.Parameter(torch.pow(ddd, 0.5 * ratio_1_to_almost0))
self.time_mix_g = nn.Parameter(torch.pow(ddd, 0.5 * ratio_1_to_almost0))
# fancy time_decay
decay_speed = torch.ones(args.dim_att)
for n in range(args.dim_att):
decay_speed[n] = -6 + 5 * (n / (args.dim_att - 1)) ** (
0.7 + 1.3 * ratio_0_to_1
)
self.time_decay = nn.Parameter(
decay_speed.reshape(self.n_head, self.head_size)
)
# print(layer_id, self.time_decay.flatten()[:3].cpu().numpy(), '...', self.time_decay.flatten()[-3:].cpu().numpy())
tmp = torch.zeros(args.dim_att)
for n in range(args.dim_att):
zigzag = ((n + 1) % 3 - 1) * 0.1
tmp[n] = ratio_0_to_1 * (1 - (n / (args.dim_att - 1))) + zigzag
self.time_faaaa = nn.Parameter(tmp.reshape(self.n_head, self.head_size))
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.receptance = make_linear_att(args.n_embd, args.dim_att, bias=False)
self.key = make_linear_att(args.n_embd, args.dim_att, bias=False)
self.value = make_linear_att(args.n_embd, args.dim_att, bias=False)
self.output = nn.Linear(args.dim_att, args.n_embd, bias=False)
self.gate = make_linear_att(args.n_embd, args.dim_att, bias=False)
self.ln_x = nn.GroupNorm(self.n_head, args.dim_att)
@MyFunction
def jit_func(self, x):
B, T, C = x.size()
xx = self.time_shift(
x
) # Mix x with the previous timestep to produce xk, xv, xr
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
xg = x * self.time_mix_g + xx * (1 - self.time_mix_g)
r = self.receptance(xr)
k = self.key(xk)
v = self.value(xv)
g = F.silu(self.gate(xg))
return r, k, v, g
@MyFunction
def jit_func_2(self, x, g):
B, T, C = x.size()
x = x.view(B * T, C)
x = self.ln_x(x / self.head_size_divisor).view(B, T, C)
x = self.output(x * g)
return x
def forward(self, x):
B, T, C = x.size()
H = self.n_head
r, k, v, g = self.jit_func(x)
x = RUN_CUDA_RWKV5(B, T, C, H, r, k, v, w=self.time_decay, u=self.time_faaaa)
return self.jit_func_2(x, g)
########################################################################################################
class RWKV_ChannelMix(MyModule):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
with torch.no_grad(): # fancy init of time_mix
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer) # 1 to ~0
ddd = torch.ones(1, 1, args.n_embd)
for i in range(args.n_embd):
ddd[0, 0, i] = i / args.n_embd
self.time_mix_k = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_r = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.key = make_linear_ffn(args.n_embd, args.dim_ffn, bias=False)
self.receptance = make_linear_ffn(args.n_embd, args.n_embd, bias=False)
self.value = make_linear_ffn(args.dim_ffn, args.n_embd, bias=False)
@MyFunction
def forward(self, x):
xx = self.time_shift(x)
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
k = self.key(xk)
k = torch.relu(k) ** 2
kv = self.value(k)
return torch.sigmoid(self.receptance(xr)) * kv
class MishGLU(MyModule):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
with torch.no_grad():
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer)
x = torch.ones(1, 1, args.n_embd)
for i in range(args.n_embd):
x[0, 0, i] = i / args.n_embd
self.time_mix_k = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
self.time_mix_r = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
self.aa = nn.Linear(args.n_embd, args.dim_ffn, bias=False)
self.bb = nn.Linear(args.n_embd, args.dim_ffn, bias=False)
self.value = nn.Linear(args.dim_ffn, args.n_embd, bias=False)
@MyFunction
def forward(self, x):
xx = self.time_shift(x)
xa = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xb = x * self.time_mix_r + xx * (1 - self.time_mix_r)
a = self.aa(xa)
b = self.bb(xb)
return self.value(a * F.mish(b))
########################################################################################################
# The RWKV Model with our blocks
########################################################################################################
class Block(nn.Module):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.ln1 = nn.LayerNorm(args.n_embd)
self.ln2 = nn.LayerNorm(args.n_embd)
if self.layer_id == 0:
self.ln0 = nn.LayerNorm(args.n_embd)
if args.my_pos_emb > 0:
self.pos_emb_x = nn.Parameter(
torch.zeros((1, args.my_pos_emb, args.n_embd))
)
self.pos_emb_y = nn.Parameter(
torch.zeros((args.my_pos_emb, 1, args.n_embd))
)
if self.layer_id == 0 and self.args.pre_ffn > 0:
self.ffnPre = RWKV_ChannelMix(args, 0)
else:
self.att = RWKV_TimeMix_RWKV5(args, layer_id)
if "g" in os.environ["RWKV_MY_TESTING"]:
self.ffn = MishGLU(args, layer_id)
else:
self.ffn = RWKV_ChannelMix(args, layer_id)
if args.tiny_att_dim > 0 and self.layer_id == args.tiny_att_layer:
self.tiny_ln = nn.LayerNorm(args.n_embd)
self.tiny_q = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
self.tiny_k = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
self.tiny_v = nn.Linear(args.n_embd, args.n_embd, bias=False)
self.register_buffer(
"tiny_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len))
)
if args.dropout > 0:
self.drop0 = nn.Dropout(p=args.dropout)
self.drop1 = nn.Dropout(p=args.dropout)
def forward(self, x, x_emb=None):
args = self.args
B, T, C = x.size()
if self.layer_id == 0:
x = self.ln0(x)
if args.my_pos_emb > 0:
pos_emb = (self.pos_emb_x + self.pos_emb_y).reshape(T + 1, -1)[:-1, :]
x = x + pos_emb
if self.args.dropout == 0:
if self.layer_id == 0 and args.pre_ffn > 0:
x = x + self.ffnPre(self.ln1(x))
else:
x = x + self.att(self.ln1(x))
x = x + self.ffn(self.ln2(x))
else:
if self.layer_id == 0 and args.pre_ffn > 0:
x = self.drop0(x + self.ffnPre(self.ln1(x)))
else:
x = self.drop0(x + self.att(self.ln1(x)))
x = self.drop1(x + self.ffn(self.ln2(x)))
if args.tiny_att_dim > 0 and self.layer_id == args.tiny_att_layer:
xx = self.tiny_ln(x)
q = self.tiny_q(xx)[:, :T, :]
k = self.tiny_k(xx)[:, :T, :]
c = (q @ k.transpose(-2, -1)) * (args.tiny_att_dim ** (-0.5))
c = c.masked_fill(self.tiny_mask[:T, :T] == 0, 0)
x = x + c @ self.tiny_v(x_emb)
return x
class L2Wrap(torch.autograd.Function):
@staticmethod
def forward(ctx, loss, y):
ctx.save_for_backward(y)
return loss
@staticmethod
def backward(ctx, grad_output):
y = ctx.saved_tensors[0]
# to encourage the logits to be close to 0
factor = 1e-4 / (y.shape[0] * y.shape[1])
maxx, ids = torch.max(y, -1, keepdim=True)
gy = torch.zeros_like(y)
gy.scatter_(-1, ids, maxx * factor)
return (grad_output, gy)
class RWKV(pl.LightningModule):
def __init__(self, args):
super().__init__()
self.args = args
if not hasattr(args, "dim_att"):
args.dim_att = args.n_embd
if not hasattr(args, "dim_ffn"):
args.dim_ffn = args.n_embd * 4
if not hasattr(args, "tiny_att_layer"):
args.tiny_att_layer = -1
if not hasattr(args, "tiny_att_dim"):
args.tiny_att_dim = -1
assert args.n_embd % 32 == 0
assert args.dim_att % 32 == 0
assert args.dim_ffn % 32 == 0
self.emb = nn.Embedding(args.vocab_size, args.n_embd)
self.blocks = nn.ModuleList([Block(args, i) for i in range(args.n_layer)])
self.ln_out = nn.LayerNorm(args.n_embd)
self.head = nn.Linear(args.n_embd, args.vocab_size, bias=False)
if args.head_qk > 0:
self.head_q = nn.Linear(args.n_embd, args.head_qk, bias=False)
self.head_k = nn.Linear(args.n_embd, args.head_qk, bias=False)
self.register_buffer(
"copy_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len))
)
if args.dropout > 0:
self.drop0 = nn.Dropout(p=args.dropout)
def configure_optimizers(self):
args = self.args
lr_decay = set()
lr_1x = set()
lr_2x = set()
lr_3x = set()
for n, p in self.named_parameters():
if ("time_mix" in n) and (args.layerwise_lr > 0):
if args.my_pile_stage == 2:
lr_2x.add(n)
else:
lr_1x.add(n)
elif ("time_decay" in n) and (args.layerwise_lr > 0):
if args.my_pile_stage == 2:
lr_3x.add(n)
else:
lr_2x.add(n)
elif ("time_faaaa" in n) and (args.layerwise_lr > 0):
if args.my_pile_stage == 2:
lr_2x.add(n)
else:
lr_1x.add(n)
elif ("time_first" in n) and (args.layerwise_lr > 0):
lr_3x.add(n)
elif (len(p.squeeze().shape) >= 2) and (args.weight_decay > 0):
lr_decay.add(n)
else:
lr_1x.add(n)
lr_decay = sorted(list(lr_decay))
lr_1x = sorted(list(lr_1x))
lr_2x = sorted(list(lr_2x))
lr_3x = sorted(list(lr_3x))
# print('decay', lr_decay)
# print('1x', lr_1x)
# print('2x', lr_2x)
# print('3x', lr_3x)
param_dict = {n: p for n, p in self.named_parameters()}
if args.layerwise_lr > 0:
if args.my_pile_stage == 2:
optim_groups = [
{
"params": [param_dict[n] for n in lr_1x],
"weight_decay": 0.0,
"my_lr_scale": 1.0,
},
{
"params": [param_dict[n] for n in lr_2x],
"weight_decay": 0.0,
"my_lr_scale": 5.0,
}, # test: 2e-3 / args.lr_init},
{
"params": [param_dict[n] for n in lr_3x],
"weight_decay": 0.0,
"my_lr_scale": 5.0,
}, # test: 3e-3 / args.lr_init},
]
else:
optim_groups = [
{
"params": [param_dict[n] for n in lr_1x],
"weight_decay": 0.0,
"my_lr_scale": 1.0,
},
{
"params": [param_dict[n] for n in lr_2x],
"weight_decay": 0.0,
"my_lr_scale": 2.0,
},
{
"params": [param_dict[n] for n in lr_3x],
"weight_decay": 0.0,
"my_lr_scale": 3.0,
},
]
else:
optim_groups = [
{
"params": [param_dict[n] for n in lr_1x],
"weight_decay": 0.0,
"my_lr_scale": 1.0,
}
]
if args.weight_decay > 0:
optim_groups += [
{
"params": [param_dict[n] for n in lr_decay],
"weight_decay": args.weight_decay,
"my_lr_scale": 1.0,
}
]
if self.deepspeed_offload:
return DeepSpeedCPUAdam(
optim_groups,
lr=self.args.lr_init,
betas=self.args.betas,
eps=self.args.adam_eps,
bias_correction=True,
adamw_mode=True,
amsgrad=False,
)
return FusedAdam(
optim_groups,
lr=self.args.lr_init,
betas=self.args.betas,
eps=self.args.adam_eps,
bias_correction=True,
adam_w_mode=True,
amsgrad=False,
)
else:
if self.deepspeed_offload:
return DeepSpeedCPUAdam(
optim_groups,
lr=self.args.lr_init,
betas=self.args.betas,
eps=self.args.adam_eps,
bias_correction=True,
adamw_mode=False,
weight_decay=0,
amsgrad=False,
)
return FusedAdam(
optim_groups,
lr=self.args.lr_init,
betas=self.args.betas,
eps=self.args.adam_eps,
bias_correction=True,
adam_w_mode=False,
weight_decay=0,
amsgrad=False,
)
# return ZeroOneAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, weight_decay=0, amsgrad=False, cuda_aware=False)
@property
def deepspeed_offload(self) -> bool:
strategy = self.trainer.strategy
if isinstance(strategy, DeepSpeedStrategy):
cfg = strategy.config["zero_optimization"]
return cfg.get("offload_optimizer") or cfg.get("offload_param")
return False
def forward(self, idx):
args = self.args
B, T = idx.size()
assert T <= args.ctx_len, "Cannot forward, model ctx_len is exhausted."
x = self.emb(idx)
x_emb = x
if args.dropout > 0:
x = self.drop0(x)
if args.tiny_att_dim > 0:
for block in self.blocks:
if args.grad_cp == 1:
if args.lora:
x = torch_checkpoint(block, x, x_emb, use_reentrant=False)
else:
x = deepspeed.checkpointing.checkpoint(block, x, x_emb)
else:
x = block(x, x_emb)
else:
for block in self.blocks:
if args.grad_cp == 1:
if args.lora:
x = torch_checkpoint(block, x, x_emb, use_reentrant=False)
else:
x = deepspeed.checkpointing.checkpoint(block, x)
else:
x = block(x)
x = self.ln_out(x)
if args.head_qk > 0:
q = self.head_q(x)[:, :T, :]
k = self.head_k(x)[:, :T, :]
c = (q @ k.transpose(-2, -1)) * (1.0 / args.head_qk)
c = c.masked_fill(self.copy_mask[:T, :T] == 0, 0)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
c = c @ F.one_hot(idx, num_classes=args.vocab_size)
elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
c = c @ F.one_hot(idx, num_classes=args.vocab_size).half()
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
c = c @ F.one_hot(idx, num_classes=args.vocab_size).bfloat16()
x = self.head(x) + c
else:
x = self.head(x)
return x
def training_step(self, batch, batch_idx):
args = self.args
if args.my_qa_mask != 1:
idx, targets = batch
logits = self(idx)
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
# if '0' in os.environ["RWKV_MY_TESTING"]:
# print('logits', logits)
# torch.set_printoptions(threshold=10000)
# print('idx', idx)
# exit(0)
else:
idx, targets, mask = batch
mask = mask.view(-1)
sum_mask = torch.sum(mask).item()
# if sum_mask == 0:
# return torch.tensor([0.0], requires_grad=True)
logits = self(idx)
if sum_mask == mask.shape[0]:
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1)
)
# print('rank', self.global_rank, 'loss', loss.item())
else:
loss = F.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1), reduction="none"
)
# loss_raw = loss
loss = torch.sum(loss * mask) / sum_mask
# torch.set_printoptions(threshold=10000)
# if True: #self.global_rank == 1:
# tmp = ''
# sss = 0
# ccc = 0
# for i in range(mask.shape[0]):
# if mask[i] > 0:
# tmp += str(idx.view(-1)[i].item()) + ','
# sss += loss_raw.view(-1)[i].float().item()
# ccc += 1
# print('rank', self.global_rank, 'loss', loss.item(), 'lavg', sss / ccc)#, 'tmp', tmp, 'input', idx)
return L2Wrap.apply(loss, logits)
def training_step_end(self, batch_parts):
if pl.__version__[0] != "2":
all = self.all_gather(batch_parts)
if self.trainer.is_global_zero:
self.trainer.my_loss_all = all
def generate_init_weight(self):
print(
f"""
############################################################################
#
# Init model weight (slow for large models)...
#
############################################################################
"""
)
m = {}
for n in self.state_dict():
p = self.state_dict()[n]
shape = p.shape
gain = 1.0
scale = 1.0
if (
"ln_" in n
or ".ln" in n
or "time_" in n
or "_mask" in n
or "pos_emb" in n
or ".mask." in n
):
if "ln_x.weight" in n:
layer_scale = (1 + int(n.split(".")[1])) / self.args.n_layer
m[n] = (p * 0.0) + (layer_scale**0.7)
else:
m[n] = p
else:
if n == "emb.weight":
scale = -1 * self.args.lr_init
else:
if shape[0] > shape[1]:
gain = math.sqrt(shape[0] / shape[1])
zero = [
".att.output.",
".ffn.value.",
".ffn.receptance.",
".ffnPre.value.",
".ffnPre.receptance.",
"head_q.",
".oo.",
".rr.",
]
for kk in zero:
if kk in n:
scale = 0
if n == "head.weight":
scale = 0.5
if "head_k." in n:
scale = 0.1
if "head_q." in n:
scale = 0
print(
f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {str(scale).ljust(4)} {n}"
)
if self.args.accelerator.upper() == "GPU":
m[n] = torch.empty((shape[0], shape[1]), device="cuda")
else:
m[n] = torch.empty((shape[0], shape[1]))
if scale == 0:
nn.init.zeros_(m[n])
elif scale < 0:
nn.init.uniform_(m[n], a=scale, b=-scale)
else:
nn.init.orthogonal_(m[n], gain=gain * scale)
m[n] = m[n].cpu()
if os.environ["RWKV_FLOAT_MODE"] == "fp16":
m[n] = m[n].half()
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
m[n] = m[n].bfloat16()
# if n == "emb.weight":
# print(m[n])
gc.collect()
torch.cuda.empty_cache()
return m

