Compare commits

...

228 Commits

Author SHA1 Message Date
josc146
5acb1fd958 release v1.3.3 2023-07-03 21:40:22 +08:00
josc146
76761ee453 improve lora finetune process (need to be refactored) 2023-07-03 21:40:16 +08:00
github-actions[bot]
134b2884e6 release v1.3.2 2023-07-03 09:43:01 +00:00
josc146
261e7c8916 release v1.3.2 2023-07-03 17:42:28 +08:00
josc146
987854fe49 lora finetune (need to be refactored) 2023-07-03 17:41:47 +08:00
josc146
c54d10795f chore 2023-07-03 16:42:11 +08:00
github-actions[bot]
b7d9ab0845 release v1.3.1 2023-07-01 11:35:45 +00:00
josc146
176800444a release v1.3.1 2023-07-01 19:35:20 +08:00
josc146
00c13cfc3f improve compatibility for linux 2023-07-01 19:32:58 +08:00
Ikko Eltociear Ashimine
620e0228ed Add Japanese README (#100)
* Add Japanese README

* minor fix
2023-06-30 12:37:45 +08:00
josc146
87ca694b0b chore 2023-06-29 20:14:52 +08:00
josc146
417389c5f6 improve for python3.8 3.9 2023-06-29 20:12:11 +08:00
github-actions[bot]
fa9f62b42c release v1.3.0 2023-06-28 13:26:51 +00:00
josc146
2c4e9f69eb release v1.3.0 2023-06-28 21:26:23 +08:00
josc146
119204368d update manifest 2023-06-28 20:57:09 +08:00
josc146
87a86042d2 chore 2023-06-28 20:49:41 +08:00
josc146
32c386799d Change chat saving format 2023-06-28 20:48:22 +08:00
josc146
b56a55e81d Completion Regenerate Button 2023-06-28 20:46:21 +08:00
josc146
2fe7a23049 chore 2023-06-28 19:40:55 +08:00
josc146
9ed3547738 rwkv pip 0.8.0 2023-06-28 19:36:15 +08:00
github-actions[bot]
a0522594da release v1.2.9 2023-06-24 16:12:53 +00:00
josc146
1cac147df4 release v1.2.9 2023-06-25 00:12:20 +08:00
josc146
db67f30082 feat: chat presets (experimental) 2023-06-25 00:07:14 +08:00
josc146
08cf09416a chore 2023-06-24 23:57:49 +08:00
josc146
7f2f4f15c1 improve error messages 2023-06-23 16:32:05 +08:00
josc146
97f6af595e display models that have not been fully downloaded in Downloads page, even if the program is restarted 2023-06-23 16:03:57 +08:00
josc146
447f4572b1 improve error messages 2023-06-23 13:55:45 +08:00
github-actions[bot]
5c9b4a4c05 release v1.2.8 2023-06-21 15:12:45 +00:00
josc146
70f2271b94 release v1.2.8 2023-06-21 23:12:17 +08:00
josc146
15cd689741 adjust MoreUtilsButton 2023-06-21 23:11:22 +08:00
josc146
82a68593bb exact avoidOverflow 2023-06-21 23:08:34 +08:00
github-actions[bot]
21910af96a release v1.2.7 2023-06-21 14:09:27 +00:00
josc146
412a0fe135 release v1.2.7 2023-06-21 22:08:57 +08:00
josc146
cf0972ba52 avoid overflow 2023-06-21 22:02:42 +08:00
josc146
3fe9ef4546 chore 2023-06-21 22:00:29 +08:00
josc146
4cd5a56070 add more chat utils (retry, edit, delete) 2023-06-21 21:20:21 +08:00
josc146
35a7437714 chore 2023-06-21 17:13:04 +08:00
josc146
131a7ddf4a fix the prompt cache that contains potential error 2023-06-21 16:07:16 +08:00
josc146
1465908574 update SupportedCustomCuda 2023-06-21 13:48:09 +08:00
josc146
3eb10f08bb rename 100+ Languages to Global Languages 2023-06-21 12:44:49 +08:00
josc146
b20990d380 when precision is fp32, disable customCuda 2023-06-21 12:14:11 +08:00
josc146
1a5bf4a95e improve InstallPyDep for non-english path 2023-06-21 12:08:04 +08:00
github-actions[bot]
3d123524e7 release v1.2.6 2023-06-20 16:59:55 +00:00
josc146
25a41e51b3 release v1.2.6 2023-06-21 00:46:57 +08:00
josc146
f998ff239a add chat and completion error messages 2023-06-21 00:26:50 +08:00
josc146
bae9ae6551 allow custom api url, key, model 2023-06-20 23:24:51 +08:00
josc146
285e8b1577 add DPI Scaling setting 2023-06-20 22:22:14 +08:00
josc146
ce915cdf6a chore 2023-06-20 22:18:45 +08:00
github-actions[bot]
84317a03e8 release v1.2.5 2023-06-20 09:02:57 +00:00
josc146
ac1fa09604 release v1.2.5 2023-06-20 17:02:28 +08:00
josc146
43bc08648d update manifest 2023-06-20 16:07:52 +08:00
josc146
e93c77394d add usage 2023-06-20 15:55:52 +08:00
josc146
4b2509e643 chore 2023-06-20 15:34:34 +08:00
josc146
14fbb437ff embeddings api example 2023-06-20 00:30:49 +08:00
josc146
8963543159 embeddings api compatible with openai api and langchain(sdk) 2023-06-19 22:51:06 +08:00
josc146
377f71b16b type 2023-06-19 22:32:02 +08:00
josc146
d32351c130 exact model name 2023-06-19 22:30:49 +08:00
josc146
967be6f88f refactor completions api 2023-06-18 20:16:52 +08:00
josc146
fcdda71b46 typo 2023-06-17 19:32:47 +08:00
github-actions[bot]
138251932c release v1.2.4 2023-06-15 16:37:43 +00:00
josc146
4d1a2396e3 release v1.2.4 2023-06-16 00:36:33 +08:00
josc146
b06e292989 improve error messages 2023-06-16 00:35:39 +08:00
josc146
b1d5b84dd6 RWKV-4-World-7B-v1-OnlyForTest_75%_trained-20230615-ctx4096.pth 2023-06-16 00:15:58 +08:00
josc146
2beddab114 save conversation button 2023-06-16 00:12:13 +08:00
josc146
7f85a08508 clear confirm for chat page 2023-06-15 22:55:38 +08:00
josc146
721653a812 fix the state cache crash caused by bad prompts 2023-06-15 22:37:00 +08:00
josc146
d99488f22f improve error messages 2023-06-15 21:57:54 +08:00
josc146
21c3009945 improve api docs 2023-06-15 21:52:22 +08:00
josc146
3f77762fda GPU-2G-3B-World 2023-06-15 00:07:09 +08:00
github-actions[bot]
9590d93c34 release v1.2.3 2023-06-14 14:52:53 +00:00
josc146
e0e846a191 release v1.2.3 2023-06-14 22:52:22 +08:00
josc146
e9cc9b0798 add additional startup condition 2023-06-14 22:50:20 +08:00
josc146
51c5696bb9 improve python dependencies installation 2023-06-14 22:21:17 +08:00
josc146
64f0610ed7 improve OpenFileFolder 2023-06-14 21:11:08 +08:00
josc146
1591430742 reset confirm for completion page 2023-06-14 20:45:52 +08:00
josc146
17c690dfb1 remember current chat input 2023-06-14 20:26:04 +08:00
josc146
4b640f884b global sse AbortController 2023-06-14 20:06:19 +08:00
github-actions[bot]
8976764ee5 release v1.2.2 2023-06-13 15:22:04 +00:00
josc146
47db663fcd release v1.2.2 2023-06-13 23:21:39 +08:00
josc146
366e67bb6e improve built-in user guides 2023-06-13 23:18:04 +08:00
josc146
b52bae6e17 update Instruction template 2023-06-13 23:15:21 +08:00
josc146
714b8834c7 chore 2023-06-13 22:47:17 +08:00
josc146
631704d04d update models and configs 2023-06-13 22:46:41 +08:00
josc146
5896593951 max_trie_len 2023-06-12 15:22:17 +08:00
josc146
8431b5d24f log Generation Prompt 2023-06-12 13:41:51 +08:00
josc146
bbd1ac1484 allow unloading model with switch-model 2023-06-12 12:34:03 +08:00
josc146
5990567a79 avoid misoperations of state_cache 2023-06-12 12:32:50 +08:00
josc146
fa0fcc2c89 add support for python3.8 3.9 2023-06-12 12:09:23 +08:00
github-actions[bot]
face4c97e8 release v1.2.1 2023-06-09 13:17:30 +00:00
josc146
c0ad99673b release v1.2.1 2023-06-09 21:16:37 +08:00
josc146
510683c57e remove enableHighPrecisionForLastLayer 2023-06-09 20:49:45 +08:00
josc146
cea1d8b4d1 add logs for state cache and switch-model 2023-06-09 20:46:19 +08:00
josc146
b7c34b0d42 improve update process for macOS and Linux 2023-06-09 20:38:19 +08:00
josc146
a95fbbbd78 CI 2023-06-09 20:37:05 +08:00
josc146
d1560674b3 update readme 2023-06-09 12:08:09 +08:00
josc146
4fdfbd2f82 update Readme_Install.txt 2023-06-08 17:11:11 +08:00
josc146
635767408f fix UnboundLocalError: local variable 'response' referenced before assignment 2023-06-08 13:30:34 +08:00
josc146
39a7eee8ea update readme 2023-06-08 00:12:54 +08:00
josc146
6ec6044901 deploy example for linux 2023-06-08 00:07:08 +08:00
josc146
4760a552d4 deploy example for windows 2023-06-07 22:20:35 +08:00
josc146
6294327273 update InstallPyDep for better macOS support 2023-06-07 20:38:19 +08:00
josc146
260f51955a update manifest.json 2023-06-07 19:45:53 +08:00
josc146
29ea886576 update manifest.json 2023-06-07 16:49:34 +08:00
josc146
dae3f72d04 chore 2023-06-07 16:49:31 +08:00
josc146
796338a32f Update Readme_Install.txt 2023-06-07 14:03:25 +08:00
josc146
66621e4ceb update readme 2023-06-07 00:11:39 +08:00
josc146
a6f5b520c3 update readme 2023-06-06 23:57:28 +08:00
josc146
c23c644fbc update readme 2023-06-06 23:50:52 +08:00
josc146
cb85c0938d release v1.2.0 2023-06-06 22:43:30 +08:00
josc146
88a5d11e15 add macOS MPS configs 2023-06-06 22:42:38 +08:00
josc146
1ecb0b444b update Readme_Install.txt 2023-06-06 22:42:31 +08:00
josc146
72d601370d improve macOS and Linux user guides 2023-06-06 22:12:26 +08:00
josc146
4814b88172 chore 2023-06-06 21:52:38 +08:00
josc146
cfad67a922 upload Readme_Install.txt for all platforms 2023-06-06 21:47:03 +08:00
josc146
c28f5604ab macOS chore 2023-06-06 20:49:31 +08:00
josc146
5853b8ca8d release v1.1.9 2023-06-06 00:13:35 +08:00
josc146
ebfc0ce672 add ResetConfigsButton to Home Page 2023-06-06 00:12:58 +08:00
josc146
e62fcd152a Improved cross-platform interaction 2023-06-05 23:11:22 +08:00
josc146
9bd9b9ecbd add requirements_without_cyac.txt 2023-06-05 22:58:56 +08:00
josc146
17faa9c5b8 dev config 2023-06-05 22:57:01 +08:00
josc146
4cd445bf77 OpenFileFolder for linux 2023-06-05 22:55:06 +08:00
josc146
4fb35845b0 improve the built-in download function, enhance the logic robustness and reliability in adverse network environments 2023-06-05 22:54:36 +08:00
josc146
f373f1caa8 release v1.1.8 2023-06-04 11:53:50 +08:00
josc146
4e75531651 fix the crash issue caused by temperature being 0 2023-06-04 11:53:33 +08:00
josc146
539c538d65 update manifest.json 2023-06-03 22:14:11 +08:00
josc146
d90186db33 update logo 2023-06-03 21:35:20 +08:00
josc146
a2d8729ae3 release v1.1.7 2023-06-03 20:34:51 +08:00
josc146
edc6ac7297 chore 2023-06-03 20:34:33 +08:00
josc146
e89e23621c update readme 2023-06-03 20:28:21 +08:00
josc146
6b9ec4c6fa add strategy guides 2023-06-03 20:18:57 +08:00
josc146
ced0966ffc display current strategy 2023-06-03 19:38:24 +08:00
josc146
966b912013 improve logs 2023-06-03 19:28:37 +08:00
josc146
dc71054e61 improve logs 2023-06-03 17:36:50 +08:00
josc146
408f3c1a4d release v1.1.6 2023-06-03 17:15:11 +08:00
josc146
38b775c937 add logs 2023-06-03 17:12:59 +08:00
josc146
f2ec1067bf MX, Tesla P, Quadro P, NVIDIA P, TITAN X, RTX A series, TITAN RTX and RTX TITAN Ada 2023-06-03 12:46:56 +08:00
josc146
b01584c49e chore 2023-06-03 00:10:31 +08:00
josc146
01e56382a3 release v1.1.5 2023-06-02 23:53:37 +08:00
josc146
391c067250 add Instruction to Completion Presets 2023-06-02 23:53:25 +08:00
josc146
5b98b5c0a7 update manifest.json 2023-06-02 23:45:37 +08:00
josc146
5bde0abb8d reminder to use administrator privileges 2023-06-02 23:42:13 +08:00
josc146
1036852924 add path contains space prompt and chore 2023-06-02 23:35:33 +08:00
josc146
2b10ccd507 add vc++ installation guide 2023-06-02 23:32:47 +08:00
josc146
e1df1bfc3f chore 2023-06-02 22:20:57 +08:00
josc146
b41a2e7039 move state cache to memory (todo: state cache db) 2023-06-02 21:33:57 +08:00
josc146
b63370928d macOS 2023-06-01 16:54:21 +08:00
josc146
06a125b8d7 release v1.1.4 2023-05-31 16:27:52 +08:00
josc146
b03b00419b fix Cmd and CopyFile 2023-05-31 16:27:43 +08:00
josc146
2f5a7d2d51 fix_tokens 2023-05-31 16:07:09 +08:00
josc146
e318331909 release v1.1.3 2023-05-31 15:46:49 +08:00
josc146
796e5f22c0 custom python path 2023-05-31 15:45:26 +08:00
josc146
b49968c145 custom models path 2023-05-31 15:21:47 +08:00
josc146
cf16e54463 fix_tokens 2023-05-31 14:55:13 +08:00
josc146
7bc8da2e29 add button to reset all configs 2023-05-31 14:19:19 +08:00
josc146
26174d4c10 chore 2023-05-31 14:14:25 +08:00
josc146
3c18ce34c7 cn 7b v12 2023-05-31 12:53:05 +08:00
josc146
c8b2bb53ef improve system for rwkv-4-world 2023-05-31 12:46:06 +08:00
josc146
9f5d15a7d5 custom strategy mode 2023-05-31 12:26:10 +08:00
josc146
8291c50058 safe ModelConfigBody 2023-05-30 23:13:27 +08:00
josc146
1f3f6cf9a8 chore 2023-05-30 22:58:52 +08:00
josc146
83905c65c7 tesla P104 P106 kernel 2023-05-30 22:46:53 +08:00
josc146
9af2b1d208 update readme 2023-05-30 14:40:33 +08:00
josc146
67c9381b82 upload .gitattributes 2023-05-30 13:17:45 +08:00
josc146
4bdfa2d54c update readme 2023-05-30 11:52:38 +08:00
josc146
9945338458 chore 2023-05-30 11:52:33 +08:00
josc146
d93157bde4 don't release embedded files in development mode 2023-05-30 11:04:11 +08:00
josc146
4db9b13803 upload vendor.yml 2023-05-30 10:35:24 +08:00
josc146
69ab273706 release v1.1.2 2023-05-29 23:27:56 +08:00
josc146
d4ce828e99 fix downloads page 2023-05-29 23:27:44 +08:00
josc146
8838b60e97 release v1.1.1 2023-05-29 22:56:55 +08:00
josc146
cbb249725d update models source and hide old models 2023-05-29 22:50:46 +08:00
josc146
53b6a5ffe0 allow system to be placed anywhere 2023-05-29 22:26:22 +08:00
josc146
11b743aa53 RWKV-4-Raven-3B-v12-Eng49%-Chn49%-Jpn1%-Other1%-20230527-ctx4096.pth 2023-05-29 22:15:45 +08:00
josc146
a8c936a885 force display the window after started or updated 2023-05-29 21:51:33 +08:00
josc146
7fb27b927c remove introduction and about in cache 2023-05-29 21:41:44 +08:00
josc146
50bee24e8c external access to the API Switch 2023-05-29 21:34:24 +08:00
josc146
a196ce6da8 setPlatform 2023-05-29 21:20:19 +08:00
josc146
154827f367 improve checkUpdate 2023-05-29 21:15:40 +08:00
josc146
deb9e030cb GetPlatform 2023-05-29 21:15:11 +08:00
josc146
da033ab096 chore 2023-05-29 20:51:20 +08:00
josc146
0fc429f5a3 chore 2023-05-29 20:37:00 +08:00
josc146
142e30622e send response even token is END_OF_TEXT 2023-05-29 20:17:29 +08:00
josc146
81d050d596 download dependencies when file size is zero 2023-05-29 20:16:14 +08:00
josc146
5e698a8312 support for tesla P40 custom cuda kernel 2023-05-29 20:15:37 +08:00
josc146
55bb33bcbb embed all core dependencies 2023-05-29 20:14:42 +08:00
josc146
b4efce15f4 reduce size 2023-05-29 20:13:06 +08:00
josc146
3694ac5015 release v1.1.0 2023-05-29 09:39:49 +08:00
josc146
6fc5a335fb embed dependencies 2023-05-29 09:39:16 +08:00
josc146
d66c30698c release v1.0.9 2023-05-29 00:25:22 +08:00
josc146
fecdf238c1 feat: preload preset_system 2023-05-29 00:08:13 +08:00
josc146
3e11128c9d feat: use model state cache to achieve 5x - 50x faster preparation time for generation 2023-05-28 23:52:38 +08:00
josc146
822f2d729c fix: sha256 check for model deduplication 2023-05-28 23:45:11 +08:00
josc146
a16c85b07d fix: the configs page now always displays the currently selected non-local model so that other models can be selected properly 2023-05-28 23:44:21 +08:00
josc146
4e678eff6f update about 2023-05-28 17:24:49 +08:00
josc146
94971bb666 support for rwkv-4-world 2023-05-28 12:53:14 +08:00
josc146
b7fb8ed898 improve api concurrency performance 2023-05-27 15:18:12 +08:00
josc146
2ca8f5eba9 experimental macOS/Linux support 2023-05-27 14:40:59 +08:00
josc146
2431ff68e6 update readme 2023-05-27 00:38:39 +08:00
josc146
06e21badc0 Update README.md 2023-05-26 13:54:45 +08:00
Pedro Cabral
52c3b7e9bf Add RWKV-4 World 0.1B (#25)
* Add RWKV-4 World 0.1B

