Compare commits
39 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a1ed0cb2e9 | ||
|
|
5ee5fa7e6e | ||
|
|
d8c70453ec | ||
|
|
e930eb5967 | ||
|
|
aec6ad636a | ||
|
|
750c91bd3e | ||
|
|
fcc3886db1 | ||
|
|
22afc98be5 | ||
|
|
5b1a9448e6 | ||
|
|
07d89e3eeb | ||
|
|
96e97d9c1e | ||
|
|
bcb125e168 | ||
|
|
6fbb86667c | ||
|
|
2d545604f4 | ||
|
|
7210a7481e | ||
|
|
55210c89e2 | ||
|
|
c725d11dd9 | ||
|
|
ba2a6bd06c | ||
|
|
57b80c6ed0 | ||
|
|
115c59d5e1 | ||
|
|
543ff468b7 | ||
|
|
96ae47989e | ||
|
|
368932a610 | ||
|
|
f2cd531fcb | ||
|
|
511652b71c | ||
|
|
525fb132d6 | ||
|
|
5acb1fd958 | ||
|
|
76761ee453 | ||
|
|
134b2884e6 | ||
|
|
261e7c8916 | ||
|
|
987854fe49 | ||
|
|
c54d10795f | ||
|
|
b7d9ab0845 | ||
|
|
176800444a | ||
|
|
00c13cfc3f | ||
|
|
620e0228ed | ||
|
|
87ca694b0b | ||
|
|
417389c5f6 | ||
|
|
fa9f62b42c |
2
.gitattributes
vendored
2
.gitattributes
vendored
@@ -3,4 +3,6 @@ backend-python/wkv_cuda_utils/** linguist-vendored
|
||||
backend-python/get-pip.py linguist-vendored
|
||||
backend-python/convert_model.py linguist-vendored
|
||||
build/** linguist-vendored
|
||||
finetune/lora/** linguist-vendored
|
||||
finetune/json2binidx_tool/** linguist-vendored
|
||||
frontend/wailsjs/** linguist-generated
|
||||
12
.github/workflows/release.yml
vendored
12
.github/workflows/release.yml
vendored
@@ -67,7 +67,7 @@ jobs:
|
||||
- run: gh release upload ${{github.ref_name}} build/bin/RWKV-Runner_windows_x64.exe
|
||||
|
||||
linux:
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ubuntu-20.04
|
||||
needs: create-draft
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
@@ -81,6 +81,11 @@ jobs:
|
||||
sudo apt-get install upx
|
||||
sudo apt-get install build-essential libgtk-3-dev libwebkit2gtk-4.0-dev
|
||||
go install github.com/wailsapp/wails/v2/cmd/wails@latest
|
||||
rm -rf ./backend-python/wkv_cuda_utils
|
||||
rm ./backend-python/get-pip.py
|
||||
sed -i '1,2d' ./backend-golang/wsl_not_windows.go
|
||||
rm ./backend-golang/wsl.go
|
||||
mv ./backend-golang/wsl_not_windows.go ./backend-golang/wsl.go
|
||||
make
|
||||
mv build/bin/RWKV-Runner build/bin/RWKV-Runner_linux_x64
|
||||
|
||||
@@ -98,6 +103,11 @@ jobs:
|
||||
go-version: '1.20.5'
|
||||
- run: |
|
||||
go install github.com/wailsapp/wails/v2/cmd/wails@latest
|
||||
rm -rf ./backend-python/wkv_cuda_utils
|
||||
rm ./backend-python/get-pip.py
|
||||
sed -i '' '1,2d' ./backend-golang/wsl_not_windows.go
|
||||
rm ./backend-golang/wsl.go
|
||||
mv ./backend-golang/wsl_not_windows.go ./backend-golang/wsl.go
|
||||
make
|
||||
cp build/darwin/Readme_Install.txt build/bin/Readme_Install.txt
|
||||
cp build/bin/RWKV-Runner.app/Contents/MacOS/RWKV-Runner build/bin/RWKV-Runner_darwin_universal
|
||||
|
||||
4
.gitignore
vendored
4
.gitignore
vendored
@@ -20,4 +20,6 @@ __pycache__
|
||||
*.old
|
||||
.DS_Store
|
||||
*.log.*
|
||||
*.log
|
||||
*.log
|
||||
train_log.txt
|
||||
finetune/json2binidx_tool/data
|
||||
|
||||
@@ -1,11 +1,11 @@
|
||||
## Changes
|
||||
|
||||
- upgrade to rwkv 0.8.0
|
||||
- change i18n
|
||||
- Completion Regenerate Button
|
||||
- change chat saving format
|
||||
- update manifest
|
||||
- chore
|
||||
- fix jsonl data when using directory as training data
|
||||
- fix loss parser
|
||||
- improve error messages for training
|
||||
- update logo
|
||||
- extra vc check
|
||||
- fix load_state_dict crash
|
||||
|
||||
## Install
|
||||
|
||||
|
||||
@@ -13,7 +13,7 @@ compatible with the OpenAI API, which means that every ChatGPT client is an RWKV
|
||||
[![license][license-image]][license-url]
|
||||
[![release][release-image]][release-url]
|
||||
|
||||
English | [简体中文](README_ZH.md)
|
||||
English | [简体中文](README_ZH.md) | [日本語](README_JA.md)
|
||||
|
||||
### Install
|
||||
|
||||
@@ -136,9 +136,11 @@ for i in np.argsort(embeddings_cos_sim)[::-1]:
|
||||
|
||||
## Related Repositories:
|
||||
|
||||
- RWKV-4-World: https://huggingface.co/BlinkDL/rwkv-4-world/tree/main
|
||||
- RWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main
|
||||
- ChatRWKV: https://github.com/BlinkDL/ChatRWKV
|
||||
- RWKV-LM: https://github.com/BlinkDL/RWKV-LM
|
||||
- RWKV-LM-LoRA: https://github.com/Blealtan/RWKV-LM-LoRA
|
||||
|
||||
## Preview
|
||||
|
||||
|
||||
163
README_JA.md
Normal file
163
README_JA.md
Normal file
@@ -0,0 +1,163 @@
|
||||
<p align="center">
|
||||
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/d24834b0-265d-45f5-93c0-fac1e19562af">
|
||||
</p>
|
||||
|
||||
<h1 align="center">RWKV Runner</h1>
|
||||
|
||||
<div align="center">
|
||||
|
||||
このプロジェクトは、すべてを自動化することで、大規模な言語モデルを使用する際の障壁をなくすことを目的としています。必要なのは、
|
||||
わずか数メガバイトの軽量な実行プログラムだけです。さらに、このプロジェクトは OpenAI API と互換性のあるインターフェイスを提供しており、
|
||||
すべての ChatGPT クライアントは RWKV クライアントであることを意味します。
|
||||
|
||||
[![license][license-image]][license-url]
|
||||
[![release][release-image]][release-url]
|
||||
|
||||
[English](README.md) | [简体中文](README_ZH.md) | 日本語
|
||||
|
||||
### インストール
|
||||
|
||||
[![Windows][Windows-image]][Windows-url]
|
||||
[![MacOS][MacOS-image]][MacOS-url]
|
||||
[![Linux][Linux-image]][Linux-url]
|
||||
|
||||
[FAQs](https://github.com/josStorer/RWKV-Runner/wiki/FAQs) | [プレビュー](#Preview) | [ダウンロード][download-url] | [サーバーデプロイ例](https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples)
|
||||
|
||||
[license-image]: http://img.shields.io/badge/license-MIT-blue.svg
|
||||
[license-url]: https://github.com/josStorer/RWKV-Runner/blob/master/LICENSE
|
||||
[release-image]: https://img.shields.io/github/release/josStorer/RWKV-Runner.svg
|
||||
[release-url]: https://github.com/josStorer/RWKV-Runner/releases/latest
|
||||
[download-url]: https://github.com/josStorer/RWKV-Runner/releases
|
||||
[Windows-image]: https://img.shields.io/badge/-Windows-blue?logo=windows
|
||||
[Windows-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/windows/Readme_Install.txt
|
||||
[MacOS-image]: https://img.shields.io/badge/-MacOS-black?logo=apple
|
||||
[MacOS-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/darwin/Readme_Install.txt
|
||||
[Linux-image]: https://img.shields.io/badge/-Linux-black?logo=linux
|
||||
[Linux-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/linux/Readme_Install.txt
|
||||
|
||||
</div>
|
||||
|
||||
#### デフォルトの設定はカスタム CUDA カーネルアクセラレーションを有効にしています。互換性の問題が発生する可能性がある場合は、コンフィグページに移動し、`Use Custom CUDA kernel to Accelerate` をオフにしてください。
|
||||
|
||||
#### Windows Defender がこれをウイルスだと主張する場合は、[v1.0.8](https://github.com/josStorer/RWKV-Runner/releases/tag/v1.0.8) / [v1.0.9](https://github.com/josStorer/RWKV-Runner/releases/tag/v1.0.9) をダウンロードして最新版に自動更新させるか、信頼済みリストに追加してみてください。
|
||||
|
||||
#### 異なるタスクについては、API パラメータを調整することで、より良い結果を得ることができます。例えば、翻訳タスクの場合、Temperature を 1 に、Top_P を 0.3 に設定してみてください。
|
||||
|
||||
## 特徴
|
||||
|
||||
- RWKV モデル管理とワンクリック起動
|
||||
- OpenAI API と完全に互換性があり、すべての ChatGPT クライアントを RWKV クライアントにします。モデル起動後、
|
||||
http://127.0.0.1:8000/docs を開いて詳細をご覧ください。
|
||||
- 依存関係の自動インストールにより、軽量な実行プログラムのみを必要とします
|
||||
- 2G から 32G の VRAM のコンフィグが含まれており、ほとんどのコンピュータで動作します
|
||||
- ユーザーフレンドリーなチャットと完成インタラクションインターフェースを搭載
|
||||
- 分かりやすく操作しやすいパラメータ設定
|
||||
- 内蔵モデル変換ツール
|
||||
- ダウンロード管理とリモートモデル検査機能内蔵
|
||||
- 多言語ローカライズ
|
||||
- テーマ切り替え
|
||||
- 自動アップデート
|
||||
|
||||
## API 同時実行ストレステスト
|
||||
|
||||
```bash
|
||||
ab -p body.json -T application/json -c 20 -n 100 -l http://127.0.0.1:8000/chat/completions
|
||||
```
|
||||
|
||||
body.json:
|
||||
|
||||
```json
|
||||
{
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Hello"
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
## 埋め込み API の例
|
||||
|
||||
LangChain を使用している場合は、`OpenAIEmbeddings(openai_api_base="http://127.0.0.1:8000", openai_api_key="sk-")`を使用してください
|
||||
|
||||
```python
|
||||
import numpy as np
|
||||
import requests
|
||||
|
||||
|
||||
def cosine_similarity(a, b):
|
||||
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
|
||||
|
||||
|
||||
values = [
|
||||
"I am a girl",
|
||||
"我是个女孩",
|
||||
"私は女の子です",
|
||||
"广东人爱吃福建人",
|
||||
"我是个人类",
|
||||
"I am a human",
|
||||
"that dog is so cute",
|
||||
"私はねこむすめです、にゃん♪",
|
||||
"宇宙级特大事件!号外号外!"
|
||||
]
|
||||
|
||||
embeddings = []
|
||||
for v in values:
|
||||
r = requests.post("http://127.0.0.1:8000/embeddings", json={"input": v})
|
||||
embedding = r.json()["data"][0]["embedding"]
|
||||
embeddings.append(embedding)
|
||||
|
||||
compared_embedding = embeddings[0]
|
||||
|
||||
embeddings_cos_sim = [cosine_similarity(compared_embedding, e) for e in embeddings]
|
||||
|
||||
for i in np.argsort(embeddings_cos_sim)[::-1]:
|
||||
print(f"{embeddings_cos_sim[i]:.10f} - {values[i]}")
|
||||
```
|
||||
|
||||
## Todo
|
||||
|
||||
- [ ] モデル学習機能
|
||||
- [x] CUDA オペレータ int8 アクセラレーション
|
||||
- [x] macOS サポート
|
||||
- [x] Linux サポート
|
||||
- [ ] ローカルステートキャッシュ DB
|
||||
|
||||
## 関連リポジトリ:
|
||||
|
||||
- RWKV-4-World: https://huggingface.co/BlinkDL/rwkv-4-world/tree/main
|
||||
- RWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main
|
||||
- ChatRWKV: https://github.com/BlinkDL/ChatRWKV
|
||||
- RWKV-LM: https://github.com/BlinkDL/RWKV-LM
|
||||
- RWKV-LM-LoRA: https://github.com/Blealtan/RWKV-LM-LoRA
|
||||
|
||||
## プレビュー
|
||||
|
||||
### ホームページ
|
||||
|
||||

|
||||
|
||||
### チャット
|
||||
|
||||

|
||||
|
||||
### 補完
|
||||
|
||||

|
||||
|
||||
### コンフィグ
|
||||
|
||||

|
||||
|
||||
### モデル管理
|
||||
|
||||

|
||||
|
||||
### ダウンロード管理
|
||||
|
||||

|
||||
|
||||
### 設定
|
||||
|
||||

|
||||
@@ -12,7 +12,7 @@ API兼容的接口,这意味着一切ChatGPT客户端都是RWKV客户端。
|
||||
[![license][license-image]][license-url]
|
||||
[![release][release-image]][release-url]
|
||||
|
||||
[English](README.md) | 简体中文
|
||||
[English](README.md) | 简体中文 | [日本語](README_JA.md)
|
||||
|
||||
### 安装
|
||||
|
||||
@@ -136,9 +136,11 @@ for i in np.argsort(embeddings_cos_sim)[::-1]:
|
||||
|
||||
## 相关仓库:
|
||||
|
||||
- RWKV-4-World: https://huggingface.co/BlinkDL/rwkv-4-world/tree/main
|
||||
- RWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main
|
||||
- ChatRWKV: https://github.com/BlinkDL/ChatRWKV
|
||||
- RWKV-LM: https://github.com/BlinkDL/RWKV-LM
|
||||
- RWKV-LM-LoRA: https://github.com/Blealtan/RWKV-LM-LoRA
|
||||
|
||||
## Preview
|
||||
|
||||
|
||||
@@ -9,6 +9,7 @@ import (
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
|
||||
"github.com/fsnotify/fsnotify"
|
||||
"github.com/minio/selfupdate"
|
||||
wruntime "github.com/wailsapp/wails/v2/pkg/runtime"
|
||||
)
|
||||
@@ -40,7 +41,36 @@ func (a *App) OnStartup(ctx context.Context) {
|
||||
a.cmdPrefix = "cd " + a.exDir + " && "
|
||||
}
|
||||
|
||||
os.Mkdir(a.exDir+"models", os.ModePerm)
|
||||
os.Mkdir(a.exDir+"lora-models", os.ModePerm)
|
||||
os.Mkdir(a.exDir+"finetune/json2binidx_tool/data", os.ModePerm)
|
||||
f, err := os.Create(a.exDir + "lora-models/train_log.txt")
|
||||
if err == nil {
|
||||
f.Close()
|
||||
}
|
||||
|
||||
a.downloadLoop()
|
||||
|
||||
watcher, err := fsnotify.NewWatcher()
|
||||
if err == nil {
|
||||
watcher.Add("./lora-models")
|
||||
watcher.Add("./models")
|
||||
go func() {
|
||||
for {
|
||||
select {
|
||||
case event, ok := <-watcher.Events:
|
||||
if !ok {
|
||||
return
|
||||
}
|
||||
wruntime.EventsEmit(ctx, "fsnotify", event.Name)
|
||||
case _, ok := <-watcher.Errors:
|
||||
if !ok {
|
||||
return
|
||||
}
|
||||
}
|
||||
}
|
||||
}()
|
||||
}
|
||||
}
|
||||
|
||||
func (a *App) UpdateApp(url string) (broken bool, err error) {
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
package backend_golang
|
||||
|
||||
import (
|
||||
"encoding/json"
|
||||
"errors"
|
||||
"os"
|
||||
"os/exec"
|
||||
@@ -31,6 +32,71 @@ func (a *App) ConvertModel(python string, modelPath string, strategy string, out
|
||||
return Cmd(python, "./backend-python/convert_model.py", "--in", modelPath, "--out", outPath, "--strategy", strategy)
|
||||
}
|
||||
|
||||
func (a *App) ConvertData(python string, input string, outputPrefix string, vocab string) (string, error) {
|
||||
var err error
|
||||
if python == "" {
|
||||
python, err = GetPython()
|
||||
}
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
tokenizerType := "HFTokenizer"
|
||||
if strings.Contains(vocab, "rwkv_vocab_v20230424") {
|
||||
tokenizerType = "RWKVTokenizer"
|
||||
}
|
||||
|
||||
input = strings.TrimSuffix(input, "/")
|
||||
if fi, err := os.Stat(input); err == nil && fi.IsDir() {
|
||||
files, err := os.ReadDir(input)
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
jsonlFile, err := os.Create(outputPrefix + ".jsonl")
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
defer jsonlFile.Close()
|
||||
for _, file := range files {
|
||||
if file.IsDir() || !strings.HasSuffix(file.Name(), ".txt") {
|
||||
continue
|
||||
}
|
||||
textContent, err := os.ReadFile(input + "/" + file.Name())
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
textJson, err := json.Marshal(map[string]string{"text": string(textContent)})
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
if _, err := jsonlFile.WriteString(string(textJson) + "\n"); err != nil {
|
||||
return "", err
|
||||
}
|
||||
}
|
||||
input = outputPrefix + ".jsonl"
|
||||
} else if err != nil {
|
||||
return "", err
|
||||
}
|
||||
|
||||
return Cmd(python, "./finetune/json2binidx_tool/tools/preprocess_data.py", "--input", input, "--output-prefix", outputPrefix, "--vocab", vocab,
|
||||
"--tokenizer-type", tokenizerType, "--dataset-impl", "mmap", "--append-eod")
|
||||
}
|
||||
|
||||
func (a *App) MergeLora(python string, useGpu bool, loraAlpha int, baseModel string, loraPath string, outputPath string) (string, error) {
|
||||
var err error
|
||||
if python == "" {
|
||||
python, err = GetPython()
|
||||
}
|
||||
if err != nil {
|
||||
return "", err
|
||||
}
|
||||
args := []string{python, "./finetune/lora/merge_lora.py"}
|
||||
if useGpu {
|
||||
args = append(args, "--use-gpu")
|
||||
}
|
||||
args = append(args, strconv.Itoa(loraAlpha), baseModel, loraPath, outputPath)
|
||||
return Cmd(args...)
|
||||
}
|
||||
|
||||
func (a *App) DepCheck(python string) error {
|
||||
var err error
|
||||
if python == "" {
|
||||
@@ -81,3 +147,11 @@ func (a *App) InstallPyDep(python string, cnMirror bool) (string, error) {
|
||||
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_without_cyac.txt")
|
||||
}
|
||||
}
|
||||
|
||||
func (a *App) GetPyError() string {
|
||||
content, err := os.ReadFile("./error.txt")
|
||||
if err != nil {
|
||||
return ""
|
||||
}
|
||||
return string(content)
|
||||
}
|
||||
|
||||
181
backend-golang/wsl.go
Normal file
181
backend-golang/wsl.go
Normal file
@@ -0,0 +1,181 @@
|
||||
//go:build windows
|
||||
|
||||
package backend_golang
|
||||
|
||||
import (
|
||||
"bufio"
|
||||
"context"
|
||||
"errors"
|
||||
"io"
|
||||
"os"
|
||||
"os/exec"
|
||||
"path/filepath"
|
||||
"strings"
|
||||
"time"
|
||||
|
||||
su "github.com/nyaosorg/go-windows-su"
|
||||
wsl "github.com/ubuntu/gowsl"
|
||||
wruntime "github.com/wailsapp/wails/v2/pkg/runtime"
|
||||
)
|
||||
|
||||
var distro *wsl.Distro
|
||||
var stdin io.WriteCloser
|
||||
var cmd *exec.Cmd
|
||||
|
||||
func isWslRunning() (bool, error) {
|
||||
if distro == nil {
|
||||
return false, nil
|
||||
}
|
||||
state, err := distro.State()
|
||||
if err != nil {
|
||||
return false, err
|
||||
}
|
||||
if state != wsl.Running {
|
||||
distro = nil
|
||||
return false, nil
|
||||
}
|
||||
return true, nil
|
||||
}
|
||||
|
||||
func (a *App) WslStart() error {
|
||||
running, err := isWslRunning()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if running {
|
||||
return nil
|
||||
}
|
||||
distros, err := wsl.RegisteredDistros(context.Background())
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
for _, d := range distros {
|
||||
if strings.Contains(d.Name(), "Ubuntu") {
|
||||
distro = &d
|
||||
break
|
||||
}
|
||||
}
|
||||
if distro == nil {
|
||||
return errors.New("ubuntu not found")
|
||||
}
|
||||
|
||||
cmd = exec.Command("wsl", "-d", distro.Name(), "-u", "root")
|
||||
|
||||
stdin, err = cmd.StdinPipe()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
stdout, err := cmd.StdoutPipe()
|
||||
cmd.Stderr = cmd.Stdout
|
||||
if err != nil {
|
||||
// stdin.Close()
|
||||
stdin = nil
|
||||
return err
|
||||
}
|
||||
|
||||
go func() {
|
||||
reader := bufio.NewReader(stdout)
|
||||
for {
|
||||
if stdin == nil {
|
||||
break
|
||||
}
|
||||
line, _, err := reader.ReadLine()
|
||||
if err != nil {
|
||||
wruntime.EventsEmit(a.ctx, "wslerr", err.Error())
|
||||
break
|
||||
}
|
||||
wruntime.EventsEmit(a.ctx, "wsl", string(line))
|
||||
}
|
||||
// stdout.Close()
|
||||
}()
|
||||
|
||||
if err := cmd.Start(); err != nil {
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (a *App) WslCommand(command string) error {
|
||||
running, err := isWslRunning()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if !running {
|
||||
return errors.New("wsl not running")
|
||||
}
|
||||
_, err = stdin.Write([]byte(command + "\n"))
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (a *App) WslStop() error {
|
||||
running, err := isWslRunning()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if !running {
|
||||
return errors.New("wsl not running")
|
||||
}
|
||||
if cmd != nil {
|
||||
err = cmd.Process.Kill()
|
||||
cmd = nil
|
||||
}
|
||||
// stdin.Close()
|
||||
stdin = nil
|
||||
distro = nil
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (a *App) WslIsEnabled() error {
|
||||
ex, err := os.Executable()
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
exDir := filepath.Dir(ex)
|
||||
|
||||
data, err := os.ReadFile(exDir + "/wsl.state")
|
||||
if err == nil {
|
||||
if strings.Contains(string(data), "Enabled") {
|
||||
return nil
|
||||
}
|
||||
}
|
||||
|
||||
cmd := `-Command (Get-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Linux).State | Out-File -Encoding utf8 -FilePath ` + exDir + "/wsl.state"
|
||||
_, err = su.ShellExecute(su.RUNAS, "powershell", cmd, exDir)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
time.Sleep(2 * time.Second)
|
||||
data, err = os.ReadFile(exDir + "/wsl.state")
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if strings.Contains(string(data), "Enabled") {
|
||||
return nil
|
||||
} else {
|
||||
return errors.New("wsl is not enabled")
|
||||
}
|
||||
}
|
||||
|
||||
func (a *App) WslEnable(forceMode bool) error {
|
||||
cmd := `/online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux`
|
||||
_, err := su.ShellExecute(su.RUNAS, "dism", cmd, `C:\`)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
if forceMode {
|
||||
os.WriteFile("./wsl.state", []byte("Enabled"), 0644)
|
||||
}
|
||||
return nil
|
||||
}
|
||||
|
||||
func (a *App) WslInstallUbuntu() error {
|
||||
_, err := Cmd("ms-windows-store://pdp/?ProductId=9PN20MSR04DW")
|
||||
return err
|
||||
}
|
||||
31
backend-golang/wsl_not_windows.go
Normal file
31
backend-golang/wsl_not_windows.go
Normal file
@@ -0,0 +1,31 @@
|
||||
//go:build darwin || linux
|
||||
|
||||
package backend_golang
|
||||
|
||||
import (
|
||||
"errors"
|
||||
)
|
||||
|
||||
func (a *App) WslStart() error {
|
||||
return errors.New("wsl not supported")
|
||||
}
|
||||
|
||||
func (a *App) WslCommand(command string) error {
|
||||
return errors.New("wsl not supported")
|
||||
}
|
||||
|
||||
func (a *App) WslStop() error {
|
||||
return errors.New("wsl not supported")
|
||||
}
|
||||
|
||||
func (a *App) WslIsEnabled() error {
|
||||
return errors.New("wsl not supported")
|
||||
}
|
||||
|
||||
func (a *App) WslEnable(forceMode bool) error {
|
||||
return errors.New("wsl not supported")
|
||||
}
|
||||
|
||||
func (a *App) WslInstallUbuntu() error {
|
||||
return errors.New("wsl not supported")
|
||||
}
|
||||
22
backend-python/convert_model.py
vendored
22
backend-python/convert_model.py
vendored
@@ -219,13 +219,17 @@ def get_args():
|
||||
return p.parse_args()
|
||||
|
||||
|
||||
args = get_args()
|
||||
if not args.quiet:
|
||||
print(f"** {args}")
|
||||
try:
|
||||
args = get_args()
|
||||
if not args.quiet:
|
||||
print(f"** {args}")
|
||||
|
||||
RWKV(
|
||||
getattr(args, "in"),
|
||||
args.strategy,
|
||||
verbose=not args.quiet,
|
||||
convert_and_save_and_exit=args.out,
|
||||
)
|
||||
RWKV(
|
||||
getattr(args, "in"),
|
||||
args.strategy,
|
||||
verbose=not args.quiet,
|
||||
convert_and_save_and_exit=args.out,
|
||||
)
|
||||
except Exception as e:
|
||||
with open("error.txt", "w") as f:
|
||||
f.write(str(e))
|
||||
|
||||
@@ -1,8 +1,13 @@
|
||||
import lm_dataformat
|
||||
import ftfy
|
||||
import tqdm
|
||||
import tiktoken
|
||||
import GPUtil
|
||||
|
||||
import torch
|
||||
import rwkv
|
||||
import numpy
|
||||
import tokenizers
|
||||
import fastapi
|
||||
import uvicorn
|
||||
import sse_starlette
|
||||
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -95,27 +95,64 @@ async def eval_rwkv(
|
||||
return
|
||||
await asyncio.sleep(0.1)
|
||||
else:
|
||||
completion_lock.acquire()
|
||||
if await request.is_disconnected():
|
||||
completion_lock.release()
|
||||
with completion_lock:
|
||||
if await request.is_disconnected():
|
||||
requests_num = requests_num - 1
|
||||
print(f"{request.client} Stop Waiting (Lock)")
|
||||
quick_log(
|
||||
request,
|
||||
None,
|
||||
"Stop Waiting (Lock). RequestsNum: " + str(requests_num),
|
||||
)
|
||||
return
|
||||
set_rwkv_config(model, global_var.get(global_var.Model_Config))
|
||||
set_rwkv_config(model, body)
|
||||
|
||||
response, prompt_tokens, completion_tokens = "", 0, 0
|
||||
for response, delta, prompt_tokens, completion_tokens in model.generate(
|
||||
prompt,
|
||||
stop=stop,
|
||||
):
|
||||
if await request.is_disconnected():
|
||||
break
|
||||
if stream:
|
||||
yield json.dumps(
|
||||
{
|
||||
"object": "chat.completion.chunk"
|
||||
if chat_mode
|
||||
else "text_completion",
|
||||
"response": response,
|
||||
"model": model.name,
|
||||
"choices": [
|
||||
{
|
||||
"delta": {"content": delta},
|
||||
"index": 0,
|
||||
"finish_reason": None,
|
||||
}
|
||||
if chat_mode
|
||||
else {
|
||||
"text": delta,
|
||||
"index": 0,
|
||||
"finish_reason": None,
|
||||
}
|
||||
],
|
||||
}
|
||||
)
|
||||
# torch_gc()
|
||||
requests_num = requests_num - 1
|
||||
print(f"{request.client} Stop Waiting (Lock)")
|
||||
if await request.is_disconnected():
|
||||
print(f"{request.client} Stop Waiting")
|
||||
quick_log(
|
||||
request,
|
||||
body,
|
||||
response + "\nStop Waiting. RequestsNum: " + str(requests_num),
|
||||
)
|
||||
return
|
||||
quick_log(
|
||||
request,
|
||||
None,
|
||||
"Stop Waiting (Lock). RequestsNum: " + str(requests_num),
|
||||
body,
|
||||
response + "\nFinished. RequestsNum: " + str(requests_num),
|
||||
)
|
||||
return
|
||||
set_rwkv_config(model, global_var.get(global_var.Model_Config))
|
||||
set_rwkv_config(model, body)
|
||||
|
||||
response, prompt_tokens, completion_tokens = "", 0, 0
|
||||
for response, delta, prompt_tokens, completion_tokens in model.generate(
|
||||
prompt,
|
||||
stop=stop,
|
||||
):
|
||||
if await request.is_disconnected():
|
||||
break
|
||||
if stream:
|
||||
yield json.dumps(
|
||||
{
|
||||
@@ -126,86 +163,47 @@ async def eval_rwkv(
|
||||
"model": model.name,
|
||||
"choices": [
|
||||
{
|
||||
"delta": {"content": delta},
|
||||
"delta": {},
|
||||
"index": 0,
|
||||
"finish_reason": None,
|
||||
"finish_reason": "stop",
|
||||
}
|
||||
if chat_mode
|
||||
else {
|
||||
"text": delta,
|
||||
"text": "",
|
||||
"index": 0,
|
||||
"finish_reason": None,
|
||||
"finish_reason": "stop",
|
||||
}
|
||||
],
|
||||
}
|
||||
)
|
||||
# torch_gc()
|
||||
requests_num = requests_num - 1
|
||||
completion_lock.release()
|
||||
if await request.is_disconnected():
|
||||
print(f"{request.client} Stop Waiting")
|
||||
quick_log(
|
||||
request,
|
||||
body,
|
||||
response + "\nStop Waiting. RequestsNum: " + str(requests_num),
|
||||
)
|
||||
return
|
||||
quick_log(
|
||||
request,
|
||||
body,
|
||||
response + "\nFinished. RequestsNum: " + str(requests_num),
|
||||
)
|
||||
if stream:
|
||||
yield json.dumps(
|
||||
{
|
||||
"object": "chat.completion.chunk"
|
||||
if chat_mode
|
||||
else "text_completion",
|
||||
yield "[DONE]"
|
||||
else:
|
||||
yield {
|
||||
"object": "chat.completion" if chat_mode else "text_completion",
|
||||
"response": response,
|
||||
"model": model.name,
|
||||
"usage": {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": prompt_tokens + completion_tokens,
|
||||
},
|
||||
"choices": [
|
||||
{
|
||||
"delta": {},
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": response,
|
||||
},
|
||||
"index": 0,
|
||||
"finish_reason": "stop",
|
||||
}
|
||||
if chat_mode
|
||||
else {
|
||||
"text": "",
|
||||
"text": response,
|
||||
"index": 0,
|
||||
"finish_reason": "stop",
|
||||
}
|
||||
],
|
||||
}
|
||||
)
|
||||
yield "[DONE]"
|
||||
else:
|
||||
yield {
|
||||
"object": "chat.completion" if chat_mode else "text_completion",
|
||||
"response": response,
|
||||
"model": model.name,
|
||||
"usage": {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"completion_tokens": completion_tokens,
|
||||
"total_tokens": prompt_tokens + completion_tokens,
|
||||
},
|
||||
"choices": [
|
||||
{
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": response,
|
||||
},
|
||||
"index": 0,
|
||||
"finish_reason": "stop",
|
||||
}
|
||||
if chat_mode
|
||||
else {
|
||||
"text": response,
|
||||
"index": 0,
|
||||
"finish_reason": "stop",
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
|
||||
@router.post("/v1/chat/completions")
|
||||
@@ -325,7 +323,7 @@ async def completions(body: CompletionBody, request: Request):
|
||||
|
||||
|
||||
class EmbeddingsBody(BaseModel):
|
||||
input: str | List[str] | List[List[int]]
|
||||
input: str or List[str] or List[List[int]]
|
||||
model: str = "rwkv"
|
||||
encoding_format: str = None
|
||||
fast_mode: bool = False
|
||||
@@ -372,81 +370,88 @@ async def embeddings(body: EmbeddingsBody, request: Request):
|
||||
return
|
||||
await asyncio.sleep(0.1)
|
||||
else:
|
||||
completion_lock.acquire()
|
||||
if await request.is_disconnected():
|
||||
completion_lock.release()
|
||||
requests_num = requests_num - 1
|
||||
print(f"{request.client} Stop Waiting (Lock)")
|
||||
quick_log(
|
||||
request,
|
||||
None,
|
||||
"Stop Waiting (Lock). RequestsNum: " + str(requests_num),
|
||||
)
|
||||
return
|
||||
with completion_lock:
|
||||
if await request.is_disconnected():
|
||||
requests_num = requests_num - 1
|
||||
print(f"{request.client} Stop Waiting (Lock)")
|
||||
quick_log(
|
||||
request,
|
||||
None,
|
||||
"Stop Waiting (Lock). RequestsNum: " + str(requests_num),
|
||||
)
|
||||
return
|
||||
|
||||
base64_format = False
|
||||
if body.encoding_format == "base64":
|
||||
base64_format = True
|
||||
base64_format = False
|
||||
if body.encoding_format == "base64":
|
||||
base64_format = True
|
||||
|
||||
embeddings = []
|
||||
prompt_tokens = 0
|
||||
if type(body.input) == list:
|
||||
if type(body.input[0]) == list:
|
||||
encoding = tiktoken.model.encoding_for_model("text-embedding-ada-002")
|
||||
for i in range(len(body.input)):
|
||||
if await request.is_disconnected():
|
||||
break
|
||||
input = encoding.decode(body.input[i])
|
||||
embedding, token_len = model.get_embedding(input, body.fast_mode)
|
||||
prompt_tokens = prompt_tokens + token_len
|
||||
if base64_format:
|
||||
embedding = embedding_base64(embedding)
|
||||
embeddings.append(embedding)
|
||||
else:
|
||||
for i in range(len(body.input)):
|
||||
if await request.is_disconnected():
|
||||
break
|
||||
embedding, token_len = model.get_embedding(
|
||||
body.input[i], body.fast_mode
|
||||
embeddings = []
|
||||
prompt_tokens = 0
|
||||
if type(body.input) == list:
|
||||
if type(body.input[0]) == list:
|
||||
encoding = tiktoken.model.encoding_for_model(
|
||||
"text-embedding-ada-002"
|
||||
)
|
||||
prompt_tokens = prompt_tokens + token_len
|
||||
if base64_format:
|
||||
embedding = embedding_base64(embedding)
|
||||
embeddings.append(embedding)
|
||||
else:
|
||||
embedding, prompt_tokens = model.get_embedding(body.input, body.fast_mode)
|
||||
if base64_format:
|
||||
embedding = embedding_base64(embedding)
|
||||
embeddings.append(embedding)
|
||||
for i in range(len(body.input)):
|
||||
if await request.is_disconnected():
|
||||
break
|
||||
input = encoding.decode(body.input[i])
|
||||
embedding, token_len = model.get_embedding(
|
||||
input, body.fast_mode
|
||||
)
|
||||
prompt_tokens = prompt_tokens + token_len
|
||||
if base64_format:
|
||||
embedding = embedding_base64(embedding)
|
||||
embeddings.append(embedding)
|
||||
else:
|
||||
for i in range(len(body.input)):
|
||||
if await request.is_disconnected():
|
||||
break
|
||||
embedding, token_len = model.get_embedding(
|
||||
body.input[i], body.fast_mode
|
||||
)
|
||||
prompt_tokens = prompt_tokens + token_len
|
||||
if base64_format:
|
||||
embedding = embedding_base64(embedding)
|
||||
embeddings.append(embedding)
|
||||
else:
|
||||
embedding, prompt_tokens = model.get_embedding(
|
||||
body.input, body.fast_mode
|
||||
)
|
||||
if base64_format:
|
||||
embedding = embedding_base64(embedding)
|
||||
embeddings.append(embedding)
|
||||
|
||||
requests_num = requests_num - 1
|
||||
completion_lock.release()
|
||||
if await request.is_disconnected():
|
||||
print(f"{request.client} Stop Waiting")
|
||||
requests_num = requests_num - 1
|
||||
if await request.is_disconnected():
|
||||
print(f"{request.client} Stop Waiting")
|
||||
quick_log(
|
||||
request,
|
||||
None,
|
||||
"Stop Waiting. RequestsNum: " + str(requests_num),
|
||||
)
|
||||
return
|
||||
quick_log(
|
||||
request,
|
||||
None,
|
||||
"Stop Waiting. RequestsNum: " + str(requests_num),
|
||||
"Finished. RequestsNum: " + str(requests_num),
|
||||
)
|
||||
return
|
||||
quick_log(
|
||||
request,
|
||||
None,
|
||||
"Finished. RequestsNum: " + str(requests_num),
|
||||
)
|
||||
|
||||
ret_data = [
|
||||
{
|
||||
"object": "embedding",
|
||||
"index": i,
|
||||
"embedding": embedding,
|
||||
ret_data = [
|
||||
{
|
||||
"object": "embedding",
|
||||
"index": i,
|
||||
"embedding": embedding,
|
||||
}
|
||||
for i, embedding in enumerate(embeddings)
|
||||
]
|
||||
|
||||
return {
|
||||
"object": "list",
|
||||
"data": ret_data,
|
||||
"model": model.name,
|
||||
"usage": {
|
||||
"prompt_tokens": prompt_tokens,
|
||||
"total_tokens": prompt_tokens,
|
||||
},
|
||||
}
|
||||
for i, embedding in enumerate(embeddings)
|
||||
]
|
||||
|
||||
return {
|
||||
"object": "list",
|
||||
"data": ret_data,
|
||||
"model": model.name,
|
||||
"usage": {"prompt_tokens": prompt_tokens, "total_tokens": prompt_tokens},
|
||||
}
|
||||
|
||||
BIN
build/appicon.png
vendored
BIN
build/appicon.png
vendored
Binary file not shown.