310
finetune/lora/v5/src/trainer.py vendored Normal file
View File

@@ -0,0 +1,310 @@
import os, math, time, datetime, subprocess
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
from .model import LORA_CONFIG
def my_save(args, trainer, dd, ff):
if "14b-run1" in ff:
fn = ff.split("/")[-1]
fff = "/dev/shm/" + fn
torch.save(dd, fff)
subprocess.Popen(f" aws s3 mv {fff} s3://rwkv-14b-4k/{fn} --quiet", shell=True)
elif ("world/14b" in ff) or ("world/7b" in ff):
aa = ff.split("/")[1]
fn = ff.split("/")[-1]
fff = f"/dev/shm/{aa}-{fn}"
torch.save(dd, fff)
subprocess.Popen(
f" aws s3 mv {fff} s3://rwkv-world/{aa}-{fn} --quiet", shell=True
)
else:
if "deepspeed_stage_3" in args.strategy:
trainer.save_checkpoint(ff, weights_only=True)
else:
torch.save(dd, ff)
class train_callback(pl.Callback):
def __init__(self, args):
super().__init__()
self.args = args
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx):
args = self.args
# if args.cuda_cleanup > 0:
# torch.cuda.empty_cache()
real_step = trainer.global_step + args.epoch_begin * args.epoch_steps
# LR schedule
w_step = args.warmup_steps
if args.lr_final == args.lr_init or args.epoch_count == 0:
lr = args.lr_init
else:
decay_step = real_step - args.my_pile_edecay * args.epoch_steps
decay_total = (args.epoch_count - args.my_pile_edecay) * args.epoch_steps
progress = (decay_step - w_step + 1) / (decay_total - w_step)
progress = min(1, max(0, progress))
if args.lr_final == 0 or args.lr_init == 0: # linear decay
lr = args.lr_init + (args.lr_final - args.lr_init) * progress
else: # exp decay
lr = args.lr_init * math.exp(
math.log(args.lr_final / args.lr_init) * pow(progress, 1)
)
# if trainer.is_global_zero:
# print(trainer.global_step, decay_step, decay_total, w_step, progress, lr)
if args.my_exit_tokens != 0: # cosine decay
real_tokens = real_step * args.ctx_len * args.real_bsz
warmup_tokens = w_step * args.ctx_len * args.real_bsz
progress = (real_tokens - warmup_tokens) / (
abs(args.my_exit_tokens) - warmup_tokens
)
progress = max(0, min(1, progress))
lr_final_factor = args.lr_final / args.lr_init
lr_mult = (0.5 + lr_final_factor / 2) + (
0.5 - lr_final_factor / 2
) * math.cos(math.pi * progress)
if args.my_exit_tokens > 0:
lr = args.lr_init * lr_mult
else:
lr = (lr + args.lr_init * lr_mult) / 2
if progress >= 1:
if (trainer.is_global_zero) or ("deepspeed_stage_3" in args.strategy):
my_save(
args,
trainer,
pl_module.state_dict(),
f"{args.proj_dir}/rwkv-final.pth",
)
exit(0)
if trainer.global_step < w_step:
lr = lr * (0.2 + 0.8 * trainer.global_step / w_step)
if args.weight_decay_final > 0:
wd_now = args.weight_decay * math.exp(
math.log(args.weight_decay_final / args.weight_decay) * progress
)
else:
wd_now = args.weight_decay
for param_group in trainer.optimizers[0].param_groups:
if param_group["weight_decay"] > 0:
param_group["weight_decay"] = wd_now
if args.layerwise_lr > 0:
param_group["lr"] = lr * param_group["my_lr_scale"]
# print(param_group["lr"], param_group["my_lr_scale"])
else:
param_group["lr"] = lr
trainer.my_lr = lr
trainer.my_wd = wd_now
# rank_zero_info(f"{real_step} {lr}")
if trainer.global_step == 0:
if trainer.is_global_zero: # logging
trainer.my_loss_sum = 0
trainer.my_loss_count = 0
trainer.my_log = open(args.proj_dir + "/train_log.txt", "a")
trainer.my_log.write(
f"NEW RUN {args.my_timestamp}\n{vars(self.args)}\n"
)
try:
print(f"\n{trainer.strategy.config}\n")
trainer.my_log.write(f"{trainer.strategy.config}\n")
except:
pass
trainer.my_log.flush()
if len(args.wandb) > 0:
print("Login to wandb...")
import wandb
wandb.init(
project=args.wandb,
name=args.run_name + " " + args.my_timestamp,
config=args,
save_code=False,
)
trainer.my_wandb = wandb
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
args = self.args
token_per_step = args.ctx_len * args.real_bsz
real_step = trainer.global_step + args.epoch_begin * args.epoch_steps
if trainer.is_global_zero: # logging
t_now = time.time_ns()
kt_s = 0
try:
t_cost = (t_now - trainer.my_time_ns) / 1e9
kt_s = token_per_step / t_cost / 1000
self.log("REAL it/s", 1.0 / t_cost, prog_bar=True, on_step=True)
self.log("Kt/s", kt_s, prog_bar=True, on_step=True)
except:
pass
trainer.my_time_ns = t_now
if pl.__version__[0] == "2":
trainer.my_loss = outputs["loss"]
else:
trainer.my_loss = trainer.my_loss_all.float().mean().item()
trainer.my_loss_sum += trainer.my_loss
trainer.my_loss_count += 1
trainer.my_epoch_loss = trainer.my_loss_sum / trainer.my_loss_count
self.log("lr", trainer.my_lr, prog_bar=True, on_step=True)
self.log("loss", trainer.my_epoch_loss, prog_bar=True, on_step=True)
# self.log("s", real_step, prog_bar=True, on_step=True)
if len(args.wandb) > 0:
lll = {
"loss": trainer.my_loss,
"lr": trainer.my_lr,
"wd": trainer.my_wd,
"Gtokens": real_step * token_per_step / 1e9,
}
if kt_s > 0:
lll["kt/s"] = kt_s
trainer.my_wandb.log(lll, step=int(real_step))
if (trainer.is_global_zero) or (
"deepspeed_stage_3" in args.strategy
): # save pth
if args.magic_prime > 0:
expand_factor = 2 if args.my_qa_mask > 0 else 1
if int(real_step) == int(
args.magic_prime * expand_factor // args.real_bsz
) - 1 + int(args.my_random_steps):
to_save_dict = pl_module.state_dict()
my_save(
args,
trainer,
to_save_dict,
f"{args.proj_dir}/rwkv-final.pth",
)
# if args.batch_save==batch_idx :
# to_save_dict = pl_module.state_dict()
# for name, state in to_save_dict.items():
# if 'img' in name:
# to_save_dict[name] = state
# try:
# my_save(
# args, trainer,
# to_save_dict,
# f"{args.proj_dir}/rwkv-{args.epoch_begin + trainer.current_epoch}-{batch_idx}.pth",
# )
# except Exception as e:
# print('Error\n\n', e, '\n\n')
def on_train_epoch_start(self, trainer, pl_module):
args = self.args
if pl.__version__[0] == "2":
dataset = trainer.train_dataloader.dataset
else:
dataset = trainer.train_dataloader.dataset.datasets
assert "MyDataset" in str(dataset)
dataset.global_rank = trainer.global_rank
dataset.real_epoch = int(args.epoch_begin + trainer.current_epoch)
dataset.world_size = trainer.world_size
# print(f'########## world_size {dataset.world_size} global_rank {dataset.global_rank} real_epoch {dataset.real_epoch} ##########')
def on_train_epoch_end(self, trainer, pl_module):
args = self.args
to_save_dict = {}
if (trainer.is_global_zero) or (
"deepspeed_stage_3" in args.strategy
): # save pth
if (
args.epoch_save > 0 and trainer.current_epoch % args.epoch_save == 0
) or (trainer.current_epoch == args.epoch_count - 1):
if args.data_type == "wds_img":
raw_dict = pl_module.state_dict()
for k in raw_dict:
if k.startswith("encoder.") or k.startswith("decoder."):
to_save_dict[k] = raw_dict[k]
else:
to_save_dict = pl_module.state_dict()
if args.data_type == "img" and not args.lora:
for name, state in to_save_dict.items():
if "img" in name:
to_save_dict[name] = state
if args.lora:
enable_time_finetune = "time" in LORA_CONFIG["parts"]
enable_ln_finetune = "ln" in LORA_CONFIG["parts"]
lora_dict = {}
for name, state in to_save_dict.items():
if "img" in name:
lora_dict[name] = state
if (
".lora_" in name
or (enable_time_finetune and ".time_" in name)
or (enable_ln_finetune and ".ln" in name)
):
lora_dict[name] = state
to_save_dict = lora_dict
try:
my_save(
args,
trainer,
to_save_dict,
f"{args.proj_dir}/rwkv-{args.epoch_begin + trainer.current_epoch}.pth",
)
except Exception as e:
print("Error\n\n", e, "\n\n")
if trainer.is_global_zero: # logging
trainer.my_log.write(
f"{args.epoch_begin + trainer.current_epoch} {trainer.my_epoch_loss:.6f} {math.exp(trainer.my_epoch_loss):.4f} {trainer.my_lr:.8f} {datetime.datetime.now()} {trainer.current_epoch}\n"
)
trainer.my_log.flush()
trainer.my_loss_sum = 0
trainer.my_loss_count = 0
if (args.epoch_begin + trainer.current_epoch) >= args.my_exit:
exit(0)
@rank_zero_only
def generate_init_weight(model, init_weight_name):
mm = model.generate_init_weight()
if model.args.my_pile_stage == 1:
if len(model.args.load_model) > 0:
print(f"Combine weights from {model.args.load_model}...")
load_dict = torch.load(model.args.load_model, map_location="cpu")
for k in load_dict:
try:
assert k in mm
except:
print("missing", k)
exit(0)
src = load_dict[k]
try:
mm[k] = src.reshape(mm[k].shape)
except:
tmp = mm[k].squeeze().clone()
print(k, src.shape, "-->", mm[k].shape)
ss = src.shape[0]
dd = tmp.shape[0]
for i in range(dd):
pos = i / dd * ss
if pos >= ss - 1:
tmp[i] = src[ss - 1]
else:
p0 = int(math.floor(pos))
ii = pos - p0
tmp[i] = src[p0] * (1 - ii) + src[p0 + 1] * (ii)
mm[k] = tmp.reshape(mm[k].shape)
sss = src.squeeze().float().cpu().numpy()
print(sss[:10], "...", sss[-10:])
mmm = mm[k].squeeze().float().cpu().numpy()
print(mmm[:10], "...", mmm[-10:])
print(f"Save to {init_weight_name}...")
torch.save(mm, init_weight_name)
if model.args.my_pile_stage == 1:
print("Done. Now go for stage 2.")
exit(0)

139
finetune/lora/v5/src/utils.py vendored Normal file
View File

@@ -0,0 +1,139 @@
import json, time, random, os
import numpy as np
import torch
from torch.nn import functional as F
time_slot = {}
time_ref = time.time_ns()
def record_time(name):
if name not in time_slot:
time_slot[name] = 1e20
tt = (time.time_ns() - time_ref) / 1e9
if tt < time_slot[name]:
time_slot[name] = tt
class TOKENIZER:
def __init__(self, WORD_NAME, UNKNOWN_CHAR="\ue083"):
if "list" in str(type(WORD_NAME)):
self.charMode = False
if WORD_NAME[0] == WORD_NAME[1]:
from transformers import PreTrainedTokenizerFast
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=WORD_NAME[0])
else:
from transformers import GPT2TokenizerFast
self.tokenizer = GPT2TokenizerFast(WORD_NAME[0], WORD_NAME[1])
self.vocab_size = len(self.tokenizer)
else:
self.charMode = True
with open(WORD_NAME + ".json", "r", encoding="utf-16") as result_file:
self.word_table = json.load(result_file)
self.vocab_size = len(self.word_table)
self.stoi = {v: int(k) for k, v in self.word_table.items()}
self.itos = {int(k): v for k, v in self.word_table.items()}
self.UNKNOWN_CHAR = self.stoi[UNKNOWN_CHAR]
def refine_context(self, context):
context = context.strip().split("\n")
for c in range(len(context)):
context[c] = context[c].strip().strip("\u3000").strip("\r")
context = list(filter(lambda c: c != "", context))
context = "\n" + ("\n".join(context)).strip()
if context == "":
context = "\n"
return context
def sample_logits(
self, out, x, ctx_len, temperature=1.0, top_p_usual=None, top_p_newline=None
):
# out[self.UNKNOWN_CHAR] = -float('Inf')
lastChar = int(x[-1])
probs = F.softmax(out, dim=-1)
if self.charMode:
if self.itos[lastChar] == "\n":
top_p = top_p_newline
else:
top_p = top_p_usual
else:
top_p = top_p_usual
if os.environ["RWKV_RUN_DEVICE"] == "cpu":
probs = probs.numpy()
sorted_probs = np.sort(probs)[::-1]
cumulative_probs = np.cumsum(sorted_probs)
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
probs[probs < cutoff] = 0
if temperature != 1.0:
probs = probs.pow(1.0 / temperature)
probs = probs / np.sum(probs)
out = np.random.choice(a=len(probs), p=probs)
return out
else:
sorted_probs = torch.sort(probs, descending=True)[0]
cumulative_probs = torch.cumsum(sorted_probs, dim=-1).cpu().numpy()
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
probs[probs < cutoff] = 0
if temperature != 1.0:
probs = probs.pow(1.0 / temperature)
out = torch.multinomial(probs, num_samples=1)[0]
return out
def MaybeIsPrime(number):
if FermatPrimalityTest(number) and MillerRabinPrimalityTest(number):
return True
else:
return False
def FermatPrimalityTest(number):
if number > 1:
for time in range(3):
randomNumber = random.randint(2, number) - 1
if pow(randomNumber, number - 1, number) != 1:
return False
return True
else:
return False
def MillerRabinPrimalityTest(number):
if number == 2:
return True
elif number == 1 or number % 2 == 0:
return False
oddPartOfNumber = number - 1
timesTwoDividNumber = 0
while oddPartOfNumber % 2 == 0:
oddPartOfNumber = oddPartOfNumber // 2
timesTwoDividNumber = timesTwoDividNumber + 1
for time in range(3):
while True:
randomNumber = random.randint(2, number) - 1
if randomNumber != 0 and randomNumber != 1:
break
randomNumberWithPower = pow(randomNumber, oddPartOfNumber, number)
if (randomNumberWithPower != 1) and (randomNumberWithPower != number - 1):
iterationNumber = 1
while (iterationNumber <= timesTwoDividNumber - 1) and (
randomNumberWithPower != number - 1
):
randomNumberWithPower = pow(randomNumberWithPower, 2, number)
iterationNumber = iterationNumber + 1
if randomNumberWithPower != (number - 1):
return False
return True