* Update manifest.json

---------

Co-authored-by: josc146 <josStorer@outlook.com>
2023-05-26 12:32:29 +08:00
josc146
bd490b4fac update readme 2023-05-25 21:06:05 +08:00
josc146
48b09c4310 release v1.0.8 2023-05-25 20:59:22 +08:00
josc146
ffa90d89d1 update manifest.json 2023-05-25 20:59:03 +08:00
josc146
e0781be9a9 update presets 2023-05-25 20:54:54 +08:00
josc146
33b21a0f5c update home page 2023-05-25 20:40:50 +08:00
josc146
bf5ac7efef update presets 2023-05-25 20:36:32 +08:00
josc146
06622b79aa update rwkv_generate 2023-05-25 20:34:42 +08:00
josc146
537f11cbf1 update defaultModelConfigs 2023-05-25 11:46:38 +08:00
josc146
c6500c6b3a update readme 2023-05-25 10:02:29 +08:00
josc146
6f629dbc55 fix startup status detect 2023-05-25 00:51:45 +08:00
josc146
5729d9fc62 release v1.0.7 2023-05-25 00:22:26 +08:00
josc146
bb8af451f6 fix cuda40 kernel 2023-05-25 00:22:09 +08:00
josc146
ed330566e3 fix 2023-05-24 23:17:08 +08:00
josc146
673ecb489e release v1.0.6 2023-05-24 23:05:27 +08:00
josc146
5192e31bac improve upgrade process 2023-05-24 23:05:19 +08:00
josc146
9f080b63e0 release v1.0.5 2023-05-24 22:29:45 +08:00
josc146
77ce87d209 update cuda40 kernel 2023-05-24 22:18:14 +08:00
josc146
dc50cf84f2 improve update process 2023-05-24 22:14:40 +08:00
josc146
f439b3d382 add api host setting 2023-05-24 22:03:30 +08:00
josc146
03a494e1f1 update Preset 2023-05-24 21:48:12 +08:00
josc146
bac4582144 update readme 2023-05-24 21:45:50 +08:00
josc146
1676c5b7e6 support nvidia 16xx 2023-05-24 21:27:48 +08:00
josc146
c7ed4b07c2 Completion Page 2023-05-24 21:27:23 +08:00
josc146
bcb38d991a add role: "system" support 2023-05-24 14:01:22 +08:00
josc146
1176dba282 fix manifest programFiles version to enhance cdn real-time performance 2023-05-24 12:22:47 +08:00
josc146
c741b2a203 fix api completion_lock (#6) 2023-05-24 11:45:55 +08:00
josc146
41142f15fb release v1.0.4 2023-05-24 09:18:03 +08:00
josc146
cf55c4578b improve interaction and avoid user mistakes 2023-05-24 09:17:49 +08:00
106 changed files with 109047 additions and 1680 deletions

8
.gitattributes vendored Normal file
View File

@@ -0,0 +1,8 @@
backend-python/rwkv_pip/** linguist-vendored
backend-python/wkv_cuda_utils/** linguist-vendored
backend-python/get-pip.py linguist-vendored
backend-python/convert_model.py linguist-vendored
build/** linguist-vendored
finetune/lora/** linguist-vendored
finetune/json2binidx_tool/** linguist-vendored
frontend/wailsjs/** linguist-generated

117
.github/workflows/release.yml vendored Normal file
View File

@@ -0,0 +1,117 @@
name: release
on:
push:
tags:
- "v*"
permissions:
contents: write
env:
GH_TOKEN: ${{ github.token }}
jobs:
create-draft:
runs-on: ubuntu-latest
steps:
- run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
- uses: actions/checkout@v3
with:
ref: master
- uses: jossef/action-set-json-field@v2.1
with:
file: manifest.json
field: version
value: ${{ env.VERSION }}
- continue-on-error: true
run: |
git config --global user.email "github-actions[bot]@users.noreply.github.com"
git config --global user.name "github-actions[bot]"
git commit -am "release ${{github.ref_name}}"
git push
- run: |
gh release create ${{github.ref_name}} -d -F CURRENT_CHANGE.md -t ${{github.ref_name}}
windows:
runs-on: windows-latest
needs: create-draft
steps:
- uses: actions/checkout@v3
with:
ref: master
- uses: actions/setup-go@v4
with:
go-version: '1.20.5'
- uses: actions/setup-python@v4
id: cp310
with:
python-version: '3.10'
- uses: crazy-max/ghaction-chocolatey@v2
with:
args: install upx
- run: |
Start-BitsTransfer https://www.python.org/ftp/python/3.10.11/python-3.10.11-embed-amd64.zip ./python-3.10.11-embed-amd64.zip
Expand-Archive ./python-3.10.11-embed-amd64.zip -DestinationPath ./py310
$content=Get-Content "./py310/python310._pth"; $content | ForEach-Object {if ($_.ReadCount -eq 3) {"Lib\\site-packages"} else {$_}} | Set-Content ./py310/python310._pth
./py310/python ./backend-python/get-pip.py
./py310/python -m pip install Cython
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../include" -Destination "py310/include" -Recurse
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../libs" -Destination "py310/libs" -Recurse
./py310/python -m pip install cyac
go install github.com/wailsapp/wails/v2/cmd/wails@latest
make
Rename-Item -Path "build/bin/RWKV-Runner.exe" -NewName "RWKV-Runner_windows_x64.exe"
- run: gh release upload ${{github.ref_name}} build/bin/RWKV-Runner_windows_x64.exe
linux:
runs-on: ubuntu-20.04
needs: create-draft
steps:
- uses: actions/checkout@v3
with:
ref: master
- uses: actions/setup-go@v4
with:
go-version: '1.20.5'
- run: |
sudo apt-get update
sudo apt-get install upx
sudo apt-get install build-essential libgtk-3-dev libwebkit2gtk-4.0-dev
go install github.com/wailsapp/wails/v2/cmd/wails@latest
rm -rf ./backend-python/wkv_cuda_utils
rm ./backend-python/get-pip.py
make
mv build/bin/RWKV-Runner build/bin/RWKV-Runner_linux_x64
- run: gh release upload ${{github.ref_name}} build/bin/RWKV-Runner_linux_x64
macos:
runs-on: macos-13
needs: create-draft
steps:
- uses: actions/checkout@v3
with:
ref: master
- uses: actions/setup-go@v4
with:
go-version: '1.20.5'
- run: |
go install github.com/wailsapp/wails/v2/cmd/wails@latest
rm -rf ./backend-python/wkv_cuda_utils
rm ./backend-python/get-pip.py
make
cp build/darwin/Readme_Install.txt build/bin/Readme_Install.txt
cp build/bin/RWKV-Runner.app/Contents/MacOS/RWKV-Runner build/bin/RWKV-Runner_darwin_universal
cd build/bin && zip -r RWKV-Runner_macos_universal.zip RWKV-Runner.app Readme_Install.txt
- run: gh release upload ${{github.ref_name}} build/bin/RWKV-Runner_macos_universal.zip build/bin/RWKV-Runner_darwin_universal
publish-release:
runs-on: ubuntu-latest
needs: [ windows, linux, macos ]
steps:
- uses: actions/checkout@v3
- run: gh release edit ${{github.ref_name}} --draft=false

8
.gitignore vendored
View File

@@ -8,12 +8,18 @@ __pycache__
*.bin
/config.json
/cache.json
/presets.json
/frontend/stats.html
/frontend/package.json.md5
/backend-python/get-pip.py
/py310
*.zip
/cmd-helper.bat
/install-py-dep.bat
/backend-python/wkv_cuda
*.exe
*.old
.DS_Store
*.log.*
*.log
train_log.txt
finetune/json2binidx_tool/data

19
.vscode/launch.json vendored
View File

@@ -10,9 +10,24 @@
"name": "Python",
"type": "python",
"request": "launch",
"program": "./backend-python/main.py",
"program": "${workspaceFolder}/backend-python/main.py",
"console": "integratedTerminal",
"justMyCode": false,
"justMyCode": false
},
{
"name": "Golang",
"type": "go",
"request": "launch",
"mode": "exec",
"program": "${workspaceFolder}/build/bin/testwails.exe",
"console": "integratedTerminal",
"preLaunchTask": "build dev"
},
{
"name": "Frontend",
"type": "node-terminal",
"request": "launch",
"command": "wails dev -browser"
}
]
}

40
.vscode/tasks.json vendored Normal file
View File

@@ -0,0 +1,40 @@
{
"version": "2.0.0",
"tasks": [
{
"label": "build dev",
"type": "shell",
"options": {
"cwd": "${workspaceFolder}",
"env": {
"CGO_ENABLED": "1"
}
},
"osx": {
"options": {
"env": {
"CGO_CFLAGS": "-mmacosx-version-min=10.13",
"CGO_LDFLAGS": "-framework UniformTypeIdentifiers -mmacosx-version-min=10.13"
}
}
},
"windows": {
"options": {
"env": {
"CGO_ENABLED": "0"
}
}
},
"command": "go",
"args": [
"build",
"-tags",
"dev",
"-gcflags",
"all=-N -l",
"-o",
"build/bin/testwails.exe"
]
}
]
}

10
CURRENT_CHANGE.md Normal file
View File

@@ -0,0 +1,10 @@
## Changes
- improve lora finetune process (need to be refactored)
## Install
- Windows: https://github.com/josStorer/RWKV-Runner/blob/master/build/windows/Readme_Install.txt
- MacOS: https://github.com/josStorer/RWKV-Runner/blob/master/build/darwin/Readme_Install.txt
- Linux: https://github.com/josStorer/RWKV-Runner/blob/master/build/linux/Readme_Install.txt
- Server-Deploy-Examples: https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples

View File

@@ -1,15 +1,22 @@
ifeq ($(OS), Windows_NT)
build: build-windows
else
else ifeq ($(shell uname -s), Darwin)
build: build-macos
else
build: build-linux
endif
build-windows:
@echo ---- build for windows
wails build -upx -ldflags "-s -w"
wails build -upx -ldflags "-s -w" -platform windows/amd64
build-macos:
@echo ---- build for macos
wails build -ldflags "-s -w" -platform darwin/universal
build-linux:
@echo ---- build for linux
wails build -upx -ldflags "-s -w" -platform linux/amd64
dev:
wails dev

View File

@@ -13,9 +13,15 @@ compatible with the OpenAI API, which means that every ChatGPT client is an RWKV
[![license][license-image]][license-url]
[![release][release-image]][release-url]
English | [简体中文](README_ZH.md)
English | [简体中文](README_ZH.md) | [日本語](README_JA.md)
[Preview](#Preview) | [Download][download-url]
### Install
[![Windows][Windows-image]][Windows-url]
[![MacOS][MacOS-image]][MacOS-url]
[![Linux][Linux-image]][Linux-url]
[FAQs](https://github.com/josStorer/RWKV-Runner/wiki/FAQs) | [Preview](#Preview) | [Download][download-url] | [Server-Deploy-Examples](https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples)
[license-image]: http://img.shields.io/badge/license-MIT-blue.svg
@@ -25,11 +31,25 @@ English | [简体中文](README_ZH.md)
[release-url]: https://github.com/josStorer/RWKV-Runner/releases/latest
[download-url]: https://github.com/josStorer/RWKV-Runner/releases/download/v1.0.2/RWKV-Runner_windows_x64.exe
[download-url]: https://github.com/josStorer/RWKV-Runner/releases
[Windows-image]: https://img.shields.io/badge/-Windows-blue?logo=windows
[Windows-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/windows/Readme_Install.txt
[MacOS-image]: https://img.shields.io/badge/-MacOS-black?logo=apple
[MacOS-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/darwin/Readme_Install.txt
[Linux-image]: https://img.shields.io/badge/-Linux-black?logo=linux
[Linux-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/linux/Readme_Install.txt
</div>
#### Default configs do not enable custom CUDA kernel acceleration, but I strongly recommend that you enable it and run with int8 precision, which is much faster and consumes much less VRAM. Go to the Configs page and turn on `Use Custom CUDA kernel to Accelerate`.
#### Default configs has enabled custom CUDA kernel acceleration, which is much faster and consumes much less VRAM. If you encounter possible compatibility issues, go to the Configs page and turn off `Use Custom CUDA kernel to Accelerate`.
#### If Windows Defender claims this is a virus, you can try downloading [v1.0.8](https://github.com/josStorer/RWKV-Runner/releases/tag/v1.0.8)/[v1.0.9](https://github.com/josStorer/RWKV-Runner/releases/tag/v1.0.9) and letting it update automatically to the latest version, or add it to the trusted list.
#### For different tasks, adjusting API parameters can achieve better results. For example, for translation tasks, you can try setting Temperature to 1 and Top_P to 0.3.
@@ -39,7 +59,8 @@ English | [简体中文](README_ZH.md)
- Fully compatible with the OpenAI API, making every ChatGPT client an RWKV client. After starting the model,
open http://127.0.0.1:8000/docs to view more details.
- Automatic dependency installation, requiring only a lightweight executable program
- User-friendly chat interaction interface included
- Configs with 2G to 32G VRAM are included, works well on almost all computers
- User-friendly chat and completion interaction interface included
- Easy-to-understand and operate parameter configuration
- Built-in model conversion tool
- Built-in download management and remote model inspection
@@ -47,12 +68,71 @@ English | [简体中文](README_ZH.md)
- Theme switching
- Automatic updates
## API Concurrency Stress Testing
```bash
ab -p body.json -T application/json -c 20 -n 100 -l http://127.0.0.1:8000/chat/completions
```
body.json:
```json
{
"messages": [
{
"role": "user",
"content": "Hello"
}
]
}
```
## Embeddings API Example
If you are using langchain, just use `OpenAIEmbeddings(openai_api_base="http://127.0.0.1:8000", openai_api_key="sk-")`
```python
import numpy as np
import requests
def cosine_similarity(a, b):
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
values = [
"I am a girl",
"我是个女孩",
"私は女の子です",
"广东人爱吃福建人",
"我是个人类",
"I am a human",
"that dog is so cute",
"私はねこむすめです、にゃん♪",
"宇宙级特大事件!号外号外!"
]
embeddings = []
for v in values:
r = requests.post("http://127.0.0.1:8000/embeddings", json={"input": v})
embedding = r.json()["data"][0]["embedding"]
embeddings.append(embedding)
compared_embedding = embeddings[0]
embeddings_cos_sim = [cosine_similarity(compared_embedding, e) for e in embeddings]
for i in np.argsort(embeddings_cos_sim)[::-1]:
print(f"{embeddings_cos_sim[i]:.10f} - {values[i]}")
```
## Todo
- [ ] Model training functionality
- [x] CUDA operator int8 acceleration
- [ ] macOS support
- [ ] Linux support
- [x] macOS support
- [x] Linux support
- [ ] Local State Cache DB
## Related Repositories:
@@ -70,6 +150,10 @@ English | [简体中文](README_ZH.md)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/6cde9c45-51bb-4dee-b1fe-746862448520)
### Completion
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/52f47f92-d21d-4cd7-b04e-d6f9af937a97)
### Configuration
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/93270a68-9d6d-4247-b6a3-e543c65a876b)

161
README_JA.md Normal file
View File

@@ -0,0 +1,161 @@
<p align="center">
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/d24834b0-265d-45f5-93c0-fac1e19562af">
</p>
<h1 align="center">RWKV Runner</h1>
<div align="center">
このプロジェクトは、すべてを自動化することで、大規模な言語モデルを使用する際の障壁をなくすことを目的としています。必要なのは、
わずか数メガバイトの軽量な実行プログラムだけです。さらに、このプロジェクトは OpenAI API と互換性のあるインターフェイスを提供しており、
すべての ChatGPT クライアントは RWKV クライアントであることを意味します。
[![license][license-image]][license-url]
[![release][release-image]][release-url]
[English](README.md) | [简体中文](README_ZH.md) | 日本語
### インストール
[![Windows][Windows-image]][Windows-url]
[![MacOS][MacOS-image]][MacOS-url]
[![Linux][Linux-image]][Linux-url]
[FAQs](https://github.com/josStorer/RWKV-Runner/wiki/FAQs) | [プレビュー](#Preview) | [ダウンロード][download-url] | [サーバーデプロイ例](https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples)
[license-image]: http://img.shields.io/badge/license-MIT-blue.svg
[license-url]: https://github.com/josStorer/RWKV-Runner/blob/master/LICENSE
[release-image]: https://img.shields.io/github/release/josStorer/RWKV-Runner.svg
[release-url]: https://github.com/josStorer/RWKV-Runner/releases/latest
[download-url]: https://github.com/josStorer/RWKV-Runner/releases
[Windows-image]: https://img.shields.io/badge/-Windows-blue?logo=windows
[Windows-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/windows/Readme_Install.txt
[MacOS-image]: https://img.shields.io/badge/-MacOS-black?logo=apple
[MacOS-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/darwin/Readme_Install.txt
[Linux-image]: https://img.shields.io/badge/-Linux-black?logo=linux
[Linux-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/linux/Readme_Install.txt
</div>
#### デフォルトの設定はカスタム CUDA カーネルアクセラレーションを有効にしています。互換性の問題が発生する可能性がある場合は、コンフィグページに移動し、`Use Custom CUDA kernel to Accelerate` をオフにしてください。
#### Windows Defender がこれをウイルスだと主張する場合は、[v1.0.8](https://github.com/josStorer/RWKV-Runner/releases/tag/v1.0.8) / [v1.0.9](https://github.com/josStorer/RWKV-Runner/releases/tag/v1.0.9) をダウンロードして最新版に自動更新させるか、信頼済みリストに追加してみてください。
#### 異なるタスクについては、API パラメータを調整することで、より良い結果を得ることができます。例えば、翻訳タスクの場合、Temperature を 1 に、Top_P を 0.3 に設定してみてください。
## 特徴
- RWKV モデル管理とワンクリック起動
- OpenAI API と完全に互換性があり、すべての ChatGPT クライアントを RWKV クライアントにします。モデル起動後、
http://127.0.0.1:8000/docs を開いて詳細をご覧ください。
- 依存関係の自動インストールにより、軽量な実行プログラムのみを必要とします
- 2G から 32G の VRAM のコンフィグが含まれており、ほとんどのコンピュータで動作します
- ユーザーフレンドリーなチャットと完成インタラクションインターフェースを搭載
- 分かりやすく操作しやすいパラメータ設定
- 内蔵モデル変換ツール
- ダウンロード管理とリモートモデル検査機能内蔵
- 多言語ローカライズ
- テーマ切り替え
- 自動アップデート
## API 同時実行ストレステスト
```bash
ab -p body.json -T application/json -c 20 -n 100 -l http://127.0.0.1:8000/chat/completions
```
body.json:
```json
{
"messages": [
{
"role": "user",
"content": "Hello"
}
]
}
```
## 埋め込み API の例
LangChain を使用している場合は、`OpenAIEmbeddings(openai_api_base="http://127.0.0.1:8000", openai_api_key="sk-")`を使用してください
```python
import numpy as np
import requests
def cosine_similarity(a, b):
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
values = [
"I am a girl",
"我是个女孩",
"私は女の子です",
"广东人爱吃福建人",
"我是个人类",
"I am a human",
"that dog is so cute",
"私はねこむすめです、にゃん♪",
"宇宙级特大事件!号外号外!"
]
embeddings = []
for v in values:
r = requests.post("http://127.0.0.1:8000/embeddings", json={"input": v})
embedding = r.json()["data"][0]["embedding"]
embeddings.append(embedding)
compared_embedding = embeddings[0]
embeddings_cos_sim = [cosine_similarity(compared_embedding, e) for e in embeddings]
for i in np.argsort(embeddings_cos_sim)[::-1]:
print(f"{embeddings_cos_sim[i]:.10f} - {values[i]}")
```
## Todo
- [ ] モデル学習機能
- [x] CUDA オペレータ int8 アクセラレーション
- [x] macOS サポート
- [x] Linux サポート
- [ ] ローカルステートキャッシュ DB
## 関連リポジトリ:
- RWKV-4-Raven: https://huggingface.co/BlinkDL/rwkv-4-raven/tree/main
- ChatRWKV: https://github.com/BlinkDL/ChatRWKV
- RWKV-LM: https://github.com/BlinkDL/RWKV-LM
## プレビュー
### ホームページ
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/60efbb65-29e3-4346-a597-5bdcd099251c)
### チャット
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/6cde9c45-51bb-4dee-b1fe-746862448520)
### 補完
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/52f47f92-d21d-4cd7-b04e-d6f9af937a97)
### コンフィグ
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/93270a68-9d6d-4247-b6a3-e543c65a876b)
### モデル管理
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/6f96fdd3-fdf5-4b78-af80-2afbd1ad173b)
### ダウンロード管理
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/6982e7ee-bace-4a88-bb47-92379185bf9d)
### 設定
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/b3b2ab46-344c-4f04-b066-1503f776eeb9)