|
Before Width: | Height: | Size: 120 KiB After Width: | Height: | Size: 83 KiB |
BIN
build/windows/icon.ico
vendored
BIN
build/windows/icon.ico
vendored
Binary file not shown.
|
Before Width: | Height: | Size: 167 KiB After Width: | Height: | Size: 175 KiB |
7
finetune/data/sample.jsonl
Normal file
7
finetune/data/sample.jsonl
Normal file
@@ -0,0 +1,7 @@
|
||||
{"text": "1:This is the first document."}
|
||||
{"text": "2:Hello\nWorld"}
|
||||
{"text": "3:1+1=2\n1+2=3\n2+2=4"}
|
||||
{"text": "4:You will be training the GPT version because it's paralleziable and faster to train."}
|
||||
{"text": "5:Read the inference code in src/model.py and try using the final hidden state(.xx .aa .bb)"}
|
||||
{"text": "6:You can fine-tune the model with longer ctxLen and it can quickly adapt to longer ctxLens."}
|
||||
{"text": "7:Consider RWKV 14B. The state has 200 vectors, that is, 5 vectors for each block: fp16 (xx), fp32 (aa), fp32 (bb), fp32 (pp), fp16 (xx)."}
|
||||
41
finetune/get_layer_and_embd.py
Normal file
41
finetune/get_layer_and_embd.py
Normal file
@@ -0,0 +1,41 @@
|
||||
import torch
|
||||
import sys
|
||||
import time
|
||||
import os
|
||||
import threading
|
||||
import gc
|
||||
|
||||
|
||||
def file_cleaner(file):
|
||||
last_pos = 0
|
||||
|
||||
def cleaner():
|
||||
nonlocal last_pos
|
||||
while True:
|
||||
time.sleep(0.1)
|
||||
pos = file.tell()
|
||||
if pos > last_pos:
|
||||
os.posix_fadvise(
|
||||
file.fileno(), last_pos, pos - last_pos, os.POSIX_FADV_DONTNEED
|
||||
)
|
||||
last_pos = pos
|
||||
|
||||
return cleaner
|
||||
|
||||
|
||||
model_file = open(sys.argv[1], "rb")
|
||||
cleaner = file_cleaner(model_file)
|
||||
cleaner_thread = threading.Thread(target=cleaner, daemon=True)
|
||||
cleaner_thread.start()
|
||||
|
||||
w = torch.load(model_file, map_location="cpu")
|
||||
gc.collect()
|
||||
|
||||
n_embd = w["emb.weight"].shape[1]
|
||||
n_layer = 0
|
||||
keys = list(w.keys())
|
||||
for x in keys:
|
||||
layer_id = int(x.split(".")[1]) if ("blocks." in x) else 0
|
||||
n_layer = max(n_layer, layer_id + 1)
|
||||
|
||||
print(f"--n_layer {n_layer} --n_embd {n_embd}", end="")
|
||||
52
finetune/install-wsl-dep-and-train.sh
Normal file
52
finetune/install-wsl-dep-and-train.sh
Normal file
@@ -0,0 +1,52 @@
|
||||
if [[ ${cnMirror} == 1 ]]; then
|
||||
export PIP_INDEX_URL="https://pypi.tuna.tsinghua.edu.cn/simple"
|
||||
if grep -q "mirrors.aliyun.com" /etc/apt/sources.list; then
|
||||
echo "apt cnMirror already set"
|
||||
else
|
||||
sudo sed -i 's/http:\/\/archive.ubuntu.com\/ubuntu\//http:\/\/mirrors.aliyun.com\/ubuntu\//g' /etc/apt/sources.list
|
||||
sudo apt update
|
||||
fi
|
||||
fi
|
||||
|
||||
if dpkg -s "gcc" >/dev/null 2>&1; then
|
||||
echo "gcc installed"
|
||||
else
|
||||
sudo apt -y install gcc
|
||||
fi
|
||||
|
||||
if dpkg -s "python3-pip" >/dev/null 2>&1; then
|
||||
echo "pip installed"
|
||||
else
|
||||
sudo apt -y install python3-pip
|
||||
fi
|
||||
|
||||
if dpkg -s "ninja-build" >/dev/null 2>&1; then
|
||||
echo "ninja installed"
|
||||
else
|
||||
sudo apt -y install ninja-build
|
||||
fi
|
||||
|
||||
if dpkg -s "cuda" >/dev/null 2>&1 && dpkg -s "cuda" | grep Version | awk '{print $2}' | grep -q "12"; then
|
||||
echo "cuda 12 installed"
|
||||
else
|
||||
wget -N https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin
|
||||
sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600
|
||||
wget -N https://developer.download.nvidia.com/compute/cuda/12.2.0/local_installers/cuda-repo-wsl-ubuntu-12-2-local_12.2.0-1_amd64.deb
|
||||
sudo dpkg -i cuda-repo-wsl-ubuntu-12-2-local_12.2.0-1_amd64.deb
|
||||
sudo cp /var/cuda-repo-wsl-ubuntu-12-2-local/cuda-*-keyring.gpg /usr/share/keyrings/
|
||||
sudo apt-get update
|
||||
sudo apt-get -y install cuda
|
||||
fi
|
||||
|
||||
if python3 -c "import pkg_resources; pkg_resources.require(open('./finetune/requirements.txt',mode='r'))" &>/dev/null; then
|
||||
echo "requirements satisfied"
|
||||
else
|
||||
python3 -m pip install -r ./finetune/requirements.txt
|
||||
fi
|
||||
|
||||
echo "loading $loadModel"
|
||||
modelInfo=$(python3 ./finetune/get_layer_and_embd.py $loadModel)
|
||||
echo $modelInfo
|
||||
|
||||
python3 ./finetune/lora/train.py $modelInfo $@ --proj_dir lora-models --data_type binidx --lora \
|
||||
--lora_parts=att,ffn,time,ln --strategy deepspeed_stage_2 --accelerator gpu
|
||||
597
finetune/json2binidx_tool/tools/indexed_dataset.py
vendored
Normal file
597
finetune/json2binidx_tool/tools/indexed_dataset.py
vendored
Normal file
@@ -0,0 +1,597 @@
|
||||
# Copyright (c) 2021, EleutherAI
|
||||
# This file is based on code by the authors denoted below and has been modified from its original version.
|
||||
#
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
#
|
||||
# This source code is licensed under the MIT license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
|
||||
# copied from fairseq/fairseq/data/indexed_dataset.py
|
||||
# Removed IndexedRawTextDataset since it relied on Fairseq dictionary
|
||||
# other slight modifications to remove fairseq dependencies
|
||||
# Added document index to index file and made it accessible.
|
||||
# An empty sentence no longer separates documents.
|
||||
|
||||
import os
|
||||
import shutil
|
||||
import struct
|
||||
from functools import lru_cache
|
||||
from itertools import accumulate
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
|
||||
|
||||
|
||||
def __best_fitting_dtype(vocab_size=None):
|
||||
if vocab_size is not None and vocab_size < 65500:
|
||||
return np.uint16
|
||||
else:
|
||||
return np.int32
|
||||
|
||||
|
||||
def infer_dataset_impl(path):
|
||||
if IndexedDataset.exists(path):
|
||||
with open(index_file_path(path), "rb") as f:
|
||||
magic = f.read(8)
|
||||
if magic == IndexedDataset._HDR_MAGIC:
|
||||
return "cached"
|
||||
elif magic == MMapIndexedDataset.Index._HDR_MAGIC[:8]:
|
||||
return "mmap"
|
||||
else:
|
||||
return None
|
||||
else:
|
||||
print(f"Dataset does not exist: {path}")
|
||||
print(
|
||||
"Path should be a basename that both .idx and .bin can be appended to get full filenames."
|
||||
)
|
||||
return None
|
||||
|
||||
|
||||
def make_builder(out_file, impl, vocab_size=None):
|
||||
if impl == "mmap":
|
||||
return MMapIndexedDatasetBuilder(
|
||||
out_file, dtype=__best_fitting_dtype(vocab_size)
|
||||
)
|
||||
else:
|
||||
return IndexedDatasetBuilder(out_file)
|
||||
|
||||
|
||||
def make_dataset(path, impl, skip_warmup=False):
|
||||
if not IndexedDataset.exists(path):
|
||||
print(f"Dataset does not exist: {path}")
|
||||
print(
|
||||
"Path should be a basename that both .idx and .bin can be appended to get full filenames."
|
||||
)
|
||||
return None
|
||||
if impl == "infer":
|
||||
impl = infer_dataset_impl(path)
|
||||
if impl == "lazy" and IndexedDataset.exists(path):
|
||||
return IndexedDataset(path)
|
||||
elif impl == "cached" and IndexedDataset.exists(path):
|
||||
return IndexedCachedDataset(path)
|
||||
elif impl == "mmap" and MMapIndexedDataset.exists(path):
|
||||
return MMapIndexedDataset(path, skip_warmup)
|
||||
print(f"Unknown dataset implementation: {impl}")
|
||||
return None
|
||||
|
||||
|
||||
def dataset_exists(path, impl):
|
||||
if impl == "mmap":
|
||||
return MMapIndexedDataset.exists(path)
|
||||
else:
|
||||
return IndexedDataset.exists(path)
|
||||
|
||||
|
||||
def read_longs(f, n):
|
||||
a = np.empty(n, dtype=np.int64)
|
||||
f.readinto(a)
|
||||
return a
|
||||
|
||||
|
||||
def write_longs(f, a):
|
||||
f.write(np.array(a, dtype=np.int64))
|
||||
|
||||
|
||||
dtypes = {
|
||||
1: np.uint8,
|
||||
2: np.int8,
|
||||
3: np.int16,
|
||||
4: np.int32,
|
||||
5: np.int64,
|
||||
6: np.float32,
|
||||
7: np.float64,
|
||||
8: np.uint16,
|
||||
}
|
||||
|
||||
|
||||
def code(dtype):
|
||||
for k in dtypes.keys():
|
||||
if dtypes[k] == dtype:
|
||||
return k
|
||||
raise ValueError(dtype)
|
||||
|
||||
|
||||
def index_file_path(prefix_path):
|
||||
return prefix_path + ".idx"
|
||||
|
||||
|
||||
def data_file_path(prefix_path):
|
||||
return prefix_path + ".bin"
|
||||
|
||||
|
||||
def create_doc_idx(sizes):
|
||||
doc_idx = [0]
|
||||
for i, s in enumerate(sizes):
|
||||
if s == 0:
|
||||
doc_idx.append(i + 1)
|
||||
return doc_idx
|
||||
|
||||
|
||||
class IndexedDataset(torch.utils.data.Dataset):
|
||||
"""Loader for IndexedDataset"""
|
||||
|
||||
_HDR_MAGIC = b"TNTIDX\x00\x00"
|
||||
|
||||
def __init__(self, path):
|
||||
super().__init__()
|
||||
self.path = path
|
||||
self.data_file = None
|
||||
self.read_index(path)
|
||||
|
||||
def read_index(self, path):
|
||||
with open(index_file_path(path), "rb") as f:
|
||||
magic = f.read(8)
|
||||
assert magic == self._HDR_MAGIC, (
|
||||
"Index file doesn't match expected format. "
|
||||
"Make sure that --dataset-impl is configured properly."
|
||||
)
|
||||
version = f.read(8)
|
||||
assert struct.unpack("<Q", version) == (1,)
|
||||
code, self.element_size = struct.unpack("<QQ", f.read(16))
|
||||
self.dtype = dtypes[code]
|
||||
self._len, self.s = struct.unpack("<QQ", f.read(16))
|
||||
self.doc_count = struct.unpack("<Q", f.read(8))
|
||||
self.dim_offsets = read_longs(f, self._len + 1)
|
||||
self.data_offsets = read_longs(f, self._len + 1)
|
||||
self.sizes = read_longs(f, self.s)
|
||||
self.doc_idx = read_longs(f, self.doc_count)
|
||||
|
||||
def read_data(self, path):
|
||||
self.data_file = open(data_file_path(path), "rb", buffering=0)
|
||||
|
||||
def check_index(self, i):
|
||||
if i < 0 or i >= self._len:
|
||||
raise IndexError("index out of range")
|
||||
|
||||
def __del__(self):
|
||||
if self.data_file:
|
||||
self.data_file.close()
|
||||
|
||||
# @lru_cache(maxsize=8)
|
||||
def __getitem__(self, idx):
|
||||
if not self.data_file:
|
||||
self.read_data(self.path)
|
||||
if isinstance(idx, int):
|
||||
i = idx
|
||||
self.check_index(i)
|
||||
tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]]
|
||||
a = np.empty(tensor_size, dtype=self.dtype)
|
||||
self.data_file.seek(self.data_offsets[i] * self.element_size)
|
||||
self.data_file.readinto(a)
|
||||
return a
|
||||
elif isinstance(idx, slice):
|
||||
start, stop, step = idx.indices(len(self))
|
||||
if step != 1:
|
||||
raise ValueError("Slices into indexed_dataset must be contiguous")
|
||||
sizes = self.sizes[self.dim_offsets[start] : self.dim_offsets[stop]]
|
||||
size = sum(sizes)
|
||||
a = np.empty(size, dtype=self.dtype)
|
||||
self.data_file.seek(self.data_offsets[start] * self.element_size)
|
||||
self.data_file.readinto(a)
|
||||
offsets = list(accumulate(sizes))
|
||||
sents = np.split(a, offsets[:-1])
|
||||
return sents
|
||||
|
||||
def __len__(self):
|
||||
return self._len
|
||||
|
||||
def num_tokens(self, index):
|
||||
return self.sizes[index]
|
||||
|
||||
def size(self, index):
|
||||
return self.sizes[index]
|
||||
|
||||
@staticmethod
|
||||
def exists(path):
|
||||
return os.path.exists(index_file_path(path)) and os.path.exists(
|
||||
data_file_path(path)
|
||||
)
|
||||
|
||||
@property
|
||||
def supports_prefetch(self):
|
||||
return False # avoid prefetching to save memory
|
||||
|
||||
|
||||
class IndexedCachedDataset(IndexedDataset):
|
||||
def __init__(self, path):
|
||||
super().__init__(path)
|
||||
self.cache = None
|
||||
self.cache_index = {}
|
||||
|
||||
@property
|
||||
def supports_prefetch(self):
|
||||
return True
|
||||
|
||||
def prefetch(self, indices):
|
||||
if all(i in self.cache_index for i in indices):
|
||||
return
|
||||
if not self.data_file:
|
||||
self.read_data(self.path)
|
||||
indices = sorted(set(indices))
|
||||
total_size = 0
|
||||
for i in indices:
|
||||
total_size += self.data_offsets[i + 1] - self.data_offsets[i]
|
||||
self.cache = np.empty(total_size, dtype=self.dtype)
|
||||
ptx = 0
|
||||
self.cache_index.clear()
|
||||
for i in indices:
|
||||
self.cache_index[i] = ptx
|
||||
size = self.data_offsets[i + 1] - self.data_offsets[i]
|
||||
a = self.cache[ptx : ptx + size]
|
||||
self.data_file.seek(self.data_offsets[i] * self.element_size)
|
||||
self.data_file.readinto(a)
|
||||
ptx += size
|
||||
if self.data_file:
|
||||
# close and delete data file after prefetch so we can pickle
|
||||
self.data_file.close()
|
||||
self.data_file = None
|
||||
|
||||
# @lru_cache(maxsize=8)
|
||||
def __getitem__(self, idx):
|
||||
if isinstance(idx, int):
|
||||
i = idx
|
||||
self.check_index(i)
|
||||
tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]]
|
||||
a = np.empty(tensor_size, dtype=self.dtype)
|
||||
ptx = self.cache_index[i]
|
||||
np.copyto(a, self.cache[ptx : ptx + a.size])
|
||||
return a
|
||||
elif isinstance(idx, slice):
|
||||
# Hack just to make this work, can optimizer later if necessary
|
||||
sents = []
|
||||
for i in range(*idx.indices(len(self))):
|
||||
sents.append(self[i])
|
||||
return sents
|
||||
|
||||
|
||||
class IndexedDatasetBuilder(object):
|
||||
element_sizes = {
|
||||
np.uint8: 1,
|
||||
np.int8: 1,
|
||||
np.int16: 2,
|
||||
np.int32: 4,
|
||||
np.int64: 8,
|
||||
np.float32: 4,
|
||||
np.float64: 8,
|
||||
}
|
||||
|
||||
def __init__(self, out_file, dtype=np.int32):
|
||||
self.out_file = open(out_file, "wb")
|
||||
self.dtype = dtype
|
||||
self.data_offsets = [0]
|
||||
self.dim_offsets = [0]
|
||||
self.sizes = []
|
||||
self.element_size = self.element_sizes[self.dtype]
|
||||
self.doc_idx = [0]
|
||||
|
||||
def add_item(self, np_array):
|
||||
assert isinstance(np_array, np.ndarray) and np_array.dtype == self.dtype
|
||||
bytes = self.out_file.write(np_array)
|
||||
self.data_offsets.append(self.data_offsets[-1] + bytes / self.element_size)
|
||||
for s in np_array.shape:
|
||||
self.sizes.append(s)
|
||||
self.dim_offsets.append(self.dim_offsets[-1] + len(np_array.shape))
|
||||
|
||||
def end_document(self):
|
||||
self.doc_idx.append(len(self.sizes))
|
||||
|
||||
def merge_file_(self, another_file):
|
||||
index = IndexedDataset(another_file)
|
||||
assert index.dtype == self.dtype
|
||||
|
||||
begin = self.data_offsets[-1]
|
||||
for offset in index.data_offsets[1:]:
|
||||
self.data_offsets.append(begin + offset)
|
||||
self.sizes.extend(index.sizes)
|
||||
begin = self.dim_offsets[-1]
|
||||
for dim_offset in index.dim_offsets[1:]:
|
||||
self.dim_offsets.append(begin + dim_offset)
|
||||
|
||||
with open(data_file_path(another_file), "rb") as f:
|
||||
while True:
|
||||
data = f.read(1024)
|
||||
if data:
|
||||
self.out_file.write(data)
|
||||
else:
|
||||
break
|
||||
|
||||
def finalize(self, index_file):
|
||||
self.out_file.close()
|
||||
index = open(index_file, "wb")
|
||||
index.write(b"TNTIDX\x00\x00")
|
||||
index.write(struct.pack("<Q", 1))
|
||||
index.write(struct.pack("<QQ", code(self.dtype), self.element_size))
|
||||
index.write(struct.pack("<QQ", len(self.data_offsets) - 1, len(self.sizes)))
|
||||
index.write(struct.pack("<Q", len(self.doc_idx)))
|
||||
write_longs(index, self.dim_offsets)
|
||||
write_longs(index, self.data_offsets)
|
||||
write_longs(index, self.sizes)
|
||||
write_longs(index, self.doc_idx)
|
||||
index.close()
|
||||
|
||||
|
||||
def _warmup_mmap_file(path):
|
||||
with open(path, "rb") as stream:
|
||||
while stream.read(100 * 1024 * 1024):
|
||||
pass
|
||||
|
||||
|
||||
class MMapIndexedDataset(torch.utils.data.Dataset):
|
||||
class Index(object):
|
||||
_HDR_MAGIC = b"MMIDIDX\x00\x00"
|
||||
|
||||
@classmethod
|
||||
def writer(cls, path, dtype):
|
||||
class _Writer(object):
|
||||
def __enter__(self):
|
||||
self._file = open(path, "wb")
|
||||
|
||||
# Write Magic string so we can check the file format then opening it again.
|
||||
self._file.write(cls._HDR_MAGIC)
|
||||
# Write version number
|
||||
# Little endian unsigned 64 Bit integer
|
||||
self._file.write(struct.pack("<Q", 1))
|
||||
# Little endian unsigned 8 Bit integer
|
||||
self._file.write(struct.pack("<B", code(dtype)))
|
||||
|
||||
return self
|
||||
|
||||
@staticmethod
|
||||
def _get_pointers(sizes):
|
||||
pointers = np.zeros(len(sizes), dtype=np.int64)
|
||||
sizes = np.array(sizes, dtype=np.int64)
|
||||
|
||||
np.cumsum(sizes[:-1], out=pointers[1:])
|
||||
pointers = pointers * dtype().itemsize
|
||||
return pointers
|
||||
|
||||
def write(self, sizes, doc_idx):
|
||||
pointers = self._get_pointers(sizes)
|
||||
|
||||
# Little endian unsigned 64 Bit integer
|
||||
self._file.write(struct.pack("<Q", len(sizes)))
|
||||
# Little endian unsigned 64 Bit integer
|
||||
self._file.write(struct.pack("<Q", len(doc_idx)))
|
||||
|
||||
sizes = np.array(sizes, dtype=np.int32)
|
||||
self._file.write(sizes.tobytes(order="C"))
|
||||
del sizes
|
||||
|
||||
pointers = np.array(pointers, dtype=np.int64)
|
||||
self._file.write(pointers.tobytes(order="C"))
|
||||
del pointers
|
||||
|
||||
doc_idx = np.array(doc_idx, dtype=np.int64)
|
||||
self._file.write(doc_idx.tobytes(order="C"))
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
self._file.close()
|
||||
|
||||
return _Writer()
|
||||
|
||||
def __init__(self, path, skip_warmup=False):
|
||||
with open(path, "rb") as stream:
|
||||
magic_test = stream.read(9)
|
||||
assert self._HDR_MAGIC == magic_test, (
|
||||
"Index file doesn't match expected format. "
|
||||
"Make sure that --dataset-impl is configured properly."
|
||||
)
|
||||
# Little endian unsigned 64 Bit integer
|
||||
version = struct.unpack("<Q", stream.read(8))
|
||||
assert (1,) == version
|
||||
|
||||
# Little endian unsigned 8 Bit integer
|
||||
(dtype_code,) = struct.unpack("<B", stream.read(1))
|
||||
self._dtype = dtypes[dtype_code]
|
||||
self._dtype_size = self._dtype().itemsize
|
||||
|
||||
self._len = struct.unpack("<Q", stream.read(8))[0]
|
||||
self._doc_count = struct.unpack("<Q", stream.read(8))[0]
|
||||
offset = stream.tell()
|
||||
|
||||
if not skip_warmup:
|
||||
print(" warming up index mmap file...")
|
||||
_warmup_mmap_file(path)
|
||||
|
||||
self._bin_buffer_mmap = np.memmap(path, mode="r", order="C")
|
||||
self._bin_buffer = memoryview(self._bin_buffer_mmap)
|
||||
print(" reading sizes...")
|
||||
self._sizes = np.frombuffer(
|
||||
self._bin_buffer, dtype=np.int32, count=self._len, offset=offset
|
||||
)
|
||||
print(" reading pointers...")
|
||||
self._pointers = np.frombuffer(
|
||||
self._bin_buffer,
|
||||
dtype=np.int64,
|
||||
count=self._len,
|
||||
offset=offset + self._sizes.nbytes,
|
||||
)
|
||||
print(" reading document index...")
|
||||
self._doc_idx = np.frombuffer(
|
||||
self._bin_buffer,
|
||||
dtype=np.int64,
|
||||
count=self._doc_count,
|
||||
offset=offset + self._sizes.nbytes + self._pointers.nbytes,
|
||||
)
|
||||
|
||||
def __del__(self):
|
||||
self._bin_buffer_mmap._mmap.close()
|
||||
del self._bin_buffer_mmap
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
return self._dtype
|
||||
|
||||
@property
|
||||
def sizes(self):
|
||||
return self._sizes
|
||||
|
||||
@property
|
||||
def doc_idx(self):
|
||||
return self._doc_idx
|
||||
|
||||
@lru_cache(maxsize=8)
|
||||
def __getitem__(self, i):
|
||||
return self._pointers[i], self._sizes[i]
|
||||
|
||||
def __len__(self):
|
||||
return self._len
|
||||
|
||||
def __init__(self, path, skip_warmup=False):
|
||||
super().__init__()
|
||||
|
||||
self._path = None
|
||||
self._index = None
|
||||
self._bin_buffer = None
|
||||
|
||||
self._do_init(path, skip_warmup)
|
||||
|
||||
def __getstate__(self):
|
||||
return self._path
|
||||
|
||||
def __setstate__(self, state):
|
||||
self._do_init(state)
|
||||
|
||||
def _do_init(self, path, skip_warmup):
|
||||
self._path = path
|
||||
self._index = self.Index(index_file_path(self._path), skip_warmup)
|
||||
|
||||
if not skip_warmup:
|
||||
print(" warming up data mmap file...")
|
||||
_warmup_mmap_file(data_file_path(self._path))
|
||||
print(" creating numpy buffer of mmap...")
|
||||
self._bin_buffer_mmap = np.memmap(
|
||||
data_file_path(self._path), mode="r", order="C"
|
||||
)
|
||||
print(" creating memory view of numpy buffer...")
|
||||
self._bin_buffer = memoryview(self._bin_buffer_mmap)
|
||||
|
||||
def __del__(self):
|
||||
self._bin_buffer_mmap._mmap.close()
|
||||
del self._bin_buffer_mmap
|
||||
del self._index
|
||||
|
||||
def __len__(self):
|
||||
return len(self._index)
|
||||
|
||||
# @lru_cache(maxsize=8)
|
||||
def __getitem__(self, idx):
|
||||
if isinstance(idx, int):
|
||||
ptr, size = self._index[idx]
|
||||
np_array = np.frombuffer(
|
||||
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
|
||||
)
|
||||
return np_array
|
||||
elif isinstance(idx, slice):
|
||||
start, stop, step = idx.indices(len(self))
|
||||
if step != 1:
|
||||
raise ValueError("Slices into indexed_dataset must be contiguous")
|
||||
ptr = self._index._pointers[start]
|
||||
sizes = self._index._sizes[idx]
|
||||
offsets = list(accumulate(sizes))
|
||||
total_size = sum(sizes)
|
||||
np_array = np.frombuffer(
|
||||
self._bin_buffer, dtype=self._index.dtype, count=total_size, offset=ptr
|
||||
)
|
||||
sents = np.split(np_array, offsets[:-1])
|
||||
return sents
|
||||
|
||||
def get(self, idx, offset=0, length=None):
|
||||
"""Retrieves a single item from the dataset with the option to only
|
||||
return a portion of the item.
|
||||
|
||||
get(idx) is the same as [idx] but get() does not support slicing.
|
||||
"""
|
||||
ptr, size = self._index[idx]
|
||||
if length is None:
|
||||
length = size - offset
|
||||
ptr += offset * np.dtype(self._index.dtype).itemsize
|
||||
np_array = np.frombuffer(
|
||||
self._bin_buffer, dtype=self._index.dtype, count=length, offset=ptr
|
||||
)
|
||||
return np_array
|
||||
|
||||
@property
|
||||
def sizes(self):
|
||||
return self._index.sizes
|
||||
|
||||
@property
|
||||
def doc_idx(self):
|
||||
return self._index.doc_idx
|
||||
|
||||
def get_doc_idx(self):
|
||||
return self._index._doc_idx
|
||||
|
||||
def set_doc_idx(self, doc_idx_):
|
||||
self._index._doc_idx = doc_idx_
|
||||
|
||||
@property
|
||||
def supports_prefetch(self):
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def exists(path):
|
||||
return os.path.exists(index_file_path(path)) and os.path.exists(
|
||||
data_file_path(path)
|
||||
)
|
||||
|
||||
|
||||
class MMapIndexedDatasetBuilder(object):
|
||||
def __init__(self, out_file, dtype=np.int64):
|
||||
self._data_file = open(out_file, "wb")
|
||||
self._dtype = dtype
|
||||
self._sizes = []
|
||||
self._doc_idx = [0]
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
return self._dtype
|
||||
|
||||
def add_item(self, np_array):
|
||||
assert isinstance(np_array, np.ndarray) and np_array.dtype == self.dtype
|
||||
self._data_file.write(np_array.tobytes(order="C"))
|
||||
self._sizes.append(np_array.size)
|
||||
|
||||
def end_document(self):
|
||||
self._doc_idx.append(len(self._sizes))
|
||||
|
||||
def merge_file_(self, another_file):
|
||||
# Concatenate index
|
||||
index = MMapIndexedDataset.Index(index_file_path(another_file))
|
||||
assert index.dtype == self._dtype
|
||||
|
||||
for size in index.sizes:
|
||||
self._sizes.append(size)
|
||||
|
||||
# Concatenate data
|
||||
with open(data_file_path(another_file), "rb") as f:
|
||||
shutil.copyfileobj(f, self._data_file)
|
||||
|
||||
def finalize(self, index_file):
|
||||
self._data_file.close()
|
||||
|
||||
with MMapIndexedDataset.Index.writer(index_file, self._dtype) as index:
|
||||
index.write(self._sizes, self._doc_idx)
|
||||
250
finetune/json2binidx_tool/tools/preprocess_data.py
vendored
Normal file
250
finetune/json2binidx_tool/tools/preprocess_data.py
vendored
Normal file
@@ -0,0 +1,250 @@
|
||||
# Copyright (c) 2021, EleutherAI
|
||||
# This file is based on code by the authors denoted below and has been modified from its original version.
|
||||
#
|
||||
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Processing data for pretraining."""