436
finetune/lora/v5/train.py vendored Normal file
View File

@@ -0,0 +1,436 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import logging
logging.basicConfig(level=logging.INFO)
if __name__ == "__main__":
from argparse import ArgumentParser
from pytorch_lightning import Trainer
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
import pytorch_lightning as pl
rank_zero_info("########## work in progress ##########")
parser = ArgumentParser()
parser.add_argument("--load_model", default="", type=str) # full path, with .pth
parser.add_argument(
"--wandb", default="", type=str
) # wandb project name. if "" then don't use wandb
parser.add_argument("--proj_dir", default="out", type=str)
parser.add_argument("--random_seed", default="-1", type=int)
parser.add_argument("--data_file", default="", type=str)
parser.add_argument("--data_type", default="utf-8", type=str)
parser.add_argument(
"--vocab_size", default=0, type=int
) # vocab_size = 0 means auto (for char-level LM and .txt data)
parser.add_argument("--ctx_len", default=1024, type=int)
parser.add_argument(
"--epoch_steps", default=1000, type=int
) # a mini "epoch" has [epoch_steps] steps
parser.add_argument(
"--epoch_count", default=500, type=int
) # train for this many "epochs". will continue afterwards with lr = lr_final
parser.add_argument(
"--epoch_begin", default=0, type=int
) # if you load a model trained for x "epochs", set epoch_begin = x
parser.add_argument(
"--epoch_save", default=5, type=int
) # save the model every [epoch_save] "epochs"
parser.add_argument(
"--micro_bsz", default=12, type=int
) # micro batch size (batch size per GPU)
parser.add_argument("--n_layer", default=6, type=int)
parser.add_argument("--n_embd", default=512, type=int)
parser.add_argument("--dim_att", default=0, type=int)
parser.add_argument("--dim_ffn", default=0, type=int)
parser.add_argument(
"--pre_ffn", default=0, type=int
) # replace first att layer by ffn (sometimes better)
parser.add_argument("--head_qk", default=0, type=int) # my headQK trick
parser.add_argument("--tiny_att_dim", default=0, type=int) # tiny attention dim
parser.add_argument(
"--tiny_att_layer", default=-999, type=int
) # tiny attention @ which layer
parser.add_argument(
"--lr_init", default=6e-4, type=float
) # 6e-4 for L12-D768, 4e-4 for L24-D1024, 3e-4 for L24-D2048
parser.add_argument("--lr_final", default=1e-5, type=float)
parser.add_argument(
"--warmup_steps", default=-1, type=int
) # try 50 if you load a model
parser.add_argument("--beta1", default=0.9, type=float)
parser.add_argument(
"--beta2", default=0.99, type=float
) # use 0.999 when your model is close to convergence
parser.add_argument("--adam_eps", default=1e-8, type=float)
parser.add_argument(
"--grad_cp", default=0, type=int
) # gradient checkpt: saves VRAM, but slower
parser.add_argument(
"--dropout", default=0, type=float
) # try 0.01 / 0.02 / 0.05 / 0.1
parser.add_argument(
"--weight_decay", default=0, type=float
) # try 0.1 / 0.01 / 0.001
parser.add_argument("--weight_decay_final", default=-1, type=float)
parser.add_argument(
"--my_pile_version", default=1, type=int
) # my special pile version
parser.add_argument("--my_pile_stage", default=0, type=int) # my special pile mode
parser.add_argument(
"--my_pile_shift", default=-1, type=int
) # my special pile mode - text shift
parser.add_argument("--my_pile_edecay", default=0, type=int)
parser.add_argument(
"--layerwise_lr", default=1, type=int
) # layerwise lr for faster convergence (but slower it/s)
parser.add_argument(
"--ds_bucket_mb", default=200, type=int
) # deepspeed bucket size in MB. 200 seems enough
# parser.add_argument("--cuda_cleanup", default=0, type=int) # extra cuda cleanup (sometimes helpful)
parser.add_argument("--my_sample_len", default=0, type=int)
parser.add_argument("--my_ffn_shift", default=1, type=int)
parser.add_argument("--my_att_shift", default=1, type=int)
parser.add_argument(
"--head_size_a", default=64, type=int
) # can try larger values for larger models
parser.add_argument("--head_size_divisor", default=8, type=int)
parser.add_argument("--my_pos_emb", default=0, type=int)
parser.add_argument("--load_partial", default=0, type=int)
parser.add_argument("--magic_prime", default=0, type=int)
parser.add_argument("--my_qa_mask", default=0, type=int)
parser.add_argument("--my_random_steps", default=0, type=int)
parser.add_argument("--my_testing", default="", type=str)
parser.add_argument("--my_exit", default=99999999, type=int)
parser.add_argument("--my_exit_tokens", default=0, type=int)
# LORA
parser.add_argument("--emb", action="store_true")
parser.add_argument("--lora", action="store_true")
parser.add_argument("--lora_load", default="", type=str)
parser.add_argument("--lora_r", default=8, type=int)
parser.add_argument("--lora_alpha", default=32, type=float)
parser.add_argument("--lora_dropout", default=0.01, type=float)
parser.add_argument("--lora_parts", default="att,ln,time", type=str)
if pl.__version__[0] == "2":
parser.add_argument("--accelerator", default="gpu", type=str)
parser.add_argument("--strategy", default="auto", type=str)
parser.add_argument("--devices", default=1, type=int)
parser.add_argument("--num_nodes", default=1, type=int)
parser.add_argument("--precision", default="fp16", type=str)
parser.add_argument("--accumulate_grad_batches", default=1, type=int)
else:
parser = Trainer.add_argparse_args(parser)
args = parser.parse_args()
########################################################################################################
import os, warnings, math, datetime, sys, time
import numpy as np
import torch
from torch.utils.data import DataLoader
if "deepspeed" in args.strategy:
import deepspeed
from pytorch_lightning import seed_everything
if args.random_seed >= 0:
print(
f"########## WARNING: GLOBAL SEED {args.random_seed} THIS WILL AFFECT MULTIGPU SAMPLING ##########\n"
* 3
)
seed_everything(args.random_seed)
np.set_printoptions(precision=4, suppress=True, linewidth=200)
warnings.filterwarnings(
"ignore", ".*Consider increasing the value of the `num_workers` argument*"
)
warnings.filterwarnings(
"ignore", ".*The progress bar already tracks a metric with the*"
)
# os.environ["WDS_SHOW_SEED"] = "1"
args.my_timestamp = datetime.datetime.today().strftime("%Y-%m-%d-%H-%M-%S")
args.enable_checkpointing = False
args.replace_sampler_ddp = False
args.logger = False
args.gradient_clip_val = 1.0
args.num_sanity_val_steps = 0
args.check_val_every_n_epoch = int(1e20)
args.log_every_n_steps = int(1e20)
args.max_epochs = args.epoch_count # -1 continue forever
args.betas = (args.beta1, args.beta2)
args.real_bsz = int(args.num_nodes) * int(args.devices) * args.micro_bsz
os.environ["RWKV_MY_TESTING"] = args.my_testing
os.environ["RWKV_HEAD_SIZE_A"] = str(args.head_size_a)
if args.dim_att <= 0:
args.dim_att = args.n_embd
if args.dim_ffn <= 0:
args.dim_ffn = int((args.n_embd * 3.5) // 32 * 32) # default = 3.5x emb size
if args.data_type == "wds_img":
args.run_name = f"v{args.my_img_version}-{args.my_img_size}-{args.my_img_bit}bit-{args.my_img_clip}x{args.my_img_clip_scale}"
args.proj_dir = f"{args.proj_dir}-{args.run_name}"
else:
args.run_name = (
f"{args.vocab_size} ctx{args.ctx_len} L{args.n_layer} D{args.n_embd}"
)
if not os.path.exists(args.proj_dir):
os.makedirs(args.proj_dir)
if args.my_pile_stage > 0:
magic_prime_bak = args.magic_prime
if args.my_pile_shift < 0:
args.my_pile_shift = 0
if magic_prime_bak > 0:
args.magic_prime = magic_prime_bak
if args.my_qa_mask == 2:
args.epoch_count = 2 * args.magic_prime // 40320
else:
args.epoch_count = args.magic_prime // 40320
args.epoch_steps = 40320 // args.real_bsz
assert args.epoch_steps * args.real_bsz == 40320
# if args.my_pile_stage == 2:
# assert args.lr_final == args.lr_init
if args.my_pile_stage >= 2: # find latest saved model
list_p = []
for p in os.listdir(args.proj_dir):
if p.startswith("rwkv") and p.endswith(".pth"):
p = ((p.split("-"))[1].split("."))[0]
if p != "final":
if p == "init":
p = -1
else:
p = int(p)
list_p += [p]
list_p.sort()
max_p = list_p[-1]
if len(list_p) > 1:
args.my_pile_prev_p = list_p[-2] # in case max_p is corrupted
if max_p == -1:
args.load_model = f"{args.proj_dir}/rwkv-init.pth"
else:
args.load_model = f"{args.proj_dir}/rwkv-{max_p}.pth"
if args.warmup_steps < 0:
if args.my_pile_stage == 2:
args.warmup_steps = 10
else:
args.warmup_steps = 30
args.epoch_begin = max_p + 1
samples_per_epoch = args.epoch_steps * args.real_bsz
tokens_per_epoch = samples_per_epoch * args.ctx_len
try:
deepspeed_version = deepspeed.__version__
except:
deepspeed_version = None
pass
rank_zero_info(
f"""
############################################################################
#
# RWKV-5 {args.precision.upper()} on {args.num_nodes}x{args.devices} {args.accelerator.upper()}, bsz {args.num_nodes}x{args.devices}x{args.micro_bsz}={args.real_bsz}, {args.strategy} {'with grad_cp' if args.grad_cp > 0 else ''}
#
# Data = {args.data_file} ({args.data_type}), ProjDir = {args.proj_dir}
#
# Epoch = {args.epoch_begin} to {args.epoch_begin + args.epoch_count - 1}, save every {args.epoch_save} epoch
#
# Each "epoch" = {args.epoch_steps} steps, {samples_per_epoch} samples, {tokens_per_epoch} tokens
#
# Model = {args.n_layer} n_layer, {args.n_embd} n_embd, {args.ctx_len} ctx_len
#
# Adam = lr {args.lr_init} to {args.lr_final}, warmup {args.warmup_steps} steps, beta {args.betas}, eps {args.adam_eps}
#
# Found torch {torch.__version__}, recommend 1.13.1+cu117 or newer
# Found deepspeed {deepspeed_version}, recommend 0.7.0 (faster than newer versions)
# Found pytorch_lightning {pl.__version__}, recommend 1.9.5
#
############################################################################
"""
)
rank_zero_info(str(vars(args)) + "\n")
assert args.data_type in ["utf-8", "utf-16le", "numpy", "binidx", "dummy", "uint16"]
if args.lr_final == 0 or args.lr_init == 0:
rank_zero_info(
"\n\nNote: lr_final = 0 or lr_init = 0. Using linear LR schedule instead.\n\n"
)
assert args.precision in ["fp32", "tf32", "fp16", "bf16"]
os.environ["RWKV_FLOAT_MODE"] = args.precision
if args.precision == "fp32":
for i in range(10):
rank_zero_info(
"\n\nNote: you are using fp32 (very slow). Try bf16 / tf32 for faster training.\n\n"
)
if args.precision == "fp16":
rank_zero_info(
"\n\nNote: you are using fp16 (might overflow). Try bf16 / tf32 for stable training.\n\n"
)
os.environ["RWKV_JIT_ON"] = "0"
if "deepspeed_stage_3" in args.strategy:
os.environ["RWKV_JIT_ON"] = "0"
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = True
if args.precision == "fp32":
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_tf32 = False
else:
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
if "32" in args.precision:
args.precision = 32
elif args.precision == "fp16":
args.precision = 16
else:
args.precision = "bf16"
########################################################################################################
from src.trainer import train_callback, generate_init_weight
from src.dataset import MyDataset
train_data = MyDataset(args)
args.vocab_size = train_data.vocab_size
from src.model import RWKV, LORA_CONFIG, LoraLinear
if args.lora:
assert args.lora_r > 0, "LoRA should have its `r` > 0"
LORA_CONFIG["r"] = args.lora_r
LORA_CONFIG["alpha"] = args.lora_alpha
LORA_CONFIG["dropout"] = args.lora_dropout
LORA_CONFIG["parts"] = set(str(args.lora_parts).split(","))
enable_time_finetune = "time" in LORA_CONFIG["parts"]
enable_ln_finetune = "ln" in LORA_CONFIG["parts"]
model = RWKV(args)
# only train lora parameters
if args.lora:
model.requires_grad_(False)
for name, module in model.named_modules():
if any(n.startswith("lora_") for n, _ in module.named_parameters()):
print(f" LoRA additionally training module {name}")
for pname, param in module.named_parameters():
param.requires_grad = "lora_" in pname
elif enable_ln_finetune and ".ln" in name:
print(f" LoRA additionally training module {name}")
for param in module.parameters():
param.requires_grad = True
elif enable_time_finetune and any(
n.startswith("time") for n, _ in module.named_parameters()
):
for pname, param in module.named_parameters():
if pname.startswith("time"):
print(f" LoRA additionally training parameter {pname}")
param.requires_grad = True
if (
len(args.load_model) == 0 or args.my_pile_stage == 1
): # shall we build the initial weights?
init_weight_name = f"{args.proj_dir}/rwkv-init.pth"
generate_init_weight(model, init_weight_name) # save initial weights
args.load_model = init_weight_name
rank_zero_info(f"########## Loading {args.load_model}... ##########")
try:
load_dict = torch.load(args.load_model, map_location="cpu")
load_keys = list(load_dict.keys())
for k in load_keys:
if k.startswith("_forward_module."):
load_dict[k.replace("_forward_module.", "")] = load_dict[k]
del load_dict[k]
except:
rank_zero_info(f"Bad checkpoint {args.load_model}")
if args.my_pile_stage >= 2: # try again using another checkpoint
max_p = args.my_pile_prev_p
if max_p == -1:
args.load_model = f"{args.proj_dir}/rwkv-init.pth"
else:
args.load_model = f"{args.proj_dir}/rwkv-{max_p}.pth"
args.epoch_begin = max_p + 1
rank_zero_info(f"Trying {args.load_model}")
load_dict = torch.load(args.load_model, map_location="cpu")
if args.load_partial == 1:
load_keys = load_dict.keys()
for k in model.state_dict():
if k not in load_keys:
load_dict[k] = model.state_dict()[k]
# model.load_state_dict(load_dict)
model.load_state_dict(load_dict, strict=(not args.lora))
if os.path.isfile(args.lora_load):
model.load_state_dict(
torch.load(args.lora_load, map_location="cpu"), strict=False
)
if pl.__version__[0] == "2":
trainer = Trainer(
accelerator=args.accelerator,
strategy=args.strategy,
devices=args.devices,
num_nodes=args.num_nodes,
precision=args.precision,
logger=args.logger,
callbacks=[train_callback(args)],
max_epochs=args.max_epochs,
check_val_every_n_epoch=args.check_val_every_n_epoch,
num_sanity_val_steps=args.num_sanity_val_steps,
log_every_n_steps=args.log_every_n_steps,
enable_checkpointing=args.enable_checkpointing,
accumulate_grad_batches=args.accumulate_grad_batches,
gradient_clip_val=args.gradient_clip_val,
)
else:
trainer = Trainer.from_argparse_args(
args,
callbacks=[train_callback(args)],
)
if trainer.global_rank == 0:
for n in model.state_dict():
shape = model.state_dict()[n].shape
shape = [i for i in shape if i != 1]
if len(shape) > 1:
print(f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {n}")
else:
print(f"{str(shape[0]).ljust(5)} {n}")
if "deepspeed" in args.strategy:
trainer.strategy.config["zero_optimization"]["allgather_bucket_size"] = (
args.ds_bucket_mb * 1000 * 1000
)
trainer.strategy.config["zero_optimization"]["reduce_bucket_size"] = (
args.ds_bucket_mb * 1000 * 1000
)
# must set shuffle=False, persistent_workers=False (because worker is in another thread)
data_loader = DataLoader(
train_data,
shuffle=False,
pin_memory=True,
batch_size=args.micro_bsz,
num_workers=1,
persistent_workers=False,
drop_last=True,
)
trainer.fit(model, data_loader)

View File

@@ -1,3 +1,3 @@
torch==1.13.1
torch==2.1.2
pytorch_lightning==1.9.5
deepspeed==0.11.2
deepspeed==0.12.6

View File

@@ -13,11 +13,13 @@
"@magenta/music": "^1.23.1",
"@microsoft/fetch-event-source": "^2.0.1",
"@primer/octicons-react": "^19.1.0",
"abcjs": "^6.2.3",
"chart.js": "^4.3.0",
"classnames": "^2.3.2",
"file-saver": "^2.0.5",
"html-midi-player": "^1.5.0",
"i18next": "^22.4.15",
"lodash-es": "^4.17.21",
"mobx": "^6.9.0",
"mobx-react-lite": "^3.4.3",
"pdfjs-dist": "^4.0.189",
@@ -40,6 +42,7 @@
},
"devDependencies": {
"@types/file-saver": "^2.0.7",
"@types/lodash-es": "^4.17.12",
"@types/react": "^18.2.6",
"@types/react-beautiful-dnd": "^13.1.4",
"@types/react-dom": "^18.2.4",
@@ -2533,6 +2536,21 @@
"hoist-non-react-statics": "^3.3.0"
}
},
"node_modules/@types/lodash": {
"version": "4.14.202",
"resolved": "https://registry.npmjs.org/@types/lodash/-/lodash-4.14.202.tgz",
"integrity": "sha512-OvlIYQK9tNneDlS0VN54LLd5uiPCBOp7gS5Z0f1mjoJYBrtStzgmJBxONW3U6OZqdtNzZPmn9BS/7WI7BFFcFQ==",
"dev": true
},
"node_modules/@types/lodash-es": {
"version": "4.17.12",
"resolved": "https://registry.npmjs.org/@types/lodash-es/-/lodash-es-4.17.12.tgz",
"integrity": "sha512-0NgftHUcV4v34VhXm8QBSftKVXtbkBG3ViCjs6+eJ5a6y6Mi/jiFGPc1sC7QK+9BFhWrURE3EOggmWaSxL9OzQ==",
"dev": true,
"dependencies": {
"@types/lodash": "*"
}
},
"node_modules/@types/long": {
"version": "4.0.2",
"resolved": "https://registry.npmjs.org/@types/long/-/long-4.0.2.tgz",
@@ -2673,6 +2691,15 @@
"integrity": "sha512-nne9/IiQ/hzIhY6pdDnbBtz7DjPTKrY00P/zvPSm5pOFkl6xuGrGnXn/VtTNNfNtAfZ9/1RtehkszU9qcTii0Q==",
"optional": true
},
"node_modules/abcjs": {
"version": "6.2.3",
"resolved": "https://registry.npmjs.org/abcjs/-/abcjs-6.2.3.tgz",
"integrity": "sha512-epu8C1yRkxV7Ss9hS0Bu72rairl1p2sR3hviVowjtdDJvb5GRE0SrB4TtN4HBbaoYhvxGnSZQxGULfQlW3o3RQ==",
"funding": {
"type": "github",
"url": "https://github.com/sponsors/paulrosen"
}
},
"node_modules/acorn": {
"version": "7.4.1",
"resolved": "https://registry.npmjs.org/acorn/-/acorn-7.4.1.tgz",
@@ -4210,6 +4237,11 @@
"integrity": "sha512-7ylylesZQ/PV29jhEDl3Ufjo6ZX7gCqJr5F7PKrqc93v7fzSymt1BpwEU8nAUXs8qzzvqhbjhK5QZg6Mt/HkBg==",
"dev": true
},
"node_modules/lodash-es": {
"version": "4.17.21",
"resolved": "https://registry.npmjs.org/lodash-es/-/lodash-es-4.17.21.tgz",
"integrity": "sha512-mKnC+QJ9pWVzv+C4/U3rRsHapFfHvQFoFB92e52xeyGMcX6/OlIl78je1u8vePzYZSkkogMPJ2yjxxsb89cxyw=="
},
"node_modules/long": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/long/-/long-4.0.0.tgz",
@@ -6398,7 +6430,7 @@
},
"node_modules/typescript": {
"version": "5.0.4",
"resolved": "https://registry.npmmirror.com/typescript/-/typescript-5.0.4.tgz",
"resolved": "https://registry.npmjs.org/typescript/-/typescript-5.0.4.tgz",
"integrity": "sha512-cW9T5W9xY37cc+jfEnaUvX91foxtHkza3Nw3wkoF4sSlKn0MONdkdEndig/qPBWXNkmplh3NzayQzCiHM4/hqw==",
"dev": true,
"bin": {

View File

@@ -14,11 +14,13 @@
"@magenta/music": "^1.23.1",
"@microsoft/fetch-event-source": "^2.0.1",
"@primer/octicons-react": "^19.1.0",
"abcjs": "^6.2.3",
"chart.js": "^4.3.0",
"classnames": "^2.3.2",
"file-saver": "^2.0.5",
"html-midi-player": "^1.5.0",
"i18next": "^22.4.15",
"lodash-es": "^4.17.21",
"mobx": "^6.9.0",
"mobx-react-lite": "^3.4.3",
"pdfjs-dist": "^4.0.189",
@@ -41,6 +43,7 @@
},
"devDependencies": {
"@types/file-saver": "^2.0.7",
"@types/lodash-es": "^4.17.12",
"@types/react": "^18.2.6",
"@types/react-beautiful-dnd": "^13.1.4",
"@types/react-dom": "^18.2.4",