View File

@@ -12,9 +12,15 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
[![license][license-image]][license-url]
[![release][release-image]][release-url]
[English](README.md) | 简体中文
[English](README.md) | 简体中文 | [日本語](README_JA.md)
[视频演示](https://www.bilibili.com/video/BV1hM4y1v76R) | [预览](#Preview) | [下载][download-url]
### 安装
[![Windows][Windows-image]][Windows-url]
[![MacOS][MacOS-image]][MacOS-url]
[![Linux][Linux-image]][Linux-url]
[视频演示](https://www.bilibili.com/video/BV1hM4y1v76R) | [疑难解答](https://www.bilibili.com/read/cv23921171) | [预览](#Preview) | [下载][download-url] | [懒人包](https://pan.baidu.com/s/1wchIUHgne3gncIiLIeKBEQ?pwd=1111) | [服务器部署示例](https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples)
[license-image]: http://img.shields.io/badge/license-MIT-blue.svg
@@ -24,13 +30,27 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
[release-url]: https://github.com/josStorer/RWKV-Runner/releases/latest
[download-url]: https://github.com/josStorer/RWKV-Runner/releases/download/v1.0.2/RWKV-Runner_windows_x64.exe
[download-url]: https://github.com/josStorer/RWKV-Runner/releases
[Windows-image]: https://img.shields.io/badge/-Windows-blue?logo=windows
[Windows-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/windows/Readme_Install.txt
[MacOS-image]: https://img.shields.io/badge/-MacOS-black?logo=apple
[MacOS-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/darwin/Readme_Install.txt
[Linux-image]: https://img.shields.io/badge/-Linux-black?logo=linux
[Linux-url]: https://github.com/josStorer/RWKV-Runner/blob/master/build/linux/Readme_Install.txt
</div>
#### 注意 目前RWKV中文模型质量一般推荐使用英文模型体验实际RWKV能力
#### 注意 目前RWKV中文模型质量一般推荐使用英文模型或World(全球语言)体验实际RWKV能力
#### 预设配置没有开启自定义CUDA算子加速但我强烈建议你开启它并使用int8量化运行速度非常快且显存消耗少得多。前往配置页面,打开`使用自定义CUDA算子加速`
#### 预设配置已经开启自定义CUDA算子加速速度更快,且显存消耗更少。如果你遇到可能的兼容性问题,前往配置页面,关闭`使用自定义CUDA算子加速`
#### 如果Windows Defender说这是一个病毒你可以尝试下载[v1.0.8](https://github.com/josStorer/RWKV-Runner/releases/tag/v1.0.8)/[v1.0.9](https://github.com/josStorer/RWKV-Runner/releases/tag/v1.0.9)然后让其自动更新到最新版,或添加信任
#### 对于不同的任务调整API参数会获得更好的效果例如对于翻译任务你可以尝试设置Temperature为1Top_P为0.3
@@ -39,7 +59,8 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
- RWKV模型管理一键启动
- 与OpenAI API完全兼容一切ChatGPT客户端都是RWKV客户端。启动模型后打开 http://127.0.0.1:8000/docs 查看详细内容
- 全自动依赖安装,你只需要一个轻巧的可执行程序
- 自带用户友好的聊天交互页面
- 预设了2G至32G显存的配置几乎在各种电脑上工作良好
- 自带用户友好的聊天和补全交互页面
- 易于理解和操作的参数配置
- 内置模型转换工具
- 内置下载管理和远程模型检视
@@ -47,12 +68,71 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
- 主题切换
- 自动更新
## API并发压力测试
```bash
ab -p body.json -T application/json -c 20 -n 100 -l http://127.0.0.1:8000/chat/completions
```
body.json:
```json
{
"messages": [
{
"role": "user",
"content": "Hello"
}
]
}
```
## Embeddings API 示例
如果你在用langchain, 直接使用 `OpenAIEmbeddings(openai_api_base="http://127.0.0.1:8000", openai_api_key="sk-")`
```python
import numpy as np
import requests
def cosine_similarity(a, b):
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
values = [
"I am a girl",
"我是个女孩",
"私は女の子です",
"广东人爱吃福建人",
"我是个人类",
"I am a human",
"that dog is so cute",
"私はねこむすめです、にゃん♪",
"宇宙级特大事件!号外号外!"
]
embeddings = []
for v in values:
r = requests.post("http://127.0.0.1:8000/embeddings", json={"input": v})
embedding = r.json()["data"][0]["embedding"]
embeddings.append(embedding)
compared_embedding = embeddings[0]
embeddings_cos_sim = [cosine_similarity(compared_embedding, e) for e in embeddings]
for i in np.argsort(embeddings_cos_sim)[::-1]:
print(f"{embeddings_cos_sim[i]:.10f} - {values[i]}")
```
## Todo
- [ ] 模型训练功能
- [x] CUDA算子int8提速
- [ ] macOS支持
- [ ] linux支持
- [x] macOS支持
- [x] linux支持
- [ ] 本地状态缓存数据库
## 相关仓库:
@@ -70,6 +150,10 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/0e66d5fa-f34a-409f-9cd4-d880815733f3)
### 补全
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/d4178ee9-a188-4878-9777-25c916872c29)
### 配置
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/ad9921fc-7248-40a3-9e18-03445b86e4bf)

View File

@@ -2,18 +2,25 @@ package backend_golang
import (
"context"
"errors"
"net/http"
"os"
"os/exec"
"path/filepath"
"runtime"
"github.com/fsnotify/fsnotify"
"github.com/minio/selfupdate"
wruntime "github.com/wailsapp/wails/v2/pkg/runtime"
)
// App struct
type App struct {
ctx context.Context
ctx context.Context
HasConfigData bool
ConfigData map[string]any
exDir string
cmdPrefix string
}
// NewApp creates a new App application struct
@@ -25,8 +32,37 @@ func NewApp() *App {
// so we can call the runtime methods
func (a *App) OnStartup(ctx context.Context) {
a.ctx = ctx
a.exDir = ""
a.cmdPrefix = ""
if runtime.GOOS == "darwin" {
ex, _ := os.Executable()
a.exDir = filepath.Dir(ex) + "/../../../"
a.cmdPrefix = "cd " + a.exDir + " && "
}
a.downloadLoop()
watcher, err := fsnotify.NewWatcher()
if err == nil {
watcher.Add("./lora-models")
watcher.Add("./models")
go func() {
for {
select {
case event, ok := <-watcher.Events:
if !ok {
return
}
wruntime.EventsEmit(ctx, "fsnotify", event.Name)
case _, ok := <-watcher.Errors:
if !ok {
return
}
}
}
}()
}
}
func (a *App) UpdateApp(url string) (broken bool, err error) {
@@ -42,15 +78,30 @@ func (a *App) UpdateApp(url string) (broken bool, err error) {
}
return false, err
}
name, err := os.Executable()
if err != nil {
return false, err
if runtime.GOOS == "windows" {
name, err := os.Executable()
if err != nil {
return false, err
}
exec.Command(name, os.Args[1:]...).Start()
wruntime.Quit(a.ctx)
}
exec.Command(name, os.Args[1:]...).Start()
wruntime.Quit(a.ctx)
return false, nil
}
func (a *App) RestartApp() error {
if runtime.GOOS == "windows" {
name, err := os.Executable()
if err != nil {
return err
}
exec.Command(name, os.Args[1:]...).Start()
wruntime.Quit(a.ctx)
return nil
}
return errors.New("unsupported OS")
}
func (a *App) GetPlatform() string {
return runtime.GOOS
}

View File

@@ -1,6 +1,7 @@
package backend_golang
import (
"context"
"path/filepath"
"time"
@@ -9,7 +10,7 @@ import (
)
func (a *App) DownloadFile(path string, url string) error {
_, err := grab.Get(path, url)
_, err := grab.Get(a.exDir+path, url)
if err != nil {
return err
}
@@ -18,6 +19,7 @@ func (a *App) DownloadFile(path string, url string) error {
type DownloadStatus struct {
resp *grab.Response
cancel context.CancelFunc
Name string `json:"name"`
Path string `json:"path"`
Url string `json:"url"`
@@ -29,7 +31,7 @@ type DownloadStatus struct {
Done bool `json:"done"`
}
var downloadList []DownloadStatus
var downloadList []*DownloadStatus
func existsInDownloadList(url string) bool {
for _, ds := range downloadList {
@@ -41,49 +43,58 @@ func existsInDownloadList(url string) bool {
}
func (a *App) PauseDownload(url string) {
for i, ds := range downloadList {
for _, ds := range downloadList {
if ds.Url == url {
if ds.resp != nil {
ds.resp.Cancel()
}
downloadList[i] = DownloadStatus{
resp: ds.resp,
Name: ds.Name,
Path: ds.Path,
Url: ds.Url,
Downloading: false,
if ds.cancel != nil {
ds.cancel()
}
ds.resp = nil
ds.Downloading = false
ds.Speed = 0
break
}
}
}
func (a *App) ContinueDownload(url string) {
for i, ds := range downloadList {
for _, ds := range downloadList {
if ds.Url == url {
client := grab.NewClient()
req, _ := grab.NewRequest(ds.Path, ds.Url)
resp := client.Do(req)
if !ds.Downloading && ds.resp == nil && !ds.Done {
ds.Downloading = true
downloadList[i] = DownloadStatus{
resp: resp,
Name: ds.Name,
Path: ds.Path,
Url: ds.Url,
Downloading: true,
req, err := grab.NewRequest(ds.Path, ds.Url)
if err != nil {
ds.Downloading = false
break
}
// if PauseDownload() is called before the request finished, ds.Downloading will be false
// if the user keeps clicking pause and resume, it may result in multiple requests being successfully downloaded at the same time
// so we have to create a context and cancel it when PauseDownload() is called
ctx, cancel := context.WithCancel(context.Background())
ds.cancel = cancel
req = req.WithContext(ctx)
resp := grab.DefaultClient.Do(req)
if resp != nil && resp.HTTPResponse != nil &&
resp.HTTPResponse.StatusCode >= 200 && resp.HTTPResponse.StatusCode < 300 {
ds.resp = resp
} else {
ds.Downloading = false
}
}
break
}
}
}
func (a *App) AddToDownloadList(path string, url string) {
if !existsInDownloadList(url) {
downloadList = append(downloadList, DownloadStatus{
downloadList = append(downloadList, &DownloadStatus{
resp: nil,
Name: filepath.Base(path),
Path: path,
Path: a.exDir + path,
Url: url,
Downloading: true,
Downloading: false,
})
a.ContinueDownload(url)
} else {
@@ -96,32 +107,17 @@ func (a *App) downloadLoop() {
go func() {
for {
<-ticker.C
for i, ds := range downloadList {
transferred := int64(0)
size := int64(0)
speed := float64(0)
progress := float64(0)
downloading := ds.Downloading
done := false
for _, ds := range downloadList {
if ds.resp != nil {
transferred = ds.resp.BytesComplete()
size = ds.resp.Size()
speed = ds.resp.BytesPerSecond()
progress = 100 * ds.resp.Progress()
downloading = !ds.resp.IsComplete()
done = ds.resp.Progress() == 1
}
downloadList[i] = DownloadStatus{
resp: ds.resp,
Name: ds.Name,
Path: ds.Path,
Url: ds.Url,
Transferred: transferred,
Size: size,
Speed: speed,
Progress: progress,
Downloading: downloading,
Done: done,
ds.Transferred = ds.resp.BytesComplete()
ds.Size = ds.resp.Size()
ds.Speed = ds.resp.BytesPerSecond()
ds.Progress = 100 * ds.resp.Progress()
ds.Downloading = !ds.resp.IsComplete()
ds.Done = ds.resp.Progress() == 1
if !ds.Downloading {
ds.resp = nil
}
}
}
runtime.EventsEmit(a.ctx, "downloadList", downloadList)

View File

@@ -2,13 +2,16 @@ package backend_golang
import (
"encoding/json"
"fmt"
"errors"
"io"
"os"
"os/exec"
"path/filepath"
"runtime"
"strings"
"time"
wruntime "github.com/wailsapp/wails/v2/pkg/runtime"
)
func (a *App) SaveJson(fileName string, jsonData any) error {
@@ -17,14 +20,14 @@ func (a *App) SaveJson(fileName string, jsonData any) error {
return err
}
if err := os.WriteFile(fileName, text, 0644); err != nil {
if err := os.WriteFile(a.exDir+fileName, text, 0644); err != nil {
return err
}
return nil
}
func (a *App) ReadJson(fileName string) (any, error) {
file, err := os.ReadFile(fileName)
file, err := os.ReadFile(a.exDir + fileName)
if err != nil {
return nil, err
}
@@ -39,7 +42,7 @@ func (a *App) ReadJson(fileName string) (any, error) {
}
func (a *App) FileExists(fileName string) bool {
_, err := os.Stat(fileName)
_, err := os.Stat(a.exDir + fileName)
return err == nil
}
@@ -51,7 +54,7 @@ type FileInfo struct {
}
func (a *App) ReadFileInfo(fileName string) (FileInfo, error) {
info, err := os.Stat(fileName)
info, err := os.Stat(a.exDir + fileName)
if err != nil {
return FileInfo{}, err
}
@@ -64,7 +67,7 @@ func (a *App) ReadFileInfo(fileName string) (FileInfo, error) {
}
func (a *App) ListDirFiles(dirPath string) ([]FileInfo, error) {
files, err := os.ReadDir(dirPath)
files, err := os.ReadDir(a.exDir + dirPath)
if err != nil {
return nil, err
}
@@ -86,7 +89,7 @@ func (a *App) ListDirFiles(dirPath string) ([]FileInfo, error) {
}
func (a *App) DeleteFile(path string) error {
err := os.Remove(path)
err := os.Remove(a.exDir + path)
if err != nil {
return err
}
@@ -94,13 +97,18 @@ func (a *App) DeleteFile(path string) error {
}
func (a *App) CopyFile(src string, dst string) error {
sourceFile, err := os.Open(src)
sourceFile, err := os.Open(a.exDir + src)
if err != nil {
return err
}
defer sourceFile.Close()
destFile, err := os.Create(dst)
err = os.MkdirAll(a.exDir+dst[:strings.LastIndex(dst, "/")], 0755)
if err != nil {
return err
}
destFile, err := os.Create(a.exDir + dst)
if err != nil {
return err
}
@@ -113,8 +121,34 @@ func (a *App) CopyFile(src string, dst string) error {
return nil
}
func (a *App) OpenFileFolder(path string) error {
absPath, err := filepath.Abs(path)
func (a *App) OpenSaveFileDialog(filterPattern string, defaultFileName string, savedContent string) (string, error) {
path, err := wruntime.SaveFileDialog(a.ctx, wruntime.SaveDialogOptions{
DefaultFilename: defaultFileName,
Filters: []wruntime.FileFilter{{
Pattern: filterPattern,
}},
CanCreateDirectories: true,
})
if err != nil {
return "", err
}
if path == "" {
return "", nil
}
if err := os.WriteFile(path, []byte(savedContent), 0644); err != nil {
return "", err
}
return path, nil
}
func (a *App) OpenFileFolder(path string, relative bool) error {
var absPath string
var err error
if relative {
absPath, err = filepath.Abs(a.exDir + path)
} else {
absPath, err = filepath.Abs(path)
}
if err != nil {
return err
}
@@ -125,10 +159,21 @@ func (a *App) OpenFileFolder(path string) error {
if err != nil {
return err
}
return nil
case "darwin":
fmt.Println("Running on macOS")
cmd := exec.Command("open", "-R", absPath)
err := cmd.Run()
if err != nil {
return err
}
return nil
case "linux":
fmt.Println("Running on Linux")
cmd := exec.Command("xdg-open", absPath)
err := cmd.Run()
if err != nil {
return err
}
return nil
}
return nil
return errors.New("unsupported OS")
}