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
|
||||
|
||||
import argparse
|
||||
import multiprocessing
|
||||
|
||||
import lm_dataformat as lmd
|
||||
import numpy as np
|
||||
|
||||
sys.path.append(
|
||||
os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))
|
||||
)
|
||||
import time
|
||||
import tqdm
|
||||
import ftfy
|
||||
|
||||
from tokenizer import build_tokenizer
|
||||
import indexed_dataset
|
||||
from threading import Semaphore
|
||||
|
||||
|
||||
class Encoder(object):
|
||||
def __init__(self, args):
|
||||
self.args = args
|
||||
|
||||
def initializer(self):
|
||||
# Use Encoder class as a container for global data
|
||||
Encoder.tokenizer = build_tokenizer(self.args)
|
||||
|
||||
def encode(self, text):
|
||||
if self.args.ftfy:
|
||||
text = ftfy.fix_text(text)
|
||||
ids = {}
|
||||
for key in self.args.jsonl_keys:
|
||||
doc_ids = []
|
||||
text_ids = Encoder.tokenizer.tokenize(text)
|
||||
if len(text_ids) > 0:
|
||||
doc_ids.append(text_ids)
|
||||
if self.args.append_eod:
|
||||
doc_ids[-1].append(Encoder.tokenizer.eod)
|
||||
ids[key] = doc_ids
|
||||
return ids, len(text)
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
group = parser.add_argument_group(title="input data")
|
||||
group.add_argument(
|
||||
"--input",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to input jsonl files or lmd archive(s) - if using multiple archives, put them in a comma separated "
|
||||
"list",
|
||||
)
|
||||
group.add_argument(
|
||||
"--jsonl-keys",
|
||||
nargs="+",
|
||||
default=["text"],
|
||||
help="space separate listed of keys to extract from jsonl. Defa",
|
||||
)
|
||||
group.add_argument(
|
||||
"--num-docs",
|
||||
default=None,
|
||||
help="Optional: Number of documents in the input data (if known) for an accurate progress bar.",
|
||||
type=int,
|
||||
)
|
||||
group = parser.add_argument_group(title="tokenizer")
|
||||
group.add_argument(
|
||||
"--tokenizer-type",
|
||||
type=str,
|
||||
required=True,
|
||||
choices=[
|
||||
"HFGPT2Tokenizer",
|
||||
"HFTokenizer",
|
||||
"GPT2BPETokenizer",
|
||||
"CharLevelTokenizer",
|
||||
"TiktokenTokenizer",
|
||||
"RWKVTokenizer",
|
||||
],
|
||||
help="What type of tokenizer to use.",
|
||||
)
|
||||
group.add_argument(
|
||||
"--vocab-file", type=str, default=None, help="Path to the vocab file"
|
||||
)
|
||||
group.add_argument(
|
||||
"--merge-file",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Path to the BPE merge file (if necessary).",
|
||||
)
|
||||
group.add_argument(
|
||||
"--append-eod",
|
||||
action="store_true",
|
||||
help="Append an <eod> token to the end of a document.",
|
||||
)
|
||||
group.add_argument("--ftfy", action="store_true", help="Use ftfy to clean text")
|
||||
group = parser.add_argument_group(title="output data")
|
||||
group.add_argument(
|
||||
"--output-prefix",
|
||||
type=str,
|
||||
required=True,
|
||||
help="Path to binary output file without suffix",
|
||||
)
|
||||
group.add_argument(
|
||||
"--dataset-impl",
|
||||
type=str,
|
||||
default="mmap",
|
||||
choices=["lazy", "cached", "mmap"],
|
||||
help="Dataset implementation to use. Default: mmap",
|
||||
)
|
||||
|
||||
group = parser.add_argument_group(title="runtime")
|
||||
group.add_argument(
|
||||
"--workers", type=int, default=1, help="Number of worker processes to launch"
|
||||
)
|
||||
group.add_argument(
|
||||
"--log-interval",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Interval between progress updates",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
args.keep_empty = False
|
||||
|
||||
# some default/dummy values for the tokenizer
|
||||
args.rank = 0
|
||||
args.make_vocab_size_divisible_by = 128
|
||||
args.model_parallel_size = 1
|
||||
|
||||
return args
|
||||
|
||||
|
||||
def yield_from_files(fnames: list, semaphore):
|
||||
"""
|
||||
Iterator over input documents using lm_dataformat. Should be able to handle jsons / texts /
|
||||
other compressed formats. Also filters out empty documents.
|
||||
|
||||
:param fnames: list of filenames
|
||||
"""
|
||||
|
||||
def yielder(fname, semaphore):
|
||||
for f in filter(lambda x: x, lmd.Reader(fname).stream_data()):
|
||||
semaphore.acquire()
|
||||
yield f
|
||||
|
||||
for fname in fnames:
|
||||
semaphore.acquire()
|
||||
|
||||
yield from yielder(fname, semaphore)
|
||||
|
||||
|
||||
def main():
|
||||
args = get_args()
|
||||
encoder = Encoder(args)
|
||||
tokenizer = build_tokenizer(args)
|
||||
print(f"Vocab size: {tokenizer.vocab_size}")
|
||||
print(f"Output prefix: {args.output_prefix}")
|
||||
|
||||
# build a semaphore object to stop `yield_from_files` from getting ahead of encoder.encode and
|
||||
# hence building up memory
|
||||
semaphore = Semaphore(10000 + args.workers)
|
||||
|
||||
# use multiprocessing to iterate over input documents
|
||||
fin = yield_from_files(args.input.split(","), semaphore)
|
||||
|
||||
if args.workers > 1:
|
||||
pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer)
|
||||
encoded_docs = pool.imap(encoder.encode, fin, chunksize=25)
|
||||
else:
|
||||
encoder.initializer()
|
||||
encoded_docs = (encoder.encode(doc) for doc in fin)
|
||||
|
||||
# make a dataset builder for each key in args.jsonl_keys
|
||||
# each key will output to a different file beginning with args.output_prefix
|
||||
output_bin_files = {}
|
||||
output_idx_files = {}
|
||||
builders = {}
|
||||
for key in args.jsonl_keys:
|
||||
output_bin_files[key] = "{}_{}_{}.bin".format(
|
||||
args.output_prefix, key, "document"
|
||||
)
|
||||
output_idx_files[key] = "{}_{}_{}.idx".format(
|
||||
args.output_prefix, key, "document"
|
||||
)
|
||||
builders[key] = indexed_dataset.make_builder(
|
||||
output_bin_files[key],
|
||||
impl=args.dataset_impl,
|
||||
vocab_size=tokenizer.vocab_size,
|
||||
)
|
||||
|
||||
# actually do tokenization
|
||||
proc_start = time.time()
|
||||
total_bytes_processed = 0
|
||||
pbar = tqdm.tqdm()
|
||||
for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1):
|
||||
total_bytes_processed += bytes_processed
|
||||
|
||||
# release semaphore so `yield_from_files` can add another file to the buffer
|
||||
semaphore.release()
|
||||
|
||||
# add each tokenized document / sentence
|
||||
for key, sentences in doc.items():
|
||||
for sentence in sentences:
|
||||
builders[key].add_item(np.array(sentence, dtype=builders[key].dtype))
|
||||
# separate with eos token
|
||||
builders[key].end_document()
|
||||
|
||||
# log progress
|
||||
if i % args.log_interval == 0:
|
||||
current = time.time()
|
||||
elapsed = current - proc_start
|
||||
mbs = total_bytes_processed / elapsed / 1024 / 1024
|
||||
pbar.set_description(
|
||||
f"Processed {i}{'' if args.num_docs is None else '/' + str(args.num_docs)} documents ({i / elapsed:0.2f} docs/s, {mbs:0.2f} MB/s)."
|
||||
)
|
||||
if i != 0:
|
||||
pbar.update(args.log_interval)
|
||||
|
||||
# save output file
|
||||
for key in args.jsonl_keys:
|
||||
builders[key].finalize(output_idx_files[key])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
try:
|
||||
main()
|
||||
except Exception as e:
|
||||
with open("error.txt", "w") as f:
|
||||
f.write(str(e))
|
||||
232
finetune/json2binidx_tool/tools/rwkv_tokenizer.py
vendored
Normal file
232
finetune/json2binidx_tool/tools/rwkv_tokenizer.py
vendored
Normal file
@@ -0,0 +1,232 @@
|
||||
########################################################################################################
|
||||
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
|
||||
# Source: https://github.com/BlinkDL/ChatRWKV/blob/main/tokenizer/rwkv_tokenizer.py
|
||||
########################################################################################################
|
||||
|
||||
import os, sys, time, random
|
||||
|
||||
print('''
|
||||
#######################################################################################################################
|
||||
|
||||
This tokenizer is not used in any RWKV models yet. I plan to use it for the future multilang RWKV models.
|
||||
|
||||
Benefits:
|
||||
|
||||
* Good support of most languages, from European to CJK to Arabic and Hindi and more.
|
||||
|
||||
* Clean vocab. Good for code too. Vocab size = 65525 (use 0 for <|endoftext|>).
|
||||
|
||||
* Good at numbers: the numerical tokens are '0'~'9', '10'~'99', ' 0'~' 9', ' 10'~' 99'.
|
||||
|
||||
* Very easy tokenization:
|
||||
|
||||
** The input text must be in UTF-8.
|
||||
|
||||
** Greedy encoding: always pick the longest (in bytes) token (with the highest id) that matches your UTF-8 bytes.
|
||||
|
||||
* The tokenization result is surprisingly good, because the vocab respects word boundaries and UTF-8 boundaries.
|
||||
|
||||
For 10x faster speed:
|
||||
mypyc rwkv_tokenizer.py
|
||||
python3 -c "import rwkv_tokenizer"
|
||||
|
||||
#######################################################################################################################
|
||||
''')
|
||||
|
||||
########################################################################################################
|
||||
# Tokenizer #1 (reference, naive, slow)
|
||||
########################################################################################################
|
||||
|
||||
class RWKV_TOKENIZER():
|
||||
table = None # : list[list[list[bytes]]] = None
|
||||
good = None # : list[set[int]]
|
||||
wlen = None # : list[int]
|
||||
def __init__(self, file_name):
|
||||
self.vocab_size = 65525
|
||||
self.idx2token = {}
|
||||
sorted = [] # must be already sorted
|
||||
lines = open(file_name, "r", encoding="utf-8").readlines()
|
||||
for l in lines:
|
||||
idx = int(l[:l.index(' ')])
|
||||
x = eval(l[l.index(' '):l.rindex(' ')])
|
||||
x = x.encode("utf-8") if isinstance(x, str) else x
|
||||
assert isinstance(x, bytes)
|
||||
assert len(x) == int(l[l.rindex(' '):])
|
||||
sorted += [x]
|
||||
self.idx2token[idx] = x
|
||||
|
||||
self.token2idx = {}
|
||||
for k, v in self.idx2token.items():
|
||||
self.token2idx[v] = int(k)
|
||||
|
||||
# precompute some tables for fast matching
|
||||
self.table = [[[] for j in range(256)] for i in range(256)]
|
||||
self.good = [set() for i in range(256)]
|
||||
self.wlen = [0 for i in range(256)]
|
||||
|
||||
for i in reversed(range(len(sorted))): # reverse order - match longer tokens first
|
||||
s = sorted[i]
|
||||
if len(s) >= 2:
|
||||
s0 = int(s[0])
|
||||
s1 = int(s[1])
|
||||
self.table[s0][s1] += [s]
|
||||
self.wlen[s0] = max(self.wlen[s0], len(s))
|
||||
self.good[s0].add(s1)
|
||||
|
||||
def encodeBytes(self, src: bytes):
|
||||
src_len: int = len(src)
|
||||
tokens = []
|
||||
i: int = 0
|
||||
while i < src_len:
|
||||
s: bytes = src[i : i + 1]
|
||||
|
||||
if i < src_len - 1:
|
||||
s1: int = int(src[i + 1])
|
||||
s0: int = int(src[i])
|
||||
if s1 in self.good[s0]:
|
||||
sss: bytes = src[i : i + self.wlen[s0]]
|
||||
try:
|
||||
s = next(filter(sss.startswith, self.table[s0][s1]))
|
||||
except:
|
||||
pass
|
||||
tokens.append(self.token2idx[s])
|
||||
i += len(s)
|
||||
|
||||
return tokens
|
||||
|
||||
def decodeBytes(self, tokens):
|
||||
return b''.join(map(lambda i: self.idx2token[i], tokens))
|
||||
|
||||
def encode(self, src: str):
|
||||
return self.encodeBytes(src.encode("utf-8"))
|
||||
|
||||
def decode(self, tokens):
|
||||
return self.decodeBytes(tokens).decode('utf-8')
|
||||
|
||||
def token_to_id(self, token):
|
||||
return self.token2idx[token]
|
||||
|
||||
def get_vocab_size(self):
|
||||
return self.vocab_size
|
||||
|
||||
def get_vocab(self):
|
||||
return self.idx2token
|
||||
|
||||
def printTokens(self, tokens):
|
||||
for i in tokens:
|
||||
s = self.idx2token[i]
|
||||
try:
|
||||
s = s.decode('utf-8')
|
||||
except:
|
||||
pass
|
||||
print(f'{repr(s)}{i}', end=' ')
|
||||
# print(repr(s), i)
|
||||
print()
|
||||
|
||||
########################################################################################################
|
||||
# Tokenizer #2 (trie, faster) https://github.com/TkskKurumi/ChatRWKV-TRIE-Tokenizer
|
||||
########################################################################################################
|
||||
|
||||
class TRIE:
|
||||
__slots__ = tuple("ch,to,values,front".split(","))
|
||||
to:list
|
||||
values:set
|
||||
def __init__(self, front=None, ch=None):
|
||||
self.ch = ch
|
||||
self.to = [None for ch in range(256)]
|
||||
self.values = set()
|
||||
self.front = front
|
||||
|
||||
def __repr__(self):
|
||||
fr = self
|
||||
ret = []
|
||||
while(fr!=None):
|
||||
if(fr.ch!=None):
|
||||
ret.append(fr.ch)
|
||||
fr = fr.front
|
||||
return "<TRIE %s %s>"%(ret[::-1], self.values)
|
||||
|
||||
def add(self, key:bytes, idx:int=0, val=None):
|
||||
if(idx == len(key)):
|
||||
if(val is None):
|
||||
val = key
|
||||
self.values.add(val)
|
||||
return self
|
||||
ch = key[idx]
|
||||
if(self.to[ch] is None):
|
||||
self.to[ch] = TRIE(front=self, ch=ch)
|
||||
return self.to[ch].add(key, idx=idx+1, val=val)
|
||||
|
||||
def find_longest(self, key:bytes, idx:int=0):
|
||||
u:TRIE = self
|
||||
ch:int = key[idx]
|
||||
|
||||
while(u.to[ch] is not None):
|
||||
u = u.to[ch]
|
||||
idx += 1
|
||||
if(u.values):
|
||||
ret = idx, u, u.values
|
||||
if(idx==len(key)):
|
||||
break
|
||||
ch = key[idx]
|
||||
return ret
|
||||
|
||||
class TRIE_TOKENIZER():
|
||||
def __init__(self, file_name):
|
||||
self.vocab_size = 65525
|
||||
self.idx2token = {}
|
||||
sorted = [] # must be already sorted
|
||||
with open(file_name, "r", encoding="utf-8") as f:
|
||||
lines = f.readlines()
|
||||
for l in lines:
|
||||
idx = int(l[:l.index(' ')])
|
||||
x = eval(l[l.index(' '):l.rindex(' ')])
|
||||
x = x.encode("utf-8") if isinstance(x, str) else x
|
||||
assert isinstance(x, bytes)
|
||||
assert len(x) == int(l[l.rindex(' '):])
|
||||
sorted += [x]
|
||||
self.idx2token[idx] = x
|
||||
|
||||
self.token2idx = {}
|
||||
for k,v in self.idx2token.items():
|
||||
self.token2idx[v] = int(k)
|
||||
|
||||
self.root = TRIE()
|
||||
for t, i in self.token2idx.items():
|
||||
_ = self.root.add(t, val=(t, i))
|
||||
|
||||
def encodeBytes(self, src:bytes):
|
||||
idx:int = 0
|
||||
tokens = []
|
||||
while (idx < len(src)):
|
||||
_idx:int = idx
|
||||
idx, _, values = self.root.find_longest(src, idx)
|
||||
assert(idx != _idx)
|
||||
_, token = next(iter(values))
|
||||
tokens.append(token)
|
||||
return tokens
|
||||
|
||||
def decodeBytes(self, tokens):
|
||||
return b''.join(map(lambda i: self.idx2token[i], tokens))
|
||||
|
||||
def encode(self, src):
|
||||
return self.encodeBytes(src.encode("utf-8"))
|
||||
|
||||
def decode(self, tokens):
|
||||
return self.decodeBytes(tokens).decode('utf-8')
|
||||
|
||||
def get_vocab_size(self):
|
||||
return self.vocab_size
|
||||
|
||||
def get_vocab(self):
|
||||
return self.idx2token
|
||||
|
||||
def printTokens(self, tokens):
|
||||
for i in tokens:
|
||||
s = self.idx2token[i]
|
||||
try:
|
||||
s = s.decode('utf-8')
|
||||
except:
|
||||
pass
|
||||
print(f'{repr(s)}{i}', end=' ')
|
||||
print()
|
||||
205
finetune/json2binidx_tool/tools/tokenizer.py
vendored
Normal file
205
finetune/json2binidx_tool/tools/tokenizer.py
vendored
Normal file
@@ -0,0 +1,205 @@
|
||||
# Copyright (c) 2021, EleutherAI
|
||||
# This file is based on code by the authors denoted below and has been modified from its original version.
|
||||
#
|
||||
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Megatron tokenizers."""
|
||||
|
||||
from abc import ABC
|
||||
from abc import abstractmethod
|
||||
|
||||
from tokenizers import Tokenizer
|
||||
from rwkv_tokenizer import RWKV_TOKENIZER, TRIE_TOKENIZER
|
||||
|
||||
from typing import List, Union
|
||||
|
||||
|
||||
def build_tokenizer(args):
|
||||
"""Initialize tokenizer."""
|
||||
if args.rank == 0:
|
||||
print("> building {} tokenizer ...".format(args.tokenizer_type), flush=True)
|
||||
|
||||
# Select and instantiate the tokenizer.
|
||||
|
||||
if args.tokenizer_type.lower() == "HFTokenizer".lower():
|
||||
assert args.vocab_file is not None
|
||||
tokenizer = HFTokenizer(args.vocab_file)
|
||||
elif args.tokenizer_type.lower() == "RWKVTokenizer".lower():
|
||||
assert args.vocab_file is not None
|
||||
tokenizer = RWKVTokenizer(args.vocab_file)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"{} tokenizer is not " "implemented.".format(args.tokenizer_type)
|
||||
)
|
||||
|
||||
# Add vocab size.
|
||||
args.padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size, args)
|
||||
|
||||
return tokenizer
|
||||
|
||||
|
||||
def _vocab_size_with_padding(orig_vocab_size, args):
|
||||
"""Pad vocab size so it is divisible by model parallel size and
|
||||
still having GPU friendly size."""
|
||||
|
||||
after = orig_vocab_size
|
||||
multiple = args.make_vocab_size_divisible_by * args.model_parallel_size
|
||||
while (after % multiple) != 0:
|
||||
after += 1
|
||||
if args.rank == 0:
|
||||
print(
|
||||
" > padded vocab (size: {}) with {} dummy tokens "
|
||||
"(new size: {})".format(orig_vocab_size, after - orig_vocab_size, after),
|
||||
flush=True,
|
||||
)
|
||||
return after
|
||||
|
||||
|
||||
class AbstractTokenizer(ABC):
|
||||
"""Abstract class for tokenizer."""
|
||||
|
||||
def __init__(self, name):
|
||||
self.name = name
|
||||
super().__init__()
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def vocab_size(self):
|
||||
pass
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def vocab(self):
|
||||
"""Dictionary from vocab text token to id token."""
|
||||
pass
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def inv_vocab(self):
|
||||
"""Dictionary from vocab id token to text token."""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def tokenize(self, text):
|
||||
pass
|
||||
|
||||
def detokenize(self, token_ids):
|
||||
raise NotImplementedError(
|
||||
"detokenizer is not implemented for {} " "tokenizer".format(self.name)
|
||||
)
|
||||
|
||||
@property
|
||||
def cls(self):
|
||||
raise NotImplementedError(
|
||||
"CLS is not provided for {} " "tokenizer".format(self.name)
|
||||
)
|
||||
|
||||
@property
|
||||
def sep(self):
|
||||
raise NotImplementedError(
|
||||
"SEP is not provided for {} " "tokenizer".format(self.name)
|
||||
)
|
||||
|
||||
@property
|
||||
def pad(self):
|
||||
raise NotImplementedError(
|
||||
"PAD is not provided for {} " "tokenizer".format(self.name)
|
||||
)
|
||||
|
||||
@property
|
||||
def eod(self):
|
||||
raise NotImplementedError(
|
||||
"EOD is not provided for {} " "tokenizer".format(self.name)
|
||||
)
|
||||
|
||||
@property
|
||||
def mask(self):
|
||||
raise NotImplementedError(
|
||||
"MASK is not provided for {} " "tokenizer".format(self.name)
|
||||
)
|
||||
|
||||
|
||||
class HFTokenizer(AbstractTokenizer):
|
||||
"""Designed to Integrate HF's Tokenizer library."""
|
||||
|
||||
def __init__(self, vocab_file):
|
||||
name = "HFTokenizer"
|
||||
super().__init__(name)
|
||||
|
||||
self.tokenizer = Tokenizer.from_file(vocab_file)
|
||||
self.eod_id = self.tokenizer.token_to_id("<|endoftext|>")
|
||||
self.pad_id = self.tokenizer.token_to_id("<|padding|>")
|
||||
|
||||
@property
|
||||
def vocab_size(self):
|
||||
return self.tokenizer.get_vocab_size()
|
||||
|
||||
@property
|
||||
def vocab(self):
|
||||
return self.tokenizer.get_vocab()
|
||||
|
||||
@property
|
||||
def inv_vocab(self):
|
||||
return self.tokenizer.decoder
|
||||
|
||||
def tokenize(self, text: str):
|
||||
return self.tokenizer.encode(text).ids
|
||||
|
||||
def tokenize_batch(self, text_batch: Union[List[str], str]):
|
||||
return self.tokenizer.encode_batch(text_batch)
|
||||
|
||||
def detokenize(self, token_ids):
|
||||
return self.tokenizer.decode(token_ids)
|
||||
|
||||
@property
|
||||
def eod(self):
|
||||
return self.eod_id
|
||||
|
||||
|
||||
class RWKVTokenizer(AbstractTokenizer):
|
||||
"""RWKV Worlds Tokenizer."""
|
||||
|
||||
def __init__(self, vocab_file='rwkv_vocab_v20230424.txt'):
|
||||
name = "RWKVTokenizer"
|
||||
super().__init__(name)
|
||||
|
||||
self.tokenizer = TRIE_TOKENIZER(vocab_file)
|
||||
self.eod_id = 0 # self.tokenizer.token_to_id("<|endoftext|>")
|
||||
# self.pad_id = self.tokenizer.token_to_id("<|padding|>")
|
||||
|
||||
@property
|
||||
def vocab_size(self):
|
||||
return self.tokenizer.get_vocab_size()
|
||||
|
||||
@property
|
||||
def vocab(self):
|
||||
return self.tokenizer.get_vocab()
|
||||
|
||||
@property
|
||||
def inv_vocab(self):
|
||||
return self.tokenizer.decode
|
||||
|
||||
def tokenize(self, text: str):
|
||||
return self.tokenizer.encode(text)
|
||||
|
||||
def tokenize_batch(self, text_batch: Union[List[str], str]):
|
||||
return self.tokenizer.encode_batch(text_batch)
|
||||
|
||||
def detokenize(self, token_ids):
|
||||
return self.tokenizer.decode(token_ids)
|
||||
|
||||
@property
|
||||
def eod(self):
|
||||
return self.eod_id
|
||||
133
finetune/lora/cuda/wkv_cuda.cu
vendored
Normal file
133
finetune/lora/cuda/wkv_cuda.cu
vendored
Normal file
@@ -0,0 +1,133 @@
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
|
||||
#define MIN_VALUE (-1e38)
|
||||
|
||||
template <typename F>
|
||||
__global__ void kernel_forward(const int B, const int T, const int C,
|
||||
const F *__restrict__ const _w, const F *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
|
||||
F *__restrict__ const _y) {
|
||||
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int _b = idx / C;
|
||||
const int _c = idx % C;
|
||||
const int _offset = _b * T * C + _c;
|
||||
|
||||
F u = _u[_c];
|
||||
F w = _w[_c];
|
||||
const F *__restrict__ const k = _k + _offset;
|
||||
const F *__restrict__ const v = _v + _offset;
|
||||
F *__restrict__ const y = _y + _offset;
|
||||
|
||||
// aa and bb are running sums divided by exp(pp) (to avoid overflow)
|
||||
F aa = 0, bb = 0, pp = MIN_VALUE;
|
||||
for (int i = 0; i < T; i++) {
|
||||
const int ii = i * C;
|
||||
const F kk = k[ii];
|
||||
const F vv = v[ii];
|
||||
|
||||
F ww = u + kk;
|
||||
F p = max(pp, ww);
|
||||
F e1 = exp(pp - p);
|
||||
F e2 = exp(ww - p);
|
||||
y[ii] = (e1 * aa + e2 * vv) / (e1 * bb + e2);
|
||||
|
||||
ww = w + pp;
|
||||
p = max(ww, kk);
|
||||
e1 = exp(ww - p);
|
||||
e2 = exp(kk - p);
|
||||
aa = e1 * aa + e2 * vv;
|
||||
bb = e1 * bb + e2;
|
||||
pp = p;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
__global__ void kernel_backward(const int B, const int T, const int C,
|
||||
const F *__restrict__ const _w, const F *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
|
||||
const F *__restrict__ const _y, const F *__restrict__ const _gy,
|
||||
F *__restrict__ const _gw, F *__restrict__ const _gu, F *__restrict__ const _gk, F *__restrict__ const _gv) {
|
||||
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int _b = idx / C;
|
||||
const int _c = idx % C;
|
||||
const int _offset = _b * T * C + _c;
|
||||
|
||||
F u = _u[_c];
|
||||
F w = _w[_c];
|
||||
const F *__restrict__ const k = _k + _offset;
|
||||
const F *__restrict__ const v = _v + _offset;
|
||||
const F *__restrict__ const y = _y + _offset;
|
||||
const F *__restrict__ const gy = _gy + _offset;
|
||||
F *__restrict__ const gk = _gk + _offset;
|
||||
F *__restrict__ const gv = _gv + _offset;
|
||||
|
||||
F q[Tmax], r[Tmax];
|
||||
|
||||
F gw = 0, gu = 0, aa = 0, bb = 0, ga = 0, gb = 0, pp = MIN_VALUE;
|
||||
for (int i = 0; i < T; i++) {
|
||||
const int ii = i * C;
|
||||
const F kk = k[ii];
|
||||
const F vv = v[ii];
|
||||
const F yy = y[ii];
|
||||
|
||||
F ww = u + kk;
|
||||
F p = max(pp, ww);
|
||||
F e1 = exp(pp - p);
|
||||
F e2 = exp(ww - p);
|
||||
const F qq = gy[ii] / (e1 * bb + e2);
|
||||
gw += (ga - gb * yy) * e1 * qq;
|
||||
gu += (vv - yy) * e2 * qq;
|
||||
q[i] = qq;
|
||||
r[i] = ww - p;
|
||||
|
||||
ww = w + pp;
|
||||
p = max(ww, kk);
|
||||
e1 = exp(ww - p);
|
||||
e2 = exp(kk - p);
|
||||
ga = e1 * (aa + ga);
|
||||
gb = e1 * (bb + gb);
|
||||
aa = e1 * aa + e2 * vv;
|
||||
bb = e1 * bb + e2;
|
||||
pp = p;
|
||||
}
|
||||
const int _offsetBC = _b * C + _c;
|
||||
_gw[_offsetBC] = gw * _w[_c]; // multiply by w because of w -> -exp(w) in python forward()
|
||||
_gu[_offsetBC] = gu;
|
||||
|
||||
aa = 0, bb = 0, pp = MIN_VALUE;
|
||||
for (int i = T - 1; i >= 0; i--) {
|
||||
const int ii = i * C;
|
||||
const F kk = k[ii];
|
||||
const F vv = v[ii];
|
||||
const F yy = y[ii];
|
||||
const F qq = q[i];
|
||||
const F rr = r[i];
|
||||
|
||||
F e1 = qq * exp(rr);
|
||||
F e2 = exp(kk + pp);
|
||||
gk[ii] = e1 * (vv - yy) + e2 * (aa * vv + bb);
|
||||
gv[ii] = e1 + e2 * aa;
|
||||
|
||||
const F ww = w + pp;
|
||||
const F www = rr - u - kk;
|
||||
const F p = max(ww, www);
|
||||
e1 = exp(ww - p);
|
||||
e2 = qq * exp(www - p);
|
||||
aa = e1 * aa + e2;
|
||||
bb = e1 * bb - e2 * yy;
|
||||
pp = p;
|
||||
}
|
||||
}
|
||||
|
||||
void cuda_forward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y) {
|
||||
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
|
||||
assert(B * C % threadsPerBlock.x == 0);
|
||||
dim3 numBlocks(B * C / threadsPerBlock.x);
|
||||
kernel_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y);
|
||||
}
|
||||
|
||||
void cuda_backward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y, float *gy, float *gw, float *gu, float *gk, float *gv) {
|
||||
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
|
||||
assert(B * C % threadsPerBlock.x == 0);
|
||||
dim3 numBlocks(B * C / threadsPerBlock.x);
|
||||
kernel_backward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, gy, gw, gu, gk, gv);
|
||||
}
|
||||
132
finetune/lora/cuda/wkv_cuda_bf16.cu
vendored
Normal file
132
finetune/lora/cuda/wkv_cuda_bf16.cu
vendored
Normal file
@@ -0,0 +1,132 @@
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include "ATen/ATen.h"
|
||||
#define MIN_VALUE (-1e38)
|
||||
typedef at::BFloat16 bf16;
|
||||
|
||||
__global__ void kernel_forward(const int B, const int T, const int C,
|
||||
const float *__restrict__ const _w, const bf16 *__restrict__ const _u, const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v,
|
||||
bf16 *__restrict__ const _y) {
|
||||
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int _b = idx / C;
|
||||
const int _c = idx % C;
|
||||
const int _offset = _b * T * C + _c;
|
||||
|
||||
float u = float(_u[_c]);
|
||||
float w = _w[_c];
|
||||
const bf16 *__restrict__ const k = _k + _offset;
|
||||
const bf16 *__restrict__ const v = _v + _offset;
|
||||
bf16 *__restrict__ const y = _y + _offset;
|
||||
|
||||
// aa and bb are running sums divided by exp(pp) (to avoid overflow)
|
||||
float aa = 0, bb = 0, pp = MIN_VALUE;
|
||||
for (int i = 0; i < T; i++) {
|
||||
const int ii = i * C;
|
||||
const float kk = float(k[ii]);
|
||||
const float vv = float(v[ii]);
|
||||
|
||||
float ww = u + kk;
|
||||
float p = max(pp, ww);
|
||||
float e1 = exp(pp - p);
|
||||
float e2 = exp(ww - p);
|
||||
y[ii] = bf16((e1 * aa + e2 * vv) / (e1 * bb + e2));
|
||||
|
||||
ww = w + pp;
|
||||
p = max(ww, kk);
|
||||
e1 = exp(ww - p);
|
||||
e2 = exp(kk - p);
|
||||
aa = e1 * aa + e2 * vv;
|
||||
bb = e1 * bb + e2;
|
||||
pp = p;
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void kernel_backward(const int B, const int T, const int C,
|
||||
const float *__restrict__ const _w, const bf16 *__restrict__ const _u, const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v,
|
||||
const bf16 *__restrict__ const _y, const bf16 *__restrict__ const _gy,
|
||||
bf16 *__restrict__ const _gw, bf16 *__restrict__ const _gu, bf16 *__restrict__ const _gk, bf16 *__restrict__ const _gv) {
|
||||
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int _b = idx / C;
|
||||
const int _c = idx % C;
|
||||
const int _offset = _b * T * C + _c;
|
||||
|
||||
float u = float(_u[_c]);
|
||||
float w = _w[_c];
|
||||
const bf16 *__restrict__ const k = _k + _offset;
|
||||
const bf16 *__restrict__ const v = _v + _offset;
|
||||
const bf16 *__restrict__ const y = _y + _offset;
|
||||
const bf16 *__restrict__ const gy = _gy + _offset;
|
||||
bf16 *__restrict__ const gk = _gk + _offset;
|
||||
bf16 *__restrict__ const gv = _gv + _offset;
|
||||
|
||||
float q[Tmax], r[Tmax];
|
||||
|
||||
float gw = 0, gu = 0, aa = 0, bb = 0, ga = 0, gb = 0, pp = MIN_VALUE;
|
||||
for (int i = 0; i < T; i++) {
|
||||
const int ii = i * C;
|
||||
const float kk = float(k[ii]);
|
||||
const float vv = float(v[ii]);
|
||||
const float yy = float(y[ii]);
|
||||
|
||||
float ww = u + kk;
|
||||
float p = max(pp, ww);
|
||||
float e1 = exp(pp - p);
|
||||
float e2 = exp(ww - p);
|
||||
const float qq = float(gy[ii]) / (e1 * bb + e2);
|
||||
gw += (ga - gb * yy) * e1 * qq;
|
||||
gu += (vv - yy) * e2 * qq;
|
||||
q[i] = qq;
|
||||
r[i] = ww - p;
|
||||
|
||||
ww = w + pp;
|
||||
p = max(ww, kk);
|
||||
e1 = exp(ww - p);
|
||||
e2 = exp(kk - p);
|
||||
ga = e1 * (aa + ga);
|
||||
gb = e1 * (bb + gb);
|
||||
aa = e1 * aa + e2 * vv;
|
||||
bb = e1 * bb + e2;
|
||||
pp = p;
|
||||
}
|
||||
const int _offsetBC = _b * C + _c;
|
||||
_gw[_offsetBC] = bf16(gw * _w[_c]); // multiply by w because of w -> -exp(w) in python forward()
|
||||
_gu[_offsetBC] = bf16(gu);
|
||||
|
||||
aa = 0, bb = 0, pp = MIN_VALUE;
|
||||
for (int i = T - 1; i >= 0; i--) {
|
||||
const int ii = i * C;
|
||||
const float kk = float(k[ii]);
|
||||
const float vv = float(v[ii]);
|
||||
const float yy = float(y[ii]);
|
||||
const float qq = q[i];
|
||||
const float rr = r[i];
|
||||
|
||||
float e1 = qq * exp(rr);
|
||||
float e2 = exp(kk + pp);
|
||||
gk[ii] = bf16(e1 * (vv - yy) + e2 * (aa * vv + bb));
|
||||
gv[ii] = bf16(e1 + e2 * aa);
|
||||
|
||||
const float ww = w + pp;
|
||||
const float www = rr - u - kk;
|
||||
const float p = max(ww, www);
|
||||
e1 = exp(ww - p);
|
||||
e2 = qq * exp(www - p);
|
||||
aa = e1 * aa + e2;
|
||||
bb = e1 * bb - e2 * yy;
|
||||
pp = p;
|
||||
}
|
||||
}
|
||||
|
||||
void cuda_forward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y) {
|
||||
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
|
||||
assert(B * C % threadsPerBlock.x == 0);
|
||||
dim3 numBlocks(B * C / threadsPerBlock.x);
|
||||
kernel_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y);
|
||||
}
|
||||
|
||||
void cuda_backward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, bf16 *gy, bf16 *gw, bf16 *gu, bf16 *gk, bf16 *gv) {
|
||||
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
|
||||
assert(B * C % threadsPerBlock.x == 0);
|
||||
dim3 numBlocks(B * C / threadsPerBlock.x);
|
||||
kernel_backward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, gy, gw, gu, gk, gv);
|
||||
}
|
||||
21
finetune/lora/cuda/wkv_op.cpp
vendored
Normal file
21
finetune/lora/cuda/wkv_op.cpp
vendored
Normal file
@@ -0,0 +1,21 @@
|
||||
#include <torch/extension.h>
|
||||
|
||||
void cuda_forward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y);
|
||||
void cuda_backward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y, float *gy, float *gw, float *gu, float *gk, float *gv);
|
||||
|
||||
void forward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y) {
|
||||
cuda_forward(B, T, C, w.data_ptr<float>(), u.data_ptr<float>(), k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>());
|
||||
}
|
||||
void backward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y, torch::Tensor &gy, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gk, torch::Tensor &gv) {
|
||||
cuda_backward(B, T, C, w.data_ptr<float>(), u.data_ptr<float>(), k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>(), gy.data_ptr<float>(), gw.data_ptr<float>(), gu.data_ptr<float>(), gk.data_ptr<float>(), gv.data_ptr<float>());
|
||||
}
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("forward", &forward, "wkv forward");
|
||||
m.def("backward", &backward, "wkv backward");
|
||||
}
|
||||
|
||||
TORCH_LIBRARY(wkv, m) {
|
||||
m.def("forward", forward);
|
||||
m.def("backward", backward);
|
||||
}
|
||||
25
finetune/lora/cuda/wkv_op_bf16.cpp
vendored
Normal file
25
finetune/lora/cuda/wkv_op_bf16.cpp
vendored
Normal file
@@ -0,0 +1,25 @@
|
||||
#include <torch/extension.h>
|
||||
#include "ATen/ATen.h"
|
||||
typedef at::BFloat16 bf16;
|
||||
|
||||
void cuda_forward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y);
|
||||
void cuda_backward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, bf16 *gy, bf16 *gw, bf16 *gu, bf16 *gk, bf16 *gv);
|
||||
|
||||
void forward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y) {
|
||||
cuda_forward(B, T, C, w.data_ptr<float>(), u.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), y.data_ptr<bf16>());
|
||||
}
|
||||
void backward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y,
|
||||
torch::Tensor &gy, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gk, torch::Tensor &gv) {
|
||||
cuda_backward(B, T, C, w.data_ptr<float>(), u.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), y.data_ptr<bf16>(),
|
||||
gy.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>());
|
||||
}
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("forward", &forward, "wkv forward");
|
||||
m.def("backward", &backward, "wkv backward");
|
||||
}
|
||||
|
||||
TORCH_LIBRARY(wkv, m) {
|
||||
m.def("forward", forward);
|
||||
m.def("backward", backward);
|
||||
}
|
||||
68
finetune/lora/merge_lora.py
vendored
Normal file
68
finetune/lora/merge_lora.py
vendored
Normal file
@@ -0,0 +1,68 @@
|
||||
from collections import OrderedDict
|
||||
import os
|
||||
import sys
|
||||
from typing import Dict
|
||||
import typing
|
||||
import torch
|
||||
|
||||
try:
|
||||
if "-h" in sys.argv or "--help" in sys.argv:
|
||||
print(
|
||||
f"Usage: python3 {sys.argv[0]} [--use-gpu] <lora_alpha> <base_model.pth> <lora_checkpoint.pth> <output.pth>"
|
||||
)
|
||||
|
||||
if sys.argv[1] == "--use-gpu":
|
||||
device = "cuda"
|
||||
lora_alpha, base_model, lora, output = (
|
||||
float(sys.argv[2]),
|
||||
sys.argv[3],
|
||||
sys.argv[4],
|
||||
sys.argv[5],
|
||||
)
|
||||
else:
|
||||
device = "cpu"
|
||||
lora_alpha, base_model, lora, output = (
|
||||
float(sys.argv[1]),
|
||||
sys.argv[2],
|
||||
sys.argv[3],
|
||||
sys.argv[4],
|
||||
)
|
||||
|
||||
with torch.no_grad():
|
||||
w: Dict[str, torch.Tensor] = torch.load(base_model, map_location="cpu")
|
||||
# merge LoRA-only slim checkpoint into the main weights
|
||||
w_lora: Dict[str, torch.Tensor] = torch.load(lora, map_location="cpu")
|
||||
for k in w_lora.keys():
|
||||
w[k] = w_lora[k]
|
||||
output_w: typing.OrderedDict[str, torch.Tensor] = OrderedDict()
|
||||
# merge LoRA weights
|
||||
keys = list(w.keys())
|
||||
for k in keys:
|
||||
if k.endswith(".weight"):
|
||||
prefix = k[: -len(".weight")]
|
||||
lora_A = prefix + ".lora_A"
|
||||
lora_B = prefix + ".lora_B"
|
||||
if lora_A in keys:
|
||||
assert lora_B in keys
|
||||
print(f"merging {lora_A} and {lora_B} into {k}")
|
||||
assert w[lora_B].shape[1] == w[lora_A].shape[0]
|
||||
lora_r = w[lora_B].shape[1]
|
||||
w[k] = w[k].to(device=device)
|
||||
w[lora_A] = w[lora_A].to(device=device)
|
||||
w[lora_B] = w[lora_B].to(device=device)
|
||||
w[k] += w[lora_B] @ w[lora_A] * (lora_alpha / lora_r)
|
||||
output_w[k] = w[k].to(device="cpu", copy=True)
|
||||
del w[k]
|
||||
del w[lora_A]
|
||||
del w[lora_B]
|
||||
continue
|
||||
|
||||
if "lora" not in k:
|
||||
print(f"retaining {k}")
|
||||
output_w[k] = w[k].clone()
|
||||
del w[k]
|
||||
|
||||
torch.save(output_w, output)
|
||||
except Exception as e:
|
||||
with open("error.txt", "w") as f:
|
||||
f.write(str(e))
|
||||
0
finetune/lora/src/__init__.py
vendored
Normal file
0
finetune/lora/src/__init__.py
vendored
Normal file
269
finetune/lora/src/binidx.py
vendored
Normal file
269
finetune/lora/src/binidx.py
vendored
Normal file
@@ -0,0 +1,269 @@
|
||||
from lib2to3.pgen2 import token
|
||||
import os
|
||||
import torch
|
||||
import numpy as np
|
||||
import shutil
|
||||
import struct
|
||||
from functools import lru_cache
|
||||
from itertools import accumulate
|
||||
|
||||
def print_rank_0(*message):
|
||||
pass
|
||||
# """If distributed is initialized print only on rank 0."""
|
||||
# if torch.distributed.is_initialized():
|
||||
# if torch.distributed.get_rank() == 0:
|
||||
# print(*message, flush=True)
|
||||
# else:
|
||||
# print(*message, flush=True)
|
||||
|
||||
def _warmup_mmap_file(path):
|
||||
pass
|
||||
# with open(path, "rb") as stream:
|
||||
# while stream.read(100 * 1024 * 1024):
|
||||
# pass
|
||||
|
||||
dtypes = {
|
||||
1: np.uint8,
|
||||
2: np.int8,
|
||||
3: np.int16,
|
||||
4: np.int32,
|
||||
5: np.int64,
|
||||
6: float,
|
||||
7: np.double,
|
||||
8: np.uint16,
|
||||
}
|
||||
|
||||
def code(dtype):
|
||||
for k in dtypes.keys():
|
||||
if dtypes[k] == dtype:
|
||||
return k
|
||||
raise ValueError(dtype)
|
||||
|
||||
def index_file_path(prefix_path):
|
||||
return prefix_path + ".idx"
|
||||
|
||||
def data_file_path(prefix_path):
|
||||
return prefix_path + ".bin"
|
||||
|
||||
class MMapIndexedDataset(torch.utils.data.Dataset):
|
||||
class Index(object):
|
||||
_HDR_MAGIC = b"MMIDIDX\x00\x00"
|
||||
|
||||
@classmethod
|
||||
def writer(cls, path, dtype):
|
||||
class _Writer(object):
|
||||
def __enter__(self):
|
||||
self._file = open(path, "wb")
|
||||
|
||||
# Write Magic string so we can check the file format then opening it again.
|
||||
self._file.write(cls._HDR_MAGIC)
|
||||
# Write version number
|
||||
# Little endian unsigned 64 Bit integer
|
||||
self._file.write(struct.pack("<Q", 1))
|
||||
# Little endian unsigned 8 Bit integer
|
||||
self._file.write(struct.pack("<B", code(dtype)))
|
||||
|
||||
return self
|
||||
|
||||
@staticmethod
|
||||
def _get_pointers(sizes):
|
||||
dtype_size = dtype().itemsize
|
||||
address = 0
|
||||
pointers = []
|
||||
|
||||
for size in sizes:
|
||||
pointers.append(address)
|
||||
address += size * dtype_size
|
||||
|
||||
return pointers
|
||||
|
||||
def write(self, sizes, doc_idx):
|
||||
pointers = self._get_pointers(sizes)
|
||||
|
||||
# Little endian unsigned 64 Bit integer
|
||||
self._file.write(struct.pack("<Q", len(sizes)))
|
||||
# Little endian unsigned 64 Bit integer
|
||||
self._file.write(struct.pack("<Q", len(doc_idx)))
|
||||
|
||||
sizes = np.array(sizes, dtype=np.int32)
|
||||
self._file.write(sizes.tobytes(order="C"))
|
||||
del sizes
|
||||
|
||||
pointers = np.array(pointers, dtype=np.int64)
|
||||
self._file.write(pointers.tobytes(order="C"))
|
||||
del pointers
|
||||
|
||||
doc_idx = np.array(doc_idx, dtype=np.int64)
|
||||
self._file.write(doc_idx.tobytes(order="C"))
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
self._file.close()
|
||||
|
||||
return _Writer()
|
||||
|
||||
def __init__(self, path, skip_warmup=False):
|
||||
with open(path, "rb") as stream:
|
||||
magic_test = stream.read(9)
|
||||
assert self._HDR_MAGIC == magic_test, (
|
||||
"Index file doesn't match expected format. "
|
||||
"Make sure that --dataset-impl is configured properly."