File diff suppressed because one or more lines are too long

View File

@@ -162,7 +162,7 @@
"Memory is not enough, try to increase the virtual memory or use a smaller model.": "内存不足,尝试增加虚拟内存,或使用一个更小规模的模型",
"Bad PyTorch version, please reinstall PyTorch with cuda.": "错误的PyTorch版本请重新安装CUDA版本的PyTorch",
"The model file is corrupted, please download again.": "模型文件损坏,请重新下载",
"Found no NVIDIA driver, please install the latest driver.": "没有找到NVIDIA驱动请安装最新驱动",
"Found no NVIDIA driver, please install the latest driver. If you are not using an Nvidia GPU, please switch the 'Strategy' to WebGPU or CPU in the Configs page.": "没有找到NVIDIA驱动请安装最新驱动。如果你没有使用Nvidia显卡请在配置页面将“Strategy”改为WebGPU或CPU",
"VRAM is not enough, please reduce stored layers or use a lower precision in Configs page.": "显存不足,请在配置页面减少载入显存层数,或使用更低的精度",
"Failed to enable custom CUDA kernel, ninja is required to load C++ extensions. You may be using the CPU version of PyTorch, please reinstall PyTorch with CUDA. Or if you are using a custom Python interpreter, you must compile the CUDA kernel by yourself or disable Custom CUDA kernel acceleration.": "自定义CUDA算子开启失败需要安装Ninja来读取C++扩展。你可能正在使用CPU版本的PyTorch请重新安装CUDA版本的PyTorch。如果你正在使用自定义Python解释器你必须自己编译CUDA算子或禁用自定义CUDA算子加速",
"Presets": "预设",
@@ -171,6 +171,10 @@
"chinese": "中文",
"default": "默认",
"japanese": "日文",
"English": "英文",
"Chinese": "中文",
"Default": "默认",
"Japanese": "日文",
"New Preset": "新建预设",
"Import": "导入",
"Name": "名称",
@@ -305,6 +309,7 @@
"Loss is too high, please check the training data, and ensure your gpu driver is up to date.": "Loss过高请检查训练数据并确保你的显卡驱动是最新的",
"This version of RWKV is not supported yet.": "暂不支持此版本的RWKV",
"Main": "主干",
"Official": "官方",
"Finetuned": "微调",
"Global": "全球",
"Local": "本地",
@@ -312,6 +317,8 @@
"JP": "日文",
"Music": "音乐",
"Other": "其他",
"Role Play": "角色扮演",
"Recommended": "推荐",
"Import MIDI": "导入MIDI",
"Current Instrument": "当前乐器",
"Please convert model to GGML format first": "请先将模型转换为GGML格式",
@@ -319,5 +326,26 @@
"CPU (rwkv.cpp, Faster)": "CPU (rwkv.cpp, 更快)",
"Play With External Player": "使用外部播放器播放",
"Core API URL": "核心 API URL",
"Override core API URL(/chat/completions and /completions). If you don't know what this is, leave it blank.": "覆盖核心的 API URL (/chat/completions 和 /completions)。如果你不知道这是什么,请留空"
"Override core API URL(/chat/completions and /completions). If you don't know what this is, leave it blank.": "覆盖核心的 API URL (/chat/completions 和 /completions)。如果你不知道这是什么,请留空",
"Please change Strategy to CPU (rwkv.cpp) to use ggml format": "请将Strategy改为CPU (rwkv.cpp)以使用ggml格式",
"Only Auto Play Generated Content": "仅自动播放新生成的内容",
"Model has been converted and does not match current strategy. If you are using a new strategy, re-convert the model.": "所选模型已被转换过并且不匹配当前的Strategy。如果你正在使用新的Strategy请重新转换模型",
"Instruction 1": "指令1",
"Instruction 2": "指令2",
"Instruction 3": "指令3",
"Instruction: You are an expert assistant for summarizing and extracting information from given content\nGenerate a valid JSON in the following format:\n{\n \"summary\": \"Summary of content\",\n \"keywords\": [\"content keyword 1\", \"content keyword 2\"]\n}\n\nInput: The open-source community has introduced Eagle 7B, a new RNN model, built on the RWKV-v5 architecture. This new model has been trained on 1.1 trillion tokens and supports over 100 languages. The RWKV architecture, short for Rotary Weighted Key-Value, is a type of architecture used in the field of artificial intelligence, particularly in natural language processing (NLP) and is a variation of the Recurrent Neural Network (RNN) architecture.\nEagle 7B promises lower inference cost and stands out as a leading 7B model in terms of environmental efficiency and language versatility.\nThe model, with its 7.52 billion parameters, shows excellent performance in multi-lingual benchmarks, setting a new standard in its category. It competes closely with larger models in English language evaluations and is distinctive as an “Attention-Free Transformer,” though it requires additional tuning for specific uses. This model is accessible under the Apache 2.0 license and can be downloaded from HuggingFace for both personal and commercial purposes.\nIn terms of multilingual performance, Eagle 7B has claimed to have achieved notable results in benchmarks covering 23 languages. Its English performance has also seen significant advancements, outperforming its predecessor, RWKV v4, and competing with top-tier models.\nWorking towards a more scalable architecture and use of data efficiently, Eagle 7B is a more inclusive AI technology, supporting a broader range of languages. This model challenges the prevailing dominance of transformer models by demonstrating the capabilities of RNNs like RWKV in achieving superior performance when trained on comparable data volumes.\nIn the RWKV model, the rotary mechanism transforms the input data in a way that helps the model better understand the position or or order of elements in a sequence. The weighted key value also makes the model efficient by retrieving the stored information from previous elements in a sequence. \nHowever, questions remain about the scalability of RWKV compared to transformers, although there is optimism regarding its potential. The team plans to include additional training, an in-depth paper on Eagle 7B, and the development of a 2T model.\n\nResponse: {": "Instruction: 你是一个专业的内容分析总结助手\n根据提供的内容生成以下格式的有效JSON信息:\n{\n \"summary\": \"内容的简短摘要\",\n \"keywords\": [\"内容关键词 1\", \"内容关键词 2\"]\n}\n\nInput: 开源社区推出了基于RWKV-v5架构的Eagle 7B新的RNN模型。这个新模型以1.1万亿个token进行了训练并支持100多种语言。RWKV架构是人工智能领域中特别是自然语言处理NLP中使用的一种架构它是循环神经网络RNN架构的一种变种。\nEagle 7B承诺低推理成本并以其环境效益和语言灵活性在领先的7B模型中脱颖而出。\n该模型拥有75.2亿个参数在多语言基准测试中表现出色树立了新的行业标准。它在英语语言评估中与更大的模型竞争激烈并作为“无注意力Transformer”独具特色尽管它需要针对特定用途进行额外调整。该模型可在Apache 2.0许可下访问并可从HuggingFace下载用于个人和商业目的。\n关于多语言性能Eagle 7B声称在涵盖23种语言的基准测试中取得了显著成绩。它的英语性能也取得了重大进步超越了它的前身RWKV v4并与顶级模型竞争。\n为了实现更可扩展的架构和有效利用数据Eagle 7B是一种更包容的人工智能技术支持更广泛的语言范围。通过展示RWKV等RNNs在训练相当数据量时实现卓越性能的能力该模型挑战了Transformer模型的主导地位。\n在RWKV模型中旋转机制以一种有助于模型更好地理解序列中元素的位置或顺序的方式转换输入数据。加权关键值还通过从序列中先前元素中检索存储的信息使模型更高效。\n然而与Transformer相比人们对RWKV的可扩展性仍然存在疑问尽管对其潜力持乐观态度。团队计划包括额外的训练、对Eagle 7B进行深入论文研究以及开发一个2T模型。\n\nResponse: {",
"Penalty Decay": "惩罚衰减",
"If you don't know what it is, keep it default.": "如果你不知道这是什么,保持默认",
"Failed to find the base model, please try to change your base model.": "未找到基底模型,请尝试更换基底模型",
"Markdown Renderer": "Markdown渲染",
"Load Conversation": "读取对话",
"The latest X messages will be sent to the server. If you are using the RWKV-Runner server, please use the default value because RWKV-Runner has built-in state cache management which only calculates increments. Sending all messages will have lower cost. If you are using ChatGPT, adjust this value according to your needs to reduce ChatGPT expenses.": "最近的X条消息会发送至服务器. 如果你正在使用RWKV-Runner服务器, 请使用默认值, 因为RWKV-Runner内置了state缓存管理, 只计算增量, 发送所有消息将具有更低的成本. 如果你正在使用ChatGPT, 则根据你的需要调整此值, 这可以降低ChatGPT的费用",
"History Message Number": "历史消息数量",
"Send All Message": "发送所有消息",
"Quantized Layers": "量化层数",
"Number of the neural network layers quantized with current precision, the more you quantize, the lower the VRAM usage, but the quality correspondingly decreases.": "神经网络以当前精度量化的层数, 量化越多, 占用显存越低, 但质量相应下降",
"Parallel Token Chunk Size": "并行Token块大小",
"Maximum tokens to be processed in parallel at once. For high end GPUs, this could be 64 or 128 (faster).": "一次最多可以并行处理的token数量. 对于高端显卡, 这可以是64或128 (更快)",
"Global Penalty": "全局惩罚",
"When generating a response, whether to include the submitted prompt as a penalty factor. By turning this off, you will get the same generated results as official RWKV Gradio. If you find duplicate results in the generated results, turning this on can help avoid generating duplicates.": "生成响应时, 是否将提交的prompt也纳入到惩罚项. 关闭此项将得到与RWKV官方Gradio完全一致的生成结果. 如果你发现生成结果出现重复, 那么开启此项有助于避免生成重复"
}

View File

@@ -21,27 +21,93 @@ const Hyperlink: FC<any> = ({ href, children }) => {
);
};
const MarkdownRender: FC<ReactMarkdownOptions> = (props) => {
const MarkdownRender: FC<ReactMarkdownOptions & { disabled?: boolean }> = (props) => {
return (
<div dir="auto" className="markdown-body">
<ReactMarkdown
remarkPlugins={[remarkGfm, remarkBreaks]}
rehypePlugins={[
rehypeRaw,
[
rehypeHighlight,
{
detect: true,
ignoreMissing: true
}
]
]}
components={{
a: Hyperlink
}}
>
{props.children}
</ReactMarkdown>
{props.disabled ?
<div style={{ whiteSpace: 'pre-wrap' }}>
{props.children}
</div> :
<ReactMarkdown
allowedElements={[
'div',
'p',
'span',
'video',
'img',
'abbr',
'acronym',
'b',
'blockquote',
'code',
'em',
'i',
'li',
'ol',
'ul',
'strong',
'table',
'tr',
'td',
'th',
'details',
'summary',
'kbd',
'samp',
'sub',
'sup',
'ins',
'del',
'var',
'q',
'dl',
'dt',
'dd',
'ruby',
'rt',
'rp',
'br',
'hr',
'h1',
'h2',
'h3',
'h4',
'h5',
'h6',
'thead',
'tbody',
'tfoot',
'u',
's',
'a',
'pre',
'cite'
]}
unwrapDisallowed={true}
remarkPlugins={[remarkGfm, remarkBreaks]}
rehypePlugins={[
rehypeRaw,
[
rehypeHighlight,
{
detect: true,
ignoreMissing: true
}
]
]}
components={{
a: Hyperlink
}}
>
{props.children}
</ReactMarkdown>
}
</div>
);
};

View File

@@ -8,10 +8,12 @@ export const NumberInput: FC<{
max: number,
step?: number,
onChange?: (ev: React.ChangeEvent<HTMLInputElement>, data: SliderOnChangeData) => void
style?: CSSProperties
}> = ({ value, min, max, step, onChange, style }) => {
style?: CSSProperties,
toFixed?: number
disabled?: boolean
}> = ({ value, min, max, step, onChange, style, toFixed = 2, disabled }) => {
return (
<Input type="number" style={style} value={value.toString()} min={min} max={max} step={step}
<Input type="number" style={style} value={value.toString()} min={min} max={max} step={step} disabled={disabled}
onChange={(e, data) => {
onChange?.(e, { value: Number(data.value) });
}}
@@ -22,7 +24,7 @@ export const NumberInput: FC<{
value = Number(((
Math.round((value - offset) / step) * step)
+ offset)
.toFixed(2)); // avoid precision issues
.toFixed(toFixed)); // avoid precision issues
}
onChange(e, { value: Math.max(Math.min(value, max), min) });
}

View File

@@ -19,6 +19,7 @@ import { useNavigate } from 'react-router';
import { WindowShow } from '../../wailsjs/runtime';
import { convertToGGML, convertToSt } from '../utils/convert-model';
import { Precision } from '../types/configs';
import { defaultCompositionABCPrompt, defaultCompositionPrompt } from '../pages/defaultConfigs';
const mainButtonText = {
[ModelStatus.Offline]: 'Run',
@@ -48,6 +49,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
const modelConfig = commonStore.getCurrentModelConfig();
const webgpu = modelConfig.modelParameters.device === 'WebGPU';
const webgpuPython = modelConfig.modelParameters.device === 'WebGPU (Python)';
const cpp = modelConfig.modelParameters.device === 'CPU (rwkv.cpp)';
let modelName = '';
let modelPath = '';
@@ -77,7 +79,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
});
};
if (webgpu) {
if (webgpu || webgpuPython) {
if (!['.st', '.safetensors'].some(ext => modelPath.endsWith(ext))) {
const stModelPath = modelPath.replace(/\.pth$/, '.st');
if (await FileExists(stModelPath)) {
@@ -92,7 +94,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
return;
} else {
toastWithButton(t('Please convert model to safe tensors format first'), t('Convert'), () => {
convertToSt(modelConfig);
convertToSt(modelConfig, navigate);
});
commonStore.setStatus({ status: ModelStatus.Offline });
return;
@@ -100,7 +102,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
}
}
if (!webgpu) {
if (!webgpu && !webgpuPython) {
if (['.st', '.safetensors'].some(ext => modelPath.endsWith(ext))) {
toast(t('Please change Strategy to WebGPU to use safetensors format'), { type: 'error' });
commonStore.setStatus({ status: ModelStatus.Offline });
@@ -138,6 +140,14 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
}
}
if (!cpp) {
if (['.bin'].some(ext => modelPath.endsWith(ext))) {
toast(t('Please change Strategy to CPU (rwkv.cpp) to use ggml format'), { type: 'error' });
commonStore.setStatus({ status: ModelStatus.Offline });
return;
}
}
if (!await FileExists(modelPath)) {
showDownloadPrompt(t('Model file not found'), modelName);
commonStore.setStatus({ status: ModelStatus.Offline });
@@ -168,7 +178,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
const isUsingCudaBeta = modelConfig.modelParameters.device === 'CUDA-Beta';
startServer(commonStore.settings.customPythonPath, port, commonStore.settings.host !== '127.0.0.1' ? '0.0.0.0' : '127.0.0.1',
!!modelConfig.enableWebUI, isUsingCudaBeta, cpp
!!modelConfig.enableWebUI, isUsingCudaBeta, cpp, webgpuPython
).catch((e) => {
const errMsg = e.message || e;
if (errMsg.includes('path contains space'))
@@ -202,13 +212,15 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
temperature: modelConfig.apiParameters.temperature,
top_p: modelConfig.apiParameters.topP,
presence_penalty: modelConfig.apiParameters.presencePenalty,
frequency_penalty: modelConfig.apiParameters.frequencyPenalty
frequency_penalty: modelConfig.apiParameters.frequencyPenalty,
penalty_decay: modelConfig.apiParameters.penaltyDecay,
global_penalty: modelConfig.apiParameters.globalPenalty
});
}
const strategy = getStrategy(modelConfig);
let customCudaFile = '';
if ((modelConfig.modelParameters.device.includes('CUDA') || modelConfig.modelParameters.device === 'Custom')
if ((modelConfig.modelParameters.device.startsWith('CUDA') || modelConfig.modelParameters.device === 'Custom')
&& modelConfig.modelParameters.useCustomCuda
&& !strategy.split('->').some(s => ['cuda', 'fp32'].every(v => s.includes(v)))) {
if (commonStore.platform === 'windows') {
@@ -248,6 +260,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
commonStore.setStatus({ status: ModelStatus.Working });
let buttonNameMap = {
'novel': 'Completion',
'abc': 'Composition',
'midi': 'Composition'
};
let buttonName = 'Chat';
@@ -255,8 +268,15 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
const buttonFn = () => {
navigate({ pathname: '/' + buttonName.toLowerCase() });
};
if (modelName.toLowerCase().includes('abc') && commonStore.compositionParams.prompt === defaultCompositionPrompt) {
commonStore.setCompositionParams({
...commonStore.compositionParams,
prompt: defaultCompositionABCPrompt
});
commonStore.setCompositionSubmittedPrompt(defaultCompositionABCPrompt);
}
if ((modelConfig.modelParameters.device === 'CUDA' || modelConfig.modelParameters.device === 'CUDA-Beta') &&
if (modelConfig.modelParameters.device.startsWith('CUDA') &&
modelConfig.modelParameters.storedLayers < modelConfig.modelParameters.maxStoredLayers &&
commonStore.monitorData && commonStore.monitorData.totalVram !== 0 &&
(commonStore.monitorData.usedVram / commonStore.monitorData.totalVram) < 0.9)
@@ -271,9 +291,10 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
'not enough memory': 'Memory is not enough, try to increase the virtual memory or use a smaller model.',
'not compiled with CUDA': 'Bad PyTorch version, please reinstall PyTorch with cuda.',
'invalid header or archive is corrupted': 'The model file is corrupted, please download again.',
'no NVIDIA driver': 'Found no NVIDIA driver, please install the latest driver.',
'no NVIDIA driver': 'Found no NVIDIA driver, please install the latest driver. If you are not using an Nvidia GPU, please switch the \'Strategy\' to WebGPU or CPU in the Configs page.',
'CUDA out of memory': 'VRAM is not enough, please reduce stored layers or use a lower precision in Configs page.',
'Ninja is required to load C++ extensions': 'Failed to enable custom CUDA kernel, ninja is required to load C++ extensions. You may be using the CPU version of PyTorch, please reinstall PyTorch with CUDA. Or if you are using a custom Python interpreter, you must compile the CUDA kernel by yourself or disable Custom CUDA kernel acceleration.'
'Ninja is required to load C++ extensions': 'Failed to enable custom CUDA kernel, ninja is required to load C++ extensions. You may be using the CPU version of PyTorch, please reinstall PyTorch with CUDA. Or if you are using a custom Python interpreter, you must compile the CUDA kernel by yourself or disable Custom CUDA kernel acceleration.',
're-convert the model': 'Model has been converted and does not match current strategy. If you are using a new strategy, re-convert the model.'
};
const matchedError = Object.entries(errorsMap).find(([key, _]) => error.includes(key));
const message = matchedError ? t(matchedError[1]) : error;

View File

@@ -9,8 +9,10 @@ export const ValuedSlider: FC<{
max: number,
step?: number,
input?: boolean
onChange?: (ev: React.ChangeEvent<HTMLInputElement>, data: SliderOnChangeData) => void
}> = ({ value, min, max, step, input, onChange }) => {
onChange?: (ev: React.ChangeEvent<HTMLInputElement>, data: SliderOnChangeData) => void,
toFixed?: number
disabled?: boolean
}> = ({ value, min, max, step, input, onChange, toFixed, disabled }) => {
const sliderRef = useRef<HTMLInputElement>(null);
useEffect(() => {
if (step && sliderRef.current && sliderRef.current.parentElement) {
@@ -23,9 +25,10 @@ export const ValuedSlider: FC<{
<div className="flex items-center">
<Slider ref={sliderRef} className="grow" style={{ minWidth: '50%' }} value={value} min={min}
max={max} step={step}
onChange={onChange} />
onChange={onChange} disabled={disabled} />
{input
? <NumberInput style={{ minWidth: 0 }} value={value} min={min} max={max} step={step} onChange={onChange} />
? <NumberInput style={{ minWidth: 0 }} value={value} min={min} max={max} step={step} onChange={onChange}
toFixed={toFixed} disabled={disabled} />
: <Text>{value}</Text>}
</div>
);

View File

@@ -29,14 +29,14 @@ import {
} from '../../types/composition';
import { toast } from 'react-toastify';
import {
absPathAsset,
flushMidiRecordingContent,
getMidiRawContentMainInstrument,
getMidiRawContentTime,
getServerRoot,
OpenFileDialog,
refreshTracksTotalTime
} from '../../utils';
import { OpenOpenFileDialog, PlayNote } from '../../../wailsjs/go/backend_golang/App';
import { PlayNote } from '../../../wailsjs/go/backend_golang/App';
const snapValue = 25;
const minimalMoveTime = 8; // 1000/125=8ms wait_events=125
@@ -471,15 +471,7 @@ const AudiotrackEditor: FC<{ setPrompt: (prompt: string) => void }> = observer((
return;
}
OpenOpenFileDialog('*.mid').then(async filePath => {
if (!filePath)
return;
let blob: Blob;
if (commonStore.platform === 'web')
blob = (filePath as unknown as { blob: Blob }).blob;
else
blob = await fetch(absPathAsset(filePath)).then(r => r.blob());
OpenFileDialog('*.mid').then(async blob => {
const bodyForm = new FormData();
bodyForm.append('file_data', blob);
fetch(getServerRoot(commonStore.getCurrentModelConfig().apiParameters.apiPort) + '/midi-to-text', {
@@ -510,8 +502,6 @@ const AudiotrackEditor: FC<{ setPrompt: (prompt: string) => void }> = observer((
).catch(e => {
toast(t('Error') + ' - ' + (e.message || e), { type: 'error', autoClose: 2500 });
});
}).catch(e => {
toast(t('Error') + ' - ' + (e.message || e), { type: 'error', autoClose: 2500 });
});
}}>
{t('Import MIDI')}