View File

@@ -2,59 +2,114 @@ package backend_golang
import (
"errors"
"os"
"os/exec"
"runtime"
"strconv"
"strings"
)
func (a *App) StartServer(port int) (string, error) {
python, err := GetPython()
func (a *App) StartServer(python string, port int, host string) (string, error) {
var err error
if python == "" {
python, err = GetPython()
}
if err != nil {
return "", err
}
return Cmd(python, "./backend-python/main.py", strconv.Itoa(port))
return Cmd(python, "./backend-python/main.py", strconv.Itoa(port), host)
}
func (a *App) ConvertModel(modelPath string, strategy string, outPath string) (string, error) {
python, err := GetPython()
func (a *App) ConvertModel(python string, modelPath string, strategy string, outPath string) (string, error) {
var err error
if python == "" {
python, err = GetPython()
}
if err != nil {
return "", err
}
return Cmd(python, "./backend-python/convert_model.py", "--in", modelPath, "--out", outPath, "--strategy", strategy)
}
func (a *App) DepCheck() error {
python, err := GetPython()
func (a *App) ConvertData(python string, input string, outputPrefix string, vocab string) (string, error) {
var err error
if python == "" {
python, err = GetPython()
}
if err != nil {
return "", err
}
tokenizerType := "HFTokenizer"
if strings.Contains(vocab, "rwkv_vocab_v20230424") {
tokenizerType = "RWKVTokenizer"
}
return Cmd(python, "./finetune/json2binidx_tool/tools/preprocess_data.py", "--input", input, "--output-prefix", outputPrefix, "--vocab", vocab,
"--tokenizer-type", tokenizerType, "--dataset-impl", "mmap", "--append-eod")
}
func (a *App) MergeLora(python string, useGpu bool, loraAlpha int, baseModel string, loraPath string, outputPath string) (string, error) {
var err error
if python == "" {
python, err = GetPython()
}
if err != nil {
return "", err
}
args := []string{python, "./finetune/lora/merge_lora.py"}
if useGpu {
args = append(args, "--use-gpu")
}
args = append(args, strconv.Itoa(loraAlpha), baseModel, loraPath, outputPath)
return Cmd(args...)
}
func (a *App) DepCheck(python string) error {
var err error
if python == "" {
python, err = GetPython()
}
if err != nil {
return err
}
out, err := exec.Command(python, "./backend-python/dep_check.py").CombinedOutput()
out, err := exec.Command(python, a.exDir+"./backend-python/dep_check.py").CombinedOutput()
if err != nil {
return errors.New("DepCheck Error: " + string(out))
}
return nil
}
func (a *App) InstallPyDep(cnMirror bool) (string, error) {
python, err := GetPython()
func (a *App) InstallPyDep(python string, cnMirror bool) (string, error) {
var err error
if python == "" {
python, err = GetPython()
if runtime.GOOS == "windows" {
python = `"%CD%/` + python + `"`
}
}
if err != nil {
return "", err
}
if runtime.GOOS == "windows" {
ChangeFileLine("./py310/python310._pth", 3, "Lib\\site-packages")
installScript := python + " ./backend-python/get-pip.py -i https://pypi.tuna.tsinghua.edu.cn/simple\n" +
python + " -m pip install torch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 --index-url https://download.pytorch.org/whl/cu117\n" +
python + " -m pip install -r ./backend-python/requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple\n" +
"exit"
if !cnMirror {
installScript = strings.Replace(installScript, " -i https://pypi.tuna.tsinghua.edu.cn/simple", "", -1)
installScript = strings.Replace(installScript, "requirements.txt", "requirements_versions.txt", -1)
}
err = os.WriteFile("./install-py-dep.bat", []byte(installScript), 0644)
if err != nil {
return "", err
}
return Cmd("install-py-dep.bat")
}
if cnMirror {
_, err = Cmd(python, "./backend-python/get-pip.py", "-i", "https://pypi.tuna.tsinghua.edu.cn/simple")
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_without_cyac.txt", "-i", "https://pypi.tuna.tsinghua.edu.cn/simple")
} else {
_, err = Cmd(python, "./backend-python/get-pip.py")
}
if err != nil {
return "", err
}
ChangeFileLine("./py310/python310._pth", 3, "Lib\\site-packages")
_, err = Cmd(python, "-m", "pip", "install", "torch==1.13.1", "torchvision==0.14.1", "torchaudio==0.13.1", "--index-url", "https://download.pytorch.org/whl/cu117")
if err != nil {
return "", err
}
if cnMirror {
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements.txt", "-i", "https://pypi.tuna.tsinghua.edu.cn/simple")
} else {
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_versions.txt")
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_without_cyac.txt")
}
}

View File

@@ -3,8 +3,10 @@ package backend_golang
import (
"archive/zip"
"bufio"
"embed"
"errors"
"io"
"io/fs"
"os"
"os/exec"
"path/filepath"
@@ -13,22 +15,91 @@ import (
)
func Cmd(args ...string) (string, error) {
_, err := os.Stat("cmd-helper.bat")
if err != nil {
switch platform := runtime.GOOS; platform {
case "windows":
if err := os.WriteFile("./cmd-helper.bat", []byte("start %*"), 0644); err != nil {
return "", err
}
cmdHelper, err := filepath.Abs("./cmd-helper")
if err != nil {
return "", err
}
if strings.Contains(cmdHelper, " ") {
for _, arg := range args {
if strings.Contains(arg, " ") {
return "", errors.New("path contains space") // golang bug https://github.com/golang/go/issues/17149#issuecomment-473976818
}
}
}
cmd := exec.Command(cmdHelper, args...)
out, err := cmd.CombinedOutput()
if err != nil {
return "", err
}
return string(out), nil
case "darwin":
ex, err := os.Executable()
if err != nil {
return "", err
}
exDir := filepath.Dir(ex) + "/../../../"
cmd := exec.Command("osascript", "-e", `tell application "Terminal" to do script "`+"cd "+exDir+" && "+strings.Join(args, " ")+`"`)
err = cmd.Start()
if err != nil {
return "", err
}
cmd.Wait()
return "", nil
case "linux":
cmd := exec.Command(args[0], args[1:]...)
err := cmd.Start()
if err != nil {
return "", err
}
cmd.Wait()
return "", nil
}
cmdHelper, err := filepath.Abs("./cmd-helper")
if err != nil {
return "", err
return "", errors.New("unsupported OS")
}
func CopyEmbed(efs embed.FS) error {
prefix := ""
if runtime.GOOS == "darwin" {
ex, err := os.Executable()
if err != nil {
return err
}
prefix = filepath.Dir(ex) + "/../../../"
}
cmd := exec.Command(cmdHelper, args...)
out, err := cmd.CombinedOutput()
if err != nil {
return "", err
}
return string(out), nil
err := fs.WalkDir(efs, ".", func(path string, d fs.DirEntry, err error) error {
if d.IsDir() {
return nil
}
if err != nil {
return err
}
content, err := efs.ReadFile(path)
if err != nil {
return err
}
path = prefix + path
err = os.MkdirAll(path[:strings.LastIndex(path, "/")], 0755)
if err != nil {
return err
}
err = os.WriteFile(path, content, 0644)
if err != nil {
return err
}
return nil
})
return err
}
func GetPython() (string, error) {

179
backend-golang/wsl.go Normal file
View File

@@ -0,0 +1,179 @@
//go:build windows
package backend_golang
import (
"bufio"
"context"
"errors"
"io"
"os"
"os/exec"
"path/filepath"
"strings"
"time"
su "github.com/nyaosorg/go-windows-su"
wsl "github.com/ubuntu/gowsl"
wruntime "github.com/wailsapp/wails/v2/pkg/runtime"
)
var distro *wsl.Distro
var stdin io.WriteCloser
var cmd *exec.Cmd
func isWslRunning() (bool, error) {
if distro == nil {
return false, nil
}
state, err := distro.State()
if err != nil {
return false, err
}
if state != wsl.Running {
distro = nil
return false, nil
}
return true, nil
}
func (a *App) WslStart() error {
running, err := isWslRunning()
if err != nil {
return err
}
if running {
return nil
}
distros, err := wsl.RegisteredDistros(context.Background())
if err != nil {
return err
}
for _, d := range distros {
if strings.Contains(d.Name(), "Ubuntu") {
distro = &d
break
}
}
if distro == nil {
return errors.New("ubuntu not found")
}
cmd = exec.Command("wsl", "-d", distro.Name(), "-u", "root")
stdin, err = cmd.StdinPipe()
if err != nil {
return err
}
stdout, err := cmd.StdoutPipe()
cmd.Stderr = cmd.Stdout
if err != nil {
// stdin.Close()
stdin = nil
return err
}
go func() {
reader := bufio.NewReader(stdout)
for {
if stdin == nil {
break
}
line, _, err := reader.ReadLine()
if err != nil {
wruntime.EventsEmit(a.ctx, "wslerr", err.Error())
break
}
wruntime.EventsEmit(a.ctx, "wsl", string(line))
}
// stdout.Close()
}()
if err := cmd.Start(); err != nil {
return err
}
return nil
}
func (a *App) WslCommand(command string) error {
running, err := isWslRunning()
if err != nil {
return err
}
if !running {
return errors.New("wsl not running")
}
_, err = stdin.Write([]byte(command + "\n"))
if err != nil {
return err
}
return nil
}
func (a *App) WslStop() error {
running, err := isWslRunning()
if err != nil {
return err
}
if !running {
return errors.New("wsl not running")
}
err = cmd.Process.Kill()
cmd = nil
// stdin.Close()
stdin = nil
distro = nil
if err != nil {
return err
}
return nil
}
func (a *App) WslIsEnabled() error {
ex, err := os.Executable()
if err != nil {
return err
}
exDir := filepath.Dir(ex)
data, err := os.ReadFile(exDir + "/wsl.state")
if err == nil {
if strings.Contains(string(data), "Enabled") {
return nil
}
}
cmd := `-Command (Get-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Linux).State | Out-File -Encoding utf8 -FilePath ` + exDir + "/wsl.state"
_, err = su.ShellExecute(su.RUNAS, "powershell", cmd, exDir)
if err != nil {
return err
}
time.Sleep(2 * time.Second)
data, err = os.ReadFile(exDir + "/wsl.state")
if err != nil {
return err
}
if strings.Contains(string(data), "Enabled") {
return nil
} else {
return errors.New("wsl is not enabled")
}
}
func (a *App) WslEnable(forceMode bool) error {
cmd := `/online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux`
_, err := su.ShellExecute(su.RUNAS, "dism", cmd, `C:\`)
if err != nil {
return err
}
if forceMode {
os.WriteFile("./wsl.state", []byte("Enabled"), 0644)
}
return nil
}
func (a *App) WslInstallUbuntu() error {
_, err := Cmd("ms-windows-store://pdp/?ProductId=9PN20MSR04DW")
return err
}

View File

@@ -0,0 +1,31 @@
//go:build darwin || linux
package backend_golang
import (
"errors"
)
func (a *App) WslStart() error {
return errors.New("wsl not supported")
}
func (a *App) WslCommand(command string) error {
return errors.New("wsl not supported")
}
func (a *App) WslStop() error {
return errors.New("wsl not supported")
}
func (a *App) WslIsEnabled() error {
return errors.New("wsl not supported")
}
func (a *App) WslEnable(forceMode bool) error {
return errors.New("wsl not supported")
}
func (a *App) WslInstallUbuntu() error {
return errors.New("wsl not supported")
}

View File

@@ -1,7 +1,13 @@
import lm_dataformat
import ftfy
import tqdm
import tiktoken
import GPUtil
import torch
import rwkv
import langchain
import numpy
import tokenizers
import fastapi
import uvicorn
import sse_starlette

32321
backend-python/get-pip.py vendored Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -4,18 +4,18 @@ import sys
sys.path.append(os.path.dirname(os.path.realpath(__file__)))
import psutil
from fastapi import FastAPI
from fastapi import Depends, FastAPI
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
from utils.rwkv import *
from utils.torch import *
from utils.ngrok import *
from routes import completion, config
from utils.log import log_middleware
from routes import completion, config, state_cache
import global_var
app = FastAPI()
app = FastAPI(dependencies=[Depends(log_middleware)])
app.add_middleware(
CORSMiddleware,
@@ -27,11 +27,13 @@ app.add_middleware(
app.include_router(completion.router)
app.include_router(config.router)
app.include_router(state_cache.router)
@app.on_event("startup")
def init():
global_var.init()
state_cache.init()
set_torch()
@@ -41,7 +43,7 @@ def init():
@app.get("/")
def read_root():
return {"Hello": "World!", "pid": os.getpid()}
return {"Hello": "World!"}
@app.post("/exit")
@@ -59,10 +61,14 @@ def debug():
strategy="cuda fp16",
tokens_path="20B_tokenizer.json",
)
d = model.tokenizer.decode([])
d = model.pipeline.decode([])
print(d)
if __name__ == "__main__":
uvicorn.run("main:app", port=8000 if len(sys.argv) == 1 else int(sys.argv[1]))
uvicorn.run(
"main:app",
port=8000 if len(sys.argv) < 2 else int(sys.argv[1]),
host="127.0.0.1" if len(sys.argv) < 3 else sys.argv[2],
)
# debug()

Binary file not shown.

Binary file not shown.

View File

@@ -2,11 +2,15 @@ import asyncio
import json
from threading import Lock
from typing import List
import base64
from fastapi import APIRouter, Request, status, HTTPException
from sse_starlette.sse import EventSourceResponse
from pydantic import BaseModel
import numpy as np
import tiktoken
from utils.rwkv import *
from utils.log import quick_log
import global_var
router = APIRouter()
@@ -23,9 +27,184 @@ class ChatCompletionBody(ModelConfigBody):
stream: bool = False
stop: str = None
class Config:
schema_extra = {
"example": {
"messages": [{"role": "user", "content": "hello"}],
"model": "rwkv",
"stream": False,
"stop": None,
"max_tokens": 1000,
"temperature": 1.2,
"top_p": 0.5,
"presence_penalty": 0.4,
"frequency_penalty": 0.4,
}
}
class CompletionBody(ModelConfigBody):
prompt: str
model: str = "rwkv"
stream: bool = False
stop: str = None
class Config:
schema_extra = {
"example": {
"prompt": "The following is an epic science fiction masterpiece that is immortalized, "
+ "with delicate descriptions and grand depictions of interstellar civilization wars.\nChapter 1.\n",
"model": "rwkv",
"stream": False,
"stop": None,
"max_tokens": 100,
"temperature": 1.2,
"top_p": 0.5,
"presence_penalty": 0.4,
"frequency_penalty": 0.4,
}
}
completion_lock = Lock()
requests_num = 0
async def eval_rwkv(
model: RWKV,
request: Request,
body: ModelConfigBody,
prompt: str,
stream: bool,
stop: str,
chat_mode: bool,
):
global requests_num
requests_num = requests_num + 1
quick_log(request, None, "Start Waiting. RequestsNum: " + str(requests_num))
while completion_lock.locked():
if await request.is_disconnected():
requests_num = requests_num - 1
print(f"{request.client} Stop Waiting (Lock)")
quick_log(
request,
None,
"Stop Waiting (Lock). RequestsNum: " + str(requests_num),
)
return
await asyncio.sleep(0.1)
else:
with completion_lock:
if await request.is_disconnected():
requests_num = requests_num - 1
print(f"{request.client} Stop Waiting (Lock)")
quick_log(
request,
None,
"Stop Waiting (Lock). RequestsNum: " + str(requests_num),
)
return
set_rwkv_config(model, global_var.get(global_var.Model_Config))
set_rwkv_config(model, body)
response, prompt_tokens, completion_tokens = "", 0, 0
for response, delta, prompt_tokens, completion_tokens in model.generate(
prompt,
stop=stop,
):
if await request.is_disconnected():
break
if stream:
yield json.dumps(
{
"object": "chat.completion.chunk"
if chat_mode
else "text_completion",
"response": response,
"model": model.name,
"choices": [
{
"delta": {"content": delta},
"index": 0,
"finish_reason": None,
}
if chat_mode
else {
"text": delta,
"index": 0,
"finish_reason": None,
}
],
}
)
# torch_gc()
requests_num = requests_num - 1
if await request.is_disconnected():
print(f"{request.client} Stop Waiting")
quick_log(
request,
body,
response + "\nStop Waiting. RequestsNum: " + str(requests_num),
)
return
quick_log(
request,
body,
response + "\nFinished. RequestsNum: " + str(requests_num),
)
if stream:
yield json.dumps(
{
"object": "chat.completion.chunk"
if chat_mode
else "text_completion",
"response": response,
"model": model.name,
"choices": [
{
"delta": {},
"index": 0,
"finish_reason": "stop",
}
if chat_mode
else {
"text": "",
"index": 0,
"finish_reason": "stop",
}
],
}
)
yield "[DONE]"
else:
yield {
"object": "chat.completion" if chat_mode else "text_completion",
"response": response,
"model": model.name,
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
},
"choices": [
{
"message": {
"role": "assistant",
"content": response,
},
"index": 0,
"finish_reason": "stop",
}
if chat_mode
else {
"text": response,
"index": 0,
"finish_reason": "stop",
}
],
}
@router.post("/v1/chat/completions")
@router.post("/chat/completions")
@@ -37,14 +216,58 @@ async def chat_completions(body: ChatCompletionBody, request: Request):
question = body.messages[-1]
if question.role == "user":
question = question.content
elif question.role == "system":
question = body.messages[-2]
if question.role == "user":
question = question.content
else:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "no question found")
else:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "no question found")
completion_text = ""
interface = model.interface
user = model.user
bot = model.bot
completion_text = (
f"""
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
{bot} is very intelligent, creative and friendly. \
{bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \
{bot} likes to tell {user} a lot about herself and her opinions. \
{bot} usually gives {user} kind, helpful and informative advices.\n
"""
if user == "Bob"
else f"{user}{interface} hi\n\n{bot}{interface} Hi. "
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
)
for message in body.messages:
if message.role == "system":
completion_text = (
f"The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. "
if user == "Bob"
else f"{user}{interface} hi\n\n{bot}{interface} Hi. "
+ message.content.replace("\\n", "\n")
.replace("\r\n", "\n")
.replace("\n\n", "\n")
.replace("\n", " ")
.strip()
.replace("You are", f"{bot} is" if user == "Bob" else "I am")
.replace("you are", f"{bot} is" if user == "Bob" else "I am")
.replace("You're", f"{bot} is" if user == "Bob" else "I'm")
.replace("you're", f"{bot} is" if user == "Bob" else "I'm")
.replace("You", f"{bot}" if user == "Bob" else "I")
.replace("you", f"{bot}" if user == "Bob" else "I")
.replace("Your", f"{bot}'s" if user == "Bob" else "My")
.replace("your", f"{bot}'s" if user == "Bob" else "my")
.replace("", f"{bot}" if user == "Bob" else "")
+ "\n\n"
)
break
for message in body.messages:
if message.role == "user":
completion_text += (
"Bob: "
f"{user}{interface} "
+ message.content.replace("\\n", "\n")
.replace("\r\n", "\n")
.replace("\n\n", "\n")
@@ -53,100 +276,27 @@ async def chat_completions(body: ChatCompletionBody, request: Request):
)
elif message.role == "assistant":
completion_text += (
"Alice: "
f"{bot}{interface} "
+ message.content.replace("\\n", "\n")
.replace("\r\n", "\n")
.replace("\n\n", "\n")
.strip()
+ "\n\n"
)
completion_text += "Alice:"
async def eval_rwkv():
while completion_lock.locked():
await asyncio.sleep(0.1)
else:
completion_lock.acquire()
set_rwkv_config(model, global_var.get(global_var.Model_Config))
set_rwkv_config(model, body)
if body.stream:
for response, delta in rwkv_generate(
model,
completion_text,
stop="\n\nBob" if body.stop is None else body.stop,
):
if await request.is_disconnected():
break
yield json.dumps(
{
"response": response,
"model": "rwkv",
"choices": [
{
"delta": {"content": delta},
"index": 0,
"finish_reason": None,
}
],
}
)
if await request.is_disconnected():
completion_lock.release()
return
yield json.dumps(
{
"response": response,
"model": "rwkv",
"choices": [
{
"delta": {},
"index": 0,
"finish_reason": "stop",
}
],
}
)
yield "[DONE]"
else:
response = None
for response, delta in rwkv_generate(
model,
completion_text,
stop="\n\nBob" if body.stop is None else body.stop,
):
if await request.is_disconnected():
break
if await request.is_disconnected():
completion_lock.release()
return
yield {
"response": response,
"model": "rwkv",
"choices": [
{
"message": {
"role": "assistant",
"content": response,
},
"index": 0,
"finish_reason": "stop",
}
],
}
# torch_gc()
completion_lock.release()
completion_text += f"{bot}{interface}"
stop = f"\n\n{user}" if body.stop is None else body.stop
if body.stream:
return EventSourceResponse(eval_rwkv())
return EventSourceResponse(
eval_rwkv(model, request, body, completion_text, body.stream, stop, True)
)
else:
return await eval_rwkv().__anext__()
class CompletionBody(ModelConfigBody):
prompt: str
model: str = "rwkv"
stream: bool = False
stop: str = None
try:
return await eval_rwkv(
model, request, body, completion_text, body.stream, stop, True
).__anext__()
except StopAsyncIteration:
return None
@router.post("/v1/completions")
@@ -156,74 +306,152 @@ async def completions(body: CompletionBody, request: Request):
if model is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "model not loaded")
async def eval_rwkv():
while completion_lock.locked():
await asyncio.sleep(0.1)
else:
completion_lock.acquire()
set_rwkv_config(model, global_var.get(global_var.Model_Config))
set_rwkv_config(model, body)
if body.stream:
for response, delta in rwkv_generate(
model, body.prompt, stop=body.stop
):
if await request.is_disconnected():
break
yield json.dumps(
{
"response": response,
"model": "rwkv",
"choices": [
{
"text": delta,
"index": 0,
"finish_reason": None,
}
],
}
)
if await request.is_disconnected():
completion_lock.release()
return
yield json.dumps(
{
"response": response,
"model": "rwkv",
"choices": [
{
"text": "",
"index": 0,
"finish_reason": "stop",
}
],
}
)
yield "[DONE]"
else:
response = None
for response, delta in rwkv_generate(
model, body.prompt, stop=body.stop
):
if await request.is_disconnected():
break
if await request.is_disconnected():
completion_lock.release()
return
yield {
"response": response,
"model": "rwkv",
"choices": [
{
"text": response,
"index": 0,
"finish_reason": "stop",
}
],
}
# torch_gc()
completion_lock.release()
if body.prompt is None or body.prompt == "":
raise HTTPException(status.HTTP_400_BAD_REQUEST, "prompt not found")
if body.stream:
return EventSourceResponse(eval_rwkv())
return EventSourceResponse(
eval_rwkv(model, request, body, body.prompt, body.stream, body.stop, False)
)
else:
return await eval_rwkv().__anext__()
try:
return await eval_rwkv(
model, request, body, body.prompt, body.stream, body.stop, False
).__anext__()
except StopAsyncIteration:
return None
class EmbeddingsBody(BaseModel):
input: str or List[str] or List[List[int]]
model: str = "rwkv"
encoding_format: str = None
fast_mode: bool = False
class Config:
schema_extra = {
"example": {
"input": "a big apple",
"model": "rwkv",
"encoding_format": None,
"fast_mode": False,
}
}
def embedding_base64(embedding: List[float]) -> str:
return base64.b64encode(np.array(embedding).astype(np.float32)).decode("utf-8")
@router.post("/v1/embeddings")
@router.post("/embeddings")
@router.post("/v1/engines/text-embedding-ada-002/embeddings")
@router.post("/engines/text-embedding-ada-002/embeddings")
async def embeddings(body: EmbeddingsBody, request: Request):
model: RWKV = global_var.get(global_var.Model)
if model is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "model not loaded")
if body.input is None or body.input == "" or body.input == [] or body.input == [[]]:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "input not found")
global requests_num
requests_num = requests_num + 1
quick_log(request, None, "Start Waiting. RequestsNum: " + str(requests_num))
while completion_lock.locked():
if await request.is_disconnected():
requests_num = requests_num - 1
print(f"{request.client} Stop Waiting (Lock)")
quick_log(
request,
None,
"Stop Waiting (Lock). RequestsNum: " + str(requests_num),
)
return
await asyncio.sleep(0.1)
else:
with completion_lock:
if await request.is_disconnected():
requests_num = requests_num - 1
print(f"{request.client} Stop Waiting (Lock)")
quick_log(
request,
None,
"Stop Waiting (Lock). RequestsNum: " + str(requests_num),
)
return
base64_format = False
if body.encoding_format == "base64":
base64_format = True
embeddings = []
prompt_tokens = 0
if type(body.input) == list:
if type(body.input[0]) == list:
encoding = tiktoken.model.encoding_for_model(
"text-embedding-ada-002"
)
for i in range(len(body.input)):
if await request.is_disconnected():
break
input = encoding.decode(body.input[i])
embedding, token_len = model.get_embedding(
input, body.fast_mode
)
prompt_tokens = prompt_tokens + token_len
if base64_format:
embedding = embedding_base64(embedding)
embeddings.append(embedding)
else:
for i in range(len(body.input)):
if await request.is_disconnected():
break
embedding, token_len = model.get_embedding(
body.input[i], body.fast_mode
)
prompt_tokens = prompt_tokens + token_len
if base64_format:
embedding = embedding_base64(embedding)
embeddings.append(embedding)
else:
embedding, prompt_tokens = model.get_embedding(
body.input, body.fast_mode
)
if base64_format:
embedding = embedding_base64(embedding)
embeddings.append(embedding)
requests_num = requests_num - 1
if await request.is_disconnected():
print(f"{request.client} Stop Waiting")
quick_log(
request,
None,
"Stop Waiting. RequestsNum: " + str(requests_num),
)
return
quick_log(
request,
None,
"Finished. RequestsNum: " + str(requests_num),
)
ret_data = [
{
"object": "embedding",
"index": i,
"embedding": embedding,
}
for i, embedding in enumerate(embeddings)
]
return {
"object": "list",
"data": ret_data,
"model": model.name,
"usage": {
"prompt_tokens": prompt_tokens,
"total_tokens": prompt_tokens,
},
}