|
||||
)
|
||||
# Little endian unsigned 64 Bit integer
|
||||
version = struct.unpack("<Q", stream.read(8))
|
||||
assert (1,) == version
|
||||
|
||||
# Little endian unsigned 8 Bit integer
|
||||
(dtype_code,) = struct.unpack("<B", stream.read(1))
|
||||
self._dtype = dtypes[dtype_code]
|
||||
self._dtype_size = self._dtype().itemsize
|
||||
|
||||
self._len = struct.unpack("<Q", stream.read(8))[0]
|
||||
self._doc_count = struct.unpack("<Q", stream.read(8))[0]
|
||||
offset = stream.tell()
|
||||
|
||||
if not skip_warmup:
|
||||
print_rank_0(" warming up index mmap file...")
|
||||
_warmup_mmap_file(path)
|
||||
|
||||
self._bin_buffer_mmap = np.memmap(path, mode="r", order="C")
|
||||
self._bin_buffer = memoryview(self._bin_buffer_mmap)
|
||||
print_rank_0(" reading sizes...")
|
||||
self._sizes = np.frombuffer(
|
||||
self._bin_buffer, dtype=np.int32, count=self._len, offset=offset
|
||||
)
|
||||
print_rank_0(" reading pointers...")
|
||||
self._pointers = np.frombuffer(
|
||||
self._bin_buffer,
|
||||
dtype=np.int64,
|
||||
count=self._len,
|
||||
offset=offset + self._sizes.nbytes,
|
||||
)
|
||||
print_rank_0(" reading document index...")
|
||||
self._doc_idx = np.frombuffer(
|
||||
self._bin_buffer,
|
||||
dtype=np.int64,
|
||||
count=self._doc_count,
|
||||
offset=offset + self._sizes.nbytes + self._pointers.nbytes,
|
||||
)
|
||||
|
||||
def __del__(self):
|
||||
self._bin_buffer_mmap._mmap.close()
|
||||
del self._bin_buffer_mmap
|
||||
|
||||
@property
|
||||
def dtype(self):
|
||||
return self._dtype
|
||||
|
||||
@property
|
||||
def sizes(self):
|
||||
return self._sizes
|
||||
|
||||
@property
|
||||
def doc_idx(self):
|
||||
return self._doc_idx
|
||||
|
||||
@lru_cache(maxsize=8)
|
||||
def __getitem__(self, i):
|
||||
return self._pointers[i], self._sizes[i]
|
||||
|
||||
def __len__(self):
|
||||
return self._len
|
||||
|
||||
def __init__(self, path, skip_warmup=False):
|
||||
super().__init__()
|
||||
|
||||
self._path = None
|
||||
self._index = None
|
||||
self._bin_buffer = None
|
||||
|
||||
self._do_init(path, skip_warmup)
|
||||
|
||||
def __getstate__(self):
|
||||
return self._path
|
||||
|
||||
def __setstate__(self, state):
|
||||
self._do_init(state)
|
||||
|
||||
def _do_init(self, path, skip_warmup):
|
||||
self._path = path
|
||||
self._index = self.Index(index_file_path(self._path), skip_warmup)
|
||||
|
||||
if not skip_warmup:
|
||||
print_rank_0(" warming up data mmap file...")
|
||||
_warmup_mmap_file(data_file_path(self._path))
|
||||
print_rank_0(" creating numpy buffer of mmap...")
|
||||
self._bin_buffer_mmap = np.memmap(
|
||||
data_file_path(self._path), mode="r", order="C"
|
||||
)
|
||||
print_rank_0(" creating memory view of numpy buffer...")
|
||||
self._bin_buffer = memoryview(self._bin_buffer_mmap)
|
||||
|
||||
def __del__(self):
|
||||
self._bin_buffer_mmap._mmap.close()
|
||||
del self._bin_buffer_mmap
|
||||
del self._index
|
||||
|
||||
def __len__(self):
|
||||
return len(self._index)
|
||||
|
||||
# @lru_cache(maxsize=8)
|
||||
def __getitem__(self, idx):
|
||||
if isinstance(idx, int):
|
||||
ptr, size = self._index[idx]
|
||||
np_array = np.frombuffer(
|
||||
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
|
||||
)
|
||||
return np_array
|
||||
elif isinstance(idx, slice):
|
||||
start, stop, step = idx.indices(len(self))
|
||||
if step != 1:
|
||||
raise ValueError(
|
||||
"Slices into indexed_dataset must be contiguous")
|
||||
ptr = self._index._pointers[start]
|
||||
sizes = self._index._sizes[idx]
|
||||
offsets = list(accumulate(sizes))
|
||||
total_size = sum(sizes)
|
||||
np_array = np.frombuffer(
|
||||
self._bin_buffer, dtype=self._index.dtype, count=total_size, offset=ptr
|
||||
)
|
||||
sents = np.split(np_array, offsets[:-1])
|
||||
return sents
|
||||
|
||||
def get(self, idx, offset=0, length=None):
|
||||
"""Retrieves a single item from the dataset with the option to only
|
||||
return a portion of the item.
|
||||
|
||||
get(idx) is the same as [idx] but get() does not support slicing.
|
||||
"""
|
||||
ptr, size = self._index[idx]
|
||||
if length is None:
|
||||
length = size - offset
|
||||
ptr += offset * np.dtype(self._index.dtype).itemsize
|
||||
np_array = np.frombuffer(
|
||||
self._bin_buffer, dtype=self._index.dtype, count=length, offset=ptr
|
||||
)
|
||||
return np_array
|
||||
|
||||
@property
|
||||
def sizes(self):
|
||||
return self._index.sizes
|
||||
|
||||
@property
|
||||
def doc_idx(self):
|
||||
return self._index.doc_idx
|
||||
|
||||
def get_doc_idx(self):
|
||||
return self._index._doc_idx
|
||||
|
||||
def set_doc_idx(self, doc_idx_):
|
||||
self._index._doc_idx = doc_idx_
|
||||
|
||||
@property
|
||||
def supports_prefetch(self):
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def exists(path):
|
||||
return os.path.exists(index_file_path(path)) and os.path.exists(
|
||||
data_file_path(path)
|
||||
)
|
||||
224
finetune/lora/src/dataset.py
vendored
Normal file
224
finetune/lora/src/dataset.py
vendored
Normal file
@@ -0,0 +1,224 @@
|
||||
########################################################################################################
|
||||
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
|
||||
########################################################################################################
|
||||
|
||||
import json, math, random, os, sys
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
from pytorch_lightning.utilities import rank_zero_info
|
||||
from .binidx import MMapIndexedDataset
|
||||
from .utils import MaybeIsPrime
|
||||
|
||||
|
||||
class MyDataset(Dataset):
|
||||
def __init__(self, args):
|
||||
self.args = args
|
||||
|
||||
if args.data_type == "binidx":
|
||||
self.vocab_size = args.vocab_size
|
||||
rank_zero_info(f"Current vocab size = {self.vocab_size} (make sure it's correct)")
|
||||
|
||||
if args.data_file.endswith('/'):
|
||||
d_all = []
|
||||
for p in os.listdir(args.data_file):
|
||||
if p.endswith(".idx"):
|
||||
d_all += [p[:-4]]
|
||||
d_all.sort()
|
||||
rank_zero_info(d_all)
|
||||
exit(0)
|
||||
else:
|
||||
self.data = MMapIndexedDataset(args.data_file)
|
||||
self.data_size = len(self.data._bin_buffer) // self.data._index._dtype_size
|
||||
rank_zero_info(f"Data has {self.data_size} tokens.")
|
||||
|
||||
if args.my_qa_mask > 0:
|
||||
self.data_pile = MMapIndexedDataset('/fsx/BlinkDL/pile/pile_20B_tokenizer_text_document')
|
||||
self.data_pile_size = len(self.data_pile._bin_buffer) // self.data._index._dtype_size
|
||||
|
||||
if args.my_pile_stage > 0:
|
||||
# assert self.data_size == 332115325534 and self.vocab_size == 50277
|
||||
self.samples_per_epoch = args.epoch_steps * args.real_bsz
|
||||
assert self.samples_per_epoch == 40320
|
||||
rank_zero_info(f"########## Pile 20b-tokenized stage {args.my_pile_stage} ##########")
|
||||
dataset_slot = self.data_size // args.ctx_len
|
||||
if args.my_pile_stage != 4:
|
||||
assert MaybeIsPrime(args.magic_prime)
|
||||
assert args.magic_prime % 3 == 2
|
||||
assert args.magic_prime / dataset_slot > 0.99 and args.magic_prime / dataset_slot <= 1
|
||||
elif args.data_type == "numpy":
|
||||
self.data = np.load(args.data_file).astype("int")
|
||||
self.vocab_size = args.vocab_size
|
||||
rank_zero_info("Current vocab size =", self.vocab_size, "(make sure it's correct)")
|
||||
self.data_size = len(self.data)
|
||||
rank_zero_info(f"Data has {self.data_size} tokens.")
|
||||
elif args.data_type == "uint16":
|
||||
self.data = np.fromfile(args.data_file, dtype=np.uint16).astype("int32").reshape(-1, args.my_sample_len)
|
||||
self.vocab_size = args.vocab_size
|
||||
rank_zero_info("Current vocab size =", self.vocab_size, "(make sure it's correct)")
|
||||
self.data_size = self.data.shape[0]
|
||||
rank_zero_info(f"Data has {self.data_size} samples.")
|
||||
elif args.data_type == "wds_img":
|
||||
self.vocab_size = -1
|
||||
self.data_size = -1
|
||||
self.data = None
|
||||
self.error_count = 0
|
||||
else:
|
||||
if args.data_type == "dummy":
|
||||
rank_zero_info("Building dummy data...")
|
||||
self.data = ""
|
||||
for i in range(100000):
|
||||
aa = (i) % 10000
|
||||
bb = (i * i) % 10000
|
||||
cc = aa + bb
|
||||
self.data += f".{aa}+{bb}={cc}."
|
||||
else:
|
||||
self.data = open(args.data_file, "r", encoding=args.data_type).read()
|
||||
rank_zero_info("Building token list...")
|
||||
unique = sorted(list(set(self.data)))
|
||||
self.vocab_size = len(unique)
|
||||
# rank_zero_info()
|
||||
# for u in unique:
|
||||
# print(u, end=' ')
|
||||
# rank_zero_info('\n\n')
|
||||
xx = 0
|
||||
xxObj = {}
|
||||
for u in unique:
|
||||
xxObj[xx] = u
|
||||
xx += 1
|
||||
with open(f"{args.proj_dir}/vocab.json", "w", encoding="utf-16le") as vocab_file:
|
||||
vocab_file.write(json.dumps(xxObj, ensure_ascii=False))
|
||||
self.data_size = len(self.data)
|
||||
rank_zero_info(f"Data has {self.data_size} tokens, {self.vocab_size} vocab size.")
|
||||
self.stoi = {ch: i for i, ch in enumerate(unique)}
|
||||
self.itos = {i: ch for i, ch in enumerate(unique)}
|
||||
|
||||
def __len__(self):
|
||||
return self.args.epoch_steps * self.args.micro_bsz
|
||||
|
||||
def __getitem__(self, idx):
|
||||
args = self.args
|
||||
rank = self.global_rank
|
||||
epoch = self.real_epoch
|
||||
world_size = self.world_size
|
||||
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size}")
|
||||
|
||||
if args.data_type == "wds_img":
|
||||
def init_wds(self, bias=0):
|
||||
def identity(x):
|
||||
return x
|
||||
import webdataset as wds
|
||||
import torchvision.transforms as transforms
|
||||
# img_transform = transforms.Compose(
|
||||
# [transforms.CenterCrop(256)]
|
||||
# )
|
||||
img_transform = transforms.Compose([
|
||||
transforms.CenterCrop(512),
|
||||
transforms.Resize((args.my_img_size))
|
||||
])
|
||||
self.data_raw = wds.WebDataset(args.data_file, resampled=True).shuffle(10000, initial=1000, rng=random.Random(epoch*100000+rank+bias*1e9)).decode("torchrgb").to_tuple("jpg", "json", "txt").map_tuple(img_transform, identity, identity)
|
||||
for pp in self.data_raw.pipeline:
|
||||
if 'Resampled' in str(pp):
|
||||
pp.deterministic = True
|
||||
def worker_seed():
|
||||
return rank*100000+epoch+bias*1e9
|
||||
pp.worker_seed = worker_seed
|
||||
self.data = iter(self.data_raw)
|
||||
# print(f"WebDataset loaded for rank {rank} epoch {epoch}")
|
||||
if self.data == None:
|
||||
init_wds(self)
|
||||
trial = 0
|
||||
while trial < 10:
|
||||
try:
|
||||
dd = next(self.data) # jpg, json, txt
|
||||
break
|
||||
except:
|
||||
print(f'[dataloader error - epoch {epoch} rank {rank} - trying a new shuffle]')
|
||||
self.error_count += 1
|
||||
init_wds(self, self.error_count)
|
||||
trial += 1
|
||||
pass
|
||||
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size} {dd[2]}")
|
||||
# with open(f"sample_{rank}.txt", "a", encoding="utf-8") as tmp:
|
||||
# tmp.write(f"epoch {epoch} idx {idx} rank {rank}/{world_size} {int(dd[1]['key'])}\n")
|
||||
return dd[0], dd[2]
|
||||
else:
|
||||
if args.data_type == "uint16":
|
||||
i = np.random.randint(0, self.data_size-1)
|
||||
dix = self.data[i]
|
||||
x = torch.tensor(dix[:-1], dtype=torch.long)
|
||||
y = torch.tensor(dix[1:], dtype=torch.long)
|
||||
else:
|
||||
ctx_len = args.ctx_len
|
||||
req_len = ctx_len + 1
|
||||
magic_prime = args.magic_prime
|
||||
data = self.data
|
||||
|
||||
if args.my_pile_stage > 0 and args.my_pile_stage != 4:
|
||||
ii = 1 + epoch * self.samples_per_epoch + (idx * world_size) + rank
|
||||
|
||||
if args.my_qa_mask > 0:
|
||||
ii_orig = ii
|
||||
if ii % 2 == 0:
|
||||
ii = (ii // 2) * args.magic_prime
|
||||
if args.ctx_len == 1024:
|
||||
magic_prime = 324331313
|
||||
elif args.ctx_len == 2048:
|
||||
magic_prime = 162165671
|
||||
elif args.ctx_len == 4096:
|
||||
magic_prime = 81082817
|
||||
data = self.data_pile
|
||||
else:
|
||||
ii = ii // 2
|
||||
|
||||
factor = (math.sqrt(5) - 1) / 2
|
||||
factor = int(magic_prime * factor)
|
||||
i = ((factor * ii * ii * ii) % magic_prime) * ctx_len
|
||||
if (args.my_qa_mask == 0) or (data == self.data_pile):
|
||||
i = i + args.my_pile_shift
|
||||
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size} ii {ii} pos {round(i / self.data_size, 3)}")
|
||||
else:
|
||||
# cheat: pick a random spot in dataset
|
||||
i = np.random.randint(0, self.data_size - req_len)
|
||||
|
||||
if args.data_type == "binidx":
|
||||
dix = data.get(idx=0, offset=i, length=req_len).astype(int)
|
||||
elif args.data_type == "numpy":
|
||||
dix = data[i : i + req_len]
|
||||
else:
|
||||
dix = [self.stoi[s] for s in data[i : i + req_len]]
|
||||
|
||||
if args.my_qa_mask == 1:
|
||||
if data == self.data_pile:
|
||||
z = [1] * ctx_len
|
||||
else:
|
||||
z = [0] * ctx_len
|
||||
z_sum = 0
|
||||
isGood = False
|
||||
for i in range(3, ctx_len):
|
||||
if dix[i] == 27 and dix[i-1] == 34 and dix[i-2] == 187 and dix[i-3] == 187:
|
||||
isGood = True
|
||||
if dix[i] == 0:
|
||||
isGood = False
|
||||
if isGood:
|
||||
z[i] = 1
|
||||
z_sum += 1
|
||||
if z_sum == 0:
|
||||
z = [1] * ctx_len
|
||||
i = np.random.randint(0, self.data_pile_size - req_len)
|
||||
dix = self.data_pile.get(idx=0, offset=i, length=req_len).astype(int)
|
||||
z = torch.tensor(z, dtype=torch.bfloat16)
|
||||
|
||||
x = torch.tensor(dix[:-1], dtype=torch.long)
|
||||
y = torch.tensor(dix[1:], dtype=torch.long)
|
||||
|
||||
# if ii_orig < 50:
|
||||
# # if rank == 1:
|
||||
# print('rank', rank, 'i', ii_orig, ii, i, 'x', x[:5], '...', x[-5:])
|
||||
# else:
|
||||
# exit(0)
|
||||
|
||||
if args.my_qa_mask == 1:
|
||||
return x, y, z
|
||||
|
||||
return x, y
|
||||
678
finetune/lora/src/model.py
vendored
Normal file
678
finetune/lora/src/model.py
vendored
Normal file
@@ -0,0 +1,678 @@
|
||||
########################################################################################################
|
||||
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
|
||||
########################################################################################################
|
||||
|
||||
import functools
|
||||
import os, math, gc, importlib
|
||||
import torch
|
||||
# torch._C._jit_set_profiling_executor(True)
|
||||
# torch._C._jit_set_profiling_mode(True)
|
||||
import torch.nn as nn
|
||||
from torch.utils.checkpoint import checkpoint as torch_checkpoint
|
||||
from torch.nn import functional as F
|
||||
import pytorch_lightning as pl
|
||||
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
|
||||
from pytorch_lightning.strategies import DeepSpeedStrategy
|
||||
if importlib.util.find_spec('deepspeed'):
|
||||
import deepspeed
|
||||
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam
|
||||
|
||||
# from deepspeed.runtime.fp16.onebit.zoadam import ZeroOneAdam
|
||||
|
||||
LORA_CONFIG = {
|
||||
"r": 0,
|
||||
"alpha": 0,
|
||||
"dropout": 0,
|
||||
"parts": {"att", "ln", "time"},
|
||||
}
|
||||
|
||||
|
||||
try:
|
||||
print('RWKV_MY_TESTING', os.environ["RWKV_MY_TESTING"])
|
||||
except:
|
||||
os.environ["RWKV_MY_TESTING"] = ''
|
||||
|
||||
def __nop(ob):
|
||||
return ob
|
||||
|
||||
|
||||
MyModule = nn.Module
|
||||
MyFunction = __nop
|
||||
if os.environ["RWKV_JIT_ON"] == "1":
|
||||
MyModule = torch.jit.ScriptModule
|
||||
MyFunction = torch.jit.script_method
|
||||
|
||||
|
||||
########################################################################################################
|
||||
# CUDA Kernel
|
||||
########################################################################################################
|
||||
|
||||
T_MAX = int(os.environ["RWKV_T_MAX"]) # TAKES LOTS OF VRAM!
|
||||
# it's possible to go beyond CUDA limitations if you slice the ctx and pass the hidden state in each slice
|
||||
|
||||
from torch.utils.cpp_extension import load
|
||||
|
||||
if os.environ["RWKV_FLOAT_MODE"] == "bf16":
|
||||
wkv_cuda = load(name=f"wkv_{T_MAX}_bf16", sources=["finetune/lora/cuda/wkv_op_bf16.cpp", "finetune/lora/cuda/wkv_cuda_bf16.cu"], verbose=True, extra_cuda_cflags=["-t 4", "-std=c++17", "-res-usage", "--maxrregcount 60", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-DTmax={T_MAX}"])
|
||||
class WKV(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, B, T, C, w, u, k, v):
|
||||
ctx.B = B
|
||||
ctx.T = T
|
||||
ctx.C = C
|
||||
assert T <= T_MAX
|
||||
assert B * C % min(C, 32) == 0
|
||||
w = -torch.exp(w.float().contiguous())
|
||||
u = u.contiguous()
|
||||
k = k.contiguous()
|
||||
v = v.contiguous()
|
||||
y = torch.empty((B, T, C), device=w.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
|
||||
wkv_cuda.forward(B, T, C, w, u, k, v, y)
|
||||
ctx.save_for_backward(w, u, k, v, y)
|
||||
return y
|
||||
@staticmethod
|
||||
def backward(ctx, gy):
|
||||
B = ctx.B
|
||||
T = ctx.T
|
||||
C = ctx.C
|
||||
assert T <= T_MAX
|
||||
assert B * C % min(C, 32) == 0
|
||||
w, u, k, v, y = ctx.saved_tensors
|
||||
gw = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
|
||||
gu = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
|
||||
gk = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
|
||||
gv = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
|
||||
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.contiguous(), gw, gu, gk, gv)
|
||||
gw = torch.sum(gw, dim=0)
|
||||
gu = torch.sum(gu, dim=0)
|
||||
return (None, None, None, gw, gu, gk, gv)
|
||||
else:
|
||||
wkv_cuda = load(name=f"wkv_{T_MAX}", sources=["finetune/lora/cuda/wkv_op.cpp", "finetune/lora/cuda/wkv_cuda.cu"], verbose=True, extra_cuda_cflags=["-res-usage", "--maxrregcount 60", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-DTmax={T_MAX}"])
|
||||
class WKV(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, B, T, C, w, u, k, v):
|
||||
ctx.B = B
|
||||
ctx.T = T
|
||||
ctx.C = C
|
||||
assert T <= T_MAX
|
||||
assert B * C % min(C, 32) == 0
|
||||
if "32" in os.environ["RWKV_FLOAT_MODE"]:
|
||||
w = -torch.exp(w.contiguous())
|
||||
u = u.contiguous()
|
||||
k = k.contiguous()
|
||||
v = v.contiguous()
|
||||
else:
|
||||
w = -torch.exp(w.float().contiguous())
|
||||
u = u.float().contiguous()
|
||||
k = k.float().contiguous()
|
||||
v = v.float().contiguous()
|
||||
y = torch.empty((B, T, C), device=w.device, memory_format=torch.contiguous_format)
|
||||
wkv_cuda.forward(B, T, C, w, u, k, v, y)
|
||||
ctx.save_for_backward(w, u, k, v, y)
|
||||
if "32" in os.environ["RWKV_FLOAT_MODE"]:
|
||||
return y
|
||||
elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
|
||||
return y.half()
|
||||
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
|
||||
return y.bfloat16()
|
||||
@staticmethod
|
||||
def backward(ctx, gy):
|
||||
B = ctx.B
|
||||
T = ctx.T
|
||||
C = ctx.C
|
||||
assert T <= T_MAX
|
||||
assert B * C % min(C, 32) == 0
|
||||
w, u, k, v, y = ctx.saved_tensors
|
||||
gw = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format)
|
||||
gu = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format)
|
||||
gk = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format)
|
||||
gv = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format)
|
||||
if "32" in os.environ["RWKV_FLOAT_MODE"]:
|
||||
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.contiguous(), gw, gu, gk, gv)
|
||||
else:
|
||||
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.float().contiguous(), gw, gu, gk, gv)
|
||||
gw = torch.sum(gw, dim=0)
|
||||
gu = torch.sum(gu, dim=0)
|
||||
if "32" in os.environ["RWKV_FLOAT_MODE"]:
|
||||
return (None, None, None, gw, gu, gk, gv)
|
||||
elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
|
||||
return (None, None, None, gw.half(), gu.half(), gk.half(), gv.half())
|
||||
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
|
||||
return (None, None, None, gw.bfloat16(), gu.bfloat16(), gk.bfloat16(), gv.bfloat16())
|
||||
|
||||
|
||||
def RUN_CUDA(B, T, C, w, u, k, v):
|
||||
return WKV.apply(B, T, C, w, u, k, v)
|
||||
|
||||
|
||||
########################################################################################################
|
||||
# LoRA
|
||||
########################################################################################################
|
||||
|
||||
|
||||
class LoraLinear(nn.Module):
|
||||
|
||||
def __init__(self, in_features: int, out_features: int, bias: bool):
|
||||
super().__init__()
|
||||
|
||||
self.weight = nn.Parameter(torch.empty((out_features, in_features)))
|
||||
assert bias == False, "Biased LoraLinear not supported"
|
||||
|
||||
r, alpha, dropout = LORA_CONFIG["r"], LORA_CONFIG[
|
||||
"alpha"], LORA_CONFIG["dropout"]
|
||||
self.lora_A = nn.Parameter(torch.empty(r, in_features))
|
||||
self.lora_B = nn.Parameter(torch.empty(out_features, r))
|
||||
self.lora_dropout = nn.Dropout(dropout)
|
||||
self.scaling = alpha / r
|
||||
|
||||
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
||||
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
|
||||
nn.init.zeros_(self.lora_B)
|
||||
|
||||
def forward(self, x):
|
||||
return (
|
||||
F.linear(x, self.weight) + self.scaling *
|
||||
F.linear(F.linear(self.lora_dropout(x), self.lora_A), self.lora_B))
|
||||
|
||||
|
||||
@functools.wraps(LoraLinear)
|
||||
def make_linear_att(*args, **kwargs):
|
||||
if "att" in LORA_CONFIG["parts"] and LORA_CONFIG["r"] > 0:
|
||||
return LoraLinear(*args, **kwargs)
|
||||
else:
|
||||
return nn.Linear(*args, **kwargs)
|
||||
|
||||
|
||||
@functools.wraps(LoraLinear)
|
||||
def make_linear_ffn(*args, **kwargs):
|
||||
if "ffn" in LORA_CONFIG["parts"] and LORA_CONFIG["r"] > 0:
|
||||
return LoraLinear(*args, **kwargs)
|
||||
else:
|
||||
return nn.Linear(*args, **kwargs)
|
||||
|
||||
|
||||
########################################################################################################
|
||||
# RWKV: RWKV Time-mix + RWKV Channel-mix
|
||||
########################################################################################################
|
||||
|
||||
|
||||
class RWKV_TimeMix(MyModule):
|
||||
def __init__(self, args, layer_id):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.layer_id = layer_id
|
||||
self.ctx_len = args.ctx_len
|
||||
self.n_embd = args.n_embd
|
||||
|
||||
with torch.no_grad(): # fancy init
|
||||
ratio_0_to_1 = layer_id / (args.n_layer - 1) # 0 to 1
|
||||
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer) # 1 to ~0
|
||||
ddd = torch.ones(1, 1, args.n_embd)
|
||||
for i in range(args.n_embd):
|
||||
ddd[0, 0, i] = i / args.n_embd
|
||||
|
||||
# fancy time_decay
|
||||
decay_speed = torch.ones(args.dim_att)
|
||||
for h in range(args.dim_att):
|
||||
decay_speed[h] = -5 + 8 * (h / (args.dim_att - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
|
||||
self.time_decay = nn.Parameter(decay_speed)
|
||||
# print(layer_id, self.time_decay.flatten()[:3].cpu().numpy(), '...', self.time_decay.flatten()[-3:].cpu().numpy())
|
||||
|
||||
# fancy time_first
|
||||
zigzag = torch.tensor([(i + 1) % 3 - 1 for i in range(args.dim_att)]) * 0.5
|
||||
self.time_first = nn.Parameter(torch.ones(args.dim_att) * math.log(0.3) + zigzag)
|
||||
|
||||
# fancy time_mix
|
||||
self.time_mix_k = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
|
||||
self.time_mix_v = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
|
||||
self.time_mix_r = nn.Parameter(torch.pow(ddd, 0.5 * ratio_1_to_almost0))
|
||||
|
||||
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
||||
|
||||
self.key = make_linear_att(args.n_embd, args.dim_att, bias=False)
|
||||
self.value = make_linear_att(args.n_embd, args.dim_att, bias=False)
|
||||
self.receptance = make_linear_att(args.n_embd, args.dim_att, bias=False)
|
||||
|
||||
self.output = nn.Linear(args.dim_att, args.n_embd, bias=False)
|
||||
|
||||
if 'a' in os.environ["RWKV_MY_TESTING"]:
|
||||
self.register_buffer("att_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
|
||||
d_qkv = args.n_embd // 16
|
||||
self.qq = nn.Linear(args.n_embd, d_qkv, bias=False)
|
||||
self.kk = nn.Linear(args.n_embd, d_qkv, bias=False)
|
||||
self.vv = nn.Linear(args.n_embd, d_qkv, bias=False)
|
||||
self.oo = nn.Linear(d_qkv, args.n_embd, bias=False)
|
||||
with torch.no_grad():
|
||||
self.time_mix_qq = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
|
||||
self.time_mix_kk = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
|
||||
self.time_mix_vv = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
|
||||
|
||||
if 'a' not in os.environ["RWKV_MY_TESTING"]:
|
||||
@MyFunction
|
||||
def jit_func(self, x):
|
||||
xx = self.time_shift(x) # Mix x with the previous timestep to produce xk, xv, xr
|
||||
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
|
||||
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
|
||||
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
|
||||
k = self.key(xk)
|
||||
v = self.value(xv)
|
||||
r = self.receptance(xr)
|
||||
sr = torch.sigmoid(r)
|
||||
return sr, k, v
|
||||
|
||||
def forward(self, x):
|
||||
B, T, C = x.size() # x = (Batch,Time,Channel)
|
||||
sr, k, v = self.jit_func(x)
|
||||
rwkv = sr * RUN_CUDA(B, T, self.args.dim_att, self.time_decay, self.time_first, k, v)
|
||||
return self.output(rwkv)
|
||||
|
||||
if 'a' in os.environ["RWKV_MY_TESTING"]:
|
||||
@MyFunction
|
||||
def QKV(self, q, k, v):
|
||||
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
||||
att = att.masked_fill(self.att_mask == 0, float('-inf'))
|
||||
att = F.softmax(att, dim = -1)
|
||||
x = att @ v
|
||||
return x
|
||||
|
||||
@MyFunction
|
||||
def jit_funcQKV(self, x):
|
||||
xx = self.time_shift(x) # Mix x with the previous timestep to produce xk, xv, xr
|
||||
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
|
||||
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
|
||||
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
|
||||
xqq = x * self.time_mix_qq + xx * (1 - self.time_mix_qq)
|
||||
xkk = x * self.time_mix_kk + xx * (1 - self.time_mix_kk)
|
||||
xvv = x * self.time_mix_vv + xx * (1 - self.time_mix_vv)
|
||||
k = self.key(xk)
|
||||
v = self.value(xv)
|
||||
r = self.receptance(xr)
|
||||
sr = torch.sigmoid(r)
|
||||
qq = self.qq(xqq)
|
||||
kk = self.kk(xkk)
|
||||
vv = self.vv(xvv)
|
||||
return sr, k, v, qq, kk, vv
|
||||
|
||||
def forward(self, x):
|
||||
B, T, C = x.size() # x = (Batch,Time,Channel)
|
||||
sr, k, v, qq, kk, vv = self.jit_funcQKV(x)
|
||||
rwkv = sr * RUN_CUDA(B, T, self.args.dim_att, self.time_decay, self.time_first, k, v)
|
||||
rwkv = self.output(rwkv) + self.oo(self.QKV(qq, kk, vv))
|
||||
return rwkv
|
||||
|
||||
########################################################################################################
|
||||
|
||||
class RWKV_ChannelMix(MyModule):
|
||||
def __init__(self, args, layer_id):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.layer_id = layer_id
|
||||
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
||||
|
||||
with torch.no_grad(): # fancy init of time_mix
|
||||
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer) # 1 to ~0
|
||||
ddd = torch.ones(1, 1, args.n_embd)
|
||||
for i in range(args.n_embd):
|
||||
ddd[0, 0, i] = i / args.n_embd
|
||||
self.time_mix_k = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
|
||||
self.time_mix_r = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
|
||||
|
||||
self.key = make_linear_ffn(args.n_embd, args.dim_ffn, bias=False)
|
||||
self.receptance = make_linear_ffn(args.n_embd, args.n_embd, bias=False)
|
||||
self.value = make_linear_ffn(args.dim_ffn, args.n_embd, bias=False)
|
||||
|
||||
@MyFunction
|
||||
def forward(self, x):
|
||||
xx = self.time_shift(x)
|
||||
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
|
||||
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
|
||||
k = self.key(xk)
|
||||
k = torch.square(torch.relu(k))
|
||||
kv = self.value(k)
|
||||
return torch.sigmoid(self.receptance(xr)) * kv
|
||||
|
||||
class MishGLU(MyModule):
|
||||
def __init__(self, args, layer_id):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.layer_id = layer_id
|
||||
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
|
||||
|
||||
with torch.no_grad():
|
||||
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer)
|
||||
|
||||
x = torch.ones(1, 1, args.n_embd)
|
||||
for i in range(args.n_embd):
|
||||
x[0, 0, i] = i / args.n_embd
|
||||
|
||||
self.time_mix_k = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
|
||||
self.time_mix_r = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
|
||||
self.aa = nn.Linear(args.n_embd, args.dim_ffn, bias=False)
|
||||
self.bb = nn.Linear(args.n_embd, args.dim_ffn, bias=False)
|
||||
self.value = nn.Linear(args.dim_ffn, args.n_embd, bias=False)
|
||||
|
||||
@MyFunction
|
||||
def forward(self, x):
|
||||
xx = self.time_shift(x)
|
||||
xa = x * self.time_mix_k + xx * (1 - self.time_mix_k)
|
||||
xb = x * self.time_mix_r + xx * (1 - self.time_mix_r)
|
||||
a = self.aa(xa)
|
||||
b = self.bb(xb)
|
||||
return self.value(a * F.mish(b))
|
||||
|
||||
########################################################################################################
|
||||
# The RWKV Model with our blocks
|
||||
########################################################################################################
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
def __init__(self, args, layer_id):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
self.layer_id = layer_id
|
||||
|
||||
self.ln1 = nn.LayerNorm(args.n_embd)
|
||||
self.ln2 = nn.LayerNorm(args.n_embd)
|
||||
|
||||
if self.layer_id == 0:
|
||||
self.ln0 = nn.LayerNorm(args.n_embd)
|
||||
if args.my_pos_emb > 0:
|
||||
self.pos_emb_x = nn.Parameter(torch.zeros((1,args.my_pos_emb,args.n_embd)))
|
||||
self.pos_emb_y = nn.Parameter(torch.zeros((args.my_pos_emb,1,args.n_embd)))
|
||||
|
||||
if self.layer_id == 0 and self.args.pre_ffn > 0:
|
||||
self.ffnPre = RWKV_ChannelMix(args, 0)
|
||||
else:
|
||||
self.att = RWKV_TimeMix(args, layer_id)
|
||||
|
||||
if 'g' in os.environ["RWKV_MY_TESTING"]:
|
||||
self.ffn = MishGLU(args, layer_id)
|
||||
else:
|
||||
self.ffn = RWKV_ChannelMix(args, layer_id)
|
||||
|
||||
if args.tiny_att_dim > 0 and self.layer_id == args.tiny_att_layer:
|
||||
self.tiny_ln = nn.LayerNorm(args.n_embd)
|
||||
self.tiny_q = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
|
||||
self.tiny_k = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
|
||||
self.tiny_v = nn.Linear(args.n_embd, args.n_embd, bias=False)
|
||||
self.register_buffer("tiny_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
|
||||
|
||||
def forward(self, x, x_emb=None):
|
||||
args = self.args
|
||||
B, T, C = x.size()
|
||||
if self.layer_id == 0:
|
||||
x = self.ln0(x)
|
||||
if args.my_pos_emb > 0:
|
||||
pos_emb = (self.pos_emb_x + self.pos_emb_y).reshape(T+1, -1)[:-1,:]
|
||||
x = x + pos_emb
|
||||
|
||||
if self.layer_id == 0 and args.pre_ffn > 0:
|
||||
x = x + self.ffnPre(self.ln1(x))
|
||||
else:
|
||||
x = x + self.att(self.ln1(x))
|
||||
x = x + self.ffn(self.ln2(x))
|
||||
|
||||
if args.tiny_att_dim > 0 and self.layer_id == args.tiny_att_layer:
|
||||
xx = self.tiny_ln(x)
|
||||
q = self.tiny_q(xx)[:, :T, :]
|
||||
k = self.tiny_k(xx)[:, :T, :]
|
||||
c = (q @ k.transpose(-2, -1)) * (args.tiny_att_dim ** (-0.5))
|
||||
c = c.masked_fill(self.tiny_mask[:T, :T] == 0, 0)
|
||||
x = x + c @ self.tiny_v(x_emb)
|
||||
return x
|
||||
|
||||
|
||||
class L2Wrap(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(ctx, loss, y):
|
||||
ctx.save_for_backward(y)
|
||||
return loss
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_output):
|
||||
y = ctx.saved_tensors[0]
|
||||
# to encourage the logits to be close to 0
|
||||
factor = 1e-4 / (y.shape[0] * y.shape[1])
|
||||
maxx, ids = torch.max(y, -1, keepdim=True)
|
||||
gy = torch.zeros_like(y)
|
||||
gy.scatter_(-1, ids, maxx * factor)
|
||||
return (grad_output, gy)
|
||||
|
||||
|
||||
class RWKV(pl.LightningModule):
|
||||
def __init__(self, args):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
if not hasattr(args, 'dim_att'):
|
||||
args.dim_att = args.n_embd
|
||||
if not hasattr(args, 'dim_ffn'):
|
||||
args.dim_ffn = args.n_embd * 4
|
||||
if not hasattr(args, 'tiny_att_layer'):
|
||||
args.tiny_att_layer = -1
|
||||
if not hasattr(args, 'tiny_att_dim'):
|
||||
args.tiny_att_dim = -1
|
||||
|
||||
self.emb = nn.Embedding(args.vocab_size, args.n_embd)
|
||||
|
||||
self.blocks = nn.ModuleList([Block(args, i) for i in range(args.n_layer)])
|
||||
|
||||
self.ln_out = nn.LayerNorm(args.n_embd)
|
||||
self.head = nn.Linear(args.n_embd, args.vocab_size, bias=False)
|
||||
|
||||
if args.head_qk > 0:
|
||||
self.head_q = nn.Linear(args.n_embd, args.head_qk, bias=False)
|
||||
self.head_k = nn.Linear(args.n_embd, args.head_qk, bias=False)
|
||||
self.register_buffer("copy_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
|
||||
|
||||
def configure_optimizers(self):
|
||||
args = self.args
|
||||
if args.layerwise_lr > 0:
|
||||
lr_1x = set()
|
||||
lr_2x = set()
|
||||
lr_3x = set()
|
||||
for n, p in self.named_parameters():
|
||||
if "time_mix" in n:
|
||||
if args.my_pile_stage == 2:
|
||||
lr_2x.add(n)
|
||||
else:
|
||||
lr_1x.add(n)
|
||||
elif "time_decay" in n:
|
||||
if args.my_pile_stage == 2:
|
||||
lr_3x.add(n)
|
||||
else:
|
||||
lr_2x.add(n)
|
||||
elif "time_first" in n:
|
||||
lr_3x.add(n)
|
||||
else:
|
||||
lr_1x.add(n)
|
||||
lr_1x = sorted(list(lr_1x))
|
||||
lr_2x = sorted(list(lr_2x))
|
||||
lr_3x = sorted(list(lr_3x))
|
||||
# print('1x', lr_1x)
|
||||
# print('2x', lr_2x)
|
||||
# print('3x', lr_3x)
|
||||
param_dict = {n: p for n, p in self.named_parameters()}
|
||||
if args.my_pile_stage == 2:
|
||||
optim_groups = [
|
||||
{"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
|
||||
{"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 2e-3 / args.lr_init},
|
||||
{"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 3e-3 / args.lr_init},
|
||||
]
|
||||
else:
|
||||
optim_groups = [
|
||||
{"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
|
||||
{"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 2.0},
|
||||
{"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 3.0},
|
||||
]
|
||||
else:
|
||||
optim_groups = [
|
||||
{"params": [p for n, p in self.named_parameters()], "weight_decay": 0.0},
|
||||
]
|
||||
|
||||
for g in optim_groups:
|
||||
g["params"] = [p for p in g["params"] if p.requires_grad]
|
||||
optim_groups = [g for g in optim_groups if len(g["params"]) > 0]
|
||||
|
||||
if self.deepspeed_offload:
|
||||
return DeepSpeedCPUAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adamw_mode=False, weight_decay=0, amsgrad=False)
|
||||
return FusedAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adam_w_mode=False, weight_decay=0, amsgrad=False)
|
||||
# return ZeroOneAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, weight_decay=0, amsgrad=False, cuda_aware=False)
|
||||
|
||||
@property
|
||||
def deepspeed_offload(self) -> bool:
|
||||
strategy = self.trainer.strategy
|
||||
if isinstance(strategy, DeepSpeedStrategy):
|
||||
cfg = strategy.config["zero_optimization"]
|
||||
return cfg.get("offload_optimizer") or cfg.get("offload_param")
|
||||
return False
|
||||
|
||||
def forward(self, idx):
|
||||
args = self.args
|
||||
B, T = idx.size()
|
||||
assert T <= args.ctx_len, "Cannot forward, model ctx_len is exhausted."