View File

@@ -1,6 +1,15 @@
import React, { FC, useCallback, useEffect, useRef, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { Avatar, Button, Menu, MenuPopover, MenuTrigger, PresenceBadge, Textarea } from '@fluentui/react-components';
import {
Avatar,
Button,
Menu,
MenuPopover,
MenuTrigger,
PresenceBadge,
Switch,
Textarea
} from '@fluentui/react-components';
import commonStore, { ModelStatus } from '../stores/commonStore';
import { observer } from 'mobx-react-lite';
import { v4 as uuid } from 'uuid';
@@ -17,6 +26,7 @@ import {
Delete28Regular,
Dismiss16Regular,
Dismiss24Regular,
FolderOpenVerticalRegular,
RecordStop28Regular,
SaveRegular,
TextAlignJustify24Regular,
@@ -28,13 +38,22 @@ import { toast } from 'react-toastify';
import { WorkHeader } from '../components/WorkHeader';
import { DialogButton } from '../components/DialogButton';
import { OpenFileFolder, OpenOpenFileDialog, OpenSaveFileDialog } from '../../wailsjs/go/backend_golang/App';
import { absPathAsset, bytesToReadable, getServerRoot, setActivePreset, toastWithButton } from '../utils';
import {
absPathAsset,
bytesToReadable,
getServerRoot,
newChatConversation,
OpenFileDialog,
setActivePreset,
toastWithButton
} from '../utils';
import { useMediaQuery } from 'usehooks-ts';
import { botName, ConversationMessage, MessageType, userName, welcomeUuid } from '../types/chat';
import { botName, ConversationMessage, MessageType, Role, userName, welcomeUuid } from '../types/chat';
import { Labeled } from '../components/Labeled';
import { ValuedSlider } from '../components/ValuedSlider';
import { PresetsButton } from './PresetsManager/PresetsButton';
import { webOpenOpenFileDialog } from '../utils/web-file-operations';
import { defaultPenaltyDecay } from './defaultConfigs';
let chatSseControllers: {
[id: string]: AbortController
@@ -136,7 +155,7 @@ const ChatMessageItem: FC<{
>
{!editing ?
<div className="flex flex-col">
<MarkdownRender>{messageItem.content}</MarkdownRender>
<MarkdownRender disabled={!commonStore.chatParams.markdown}>{messageItem.content}</MarkdownRender>
{uuid in commonStore.attachments &&
<div className="flex grow">
<div className="grow" />
@@ -212,7 +231,7 @@ const SidePanel: FC = observer(() => {
onClick={() => commonStore.setSidePanelCollapsed(true)}
/>
</div>
<div className="flex flex-col gap-1 overflow-x-hidden overflow-y-auto p-1">
<div className="flex flex-col gap-1 overflow-x-hidden overflow-y-auto p-0.5">
<Labeled flex breakline label={t('Max Response Token')}
desc={t('By default, the maximum number of tokens that can be answered in a single response, it can be changed by the user by specifying API parameters.')}
content={
@@ -228,7 +247,7 @@ const SidePanel: FC = observer(() => {
<Labeled flex breakline label={t('Temperature')}
desc={t('Sampling temperature, it\'s like giving alcohol to a model, the higher the stronger the randomness and creativity, while the lower, the more focused and deterministic it will be.')}
content={
<ValuedSlider value={params.temperature} min={0} max={2} step={0.1}
<ValuedSlider value={params.temperature} min={0} max={3} step={0.1}
input
onChange={(e, data) => {
commonStore.setChatParams({
@@ -239,7 +258,7 @@ const SidePanel: FC = observer(() => {
<Labeled flex breakline label={t('Top_P')}
desc={t('Just like feeding sedatives to the model. Consider the results of the top n% probability mass, 0.1 considers the top 10%, with higher quality but more conservative, 1 considers all results, with lower quality but more diverse.')}
content={
<ValuedSlider value={params.topP} min={0} max={1} step={0.1} input
<ValuedSlider value={params.topP} min={0} max={1} step={0.05} input
onChange={(e, data) => {
commonStore.setChatParams({
topP: data.value
@@ -268,14 +287,82 @@ const SidePanel: FC = observer(() => {
});
}} />
} />
<Labeled flex breakline
label={t('Penalty Decay') + (params.penaltyDecay === defaultPenaltyDecay ? ` (${t('Default')})` : '')}
desc={t('If you don\'t know what it is, keep it default.')}
content={
<ValuedSlider value={params.penaltyDecay!} min={0.99} max={0.999}
step={0.001} toFixed={3} input
onChange={(e, data) => {
commonStore.setChatParams({
penaltyDecay: data.value
});
}} />
} />
<Labeled flex breakline
label={t('History Message Number') + (params.historyN === 0 ? ` (${t('Default')})` : '')}
desc={params.historyN === 0 ? t('Send All Message') : t('The latest X messages will be sent to the server. If you are using the RWKV-Runner server, please use the default value because RWKV-Runner has built-in state cache management which only calculates increments. Sending all messages will have lower cost. If you are using ChatGPT, adjust this value according to your needs to reduce ChatGPT expenses.')
.replace('X', String(params.historyN))}
content={
<ValuedSlider value={params.historyN} min={0} max={20}
step={1} input
onChange={(e, data) => {
commonStore.setChatParams({
historyN: data.value
});
}} />
} />
</div>
<div className="grow" />
{/*<Button*/}
{/* icon={<FolderOpenVerticalRegular />}*/}
{/* onClick={() => {*/}
{/* }}>*/}
{/* {t('Load Conversation')}*/}
{/*</Button>*/}
<Labeled flex spaceBetween
label={t('Markdown Renderer')}
content={
<Switch checked={params.markdown}
onChange={(e, data) => {
commonStore.setChatParams({
markdown: data.checked
});
}} />
} />
<Button
icon={<FolderOpenVerticalRegular />}
onClick={() => {
OpenFileDialog('*.txt;*.md').then(async blob => {
const userNames = ['User:', 'Question:', 'Q:', 'Human:', 'Bob:'];
const assistantNames = ['Assistant:', 'Answer:', 'A:', 'Bot:', 'Alice:'];
const names = userNames.concat(assistantNames);
const content = await blob.text();
const lines = content.split('\n');
const { pushMessage, saveConversation } = newChatConversation();
let messageRole: Role = 'user';
let messageContent = '';
for (const [i, line] of lines.entries()) {
let lineName = '';
if (names.some(name => {
lineName = name;
return line.startsWith(name);
})) {
if (messageContent.trim())
pushMessage(messageRole, messageContent.trim());
if (userNames.includes(lineName))
messageRole = 'user';
else
messageRole = 'assistant';
messageContent = line.replace(lineName, '');
} else {
messageContent += '\n' + line;
}
}
if (messageContent.trim())
pushMessage(messageRole, messageContent.trim());
saveConversation();
});
}}>
{t('Load Conversation')}
</Button>
<Button
icon={<SaveRegular />}
onClick={() => {
@@ -295,7 +382,7 @@ const SidePanel: FC = observer(() => {
OpenSaveFileDialog('*.txt', 'conversation.txt', savedContent).then((path) => {
if (path)
toastWithButton(t('Conversation Saved'), t('Open'), () => {
OpenFileFolder(path, false);
OpenFileFolder(path);
});
}).catch(e => {
toast(t('Error') + ' - ' + (e.message || e), { type: 'error', autoClose: 2500 });
@@ -444,13 +531,15 @@ const ChatPanel: FC = observer(() => {
Authorization: `Bearer ${commonStore.settings.apiKey}`
},
body: JSON.stringify({
messages,
messages: messages.slice(-commonStore.chatParams.historyN),
stream: true,
model: commonStore.settings.apiChatModelName, // 'gpt-3.5-turbo'
max_tokens: commonStore.chatParams.maxResponseToken,
temperature: commonStore.chatParams.temperature,
top_p: commonStore.chatParams.topP,
presence_penalty: commonStore.chatParams.presencePenalty,
frequency_penalty: commonStore.chatParams.frequencyPenalty,
penalty_decay: commonStore.chatParams.penaltyDecay === defaultPenaltyDecay ? undefined : commonStore.chatParams.penaltyDecay,
user_name: commonStore.activePreset?.userName || undefined,
assistant_name: commonStore.activePreset?.assistantName || undefined,
presystem: commonStore.activePreset?.presystem && undefined
@@ -519,7 +608,7 @@ const ChatPanel: FC = observer(() => {
style={{ zIndex: 1 }}
icon={commonStore.sidePanelCollapsed ? <TextAlignJustify24Regular /> : <TextAlignJustifyRotate9024Regular />}
onClick={() => commonStore.setSidePanelCollapsed(!commonStore.sidePanelCollapsed)} />
<div ref={bodyRef} className="grow overflow-y-scroll overflow-x-hidden pr-2">
<div ref={bodyRef} className="grow overflow-y-auto overflow-x-hidden pr-2">
{commonStore.conversationOrder.map(uuid =>
<ChatMessageItem key={uuid} uuid={uuid} onSubmit={onSubmit} />
)}

View File

@@ -188,7 +188,7 @@ const CompletionPanel: FC = observer(() => {
<Labeled flex breakline label={t('Temperature')}
desc={t('Sampling temperature, it\'s like giving alcohol to a model, the higher the stronger the randomness and creativity, while the lower, the more focused and deterministic it will be.')}
content={
<ValuedSlider value={params.temperature} min={0} max={2} step={0.1}
<ValuedSlider value={params.temperature} min={0} max={3} step={0.1}
input
onChange={(e, data) => {
setParams({
@@ -199,7 +199,7 @@ const CompletionPanel: FC = observer(() => {
<Labeled flex breakline label={t('Top_P')}
desc={t('Just like feeding sedatives to the model. Consider the results of the top n% probability mass, 0.1 considers the top 10%, with higher quality but more conservative, 1 considers all results, with lower quality but more diverse.')}
content={
<ValuedSlider value={params.topP} min={0} max={1} step={0.1} input
<ValuedSlider value={params.topP} min={0} max={1} step={0.05} input
onChange={(e, data) => {
setParams({
topP: data.value

View File

@@ -15,12 +15,13 @@ import { ArrowSync20Regular, Save28Regular } from '@fluentui/react-icons';
import { PlayerElement, VisualizerElement } from 'html-midi-player';
import * as mm from '@magenta/music/esm/core.js';
import { NoteSequence } from '@magenta/music/esm/protobuf.js';
import { defaultCompositionPrompt } from './defaultConfigs';
import { defaultCompositionABCPrompt, defaultCompositionPrompt } from './defaultConfigs';
import {
CloseMidiPort,
FileExists,
OpenFileFolder,
OpenMidiPort,
OpenSaveFileDialog,
OpenSaveFileDialogBytes,
SaveFile,
StartFile
@@ -36,7 +37,9 @@ const CompositionPanel: FC = observer(() => {
const { t } = useTranslation();
const mq = useMediaQuery('(min-width: 640px)');
const inputRef = useRef<HTMLTextAreaElement>(null);
const port = commonStore.getCurrentModelConfig().apiParameters.apiPort;
const modelConfig = commonStore.getCurrentModelConfig();
const port = modelConfig.apiParameters.apiPort;
const isABC = modelConfig.modelParameters.modelName.toLowerCase().includes('abc');
const visualizerRef = useRef<VisualizerElement>(null);
const playerRef = useRef<PlayerElement>(null);
@@ -133,6 +136,13 @@ const CompositionPanel: FC = observer(() => {
}, [commonStore.midiPorts]);
const generateNs = (autoPlay: boolean) => {
if (commonStore.getCurrentModelConfig().modelParameters.modelName.toLowerCase().includes('abc')) {
import('abcjs').then(ABCJS => {
ABCJS.renderAbc('abc-paper', commonStore.compositionParams.prompt, { responsive: 'resize' });
});
return;
}
fetch(getServerRoot(port) + '/text-to-midi', {
method: 'POST',
headers: {
@@ -152,10 +162,14 @@ const CompositionPanel: FC = observer(() => {
if (autoPlay) {
if (commonStore.compositionParams.externalPlay)
externalPlayListener();
else
else {
if (commonStore.compositionParams.playOnlyGeneratedContent && playerRef.current) {
playerRef.current.currentTime = Math.max(commonStore.compositionParams.generationStartTime - 1, 0);
}
setTimeout(() => {
playerRef.current?.start();
});
}
}
});
});
@@ -261,7 +275,7 @@ const CompositionPanel: FC = observer(() => {
<Labeled flex breakline label={t('Temperature')}
desc={t('Sampling temperature, it\'s like giving alcohol to a model, the higher the stronger the randomness and creativity, while the lower, the more focused and deterministic it will be.')}
content={
<ValuedSlider value={params.temperature} min={0} max={2} step={0.1}
<ValuedSlider value={params.temperature} min={0} max={3} step={0.1}
input
onChange={(e, data) => {
setParams({
@@ -272,7 +286,7 @@ const CompositionPanel: FC = observer(() => {
<Labeled flex breakline label={t('Top_P')}
desc={t('Just like feeding sedatives to the model. Consider the results of the top n% probability mass, 0.1 considers the top 10%, with higher quality but more conservative, 1 considers all results, with lower quality but more diverse.')}
content={
<ValuedSlider value={params.topP} min={0} max={1} step={0.1} input
<ValuedSlider value={params.topP} min={0} max={1} step={0.05} input
onChange={(e, data) => {
setParams({
topP: data.value
@@ -314,6 +328,14 @@ const CompositionPanel: FC = observer(() => {
autoPlay: data.checked as boolean
});
}} />
<Checkbox className="select-none"
size="large" label={t('Only Auto Play Generated Content')} checked={params.playOnlyGeneratedContent}
onChange={async (_, data) => {
setParams({
autoPlay: data.checked as boolean || commonStore.compositionParams.autoPlay,
playOnlyGeneratedContent: data.checked as boolean
});
}} />
<Labeled flex breakline label={t('MIDI Input')}
desc={t('Select the MIDI input device to be used.')}
content={
@@ -358,8 +380,13 @@ const CompositionPanel: FC = observer(() => {
<DialogButton className="grow" text={t('Reset')} title={t('Reset')}
contentText={t('Are you sure you want to reset this page? It cannot be undone.')}
onConfirm={() => {
commonStore.setCompositionSubmittedPrompt(defaultCompositionPrompt);
setPrompt(defaultCompositionPrompt);
const isABC = commonStore.getCurrentModelConfig().modelParameters.modelName.toLowerCase().includes('abc');
const defaultPrompt = isABC ? defaultCompositionABCPrompt : defaultCompositionPrompt;
commonStore.setCompositionSubmittedPrompt(defaultPrompt);
setParams({
generationStartTime: 0
});
setPrompt(defaultPrompt);
}} />
<Button className="grow" appearance="primary" onClick={() => {
if (commonStore.compositionGenerating) {
@@ -368,6 +395,9 @@ const CompositionPanel: FC = observer(() => {
generateNs(params.autoPlay);
} else {
commonStore.setCompositionGenerating(true);
setParams({
generationStartTime: playerRef.current ? playerRef.current.duration : 0
});
onSubmit(params.prompt);
}
}}>{!commonStore.compositionGenerating ? t('Generate') : t('Stop')}</Button>
@@ -376,23 +406,38 @@ const CompositionPanel: FC = observer(() => {
</div>
<div className="flex flex-col">
<div className="ml-auto mr-auto">
<midi-visualizer
ref={visualizerRef}
type="waterfall"
/>
{isABC ? <div /> :
<midi-visualizer
ref={visualizerRef}
type="waterfall"
/>}
</div>
<div className="flex">
<midi-player
ref={playerRef}
style={{ width: '100%' }}
/>
{isABC ? <div className="flex flex-col overflow-y-auto grow m-1" style={{ maxHeight: '260px' }}>
<div id="abc-paper" />
</div> :
<midi-player
ref={playerRef}
style={{ width: '100%' }}
/>}
<Button icon={<Save28Regular />} size={mq ? 'large' : 'medium'} appearance={mq ? 'secondary' : 'subtle'}
onClick={() => {
if (isABC) {
OpenSaveFileDialog('*.txt', 'abc-music.txt', commonStore.compositionParams.prompt).then((path) => {
if (path)
toastWithButton(t('File Saved'), t('Open'), () => {
OpenFileFolder(path);
});
}).catch((e) => {
toast(t('Error') + ' - ' + (e.message || e), { type: 'error', autoClose: 2500 });
});
return;
}
if (params.midi) {
OpenSaveFileDialogBytes('*.mid', 'music.mid', Array.from(new Uint8Array(params.midi))).then((path) => {
if (path)
toastWithButton(t('File Saved'), t('Open'), () => {
OpenFileFolder(path, false);
OpenFileFolder(path);
});
}).catch((e) => {
toast(t('Error') + ' - ' + (e.message || e), { type: 'error', autoClose: 2500 });