View File

@@ -1,8 +1,8 @@
import pathlib
from utils.log import quick_log
from fastapi import APIRouter, HTTPException, Response, status
from fastapi import APIRouter, HTTPException, Request, Response, status as Status
from pydantic import BaseModel
from langchain.llms import RWKV
from utils.rwkv import *
from utils.torch import *
import global_var
@@ -11,22 +11,47 @@ import GPUtil
router = APIRouter()
def get_tokens_path(model_path: str):
model_path = model_path.lower()
default_tokens_path = (
f"{pathlib.Path(__file__).parent.parent.resolve()}/rwkv_pip/20B_tokenizer.json"
)
if "raven" in model_path:
return default_tokens_path
elif "world" in model_path:
return "rwkv_vocab_v20230424"
else:
return default_tokens_path
class SwitchModelBody(BaseModel):
model: str
strategy: str
customCuda: bool = False
class Config:
schema_extra = {
"example": {
"model": "models/RWKV-4-World-3B-v1-20230619-ctx4096.pth",
"strategy": "cuda fp16",
"customCuda": False,
}
}
@router.post("/switch-model")
def switch_model(body: SwitchModelBody, response: Response):
def switch_model(body: SwitchModelBody, response: Response, request: Request):
if global_var.get(global_var.Model_Status) is global_var.ModelStatus.Loading:
response.status_code = status.HTTP_304_NOT_MODIFIED
response.status_code = Status.HTTP_304_NOT_MODIFIED
return
global_var.set(global_var.Model_Status, global_var.ModelStatus.Offline)
global_var.set(global_var.Model, None)
torch_gc()
if body.model == "":
return "success"
os.environ["RWKV_CUDA_ON"] = "1" if body.customCuda else "0"
global_var.set(global_var.Model_Status, global_var.ModelStatus.Loading)
@@ -36,13 +61,16 @@ def switch_model(body: SwitchModelBody, response: Response):
RWKV(
model=body.model,
strategy=body.strategy,
tokens_path=f"{pathlib.Path(__file__).parent.parent.resolve()}/20B_tokenizer.json",
tokens_path=get_tokens_path(body.model),
),
)
except Exception as e:
print(e)
quick_log(request, body, f"Exception: {e}")
global_var.set(global_var.Model_Status, global_var.ModelStatus.Offline)
raise HTTPException(status.HTTP_500_INTERNAL_SERVER_ERROR, "failed to load")
raise HTTPException(
Status.HTTP_500_INTERNAL_SERVER_ERROR, f"failed to load: {e}"
)
if global_var.get(global_var.Model_Config) is None:
global_var.set(

View File

@@ -0,0 +1,161 @@
from typing import Any, Dict, List
from utils.log import quick_log
from fastapi import APIRouter, HTTPException, Request, Response, status
from pydantic import BaseModel
import gc
import copy
import sys
import torch
router = APIRouter()
trie = None
dtrie: Dict = {}
max_trie_len = 3000
loop_start_id = 1 # to prevent preloaded prompts from being deleted
loop_del_trie_id = loop_start_id
def init():
global trie
try:
import cyac
# import mmap
# import os
#
# if os.path.exists("state_cache.trie"):
# with open("state_cache.trie", "r") as bf:
# buff_object = mmap.mmap(bf.fileno(), 0, access=mmap.ACCESS_READ)
# trie = cyac.Trie.from_buff(buff_object, copy=False)
# else:
trie = cyac.Trie()
except ModuleNotFoundError:
print("cyac not found")
class AddStateBody(BaseModel):
prompt: str
tokens: List[str]
state: Any
logits: Any
@router.post("/add-state")
def add_state(body: AddStateBody):
global trie, dtrie, loop_del_trie_id
if trie is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
try:
id: int = trie.insert(body.prompt)
device: torch.device = body.state[0].device
dtrie[id] = {
"tokens": copy.deepcopy(body.tokens),
"state": [tensor.cpu() for tensor in body.state]
if device != torch.device("cpu")
else copy.deepcopy(body.state),
"logits": copy.deepcopy(body.logits),
"device": device,
}
if len(trie) >= max_trie_len:
del_prompt = trie[loop_del_trie_id]
trie.remove(del_prompt)
dtrie[loop_del_trie_id] = None
loop_del_trie_id = loop_del_trie_id + 1
if loop_del_trie_id >= max_trie_len:
loop_del_trie_id = loop_start_id
quick_log(
None,
None,
f"New Trie Id: {id}\nTrie Len: {len(trie)}\nTrie Buff Size: {trie.buff_size()}\nDtrie Buff Size Of Id: {_get_a_dtrie_buff_size(dtrie[id])}",
)
return "success"
except Exception as e:
raise HTTPException(
status.HTTP_400_BAD_REQUEST, f"insert failed, bad prompt.\n{e}"
)
@router.post("/reset-state")
def reset_state():
global trie, dtrie
if trie is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
trie = cyac.Trie()
dtrie = {}
gc.collect()
return "success"
class LongestPrefixStateBody(BaseModel):
prompt: str
def _get_a_dtrie_buff_size(dtrie_v):
# print(sys.getsizeof(dtrie_v["tokens"][0])) # str
# print(sys.getsizeof(dtrie_v["tokens"][0]) * len(dtrie_v["tokens"]))
# print(dtrie_v["state"][0][0].element_size())
# print(dtrie_v["state"][0].nelement())
# print(len(dtrie_v["state"]))
# print(
# len(dtrie_v["state"])
# * dtrie_v["state"][0].nelement()
# * dtrie_v["state"][0][0].element_size()
# )
# print(dtrie_v["logits"][0].element_size())
# print(dtrie_v["logits"].nelement())
# print(dtrie_v["logits"][0].element_size() * dtrie_v["logits"].nelement())
return 54 * len(dtrie_v["tokens"]) + 491520 + 262144 + 28 # TODO
@router.post("/longest-prefix-state")
def longest_prefix_state(body: LongestPrefixStateBody, request: Request):
global trie
if trie is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
id = -1
try:
for id, len in trie.prefix(body.prompt):
pass
except:
pass
if id != -1:
v = dtrie[id]
device: torch.device = v["device"]
prompt: str = trie[id]
quick_log(request, body, "Hit:\n" + prompt)
return {
"prompt": prompt,
"tokens": v["tokens"],
"state": [tensor.to(device) for tensor in v["state"]]
if device != torch.device("cpu")
else v["state"],
"logits": v["logits"],
"device": device.type,
}
else:
return {
"prompt": "",
"tokens": [],
"state": None,
"logits": None,
"device": None,
}
@router.post("/save-state")
def save_state():
global trie
if trie is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
# trie.save("state_cache.trie")
return "not implemented"

View File

@@ -0,0 +1,106 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
class TRIE:
__slots__ = tuple("ch,to,values,front".split(","))
to: list
values: set
def __init__(self, front=None, ch=None):
self.ch = ch
self.to = [None for ch in range(256)]
self.values = set()
self.front = front
def __repr__(self):
fr = self
ret = []
while fr != None:
if fr.ch != None:
ret.append(fr.ch)
fr = fr.front
return "<TRIE %s %s>" % (ret[::-1], self.values)
def add(self, key: bytes, idx: int = 0, val=None):
if idx == len(key):
if val is None:
val = key
self.values.add(val)
return self
ch = key[idx]
if self.to[ch] is None:
self.to[ch] = TRIE(front=self, ch=ch)
return self.to[ch].add(key, idx=idx + 1, val=val)
def find_longest(self, key: bytes, idx: int = 0):
u: TRIE = self
ch: int = key[idx]
while u.to[ch] is not None:
u = u.to[ch]
idx += 1
if u.values:
ret = idx, u, u.values
if idx == len(key):
break
ch = key[idx]
return ret
class TRIE_TOKENIZER:
def __init__(self, file_name):
self.idx2token = {}
sorted = [] # must be already sorted
with open(file_name, "r", encoding="utf-8") as f:
lines = f.readlines()
for l in lines:
idx = int(l[: l.index(" ")])
x = eval(l[l.index(" ") : l.rindex(" ")])
x = x.encode("utf-8") if isinstance(x, str) else x
assert isinstance(x, bytes)
assert len(x) == int(l[l.rindex(" ") :])
sorted += [x]
self.idx2token[idx] = x
self.token2idx = {}
for k, v in self.idx2token.items():
self.token2idx[v] = int(k)
self.root = TRIE()
for t, i in self.token2idx.items():
_ = self.root.add(t, val=(t, i))
def encodeBytes(self, src: bytes):
idx: int = 0
tokens = []
while idx < len(src):
_idx: int = idx
idx, _, values = self.root.find_longest(src, idx)
assert idx != _idx
_, token = next(iter(values))
tokens.append(token)
return tokens
def decodeBytes(self, tokens):
return b"".join(map(lambda i: self.idx2token[i], tokens))
def encode(self, src):
return self.encodeBytes(src.encode("utf-8"))
def decode(self, tokens):
try:
return self.decodeBytes(tokens).decode("utf-8")
except:
return "\ufffd" # bad utf-8
def printTokens(self, tokens):
for i in tokens:
s = self.idx2token[i]
try:
s = s.decode("utf-8")
except:
pass
print(f"{repr(s)}{i}", end=" ")
print()

File diff suppressed because it is too large Load Diff

142
backend-python/rwkv_pip/utils.py vendored Normal file
View File

@@ -0,0 +1,142 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import os, sys
import numpy as np
import torch
from torch.nn import functional as F
class PIPELINE_ARGS:
def __init__(
self,
temperature=1.0,
top_p=0.85,
top_k=0,
alpha_frequency=0.2,
alpha_presence=0.2,
token_ban=[],
token_stop=[],
chunk_len=256,
):
self.temperature = temperature
self.top_p = top_p
self.top_k = top_k
self.alpha_frequency = alpha_frequency # Frequency Penalty (as in GPT-3)
self.alpha_presence = alpha_presence # Presence Penalty (as in GPT-3)
self.token_ban = token_ban # ban the generation of some tokens
self.token_stop = token_stop # stop generation whenever you see any token here
self.chunk_len = (
chunk_len # split input into chunks to save VRAM (shorter -> slower)
)
class PIPELINE:
def __init__(self, model, WORD_NAME):
self.model = model
if WORD_NAME == "cl100k_base":
import tiktoken
self.tokenizer = tiktoken.get_encoding(WORD_NAME)
elif WORD_NAME == "rwkv_vocab_v20230424":
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
from rwkv_tokenizer import TRIE_TOKENIZER
self.tokenizer = TRIE_TOKENIZER(
os.path.dirname(os.path.abspath(__file__)) + "/rwkv_vocab_v20230424.txt"
)
else:
from tokenizers import Tokenizer
self.tokenizer = Tokenizer.from_file(WORD_NAME)
def refine_context(self, context):
context = context.strip().split("\n")
for c in range(len(context)):
context[c] = context[c].strip().strip("\u3000").strip("\r")
context = list(filter(lambda c: c != "", context))
context = "\n" + ("\n".join(context)).strip()
if context == "":
context = "\n"
return context
def encode(self, x):
if "Tokenizer" in str(type(self.tokenizer)):
return self.tokenizer.encode(x).ids
else:
return self.tokenizer.encode(x)
def decode(self, x):
return self.tokenizer.decode(x)
def sample_logits(self, logits, temperature=1.0, top_p=0.85, top_k=0):
probs = F.softmax(logits.float(), dim=-1)
top_k = int(top_k)
if probs.device == torch.device("cpu"):
probs = probs.numpy()
sorted_ids = np.argsort(probs)
sorted_probs = probs[sorted_ids][::-1]
cumulative_probs = np.cumsum(sorted_probs)
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
probs[probs < cutoff] = 0
if top_k < len(probs) and top_k > 0:
probs[sorted_ids[:-top_k]] = 0
if temperature != 1.0:
probs = probs ** (1.0 / temperature)
probs = probs / np.sum(probs)
out = np.random.choice(a=len(probs), p=probs)
return int(out)
else:
sorted_ids = torch.argsort(probs)
sorted_probs = probs[sorted_ids]
sorted_probs = torch.flip(sorted_probs, dims=(0,))
cumulative_probs = torch.cumsum(sorted_probs, dim=-1).cpu().numpy()
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
probs[probs < cutoff] = 0
if top_k < len(probs) and top_k > 0:
probs[sorted_ids[:-top_k]] = 0
if temperature != 1.0:
probs = probs ** (1.0 / temperature)
out = torch.multinomial(probs, num_samples=1)[0]
return int(out)
def generate(
self, ctx, token_count=100, args=PIPELINE_ARGS(), callback=None, state=None
):
all_tokens = []
out_last = 0
out_str = ""
occurrence = {}
for i in range(token_count):
# forward & adjust prob.
tokens = self.encode(ctx) if i == 0 else [token]
while len(tokens) > 0:
out, state = self.model.forward(tokens[: args.chunk_len], state)
tokens = tokens[args.chunk_len :]
for n in args.token_ban:
out[n] = -float("inf")
for n in occurrence:
out[n] -= args.alpha_presence + occurrence[n] * args.alpha_frequency
# sampler
token = self.sample_logits(
out, temperature=args.temperature, top_p=args.top_p, top_k=args.top_k
)
if token in args.token_stop:
break
all_tokens += [token]
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
# output
tmp = self.decode(all_tokens[out_last:])
if "\ufffd" not in tmp: # is valid utf-8 string?
if callback:
callback(tmp)
out_str += tmp
out_last = i + 1
return out_str

View File

@@ -0,0 +1,38 @@
import json
import logging
from typing import Any
from fastapi import Request
logger = logging.getLogger()
logger.setLevel(logging.INFO)
formatter = logging.Formatter("%(asctime)s - %(levelname)s\n%(message)s")
fh = logging.handlers.RotatingFileHandler(
"api.log", mode="a", maxBytes=3 * 1024 * 1024, backupCount=3
)
fh.setFormatter(formatter)
logger.addHandler(fh)
def quick_log(request: Request, body: Any, response: str):
try:
logger.info(
f"Client: {request.client if request else ''}\nUrl: {request.url if request else ''}\n"
+ (
f"Body: {json.dumps(body.__dict__, default=vars, ensure_ascii=False)}\n"
if body
else ""
)
+ (f"Data:\n{response}\n" if response else "")
)
except Exception as e:
logger.info(f"Error quick_log request:\n{e}")
async def log_middleware(request: Request):
try:
logger.info(
f"Client: {request.client}\nUrl: {request.url}\nBody: {await request.body()}\n"
)
except Exception as e:
logger.info(f"Error log_middleware request:\n{e}")