|
||||
|
||||
x = self.emb(idx)
|
||||
x_emb = x
|
||||
|
||||
if args.tiny_att_dim > 0:
|
||||
for block in self.blocks:
|
||||
if args.grad_cp == 1:
|
||||
if args.lora:
|
||||
x = torch_checkpoint(block, x, x_emb, use_reentrant=False)
|
||||
else:
|
||||
x = deepspeed.checkpointing.checkpoint(block, x, x_emb)
|
||||
else:
|
||||
x = block(x, x_emb)
|
||||
else:
|
||||
for block in self.blocks:
|
||||
if args.grad_cp == 1:
|
||||
if args.lora:
|
||||
x = torch_checkpoint(block, x, x_emb, use_reentrant=False)
|
||||
else:
|
||||
x = deepspeed.checkpointing.checkpoint(block, x)
|
||||
else:
|
||||
x = block(x)
|
||||
|
||||
x = self.ln_out(x)
|
||||
|
||||
if args.head_qk > 0:
|
||||
q = self.head_q(x)[:, :T, :]
|
||||
k = self.head_k(x)[:, :T, :]
|
||||
c = (q @ k.transpose(-2, -1)) * (1.0 / args.head_qk)
|
||||
c = c.masked_fill(self.copy_mask[:T, :T] == 0, 0)
|
||||
|
||||
if "32" in os.environ["RWKV_FLOAT_MODE"]:
|
||||
c = c @ F.one_hot(idx, num_classes=args.vocab_size)
|
||||
elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
|
||||
c = c @ F.one_hot(idx, num_classes=args.vocab_size).half()
|
||||
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
|
||||
c = c @ F.one_hot(idx, num_classes=args.vocab_size).bfloat16()
|
||||
|
||||
x = self.head(x) + c
|
||||
else:
|
||||
x = self.head(x)
|
||||
|
||||
return x
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
args = self.args
|
||||
if args.my_qa_mask != 1:
|
||||
idx, targets = batch
|
||||
logits = self(idx)
|
||||
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
||||
else:
|
||||
idx, targets, mask = batch
|
||||
mask = mask.view(-1)
|
||||
sum_mask = torch.sum(mask).item()
|
||||
# if sum_mask == 0:
|
||||
# return torch.tensor([0.0], requires_grad=True)
|
||||
|
||||
logits = self(idx)
|
||||
if sum_mask == mask.shape[0]:
|
||||
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
||||
# print('rank', self.global_rank, 'loss', loss.item())
|
||||
else:
|
||||
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), reduction='none')
|
||||
# loss_raw = loss
|
||||
loss = torch.sum(loss * mask) / sum_mask
|
||||
|
||||
# torch.set_printoptions(threshold=10000)
|
||||
# if True: #self.global_rank == 1:
|
||||
# tmp = ''
|
||||
# sss = 0
|
||||
# ccc = 0
|
||||
# for i in range(mask.shape[0]):
|
||||
# if mask[i] > 0:
|
||||
# tmp += str(idx.view(-1)[i].item()) + ','
|
||||
# sss += loss_raw.view(-1)[i].float().item()
|
||||
# ccc += 1
|
||||
# print('rank', self.global_rank, 'loss', loss.item(), 'lavg', sss / ccc)#, 'tmp', tmp, 'input', idx)
|
||||
|
||||
return L2Wrap.apply(loss, logits)
|
||||
|
||||
def training_step_end(self, batch_parts):
|
||||
all = self.all_gather(batch_parts)
|
||||
if self.trainer.is_global_zero:
|
||||
self.trainer.my_loss_all = all
|
||||
|
||||
def generate_init_weight(self):
|
||||
print(
|
||||
f"""
|
||||
############################################################################
|
||||
#
|
||||
# Init model weight (slow for large models)...
|
||||
#
|
||||
############################################################################
|
||||
"""
|
||||
)
|
||||
m = {}
|
||||
for n in self.state_dict():
|
||||
p = self.state_dict()[n]
|
||||
shape = p.shape
|
||||
|
||||
gain = 1.0
|
||||
scale = 1.0
|
||||
if "ln_" in n or ".ln" in n or "time_" in n or "_mask" in n or "pos_emb" in n or '.mask.' in n:
|
||||
m[n] = p
|
||||
else:
|
||||
if n == "emb.weight":
|
||||
scale = -1 * self.args.lr_init
|
||||
else:
|
||||
if shape[0] > shape[1]:
|
||||
gain = math.sqrt(shape[0] / shape[1])
|
||||
for kk in [".att.key.", ".att.receptance.", ".att.output.", ".att.key.", ".ffn.value.", ".ffn.receptance.", ".ffnPre.value.", ".ffnPre.receptance.", "head_q.", '.oo.', '.rr.']:
|
||||
if kk in n:
|
||||
scale = 0
|
||||
if n == "head.weight":
|
||||
scale = 0.5
|
||||
if "head_k." in n:
|
||||
scale = 0.1
|
||||
if "head_q." in n:
|
||||
scale = 0
|
||||
|
||||
print(f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {str(scale).ljust(4)} {n}")
|
||||
|
||||
if self.args.accelerator.upper() == "GPU":
|
||||
m[n] = torch.empty((shape[0], shape[1]), device="cuda")
|
||||
else:
|
||||
m[n] = torch.empty((shape[0], shape[1]))
|
||||
|
||||
if scale == 0:
|
||||
nn.init.zeros_(m[n])
|
||||
elif scale < 0:
|
||||
nn.init.uniform_(m[n], a=scale, b=-scale)
|
||||
else:
|
||||
nn.init.orthogonal_(m[n], gain=gain * scale)
|
||||
|
||||
m[n] = m[n].cpu()
|
||||
if os.environ["RWKV_FLOAT_MODE"] == "fp16":
|
||||
m[n] = m[n].half()
|
||||
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
|
||||
m[n] = m[n].bfloat16()
|
||||
|
||||
# if n == "emb.weight":
|
||||
# print(m[n])
|
||||
|
||||
gc.collect()
|
||||
torch.cuda.empty_cache()
|
||||
return m
|
||||
203
finetune/lora/src/trainer.py
vendored
Normal file
203
finetune/lora/src/trainer.py
vendored
Normal file
@@ -0,0 +1,203 @@
|
||||
import os, math, time, datetime, subprocess
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
import pytorch_lightning as pl
|
||||
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
|
||||
from .model import LORA_CONFIG
|
||||
|
||||
def my_save(dd, ff):
|
||||
if '14b-run1' not in ff:
|
||||
torch.save(dd, ff)
|
||||
else:
|
||||
fn = ff.split('/')[-1]
|
||||
fff = '/dev/shm/' + fn
|
||||
torch.save(dd, fff)
|
||||
subprocess.Popen(f" aws s3 mv {fff} s3://rwkv-14b-4k/{fn} --quiet", shell=True)
|
||||
|
||||
class train_callback(pl.Callback):
|
||||
def __init__(self, args):
|
||||
super().__init__()
|
||||
self.args = args
|
||||
|
||||
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx):
|
||||
args = self.args
|
||||
# if args.cuda_cleanup > 0:
|
||||
# torch.cuda.empty_cache()
|
||||
real_step = trainer.global_step + args.epoch_begin * args.epoch_steps
|
||||
|
||||
# LR schedule
|
||||
w_step = args.warmup_steps
|
||||
if args.lr_final == args.lr_init or args.epoch_count == 0:
|
||||
lr = args.lr_init
|
||||
else:
|
||||
decay_step = real_step - args.my_pile_edecay * args.epoch_steps
|
||||
decay_total = (args.epoch_count - args.my_pile_edecay) * args.epoch_steps
|
||||
progress = (decay_step - w_step + 1) / (decay_total - w_step)
|
||||
progress = min(1, max(0, progress))
|
||||
|
||||
if args.lr_final == 0 or args.lr_init == 0: # linear decay
|
||||
lr = args.lr_init + (args.lr_final - args.lr_init) * progress
|
||||
else: # exp decay
|
||||
lr = args.lr_init * math.exp(math.log(args.lr_final / args.lr_init) * pow(progress, 1))
|
||||
|
||||
if trainer.global_step < w_step:
|
||||
lr = lr * (0.2 + 0.8 * trainer.global_step / w_step)
|
||||
# if trainer.is_global_zero:
|
||||
# print(trainer.global_step, decay_step, decay_total, w_step, progress, lr)
|
||||
|
||||
for param_group in trainer.optimizers[0].param_groups:
|
||||
if args.layerwise_lr > 0:
|
||||
param_group["lr"] = lr * param_group["my_lr_scale"]
|
||||
# print(param_group["lr"], param_group["my_lr_scale"])
|
||||
else:
|
||||
param_group["lr"] = lr
|
||||
|
||||
trainer.my_lr = lr
|
||||
# rank_zero_info(f"{real_step} {lr}")
|
||||
|
||||
if trainer.global_step == 0:
|
||||
if trainer.is_global_zero: # logging
|
||||
trainer.my_loss_sum = 0
|
||||
trainer.my_loss_count = 0
|
||||
trainer.my_log = open(args.proj_dir + "/train_log.txt", "a")
|
||||
trainer.my_log.write(f"NEW RUN {args.my_timestamp}\n{vars(self.args)}\n")
|
||||
try:
|
||||
print(f"\n{trainer.strategy.config}\n")
|
||||
trainer.my_log.write(f"{trainer.strategy.config}\n")
|
||||
except:
|
||||
pass
|
||||
trainer.my_log.flush()
|
||||
if len(args.wandb) > 0:
|
||||
print("Login to wandb...")
|
||||
import wandb
|
||||
wandb.init(
|
||||
project=args.wandb,
|
||||
name=args.run_name + " " + args.my_timestamp,
|
||||
config=args,
|
||||
save_code=False,
|
||||
)
|
||||
trainer.my_wandb = wandb
|
||||
|
||||
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
|
||||
args = self.args
|
||||
if trainer.is_global_zero: # logging
|
||||
t_now = time.time_ns()
|
||||
token_per_step = args.ctx_len * args.real_bsz
|
||||
real_step = trainer.global_step + args.epoch_begin * args.epoch_steps
|
||||
kt_s = 0
|
||||
try:
|
||||
t_cost = (t_now - trainer.my_time_ns) / 1e9
|
||||
kt_s = token_per_step / t_cost / 1000
|
||||
self.log("REAL it/s", 1.0 / t_cost, prog_bar=True, on_step=True)
|
||||
self.log("Kt/s", kt_s, prog_bar=True, on_step=True)
|
||||
except:
|
||||
pass
|
||||
trainer.my_time_ns = t_now
|
||||
trainer.my_loss = trainer.my_loss_all.float().mean().item()
|
||||
trainer.my_loss_sum += trainer.my_loss
|
||||
trainer.my_loss_count += 1
|
||||
trainer.my_epoch_loss = trainer.my_loss_sum / trainer.my_loss_count
|
||||
self.log("lr", trainer.my_lr, prog_bar=True, on_step=True)
|
||||
self.log("loss", trainer.my_epoch_loss, prog_bar=True, on_step=True)
|
||||
# self.log("s", real_step, prog_bar=True, on_step=True)
|
||||
|
||||
if len(args.wandb) > 0:
|
||||
lll = {"loss": trainer.my_loss, "lr": trainer.my_lr, "Gtokens": real_step * token_per_step / 1e9}
|
||||
if kt_s > 0:
|
||||
lll["kt/s"] = kt_s
|
||||
trainer.my_wandb.log(lll, step=int(real_step))
|
||||
if args.magic_prime > 0:
|
||||
expand_factor = 2 if args.my_qa_mask > 0 else 1
|
||||
if int(real_step) == int(args.magic_prime * expand_factor // args.real_bsz) - 1:
|
||||
to_save_dict = pl_module.state_dict()
|
||||
my_save(
|
||||
to_save_dict,
|
||||
f"{args.proj_dir}/rwkv-final.pth",
|
||||
)
|
||||
|
||||
|
||||
def on_train_epoch_start(self, trainer, pl_module):
|
||||
args = self.args
|
||||
dataset = trainer.train_dataloader.dataset.datasets
|
||||
assert "MyDataset" in str(dataset)
|
||||
dataset.global_rank = trainer.global_rank
|
||||
dataset.real_epoch = int(args.epoch_begin + trainer.current_epoch)
|
||||
dataset.world_size = trainer.world_size
|
||||
# print(f'########## world_size {dataset.world_size} global_rank {dataset.global_rank} real_epoch {dataset.real_epoch} ##########')
|
||||
|
||||
def on_train_epoch_end(self, trainer, pl_module):
|
||||
args = self.args
|
||||
if trainer.is_global_zero: # logging & save state_dict
|
||||
if (args.epoch_save > 0 and trainer.current_epoch % args.epoch_save == 0) or trainer.current_epoch == args.epoch_count - 1:
|
||||
if args.data_type == 'wds_img':
|
||||
raw_dict = pl_module.state_dict()
|
||||
to_save_dict = {}
|
||||
for k in raw_dict:
|
||||
if k.startswith('encoder.') or k.startswith('decoder.'):
|
||||
to_save_dict[k] = raw_dict[k]
|
||||
else:
|
||||
to_save_dict = pl_module.state_dict()
|
||||
|
||||
if args.lora:
|
||||
enable_time_finetune = 'time' in LORA_CONFIG["parts"]
|
||||
enable_ln_finetune = 'ln' in LORA_CONFIG["parts"]
|
||||
lora_dict = {}
|
||||
for name, state in to_save_dict.items():
|
||||
if ('.lora_' in name
|
||||
or (enable_time_finetune and '.time_' in name)
|
||||
or (enable_ln_finetune and '.ln' in name)):
|
||||
lora_dict[name] = state
|
||||
to_save_dict = lora_dict
|
||||
|
||||
try:
|
||||
my_save(
|
||||
to_save_dict,
|
||||
f"{args.proj_dir}/rwkv-{args.epoch_begin + trainer.current_epoch}.pth",
|
||||
)
|
||||
except Exception as e:
|
||||
print('Error\n\n', e, '\n\n')
|
||||
trainer.my_log.write(f"{args.epoch_begin + trainer.current_epoch} {trainer.my_epoch_loss:.6f} {math.exp(trainer.my_epoch_loss):.4f} {trainer.my_lr:.8f} {datetime.datetime.now()} {trainer.current_epoch}\n")
|
||||
trainer.my_log.flush()
|
||||
|
||||
trainer.my_loss_sum = 0
|
||||
trainer.my_loss_count = 0
|
||||
|
||||
|
||||
@rank_zero_only
|
||||
def generate_init_weight(model, init_weight_name):
|
||||
mm = model.generate_init_weight()
|
||||
|
||||
if model.args.my_pile_stage == 1:
|
||||
if len(model.args.load_model) > 0:
|
||||
print(f"Combine weights from {model.args.load_model}...")
|
||||
load_dict = torch.load(model.args.load_model, map_location="cpu")
|
||||
for k in load_dict:
|
||||
assert k in mm
|
||||
src = load_dict[k]
|
||||
try:
|
||||
mm[k] = src.reshape(mm[k].shape)
|
||||
except:
|
||||
tmp = mm[k].squeeze().clone()
|
||||
print(k, src.shape, '-->', mm[k].shape)
|
||||
ss = src.shape[0]
|
||||
dd = tmp.shape[0]
|
||||
for i in range(dd):
|
||||
pos = i / dd * ss
|
||||
if pos >= ss - 1:
|
||||
tmp[i] = src[ss-1]
|
||||
else:
|
||||
p0 = int(math.floor(pos))
|
||||
ii = pos - p0
|
||||
tmp[i] = src[p0] * (1-ii) + src[p0+1] * (ii)
|
||||
mm[k] = tmp.reshape(mm[k].shape)
|
||||
sss = src.squeeze().float().cpu().numpy()
|
||||
print(sss[:10], '...', sss[-10:])
|
||||
mmm = mm[k].squeeze().float().cpu().numpy()
|
||||
print(mmm[:10], '...', mmm[-10:])
|
||||
|
||||
print(f"Save to {init_weight_name}...")
|
||||
torch.save(mm, init_weight_name)
|
||||
|
||||
if model.args.my_pile_stage == 1:
|
||||
print("Done. Now go for stage 2.")