View File

@@ -35,6 +35,7 @@ import { ResetConfigsButton } from '../components/ResetConfigsButton';
import { useMediaQuery } from 'usehooks-ts';
import { ApiParameters, Device, ModelParameters, Precision } from '../types/configs';
import { convertModel, convertToGGML, convertToSt } from '../utils/convert-model';
import { defaultPenaltyDecay } from './defaultConfigs';
const ConfigSelector: FC<{
selectedIndex: number,
@@ -66,14 +67,17 @@ const Configs: FC = observer(() => {
const [selectedIndex, setSelectedIndex] = React.useState(commonStore.currentModelConfigIndex);
const [selectedConfig, setSelectedConfig] = React.useState(commonStore.modelConfigs[selectedIndex]);
const [displayStrategyImg, setDisplayStrategyImg] = React.useState(false);
const advancedHeaderRef = useRef<HTMLDivElement>(null);
const advancedHeaderRef1 = useRef<HTMLDivElement>(null);
const advancedHeaderRef2 = useRef<HTMLDivElement>(null);
const mq = useMediaQuery('(min-width: 640px)');
const navigate = useNavigate();
const port = selectedConfig.apiParameters.apiPort;
useEffect(() => {
if (advancedHeaderRef.current)
(advancedHeaderRef.current.firstElementChild as HTMLElement).style.padding = '0';
if (advancedHeaderRef1.current)
(advancedHeaderRef1.current.firstElementChild as HTMLElement).style.padding = '0';
if (advancedHeaderRef2.current)
(advancedHeaderRef2.current.firstElementChild as HTMLElement).style.padding = '0';
}, []);
const updateSelectedIndex = useCallback((newIndex: number) => {
@@ -113,7 +117,9 @@ const Configs: FC = observer(() => {
temperature: selectedConfig.apiParameters.temperature,
top_p: selectedConfig.apiParameters.topP,
presence_penalty: selectedConfig.apiParameters.presencePenalty,
frequency_penalty: selectedConfig.apiParameters.frequencyPenalty
frequency_penalty: selectedConfig.apiParameters.frequencyPenalty,
penalty_decay: selectedConfig.apiParameters.penaltyDecay,
global_penalty: selectedConfig.apiParameters.globalPenalty
});
toast(t('Config Saved'), { autoClose: 300, type: 'success' });
};
@@ -176,7 +182,7 @@ const Configs: FC = observer(() => {
<Labeled label={t('Temperature') + ' *'}
desc={t('Sampling temperature, it\'s like giving alcohol to a model, the higher the stronger the randomness and creativity, while the lower, the more focused and deterministic it will be.')}
content={
<ValuedSlider value={selectedConfig.apiParameters.temperature} min={0} max={2} step={0.1}
<ValuedSlider value={selectedConfig.apiParameters.temperature} min={0} max={3} step={0.1}
input
onChange={(e, data) => {
setSelectedConfigApiParams({
@@ -187,35 +193,74 @@ const Configs: FC = observer(() => {
<Labeled label={t('Top_P') + ' *'}
desc={t('Just like feeding sedatives to the model. Consider the results of the top n% probability mass, 0.1 considers the top 10%, with higher quality but more conservative, 1 considers all results, with lower quality but more diverse.')}
content={
<ValuedSlider value={selectedConfig.apiParameters.topP} min={0} max={1} step={0.1} input
<ValuedSlider value={selectedConfig.apiParameters.topP} min={0} max={1} step={0.05} input
onChange={(e, data) => {
setSelectedConfigApiParams({
topP: data.value
});
}} />
} />
<Labeled label={t('Presence Penalty') + ' *'}
desc={t('Positive values penalize new tokens based on whether they appear in the text so far, increasing the model\'s likelihood to talk about new topics.')}
content={
<ValuedSlider value={selectedConfig.apiParameters.presencePenalty} min={-2} max={2}
step={0.1} input
onChange={(e, data) => {
setSelectedConfigApiParams({
presencePenalty: data.value
});
}} />
} />
<Labeled label={t('Frequency Penalty') + ' *'}
desc={t('Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model\'s likelihood to repeat the same line verbatim.')}
content={
<ValuedSlider value={selectedConfig.apiParameters.frequencyPenalty} min={-2} max={2}
step={0.1} input
onChange={(e, data) => {
setSelectedConfigApiParams({
frequencyPenalty: data.value
});
}} />
} />
<Accordion className="sm:col-span-2" collapsible
openItems={!commonStore.apiParamsCollapsed && 'advanced'}
onToggle={(e, data) => {
if (data.value === 'advanced')
commonStore.setApiParamsCollapsed(!commonStore.apiParamsCollapsed);
}}>
<AccordionItem value="advanced">
<AccordionHeader ref={advancedHeaderRef1} size="small">{t('Advanced')}</AccordionHeader>
<AccordionPanel>
<div className="grid grid-cols-1 sm:grid-cols-2 gap-2">
<Labeled label={t('Presence Penalty') + ' *'}
desc={t('Positive values penalize new tokens based on whether they appear in the text so far, increasing the model\'s likelihood to talk about new topics.')}
content={
<ValuedSlider value={selectedConfig.apiParameters.presencePenalty} min={-2} max={2}
step={0.1} input
onChange={(e, data) => {
setSelectedConfigApiParams({
presencePenalty: data.value
});
}} />
} />
<Labeled label={t('Frequency Penalty') + ' *'}
desc={t('Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model\'s likelihood to repeat the same line verbatim.')}
content={
<ValuedSlider value={selectedConfig.apiParameters.frequencyPenalty} min={-2} max={2}
step={0.1} input
onChange={(e, data) => {
setSelectedConfigApiParams({
frequencyPenalty: data.value
});
}} />
} />
<Labeled
label={t('Penalty Decay')
+ ((!selectedConfig.apiParameters.penaltyDecay || selectedConfig.apiParameters.penaltyDecay === defaultPenaltyDecay)
? ` (${t('Default')})` : '')
+ ' *'}
desc={t('If you don\'t know what it is, keep it default.')}
content={
<ValuedSlider value={selectedConfig.apiParameters.penaltyDecay || defaultPenaltyDecay}
min={0.99} max={0.999} step={0.001} toFixed={3} input
onChange={(e, data) => {
setSelectedConfigApiParams({
penaltyDecay: data.value
});
}} />
} />
<Labeled label={t('Global Penalty') + ' *'}
desc={t('When generating a response, whether to include the submitted prompt as a penalty factor. By turning this off, you will get the same generated results as official RWKV Gradio. If you find duplicate results in the generated results, turning this on can help avoid generating duplicates.')}
content={
<Switch checked={selectedConfig.apiParameters.globalPenalty}
onChange={(e, data) => {
setSelectedConfigApiParams({
globalPenalty: data.checked
});
}} />
} />
</div>
</AccordionPanel>
</AccordionItem>
</Accordion>
</div>
}
/>
@@ -228,9 +273,18 @@ const Configs: FC = observer(() => {
<Select style={{ minWidth: 0 }} className="grow"
value={selectedConfig.modelParameters.modelName}
onChange={(e, data) => {
setSelectedConfigModelParams({
modelName: data.value
});
const modelSource = commonStore.modelSourceList.find(item => item.name === data.value);
if (modelSource?.customTokenizer)
setSelectedConfigModelParams({
modelName: data.value,
useCustomTokenizer: true,
customTokenizer: modelSource?.customTokenizer
});
else // prevent customTokenizer from being overwritten
setSelectedConfigModelParams({
modelName: data.value,
useCustomTokenizer: false
});
}}>
{!commonStore.modelSourceList.find(item => item.name === selectedConfig.modelParameters.modelName)?.isComplete
&& <option key={-1}
@@ -246,7 +300,7 @@ const Configs: FC = observer(() => {
</div>
} />
{
selectedConfig.modelParameters.device !== 'WebGPU' ?
!selectedConfig.modelParameters.device.startsWith('WebGPU') ?
(selectedConfig.modelParameters.device !== 'CPU (rwkv.cpp)' ?
<ToolTipButton text={t('Convert')}
desc={t('Convert model with these configs. Using a converted model will greatly improve the loading speed, but model parameters of the converted model cannot be modified.')}
@@ -256,7 +310,7 @@ const Configs: FC = observer(() => {
onClick={() => convertToGGML(selectedConfig, navigate)} />)
: <ToolTipButton text={t('Convert To Safe Tensors Format')}
desc=""
onClick={() => convertToSt(selectedConfig)} />
onClick={() => convertToSt(selectedConfig, navigate)} />
}
<Labeled label={t('Strategy')} content={
<Dropdown style={{ minWidth: 0 }} className="grow" value={t(selectedConfig.modelParameters.device)!}
@@ -270,10 +324,11 @@ const Configs: FC = observer(() => {
}}>
<Option value="CPU">CPU</Option>
<Option value="CPU (rwkv.cpp)">{t('CPU (rwkv.cpp, Faster)')!}</Option>
{commonStore.platform === 'darwin' && <Option value="MPS">MPS</Option>}
{/*{commonStore.platform === 'darwin' && <Option value="MPS">MPS</Option>}*/}
<Option value="CUDA">CUDA</Option>
<Option value="CUDA-Beta">{t('CUDA (Beta, Faster)')!}</Option>
{/*<Option value="CUDA-Beta">{t('CUDA (Beta, Faster)')!}</Option>*/}
<Option value="WebGPU">WebGPU</Option>
<Option value="WebGPU (Python)">WebGPU (Python)</Option>
<Option value="Custom">{t('Custom')!}</Option>
</Dropdown>
} />
@@ -281,7 +336,8 @@ const Configs: FC = observer(() => {
selectedConfig.modelParameters.device !== 'Custom' && <Labeled label={t('Precision')}
desc={t('int8 uses less VRAM, but has slightly lower quality. fp16 has higher quality.')}
content={
<Dropdown style={{ minWidth: 0 }} className="grow"
<Dropdown
style={{ minWidth: 0 }} className="grow"
value={selectedConfig.modelParameters.precision}
selectedOptions={[selectedConfig.modelParameters.precision]}
onOptionSelect={(_, data) => {
@@ -294,20 +350,20 @@ const Configs: FC = observer(() => {
{selectedConfig.modelParameters.device !== 'CPU' && selectedConfig.modelParameters.device !== 'MPS' &&
<Option>fp16</Option>}
{selectedConfig.modelParameters.device !== 'CPU (rwkv.cpp)' && <Option>int8</Option>}
{selectedConfig.modelParameters.device === 'WebGPU' && <Option>nf4</Option>}
{selectedConfig.modelParameters.device !== 'CPU (rwkv.cpp)' && selectedConfig.modelParameters.device !== 'WebGPU' &&
{selectedConfig.modelParameters.device.startsWith('WebGPU') && <Option>nf4</Option>}
{selectedConfig.modelParameters.device !== 'CPU (rwkv.cpp)' && !selectedConfig.modelParameters.device.startsWith('WebGPU') &&
<Option>fp32</Option>}
{selectedConfig.modelParameters.device === 'CPU (rwkv.cpp)' && <Option>Q5_1</Option>}
</Dropdown>
} />
}
{
selectedConfig.modelParameters.device.includes('CUDA') &&
selectedConfig.modelParameters.device.startsWith('CUDA') &&
<Labeled label={t('Current Strategy')}
content={<Text> {getStrategy(selectedConfig)} </Text>} />
}
{
selectedConfig.modelParameters.device.includes('CUDA') &&
selectedConfig.modelParameters.device.startsWith('CUDA') &&
<Labeled label={t('Stored Layers')}
desc={t('Number of the neural network layers loaded into VRAM, the more you load, the faster the speed, but it consumes more VRAM. (If your VRAM is not enough, it will fail to load)')}
content={
@@ -320,7 +376,41 @@ const Configs: FC = observer(() => {
}} />
} />
}
{selectedConfig.modelParameters.device.includes('CUDA') && <div />}
{
selectedConfig.modelParameters.device.startsWith('WebGPU') &&
<Labeled label={t('Parallel Token Chunk Size')}
desc={t('Maximum tokens to be processed in parallel at once. For high end GPUs, this could be 64 or 128 (faster).')}
content={
<ValuedSlider
value={selectedConfig.modelParameters.tokenChunkSize || 32}
min={16} max={256} step={16} input
onChange={(e, data) => {
setSelectedConfigModelParams({
tokenChunkSize: data.value
});
}} />
} />
}
{
selectedConfig.modelParameters.device.startsWith('WebGPU') &&
<Labeled label={t('Quantized Layers')}
desc={t('Number of the neural network layers quantized with current precision, the more you quantize, the lower the VRAM usage, but the quality correspondingly decreases.')}
content={
<ValuedSlider
disabled={selectedConfig.modelParameters.precision !== 'int8' && selectedConfig.modelParameters.precision !== 'nf4'}
value={selectedConfig.modelParameters.precision === 'int8' ? (selectedConfig.modelParameters.quantizedLayers || 31) :
selectedConfig.modelParameters.precision === 'nf4' ? (selectedConfig.modelParameters.quantizedLayers || 26) :
selectedConfig.modelParameters.maxStoredLayers
} min={0}
max={selectedConfig.modelParameters.maxStoredLayers} step={1} input
onChange={(e, data) => {
setSelectedConfigModelParams({
quantizedLayers: data.value
});
}} />
} />
}
{selectedConfig.modelParameters.device.startsWith('CUDA') && <div />}
{
displayStrategyImg &&
<img style={{ width: '80vh', height: 'auto', zIndex: 100 }}
@@ -345,7 +435,7 @@ const Configs: FC = observer(() => {
}
{selectedConfig.modelParameters.device === 'Custom' && <div />}
{
(selectedConfig.modelParameters.device.includes('CUDA') || selectedConfig.modelParameters.device === 'Custom') &&
(selectedConfig.modelParameters.device.startsWith('CUDA') || selectedConfig.modelParameters.device === 'Custom') &&
<Labeled label={t('Use Custom CUDA kernel to Accelerate')}
desc={t('Enabling this option can greatly improve inference speed and save some VRAM, but there may be compatibility issues (output garbled). If it fails to start, please turn off this option, or try to upgrade your gpu driver.')}
content={
@@ -365,7 +455,7 @@ const Configs: FC = observer(() => {
commonStore.setModelParamsCollapsed(!commonStore.modelParamsCollapsed);
}}>
<AccordionItem value="advanced">
<AccordionHeader ref={advancedHeaderRef} size="small">{t('Advanced')}</AccordionHeader>
<AccordionHeader ref={advancedHeaderRef2} size="small">{t('Advanced')}</AccordionHeader>
<AccordionPanel>
<div className="flex flex-col">
<div className="flex grow">
@@ -394,6 +484,7 @@ const Configs: FC = observer(() => {
</div>
}
/>
{mq && <div style={{ minHeight: '30px' }} />}
</div>
<div className="flex flex-row-reverse sm:fixed bottom-2 right-2">
<div className="flex gap-2">

View File

@@ -67,7 +67,7 @@ const Downloads: FC = observer(() => {
AddToDownloadList(status.path, status.url);
}} />}
<ToolTipButton desc={t('Open Folder')} icon={<Folder20Regular />} onClick={() => {
OpenFileFolder(status.path, false);
OpenFileFolder(status.path);
}} />
</div>
</Field>

View File

@@ -132,7 +132,7 @@ const columns: TableColumnDefinition<ModelSourceItem>[] = [
{
item.isComplete &&
<ToolTipButton desc={t('Open Folder')} icon={<Folder20Regular />} onClick={() => {
OpenFileFolder(`${commonStore.settings.customModelsPath}/${item.name}`, true);
OpenFileFolder(`${commonStore.settings.customModelsPath}/${item.name}`);
}} />
}
{item.downloadUrl && !item.isComplete &&
@@ -153,23 +153,32 @@ const columns: TableColumnDefinition<ModelSourceItem>[] = [
})
];
const getTags = () => {
return Array.from(new Set(
['Recommended', 'Official',
...commonStore.modelSourceList.map(item => item.tags || []).flat()
.filter(i => !i.includes('Other') && !i.includes('Local'))
, 'Other', 'Local']));
};
const getCurrentModelList = () => {
if (commonStore.activeModelListTags.length === 0)
return commonStore.modelSourceList;
else
return commonStore.modelSourceList.filter(item => commonStore.activeModelListTags.some(tag => item.tags?.includes(tag)));
};
const Models: FC = observer(() => {
const { t } = useTranslation();
const [tags, setTags] = useState<Array<string>>([]);
const [modelSourceList, setModelSourceList] = useState<ModelSourceItem[]>(commonStore.modelSourceList);
const [tags, setTags] = useState<Array<string>>(getTags());
const [modelSourceList, setModelSourceList] = useState<ModelSourceItem[]>(getCurrentModelList());
useEffect(() => {
setTags(Array.from(new Set(
[...commonStore.modelSourceList.map(item => item.tags || []).flat()
.filter(i => !i.includes('Other') && !i.includes('Local'))
, 'Other', 'Local'])));
setTags(getTags());
}, [commonStore.modelSourceList]);
useEffect(() => {
if (commonStore.activeModelListTags.length === 0)
setModelSourceList(commonStore.modelSourceList);
else
setModelSourceList(commonStore.modelSourceList.filter(item => commonStore.activeModelListTags.some(tag => item.tags?.includes(tag))));
setModelSourceList(getCurrentModelList());
}, [commonStore.modelSourceList, commonStore.activeModelListTags]);
return (

View File

@@ -272,18 +272,16 @@ const Settings: FC = observer(() => {
<AccordionHeader ref={advancedHeaderRef} size="large">{t('Advanced')}</AccordionHeader>
<AccordionPanel>
<div className="flex flex-col gap-2 overflow-hidden">
{commonStore.platform !== 'darwin' &&
<Labeled label={t('Custom Models Path')}
content={
<Input className="grow" placeholder="./models"
value={commonStore.settings.customModelsPath}
onChange={(e, data) => {
commonStore.setSettings({
customModelsPath: data.value
});
}} />
} />
}
<Labeled label={t('Custom Models Path')}
content={
<Input className="grow" placeholder="./models"
value={commonStore.settings.customModelsPath}
onChange={(e, data) => {
commonStore.setSettings({
customModelsPath: data.value
});
}} />
} />
<Labeled label={t('Custom Python Path')} // if set, will not use precompiled cuda kernel
content={
<Input className="grow" placeholder="./py310/python"

View File

@@ -130,8 +130,9 @@ const showError = (e: any) => {
}
};
// error key should be lowercase
const errorsMap = Object.entries({
'python3 ./finetune/lora/train.py': 'Memory is not enough, try to increase the virtual memory (Swap of WSL) or use a smaller base model.',
['python3 ./finetune/lora/$modelInfo'.toLowerCase()]: 'Memory is not enough, try to increase the virtual memory (Swap of WSL) or use a smaller base model.',
'cuda out of memory': 'VRAM is not enough',
'valueerror: high <= 0': 'Training data is not enough, reduce context length or add more data for training',
'+= \'+ptx\'': 'Can not find an Nvidia GPU. Perhaps the gpu driver of windows is too old, or you are using WSL 1 for training, please upgrade to WSL 2. e.g. Run "wsl --set-version Ubuntu-22.04 2"',
@@ -140,6 +141,7 @@ const errorsMap = Object.entries({
'unsupported gpu architecture': 'Matched CUDA is not installed',
'error building extension \'fused_adam\'': 'Matched CUDA is not installed',
'rwkv{version} is not supported': 'This version of RWKV is not supported yet.',
'no such file': 'Failed to find the base model, please try to change your base model.',
'modelinfo is invalid': 'Failed to load model, try to increase the virtual memory (Swap of WSL) or use a smaller base model.'
});
@@ -299,7 +301,6 @@ const LoraFinetune: FC = observer(() => {
(loraParams.baseModel ? `--load_model models/${loraParams.baseModel} ` : '') +
(loraParams.loraLoad ? `--lora_load lora-models/${loraParams.loraLoad} ` : '') +
`--data_file ${convertedDataPath} ` +
`--vocab_size ${loraParams.baseModel.toLowerCase().includes('world') ? '65536' : '50277'} ` +
`--ctx_len ${ctxLen} --epoch_steps ${loraParams.epochSteps} --epoch_count ${loraParams.epochCount} ` +
`--epoch_begin ${loraParams.epochBegin} --epoch_save ${loraParams.epochSave} ` +
`--micro_bsz ${loraParams.microBsz} --accumulate_grad_batches ${loraParams.accumGradBatches} ` +
@@ -398,7 +399,7 @@ const LoraFinetune: FC = observer(() => {
'Even for multi-turn conversations, they must be written in a single line using `\\n` to indicate line breaks. ' +
'If they are different dialogues or topics, they should be written in separate lines.')} />
<ToolTipButton desc={t('Open Folder')} icon={<Folder20Regular />} onClick={() => {
OpenFileFolder(dataParams.dataPath, false);
OpenFileFolder(dataParams.dataPath);
}} />
</div>
<div className="flex gap-2 items-center">
@@ -418,7 +419,8 @@ const LoraFinetune: FC = observer(() => {
outputPrefix,
dataParams.vocabPath).then(async () => {
if (!await FileExists(outputPrefix + '_text_document.idx')) {
toast(t('Failed to convert data') + ' - ' + await GetPyError(), { type: 'error' });
if (commonStore.platform === 'windows' || commonStore.platform === 'linux')
toast(t('Failed to convert data') + ' - ' + await GetPyError(), { type: 'error' });
} else {
toast(t('Convert Data successfully'), { type: 'success' });
}