View File

@@ -1,28 +1,397 @@
import os
import pathlib
from typing import Dict
from langchain.llms import RWKV
from pydantic import BaseModel
import copy
from typing import Dict, List, Tuple
from utils.log import quick_log
from fastapi import HTTPException
from pydantic import BaseModel, Field
import torch
import numpy as np
from rwkv_pip.utils import PIPELINE
from routes import state_cache
END_OF_TEXT = 0
END_OF_LINE_DOUBLE = 535
os.environ["TORCH_EXTENSIONS_DIR"] = f"{pathlib.Path(__file__).parent.parent.resolve()}"
class RWKV:
def __init__(self, model: str, strategy: str, tokens_path: str) -> None:
from rwkv.model import RWKV as Model # dynamic import to make RWKV_CUDA_ON work
filename, _ = os.path.splitext(os.path.basename(model))
self.name = filename
self.model = Model(model, strategy)
self.pipeline = PIPELINE(self.model, tokens_path)
self.model_state = None
self.model_tokens = []
self.CHUNK_LEN = 256
self.max_tokens_per_generation = 500
self.temperature = 1
self.top_p = 0.5
self.penalty_alpha_presence = 0.4
self.penalty_alpha_frequency = 0.4
self.interface = ":"
if "world" in self.name.lower():
self.user = "Question"
self.bot = "Answer"
self.END_OF_LINE = 11
else:
self.user = "Bob"
self.bot = "Alice"
self.END_OF_LINE = 187
self.AVOID_REPEAT_TOKENS = []
AVOID_REPEAT = ""
for i in AVOID_REPEAT:
dd = self.pipeline.encode(i)
assert len(dd) == 1
self.AVOID_REPEAT_TOKENS += dd
self.preload()
def preload(self):
interface = self.interface
user = self.user
bot = self.bot
preset_system = (
f"""
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
{bot} is very intelligent, creative and friendly. \
{bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \
{bot} likes to tell {user} a lot about herself and her opinions. \
{bot} usually gives {user} kind, helpful and informative advices.\n
"""
if self.user == "Bob"
else f"{user}{interface} hi\n\n{bot}{interface} Hi. "
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
)
logits, _ = self.run_rnn(self.fix_tokens(self.pipeline.encode(preset_system)))
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=preset_system,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
# Model only saw '\n\n' as [187, 187] before, but the tokenizer outputs [535] for it at the end
def fix_tokens(self, tokens):
if "world" in self.name.lower():
return tokens
if len(tokens) > 0 and tokens[-1] == END_OF_LINE_DOUBLE:
tokens = tokens[:-1] + [self.END_OF_LINE, self.END_OF_LINE]
return tokens
def run_rnn(self, _tokens: List[str], newline_adj: int = 0):
tokens = [int(x) for x in _tokens]
token_len = len(tokens)
self.model_tokens += tokens
while len(tokens) > 0:
out, self.model_state = self.model.forward(
tokens[: self.CHUNK_LEN], self.model_state
)
tokens = tokens[self.CHUNK_LEN :]
out[self.END_OF_LINE] += newline_adj # adjust \n probability
if self.model_tokens[-1] in self.AVOID_REPEAT_TOKENS:
out[self.model_tokens[-1]] = -999999999
return out, token_len
def get_embedding(self, input: str, fast_mode: bool) -> Tuple[List[float], int]:
if fast_mode:
embedding, token_len = self.fast_embedding(
self.fix_tokens(self.pipeline.encode(input)), None
)
else:
self.model_state = None
self.model_tokens = []
_, token_len = self.run_rnn(self.fix_tokens(self.pipeline.encode(input)))
embedding = self.model_state[-5].tolist()
embedding = (embedding / np.linalg.norm(embedding)).tolist()
return embedding, token_len
def fast_embedding(self, tokens: List[str], state):
tokens = [int(x) for x in tokens]
token_len = len(tokens)
self = self.model
with torch.no_grad():
w = self.w
args = self.args
if state == None:
state = [None] * args.n_layer * 5
for i in range(
args.n_layer
): # state: 0=att_xx 1=att_aa 2=att_bb 3=att_pp 4=ffn_xx
dd = self.strategy[i]
dev = dd.device
atype = dd.atype
state[i * 5 + 0] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()
state[i * 5 + 1] = torch.zeros(
args.n_embd, dtype=torch.float, requires_grad=False, device=dev
).contiguous()
state[i * 5 + 2] = torch.zeros(
args.n_embd, dtype=torch.float, requires_grad=False, device=dev
).contiguous()
state[i * 5 + 3] = (
torch.zeros(
args.n_embd,
dtype=torch.float,
requires_grad=False,
device=dev,
).contiguous()
- 1e30
)
state[i * 5 + 4] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()
break
seq_mode = len(tokens) > 1
x = w["emb.weight"][tokens if seq_mode else tokens[0]]
for i in range(args.n_layer):
bbb = f"blocks.{i}."
att = f"blocks.{i}.att."
ffn = f"blocks.{i}.ffn."
dd = self.strategy[i]
dev = dd.device
atype = dd.atype
wtype = dd.wtype
if seq_mode:
if "cuda" in str(dev) and os.environ["RWKV_CUDA_ON"] == "1":
ATT = (
self.cuda_att_seq
if wtype != torch.uint8
else self.cuda_att_seq_i8
)
else:
ATT = self.att_seq if wtype != torch.uint8 else self.att_seq_i8
FFN = self.ffn_seq if wtype != torch.uint8 else self.ffn_seq_i8
else:
ATT = self.att_one if wtype != torch.uint8 else self.att_one_i8
FFN = self.ffn_one if wtype != torch.uint8 else self.ffn_one_i8
x = x.to(dtype=atype, device=dev)
kw = w[f"{att}key.weight"]
vw = w[f"{att}value.weight"]
rw = w[f"{att}receptance.weight"]
ow = w[f"{att}output.weight"]
if dd.stream:
kw = kw.to(device=dev, non_blocking=True)
vw = vw.to(device=dev, non_blocking=True)
rw = rw.to(device=dev, non_blocking=True)
ow = ow.to(device=dev, non_blocking=True)
kmx = w[f"{att}key.weight_mx"] if wtype == torch.uint8 else x
krx = w[f"{att}key.weight_rx"] if wtype == torch.uint8 else x
kmy = w[f"{att}key.weight_my"] if wtype == torch.uint8 else x
kry = w[f"{att}key.weight_ry"] if wtype == torch.uint8 else x
vmx = w[f"{att}value.weight_mx"] if wtype == torch.uint8 else x
vrx = w[f"{att}value.weight_rx"] if wtype == torch.uint8 else x
vmy = w[f"{att}value.weight_my"] if wtype == torch.uint8 else x
vry = w[f"{att}value.weight_ry"] if wtype == torch.uint8 else x
rmx = w[f"{att}receptance.weight_mx"] if wtype == torch.uint8 else x
rrx = w[f"{att}receptance.weight_rx"] if wtype == torch.uint8 else x
rmy = w[f"{att}receptance.weight_my"] if wtype == torch.uint8 else x
rry = w[f"{att}receptance.weight_ry"] if wtype == torch.uint8 else x
omx = w[f"{att}output.weight_mx"] if wtype == torch.uint8 else x
orx = w[f"{att}output.weight_rx"] if wtype == torch.uint8 else x
omy = w[f"{att}output.weight_my"] if wtype == torch.uint8 else x
ory = w[f"{att}output.weight_ry"] if wtype == torch.uint8 else x
(
x,
state[i * 5 + 0],
state[i * 5 + 1],
state[i * 5 + 2],
state[i * 5 + 3],
) = ATT(
x,
state[i * 5 + 0],
state[i * 5 + 1],
state[i * 5 + 2],
state[i * 5 + 3],
w[f"{bbb}ln1.weight"],
w[f"{bbb}ln1.bias"],
w[f"{att}time_mix_k"],
w[f"{att}time_mix_v"],
w[f"{att}time_mix_r"],
w[f"{att}time_decay"],
w[f"{att}time_first"],
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
)
return state[0].tolist(), token_len
def generate(self, prompt: str, stop: str = None):
quick_log(None, None, "Generation Prompt:\n" + prompt)
cache = None
delta_prompt = prompt
try:
cache = state_cache.longest_prefix_state(
state_cache.LongestPrefixStateBody(prompt=prompt), None
)
except HTTPException:
pass
if cache is None or cache["prompt"] == "":
self.model_state = None
self.model_tokens = []
else:
delta_prompt = prompt[len(cache["prompt"]) :]
self.model_state = copy.deepcopy(cache["state"])
self.model_tokens = copy.deepcopy(cache["tokens"])
logits = copy.deepcopy(cache["logits"])
prompt_token_len = 0
if delta_prompt != "":
logits, prompt_token_len = self.run_rnn(
self.fix_tokens(self.pipeline.encode(delta_prompt))
)
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
begin = len(self.model_tokens)
out_last = begin
occurrence: Dict = {}
completion_token_len = 0
response = ""
for i in range(self.max_tokens_per_generation):
for n in occurrence:
logits[n] -= (
self.penalty_alpha_presence
+ occurrence[n] * self.penalty_alpha_frequency
)
token = self.pipeline.sample_logits(
logits, temperature=self.temperature, top_p=self.top_p
)
if token == END_OF_TEXT:
yield response, "", prompt_token_len, completion_token_len
break
for xxx in occurrence:
occurrence[xxx] *= 0.996
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
logits, _ = self.run_rnn([token])
completion_token_len = completion_token_len + 1
delta: str = self.pipeline.decode(self.model_tokens[out_last:])
if "\ufffd" not in delta: # avoid utf-8 display issues
response += delta
if stop is not None:
if stop in response:
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
response = response.split(stop)[0]
yield response, "", prompt_token_len, completion_token_len
break
out_last = begin + i + 1
if i == self.max_tokens_per_generation - 1:
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
yield response, delta, prompt_token_len, completion_token_len
class ModelConfigBody(BaseModel):
max_tokens: int = None
temperature: float = None
top_p: float = None
presence_penalty: float = None
frequency_penalty: float = None
max_tokens: int = Field(default=None, gt=0, le=102400)
temperature: float = Field(default=None, ge=0, le=2)
top_p: float = Field(default=None, ge=0, le=1)
presence_penalty: float = Field(default=None, ge=-2, le=2)
frequency_penalty: float = Field(default=None, ge=-2, le=2)
class Config:
schema_extra = {
"example": {
"max_tokens": 1000,
"temperature": 1.2,
"top_p": 0.5,
"presence_penalty": 0.4,
"frequency_penalty": 0.4,
}
}
def set_rwkv_config(model: RWKV, body: ModelConfigBody):
if body.max_tokens:
if body.max_tokens is not None:
model.max_tokens_per_generation = body.max_tokens
if body.temperature:
model.temperature = body.temperature
if body.top_p:
if body.temperature is not None:
if body.temperature < 0.1:
model.temperature = 0.1
else:
model.temperature = body.temperature
if body.top_p is not None:
model.top_p = body.top_p
if body.presence_penalty:
if body.presence_penalty is not None:
model.penalty_alpha_presence = body.presence_penalty
if body.frequency_penalty:
if body.frequency_penalty is not None:
model.penalty_alpha_frequency = body.frequency_penalty
@@ -34,49 +403,3 @@ def get_rwkv_config(model: RWKV) -> ModelConfigBody:
presence_penalty=model.penalty_alpha_presence,
frequency_penalty=model.penalty_alpha_frequency,
)
os.environ["TORCH_EXTENSIONS_DIR"] = f"{pathlib.Path(__file__).parent.parent.resolve()}"
def rwkv_generate(model: RWKV, prompt: str, stop: str = None):
model.model_state = None
model.model_tokens = []
logits = model.run_rnn(model.tokenizer.encode(prompt).ids)
begin = len(model.model_tokens)
out_last = begin
occurrence: Dict = {}
response = ""
for i in range(model.max_tokens_per_generation):
for n in occurrence:
logits[n] -= (
model.penalty_alpha_presence
+ occurrence[n] * model.penalty_alpha_frequency
)
token = model.pipeline.sample_logits(
logits, temperature=model.temperature, top_p=model.top_p
)
END_OF_TEXT = 0
if token == END_OF_TEXT:
break
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
logits = model.run_rnn([token])
delta: str = model.tokenizer.decode(model.model_tokens[out_last:])
if "\ufffd" not in delta: # avoid utf-8 display issues
response += delta
if stop is not None:
if stop in response:
response = response.split(stop)[0]
yield response, ""
break
yield response, delta
out_last = begin + i + 1
if i >= model.max_tokens_per_generation - 100:
break

Binary file not shown.

BIN
build/appicon.png vendored

Binary file not shown.

Before

Width:  |  Height:  |  Size: 102 KiB

After

Width:  |  Height:  |  Size: 120 KiB

View File

@@ -8,7 +8,7 @@
<key>CFBundleExecutable</key>
<string>{{.Name}}</string>
<key>CFBundleIdentifier</key>
<string>com.wails.{{.Name}}</string>
<string>dev.josStorer.RWKV-Runner</string>
<key>CFBundleVersion</key>
<string>{{.Info.ProductVersion}}</string>
<key>CFBundleGetInfoString</key>

View File

@@ -8,7 +8,7 @@
<key>CFBundleExecutable</key>
<string>{{.Name}}</string>
<key>CFBundleIdentifier</key>
<string>com.wails.{{.Name}}</string>
<string>dev.josStorer.RWKV-Runner</string>
<key>CFBundleVersion</key>
<string>{{.Info.ProductVersion}}</string>
<key>CFBundleGetInfoString</key>

13
build/darwin/Readme_Install.txt vendored Normal file
View File

@@ -0,0 +1,13 @@
For Mac and Linux users, please manually install Python 3.10 (usually the latest systems come with it built-in). You can specify the Python interpreter to use in Settings.
对于Mac和Linux用户请手动安装 Python3.10 (通常最新的系统已经内置了). 你可以在设置中指定使用的Python解释器.
MacおよびLinuxのユーザーの方は、Python3.10を手動でインストールしてください(通常、最新のシステムには既に組み込まれています)。 設定メニューで使用するPythonインタプリタを指定することができます。
Please execute this program in an empty directory. All related dependencies will be placed in this directory.
请将本程序放在一个空目录内执行, 所有相关依赖均会放置于此目录.
このプログラムを空のディレクトリで実行してください。関連するすべての依存関係は、このディレクトリに配置されます。
Please execute the following command in the terminal to remove the permission restrictions of this app, and then this program can work properly:
请在终端执行以下命令解除本app的权限限制, 然后本程序才可以正常工作:
このアプリの権限制限を解除するために、ターミナルで以下のコマンドを実行してください。その後、このプログラムは正常に動作するようになります:
sudo xattr -r -d com.apple.quarantine ./RWKV-Runner.app

16
build/darwin/entitlements.plist vendored Normal file
View File

@@ -0,0 +1,16 @@
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>com.apple.security.app-sandbox</key>
<false/>
<key>com.apple.security.network.client</key>
<true/>
<key>com.apple.security.network.server</key>
<true/>
<key>com.apple.security.files.user-selected.read-write</key>
<true/>
<key>com.apple.security.files.downloads.read-write</key>
<true/>
</dict>
</plist>

17
build/darwin/gon-sign.json vendored Normal file
View File

@@ -0,0 +1,17 @@
{
"source": [
"./build/bin/RWKV-Runner_darwin.app"
],
"bundle_id": "dev.josStorer.RWKV-Runner",
"apple_id": {
"username": "joshua1466587594@outlook.com",
"password": ""
},
"sign": {
"application_identity": "D00A983569B4EAA2A008B963254F385F42A493FD",
"entitlements_file": "./build/darwin/entitlements.plist"
},
"zip": {
"output_path": "./build/bin/RWKV-Runner_darwin.archive.zip"
}
}

19
build/linux/Readme_Install.txt vendored Normal file
View File

@@ -0,0 +1,19 @@
For Mac and Linux users, please manually install Python 3.10 (usually the latest systems come with it built-in). You can specify the Python interpreter to use in Settings.
对于Mac和Linux用户请手动安装 Python3.10 (通常最新的系统已经内置了). 你可以在设置中指定使用的Python解释器.
MacおよびLinuxのユーザーの方は、Python3.10を手動でインストールしてください(通常、最新のシステムには既に組み込まれています)。 設定メニューで使用するPythonインタプリタを指定することができます。
Please execute this program in an empty directory. All related dependencies will be placed in this directory.
请将本程序放在一个空目录内执行, 所有相关依赖均会放置于此目录.
このプログラムを空のディレクトリで実行してください。関連するすべての依存関係は、このディレクトリに配置されます。
On Linux system, this program cannot invoke the terminal for automatic dependency installation. You must manually execute the following commands for installation so that it can be used normally:
在Linux系统下, 本程序无法调用终端自动安装依赖, 你必须手动执行以下命令进行安装, 之后方可正常使用:
Linuxシステムでは、このプログラムはターミナルを自動的に呼び出して依存関係をインストールすることができません。以下のコマンドを手動で実行する必要があります。それが完了した後に、正常に使用することができます:
sudo apt install python3-dev
chmod +x ./RWKV-Runner
./RWKV-Runner
cd backend-python
pip3 install -r requirements.txt # or pip3 install -r requirements_without_cyac.txt
# See More: https://github.com/josStorer/RWKV-Runner/tree/master/deploy-examples

3
build/windows/Readme_Install.txt vendored Normal file
View File

@@ -0,0 +1,3 @@
Please execute this program in an empty directory. All related dependencies will be placed in this directory.
请将本程序放在一个空目录内执行, 所有相关依赖均会放置于此目录.
このプログラムを空のディレクトリで実行してください。関連するすべての依存関係は、このディレクトリに配置されます。

BIN
build/windows/icon.ico vendored

Binary file not shown.