|
||||
exit(0)
|
||||
130
finetune/lora/src/utils.py
vendored
Normal file
130
finetune/lora/src/utils.py
vendored
Normal file
@@ -0,0 +1,130 @@
|
||||
import json, time, random, os
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
|
||||
time_slot = {}
|
||||
time_ref = time.time_ns()
|
||||
|
||||
def record_time(name):
|
||||
if name not in time_slot:
|
||||
time_slot[name] = 1e20
|
||||
tt = (time.time_ns() - time_ref) / 1e9
|
||||
if tt < time_slot[name]:
|
||||
time_slot[name] = tt
|
||||
|
||||
class TOKENIZER():
|
||||
def __init__(self, WORD_NAME, UNKNOWN_CHAR='\ue083'):
|
||||
if 'list' in str(type(WORD_NAME)):
|
||||
self.charMode = False
|
||||
if WORD_NAME[0] == WORD_NAME[1]:
|
||||
from transformers import PreTrainedTokenizerFast
|
||||
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=WORD_NAME[0])
|
||||
else:
|
||||
from transformers import GPT2TokenizerFast
|
||||
self.tokenizer = GPT2TokenizerFast(WORD_NAME[0], WORD_NAME[1])
|
||||
self.vocab_size = len(self.tokenizer)
|
||||
else:
|
||||
self.charMode = True
|
||||
with open(WORD_NAME + '.json', "r", encoding="utf-16") as result_file:
|
||||
self.word_table = json.load(result_file)
|
||||
|
||||
self.vocab_size = len(self.word_table)
|
||||
|
||||
self.stoi = {v: int(k) for k, v in self.word_table.items()}
|
||||
self.itos = {int(k): v for k, v in self.word_table.items()}
|
||||
|
||||
self.UNKNOWN_CHAR = self.stoi[UNKNOWN_CHAR]
|
||||
|
||||
def refine_context(self, context):
|
||||
context = context.strip().split('\n')
|
||||
for c in range(len(context)):
|
||||
context[c] = context[c].strip().strip('\u3000').strip('\r')
|
||||
context = list(filter(lambda c: c != '', context))
|
||||
context = '\n' + ('\n'.join(context)).strip()
|
||||
if context == '':
|
||||
context = '\n'
|
||||
return context
|
||||
|
||||
def sample_logits(self, out, x, ctx_len, temperature=1.0, top_p_usual=None, top_p_newline=None):
|
||||
# out[self.UNKNOWN_CHAR] = -float('Inf')
|
||||
lastChar = int(x[-1])
|
||||
|
||||
probs = F.softmax(out, dim=-1)
|
||||
|
||||
if self.charMode:
|
||||
if self.itos[lastChar] == '\n':
|
||||
top_p = top_p_newline
|
||||
else:
|
||||
top_p = top_p_usual
|
||||
else:
|
||||
top_p = top_p_usual
|
||||
|
||||
if os.environ["RWKV_RUN_DEVICE"] == "cpu":
|
||||
probs = probs.numpy()
|
||||
sorted_probs = np.sort(probs)[::-1]
|
||||
cumulative_probs = np.cumsum(sorted_probs)
|
||||
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
|
||||
probs[probs < cutoff] = 0
|
||||
if temperature != 1.0:
|
||||
probs = probs.pow(1.0 / temperature)
|
||||
probs = probs / np.sum(probs)
|
||||
out = np.random.choice(a=len(probs), p=probs)
|
||||
return out
|
||||
else:
|
||||
sorted_probs = torch.sort(probs, descending=True)[0]
|
||||
cumulative_probs = torch.cumsum(sorted_probs, dim=-1).cpu().numpy()
|
||||
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
|
||||
probs[probs < cutoff] = 0
|
||||
if temperature != 1.0:
|
||||
probs = probs.pow(1.0 / temperature)
|
||||
out = torch.multinomial(probs, num_samples=1)[0]
|
||||
return out
|
||||
|
||||
def MaybeIsPrime(number):
|
||||
if FermatPrimalityTest(number) and MillerRabinPrimalityTest(number):
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
def FermatPrimalityTest(number):
|
||||
if number > 1:
|
||||
for time in range(3):
|
||||
randomNumber = random.randint(2, number) - 1
|
||||
if pow(randomNumber, number - 1, number) != 1:
|
||||
return False
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
|
||||
def MillerRabinPrimalityTest(number):
|
||||
if number == 2:
|
||||
return True
|
||||
elif number == 1 or number % 2 == 0:
|
||||
return False
|
||||
oddPartOfNumber = number - 1
|
||||
timesTwoDividNumber = 0
|
||||
while oddPartOfNumber % 2 == 0:
|
||||
oddPartOfNumber = oddPartOfNumber // 2
|
||||
timesTwoDividNumber = timesTwoDividNumber + 1
|
||||
|
||||
for time in range(3):
|
||||
while True:
|
||||
randomNumber = random.randint(2, number) - 1
|
||||
if randomNumber != 0 and randomNumber != 1:
|
||||
break
|
||||
|
||||
randomNumberWithPower = pow(randomNumber, oddPartOfNumber, number)
|
||||
|
||||
if (randomNumberWithPower != 1) and (randomNumberWithPower != number - 1):
|
||||
iterationNumber = 1
|
||||
|
||||
while (iterationNumber <= timesTwoDividNumber - 1) and (randomNumberWithPower != number - 1):
|
||||
randomNumberWithPower = pow(randomNumberWithPower, 2, number)
|
||||
iterationNumber = iterationNumber + 1
|
||||
if randomNumberWithPower != (number - 1):
|
||||
return False
|
||||
|
||||
return True
|
||||
479
finetune/lora/train.py
vendored
Normal file
479
finetune/lora/train.py
vendored
Normal file
@@ -0,0 +1,479 @@
|
||||
########################################################################################################
|
||||
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
|
||||
########################################################################################################
|
||||
|
||||
if __name__ == "__main__":
|
||||
from argparse import ArgumentParser
|
||||
from pytorch_lightning import Trainer
|
||||
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
|
||||
|
||||
rank_zero_info("########## work in progress ##########")
|
||||
|
||||
########################################################################################################
|
||||
#
|
||||
# example: train a simple L12-D768 RWKV on dummy data
|
||||
#
|
||||
# python train.py --load_model "" --wandb "" --proj_dir "out" \
|
||||
# --data_file "" --data_type "dummy" --vocab_size 0 \
|
||||
# --ctx_len 128 --epoch_steps 1000 --epoch_count 20 --epoch_begin 0 --epoch_save 10 \
|
||||
# --micro_bsz 16 --n_layer 12 --n_embd 768 --pre_ffn 0 --head_qk 0 \
|
||||
# --lr_init 6e-4 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
|
||||
# --accelerator gpu --devices 1 --precision bf16 --strategy ddp_find_unused_parameters_false --grad_cp 0
|
||||
|
||||
# example: train a simple L6-D512 RWKV from scratch on enwik8
|
||||
#
|
||||
# python train.py --load_model "" --wandb "" --proj_dir "out" \
|
||||
# --data_file "../data/enwik8" --data_type "utf-8" --vocab_size 0 \
|
||||
# --ctx_len 512 --epoch_steps 5000 --epoch_count 500 --epoch_begin 0 --epoch_save 5 \
|
||||
# --micro_bsz 12 --n_layer 6 --n_embd 512 --pre_ffn 0 --head_qk 0 \
|
||||
# --lr_init 8e-4 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
|
||||
# --accelerator gpu --devices 1 --precision bf16 --strategy ddp_find_unused_parameters_false --grad_cp 0
|
||||
|
||||
# example: fine-tune RWKV 1.5B using 8xA100 40G = 1.76it/s = 115k token/s, VRAM 37477M
|
||||
#
|
||||
# python train.py --load_model "/fsx/BlinkDL/CODE/FP16/out_1b2/all-8040.pth" --wandb "" --proj_dir "out" \
|
||||
# --data_file "../data/train.npy" --data_type "numpy" --vocab_size 50277 \
|
||||
# --ctx_len 1024 --epoch_steps 1000 --epoch_count 1000 --epoch_begin 0 --epoch_save 5 \
|
||||
# --micro_bsz 8 --n_layer 24 --n_embd 2048 --pre_ffn 0 --head_qk 0 \
|
||||
# --lr_init 1e-5 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.999 --adam_eps 1e-8 \
|
||||
# --accelerator gpu --devices 8 --precision bf16 --strategy deepspeed_stage_2 --grad_cp 0
|
||||
|
||||
# example: fine-tune RWKV 1.5B using 1 GPU fp16 (VRAM 16G) NOTE: fp16 might overflow
|
||||
#
|
||||
# python train.py --load_model "/fsx/BlinkDL/CODE/FP16/out_1b2/all-8040.pth" --wandb "" --proj_dir "out" \
|
||||
# --data_file "../data/train.npy" --data_type "numpy" --vocab_size 50277 \
|
||||
# --ctx_len 1024 --epoch_steps 200 --epoch_count 1000 --epoch_begin 0 --epoch_save 1 \
|
||||
# --micro_bsz 11 --n_layer 24 --n_embd 2048 --pre_ffn 0 --head_qk 0 \
|
||||
# --lr_init 1e-5 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.999 --adam_eps 1e-8 \
|
||||
# --accelerator gpu --devices 1 --precision fp16 --strategy deepspeed_stage_2_offload --grad_cp 1
|
||||
|
||||
parser = ArgumentParser()
|
||||
|
||||
parser.add_argument("--load_model", default="", type=str) # full path, with .pth
|
||||
parser.add_argument(
|
||||
"--wandb", default="", type=str
|
||||
) # wandb project name. if "" then don't use wandb
|
||||
parser.add_argument("--proj_dir", default="out", type=str)
|
||||
parser.add_argument("--random_seed", default="-1", type=int)
|
||||
|
||||
parser.add_argument("--data_file", default="", type=str)
|
||||
parser.add_argument("--data_type", default="utf-8", type=str)
|
||||
parser.add_argument(
|
||||
"--vocab_size", default=0, type=int
|
||||
) # vocab_size = 0 means auto (for char-level LM and .txt data)
|
||||
|
||||
parser.add_argument("--ctx_len", default=1024, type=int)
|
||||
parser.add_argument(
|
||||
"--epoch_steps", default=1000, type=int
|
||||
) # a mini "epoch" has [epoch_steps] steps
|
||||
parser.add_argument(
|
||||
"--epoch_count", default=500, type=int
|
||||
) # train for this many "epochs". will continue afterwards with lr = lr_final
|
||||
parser.add_argument(
|
||||
"--epoch_begin", default=0, type=int
|
||||
) # if you load a model trained for x "epochs", set epoch_begin = x
|
||||
parser.add_argument(
|
||||
"--epoch_save", default=5, type=int
|
||||
) # save the model every [epoch_save] "epochs"
|
||||
|
||||
parser.add_argument(
|
||||
"--micro_bsz", default=12, type=int
|
||||
) # micro batch size (batch size per GPU)
|
||||
parser.add_argument("--n_layer", default=6, type=int)
|
||||
parser.add_argument("--n_embd", default=512, type=int)
|
||||
parser.add_argument("--dim_att", default=0, type=int)
|
||||
parser.add_argument("--dim_ffn", default=0, type=int)
|
||||
parser.add_argument(
|
||||
"--pre_ffn", default=0, type=int
|
||||
) # replace first att layer by ffn (sometimes better)
|
||||
parser.add_argument("--head_qk", default=0, type=int) # my headQK trick
|
||||
parser.add_argument("--tiny_att_dim", default=0, type=int) # tiny attention dim
|
||||
parser.add_argument(
|
||||
"--tiny_att_layer", default=-999, type=int
|
||||
) # tiny attention @ which layer
|
||||
|
||||
parser.add_argument(
|
||||
"--lr_init", default=6e-4, type=float
|
||||
) # 6e-4 for L12-D768, 4e-4 for L24-D1024, 3e-4 for L24-D2048
|
||||
parser.add_argument("--lr_final", default=1e-5, type=float)
|
||||
parser.add_argument(
|
||||
"--warmup_steps", default=0, type=int
|
||||
) # try 50 if you load a model
|
||||
parser.add_argument("--beta1", default=0.9, type=float)
|
||||
parser.add_argument(
|
||||
"--beta2", default=0.99, type=float
|
||||
) # use 0.999 when your model is close to convergence
|
||||
parser.add_argument("--adam_eps", default=1e-8, type=float)
|
||||
|
||||
parser.add_argument(
|
||||
"--grad_cp", default=0, type=int
|
||||
) # gradient checkpt: saves VRAM, but slower
|
||||
parser.add_argument("--my_pile_stage", default=0, type=int) # my special pile mode
|
||||
parser.add_argument(
|
||||
"--my_pile_shift", default=-1, type=int
|
||||
) # my special pile mode - text shift
|
||||
parser.add_argument("--my_pile_edecay", default=0, type=int)
|
||||
parser.add_argument(
|
||||
"--layerwise_lr", default=1, type=int
|
||||
) # layerwise lr for faster convergence (but slower it/s)
|
||||
parser.add_argument(
|
||||
"--ds_bucket_mb", default=200, type=int
|
||||
) # deepspeed bucket size in MB. 200 seems enough
|
||||
# parser.add_argument("--cuda_cleanup", default=0, type=int) # extra cuda cleanup (sometimes helpful)
|
||||
|
||||
parser.add_argument("--my_img_version", default=0, type=str)
|
||||
parser.add_argument("--my_img_size", default=0, type=int)
|
||||
parser.add_argument("--my_img_bit", default=0, type=int)
|
||||
parser.add_argument("--my_img_clip", default="x", type=str)
|
||||
parser.add_argument("--my_img_clip_scale", default=1, type=float)
|
||||
parser.add_argument("--my_img_l1_scale", default=0, type=float)
|
||||
parser.add_argument("--my_img_encoder", default="x", type=str)
|
||||
# parser.add_argument("--my_img_noise_scale", default=0, type=float)
|
||||
parser.add_argument("--my_sample_len", default=0, type=int)
|
||||
parser.add_argument("--my_ffn_shift", default=1, type=int)
|
||||
parser.add_argument("--my_att_shift", default=1, type=int)
|
||||
parser.add_argument("--my_pos_emb", default=0, type=int)
|
||||
parser.add_argument("--load_partial", default=0, type=int)
|
||||
parser.add_argument("--magic_prime", default=0, type=int)
|
||||
parser.add_argument("--my_qa_mask", default=0, type=int)
|
||||
parser.add_argument("--my_testing", default="", type=str)
|
||||
|
||||
parser.add_argument("--lora", action="store_true")
|
||||
parser.add_argument("--lora_load", default="", type=str)
|
||||
parser.add_argument("--lora_r", default=8, type=int)
|
||||
parser.add_argument("--lora_alpha", default=32, type=float)
|
||||
parser.add_argument("--lora_dropout", default=0.01, type=float)
|
||||
parser.add_argument("--lora_parts", default="att,ln,time", type=str)
|
||||
|
||||
parser = Trainer.add_argparse_args(parser)
|
||||
args = parser.parse_args()
|
||||
|
||||
########################################################################################################
|
||||
|
||||
import os, warnings, math, datetime, sys, time, importlib
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
if "deepspeed" in args.strategy:
|
||||
import deepspeed
|
||||
import pytorch_lightning as pl
|
||||
from pytorch_lightning import seed_everything
|
||||
|
||||
if args.random_seed >= 0:
|
||||
print(
|
||||
f"########## WARNING: GLOBAL SEED {args.random_seed} THIS WILL AFFECT MULTIGPU SAMPLING ##########\n"
|
||||
* 3
|
||||
)
|
||||
seed_everything(args.random_seed)
|
||||
|
||||
np.set_printoptions(precision=4, suppress=True, linewidth=200)
|
||||
warnings.filterwarnings(
|
||||
"ignore", ".*Consider increasing the value of the `num_workers` argument*"
|
||||
)
|
||||
warnings.filterwarnings(
|
||||
"ignore", ".*The progress bar already tracks a metric with the*"
|
||||
)
|
||||
# os.environ["WDS_SHOW_SEED"] = "1"
|
||||
|
||||
args.my_timestamp = datetime.datetime.today().strftime("%Y-%m-%d-%H-%M-%S")
|
||||
args.enable_checkpointing = False
|
||||
args.replace_sampler_ddp = False
|
||||
args.logger = False
|
||||
args.gradient_clip_val = 1.0
|
||||
args.num_sanity_val_steps = 0
|
||||
args.check_val_every_n_epoch = int(1e20)
|
||||
args.log_every_n_steps = int(1e20)
|
||||
args.max_epochs = -1 # continue forever
|
||||
args.betas = (args.beta1, args.beta2)
|
||||
args.real_bsz = int(args.num_nodes) * int(args.devices) * args.micro_bsz
|
||||
os.environ["RWKV_T_MAX"] = str(args.ctx_len)
|
||||
os.environ["RWKV_MY_TESTING"] = args.my_testing
|
||||
if args.dim_att <= 0:
|
||||
args.dim_att = args.n_embd
|
||||
if args.dim_ffn <= 0:
|
||||
args.dim_ffn = args.n_embd * 4
|
||||
|
||||
if args.data_type == "wds_img":
|
||||
args.run_name = f"v{args.my_img_version}-{args.my_img_size}-{args.my_img_bit}bit-{args.my_img_clip}x{args.my_img_clip_scale}"
|
||||
args.proj_dir = f"{args.proj_dir}-{args.run_name}"
|
||||
else:
|
||||
args.run_name = (
|
||||
f"{args.vocab_size} ctx{args.ctx_len} L{args.n_layer} D{args.n_embd}"
|
||||
)
|
||||
if not os.path.exists(args.proj_dir):
|
||||
os.makedirs(args.proj_dir)
|
||||
|
||||
if args.my_pile_stage > 0:
|
||||
magic_prime_bak = args.magic_prime
|
||||
if args.ctx_len == 1024:
|
||||
args.magic_prime = 324331313
|
||||
args.epoch_count = 8043
|
||||
elif args.ctx_len == 2048:
|
||||
args.magic_prime = 162165671
|
||||
args.epoch_count = 4021
|
||||
elif args.ctx_len == 4096:
|
||||
args.magic_prime = 81082817
|
||||
args.epoch_count = 2010
|
||||
if args.my_pile_shift < 0:
|
||||
if args.ctx_len == 1024:
|
||||
args.my_pile_shift = 0
|
||||
elif args.ctx_len == 2048:
|
||||
args.my_pile_shift = 512
|
||||
elif args.ctx_len == 4096:
|
||||
args.my_pile_shift = 768
|
||||
|
||||
if magic_prime_bak > 0:
|
||||
args.magic_prime = magic_prime_bak
|
||||
|
||||
args.epoch_steps = 40320 // args.real_bsz
|
||||
assert args.epoch_steps * args.real_bsz == 40320
|
||||
if args.my_pile_stage == 2:
|
||||
assert args.lr_final == args.lr_init
|
||||
if args.my_pile_stage >= 2: # find latest saved model
|
||||
list_p = []
|
||||
for p in os.listdir(args.proj_dir):
|
||||
if p.startswith("rwkv") and p.endswith(".pth"):
|
||||
p = ((p.split("-"))[1].split("."))[0]
|
||||
if p == "init":
|
||||
p = -1
|
||||
else:
|
||||
p = int(p)
|
||||
list_p += [p]
|
||||
list_p.sort()
|
||||
max_p = list_p[-1]
|
||||
if len(list_p) > 1:
|
||||
args.my_pile_prev_p = list_p[-2] # in case max_p is corrupted
|
||||
if max_p == -1:
|
||||
args.load_model = f"{args.proj_dir}/rwkv-init.pth"
|
||||
else:
|
||||
args.load_model = f"{args.proj_dir}/rwkv-{max_p}.pth"
|
||||
if args.my_pile_stage == 2:
|
||||
args.warmup_steps = 10
|
||||
else:
|
||||
args.warmup_steps = 30
|
||||
args.epoch_begin = max_p + 1
|
||||
|
||||
samples_per_epoch = args.epoch_steps * args.real_bsz
|
||||
tokens_per_epoch = samples_per_epoch * args.ctx_len
|
||||
rank_zero_info(
|
||||
f"""
|
||||
############################################################################
|
||||
#
|
||||
# RWKV-4 {args.precision.upper()} on {args.num_nodes}x{args.devices} {args.accelerator.upper()}, bsz {args.num_nodes}x{args.devices}x{args.micro_bsz}={args.real_bsz}, {args.strategy} {'with grad_cp' if args.grad_cp > 0 else ''}
|
||||
#
|
||||
# Data = {args.data_file} ({args.data_type}), ProjDir = {args.proj_dir}
|
||||
#
|
||||
# Epoch = {args.epoch_begin} to {args.epoch_begin + args.epoch_count - 1} (will continue afterwards), save every {args.epoch_save} epoch
|
||||
#
|
||||
# Each "epoch" = {args.epoch_steps} steps, {samples_per_epoch} samples, {tokens_per_epoch} tokens
|
||||
#
|
||||
# Model = {args.n_layer} n_layer, {args.n_embd} n_embd, {args.ctx_len} ctx_len
|
||||
# LoRA = {f'enabled, {args.lora_r} r, {args.lora_alpha} alpha, {args.lora_dropout} dropout, on {args.lora_parts}' if args.lora else 'disabled'}
|
||||
#
|
||||
# Adam = lr {args.lr_init} to {args.lr_final}, warmup {args.warmup_steps} steps, beta {args.betas}, eps {args.adam_eps}
|
||||
#
|
||||
# Found torch {torch.__version__}, recommend 1.13.1+cu117 or newer
|
||||
# Found deepspeed {deepspeed.__version__ if importlib.util.find_spec('deepspeed') else 'None'}, recommend 0.7.0 (faster than newer versions)
|
||||
# Found pytorch_lightning {pl.__version__}, recommend 1.9.1 or newer
|
||||
#
|
||||
############################################################################
|
||||
"""
|
||||
)
|
||||
rank_zero_info(str(vars(args)) + "\n")
|
||||
|
||||
assert args.data_type in [
|
||||
"utf-8",
|
||||
"utf-16le",
|
||||
"numpy",
|
||||
"binidx",
|
||||
"dummy",
|
||||
"wds_img",
|
||||
"uint16",
|
||||
]
|
||||
|
||||
if args.lr_final == 0 or args.lr_init == 0:
|
||||
rank_zero_info(
|
||||
"\n\nNote: lr_final = 0 or lr_init = 0. Using linear LR schedule instead.\n\n"
|
||||
)
|
||||
|
||||
assert args.precision in ["fp32", "tf32", "fp16", "bf16"]
|
||||
os.environ["RWKV_FLOAT_MODE"] = args.precision
|
||||
if args.precision == "fp32":
|
||||
for i in range(10):
|
||||
rank_zero_info(
|
||||
"\n\nNote: you are using fp32 (very slow). Try bf16 / tf32 for faster training.\n\n"
|
||||
)
|
||||
if args.precision == "fp16":
|
||||
rank_zero_info(
|
||||
"\n\nNote: you are using fp16 (might overflow). Try bf16 / tf32 for stable training.\n\n"
|
||||
)
|
||||
|
||||
os.environ["RWKV_JIT_ON"] = "1"
|
||||
if "deepspeed_stage_3" in args.strategy:
|
||||
os.environ["RWKV_JIT_ON"] = "0"
|
||||
if args.lora and args.grad_cp == 1:
|
||||
print(
|
||||
"!!!!! LoRA Warning: Gradient Checkpointing requires JIT off, disabling it"
|
||||
)
|
||||
os.environ["RWKV_JIT_ON"] = "0"
|
||||
|
||||
torch.backends.cudnn.benchmark = True
|
||||
torch.backends.cudnn.enabled = True
|
||||
if args.precision == "fp32":
|
||||
torch.backends.cudnn.allow_tf32 = False
|
||||
torch.backends.cuda.matmul.allow_tf32 = False
|
||||
else:
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
|
||||
if "32" in args.precision:
|
||||
args.precision = 32
|
||||
elif args.precision == "fp16":
|
||||
args.precision = 16
|
||||
else:
|
||||
args.precision = "bf16"
|
||||
|
||||
########################################################################################################
|
||||
|
||||
from src.trainer import train_callback, generate_init_weight
|
||||
from src.dataset import MyDataset
|
||||
|
||||
train_data = MyDataset(args)
|
||||
args.vocab_size = train_data.vocab_size
|
||||
|
||||
if args.data_type == "wds_img":
|
||||
from src.model_img import RWKV_IMG
|
||||
|
||||
assert args.lora, "LoRA not yet supported for RWKV_IMG"
|
||||
model = RWKV_IMG(args)
|
||||
else:
|
||||
from src.model import RWKV, LORA_CONFIG, LoraLinear
|
||||
|
||||
if args.lora:
|
||||
assert args.lora_r > 0, "LoRA should have its `r` > 0"
|
||||
LORA_CONFIG["r"] = args.lora_r
|
||||
LORA_CONFIG["alpha"] = args.lora_alpha
|
||||
LORA_CONFIG["dropout"] = args.lora_dropout
|
||||
LORA_CONFIG["parts"] = set(str(args.lora_parts).split(","))
|
||||
enable_time_finetune = "time" in LORA_CONFIG["parts"]
|
||||
enable_ln_finetune = "ln" in LORA_CONFIG["parts"]
|
||||
model = RWKV(args)
|
||||
# only train lora parameters
|
||||
if args.lora:
|
||||
model.requires_grad_(False)
|
||||
for name, module in model.named_modules():
|
||||
# have to check param name since it may have been wrapped by torchscript
|
||||
if any(n.startswith("lora_") for n, _ in module.named_parameters()):
|
||||
print(f" LoRA training module {name}")
|
||||
for pname, param in module.named_parameters():
|
||||
param.requires_grad = "lora_" in pname
|
||||
elif enable_ln_finetune and ".ln" in name:
|
||||
print(f" LoRA additionally training module {name}")
|
||||
for param in module.parameters():
|
||||
param.requires_grad = True
|
||||
elif enable_time_finetune and any(
|
||||
n.startswith("time") for n, _ in module.named_parameters()
|
||||
):
|
||||
for pname, param in module.named_parameters():
|
||||
if pname.startswith("time"):
|
||||
print(f" LoRA additionally training parameter {pname}")
|
||||
param.requires_grad = True
|
||||
|
||||
if (
|
||||
len(args.load_model) == 0 or args.my_pile_stage == 1
|
||||
): # shall we build the initial weights?
|
||||
init_weight_name = f"{args.proj_dir}/rwkv-init.pth"
|
||||
generate_init_weight(model, init_weight_name) # save initial weights
|
||||
args.load_model = init_weight_name
|
||||
|
||||
rank_zero_info(f"########## Loading {args.load_model}... ##########")
|
||||
try:
|
||||
load_dict = torch.load(args.load_model, map_location="cpu")
|
||||
model.load_state_dict(load_dict, strict=(not args.lora))
|
||||
except:
|
||||
rank_zero_info(f"Bad checkpoint {args.load_model}")
|
||||
if args.my_pile_stage >= 2: # try again using another checkpoint
|
||||
max_p = args.my_pile_prev_p
|
||||
if max_p == -1:
|
||||
args.load_model = f"{args.proj_dir}/rwkv-init.pth"
|
||||
else:
|
||||
args.load_model = f"{args.proj_dir}/rwkv-{max_p}.pth"
|
||||
args.epoch_begin = max_p + 1
|
||||
rank_zero_info(f"Trying {args.load_model}")
|
||||
load_dict = torch.load(args.load_model, map_location="cpu")
|
||||
model.load_state_dict(load_dict, strict=(not args.lora))
|
||||
|
||||
if args.load_partial == 1:
|
||||
load_keys = load_dict.keys()
|
||||
for k in model.state_dict():
|
||||
if k not in load_keys:
|
||||
load_dict[k] = model.state_dict()[k]
|
||||
model.load_state_dict(load_dict, strict=(not args.lora))
|
||||
# If using LoRA, the LoRA keys might be missing in the original model
|
||||
# model.load_state_dict(load_dict, strict=(not args.lora))
|
||||
if os.path.isfile(args.lora_load):
|
||||
model.load_state_dict(
|
||||
torch.load(args.lora_load, map_location="cpu"), strict=False
|
||||
)
|
||||
|
||||
trainer: Trainer = Trainer.from_argparse_args(
|
||||
args,
|
||||
callbacks=[train_callback(args)],
|
||||
)
|
||||
|
||||
if (
|
||||
args.lr_init > 1e-4
|
||||
or trainer.world_size * args.micro_bsz * trainer.accumulate_grad_batches < 8
|
||||
):
|
||||
if "I_KNOW_WHAT_IM_DOING" in os.environ:
|
||||
if trainer.global_rank == 0:
|
||||
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
|
||||
print(
|
||||
f" WARNING: you are using too large LR ({args.lr_init} > 1e-4) or too small global batch size ({trainer.world_size} * {args.micro_bsz} * {trainer.accumulate_grad_batches} < 8)"
|
||||
)
|
||||
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
|
||||
else:
|
||||
if trainer.global_rank == 0:
|
||||
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
|
||||
print(
|
||||
f" ERROR: you are using too large LR ({args.lr_init} > 1e-4) or too small global batch size ({trainer.world_size} * {args.micro_bsz} * {trainer.accumulate_grad_batches} < 8)"
|
||||
)
|
||||
print(
|
||||
f" Unless you are sure this is what you want, adjust them accordingly"
|
||||
)
|
||||
print(
|
||||
f' (to suppress this, set environment variable "I_KNOW_WHAT_IM_DOING")'
|
||||
)
|
||||
print("!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!")
|
||||
exit(0)
|
||||
|
||||
if trainer.global_rank == 0:
|
||||
for n in model.state_dict():
|
||||
shape = model.state_dict()[n].shape
|
||||
shape = [i for i in shape if i != 1]
|
||||
if len(shape) > 1:
|
||||
print(f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {n}")
|
||||
else:
|
||||
print(f"{str(shape[0]).ljust(5)} {n}")
|
||||
|
||||
if "deepspeed" in args.strategy:
|
||||
trainer.strategy.config["zero_optimization"]["allgather_bucket_size"] = (
|
||||
args.ds_bucket_mb * 1000 * 1000
|
||||
)
|
||||
trainer.strategy.config["zero_optimization"]["reduce_bucket_size"] = (
|
||||
args.ds_bucket_mb * 1000 * 1000
|
||||
)
|
||||
|
||||
# must set shuffle=False, persistent_workers=False (because worker is in another thread)
|
||||
data_loader = DataLoader(
|
||||
train_data,
|
||||
shuffle=False,
|
||||
pin_memory=True,
|
||||
batch_size=args.micro_bsz,
|
||||
num_workers=1,
|
||||
persistent_workers=False,
|
||||
drop_last=True,
|
||||
)
|
||||
|
||||
trainer.fit(model, data_loader)
|
||||
3
finetune/requirements.txt
Normal file
3
finetune/requirements.txt
Normal file
@@ -0,0 +1,3 @@
|
||||
torch==1.13.1
|
||||
pytorch_lightning==1.9.5
|
||||
deepspeed
|
||||
27
frontend/package-lock.json
generated
27
frontend/package-lock.json
generated
@@ -12,6 +12,7 @@
|
||||
"@fluentui/react-icons": "^2.0.201",
|
||||
"@microsoft/fetch-event-source": "^2.0.1",
|
||||
"@primer/octicons-react": "^19.1.0",
|
||||
"chart.js": "^4.3.0",
|
||||
"classnames": "^2.3.2",
|
||||
"github-markdown-css": "^5.2.0",
|
||||
"i18next": "^22.4.15",
|
||||
@@ -19,6 +20,7 @@
|
||||
"mobx-react-lite": "^3.4.3",
|
||||
"react": "^18.2.0",
|
||||
"react-beautiful-dnd": "^13.1.1",
|
||||
"react-chartjs-2": "^5.2.0",
|
||||
"react-dom": "^18.2.0",
|
||||
"react-i18next": "^12.2.2",
|
||||
"react-markdown": "^8.0.7",
|
||||
@@ -1903,6 +1905,11 @@
|
||||
"integrity": "sha512-XPSJHWmi394fuUuzDnGz1wiKqWfo1yXecHQMRf2l6hztTO+nPru658AyDngaBe7isIxEkRsPR3FZh+s7iVa4Uw==",
|
||||
"dev": true
|
||||
},
|
||||
"node_modules/@kurkle/color": {
|
||||
"version": "0.3.2",
|
||||
"resolved": "https://registry.npmjs.org/@kurkle/color/-/color-0.3.2.tgz",
|
||||
"integrity": "sha512-fuscdXJ9G1qb7W8VdHi+IwRqij3lBkosAm4ydQtEmbY58OzHXqQhvlxqEkoz0yssNVn38bcpRWgA9PP+OGoisw=="
|
||||
},
|
||||
"node_modules/@microsoft/fetch-event-source": {
|
||||
"version": "2.0.1",
|
||||
"resolved": "https://registry.npmmirror.com/@microsoft/fetch-event-source/-/fetch-event-source-2.0.1.tgz",
|
||||
@@ -2258,6 +2265,17 @@
|
||||
"resolved": "https://registry.npmmirror.com/character-entities/-/character-entities-2.0.2.tgz",
|
||||
"integrity": "sha512-shx7oQ0Awen/BRIdkjkvz54PnEEI/EjwXDSIZp86/KKdbafHh1Df/RYGBhn4hbe2+uKC9FnT5UCEdyPz3ai9hQ=="
|
||||
},
|
||||
"node_modules/chart.js": {
|
||||
"version": "4.3.0",
|
||||
"resolved": "https://registry.npmjs.org/chart.js/-/chart.js-4.3.0.tgz",
|
||||
"integrity": "sha512-ynG0E79xGfMaV2xAHdbhwiPLczxnNNnasrmPEXriXsPJGjmhOBYzFVEsB65w2qMDz+CaBJJuJD0inE/ab/h36g==",
|
||||
"dependencies": {
|
||||
"@kurkle/color": "^0.3.0"
|
||||
},
|
||||
"engines": {
|
||||
"pnpm": ">=7"
|
||||
}
|
||||
},
|
||||
"node_modules/chokidar": {
|
||||
"version": "3.5.3",
|
||||
"resolved": "https://registry.npmmirror.com/chokidar/-/chokidar-3.5.3.tgz",
|
||||
@@ -3884,6 +3902,15 @@
|
||||
"react-dom": "^16.8.5 || ^17.0.0 || ^18.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/react-chartjs-2": {
|
||||
"version": "5.2.0",
|
||||
"resolved": "https://registry.npmjs.org/react-chartjs-2/-/react-chartjs-2-5.2.0.tgz",
|
||||
"integrity": "sha512-98iN5aguJyVSxp5U3CblRLH67J8gkfyGNbiK3c+l1QI/G4irHMPQw44aEPmjVag+YKTyQ260NcF82GTQ3bdscA==",
|
||||
"peerDependencies": {
|
||||
"chart.js": "^4.1.1",
|
||||
"react": "^16.8.0 || ^17.0.0 || ^18.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/react-dom": {
|
||||
"version": "18.2.0",
|
||||
"resolved": "https://registry.npmmirror.com/react-dom/-/react-dom-18.2.0.tgz",
|
||||
|
||||
@@ -13,6 +13,7 @@
|
||||
"@fluentui/react-icons": "^2.0.201",
|
||||
"@microsoft/fetch-event-source": "^2.0.1",
|
||||
"@primer/octicons-react": "^19.1.0",
|
||||
"chart.js": "^4.3.0",
|
||||
"classnames": "^2.3.2",
|
||||
"github-markdown-css": "^5.2.0",
|
||||
"i18next": "^22.4.15",
|
||||
@@ -20,6 +21,7 @@
|
||||
"mobx-react-lite": "^3.4.3",
|
||||
"react": "^18.2.0",
|
||||
"react-beautiful-dnd": "^13.1.1",
|
||||
"react-chartjs-2": "^5.2.0",
|
||||
"react-dom": "^18.2.0",
|
||||
"react-i18next": "^12.2.2",
|
||||
"react-markdown": "^8.0.7",
|
||||
|
||||
@@ -189,5 +189,49 @@
|
||||
"user": "用户",
|
||||
"assistant": "AI",
|
||||
"system": "系统",
|
||||
"Regenerate": "重新生成"
|
||||
"Regenerate": "重新生成",
|
||||
"LoRA Finetune": "LoRA微调",
|
||||
"Command Stopped": "命令已终止",
|
||||
"Please convert data first.": "请先转换数据",
|
||||
"Ubuntu is not installed, do you want to install it?": "Ubuntu未安装,是否安装?",
|
||||
"Install Ubuntu": "安装Ubuntu",
|
||||
"Please install Ubuntu using Microsoft Store, after installation click the Open button in Microsoft Store and then click the Train button": "请用Microsoft Store安装Ubuntu,安装完成后,点击Microsoft Store界面的“打开”按钮,然后点击“训练”按钮",
|
||||
"WSL is not enabled, do you want to enable it?": "WSL未启用,是否启用?",
|
||||
"Enable WSL": "启用WSL",
|
||||
"After installation, please restart your computer to enable WSL": "安装完成后,请重启电脑以启用WSL",
|
||||
"Data Process": "数据处理",
|
||||
"Data Path": "数据路径",
|
||||
"Vocab Path": "词表路径",
|
||||
"Train Parameters": "训练参数",
|
||||
"Base Model": "基底模型",
|
||||
"LoRA Model": "LoRA模型",
|
||||
"Merge Model": "合并模型",
|
||||
"Devices": "显卡数量",
|
||||
"Gradient Checkpoint": "梯度检查点标志",
|
||||
"Context Length": "上下文长度",
|
||||
"Epoch Steps": "每轮训练步数",
|
||||
"Epoch Count": "训练轮次",
|
||||
"Epoch Begin": "起始轮次",
|
||||
"Epoch Save": "保存间隔轮次",
|
||||
"Learning Rate Init": "初始学习率",
|
||||
"Learning Rate Final": "最终学习率",
|
||||
"Micro Batch Size": "微批次大小",
|
||||
"Accumulate Gradient Batches": "梯度累积批次",
|
||||
"Warmup Steps": "学习率预热步数",
|
||||
"Pre-FFN": "前馈网络预处理",
|
||||
"None": "空",
|
||||
"Merge model successfully": "合并模型成功",
|
||||
"Convert Data successfully": "数据转换成功",
|
||||
"Please select a LoRA model": "请选择一个LoRA模型",
|
||||
"You are using sample data for training. For formal training, please make sure to create your own jsonl file.": "你正在使用示例数据训练,对于正式训练场合,请务必创建你自己的jsonl训练数据",
|
||||
"WSL is not running, please retry. If it keeps happening, it means you may be using an outdated version of WSL, run \"wsl --update\" to update.": "WSL没有运行,请重试。如果一直出现此错误,意味着你可能正在使用旧版本的WSL,请在cmd执行\"wsl --update\"以更新",
|
||||
"Memory is not enough, try to increase the virtual memory or use a smaller base model.": "内存不足,尝试增加虚拟内存,或使用一个更小规模的基底模型",
|
||||
"VRAM is not enough": "显存不足",
|
||||
"Training data is not enough, reduce context length or add more data for training": "训练数据不足,请减小上下文长度或增加训练数据",
|
||||
"You are using WSL 1 for training, please upgrade to WSL 2. e.g. Run \"wsl --set-version Ubuntu-22.04 2\"": "你正在使用WSL 1进行训练,请升级到WSL 2。例如,运行\"wsl --set-version Ubuntu-22.04 2\"",
|
||||
"Matched CUDA is not installed": "未安装匹配的CUDA",
|
||||
"Failed to convert data": "数据转换失败",
|
||||
"Failed to merge model": "合并模型失败",
|
||||
"The data path should be a directory or a file in jsonl format (more formats will be supported in the future).\n\nWhen you provide a directory path, all the txt files within that directory will be automatically converted into training data. This is commonly used for large-scale training in writing, code generation, or knowledge bases.\n\nThe jsonl format file can be referenced at https://github.com/Abel2076/json2binidx_tool/blob/main/sample.jsonl.\nYou can also write it similar to OpenAI's playground format, as shown in https://platform.openai.com/playground/p/default-chat.\nEven for multi-turn conversations, they must be written in a single line using `\\n` to indicate line breaks. If they are different dialogues or topics, they should be written in separate lines.": "数据路径必须是一个文件夹,或者jsonl格式文件 (未来会支持更多格式)\n\n当你填写的路径是一个文件夹时,该文件夹内的所有txt文件会被自动转换为训练数据,通常这用于大批量训练写作,代码生成或知识库\n\njsonl文件的格式参考 https://github.com/Abel2076/json2binidx_tool/blob/main/sample.jsonl\n你也可以仿照openai的playground编写,参考 https://platform.openai.com/playground/p/default-chat\n即使是多轮对话也必须写在一行,用`\\n`表示换行,如果是不同对话或主题,则另起一行",
|
||||
"Size mismatch for blocks. You are attempting to continue training from the LoRA model, but it does not match the base model. Please set LoRA model to None.": "尺寸不匹配块。你正在尝试从LoRA模型继续训练,但该LoRA模型与基底模型不匹配,请将LoRA模型设为空"
|
||||
}
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 4.4 KiB |
BIN
frontend/src/assets/images/logo.png
Normal file
BIN
frontend/src/assets/images/logo.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 36 KiB |
@@ -11,6 +11,7 @@ import {
|
||||
} from '@fluentui/react-components';
|
||||
import { ToolTipButton } from './ToolTipButton';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import MarkdownRender from './MarkdownRender';
|
||||
|
||||
export const DialogButton: FC<{
|
||||
text?: string | null
|
||||
@@ -19,12 +20,13 @@ export const DialogButton: FC<{
|
||||
className?: string,
|
||||
title: string,
|
||||
contentText: string,
|
||||
onConfirm: () => void,
|
||||
markdown?: boolean,
|
||||
onConfirm?: () => void,
|
||||
size?: 'small' | 'medium' | 'large',
|
||||
shape?: 'rounded' | 'circular' | 'square',
|
||||
appearance?: 'secondary' | 'primary' | 'outline' | 'subtle' | 'transparent',
|
||||
}> = ({
|
||||
text, icon, tooltip, className, title, contentText,
|
||||
text, icon, tooltip, className, title, contentText, markdown,
|
||||
onConfirm, size, shape, appearance
|
||||
}) => {
|
||||
const { t } = useTranslation();
|
||||
@@ -41,7 +43,11 @@ export const DialogButton: FC<{
|
||||
<DialogBody>
|
||||
<DialogTitle>{title}</DialogTitle>
|
||||
<DialogContent>
|
||||
{contentText}
|
||||
{
|
||||
markdown ?