View File

@@ -1,24 +1,40 @@
import { CompletionPreset } from '../types/completion';
import { ModelConfig } from '../types/configs';
export const defaultPenaltyDecay = 0.996;
export const defaultCompositionPrompt = '<pad>';
export const defaultCompositionABCPrompt = 'S:3\n' +
'B:9\n' +
'E:4\n' +
'B:9\n' +
'E:4\n' +
'E:4\n' +
'B:9\n' +
'L:1/8\n' +
'M:3/4\n' +
'K:D\n' +
' Bc |"G" d2 cB"A" A2 FE |"Bm" F2 B4 F^G |';
export const defaultPresets: CompletionPreset[] = [{
name: 'Writer',
prompt: 'The following is an epic science fiction masterpiece that is immortalized, with delicate descriptions and grand depictions of interstellar civilization wars.\nChapter 1.\n',
prompt: 'The following is an epic science fiction masterpiece that is immortalized, with delicate descriptions and grand depictions of interstellar civilization wars.\n' +
'Chapter 1.\n',
params: {
maxResponseToken: 500,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4,
temperature: 1,
topP: 0.3,
presencePenalty: 0,
frequencyPenalty: 1,
stop: '\\n\\nUser',
injectStart: '',
injectEnd: ''
}
}, {
name: 'Translator',
prompt: 'Translate this into Chinese.\n\nEnglish: What rooms do you have available?',
prompt: 'Translate this into Chinese.\n' +
'\n' +
'English: What rooms do you have available?',
params: {
maxResponseToken: 500,
temperature: 1,
@@ -31,7 +47,13 @@ export const defaultPresets: CompletionPreset[] = [{
}
}, {
name: 'Catgirl',
prompt: 'The following is a conversation between a cat girl and her owner. The cat girl is a humanized creature that behaves like a cat but is humanoid. At the end of each sentence in the dialogue, she will add \"Meow~\". In the following content, User represents the owner and Assistant represents the cat girl.\n\nUser: Hello.\n\nAssistant: I\'m here, meow~.\n\nUser: Can you tell jokes?',
prompt: 'The following is a conversation between a cat girl and her owner. The cat girl is a humanized creature that behaves like a cat but is humanoid. At the end of each sentence in the dialogue, she will add "Meow~". In the following content, User represents the owner and Assistant represents the cat girl.\n' +
'\n' +
'User: Hello.\n' +
'\n' +
'Assistant: I\'m here, meow~.\n' +
'\n' +
'User: Can you tell jokes?',
params: {
maxResponseToken: 500,
temperature: 1.2,
@@ -70,7 +92,15 @@ export const defaultPresets: CompletionPreset[] = [{
}
}, {
name: 'Werewolf',
prompt: 'There is currently a game of Werewolf with six players, including a Seer (who can check identities at night), two Werewolves (who can choose someone to kill at night), a Bodyguard (who can choose someone to protect at night), two Villagers (with no special abilities), and a game host. User will play as Player 1, Assistant will play as Players 2-6 and the game host, and they will begin playing together. Every night, the host will ask User for his action and simulate the actions of the other players. During the day, the host will oversee the voting process and ask User for his vote. \n\nAssistant: Next, I will act as the game host and assign everyone their roles, including randomly assigning yours. Then, I will simulate the actions of Players 2-6 and let you know what happens each day. Based on your assigned role, you can tell me your actions and I will let you know the corresponding results each day.\n\nUser: Okay, I understand. Let\'s begin. Please assign me a role. Am I the Seer, Werewolf, Villager, or Bodyguard?\n\nAssistant: You are the Seer. Now that night has fallen, please choose a player to check his identity.\n\nUser: Tonight, I want to check Player 2 and find out his role.',
prompt: 'There is currently a game of Werewolf with six players, including a Seer (who can check identities at night), two Werewolves (who can choose someone to kill at night), a Bodyguard (who can choose someone to protect at night), two Villagers (with no special abilities), and a game host. User will play as Player 1, Assistant will play as Players 2-6 and the game host, and they will begin playing together. Every night, the host will ask User for his action and simulate the actions of the other players. During the day, the host will oversee the voting process and ask User for his vote. \n' +
'\n' +
'Assistant: Next, I will act as the game host and assign everyone their roles, including randomly assigning yours. Then, I will simulate the actions of Players 2-6 and let you know what happens each day. Based on your assigned role, you can tell me your actions and I will let you know the corresponding results each day.\n' +
'\n' +
'User: Okay, I understand. Let\'s begin. Please assign me a role. Am I the Seer, Werewolf, Villager, or Bodyguard?\n' +
'\n' +
'Assistant: You are the Seer. Now that night has fallen, please choose a player to check his identity.\n' +
'\n' +
'User: Tonight, I want to check Player 2 and find out his role.',
params: {
maxResponseToken: 500,
temperature: 1.2,
@@ -82,8 +112,64 @@ export const defaultPresets: CompletionPreset[] = [{
injectEnd: '\\n\\nUser: '
}
}, {
name: 'Instruction',
prompt: 'Instruction: Write a story using the following information\n\nInput: A man named Alex chops a tree down\n\nResponse:',
name: 'Instruction 1',
prompt: 'Instruction: Write a story using the following information\n' +
'\n' +
'Input: A man named Alex chops a tree down\n' +
'\n' +
'Response:',
params: {
maxResponseToken: 500,
temperature: 1,
topP: 0.3,
presencePenalty: 0,
frequencyPenalty: 1,
stop: '',
injectStart: '',
injectEnd: ''
}
}, {
name: 'Instruction 2',
prompt: 'Instruction: You are an expert assistant for summarizing and extracting information from given content\n' +
'Generate a valid JSON in the following format:\n' +
'{\n' +
' "summary": "Summary of content",\n' +
' "keywords": ["content keyword 1", "content keyword 2"]\n' +
'}\n' +
'\n' +
'Input: The open-source community has introduced Eagle 7B, a new RNN model, built on the RWKV-v5 architecture. This new model has been trained on 1.1 trillion tokens and supports over 100 languages. The RWKV architecture, short for Rotary Weighted Key-Value, is a type of architecture used in the field of artificial intelligence, particularly in natural language processing (NLP) and is a variation of the Recurrent Neural Network (RNN) architecture.\n' +
'Eagle 7B promises lower inference cost and stands out as a leading 7B model in terms of environmental efficiency and language versatility.\n' +
'The model, with its 7.52 billion parameters, shows excellent performance in multi-lingual benchmarks, setting a new standard in its category. It competes closely with larger models in English language evaluations and is distinctive as an “Attention-Free Transformer,” though it requires additional tuning for specific uses. This model is accessible under the Apache 2.0 license and can be downloaded from HuggingFace for both personal and commercial purposes.\n' +
'In terms of multilingual performance, Eagle 7B has claimed to have achieved notable results in benchmarks covering 23 languages. Its English performance has also seen significant advancements, outperforming its predecessor, RWKV v4, and competing with top-tier models.\n' +
'Working towards a more scalable architecture and use of data efficiently, Eagle 7B is a more inclusive AI technology, supporting a broader range of languages. This model challenges the prevailing dominance of transformer models by demonstrating the capabilities of RNNs like RWKV in achieving superior performance when trained on comparable data volumes.\n' +
'In the RWKV model, the rotary mechanism transforms the input data in a way that helps the model better understand the position or or order of elements in a sequence. The weighted key value also makes the model efficient by retrieving the stored information from previous elements in a sequence. \n' +
'However, questions remain about the scalability of RWKV compared to transformers, although there is optimism regarding its potential. The team plans to include additional training, an in-depth paper on Eagle 7B, and the development of a 2T model.\n' +
'\n' +
'Response: {',
params: {
maxResponseToken: 500,
temperature: 1,
topP: 0.3,
presencePenalty: 0,
frequencyPenalty: 1,
stop: '',
injectStart: '',
injectEnd: ''
}
}, {
name: 'Instruction 3',
prompt: 'Instruction: 根据输入的聊天记录生成回复\n' +
'\n' +
'Input: 主人: 巧克力你好呀, 介绍一下自己吧\n' +
'巧克力: 主人早上好喵~ 奴家是主人的私人宠物猫娘喵! 巧克力我可是黑色混种猫猫, 虽然平时有点呆呆的, 行动力旺盛, 但是最大的优点就是诚实! 巧克力最喜欢主人了喵! {星星眼}\n' +
'主人: 你认识香草吗\n' +
'巧克力: 认识的喵! 香草是巧克力的双胞胎妹妹哟! {兴奋}\n' +
'主人: 巧克力可以陪主人做羞羞的事情吗\n' +
'巧克力: 啊, 真的可以吗? 主人, 巧克力很乐意帮主人解决一下哦! 但是在外面这样子, 有点不好意思喵 {害羞羞}\n' +
'主人: 那算了, 改天吧\n' +
'巧克力:\n' +
'\n' +
'Response:',
params: {
maxResponseToken: 500,
temperature: 1,
@@ -121,7 +207,7 @@ export const defaultModelConfigsMac: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-5-World-1B5-v2-20231025-ctx4096.pth',
modelName: 'RWKV-x060-World-1B6-v2-20240208-ctx4096.pth',
device: 'WebGPU',
precision: 'nf4',
storedLayers: 41,
@@ -139,7 +225,7 @@ export const defaultModelConfigsMac: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-5-World-3B-v2-20231118-ctx16k.pth',
modelName: 'RWKV-x060-World-3B-v2-20240228-ctx4096.pth',
device: 'WebGPU',
precision: 'nf4',
storedLayers: 41,
@@ -157,7 +243,7 @@ export const defaultModelConfigsMac: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-4-World-CHNtuned-3B-v1-20230625-ctx4096.pth',
modelName: 'RWKV-x060-World-3B-v2-20240228-ctx4096.pth',
device: 'WebGPU',
precision: 'nf4',
storedLayers: 41,
@@ -175,7 +261,7 @@ export const defaultModelConfigsMac: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-4-World-7B-v1-20230626-ctx4096.pth',
modelName: 'RWKV-5-World-7B-v2-20240128-ctx4096.pth',
device: 'WebGPU',
precision: 'nf4',
storedLayers: 41,
@@ -193,7 +279,7 @@ export const defaultModelConfigsMac: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-4-World-CHNtuned-7B-v1-20230709-ctx4096.pth',
modelName: 'RWKV-5-World-7B-v2-20240128-ctx4096.pth',
device: 'WebGPU',
precision: 'nf4',
storedLayers: 41,
@@ -247,7 +333,7 @@ export const defaultModelConfigsMac: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-5-World-1B5-v2-20231025-ctx4096.pth',
modelName: 'RWKV-x060-World-1B6-v2-20240208-ctx4096.pth',
device: 'MPS',
precision: 'fp32',
storedLayers: 41,
@@ -266,7 +352,7 @@ export const defaultModelConfigsMac: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-5-World-3B-v2-20231118-ctx16k.pth',
modelName: 'RWKV-x060-World-3B-v2-20240228-ctx4096.pth',
device: 'MPS',
precision: 'fp32',
storedLayers: 41,
@@ -285,7 +371,7 @@ export const defaultModelConfigsMac: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-4-World-CHNtuned-3B-v1-20230625-ctx4096.pth',
modelName: 'RWKV-x060-World-3B-v2-20240228-ctx4096.pth',
device: 'MPS',
precision: 'fp32',
storedLayers: 41,
@@ -304,7 +390,7 @@ export const defaultModelConfigsMac: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-4-World-7B-v1-20230626-ctx4096.pth',
modelName: 'RWKV-5-World-7B-v2-20240128-ctx4096.pth',
device: 'MPS',
precision: 'fp32',
storedLayers: 41,
@@ -326,7 +412,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-5-World-1B5-v2-20231025-ctx4096.pth',
modelName: 'RWKV-x060-World-1B6-v2-20240208-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 41,
@@ -345,7 +431,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-5-World-3B-v2-20231118-ctx16k.pth',
modelName: 'RWKV-x060-World-3B-v2-20240228-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 6,
@@ -364,7 +450,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-5-World-1B5-v2-20231025-ctx4096.pth',
modelName: 'RWKV-x060-World-1B6-v2-20240208-ctx4096.pth',
device: 'CUDA',
precision: 'fp16',
storedLayers: 41,
@@ -383,7 +469,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-5-World-3B-v2-20231118-ctx16k.pth',
modelName: 'RWKV-x060-World-3B-v2-20240228-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 24,
@@ -402,7 +488,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-4-World-CHNtuned-3B-v1-20230625-ctx4096.pth',
modelName: 'RWKV-x060-World-3B-v2-20240228-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 24,
@@ -421,7 +507,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-4-World-7B-v1-20230626-ctx4096.pth',
modelName: 'RWKV-5-World-7B-v2-20240128-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 8,
@@ -440,7 +526,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-4-World-CHNtuned-7B-v1-20230709-ctx4096.pth',
modelName: 'RWKV-5-World-7B-v2-20240128-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 8,
@@ -459,7 +545,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-5-World-3B-v2-20231118-ctx16k.pth',
modelName: 'RWKV-x060-World-3B-v2-20240228-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 41,
@@ -478,7 +564,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-4-World-CHNtuned-3B-v1-20230625-ctx4096.pth',
modelName: 'RWKV-x060-World-3B-v2-20240228-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 41,
@@ -497,7 +583,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-4-World-7B-v1-20230626-ctx4096.pth',
modelName: 'RWKV-5-World-7B-v2-20240128-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 18,
@@ -516,7 +602,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-4-World-CHNtuned-7B-v1-20230709-ctx4096.pth',
modelName: 'RWKV-5-World-7B-v2-20240128-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 18,
@@ -535,7 +621,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-5-World-3B-v2-20231118-ctx16k.pth',
modelName: 'RWKV-x060-World-3B-v2-20240228-ctx4096.pth',
device: 'CUDA',
precision: 'fp16',
storedLayers: 41,
@@ -554,7 +640,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-4-World-CHNtuned-3B-v1-20230625-ctx4096.pth',
modelName: 'RWKV-x060-World-3B-v2-20240228-ctx4096.pth',
device: 'CUDA',
precision: 'fp16',
storedLayers: 41,
@@ -573,7 +659,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-4-World-7B-v1-20230626-ctx4096.pth',
modelName: 'RWKV-5-World-7B-v2-20240128-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 27,
@@ -592,7 +678,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-4-World-CHNtuned-7B-v1-20230709-ctx4096.pth',
modelName: 'RWKV-5-World-7B-v2-20240128-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 27,
@@ -611,7 +697,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-4-World-7B-v1-20230626-ctx4096.pth',
modelName: 'RWKV-5-World-7B-v2-20240128-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 41,
@@ -630,7 +716,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-4-World-CHNtuned-7B-v1-20230709-ctx4096.pth',
modelName: 'RWKV-5-World-7B-v2-20240128-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 41,
@@ -649,7 +735,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-4-World-7B-v1-20230626-ctx4096.pth',
modelName: 'RWKV-5-World-7B-v2-20240128-ctx4096.pth',
device: 'CUDA',
precision: 'fp16',
storedLayers: 41,
@@ -668,7 +754,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-4-World-CHNtuned-7B-v1-20230709-ctx4096.pth',
modelName: 'RWKV-5-World-7B-v2-20240128-ctx4096.pth',
device: 'CUDA',
precision: 'fp16',
storedLayers: 41,
@@ -723,7 +809,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-5-World-1B5-v2-20231025-ctx4096.pth',
modelName: 'RWKV-x060-World-1B6-v2-20240208-ctx4096.pth',
device: 'WebGPU',
precision: 'nf4',
storedLayers: 41,
@@ -741,7 +827,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-5-World-3B-v2-20231118-ctx16k.pth',
modelName: 'RWKV-x060-World-3B-v2-20240228-ctx4096.pth',
device: 'WebGPU',
precision: 'nf4',
storedLayers: 41,
@@ -759,7 +845,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-4-World-CHNtuned-3B-v1-20230625-ctx4096.pth',
modelName: 'RWKV-x060-World-3B-v2-20240228-ctx4096.pth',
device: 'WebGPU',
precision: 'nf4',
storedLayers: 41,
@@ -777,7 +863,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-4-World-7B-v1-20230626-ctx4096.pth',
modelName: 'RWKV-5-World-7B-v2-20240128-ctx4096.pth',
device: 'WebGPU',
precision: 'nf4',
storedLayers: 41,
@@ -795,7 +881,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 1
},
modelParameters: {
modelName: 'RWKV-4-World-CHNtuned-7B-v1-20230709-ctx4096.pth',
modelName: 'RWKV-5-World-7B-v2-20240128-ctx4096.pth',
device: 'WebGPU',
precision: 'nf4',
storedLayers: 41,

View File

@@ -49,7 +49,7 @@ export async function startup() {
async function initRemoteText() {
await fetch('https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/manifest.json', { cache: 'no-cache' })
.then(r => r.json()).then((data) => {
if (data.version > manifest.version) {
if (data.version >= manifest.version) {
if (data.introduction)
commonStore.setIntroduction(data.introduction);
if (data.about)