Before

Width:  |  Height:  |  Size: 147 KiB

After

Width:  |  Height:  |  Size: 167 KiB

View File

@@ -0,0 +1,24 @@
: install git python3.10 yarn by yourself
: change model and strategy according to your hardware
mkdir RWKV-Next-Web
cd RWKV-Next-Web
git clone https://github.com/josStorer/RWKV-Runner --depth=1
python -m pip install torch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 --index-url https://download.pytorch.org/whl/cu117
python -m pip install -r RWKV-Runner/backend-python/requirements.txt
start python ./RWKV-Runner/backend-python/main.py
powershell -Command "(Test-Path ./RWKV-Runner/models) -or (mkdir RWKV-Runner/models)"
powershell -Command "Import-Module BitsTransfer"
powershell -Command "(Test-Path ./RWKV-Runner/models/RWKV-4-World-1.5B-v1-fixed-20230612-ctx4096.pth) -or (Start-BitsTransfer https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-1.5B-v1-fixed-20230612-ctx4096.pth ./RWKV-Runner/models/RWKV-4-World-1.5B-v1-fixed-20230612-ctx4096.pth)"
powershell -Command "Invoke-WebRequest http://127.0.0.1:8000/switch-model -Method POST -ContentType 'application/json' -Body '{\"model\":\"./RWKV-Runner/models/RWKV-4-World-1.5B-v1-fixed-20230612-ctx4096.pth\",\"strategy\":\"cuda fp32 *20+\"}'"
git clone https://github.com/Yidadaa/ChatGPT-Next-Web --depth=1
cd ChatGPT-Next-Web
call yarn install
call yarn build
set PROXY_URL=""
set BASE_URL=http://127.0.0.1:8000
start "C:\Program Files (x86)\Microsoft\Edge\Application\msedge.exe" "http://127.0.0.1:3000"
yarn start

View File

@@ -0,0 +1,27 @@
# install git python3.10 yarn by yourself
# change model and strategy according to your hardware
sudo apt install python3-dev
mkdir RWKV-Next-Web
cd RWKV-Next-Web
git clone https://github.com/josStorer/RWKV-Runner --depth=1
python3 -m pip install torch torchvision torchaudio
python3 -m pip install -r RWKV-Runner/backend-python/requirements.txt
python3 ./RWKV-Runner/backend-python/main.py > log.txt &
if [ ! -d RWKV-Runner/models ]; then
mkdir RWKV-Runner/models
fi
wget -N https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-0.1B-v1-20230520-ctx4096.pth -P RWKV-Runner/models/
git clone https://github.com/Yidadaa/ChatGPT-Next-Web --depth=1
cd ChatGPT-Next-Web
yarn install
yarn build
export PROXY_URL=""
export BASE_URL=http://127.0.0.1:8000
yarn start &
curl http://127.0.0.1:8000/switch-model -X POST -H "Content-Type: application/json" -d '{"model":"./RWKV-Runner/models/RWKV-4-World-0.1B-v1-20230520-ctx4096.pth","strategy":"cpu fp32"}'

View File

@@ -0,0 +1,7 @@
{"text": "1:This is the first document."}
{"text": "2:Hello\nWorld"}
{"text": "3:1+1=2\n1+2=3\n2+2=4"}
{"text": "4:You will be training the GPT version because it's paralleziable and faster to train."}
{"text": "5:Read the inference code in src/model.py and try using the final hidden state(.xx .aa .bb)"}
{"text": "6:You can fine-tune the model with longer ctxLen and it can quickly adapt to longer ctxLens."}
{"text": "7:Consider RWKV 14B. The state has 200 vectors, that is, 5 vectors for each block: fp16 (xx), fp32 (aa), fp32 (bb), fp32 (pp), fp16 (xx)."}

View File

@@ -0,0 +1,41 @@
import torch
import sys
import time
import os
import threading
import gc
def file_cleaner(file):
last_pos = 0
def cleaner():
nonlocal last_pos
while True:
time.sleep(0.1)
pos = file.tell()
if pos > last_pos:
os.posix_fadvise(
file.fileno(), last_pos, pos - last_pos, os.POSIX_FADV_DONTNEED
)
last_pos = pos
return cleaner
model_file = open(sys.argv[1], "rb")
cleaner = file_cleaner(model_file)
cleaner_thread = threading.Thread(target=cleaner, daemon=True)
cleaner_thread.start()
w = torch.load(model_file, map_location="cpu")
gc.collect()
n_embd = w["emb.weight"].shape[1]
n_layer = 0
keys = list(w.keys())
for x in keys:
layer_id = int(x.split(".")[1]) if ("blocks." in x) else 0
n_layer = max(n_layer, layer_id + 1)
print(f"--n_layer {n_layer} --n_embd {n_embd}", end="")

View File

@@ -0,0 +1,46 @@
if [[ ${cnMirror} == 1 ]]; then
export PIP_INDEX_URL="https://pypi.tuna.tsinghua.edu.cn/simple"
if grep -q "mirrors.aliyun.com" /etc/apt/sources.list; then
echo "apt cnMirror already set"
else
sudo sed -i 's/http:\/\/archive.ubuntu.com\/ubuntu\//http:\/\/mirrors.aliyun.com\/ubuntu\//g' /etc/apt/sources.list
sudo apt update
fi
fi
if dpkg -s "python3-pip" >/dev/null 2>&1; then
echo "pip installed"
else
sudo apt -y install python3-pip
fi
if dpkg -s "ninja-build" >/dev/null 2>&1; then
echo "ninja installed"
else
sudo apt -y install ninja-build
fi
if dpkg -s "cuda" >/dev/null 2>&1; then
echo "cuda installed"
else
wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin
sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda-repo-wsl-ubuntu-11-7-local_11.7.0-1_amd64.deb
sudo dpkg -i cuda-repo-wsl-ubuntu-11-7-local_11.7.0-1_amd64.deb
sudo cp /var/cuda-repo-wsl-ubuntu-11-7-local/cuda-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cuda
fi
if python3 -c "import pkg_resources; pkg_resources.require(open('./finetune/requirements.txt',mode='r'))" &>/dev/null; then
echo "requirements satisfied"
else
python3 -m pip install -r ./finetune/requirements.txt
fi
echo "loading $loadModel"
modelInfo=$(python3 ./finetune/get_layer_and_embd.py $loadModel)
echo $modelInfo
python3 ./finetune/lora/train.py $modelInfo $@ --proj_dir lora-models --data_type binidx --lora \
--lora_parts=att,ffn,time,ln --strategy deepspeed_stage_2 --accelerator gpu

View File

@@ -0,0 +1,597 @@
# Copyright (c) 2021, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
# copied from fairseq/fairseq/data/indexed_dataset.py
# Removed IndexedRawTextDataset since it relied on Fairseq dictionary
# other slight modifications to remove fairseq dependencies
# Added document index to index file and made it accessible.
# An empty sentence no longer separates documents.
import os
import shutil
import struct
from functools import lru_cache
from itertools import accumulate
import numpy as np
import torch
def __best_fitting_dtype(vocab_size=None):
if vocab_size is not None and vocab_size < 65500:
return np.uint16
else:
return np.int32
def infer_dataset_impl(path):
if IndexedDataset.exists(path):
with open(index_file_path(path), "rb") as f:
magic = f.read(8)
if magic == IndexedDataset._HDR_MAGIC:
return "cached"
elif magic == MMapIndexedDataset.Index._HDR_MAGIC[:8]:
return "mmap"
else:
return None
else:
print(f"Dataset does not exist: {path}")
print(
"Path should be a basename that both .idx and .bin can be appended to get full filenames."
)
return None
def make_builder(out_file, impl, vocab_size=None):
if impl == "mmap":
return MMapIndexedDatasetBuilder(
out_file, dtype=__best_fitting_dtype(vocab_size)
)
else:
return IndexedDatasetBuilder(out_file)
def make_dataset(path, impl, skip_warmup=False):
if not IndexedDataset.exists(path):
print(f"Dataset does not exist: {path}")
print(
"Path should be a basename that both .idx and .bin can be appended to get full filenames."
)
return None
if impl == "infer":
impl = infer_dataset_impl(path)
if impl == "lazy" and IndexedDataset.exists(path):
return IndexedDataset(path)
elif impl == "cached" and IndexedDataset.exists(path):
return IndexedCachedDataset(path)
elif impl == "mmap" and MMapIndexedDataset.exists(path):
return MMapIndexedDataset(path, skip_warmup)
print(f"Unknown dataset implementation: {impl}")
return None
def dataset_exists(path, impl):
if impl == "mmap":
return MMapIndexedDataset.exists(path)
else:
return IndexedDataset.exists(path)
def read_longs(f, n):
a = np.empty(n, dtype=np.int64)
f.readinto(a)
return a
def write_longs(f, a):
f.write(np.array(a, dtype=np.int64))
dtypes = {
1: np.uint8,
2: np.int8,
3: np.int16,
4: np.int32,
5: np.int64,
6: np.float32,
7: np.float64,
8: np.uint16,
}
def code(dtype):
for k in dtypes.keys():
if dtypes[k] == dtype:
return k
raise ValueError(dtype)
def index_file_path(prefix_path):
return prefix_path + ".idx"
def data_file_path(prefix_path):
return prefix_path + ".bin"
def create_doc_idx(sizes):
doc_idx = [0]
for i, s in enumerate(sizes):
if s == 0:
doc_idx.append(i + 1)
return doc_idx
class IndexedDataset(torch.utils.data.Dataset):
"""Loader for IndexedDataset"""
_HDR_MAGIC = b"TNTIDX\x00\x00"
def __init__(self, path):
super().__init__()
self.path = path
self.data_file = None
self.read_index(path)
def read_index(self, path):
with open(index_file_path(path), "rb") as f:
magic = f.read(8)
assert magic == self._HDR_MAGIC, (
"Index file doesn't match expected format. "
"Make sure that --dataset-impl is configured properly."
)
version = f.read(8)
assert struct.unpack("<Q", version) == (1,)
code, self.element_size = struct.unpack("<QQ", f.read(16))
self.dtype = dtypes[code]
self._len, self.s = struct.unpack("<QQ", f.read(16))
self.doc_count = struct.unpack("<Q", f.read(8))
self.dim_offsets = read_longs(f, self._len + 1)
self.data_offsets = read_longs(f, self._len + 1)
self.sizes = read_longs(f, self.s)
self.doc_idx = read_longs(f, self.doc_count)
def read_data(self, path):
self.data_file = open(data_file_path(path), "rb", buffering=0)
def check_index(self, i):
if i < 0 or i >= self._len:
raise IndexError("index out of range")
def __del__(self):
if self.data_file:
self.data_file.close()
# @lru_cache(maxsize=8)
def __getitem__(self, idx):
if not self.data_file:
self.read_data(self.path)
if isinstance(idx, int):
i = idx
self.check_index(i)
tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]]
a = np.empty(tensor_size, dtype=self.dtype)
self.data_file.seek(self.data_offsets[i] * self.element_size)
self.data_file.readinto(a)
return a
elif isinstance(idx, slice):
start, stop, step = idx.indices(len(self))
if step != 1:
raise ValueError("Slices into indexed_dataset must be contiguous")
sizes = self.sizes[self.dim_offsets[start] : self.dim_offsets[stop]]
size = sum(sizes)
a = np.empty(size, dtype=self.dtype)
self.data_file.seek(self.data_offsets[start] * self.element_size)
self.data_file.readinto(a)
offsets = list(accumulate(sizes))
sents = np.split(a, offsets[:-1])
return sents
def __len__(self):
return self._len
def num_tokens(self, index):
return self.sizes[index]
def size(self, index):
return self.sizes[index]
@staticmethod
def exists(path):
return os.path.exists(index_file_path(path)) and os.path.exists(
data_file_path(path)
)
@property
def supports_prefetch(self):
return False # avoid prefetching to save memory
class IndexedCachedDataset(IndexedDataset):
def __init__(self, path):
super().__init__(path)
self.cache = None
self.cache_index = {}
@property
def supports_prefetch(self):
return True
def prefetch(self, indices):
if all(i in self.cache_index for i in indices):
return
if not self.data_file:
self.read_data(self.path)
indices = sorted(set(indices))
total_size = 0
for i in indices:
total_size += self.data_offsets[i + 1] - self.data_offsets[i]
self.cache = np.empty(total_size, dtype=self.dtype)
ptx = 0
self.cache_index.clear()
for i in indices:
self.cache_index[i] = ptx
size = self.data_offsets[i + 1] - self.data_offsets[i]
a = self.cache[ptx : ptx + size]
self.data_file.seek(self.data_offsets[i] * self.element_size)
self.data_file.readinto(a)
ptx += size
if self.data_file:
# close and delete data file after prefetch so we can pickle
self.data_file.close()
self.data_file = None
# @lru_cache(maxsize=8)
def __getitem__(self, idx):
if isinstance(idx, int):
i = idx
self.check_index(i)
tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]]
a = np.empty(tensor_size, dtype=self.dtype)
ptx = self.cache_index[i]
np.copyto(a, self.cache[ptx : ptx + a.size])
return a
elif isinstance(idx, slice):
# Hack just to make this work, can optimizer later if necessary
sents = []
for i in range(*idx.indices(len(self))):
sents.append(self[i])
return sents
class IndexedDatasetBuilder(object):
element_sizes = {
np.uint8: 1,
np.int8: 1,
np.int16: 2,
np.int32: 4,
np.int64: 8,
np.float32: 4,
np.float64: 8,
}
def __init__(self, out_file, dtype=np.int32):
self.out_file = open(out_file, "wb")
self.dtype = dtype
self.data_offsets = [0]
self.dim_offsets = [0]
self.sizes = []
self.element_size = self.element_sizes[self.dtype]
self.doc_idx = [0]
def add_item(self, np_array):
assert isinstance(np_array, np.ndarray) and np_array.dtype == self.dtype
bytes = self.out_file.write(np_array)
self.data_offsets.append(self.data_offsets[-1] + bytes / self.element_size)
for s in np_array.shape:
self.sizes.append(s)
self.dim_offsets.append(self.dim_offsets[-1] + len(np_array.shape))
def end_document(self):
self.doc_idx.append(len(self.sizes))
def merge_file_(self, another_file):
index = IndexedDataset(another_file)
assert index.dtype == self.dtype
begin = self.data_offsets[-1]
for offset in index.data_offsets[1:]:
self.data_offsets.append(begin + offset)
self.sizes.extend(index.sizes)
begin = self.dim_offsets[-1]
for dim_offset in index.dim_offsets[1:]:
self.dim_offsets.append(begin + dim_offset)
with open(data_file_path(another_file), "rb") as f:
while True:
data = f.read(1024)
if data:
self.out_file.write(data)
else:
break
def finalize(self, index_file):
self.out_file.close()
index = open(index_file, "wb")
index.write(b"TNTIDX\x00\x00")
index.write(struct.pack("<Q", 1))
index.write(struct.pack("<QQ", code(self.dtype), self.element_size))
index.write(struct.pack("<QQ", len(self.data_offsets) - 1, len(self.sizes)))
index.write(struct.pack("<Q", len(self.doc_idx)))
write_longs(index, self.dim_offsets)
write_longs(index, self.data_offsets)
write_longs(index, self.sizes)
write_longs(index, self.doc_idx)
index.close()
def _warmup_mmap_file(path):
with open(path, "rb") as stream:
while stream.read(100 * 1024 * 1024):
pass
class MMapIndexedDataset(torch.utils.data.Dataset):
class Index(object):
_HDR_MAGIC = b"MMIDIDX\x00\x00"
@classmethod
def writer(cls, path, dtype):
class _Writer(object):
def __enter__(self):
self._file = open(path, "wb")
# Write Magic string so we can check the file format then opening it again.
self._file.write(cls._HDR_MAGIC)
# Write version number
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", 1))
# Little endian unsigned 8 Bit integer
self._file.write(struct.pack("<B", code(dtype)))
return self
@staticmethod
def _get_pointers(sizes):
pointers = np.zeros(len(sizes), dtype=np.int64)
sizes = np.array(sizes, dtype=np.int64)
np.cumsum(sizes[:-1], out=pointers[1:])
pointers = pointers * dtype().itemsize
return pointers
def write(self, sizes, doc_idx):
pointers = self._get_pointers(sizes)
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", len(sizes)))
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", len(doc_idx)))
sizes = np.array(sizes, dtype=np.int32)
self._file.write(sizes.tobytes(order="C"))
del sizes
pointers = np.array(pointers, dtype=np.int64)
self._file.write(pointers.tobytes(order="C"))
del pointers
doc_idx = np.array(doc_idx, dtype=np.int64)
self._file.write(doc_idx.tobytes(order="C"))
def __exit__(self, exc_type, exc_val, exc_tb):
self._file.close()
return _Writer()
def __init__(self, path, skip_warmup=False):
with open(path, "rb") as stream:
magic_test = stream.read(9)
assert self._HDR_MAGIC == magic_test, (
"Index file doesn't match expected format. "
"Make sure that --dataset-impl is configured properly."
)
# Little endian unsigned 64 Bit integer
version = struct.unpack("<Q", stream.read(8))
assert (1,) == version
# Little endian unsigned 8 Bit integer
(dtype_code,) = struct.unpack("<B", stream.read(1))
self._dtype = dtypes[dtype_code]
self._dtype_size = self._dtype().itemsize
self._len = struct.unpack("<Q", stream.read(8))[0]
self._doc_count = struct.unpack("<Q", stream.read(8))[0]
offset = stream.tell()
if not skip_warmup:
print(" warming up index mmap file...")
_warmup_mmap_file(path)
self._bin_buffer_mmap = np.memmap(path, mode="r", order="C")
self._bin_buffer = memoryview(self._bin_buffer_mmap)
print(" reading sizes...")
self._sizes = np.frombuffer(
self._bin_buffer, dtype=np.int32, count=self._len, offset=offset
)
print(" reading pointers...")
self._pointers = np.frombuffer(
self._bin_buffer,
dtype=np.int64,
count=self._len,
offset=offset + self._sizes.nbytes,
)
print(" reading document index...")
self._doc_idx = np.frombuffer(
self._bin_buffer,
dtype=np.int64,
count=self._doc_count,
offset=offset + self._sizes.nbytes + self._pointers.nbytes,
)
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
@property
def dtype(self):
return self._dtype
@property
def sizes(self):
return self._sizes
@property
def doc_idx(self):
return self._doc_idx
@lru_cache(maxsize=8)
def __getitem__(self, i):
return self._pointers[i], self._sizes[i]
def __len__(self):
return self._len
def __init__(self, path, skip_warmup=False):
super().__init__()
self._path = None
self._index = None
self._bin_buffer = None
self._do_init(path, skip_warmup)
def __getstate__(self):
return self._path
def __setstate__(self, state):
self._do_init(state)
def _do_init(self, path, skip_warmup):
self._path = path
self._index = self.Index(index_file_path(self._path), skip_warmup)
if not skip_warmup:
print(" warming up data mmap file...")
_warmup_mmap_file(data_file_path(self._path))
print(" creating numpy buffer of mmap...")
self._bin_buffer_mmap = np.memmap(
data_file_path(self._path), mode="r", order="C"
)
print(" creating memory view of numpy buffer...")
self._bin_buffer = memoryview(self._bin_buffer_mmap)
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
del self._index
def __len__(self):
return len(self._index)
# @lru_cache(maxsize=8)
def __getitem__(self, idx):
if isinstance(idx, int):
ptr, size = self._index[idx]
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
)
return np_array
elif isinstance(idx, slice):
start, stop, step = idx.indices(len(self))
if step != 1:
raise ValueError("Slices into indexed_dataset must be contiguous")
ptr = self._index._pointers[start]
sizes = self._index._sizes[idx]
offsets = list(accumulate(sizes))
total_size = sum(sizes)
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=total_size, offset=ptr
)
sents = np.split(np_array, offsets[:-1])
return sents
def get(self, idx, offset=0, length=None):
"""Retrieves a single item from the dataset with the option to only
return a portion of the item.
get(idx) is the same as [idx] but get() does not support slicing.
"""
ptr, size = self._index[idx]
if length is None:
length = size - offset
ptr += offset * np.dtype(self._index.dtype).itemsize
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=length, offset=ptr
)
return np_array
@property
def sizes(self):
return self._index.sizes
@property
def doc_idx(self):
return self._index.doc_idx
def get_doc_idx(self):
return self._index._doc_idx
def set_doc_idx(self, doc_idx_):
self._index._doc_idx = doc_idx_
@property
def supports_prefetch(self):
return False
@staticmethod
def exists(path):
return os.path.exists(index_file_path(path)) and os.path.exists(
data_file_path(path)
)
class MMapIndexedDatasetBuilder(object):
def __init__(self, out_file, dtype=np.int64):
self._data_file = open(out_file, "wb")
self._dtype = dtype
self._sizes = []
self._doc_idx = [0]
@property
def dtype(self):
return self._dtype
def add_item(self, np_array):
assert isinstance(np_array, np.ndarray) and np_array.dtype == self.dtype
self._data_file.write(np_array.tobytes(order="C"))
self._sizes.append(np_array.size)
def end_document(self):
self._doc_idx.append(len(self._sizes))
def merge_file_(self, another_file):
# Concatenate index
index = MMapIndexedDataset.Index(index_file_path(another_file))
assert index.dtype == self._dtype
for size in index.sizes:
self._sizes.append(size)
# Concatenate data
with open(data_file_path(another_file), "rb") as f:
shutil.copyfileobj(f, self._data_file)
def finalize(self, index_file):
self._data_file.close()
with MMapIndexedDataset.Index.writer(index_file, self._dtype) as index:
index.write(self._sizes, self._doc_idx)