|
||||
<MarkdownRender>{contentText}</MarkdownRender> :
|
||||
contentText
|
||||
}
|
||||
</DialogContent>
|
||||
<DialogActions>
|
||||
<DialogTrigger disableButtonEnhancement>
|
||||
|
||||
@@ -1,23 +1,16 @@
|
||||
import React, { FC, MouseEventHandler, ReactElement } from 'react';
|
||||
import commonStore, { ModelStatus } from '../stores/commonStore';
|
||||
import {
|
||||
AddToDownloadList,
|
||||
CopyFile,
|
||||
DepCheck,
|
||||
FileExists,
|
||||
InstallPyDep,
|
||||
StartServer
|
||||
} from '../../wailsjs/go/backend_golang/App';
|
||||
import { AddToDownloadList, CopyFile, FileExists, StartServer } from '../../wailsjs/go/backend_golang/App';
|
||||
import { Button } from '@fluentui/react-components';
|
||||
import { observer } from 'mobx-react-lite';
|
||||
import { exit, getStatus, readRoot, switchModel, updateConfig } from '../apis';
|
||||
import { toast } from 'react-toastify';
|
||||
import { getStrategy, getSupportedCustomCudaFile, saveCache, toastWithButton } from '../utils';
|
||||
import { checkDependencies, getStrategy, getSupportedCustomCudaFile, toastWithButton } from '../utils';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { ToolTipButton } from './ToolTipButton';
|
||||
import { Play16Regular, Stop16Regular } from '@fluentui/react-icons';
|
||||
import { useNavigate } from 'react-router';
|
||||
import { BrowserOpenURL, WindowShow } from '../../wailsjs/runtime/runtime';
|
||||
import { WindowShow } from '../../wailsjs/runtime/runtime';
|
||||
|
||||
const mainButtonText = {
|
||||
[ModelStatus.Offline]: 'Run',
|
||||
@@ -57,53 +50,9 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
|
||||
return;
|
||||
}
|
||||
|
||||
if (!commonStore.depComplete) {
|
||||
let depErrorMsg = '';
|
||||
await DepCheck(commonStore.settings.customPythonPath).catch((e) => {
|
||||
depErrorMsg = e.message || e;
|
||||
WindowShow();
|
||||
if (depErrorMsg === 'python zip not found') {
|
||||
toastWithButton(t('Python target not found, would you like to download it?'), t('Download'), () => {
|
||||
toastWithButton(`${t('Downloading')} Python`, t('Check'), () => {
|
||||
navigate({ pathname: '/downloads' });
|
||||
}, { autoClose: 3000 });
|
||||
AddToDownloadList('python-3.10.11-embed-amd64.zip', 'https://www.python.org/ftp/python/3.10.11/python-3.10.11-embed-amd64.zip');
|
||||
});
|
||||
} else if (depErrorMsg.includes('DepCheck Error')) {
|
||||
if (depErrorMsg.includes('vc_redist')) {
|
||||
toastWithButton(t('Microsoft Visual C++ Redistributable is not installed, would you like to download it?'), t('Download'), () => {
|
||||
BrowserOpenURL('https://aka.ms/vs/16/release/vc_redist.x64.exe');
|
||||
});
|
||||
} else {
|
||||
toast(depErrorMsg, { type: 'info', position: 'bottom-left' });
|
||||
if (commonStore.platform != 'linux')
|
||||
toastWithButton(t('Python dependencies are incomplete, would you like to install them?'), t('Install'), () => {
|
||||
InstallPyDep(commonStore.settings.customPythonPath, commonStore.settings.cnMirror).catch((e) => {
|
||||
const errMsg = e.message || e;
|
||||
toast(t('Error') + ' - ' + errMsg, { type: 'error' });
|
||||
});
|
||||
setTimeout(WindowShow, 1000);
|
||||
}, {
|
||||
autoClose: 8000
|
||||
});
|
||||
else
|
||||
toastWithButton(t('On Linux system, you must manually install python dependencies.'), t('Check'), () => {
|
||||
BrowserOpenURL('https://github.com/josStorer/RWKV-Runner/blob/master/build/linux/Readme_Install.txt');
|
||||
});
|
||||
}
|
||||
} else {
|
||||
toast(depErrorMsg, { type: 'error' });
|
||||
}
|
||||
});
|
||||
if (depErrorMsg) {
|
||||
commonStore.setStatus({ status: ModelStatus.Offline });
|
||||
return;
|
||||
}
|
||||
commonStore.setDepComplete(true);
|
||||
if (commonStore.platform === 'windows')
|
||||
CopyFile('./backend-python/wkv_cuda_utils/wkv_cuda_model.py', './py310/Lib/site-packages/rwkv/model.py');
|
||||
saveCache();
|
||||
}
|
||||
const ok = await checkDependencies(navigate);
|
||||
if (!ok)
|
||||
return;
|
||||
|
||||
const currentModelSource = commonStore.modelSourceList.find(item => item.name === modelName);
|
||||
|
||||
|
||||
@@ -7,7 +7,7 @@ import { v4 as uuid } from 'uuid';
|
||||
import classnames from 'classnames';
|
||||
import { fetchEventSource } from '@microsoft/fetch-event-source';
|
||||
import { KebabHorizontalIcon, PencilIcon, SyncIcon, TrashIcon } from '@primer/octicons-react';
|
||||
import logo from '../assets/images/logo.jpg';
|
||||
import logo from '../assets/images/logo.png';
|
||||
import MarkdownRender from '../components/MarkdownRender';
|
||||
import { ToolTipButton } from '../components/ToolTipButton';
|
||||
import { ArrowCircleUp28Regular, Delete28Regular, RecordStop28Regular, Save28Regular } from '@fluentui/react-icons';
|
||||
|
||||
@@ -13,8 +13,8 @@ import { Page } from '../components/Page';
|
||||
import { useNavigate } from 'react-router';
|
||||
import { RunButton } from '../components/RunButton';
|
||||
import { updateConfig } from '../apis';
|
||||
import { ConvertModel, FileExists } from '../../wailsjs/go/backend_golang/App';
|
||||
import { getStrategy, refreshLocalModels } from '../utils';
|
||||
import { ConvertModel, FileExists, GetPyError } from '../../wailsjs/go/backend_golang/App';
|
||||
import { getStrategy } from '../utils';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { WindowShow } from '../../wailsjs/runtime/runtime';
|
||||
import strategyImg from '../assets/images/strategy.jpg';
|
||||
@@ -253,9 +253,12 @@ export const Configs: FC = observer(() => {
|
||||
const strategy = getStrategy(selectedConfig);
|
||||
const newModelPath = modelPath + '-' + strategy.replace(/[:> *+]/g, '-');
|
||||
toast(t('Start Converting'), { autoClose: 1000, type: 'info' });
|
||||
ConvertModel(commonStore.settings.customPythonPath, modelPath, strategy, newModelPath).then(() => {
|
||||
toast(`${t('Convert Success')} - ${newModelPath}`, { type: 'success' });
|
||||
refreshLocalModels({ models: commonStore.modelSourceList }, false);
|
||||
ConvertModel(commonStore.settings.customPythonPath, modelPath, strategy, newModelPath).then(async () => {
|
||||
if (!await FileExists(newModelPath)) {
|
||||
toast(t('Convert Failed') + ' - ' + await GetPyError(), { type: 'error' });
|
||||
} else {
|
||||
toast(`${t('Convert Success')} - ${newModelPath}`, { type: 'success' });
|
||||
}
|
||||
}).catch(e => {
|
||||
const errMsg = e.message || e;
|
||||
if (errMsg.includes('path contains space'))
|
||||
|
||||
@@ -1,10 +1,10 @@
|
||||
import React, { FC, useEffect } from 'react';
|
||||
import React, { FC } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { Page } from '../components/Page';
|
||||
import { observer } from 'mobx-react-lite';
|
||||
import commonStore from '../stores/commonStore';
|
||||
import { Divider, Field, ProgressBar } from '@fluentui/react-components';
|
||||
import { bytesToGb, bytesToKb, bytesToMb, refreshLocalModels } from '../utils';
|
||||
import { bytesToGb, bytesToKb, bytesToMb } from '../utils';
|
||||
import { ToolTipButton } from '../components/ToolTipButton';
|
||||
import { Folder20Regular, Pause20Regular, Play20Regular } from '@fluentui/react-icons';
|
||||
import { AddToDownloadList, OpenFileFolder, PauseDownload } from '../../wailsjs/go/backend_golang/App';
|
||||
@@ -23,12 +23,6 @@ export type DownloadStatus = {
|
||||
|
||||
export const Downloads: FC = observer(() => {
|
||||
const { t } = useTranslation();
|
||||
const finishedModelsLen = commonStore.downloadList.filter((status) => status.done && status.name.endsWith('.pth')).length;
|
||||
useEffect(() => {
|
||||
if (finishedModelsLen > 0)
|
||||
refreshLocalModels({ models: commonStore.modelSourceList }, false);
|
||||
console.log('finishedModelsLen:', finishedModelsLen);
|
||||
}, [finishedModelsLen]);
|
||||
|
||||
let displayList = commonStore.downloadList.slice();
|
||||
const downloadListNames = displayList.map(s => s.name);
|
||||
|
||||
@@ -29,7 +29,7 @@ import { botName, Conversation, ConversationMessage, MessageType, userName } fro
|
||||
import { SelectTabEventHandler } from '@fluentui/react-tabs';
|
||||
import { Labeled } from '../../components/Labeled';
|
||||
import commonStore from '../../stores/commonStore';
|
||||
import logo from '../../assets/images/logo.jpg';
|
||||
import logo from '../../assets/images/logo.png';
|
||||
import { observer } from 'mobx-react-lite';
|
||||
import { MessagesEditor } from './MessagesEditor';
|
||||
import { ClipboardGetText, ClipboardSetText } from '../../../wailsjs/runtime';
|
||||
|
||||
@@ -166,6 +166,7 @@ export const Settings: FC = observer(() => {
|
||||
content={
|
||||
<Input className="grow" placeholder="./py310/python" value={commonStore.settings.customPythonPath}
|
||||
onChange={(e, data) => {
|
||||
commonStore.setDepComplete(false);
|
||||
commonStore.setSettings({
|
||||
customPythonPath: data.value
|
||||
});
|
||||
|
||||
@@ -1,13 +1,605 @@
|
||||
import React, { FC } from 'react';
|
||||
import { Text } from '@fluentui/react-components';
|
||||
import React, { FC, ReactElement, useEffect, useRef, useState } from 'react';
|
||||
import { useTranslation } from 'react-i18next';
|
||||
import { Button, Dropdown, Input, Option, Select, Switch, Tab, TabList } from '@fluentui/react-components';
|
||||
import {
|
||||
ConvertData,
|
||||
FileExists,
|
||||
GetPyError,
|
||||
MergeLora,
|
||||
OpenFileFolder,
|
||||
WslCommand,
|
||||
WslEnable,
|
||||
WslInstallUbuntu,
|
||||
WslIsEnabled,
|
||||
WslStart,
|
||||
WslStop
|
||||
} from '../../wailsjs/go/backend_golang/App';
|
||||
import { toast } from 'react-toastify';
|
||||
import commonStore from '../stores/commonStore';
|
||||
import { observer } from 'mobx-react-lite';
|
||||
import { SelectTabEventHandler } from '@fluentui/react-tabs';
|
||||
import { checkDependencies, toastWithButton } from '../utils';
|
||||
import { Section } from '../components/Section';
|
||||
import { Labeled } from '../components/Labeled';
|
||||
import { ToolTipButton } from '../components/ToolTipButton';
|
||||
import { DataUsageSettings20Regular, Folder20Regular } from '@fluentui/react-icons';
|
||||
import { useNavigate } from 'react-router';
|
||||
import { Precision } from './Configs';
|
||||
import {
|
||||
CategoryScale,
|
||||
Chart as ChartJS,
|
||||
Legend,
|
||||
LinearScale,
|
||||
LineElement,
|
||||
PointElement,
|
||||
Title,
|
||||
Tooltip
|
||||
} from 'chart.js';
|
||||
import { Line } from 'react-chartjs-2';
|
||||
import { ChartJSOrUndefined } from 'react-chartjs-2/dist/types';
|
||||
import { WindowShow } from '../../wailsjs/runtime';
|
||||
import { t } from 'i18next';
|
||||
import { DialogButton } from '../components/DialogButton';
|
||||
|
||||
ChartJS.register(
|
||||
CategoryScale,
|
||||
LinearScale,
|
||||
PointElement,
|
||||
LineElement,
|
||||
Tooltip,
|
||||
Title,
|
||||
Legend
|
||||
);
|
||||
|
||||
const parseLossData = (data: string) => {
|
||||
const regex = /Epoch (\d+):\s+(\d+%)\|[\s\S]*\| (\d+)\/(\d+) \[(\d+:\d+)<(\d+:\d+),\s+([\S]*), loss=(\S+),[\s\S]*\]/g;
|
||||
const matches = Array.from(data.matchAll(regex));
|
||||
if (matches.length === 0)
|
||||
return false;
|
||||
const lastMatch = matches[matches.length - 1];
|
||||
const epoch = parseInt(lastMatch[1]);
|
||||
const loss = parseFloat(lastMatch[8]);
|
||||
commonStore.setChartTitle(`Epoch ${epoch}: ${lastMatch[2]} - ${lastMatch[3]}/${lastMatch[4]} - ${lastMatch[5]}/${lastMatch[6]} - ${lastMatch[7]} Loss=${loss}`);
|
||||
addLossDataToChart(epoch, loss);
|
||||
return true;
|
||||
};
|
||||
|
||||
let chartLine: ChartJSOrUndefined<'line', (number | null)[], string>;
|
||||
|
||||
const addLossDataToChart = (epoch: number, loss: number) => {
|
||||
const epochIndex = commonStore.chartData.labels!.findIndex(l => l.includes(epoch.toString()));
|
||||
if (epochIndex === -1) {
|
||||
if (epoch === 0) {
|
||||
commonStore.chartData.labels!.push('Init');
|
||||
commonStore.chartData.datasets[0].data = [...commonStore.chartData.datasets[0].data, loss];
|
||||
}
|
||||
commonStore.chartData.labels!.push('Epoch ' + epoch.toString());
|
||||
commonStore.chartData.datasets[0].data = [...commonStore.chartData.datasets[0].data, loss];
|
||||
} else {
|
||||
if (chartLine) {
|
||||
const newData = [...commonStore.chartData.datasets[0].data];
|
||||
newData[epochIndex] = loss;
|
||||
chartLine.data.datasets[0].data = newData;
|
||||
chartLine.update();
|
||||
}
|
||||
}
|
||||
commonStore.setChartData(commonStore.chartData);
|
||||
};
|
||||
|
||||
export type DataProcessParameters = {
|
||||
dataPath: string;
|
||||
vocabPath: string;
|
||||
}
|
||||
|
||||
export type LoraFinetunePrecision = 'bf16' | 'fp16' | 'fp32' | 'tf32';
|
||||
|
||||
export type LoraFinetuneParameters = {
|
||||
baseModel: string;
|
||||
ctxLen: number;
|
||||
epochSteps: number;
|
||||
epochCount: number;
|
||||
epochBegin: number;
|
||||
epochSave: number;
|
||||
microBsz: number;
|
||||
accumGradBatches: number;
|
||||
preFfn: boolean;
|
||||
headQk: boolean;
|
||||
lrInit: string;
|
||||
lrFinal: string;
|
||||
warmupSteps: number;
|
||||
beta1: number;
|
||||
beta2: number;
|
||||
adamEps: string;
|
||||
devices: number;
|
||||
precision: LoraFinetunePrecision;
|
||||
gradCp: boolean;
|
||||
loraR: number;
|
||||
loraAlpha: number;
|
||||
loraDropout: number;
|
||||
loraLoad: string
|
||||
}
|
||||
|
||||
const loraFinetuneParametersOptions: Array<[key: keyof LoraFinetuneParameters, type: string, name: string]> = [
|
||||
['devices', 'number', 'Devices'],
|
||||
['precision', 'LoraFinetunePrecision', 'Precision'],
|
||||
['gradCp', 'boolean', 'Gradient Checkpoint'],
|
||||
['ctxLen', 'number', 'Context Length'],
|
||||
['epochSteps', 'number', 'Epoch Steps'],
|
||||
['epochCount', 'number', 'Epoch Count'],
|
||||
['epochBegin', 'number', 'Epoch Begin'],
|
||||
['epochSave', 'number', 'Epoch Save'],
|
||||
['lrInit', 'string', 'Learning Rate Init'],
|
||||
['lrFinal', 'string', 'Learning Rate Final'],
|
||||
['microBsz', 'number', 'Micro Batch Size'],
|
||||
['accumGradBatches', 'number', 'Accumulate Gradient Batches'],
|
||||
['warmupSteps', 'number', 'Warmup Steps'],
|
||||
['adamEps', 'string', 'Adam Epsilon'],
|
||||
['beta1', 'number', 'Beta 1'],
|
||||
['beta2', 'number', 'Beta 2'],
|
||||
['loraR', 'number', 'LoRA R'],
|
||||
['loraAlpha', 'number', 'LoRA Alpha'],
|
||||
['loraDropout', 'number', 'LoRA Dropout'],
|
||||
['beta1', 'any', ''],
|
||||
['preFfn', 'boolean', 'Pre-FFN'],
|
||||
['headQk', 'boolean', 'Head QK']
|
||||
];
|
||||
|
||||
const showError = (e: any) => {
|
||||
const msg = e.message || e;
|
||||
if (msg === 'wsl not running') {
|
||||
toast(t('WSL is not running, please retry. If it keeps happening, it means you may be using an outdated version of WSL, run "wsl --update" to update.'), { type: 'error' });
|
||||
} else {
|
||||
toast(t(msg), { type: 'error', toastId: 'train_error' });
|
||||
}
|
||||
};
|
||||
|
||||
const errorsMap = Object.entries({
|
||||
'python3 ./finetune/lora/train.py': 'Memory is not enough, try to increase the virtual memory or use a smaller base model.',
|
||||
'cuda out of memory': 'VRAM is not enough',
|
||||
'valueerror: high <= 0': 'Training data is not enough, reduce context length or add more data for training',
|
||||
'+= \'+ptx\'': 'You are using WSL 1 for training, please upgrade to WSL 2. e.g. Run "wsl --set-version Ubuntu-22.04 2"',
|
||||
'size mismatch for blocks': 'Size mismatch for blocks. You are attempting to continue training from the LoRA model, but it does not match the base model. Please set LoRA model to None.',
|
||||
'cuda_home environment variable is not set': 'Matched CUDA is not installed',
|
||||
'unsupported gpu architecture': 'Matched CUDA is not installed',
|
||||
'error building extension \'fused_adam\'': 'Matched CUDA is not installed'
|
||||
});
|
||||
|
||||
export const wslHandler = (data: string) => {
|
||||
if (data) {
|
||||
addWslMessage(data);
|
||||
const ok = parseLossData(data);
|
||||
if (!ok)
|
||||
for (const [key, value] of errorsMap) {
|
||||
if (data.toLowerCase().includes(key)) {
|
||||
showError(value);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
const addWslMessage = (message: string) => {
|
||||
const newData = commonStore.wslStdout + '\n' + message;
|
||||
let lines = newData.split('\n');
|
||||
const result = lines.slice(-100).join('\n');
|
||||
commonStore.setWslStdout(result);
|
||||
};
|
||||
|
||||
const TerminalDisplay: FC = observer(() => {
|
||||
const bodyRef = useRef<HTMLDivElement>(null);
|
||||
|
||||
const scrollToBottom = () => {
|
||||
if (bodyRef.current)
|
||||
bodyRef.current.scrollTop = bodyRef.current.scrollHeight;
|
||||
};
|
||||
|
||||
useEffect(() => {
|
||||
scrollToBottom();
|
||||
});
|
||||
|
||||
return (
|
||||
<div ref={bodyRef} className="grow overflow-x-hidden overflow-y-auto border-gray-500 border-2 rounded-md">
|
||||
<div className="whitespace-pre-line">
|
||||
{commonStore.wslStdout}
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
});
|
||||
|
||||
const Terminal: FC = observer(() => {
|
||||
const { t } = useTranslation();
|
||||
const [input, setInput] = useState('');
|
||||
|
||||
const handleKeyDown = (e: any) => {
|
||||
e.stopPropagation();
|
||||
if (e.keyCode === 13) {
|
||||
e.preventDefault();
|
||||
if (!input) return;
|
||||
|
||||
WslStart().then(() => {
|
||||
addWslMessage('WSL> ' + input);
|
||||
setInput('');
|
||||
WslCommand(input).catch(showError);
|
||||
}).catch(showError);
|
||||
}
|
||||
};
|
||||
|
||||
return (
|
||||
<div className="flex flex-col h-full gap-4">
|
||||
<TerminalDisplay />
|
||||
<div className="flex gap-2 items-center">
|
||||
WSL:
|
||||
<Input className="grow" value={input} onChange={(e) => {
|
||||
setInput(e.target.value);
|
||||
}} onKeyDown={handleKeyDown}></Input>
|
||||
<Button onClick={() => {
|
||||
WslStop().then(() => {
|
||||
toast(t('Command Stopped'), { type: 'success' });
|
||||
}).catch(showError);
|
||||
}}>
|
||||
{t('Stop')}
|
||||
</Button>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
});
|
||||
|
||||
const LoraFinetune: FC = observer(() => {
|
||||
const { t } = useTranslation();
|
||||
const navigate = useNavigate();
|
||||
const chartRef = useRef<ChartJSOrUndefined<'line', (number | null)[], string>>(null);
|
||||
|
||||
const dataParams = commonStore.dataProcessParams;
|
||||
const loraParams = commonStore.loraFinetuneParams;
|
||||
|
||||
if (chartRef.current)
|
||||
chartLine = chartRef.current;
|
||||
|
||||
const setDataParams = (newParams: Partial<DataProcessParameters>) => {
|
||||
commonStore.setDataProcessParams({
|
||||
...dataParams,
|
||||
...newParams
|
||||
});
|
||||
};
|
||||
|
||||
const setLoraParams = (newParams: Partial<LoraFinetuneParameters>) => {
|
||||
commonStore.setLoraFinetuneParameters({
|
||||
...loraParams,
|
||||
...newParams
|
||||
});
|
||||
};
|
||||
|
||||
useEffect(() => {
|
||||
if (loraParams.baseModel === '')
|
||||
setLoraParams({
|
||||
baseModel: commonStore.modelSourceList.find(m => m.isComplete)?.name || ''
|
||||
});
|
||||
}, []);
|
||||
|
||||
const StartLoraFinetune = async () => {
|
||||
const ok = await checkDependencies(navigate);
|
||||
if (!ok)
|
||||
return;
|
||||
|
||||
const convertedDataPath = `./finetune/json2binidx_tool/data/${dataParams.dataPath.split(/[\/\\]/).pop()!.split('.')[0]}_text_document`;
|
||||
if (!await FileExists(convertedDataPath + '.idx')) {
|
||||
toast(t('Please convert data first.'), { type: 'error' });
|
||||
return;
|
||||
}
|
||||
|
||||
WslIsEnabled().then(() => {
|
||||
WslStart().then(() => {
|
||||
setTimeout(WindowShow, 1000);
|
||||
|
||||
let ctxLen = loraParams.ctxLen;
|
||||
if (dataParams.dataPath === 'finetune/data/sample.jsonl') {
|
||||
ctxLen = 150;
|
||||
toast(t('You are using sample data for training. For formal training, please make sure to create your own jsonl file.'), {
|
||||
type: 'info',
|
||||
autoClose: 6000
|
||||
});
|
||||
}
|
||||
|
||||
commonStore.setChartData({
|
||||
labels: [],
|
||||
datasets: [
|
||||
{
|
||||
label: 'Loss',
|
||||
data: [],
|
||||
borderColor: 'rgb(53, 162, 235)',
|
||||
backgroundColor: 'rgba(53, 162, 235, 0.5)'
|
||||
}
|
||||
]
|
||||
});
|
||||
WslCommand(`export cnMirror=${commonStore.settings.cnMirror ? '1' : '0'} ` +
|
||||
`&& export loadModel=models/${loraParams.baseModel} ` +
|
||||
`&& sed -i 's/\\r$//' finetune/install-wsl-dep-and-train.sh ` +
|
||||
`&& chmod +x finetune/install-wsl-dep-and-train.sh && ./finetune/install-wsl-dep-and-train.sh ` +
|
||||
(loraParams.baseModel ? `--load_model models/${loraParams.baseModel} ` : '') +
|
||||
(loraParams.loraLoad ? `--lora_load lora-models/${loraParams.loraLoad} ` : '') +
|
||||
`--data_file ${convertedDataPath} ` +
|
||||
`--vocab_size ${loraParams.baseModel.toLowerCase().includes('world') ? '65536' : '50277'} ` +
|
||||
`--ctx_len ${ctxLen} --epoch_steps ${loraParams.epochSteps} --epoch_count ${loraParams.epochCount} ` +
|
||||
`--epoch_begin ${loraParams.epochBegin} --epoch_save ${loraParams.epochSave} ` +
|
||||
`--micro_bsz ${loraParams.microBsz} --accumulate_grad_batches ${loraParams.accumGradBatches} ` +
|
||||
`--pre_ffn ${loraParams.preFfn ? '1' : '0'} --head_qk ${loraParams.headQk ? '1' : '0'} --lr_init ${loraParams.lrInit} --lr_final ${loraParams.lrFinal} ` +
|
||||
`--warmup_steps ${loraParams.warmupSteps} ` +
|
||||
`--beta1 ${loraParams.beta1} --beta2 ${loraParams.beta2} --adam_eps ${loraParams.adamEps} ` +
|
||||
`--devices ${loraParams.devices} --precision ${loraParams.precision} ` +
|
||||
`--grad_cp ${loraParams.gradCp ? '1' : '0'} ` +
|
||||
`--lora_r ${loraParams.loraR} --lora_alpha ${loraParams.loraAlpha} --lora_dropout ${loraParams.loraDropout}`).catch(showError);
|
||||
}).catch(e => {
|
||||
const msg = e.message || e;
|
||||
if (msg === 'ubuntu not found') {
|
||||
WindowShow();
|
||||
toastWithButton(t('Ubuntu is not installed, do you want to install it?'), t('Install Ubuntu'), () => {
|
||||
WslInstallUbuntu().then(() => {
|
||||
WindowShow();
|
||||
toast(t('Please install Ubuntu using Microsoft Store, after installation click the Open button in Microsoft Store and then click the Train button'), {
|
||||
type: 'info',
|
||||
autoClose: 10000
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
});
|
||||
}).catch(e => {
|
||||
const msg = e.message || e;
|
||||
|
||||
const enableWsl = (forceMode: boolean) => {
|
||||
WindowShow();
|
||||
toastWithButton(t('WSL is not enabled, do you want to enable it?'), t('Enable WSL'), () => {
|
||||
WslEnable(forceMode).then(() => {
|
||||
WindowShow();
|
||||
toast(t('After installation, please restart your computer to enable WSL'), {
|
||||
type: 'info',
|
||||
autoClose: false
|
||||
});
|
||||
}).catch(showError);
|
||||
});
|
||||
};
|
||||
|
||||
if (msg === 'wsl is not enabled') {
|
||||
enableWsl(false);
|
||||
} else if (msg.includes('wsl.state: The system cannot find the file')) {
|
||||
enableWsl(true);
|
||||
} else {
|
||||
showError(msg);
|
||||
}
|
||||
});
|
||||
};
|
||||
|
||||
return (
|
||||
<div className="flex flex-col h-full w-full gap-2">
|
||||
{(commonStore.wslStdout.length > 0 || commonStore.chartData.labels!.length !== 0) &&
|
||||
<div className="flex" style={{ height: '35%' }}>
|
||||
{commonStore.wslStdout.length > 0 && commonStore.chartData.labels!.length === 0 && <TerminalDisplay />}
|
||||
{commonStore.chartData.labels!.length !== 0 &&
|
||||
<Line ref={chartRef} data={commonStore.chartData} options={{
|
||||
responsive: true,
|
||||
showLine: true,
|
||||
plugins: {
|
||||
legend: {
|
||||
position: 'right',
|
||||
align: 'start'
|
||||
},
|
||||
title: {
|
||||
display: true,
|
||||
text: commonStore.chartTitle
|
||||
}
|
||||
},
|
||||
scales: {
|
||||
y: {
|
||||
beginAtZero: true
|
||||
}
|
||||
},
|
||||
maintainAspectRatio: false
|
||||
}} style={{ width: '100%' }} />}
|
||||
</div>
|
||||
}
|
||||
<div>
|
||||
<Section
|
||||
title={t('Data Process')}
|
||||
content={
|
||||
<div className="flex flex-col gap-2">
|
||||
<div className="flex gap-2 items-center">
|
||||
{t('Data Path')}
|
||||
<Input className="grow" style={{ minWidth: 0 }} value={dataParams.dataPath}
|
||||
onChange={(e, data) => {
|
||||
setDataParams({ dataPath: data.value });
|
||||
}} />
|
||||
<DialogButton text={t('Help')} title={t('Help')} markdown
|
||||
contentText={t('The data path should be a directory or a file in jsonl format (more formats will be supported in the future).\n\n' +
|
||||
'When you provide a directory path, all the txt files within that directory will be automatically converted into training data. ' +
|
||||
'This is commonly used for large-scale training in writing, code generation, or knowledge bases.\n\n' +
|
||||
'The jsonl format file can be referenced at https://github.com/Abel2076/json2binidx_tool/blob/main/sample.jsonl.\n' +
|
||||
'You can also write it similar to OpenAI\'s playground format, as shown in https://platform.openai.com/playground/p/default-chat.\n' +
|
||||
'Even for multi-turn conversations, they must be written in a single line using `\\n` to indicate line breaks. ' +
|
||||
'If they are different dialogues or topics, they should be written in separate lines.')} />
|
||||
<ToolTipButton desc={t('Open Folder')} icon={<Folder20Regular />} onClick={() => {
|
||||
OpenFileFolder(dataParams.dataPath, false);
|
||||
}} />
|
||||
</div>
|
||||
<div className="flex gap-2 items-center">
|
||||
{t('Vocab Path')}
|
||||
<Input className="grow" style={{ minWidth: 0 }} value={dataParams.vocabPath}
|
||||
onChange={(e, data) => {
|
||||
setDataParams({ vocabPath: data.value });
|
||||
}} />
|
||||
<Button appearance="secondary" onClick={async () => {
|
||||
const ok = await checkDependencies(navigate);
|
||||
if (!ok)
|
||||
return;
|
||||
const outputPrefix = './finetune/json2binidx_tool/data/' +
|
||||
dataParams.dataPath.replace(/[\/\\]$/, '').split(/[\/\\]/).pop()!.split('.')[0];
|
||||
ConvertData(commonStore.settings.customPythonPath, dataParams.dataPath, outputPrefix, dataParams.vocabPath).then(async () => {
|
||||
if (!await FileExists(outputPrefix + '_text_document.idx')) {
|
||||
toast(t('Failed to convert data') + ' - ' + await GetPyError(), { type: 'error' });
|
||||
} else {
|
||||
toast(t('Convert Data successfully'), { type: 'success' });
|
||||
}
|
||||
}).catch(showError);
|
||||
}}>{t('Convert')}</Button>
|
||||
</div>
|
||||
</div>
|
||||
}
|
||||
/>
|
||||
</div>
|
||||
<Section
|
||||
title={t('Train Parameters')}
|
||||
content={
|
||||
<div className="grid grid-cols-1 sm:grid-cols-2 gap-2">
|
||||
<div className="flex gap-2 items-center">
|
||||
{t('Base Model')}
|
||||
<Select style={{ minWidth: 0 }} className="grow"
|
||||
value={loraParams.baseModel}
|
||||
onChange={(e, data) => {
|
||||
setLoraParams({
|
||||
baseModel: data.value
|
||||
});
|
||||
}}>
|
||||
{commonStore.modelSourceList.map((modelItem, index) =>
|
||||
modelItem.isComplete && <option key={index} value={modelItem.name}>{modelItem.name}</option>
|
||||
)}
|
||||
</Select>
|
||||
<ToolTipButton desc={t('Manage Models')} icon={<DataUsageSettings20Regular />} onClick={() => {
|
||||
navigate({ pathname: '/models' });
|
||||
}} />
|
||||
</div>
|
||||
<div className="flex gap-2 items-center">
|
||||
{t('LoRA Model')}
|
||||
<Select style={{ minWidth: 0 }} className="grow"
|
||||
value={loraParams.loraLoad}
|
||||
onChange={(e, data) => {
|
||||
setLoraParams({
|
||||
loraLoad: data.value
|
||||
});
|
||||
}}>
|
||||
<option value="">{t('None')}</option>
|
||||
{commonStore.loraModels.map((name, index) =>
|
||||
<option key={index} value={name}>{name}</option>
|
||||
)}
|
||||
</Select>
|
||||
<Button onClick={async () => {
|
||||
const ok = await checkDependencies(navigate);
|
||||
if (!ok)
|
||||
return;
|
||||
if (loraParams.loraLoad) {
|
||||
const outputPath = `models/${loraParams.baseModel}-LoRA-${loraParams.loraLoad}`;
|
||||
MergeLora(commonStore.settings.customPythonPath, true, loraParams.loraAlpha,
|
||||
'models/' + loraParams.baseModel, 'lora-models/' + loraParams.loraLoad,
|
||||
outputPath).then(async () => {
|
||||
if (!await FileExists(outputPath)) {
|
||||
toast(t('Failed to merge model') + ' - ' + await GetPyError(), { type: 'error' });
|
||||
} else {
|
||||
toast(t('Merge model successfully'), { type: 'success' });
|
||||
}
|
||||
}).catch(showError);
|
||||
} else {
|
||||
toast(t('Please select a LoRA model'), { type: 'info' });
|
||||
}
|
||||
}}>{t('Merge Model')}</Button>
|
||||
</div>
|
||||
{
|
||||
loraFinetuneParametersOptions.map(([key, type, name], index) => {
|
||||
return (
|
||||
<Labeled key={index} label={t(name)} content={
|
||||
type === 'number' ?
|
||||
<Input type="number" className="grow" value={loraParams[key].toString()}
|
||||
onChange={(e, data) => {
|
||||
setLoraParams({
|
||||
[key]: Number(data.value)
|
||||
});
|
||||
}} /> :
|
||||
type === 'boolean' ?
|
||||
<Switch className="grow" checked={loraParams[key] as boolean}
|
||||
onChange={(e, data) => {
|
||||
setLoraParams({
|
||||
[key]: data.checked
|
||||
});
|
||||
}} /> :
|
||||
type === 'string' ?
|
||||
<Input className="grow" value={loraParams[key].toString()}
|
||||
onChange={(e, data) => {
|
||||
setLoraParams({
|
||||
[key]: data.value
|
||||
});
|
||||
}} /> :
|
||||
type === 'LoraFinetunePrecision' ?