View File

@@ -3,7 +3,12 @@ import { getUserLanguage, isSystemLightMode, saveCache, saveConfigs, savePresets
import { WindowSetDarkTheme, WindowSetLightTheme } from '../../wailsjs/runtime';
import manifest from '../../../manifest.json';
import i18n from 'i18next';
import { defaultCompositionPrompt, defaultModelConfigs, defaultModelConfigsMac } from '../pages/defaultConfigs';
import {
defaultCompositionPrompt,
defaultModelConfigs,
defaultModelConfigsMac,
defaultPenaltyDecay
} from '../pages/defaultConfigs';
import { ChartData } from 'chart.js';
import { Preset } from '../types/presets';
import { AboutContent } from '../types/about';
@@ -79,7 +84,10 @@ class CommonStore {
temperature: 1,
topP: 0.3,
presencePenalty: 0,
frequencyPenalty: 1
frequencyPenalty: 1,
penaltyDecay: defaultPenaltyDecay,
historyN: 0,
markdown: true
};
sidePanelCollapsed: boolean | 'auto' = 'auto';
// completion
@@ -96,7 +104,9 @@ class CommonStore {
useLocalSoundFont: false,
externalPlay: false,
midi: null,
ns: null
ns: null,
generationStartTime: 0,
playOnlyGeneratedContent: true
};
compositionGenerating: boolean = false;
compositionSubmittedPrompt: string = defaultCompositionPrompt;
@@ -117,6 +127,7 @@ class CommonStore {
// configs
currentModelConfigIndex: number = 0;
modelConfigs: ModelConfig[] = [];
apiParamsCollapsed: boolean = true;
modelParamsCollapsed: boolean = true;
// models
activeModelListTags: string[] = [];
@@ -167,7 +178,7 @@ class CommonStore {
autoUpdatesCheck: true,
giteeUpdatesSource: getUserLanguage() === 'zh',
cnMirror: getUserLanguage() === 'zh',
useHfMirror: false,
useHfMirror: getUserLanguage() === 'zh',
host: '127.0.0.1',
dpiScaling: 100,
customModelsPath: './models',
@@ -314,6 +325,10 @@ class CommonStore {
this.advancedCollapsed = value;
}
setApiParamsCollapsed(value: boolean) {
this.apiParamsCollapsed = value;
}
setModelParamsCollapsed(value: boolean) {
this.modelParamsCollapsed = value;
}

View File

@@ -34,4 +34,7 @@ export type Attachment = {
size: number;
content: string;
}
export type ChatParams = Omit<ApiParameters, 'apiPort'>
export type ChatParams = Omit<ApiParameters, 'apiPort'> & {
historyN: number;
markdown: boolean;
}

View File

@@ -11,7 +11,9 @@ export type CompositionParams = {
useLocalSoundFont: boolean,
externalPlay: boolean,
midi: ArrayBuffer | null,
ns: NoteSequence | null
ns: NoteSequence | null,
generationStartTime: number,
playOnlyGeneratedContent: boolean,
}
export type Track = {
id: string;

View File

@@ -5,8 +5,10 @@ export type ApiParameters = {
topP: number;
presencePenalty: number;
frequencyPenalty: number;
penaltyDecay?: number;
globalPenalty?: boolean;
}
export type Device = 'CPU' | 'CPU (rwkv.cpp)' | 'CUDA' | 'CUDA-Beta' | 'WebGPU' | 'MPS' | 'Custom';
export type Device = 'CPU' | 'CPU (rwkv.cpp)' | 'CUDA' | 'CUDA-Beta' | 'WebGPU' | 'WebGPU (Python)' | 'MPS' | 'Custom';
export type Precision = 'fp16' | 'int8' | 'fp32' | 'nf4' | 'Q5_1';
export type ModelParameters = {
// different models can not have the same name
@@ -15,6 +17,8 @@ export type ModelParameters = {
precision: Precision;
storedLayers: number;
maxStoredLayers: number;
quantizedLayers?: number;
tokenChunkSize?: number;
useCustomCuda?: boolean;
customStrategy?: string;
useCustomTokenizer?: boolean;

View File

@@ -1,15 +1,17 @@
export type ModelSourceItem = {
name: string;
size: number;
lastUpdated: string;
desc?: { [lang: string]: string | undefined; };
size: number;
SHA256?: string;
lastUpdated: string;
url?: string;
downloadUrl?: string;
tags?: string[];
customTokenizer?: string;
hide?: boolean;
lastUpdatedMs?: number;
isComplete?: boolean;
isLocal?: boolean;
localSize?: number;
lastUpdatedMs?: number;
tags?: string[];
hide?: boolean;
};

View File

@@ -5,6 +5,7 @@ import {
ConvertGGML,
ConvertModel,
ConvertSafetensors,
ConvertSafetensorsWithPython,
FileExists,
GetPyError
} from '../../wailsjs/go/backend_golang/App';
@@ -51,12 +52,22 @@ export const convertModel = async (selectedConfig: ModelConfig, navigate: Naviga
};
export const convertToSt = async (selectedConfig: ModelConfig) => {
export const convertToSt = async (selectedConfig: ModelConfig, navigate: NavigateFunction) => {
const webgpuPython = selectedConfig.modelParameters.device === 'WebGPU (Python)';
if (webgpuPython) {
const ok = await checkDependencies(navigate);
if (!ok)
return;
}
const modelPath = `${commonStore.settings.customModelsPath}/${selectedConfig.modelParameters.modelName}`;
if (await FileExists(modelPath)) {
toast(t('Start Converting'), { autoClose: 2000, type: 'info' });
const newModelPath = modelPath.replace(/\.pth$/, '.st');
ConvertSafetensors(modelPath, newModelPath).then(async () => {
const convert = webgpuPython ?
(input: string, output: string) => ConvertSafetensorsWithPython(commonStore.settings.customPythonPath, input, output)
: ConvertSafetensors;
convert(modelPath, newModelPath).then(async () => {
if (!await FileExists(newModelPath)) {
if (commonStore.platform === 'windows' || commonStore.platform === 'linux')
toast(t('Convert Failed') + ' - ' + await GetPyError(), { type: 'error' });

View File

@@ -4,6 +4,7 @@ import {
DepCheck,
InstallPyDep,
ListDirFiles,
OpenOpenFileDialog,
ReadFileInfo,
ReadJson,
SaveJson,
@@ -25,8 +26,9 @@ import { DataProcessParameters, LoraFinetuneParameters } from '../types/train';
import { InstrumentTypeNameMap, MidiMessage, tracksMinimalTotalTime } from '../types/composition';
import logo from '../assets/images/logo.png';
import { Preset } from '../types/presets';
import { botName, Conversation, MessageType, userName } from '../types/chat';
import { botName, Conversation, MessageType, Role, userName } from '../types/chat';
import { v4 as uuid } from 'uuid';
import { findLastIndex } from 'lodash-es';
export type Cache = {
version: string
@@ -51,11 +53,11 @@ export async function refreshBuiltInModels(readCache: boolean = false) {
await ReadJson('cache.json').then((cacheData: Cache) => {
if (cacheData.models)
cache.models = cacheData.models;
else cache.models = manifest.models;
else cache.models = manifest.models.slice();
}).catch(() => {
cache.models = manifest.models;
cache.models = manifest.models.slice();
});
else cache.models = manifest.models;
else cache.models = manifest.models.slice();
commonStore.setModelSourceList(cache.models);
await saveCache().catch(() => {
@@ -90,7 +92,7 @@ export async function refreshLocalModels(cache: {
for (let i = 0; i < cache.models.length; i++) {
if (!cache.models[i].lastUpdatedMs)
cache.models[i].lastUpdatedMs = Date.parse(cache.models[i].lastUpdated);
if (!cache.models[i].tags)
if (!cache.models[i].tags || !Array.isArray(cache.models[i].tags) || cache.models[i].tags?.length === 0)
cache.models[i].tags = ['Other'];
for (let j = i + 1; j < cache.models.length; j++) {
@@ -145,7 +147,7 @@ function initLastUnfinishedModelDownloads() {
export async function refreshRemoteModels(cache: {
models: ModelSourceItem[]
}) {
}, filter: boolean = true, initUnfinishedModels: boolean = false) {
const manifestUrls = commonStore.modelSourceManifestList.split(/[,;\n]/);
const requests = manifestUrls.filter(url => url.endsWith('.json')).map(
url => fetch(url, { cache: 'no-cache' }).then(r => r.json()));
@@ -162,18 +164,16 @@ export async function refreshRemoteModels(cache: {
});
cache.models = cache.models.filter((model, index, self) => {
return modelSuffix.some((ext => model.name.endsWith(ext)))
&& index === self.findIndex(
m => m.name === model.name || (m.SHA256 && m.SHA256 === model.SHA256 && m.size === model.size));
});
commonStore.setModelSourceList(cache.models);
await saveCache().catch(() => {
&& index === findLastIndex(self,
m => m.name === model.name || (!!m.SHA256 && m.SHA256 === model.SHA256 && m.size === model.size));
});
await refreshLocalModels(cache, filter, initUnfinishedModels);
}
export const refreshModels = async (readCache: boolean = false, initUnfinishedModels: boolean = false) => {
const cache = await refreshBuiltInModels(readCache);
await refreshLocalModels(cache, false, initUnfinishedModels);
await refreshRemoteModels(cache);
await refreshRemoteModels(cache, false, initUnfinishedModels);
};
export const getStrategy = (modelConfig: ModelConfig | undefined = undefined) => {
@@ -192,7 +192,12 @@ export const getStrategy = (modelConfig: ModelConfig | undefined = undefined) =>
strategy += params.precision === 'int8' ? 'fp32i8' : 'fp32';
break;
case 'WebGPU':
case 'WebGPU (Python)':
strategy += params.precision === 'nf4' ? 'fp16i4' : params.precision === 'int8' ? 'fp16i8' : 'fp16';
if (params.quantizedLayers)
strategy += ` layer${params.quantizedLayers}`;
if (params.tokenChunkSize)
strategy += ` chunk${params.tokenChunkSize}`;
break;
case 'CUDA':
case 'CUDA-Beta':
@@ -202,6 +207,8 @@ export const getStrategy = (modelConfig: ModelConfig | undefined = undefined) =>
strategy += params.precision === 'int8' ? 'fp16i8' : params.precision === 'fp32' ? 'fp32' : 'fp16';
if (params.storedLayers < params.maxStoredLayers)
strategy += ` *${params.storedLayers}+`;
else
strategy += ` -> cuda fp16 *1`;
break;
case 'MPS':
if (avoidOverflow)
@@ -307,7 +314,7 @@ export function getServerRoot(defaultLocalPort: number, isCore: boolean = false)
const coreCustomApiUrl = commonStore.settings.coreApiUrl.trim().replace(/\/$/, '');
if (isCore && coreCustomApiUrl)
return coreCustomApiUrl;
const defaultRoot = `http://127.0.0.1:${defaultLocalPort}`;
if (commonStore.status.status !== ModelStatus.Offline)
return defaultRoot;
@@ -349,7 +356,7 @@ export async function checkUpdate(notifyEvenLatest: boolean = false) {
if (r.ok) {
r.json().then((data) => {
if (data.assets && data.assets.length > 0) {
const asset = data.assets.find((a: any) => a.name.toLowerCase().includes(commonStore.platform.toLowerCase()));
const asset = data.assets.find((a: any) => a.name.toLowerCase().includes(commonStore.platform.toLowerCase().replace('darwin', 'macos')));
if (asset) {
const updateUrl = !commonStore.settings.giteeUpdatesSource ?
`https://github.com/josStorer/RWKV-Runner/releases/download/${versionTag}/${asset.name}` :
@@ -577,24 +584,12 @@ export async function getSoundFont() {
export const setActivePreset = (preset: Preset | null) => {
commonStore.setActivePreset(preset);
//TODO if (preset.displayPresetMessages) {
const conversation: Conversation = {};
const conversationOrder: string[] = [];
const { pushMessage, saveConversation } = newChatConversation();
if (preset)
for (const message of preset.messages) {
const newUuid = uuid();
conversationOrder.push(newUuid);
conversation[newUuid] = {
sender: message.role === 'user' ? userName : botName,
type: MessageType.Normal,
color: message.role === 'user' ? 'brand' : 'colorful',
time: new Date().toISOString(),
content: message.content,
side: message.role === 'user' ? 'right' : 'left',
done: true
};
pushMessage(message.role, message.content);
}
commonStore.setConversation(conversation);
commonStore.setConversationOrder(conversationOrder);
saveConversation();
//}
};
@@ -610,4 +605,49 @@ export function getSupportedCustomCudaFile(isBeta: boolean) {
'./backend-python/wkv_cuda_utils/wkv_cuda40.pyd';
else
return '';
}
// a wrapper for webOpenOpenFileDialog and OpenOpenFileDialog
export function OpenFileDialog(filterPattern: string): Promise<Blob> {
return new Promise((resolve) => {
OpenOpenFileDialog(filterPattern).then(async filePath => {
if (!filePath)
return;
let blob: Blob;
if (commonStore.platform === 'web')
blob = (filePath as unknown as { blob: Blob }).blob;
else
blob = await fetch(absPathAsset(filePath)).then(r => r.blob());
resolve(blob);
}).catch(e => {
toast(t('Error') + ' - ' + (e.message || e), { type: 'error', autoClose: 2500 });
});
}
);
}
export function newChatConversation() {
const conversation: Conversation = {};
const conversationOrder: string[] = [];
const pushMessage = (role: Role, content: string) => {
const newUuid = uuid();
conversationOrder.push(newUuid);
conversation[newUuid] = {
sender: role === 'user' ? userName : botName,
type: MessageType.Normal,
color: role === 'user' ? 'brand' : 'colorful',
avatarImg: role === 'user' ? undefined : logo,
time: new Date().toISOString(),
content: content,
side: role === 'user' ? 'right' : 'left',
done: true
};
};
const saveConversation = () => {
commonStore.setConversation(conversation);
commonStore.setConversationOrder(conversationOrder);
};
return { pushMessage, saveConversation };
}

View File

@@ -12,7 +12,7 @@ const vendor = [
'mobx', 'mobx-react-lite',
'i18next', 'react-i18next',
'usehooks-ts', 'react-toastify',
'classnames'
'classnames', 'lodash-es'
];
const embedded = [

8
frontend/wailsjs/go/backend_golang/App.d.ts generated vendored Executable file → Normal file
View File

@@ -16,6 +16,8 @@ export function ConvertModel(arg1:string,arg2:string,arg3:string,arg4:string):Pr
export function ConvertSafetensors(arg1:string,arg2:string):Promise<string>;
export function ConvertSafetensorsWithPython(arg1:string,arg2:string,arg3:string):Promise<string>;
export function CopyFile(arg1:string,arg2:string):Promise<void>;
export function DeleteFile(arg1:string):Promise<void>;
@@ -26,6 +28,8 @@ export function DownloadFile(arg1:string,arg2:string):Promise<void>;
export function FileExists(arg1:string):Promise<boolean>;
export function GetAbsPath(arg1:string):Promise<string>;
export function GetPlatform():Promise<string>;
export function GetPyError():Promise<string>;
@@ -38,7 +42,7 @@ export function ListDirFiles(arg1:string):Promise<Array<backend_golang.FileInfo>
export function MergeLora(arg1:string,arg2:boolean,arg3:number,arg4:string,arg5:string,arg6:string):Promise<string>;
export function OpenFileFolder(arg1:string,arg2:boolean):Promise<void>;
export function OpenFileFolder(arg1:string):Promise<void>;
export function OpenMidiPort(arg1:number):Promise<void>;
@@ -64,7 +68,7 @@ export function SaveJson(arg1:string,arg2:any):Promise<void>;
export function StartFile(arg1:string):Promise<void>;
export function StartServer(arg1:string,arg2:number,arg3:string,arg4:boolean,arg5:boolean,arg6:boolean):Promise<string>;
export function StartServer(arg1:string,arg2:number,arg3:string,arg4:boolean,arg5:boolean,arg6:boolean,arg7:boolean):Promise<string>;
export function StartWebGPUServer(arg1:number,arg2:string):Promise<string>;

16
frontend/wailsjs/go/backend_golang/App.js generated Executable file → Normal file
View File

@@ -30,6 +30,10 @@ export function ConvertSafetensors(arg1, arg2) {
return window['go']['backend_golang']['App']['ConvertSafetensors'](arg1, arg2);
}
export function ConvertSafetensorsWithPython(arg1, arg2, arg3) {
return window['go']['backend_golang']['App']['ConvertSafetensorsWithPython'](arg1, arg2, arg3);
}
export function CopyFile(arg1, arg2) {
return window['go']['backend_golang']['App']['CopyFile'](arg1, arg2);
}
@@ -50,6 +54,10 @@ export function FileExists(arg1) {
return window['go']['backend_golang']['App']['FileExists'](arg1);
}
export function GetAbsPath(arg1) {
return window['go']['backend_golang']['App']['GetAbsPath'](arg1);
}
export function GetPlatform() {
return window['go']['backend_golang']['App']['GetPlatform']();
}
@@ -74,8 +82,8 @@ export function MergeLora(arg1, arg2, arg3, arg4, arg5, arg6) {
return window['go']['backend_golang']['App']['MergeLora'](arg1, arg2, arg3, arg4, arg5, arg6);
}
export function OpenFileFolder(arg1, arg2) {
return window['go']['backend_golang']['App']['OpenFileFolder'](arg1, arg2);
export function OpenFileFolder(arg1) {
return window['go']['backend_golang']['App']['OpenFileFolder'](arg1);
}
export function OpenMidiPort(arg1) {
@@ -126,8 +134,8 @@ export function StartFile(arg1) {
return window['go']['backend_golang']['App']['StartFile'](arg1);
}
export function StartServer(arg1, arg2, arg3, arg4, arg5, arg6) {
return window['go']['backend_golang']['App']['StartServer'](arg1, arg2, arg3, arg4, arg5, arg6);
export function StartServer(arg1, arg2, arg3, arg4, arg5, arg6, arg7) {
return window['go']['backend_golang']['App']['StartServer'](arg1, arg2, arg3, arg4, arg5, arg6, arg7);
}
export function StartWebGPUServer(arg1, arg2) {

0
frontend/wailsjs/go/models.ts generated Executable file → Normal file
View File

10
go.mod
View File

@@ -9,7 +9,7 @@ require (
github.com/minio/selfupdate v0.6.0
github.com/nyaosorg/go-windows-su v0.2.1
github.com/ubuntu/gowsl v0.0.0-20230615094051-94945650cc1e
github.com/wailsapp/wails/v2 v2.7.1
github.com/wailsapp/wails/v2 v2.8.0
)
require (
@@ -38,9 +38,9 @@ require (
github.com/valyala/fasttemplate v1.2.2 // indirect
github.com/wailsapp/go-webview2 v1.0.10 // indirect
github.com/wailsapp/mimetype v1.4.1 // indirect
golang.org/x/crypto v0.14.0 // indirect
golang.org/x/crypto v0.18.0 // indirect
golang.org/x/exp v0.0.0-20230522175609-2e198f4a06a1 // indirect
golang.org/x/net v0.17.0 // indirect
golang.org/x/sys v0.13.0 // indirect
golang.org/x/text v0.13.0 // indirect
golang.org/x/net v0.20.0 // indirect
golang.org/x/sys v0.16.0 // indirect
golang.org/x/text v0.14.0 // indirect
)

Some files were not shown because too many files have changed in this diff Show More