|
||||
<Dropdown style={{ minWidth: 0 }} className="grow"
|
||||
value={loraParams[key].toString()}
|
||||
selectedOptions={[loraParams[key].toString()]}
|
||||
onOptionSelect={(_, data) => {
|
||||
if (data.optionText) {
|
||||
setLoraParams({
|
||||
precision: data.optionText as LoraFinetunePrecision
|
||||
});
|
||||
}
|
||||
}}
|
||||
>
|
||||
<Option>bf16</Option>
|
||||
<Option>fp16</Option>
|
||||
<Option>fp32</Option>
|
||||
<Option>tf32</Option>
|
||||
</Dropdown>
|
||||
: <div />
|
||||
} />
|
||||
);
|
||||
})
|
||||
}
|
||||
</div>
|
||||
}
|
||||
/>
|
||||
<div className="grow" />
|
||||
<div className="flex gap-2">
|
||||
<div className="grow" />
|
||||
<Button appearance="secondary" size="large" onClick={() => {
|
||||
WslStop().then(() => {
|
||||
toast(t('Command Stopped'), { type: 'success' });
|
||||
}).catch(showError);
|
||||
}}>{t('Stop')}</Button>
|
||||
<Button appearance="primary" size="large" onClick={StartLoraFinetune}>{t('Train')}</Button>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
});
|
||||
|
||||
type TrainNavigationItem = {
|
||||
element: ReactElement;
|
||||
};
|
||||
|
||||
const pages: { [label: string]: TrainNavigationItem } = {
|
||||
'LoRA Finetune': {
|
||||
element: <LoraFinetune />
|
||||
},
|
||||
WSL: {
|
||||
element: <Terminal />
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
export const Train: FC = () => {
|
||||
const { t } = useTranslation();
|
||||
const [tab, setTab] = useState('LoRA Finetune');
|
||||
|
||||
return (
|
||||
<div className="flex flex-col box-border gap-5 p-2">
|
||||
<Text size={600}>{t('In Development')}</Text>
|
||||
const selectTab: SelectTabEventHandler = (e, data) =>
|
||||
typeof data.value === 'string' ? setTab(data.value) : null;
|
||||
|
||||
return <div className="flex flex-col gap-2 w-full h-full">
|
||||
<TabList
|
||||
size="small"
|
||||
appearance="subtle"
|
||||
selectedValue={tab}
|
||||
onTabSelect={selectTab}
|
||||
>
|
||||
{Object.entries(pages).map(([label]) => (
|
||||
<Tab key={label} value={label}>
|
||||
{t(label)}
|
||||
</Tab>
|
||||
))}
|
||||
</TabList>
|
||||
<div className="grow overflow-hidden">
|
||||
{pages[tab].element}
|
||||
</div>
|
||||
);
|
||||
</div>;
|
||||
};
|
||||
|
||||
@@ -1,11 +1,12 @@
|
||||
import commonStore, { Platform } from './stores/commonStore';
|
||||
import { GetPlatform, ReadJson } from '../wailsjs/go/backend_golang/App';
|
||||
import { Cache, checkUpdate, downloadProgramFiles, LocalConfig, refreshModels } from './utils';
|
||||
import { GetPlatform, ListDirFiles, ReadJson } from '../wailsjs/go/backend_golang/App';
|
||||
import { Cache, checkUpdate, downloadProgramFiles, LocalConfig, refreshLocalModels, refreshModels } from './utils';
|
||||
import { getStatus } from './apis';
|
||||
import { EventsOn } from '../wailsjs/runtime';
|
||||
import manifest from '../../manifest.json';
|
||||
import { defaultModelConfigs, defaultModelConfigsMac } from './pages/defaultModelConfigs';
|
||||
import { Preset } from './pages/PresetsManager/PresetsButton';
|
||||
import { wslHandler } from './pages/Train';
|
||||
|
||||
export async function startup() {
|
||||
downloadProgramFiles();
|
||||
@@ -13,9 +14,15 @@ export async function startup() {
|
||||
if (data)
|
||||
commonStore.setDownloadList(data);
|
||||
});
|
||||
EventsOn('wsl', wslHandler);
|
||||
EventsOn('wslerr', (e) => {
|
||||
console.log(e);
|
||||
});
|
||||
initLocalModelsNotify();
|
||||
initLoraModels();
|
||||
|
||||
initPresets();
|
||||
|
||||
|
||||
await GetPlatform().then(p => commonStore.setPlatform(p as Platform));
|
||||
await initConfig();
|
||||
|
||||
@@ -50,6 +57,12 @@ async function initConfig() {
|
||||
if (configData.settings)
|
||||
commonStore.setSettings(configData.settings, false);
|
||||
|
||||
if (configData.dataProcessParams)
|
||||
commonStore.setDataProcessParams(configData.dataProcessParams, false);
|
||||
|
||||
if (configData.loraFinetuneParams)
|
||||
commonStore.setLoraFinetuneParameters(configData.loraFinetuneParams, false);
|
||||
|
||||
if (configData.modelConfigs && Array.isArray(configData.modelConfigs))
|
||||
commonStore.setModelConfigs(configData.modelConfigs, false);
|
||||
else throw new Error('Invalid config.json');
|
||||
@@ -63,8 +76,8 @@ async function initConfig() {
|
||||
|
||||
async function initCache(initUnfinishedModels: boolean) {
|
||||
await ReadJson('cache.json').then((cacheData: Cache) => {
|
||||
if (cacheData.depComplete)
|
||||
commonStore.setDepComplete(cacheData.depComplete);
|
||||
if (cacheData.version === manifest.version && cacheData.depComplete)
|
||||
commonStore.setDepComplete(cacheData.depComplete, false);
|
||||
}).catch(() => {
|
||||
});
|
||||
await refreshModels(false, initUnfinishedModels);
|
||||
@@ -76,3 +89,31 @@ async function initPresets() {
|
||||
}).catch(() => {
|
||||
});
|
||||
}
|
||||
|
||||
async function initLoraModels() {
|
||||
const refreshLoraModels = () => {
|
||||
ListDirFiles('lora-models').then((data) => {
|
||||
if (!data) return;
|
||||
const loraModels = [];
|
||||
for (const f of data) {
|
||||
if (!f.isDir && f.name.endsWith('.pth')) {
|
||||
loraModels.push(f.name);
|
||||
}
|
||||
}
|
||||
commonStore.setLoraModels(loraModels);
|
||||
});
|
||||
};
|
||||
|
||||
refreshLoraModels();
|
||||
EventsOn('fsnotify', (data: string) => {
|
||||
if (data.includes('lora-models'))
|
||||
refreshLoraModels();
|
||||
});
|
||||
}
|
||||
|
||||
async function initLocalModelsNotify() {
|
||||
EventsOn('fsnotify', (data: string) => {
|
||||
if (data.includes('models') && !data.includes('lora-models'))
|
||||
refreshLocalModels({ models: commonStore.modelSourceList }, false); //TODO fix bug that only add models
|
||||
});
|
||||
}
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
import { makeAutoObservable } from 'mobx';
|
||||
import { getUserLanguage, isSystemLightMode, saveConfigs, savePresets } from '../utils';
|
||||
import { getUserLanguage, isSystemLightMode, saveCache, saveConfigs, savePresets } from '../utils';
|
||||
import { WindowSetDarkTheme, WindowSetLightTheme } from '../../wailsjs/runtime';
|
||||
import manifest from '../../../manifest.json';
|
||||
import { ModelConfig } from '../pages/Configs';
|
||||
@@ -14,6 +14,8 @@ import { CompletionPreset } from '../pages/Completion';
|
||||
import { defaultModelConfigs, defaultModelConfigsMac } from '../pages/defaultModelConfigs';
|
||||
import commonStore from './commonStore';
|
||||
import { Preset } from '../pages/PresetsManager/PresetsButton';
|
||||
import { DataProcessParameters, LoraFinetuneParameters } from '../pages/Train';
|
||||
import { ChartData } from 'chart.js';
|
||||
|
||||
export enum ModelStatus {
|
||||
Offline,
|
||||
@@ -30,6 +32,8 @@ export type Status = {
|
||||
|
||||
export type Platform = 'windows' | 'darwin' | 'linux';
|
||||
|
||||
const labels = ['January', 'February', 'March', 'April', 'May', 'June', 'July'];
|
||||
|
||||
class CommonStore {
|
||||
// global
|
||||
status: Status = {
|
||||
@@ -62,6 +66,40 @@ class CommonStore {
|
||||
// downloads
|
||||
downloadList: DownloadStatus[] = [];
|
||||
lastUnfinishedModelDownloads: DownloadStatus[] = [];
|
||||
// train
|
||||
wslStdout: string = '';
|
||||
chartTitle: string = '';
|
||||
chartData: ChartData<'line', (number | null)[], string> = { labels: [], datasets: [] };
|
||||
loraModels: string[] = [];
|
||||
dataProcessParams: DataProcessParameters = {
|
||||
dataPath: 'finetune/data/sample.jsonl',
|
||||
vocabPath: 'backend-python/rwkv_pip/rwkv_vocab_v20230424.txt'
|
||||
};
|
||||
loraFinetuneParams: LoraFinetuneParameters = {
|
||||
baseModel: '',
|
||||
ctxLen: 1024,
|
||||
epochSteps: 1000,
|
||||
epochCount: 20,
|
||||
epochBegin: 0,
|
||||
epochSave: 5,
|
||||
microBsz: 1,
|
||||
accumGradBatches: 8,
|
||||
preFfn: false,
|
||||
headQk: false,
|
||||
lrInit: '5e-5',
|
||||
lrFinal: '5e-5',
|
||||
warmupSteps: 0,
|
||||
beta1: 0.9,
|
||||
beta2: 0.999,
|
||||
adamEps: '1e-8',
|
||||
devices: 1,
|
||||
precision: 'bf16',
|
||||
gradCp: false,
|
||||
loraR: 8,
|
||||
loraAlpha: 32,
|
||||
loraDropout: 0.01,
|
||||
loraLoad: ''
|
||||
};
|
||||
// settings
|
||||
advancedCollapsed: boolean = true;
|
||||
settings: SettingsType = {
|
||||
@@ -169,8 +207,10 @@ class CommonStore {
|
||||
this.about = value;
|
||||
};
|
||||
|
||||
setDepComplete = (value: boolean) => {
|
||||
setDepComplete = (value: boolean, inSaveCache: boolean = true) => {
|
||||
this.depComplete = value;
|
||||
if (inSaveCache)
|
||||
saveCache();
|
||||
};
|
||||
|
||||
setDownloadList = (value: DownloadStatus[]) => {
|
||||
@@ -226,6 +266,34 @@ class CommonStore {
|
||||
setCompletionSubmittedPrompt(value: string) {
|
||||
this.completionSubmittedPrompt = value;
|
||||
}
|
||||
|
||||
setWslStdout(value: string) {
|
||||
this.wslStdout = value;
|
||||
}
|
||||
|
||||
setDataProcessParams(value: DataProcessParameters, saveConfig: boolean = true) {
|
||||
this.dataProcessParams = value;
|
||||
if (saveConfig)
|
||||
saveConfigs();
|
||||
}
|
||||
|
||||
setLoraFinetuneParameters(value: LoraFinetuneParameters, saveConfig: boolean = true) {
|
||||
this.loraFinetuneParams = value;
|
||||
if (saveConfig)
|
||||
saveConfigs();
|
||||
}
|
||||
|
||||
setChartTitle(value: string) {
|
||||
this.chartTitle = value;
|
||||
}
|
||||
|
||||
setChartData(value: ChartData<'line', (number | null)[], string>) {
|
||||
this.chartData = value;
|
||||
}
|
||||
|
||||
setLoraModels(value: string[]) {
|
||||
this.loraModels = value;
|
||||
}
|
||||
}
|
||||
|
||||
export default new CommonStore();
|
||||
@@ -1,6 +1,9 @@
|
||||
import {
|
||||
AddToDownloadList,
|
||||
CopyFile,
|
||||
DeleteFile,
|
||||
DepCheck,
|
||||
InstallPyDep,
|
||||
ListDirFiles,
|
||||
ReadFileInfo,
|
||||
ReadJson,
|
||||
@@ -8,7 +11,7 @@ import {
|
||||
UpdateApp
|
||||
} from '../../wailsjs/go/backend_golang/App';
|
||||
import manifest from '../../../manifest.json';
|
||||
import commonStore from '../stores/commonStore';
|
||||
import commonStore, { ModelStatus } from '../stores/commonStore';
|
||||
import { toast } from 'react-toastify';
|
||||
import { t } from 'i18next';
|
||||
import { ToastOptions } from 'react-toastify/dist/types';
|
||||
@@ -17,8 +20,12 @@ import { Language, Languages, SettingsType } from '../pages/Settings';
|
||||
import { ModelSourceItem } from '../pages/Models';
|
||||
import { ModelConfig, ModelParameters } from '../pages/Configs';
|
||||
import { DownloadStatus } from '../pages/Downloads';
|
||||
import { DataProcessParameters, LoraFinetuneParameters } from '../pages/Train';
|
||||
import { BrowserOpenURL, WindowShow } from '../../wailsjs/runtime';
|
||||
import { NavigateFunction } from 'react-router';
|
||||
|
||||
export type Cache = {
|
||||
version: string
|
||||
models: ModelSourceItem[]
|
||||
depComplete: boolean
|
||||
}
|
||||
@@ -27,7 +34,9 @@ export type LocalConfig = {
|
||||
modelSourceManifestList: string
|
||||
currentModelConfigIndex: number
|
||||
modelConfigs: ModelConfig[]
|
||||
settings: SettingsType
|
||||
settings: SettingsType,
|
||||
dataProcessParams: DataProcessParameters,
|
||||
loraFinetuneParams: LoraFinetuneParameters
|
||||
}
|
||||
|
||||
export async function refreshBuiltInModels(readCache: boolean = false) {
|
||||
@@ -193,13 +202,16 @@ export const saveConfigs = async () => {
|
||||
modelSourceManifestList: commonStore.modelSourceManifestList,
|
||||
currentModelConfigIndex: commonStore.currentModelConfigIndex,
|
||||
modelConfigs: commonStore.modelConfigs,
|
||||
settings: commonStore.settings
|
||||
settings: commonStore.settings,
|
||||
dataProcessParams: commonStore.dataProcessParams,
|
||||
loraFinetuneParams: commonStore.loraFinetuneParams
|
||||
};
|
||||
return SaveJson('config.json', data);
|
||||
};
|
||||
|
||||
export const saveCache = async () => {
|
||||
const data: Cache = {
|
||||
version: manifest.version,
|
||||
models: commonStore.modelSourceList,
|
||||
depComplete: commonStore.depComplete
|
||||
};
|
||||
@@ -340,6 +352,56 @@ export async function checkUpdate(notifyEvenLatest: boolean = false) {
|
||||
});
|
||||
}
|
||||
|
||||
export const checkDependencies = async (navigate: NavigateFunction) => {
|
||||
if (!commonStore.depComplete) {
|
||||
let depErrorMsg = '';
|
||||
await DepCheck(commonStore.settings.customPythonPath).catch((e) => {
|
||||
depErrorMsg = e.message || e;
|
||||
WindowShow();
|
||||
if (depErrorMsg === 'python zip not found') {
|
||||
toastWithButton(t('Python target not found, would you like to download it?'), t('Download'), () => {
|
||||
toastWithButton(`${t('Downloading')} Python`, t('Check'), () => {
|
||||
navigate({ pathname: '/downloads' });
|
||||
}, { autoClose: 3000 });
|
||||
AddToDownloadList('python-3.10.11-embed-amd64.zip', 'https://www.python.org/ftp/python/3.10.11/python-3.10.11-embed-amd64.zip');
|
||||
});
|
||||
} else if (depErrorMsg.includes('DepCheck Error')) {
|
||||
if (depErrorMsg.includes('vc_redist') || depErrorMsg.includes('DLL load failed while importing')) {
|
||||
toastWithButton(t('Microsoft Visual C++ Redistributable is not installed, would you like to download it?'), t('Download'), () => {
|
||||
BrowserOpenURL('https://aka.ms/vs/16/release/vc_redist.x64.exe');
|
||||
});
|
||||
} else {
|
||||
toast(depErrorMsg, { type: 'info', position: 'bottom-left' });
|
||||
if (commonStore.platform != 'linux')
|
||||
toastWithButton(t('Python dependencies are incomplete, would you like to install them?'), t('Install'), () => {
|
||||
InstallPyDep(commonStore.settings.customPythonPath, commonStore.settings.cnMirror).catch((e) => {
|
||||
const errMsg = e.message || e;
|
||||
toast(t('Error') + ' - ' + errMsg, { type: 'error' });
|
||||
});
|
||||
setTimeout(WindowShow, 1000);
|
||||
}, {
|
||||
autoClose: 8000
|
||||
});
|
||||
else
|
||||
toastWithButton(t('On Linux system, you must manually install python dependencies.'), t('Check'), () => {
|
||||
BrowserOpenURL('https://github.com/josStorer/RWKV-Runner/blob/master/build/linux/Readme_Install.txt');
|
||||
});
|
||||
}
|
||||
} else {
|
||||
toast(depErrorMsg, { type: 'error' });
|
||||
}
|
||||
});
|
||||
if (depErrorMsg) {
|
||||
commonStore.setStatus({ status: ModelStatus.Offline });
|
||||
return false;
|
||||
}
|
||||
commonStore.setDepComplete(true);
|
||||
if (commonStore.platform === 'windows')
|
||||
CopyFile('./backend-python/wkv_cuda_utils/wkv_cuda_model.py', './py310/Lib/site-packages/rwkv/model.py');
|
||||
}
|
||||
return true;
|
||||
};
|
||||
|
||||
export function toastWithButton(text: string, buttonText: string, onClickButton: () => void, options?: ToastOptions) {
|
||||
let triggered = false;
|
||||
const id = toast(
|
||||
|
||||
18
frontend/wailsjs/go/backend_golang/App.d.ts
generated
vendored
18
frontend/wailsjs/go/backend_golang/App.d.ts
generated
vendored
@@ -6,6 +6,8 @@ export function AddToDownloadList(arg1:string,arg2:string):Promise<void>;
|
||||
|
||||
export function ContinueDownload(arg1:string):Promise<void>;
|
||||
|
||||
export function ConvertData(arg1:string,arg2:string,arg3:string,arg4:string):Promise<string>;
|
||||
|
||||
export function ConvertModel(arg1:string,arg2:string,arg3:string,arg4:string):Promise<string>;
|
||||
|
||||
export function CopyFile(arg1:string,arg2:string):Promise<void>;
|
||||
@@ -20,10 +22,14 @@ export function FileExists(arg1:string):Promise<boolean>;
|
||||
|
||||
export function GetPlatform():Promise<string>;
|
||||
|
||||
export function GetPyError():Promise<string>;
|
||||
|
||||
export function InstallPyDep(arg1:string,arg2:boolean):Promise<string>;
|
||||
|
||||
export function ListDirFiles(arg1:string):Promise<Array<backend_golang.FileInfo>>;
|
||||
|
||||
export function MergeLora(arg1:string,arg2:boolean,arg3:number,arg4:string,arg5:string,arg6:string):Promise<string>;
|
||||
|
||||
export function OpenFileFolder(arg1:string,arg2:boolean):Promise<void>;
|
||||
|
||||
export function OpenSaveFileDialog(arg1:string,arg2:string,arg3:string):Promise<string>;
|
||||
@@ -41,3 +47,15 @@ export function SaveJson(arg1:string,arg2:any):Promise<void>;
|
||||
export function StartServer(arg1:string,arg2:number,arg3:string):Promise<string>;
|
||||
|
||||
export function UpdateApp(arg1:string):Promise<boolean>;
|
||||
|
||||
export function WslCommand(arg1:string):Promise<void>;
|
||||
|
||||
export function WslEnable(arg1:boolean):Promise<void>;
|
||||
|
||||
export function WslInstallUbuntu():Promise<void>;
|
||||
|
||||
export function WslIsEnabled():Promise<void>;
|
||||
|
||||
export function WslStart():Promise<void>;
|
||||
|
||||
export function WslStop():Promise<void>;
|
||||
|
||||
36
frontend/wailsjs/go/backend_golang/App.js
generated
36
frontend/wailsjs/go/backend_golang/App.js
generated
@@ -10,6 +10,10 @@ export function ContinueDownload(arg1) {
|
||||
return window['go']['backend_golang']['App']['ContinueDownload'](arg1);
|
||||
}
|
||||
|
||||
export function ConvertData(arg1, arg2, arg3, arg4) {
|
||||
return window['go']['backend_golang']['App']['ConvertData'](arg1, arg2, arg3, arg4);
|
||||
}
|
||||
|
||||
export function ConvertModel(arg1, arg2, arg3, arg4) {
|
||||
return window['go']['backend_golang']['App']['ConvertModel'](arg1, arg2, arg3, arg4);
|
||||
}
|
||||
@@ -38,6 +42,10 @@ export function GetPlatform() {
|
||||
return window['go']['backend_golang']['App']['GetPlatform']();
|
||||
}
|
||||
|
||||
export function GetPyError() {
|
||||
return window['go']['backend_golang']['App']['GetPyError']();
|
||||
}
|
||||
|
||||
export function InstallPyDep(arg1, arg2) {
|
||||
return window['go']['backend_golang']['App']['InstallPyDep'](arg1, arg2);
|
||||
}
|
||||
@@ -46,6 +54,10 @@ export function ListDirFiles(arg1) {
|
||||
return window['go']['backend_golang']['App']['ListDirFiles'](arg1);
|
||||
}
|
||||
|
||||
export function MergeLora(arg1, arg2, arg3, arg4, arg5, arg6) {
|
||||
return window['go']['backend_golang']['App']['MergeLora'](arg1, arg2, arg3, arg4, arg5, arg6);
|
||||
}
|
||||
|
||||
export function OpenFileFolder(arg1, arg2) {
|
||||
return window['go']['backend_golang']['App']['OpenFileFolder'](arg1, arg2);
|
||||
}
|
||||
@@ -81,3 +93,27 @@ export function StartServer(arg1, arg2, arg3) {
|
||||
export function UpdateApp(arg1) {
|
||||
return window['go']['backend_golang']['App']['UpdateApp'](arg1);
|
||||
}
|
||||
|
||||
export function WslCommand(arg1) {
|
||||
return window['go']['backend_golang']['App']['WslCommand'](arg1);
|
||||
}
|
||||
|
||||
export function WslEnable(arg1) {
|
||||
return window['go']['backend_golang']['App']['WslEnable'](arg1);
|
||||
}
|
||||
|
||||
export function WslInstallUbuntu() {
|
||||
return window['go']['backend_golang']['App']['WslInstallUbuntu']();
|
||||
}
|
||||
|
||||
export function WslIsEnabled() {
|
||||
return window['go']['backend_golang']['App']['WslIsEnabled']();
|
||||
}
|
||||
|
||||
export function WslStart() {
|
||||
return window['go']['backend_golang']['App']['WslStart']();
|
||||
}
|
||||
|
||||
export function WslStop() {
|
||||
return window['go']['backend_golang']['App']['WslStop']();
|
||||
}
|
||||
|
||||
7
go.mod
7
go.mod
@@ -5,12 +5,14 @@ go 1.20
|
||||
require (
|
||||
github.com/cavaliergopher/grab/v3 v3.0.1
|
||||
github.com/minio/selfupdate v0.6.0
|
||||
github.com/ubuntu/gowsl v0.0.0-20230615094051-94945650cc1e
|
||||
github.com/wailsapp/wails/v2 v2.5.1
|
||||
)
|
||||
|
||||
require (
|
||||
aead.dev/minisign v0.2.0 // indirect
|
||||
github.com/bep/debounce v1.2.1 // indirect
|
||||
github.com/fsnotify/fsnotify v1.6.0
|
||||
github.com/go-ole/go-ole v1.2.6 // indirect
|
||||
github.com/google/uuid v1.3.0 // indirect
|
||||
github.com/jchv/go-winloader v0.0.0-20210711035445-715c2860da7e // indirect
|
||||
@@ -21,17 +23,20 @@ require (
|
||||
github.com/leaanthony/slicer v1.6.0 // indirect
|
||||
github.com/mattn/go-colorable v0.1.13 // indirect
|
||||
github.com/mattn/go-isatty v0.0.18 // indirect
|
||||
github.com/nyaosorg/go-windows-su v0.2.1
|
||||
github.com/pkg/browser v0.0.0-20210911075715-681adbf594b8 // indirect
|
||||
github.com/pkg/errors v0.9.1 // indirect
|
||||
github.com/rivo/uniseg v0.4.4 // indirect
|
||||
github.com/samber/lo v1.38.1 // indirect
|
||||
github.com/sirupsen/logrus v1.9.0 // indirect
|
||||
github.com/tkrajina/go-reflector v0.5.6 // indirect
|
||||
github.com/ubuntu/decorate v0.0.0-20230125165522-2d5b0a9bb117 // indirect
|
||||
github.com/valyala/bytebufferpool v1.0.0 // indirect
|
||||
github.com/valyala/fasttemplate v1.2.2 // indirect
|
||||
github.com/wailsapp/mimetype v1.4.1 // indirect
|
||||
golang.org/x/crypto v0.9.0 // indirect
|
||||
golang.org/x/exp v0.0.0-20230515195305-f3d0a9c9a5cc // indirect
|
||||
golang.org/x/net v0.10.0 // indirect
|
||||
golang.org/x/sys v0.8.0 // indirect
|
||||
golang.org/x/sys v0.9.0 // indirect
|
||||
golang.org/x/text v0.9.0 // indirect
|
||||
)
|
||||
|
||||
19
go.sum
19
go.sum
@@ -1,5 +1,6 @@
|
||||
aead.dev/minisign v0.2.0 h1:kAWrq/hBRu4AARY6AlciO83xhNnW9UaC8YipS2uhLPk=
|
||||
aead.dev/minisign v0.2.0/go.mod h1:zdq6LdSd9TbuSxchxwhpA9zEb9YXcVGoE8JakuiGaIQ=
|
||||
github.com/0xrawsec/golang-utils v1.3.2 h1:ww4jrtHRSnX9xrGzJYbalx5nXoZewy4zPxiY+ubJgtg=
|
||||
github.com/bep/debounce v1.2.1 h1:v67fRdBA9UQu2NhLFXrSg0Brw7CexQekrBwDMM8bzeY=
|
||||
github.com/bep/debounce v1.2.1/go.mod h1:H8yggRPQKLUhUoqrJC1bO2xNya7vanpDl7xR3ISbCJ0=
|
||||
github.com/cavaliergopher/grab/v3 v3.0.1 h1:4z7TkBfmPjmLAAmkkAZNX/6QJ1nNFdv3SdIHXju0Fr4=
|
||||
@@ -7,6 +8,8 @@ github.com/cavaliergopher/grab/v3 v3.0.1/go.mod h1:1U/KNnD+Ft6JJiYoYBAimKH2XrYpt
|
||||
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
|
||||
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
|
||||
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
|
||||
github.com/fsnotify/fsnotify v1.6.0 h1:n+5WquG0fcWoWp6xPWfHdbskMCQaFnG6PfBrh1Ky4HY=
|
||||
github.com/fsnotify/fsnotify v1.6.0/go.mod h1:sl3t1tCWJFWoRz9R8WJCbQihKKwmorjAbSClcnxKAGw=
|
||||
github.com/go-ole/go-ole v1.2.6 h1:/Fpf6oFPoeFik9ty7siob0G6Ke8QvQEuVcuChpwXzpY=
|
||||
github.com/go-ole/go-ole v1.2.6/go.mod h1:pprOEPIfldk/42T2oK7lQ4v4JSDwmV0As9GaiUsvbm0=
|
||||
github.com/google/uuid v1.3.0 h1:t6JiXgmwXMjEs8VusXIJk2BXHsn+wx8BZdTaoZ5fu7I=
|
||||
@@ -37,6 +40,8 @@ github.com/mattn/go-isatty v0.0.18 h1:DOKFKCQ7FNG2L1rbrmstDN4QVRdS89Nkh85u68Uwp9
|
||||
github.com/mattn/go-isatty v0.0.18/go.mod h1:W+V8PltTTMOvKvAeJH7IuucS94S2C6jfK/D7dTCTo3Y=
|
||||
github.com/minio/selfupdate v0.6.0 h1:i76PgT0K5xO9+hjzKcacQtO7+MjJ4JKA8Ak8XQ9DDwU=
|
||||
github.com/minio/selfupdate v0.6.0/go.mod h1:bO02GTIPCMQFTEvE5h4DjYB58bCoZ35XLeBf0buTDdM=
|
||||
github.com/nyaosorg/go-windows-su v0.2.1 h1:5V0XavLyjOqPUp7psxxCvBISaneU4XmFPSMlejSl5sc=
|
||||
github.com/nyaosorg/go-windows-su v0.2.1/go.mod h1:fWKxSCXwGuDuW6ne0kLp/Cj0joXNDDw01G3LseQJYS0=
|
||||
github.com/pkg/browser v0.0.0-20210911075715-681adbf594b8 h1:KoWmjvw+nsYOo29YJK9vDA65RGE3NrOnUtO7a+RF9HU=
|
||||
github.com/pkg/browser v0.0.0-20210911075715-681adbf594b8/go.mod h1:HKlIX3XHQyzLZPlr7++PzdhaXEj94dEiJgZDTsxEqUI=
|
||||
github.com/pkg/errors v0.9.1 h1:FEBLx1zS214owpjy7qsBeixbURkuhQAwrK5UwLGTwt4=
|
||||
@@ -48,11 +53,17 @@ github.com/rivo/uniseg v0.4.4 h1:8TfxU8dW6PdqD27gjM8MVNuicgxIjxpm4K7x4jp8sis=
|
||||
github.com/rivo/uniseg v0.4.4/go.mod h1:FN3SvrM+Zdj16jyLfmOkMNblXMcoc8DfTHruCPUcx88=
|
||||
github.com/samber/lo v1.38.1 h1:j2XEAqXKb09Am4ebOg31SpvzUTTs6EN3VfgeLUhPdXM=
|
||||
github.com/samber/lo v1.38.1/go.mod h1:+m/ZKRl6ClXCE2Lgf3MsQlWfh4bn1bz6CXEOxnEXnEA=
|
||||
github.com/sirupsen/logrus v1.9.0 h1:trlNQbNUG3OdDrDil03MCb1H2o9nJ1x4/5LYw7byDE0=
|
||||
github.com/sirupsen/logrus v1.9.0/go.mod h1:naHLuLoDiP4jHNo9R0sCBMtWGeIprob74mVsIT4qYEQ=
|
||||
github.com/stretchr/objx v0.1.0/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME=
|
||||
github.com/stretchr/testify v1.7.0/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/h/Wwjteg=
|
||||
github.com/stretchr/testify v1.8.1 h1:w7B6lhMri9wdJUVmEZPGGhZzrYTPvgJArz7wNPgYKsk=
|
||||
github.com/stretchr/testify v1.8.4 h1:CcVxjf3Q8PM0mHUKJCdn+eZZtm5yQwehR5yeSVQQcUk=
|
||||
github.com/tkrajina/go-reflector v0.5.6 h1:hKQ0gyocG7vgMD2M3dRlYN6WBBOmdoOzJ6njQSepKdE=
|
||||
github.com/tkrajina/go-reflector v0.5.6/go.mod h1:ECbqLgccecY5kPmPmXg1MrHW585yMcDkVl6IvJe64T4=
|
||||
github.com/ubuntu/decorate v0.0.0-20230125165522-2d5b0a9bb117 h1:XQpsQG5lqRJlx4mUVHcJvyyc1rdTI9nHvwrdfcuy8aM=
|
||||
github.com/ubuntu/decorate v0.0.0-20230125165522-2d5b0a9bb117/go.mod h1:mx0TjbqsaDD9DUT5gA1s3hw47U6RIbbIBfvGzR85K0g=
|
||||
github.com/ubuntu/gowsl v0.0.0-20230615094051-94945650cc1e h1:5hJ4Z9ISvbDUWL7TDvfoYp0bXsaX42WjAUJzyZ8NMCI=
|
||||
github.com/ubuntu/gowsl v0.0.0-20230615094051-94945650cc1e/go.mod h1:tu2rOgQGt6bZce1OE8G75Ca8+NvNmTNOvplLolr326I=
|
||||
github.com/valyala/bytebufferpool v1.0.0 h1:GqA5TC/0021Y/b9FG4Oi9Mr3q7XYx6KllzawFIhcdPw=
|
||||
github.com/valyala/bytebufferpool v1.0.0/go.mod h1:6bBcMArwyJ5K/AmCkWv1jt77kVWyCJ6HpOuEn7z0Csc=
|
||||
github.com/valyala/fasttemplate v1.2.1/go.mod h1:KHLXt3tVN2HBp8eijSv/kGJopbvo7S+qRAEEKiv+SiQ=
|
||||
@@ -86,10 +97,12 @@ golang.org/x/sys v0.0.0-20210616045830-e2b7044e8c71/go.mod h1:oPkhp1MJrh7nUepCBc
|
||||
golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.0.0-20210927094055-39ccf1dd6fa6/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.0.0-20211103235746-7861aae1554b/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.0.0-20220715151400-c0bba94af5f8/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.0.0-20220811171246-fbc7d0a398ab/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.0.0-20220908164124-27713097b956/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.6.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.8.0 h1:EBmGv8NaZBZTWvrbjNoL6HVt+IVy3QDQpJs7VRIw3tU=
|
||||
golang.org/x/sys v0.8.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/sys v0.9.0 h1:KS/R3tvhPqvJvwcKfnBHJwwthS11LRhmM5D59eEXa0s=
|
||||
golang.org/x/sys v0.9.0/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
|
||||
golang.org/x/term v0.0.0-20201117132131-f5c789dd3221/go.mod h1:Nr5EML6q2oocZ2LXRh80K7BxOlk5/8JxuGnuhpl+muw=
|
||||
golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1/go.mod h1:bj7SfCRtBDWHUb9snDiAeCFNEtKQo2Wmx5Cou7ajbmo=
|
||||
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
|
||||
|
||||
6
main.go
6
main.go
@@ -2,7 +2,6 @@ package main
|
||||
|
||||
import (
|
||||
"embed"
|
||||
"os"
|
||||
"runtime/debug"
|
||||
"strings"
|
||||
|
||||
@@ -26,12 +25,15 @@ var cyacInfo embed.FS
|
||||
//go:embed backend-python
|
||||
var py embed.FS
|
||||
|
||||
//go:embed finetune
|
||||
var finetune embed.FS
|
||||
|
||||
func main() {
|
||||
if buildInfo, ok := debug.ReadBuildInfo(); !ok || strings.Contains(buildInfo.String(), "-ldflags") {
|
||||
backend.CopyEmbed(cyac)
|
||||
backend.CopyEmbed(cyacInfo)
|
||||
backend.CopyEmbed(py)
|
||||
os.Mkdir("models", os.ModePerm)
|
||||
backend.CopyEmbed(finetune)
|
||||
}
|
||||
|
||||
// Create an instance of the app structure
|
||||
|
||||
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"version": "1.2.9",
|
||||
"version": "1.3.5",
|
||||
"introduction": {
|
||||
"en": "RWKV is an open-source, commercially usable large language model with high flexibility and great potential for development.\n### About This Tool\nThis tool aims to lower the barrier of entry for using large language models, making it accessible to everyone. It provides fully automated dependency and model management. You simply need to click and run, following the instructions, to deploy a local large language model. The tool itself is very compact and only requires a single executable file for one-click deployment.\nAdditionally, this tool offers an interface that is fully compatible with the OpenAI API. This means you can use any ChatGPT client as a client for RWKV, enabling capability expansion beyond just chat functionality.\n### Preset Configuration Rules at the Bottom\nThis tool comes with a series of preset configurations to reduce complexity. The naming rules for each configuration represent the following in order: device - required VRAM/memory - model size - model language.\nFor example, \"GPU-8G-3B-EN\" indicates that this configuration is for a graphics card with 8GB of VRAM, a model size of 3 billion parameters, and it uses an English language model.\nLarger model sizes have higher performance and VRAM requirements. Among configurations with the same model size, those with higher VRAM usage will have faster runtime.\nFor example, if you have 12GB of VRAM but running the \"GPU-12G-7B-EN\" configuration is slow, you can downgrade to \"GPU-8G-3B-EN\" for a significant speed improvement.\n### About RWKV\nRWKV is an RNN with Transformer-level LLM performance, which can also be directly trained like a GPT transformer (parallelizable). And it's 100% attention-free. You only need the hidden state at position t to compute the state at position t+1. You can use the \"GPT\" mode to quickly compute the hidden state for the \"RNN\" mode.<br/>So it's combining the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, \"infinite\" ctx_len, and free sentence embedding (using the final hidden state).",
|
||||
"zh": "RWKV是一个开源且允许商用的大语言模型,灵活性很高且极具发展潜力。\n### 关于本工具\n本工具旨在降低大语言模型的使用门槛,做到人人可用,本工具提供了全自动化的依赖和模型管理,你只需要直接点击运行,跟随引导,即可完成本地大语言模型的部署,工具本身体积极小,只需要一个exe即可完成一键部署。\n此外,本工具提供了与OpenAI API完全兼容的接口,这意味着你可以把任意ChatGPT客户端用作RWKV的客户端,实现能力拓展,而不局限于聊天。\n### 底部的预设配置规则\n本工具内置了一系列预设配置,以降低使用难度,每个配置名的规则,依次代表着:设备-所需显存/内存-模型规模-模型语言。\n例如,GPU-8G-3B-CN,表示该配置用于显卡,需要8G显存,模型规模为30亿参数,使用的是中文模型。\n模型规模越大,性能要求越高,显存要求也越高,而同样模型规模的配置中,显存占用越高的,运行速度越快。\n例如当你有12G显存,但运行GPU-12G-7B-CN配置速度比较慢,可降级成GPU-8G-3B-CN,将会大幅提速。\n### 关于RWKV\nRWKV是具有Transformer级别LLM性能的RNN,也可以像GPT Transformer一样直接进行训练(可并行化)。而且它是100% attention-free的。你只需在位置t处获得隐藏状态即可计算位置t + 1处的状态。你可以使用“GPT”模式快速计算用于“RNN”模式的隐藏状态。\n因此,它将RNN和Transformer的优点结合起来 - 高性能、快速推理、节省显存、快速训练、“无限”上下文长度以及免费的语句嵌入(使用最终隐藏状态)。"
|
||||
},
|
||||
"about": {
|
||||
"en": "<div align=\"center\">\n\nProject Source Code:\nhttps://github.com/josStorer/RWKV-Runner\nAuthor: [@josStorer](https://github.com/josStorer)\nFAQs: https://github.com/josStorer/RWKV-Runner/wiki/FAQs\n\nRelated Repositories:\nRWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main\nChatRWKV: https://github.com/BlinkDL/ChatRWKV\nRWKV-LM: https://github.com/BlinkDL/RWKV-LM\n\n</div>",
|
||||
"zh": "<div align=\"center\">\n\n本项目源码:\nhttps://github.com/josStorer/RWKV-Runner\n作者: [@josStorer](https://github.com/josStorer)\n演示与常见问题说明视频: https://www.bilibili.com/video/BV1hM4y1v76R\n疑难解答: https://www.bilibili.com/read/cv23921171\n\n相关仓库:\nRWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main\nChatRWKV: https://github.com/BlinkDL/ChatRWKV\nRWKV-LM: https://github.com/BlinkDL/RWKV-LM\n\n</div>"
|
||||
"en": "<div align=\"center\">\n\nProject Source Code:\nhttps://github.com/josStorer/RWKV-Runner\nAuthor: [@josStorer](https://github.com/josStorer)\nFAQs: https://github.com/josStorer/RWKV-Runner/wiki/FAQs\n\nRelated Repositories:\nRWKV-4-World: https://huggingface.co/BlinkDL/rwkv-4-world/tree/main\nRWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main\nChatRWKV: https://github.com/BlinkDL/ChatRWKV\nRWKV-LM: https://github.com/BlinkDL/RWKV-LM\nRWKV-LM-LoRA: https://github.com/Blealtan/RWKV-LM-LoRA\n\n</div>",
|
||||
"zh": "<div align=\"center\">\n\n本项目源码:\nhttps://github.com/josStorer/RWKV-Runner\n作者: [@josStorer](https://github.com/josStorer)\n演示与常见问题说明视频: https://www.bilibili.com/video/BV1hM4y1v76R\n疑难解答: https://www.bilibili.com/read/cv23921171\n\n相关仓库:\nRWKV-4-World: https://huggingface.co/BlinkDL/rwkv-4-world/tree/main\nRWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main\nChatRWKV: https://github.com/BlinkDL/ChatRWKV\nRWKV-LM: https://github.com/BlinkDL/RWKV-LM\nRWKV-LM-LoRA: https://github.com/Blealtan/RWKV-LM-LoRA\n\n</div>"
|
||||
},
|
||||
"programFiles": [
|
||||
{
|
||||
|
||||
Reference in New Issue
Block a user