View File

@@ -0,0 +1,243 @@
# Copyright (c) 2021, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Processing data for pretraining."""
import argparse
import multiprocessing
import os
import sys
import lm_dataformat as lmd
import numpy as np
sys.path.append(
os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))
)
import time
import tqdm
import ftfy
from tokenizer import build_tokenizer
import indexed_dataset
from threading import Semaphore
class Encoder(object):
def __init__(self, args):
self.args = args
def initializer(self):
# Use Encoder class as a container for global data
Encoder.tokenizer = build_tokenizer(self.args)
def encode(self, text):
if self.args.ftfy:
text = ftfy.fix_text(text)
ids = {}
for key in self.args.jsonl_keys:
doc_ids = []
text_ids = Encoder.tokenizer.tokenize(text)
if len(text_ids) > 0:
doc_ids.append(text_ids)
if self.args.append_eod:
doc_ids[-1].append(Encoder.tokenizer.eod)
ids[key] = doc_ids
return ids, len(text)
def get_args():
parser = argparse.ArgumentParser()
group = parser.add_argument_group(title="input data")
group.add_argument(
"--input",
type=str,
required=True,
help="Path to input jsonl files or lmd archive(s) - if using multiple archives, put them in a comma separated "
"list",
)
group.add_argument(
"--jsonl-keys",
nargs="+",
default=["text"],
help="space separate listed of keys to extract from jsonl. Defa",
)
group.add_argument(
"--num-docs",
default=None,
help="Optional: Number of documents in the input data (if known) for an accurate progress bar.",
type=int,
)
group = parser.add_argument_group(title="tokenizer")
group.add_argument(
"--tokenizer-type",
type=str,
required=True,
choices=[
"HFGPT2Tokenizer",
"HFTokenizer",
"GPT2BPETokenizer",
"CharLevelTokenizer",
"TiktokenTokenizer",
"RWKVTokenizer",
],
help="What type of tokenizer to use.",
)
group.add_argument(
"--vocab-file", type=str, default=None, help="Path to the vocab file"
)
group.add_argument(
"--merge-file",
type=str,
default=None,
help="Path to the BPE merge file (if necessary).",
)
group.add_argument(
"--append-eod",
action="store_true",
help="Append an <eod> token to the end of a document.",
)
group.add_argument("--ftfy", action="store_true", help="Use ftfy to clean text")
group = parser.add_argument_group(title="output data")
group.add_argument(
"--output-prefix",
type=str,
required=True,
help="Path to binary output file without suffix",
)
group.add_argument(
"--dataset-impl",
type=str,
default="mmap",
choices=["lazy", "cached", "mmap"],
help="Dataset implementation to use. Default: mmap",
)
group = parser.add_argument_group(title="runtime")
group.add_argument(
"--workers", type=int, default=1, help="Number of worker processes to launch"
)
group.add_argument(
"--log-interval",
type=int,
default=100,
help="Interval between progress updates",
)
args = parser.parse_args()
args.keep_empty = False
# some default/dummy values for the tokenizer
args.rank = 0
args.make_vocab_size_divisible_by = 128
args.model_parallel_size = 1
return args
def yield_from_files(fnames: list, semaphore):
"""
Iterator over input documents using lm_dataformat. Should be able to handle jsons / texts /
other compressed formats. Also filters out empty documents.
:param fnames: list of filenames
"""
def yielder(fname, semaphore):
for f in filter(lambda x: x, lmd.Reader(fname).stream_data()):
semaphore.acquire()
yield f
for fname in fnames:
semaphore.acquire()
yield from yielder(fname, semaphore)
def main():
args = get_args()
encoder = Encoder(args)
tokenizer = build_tokenizer(args)
print(f"Vocab size: {tokenizer.vocab_size}")
print(f"Output prefix: {args.output_prefix}")
# build a semaphore object to stop `yield_from_files` from getting ahead of encoder.encode and
# hence building up memory
semaphore = Semaphore(10000 + args.workers)
# use multiprocessing to iterate over input documents
fin = yield_from_files(args.input.split(","), semaphore)
if args.workers > 1:
pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer)
encoded_docs = pool.imap(encoder.encode, fin, chunksize=25)
else:
encoder.initializer()
encoded_docs = (encoder.encode(doc) for doc in fin)
# make a dataset builder for each key in args.jsonl_keys
# each key will output to a different file beginning with args.output_prefix
output_bin_files = {}
output_idx_files = {}
builders = {}
for key in args.jsonl_keys:
output_bin_files[key] = "{}_{}_{}.bin".format(
args.output_prefix, key, "document"
)
output_idx_files[key] = "{}_{}_{}.idx".format(
args.output_prefix, key, "document"
)
builders[key] = indexed_dataset.make_builder(
output_bin_files[key],
impl=args.dataset_impl,
vocab_size=tokenizer.vocab_size,
)
# actually do tokenization
proc_start = time.time()
total_bytes_processed = 0
pbar = tqdm.tqdm()
for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1):
total_bytes_processed += bytes_processed
# release semaphore so `yield_from_files` can add another file to the buffer
semaphore.release()
# add each tokenized document / sentence
for key, sentences in doc.items():
for sentence in sentences:
builders[key].add_item(np.array(sentence, dtype=builders[key].dtype))
# separate with eos token
builders[key].end_document()
# log progress
if i % args.log_interval == 0:
current = time.time()
elapsed = current - proc_start
mbs = total_bytes_processed / elapsed / 1024 / 1024
pbar.set_description(
f"Processed {i}{'' if args.num_docs is None else '/' + str(args.num_docs)} documents ({i / elapsed:0.2f} docs/s, {mbs:0.2f} MB/s)."
)
if i != 0:
pbar.update(args.log_interval)
# save output file
for key in args.jsonl_keys:
builders[key].finalize(output_idx_files[key])
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,232 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
# Source: https://github.com/BlinkDL/ChatRWKV/blob/main/tokenizer/rwkv_tokenizer.py
########################################################################################################
import os, sys, time, random
print('''
#######################################################################################################################
This tokenizer is not used in any RWKV models yet. I plan to use it for the future multilang RWKV models.
Benefits:
* Good support of most languages, from European to CJK to Arabic and Hindi and more.
* Clean vocab. Good for code too. Vocab size = 65525 (use 0 for <|endoftext|>).
* Good at numbers: the numerical tokens are '0'~'9', '10'~'99', ' 0'~' 9', ' 10'~' 99'.
* Very easy tokenization:
** The input text must be in UTF-8.
** Greedy encoding: always pick the longest (in bytes) token (with the highest id) that matches your UTF-8 bytes.
* The tokenization result is surprisingly good, because the vocab respects word boundaries and UTF-8 boundaries.
For 10x faster speed:
mypyc rwkv_tokenizer.py
python3 -c "import rwkv_tokenizer"
#######################################################################################################################
''')
########################################################################################################
# Tokenizer #1 (reference, naive, slow)
########################################################################################################
class RWKV_TOKENIZER():
table = None # : list[list[list[bytes]]] = None
good = None # : list[set[int]]
wlen = None # : list[int]
def __init__(self, file_name):
self.vocab_size = 65525
self.idx2token = {}
sorted = [] # must be already sorted
lines = open(file_name, "r", encoding="utf-8").readlines()
for l in lines:
idx = int(l[:l.index(' ')])
x = eval(l[l.index(' '):l.rindex(' ')])
x = x.encode("utf-8") if isinstance(x, str) else x
assert isinstance(x, bytes)
assert len(x) == int(l[l.rindex(' '):])
sorted += [x]
self.idx2token[idx] = x
self.token2idx = {}
for k, v in self.idx2token.items():
self.token2idx[v] = int(k)
# precompute some tables for fast matching
self.table = [[[] for j in range(256)] for i in range(256)]
self.good = [set() for i in range(256)]
self.wlen = [0 for i in range(256)]
for i in reversed(range(len(sorted))): # reverse order - match longer tokens first
s = sorted[i]
if len(s) >= 2:
s0 = int(s[0])
s1 = int(s[1])
self.table[s0][s1] += [s]
self.wlen[s0] = max(self.wlen[s0], len(s))
self.good[s0].add(s1)
def encodeBytes(self, src: bytes):
src_len: int = len(src)
tokens = []
i: int = 0
while i < src_len:
s: bytes = src[i : i + 1]
if i < src_len - 1:
s1: int = int(src[i + 1])
s0: int = int(src[i])
if s1 in self.good[s0]:
sss: bytes = src[i : i + self.wlen[s0]]
try:
s = next(filter(sss.startswith, self.table[s0][s1]))
except:
pass
tokens.append(self.token2idx[s])
i += len(s)
return tokens
def decodeBytes(self, tokens):
return b''.join(map(lambda i: self.idx2token[i], tokens))
def encode(self, src: str):
return self.encodeBytes(src.encode("utf-8"))
def decode(self, tokens):
return self.decodeBytes(tokens).decode('utf-8')
def token_to_id(self, token):
return self.token2idx[token]
def get_vocab_size(self):
return self.vocab_size
def get_vocab(self):
return self.idx2token
def printTokens(self, tokens):
for i in tokens:
s = self.idx2token[i]
try:
s = s.decode('utf-8')
except:
pass
print(f'{repr(s)}{i}', end=' ')
# print(repr(s), i)
print()
########################################################################################################
# Tokenizer #2 (trie, faster) https://github.com/TkskKurumi/ChatRWKV-TRIE-Tokenizer
########################################################################################################
class TRIE:
__slots__ = tuple("ch,to,values,front".split(","))
to:list
values:set
def __init__(self, front=None, ch=None):
self.ch = ch
self.to = [None for ch in range(256)]
self.values = set()
self.front = front
def __repr__(self):
fr = self
ret = []
while(fr!=None):
if(fr.ch!=None):
ret.append(fr.ch)
fr = fr.front
return "<TRIE %s %s>"%(ret[::-1], self.values)
def add(self, key:bytes, idx:int=0, val=None):
if(idx == len(key)):
if(val is None):
val = key
self.values.add(val)
return self
ch = key[idx]
if(self.to[ch] is None):
self.to[ch] = TRIE(front=self, ch=ch)
return self.to[ch].add(key, idx=idx+1, val=val)
def find_longest(self, key:bytes, idx:int=0):
u:TRIE = self
ch:int = key[idx]
while(u.to[ch] is not None):
u = u.to[ch]
idx += 1
if(u.values):
ret = idx, u, u.values
if(idx==len(key)):
break
ch = key[idx]
return ret
class TRIE_TOKENIZER():
def __init__(self, file_name):
self.vocab_size = 65525
self.idx2token = {}
sorted = [] # must be already sorted
with open(file_name, "r", encoding="utf-8") as f:
lines = f.readlines()
for l in lines:
idx = int(l[:l.index(' ')])
x = eval(l[l.index(' '):l.rindex(' ')])
x = x.encode("utf-8") if isinstance(x, str) else x
assert isinstance(x, bytes)
assert len(x) == int(l[l.rindex(' '):])
sorted += [x]
self.idx2token[idx] = x
self.token2idx = {}
for k,v in self.idx2token.items():
self.token2idx[v] = int(k)
self.root = TRIE()
for t, i in self.token2idx.items():
_ = self.root.add(t, val=(t, i))
def encodeBytes(self, src:bytes):
idx:int = 0
tokens = []
while (idx < len(src)):
_idx:int = idx
idx, _, values = self.root.find_longest(src, idx)
assert(idx != _idx)
_, token = next(iter(values))
tokens.append(token)
return tokens
def decodeBytes(self, tokens):
return b''.join(map(lambda i: self.idx2token[i], tokens))
def encode(self, src):
return self.encodeBytes(src.encode("utf-8"))
def decode(self, tokens):
return self.decodeBytes(tokens).decode('utf-8')
def get_vocab_size(self):
return self.vocab_size
def get_vocab(self):
return self.idx2token
def printTokens(self, tokens):
for i in tokens:
s = self.idx2token[i]
try:
s = s.decode('utf-8')
except:
pass
print(f'{repr(s)}{i}', end=' ')
print()

View File

@@ -0,0 +1,205 @@
# Copyright (c) 2021, EleutherAI
# This file is based on code by the authors denoted below and has been modified from its original version.
#
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Megatron tokenizers."""
from abc import ABC
from abc import abstractmethod
from tokenizers import Tokenizer
from rwkv_tokenizer import RWKV_TOKENIZER, TRIE_TOKENIZER
from typing import List, Union
def build_tokenizer(args):
"""Initialize tokenizer."""
if args.rank == 0:
print("> building {} tokenizer ...".format(args.tokenizer_type), flush=True)
# Select and instantiate the tokenizer.
if args.tokenizer_type.lower() == "HFTokenizer".lower():
assert args.vocab_file is not None
tokenizer = HFTokenizer(args.vocab_file)
elif args.tokenizer_type.lower() == "RWKVTokenizer".lower():
assert args.vocab_file is not None
tokenizer = RWKVTokenizer(args.vocab_file)
else:
raise NotImplementedError(
"{} tokenizer is not " "implemented.".format(args.tokenizer_type)
)
# Add vocab size.
args.padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size, args)
return tokenizer
def _vocab_size_with_padding(orig_vocab_size, args):
"""Pad vocab size so it is divisible by model parallel size and
still having GPU friendly size."""
after = orig_vocab_size
multiple = args.make_vocab_size_divisible_by * args.model_parallel_size
while (after % multiple) != 0:
after += 1
if args.rank == 0:
print(
" > padded vocab (size: {}) with {} dummy tokens "
"(new size: {})".format(orig_vocab_size, after - orig_vocab_size, after),
flush=True,
)
return after
class AbstractTokenizer(ABC):
"""Abstract class for tokenizer."""
def __init__(self, name):
self.name = name
super().__init__()
@property
@abstractmethod
def vocab_size(self):
pass
@property
@abstractmethod
def vocab(self):
"""Dictionary from vocab text token to id token."""
pass
@property
@abstractmethod
def inv_vocab(self):
"""Dictionary from vocab id token to text token."""
pass
@abstractmethod
def tokenize(self, text):
pass
def detokenize(self, token_ids):
raise NotImplementedError(
"detokenizer is not implemented for {} " "tokenizer".format(self.name)
)
@property
def cls(self):
raise NotImplementedError(
"CLS is not provided for {} " "tokenizer".format(self.name)
)
@property
def sep(self):
raise NotImplementedError(
"SEP is not provided for {} " "tokenizer".format(self.name)
)
@property
def pad(self):
raise NotImplementedError(
"PAD is not provided for {} " "tokenizer".format(self.name)
)
@property
def eod(self):
raise NotImplementedError(
"EOD is not provided for {} " "tokenizer".format(self.name)
)
@property
def mask(self):
raise NotImplementedError(
"MASK is not provided for {} " "tokenizer".format(self.name)
)
class HFTokenizer(AbstractTokenizer):
"""Designed to Integrate HF's Tokenizer library."""
def __init__(self, vocab_file):
name = "HFTokenizer"
super().__init__(name)
self.tokenizer = Tokenizer.from_file(vocab_file)
self.eod_id = self.tokenizer.token_to_id("<|endoftext|>")
self.pad_id = self.tokenizer.token_to_id("<|padding|>")
@property
def vocab_size(self):
return self.tokenizer.get_vocab_size()
@property
def vocab(self):
return self.tokenizer.get_vocab()
@property
def inv_vocab(self):
return self.tokenizer.decoder
def tokenize(self, text: str):
return self.tokenizer.encode(text).ids
def tokenize_batch(self, text_batch: Union[List[str], str]):
return self.tokenizer.encode_batch(text_batch)
def detokenize(self, token_ids):
return self.tokenizer.decode(token_ids)
@property
def eod(self):
return self.eod_id
class RWKVTokenizer(AbstractTokenizer):
"""RWKV Worlds Tokenizer."""
def __init__(self, vocab_file='rwkv_vocab_v20230424.txt'):
name = "RWKVTokenizer"
super().__init__(name)
self.tokenizer = TRIE_TOKENIZER(vocab_file)
self.eod_id = 0 # self.tokenizer.token_to_id("<|endoftext|>")
# self.pad_id = self.tokenizer.token_to_id("<|padding|>")
@property
def vocab_size(self):
return self.tokenizer.get_vocab_size()
@property
def vocab(self):
return self.tokenizer.get_vocab()
@property
def inv_vocab(self):
return self.tokenizer.decode
def tokenize(self, text: str):
return self.tokenizer.encode(text)
def tokenize_batch(self, text_batch: Union[List[str], str]):
return self.tokenizer.encode_batch(text_batch)
def detokenize(self, token_ids):
return self.tokenizer.decode(token_ids)
@property
def eod(self):
return self.eod_id

133
finetune/lora/cuda/wkv_cuda.cu vendored Normal file
View File

@@ -0,0 +1,133 @@
#include <stdio.h>
#include <assert.h>
#define MIN_VALUE (-1e38)
template <typename F>
__global__ void kernel_forward(const int B, const int T, const int C,
const F *__restrict__ const _w, const F *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
F *__restrict__ const _y) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
F u = _u[_c];
F w = _w[_c];
const F *__restrict__ const k = _k + _offset;
const F *__restrict__ const v = _v + _offset;
F *__restrict__ const y = _y + _offset;
// aa and bb are running sums divided by exp(pp) (to avoid overflow)
F aa = 0, bb = 0, pp = MIN_VALUE;
for (int i = 0; i < T; i++) {
const int ii = i * C;
const F kk = k[ii];
const F vv = v[ii];
F ww = u + kk;
F p = max(pp, ww);
F e1 = exp(pp - p);
F e2 = exp(ww - p);
y[ii] = (e1 * aa + e2 * vv) / (e1 * bb + e2);
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
}
template <typename F>
__global__ void kernel_backward(const int B, const int T, const int C,
const F *__restrict__ const _w, const F *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
const F *__restrict__ const _y, const F *__restrict__ const _gy,
F *__restrict__ const _gw, F *__restrict__ const _gu, F *__restrict__ const _gk, F *__restrict__ const _gv) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
F u = _u[_c];
F w = _w[_c];
const F *__restrict__ const k = _k + _offset;
const F *__restrict__ const v = _v + _offset;
const F *__restrict__ const y = _y + _offset;
const F *__restrict__ const gy = _gy + _offset;
F *__restrict__ const gk = _gk + _offset;
F *__restrict__ const gv = _gv + _offset;
F q[Tmax], r[Tmax];
F gw = 0, gu = 0, aa = 0, bb = 0, ga = 0, gb = 0, pp = MIN_VALUE;
for (int i = 0; i < T; i++) {
const int ii = i * C;
const F kk = k[ii];
const F vv = v[ii];
const F yy = y[ii];
F ww = u + kk;
F p = max(pp, ww);
F e1 = exp(pp - p);
F e2 = exp(ww - p);
const F qq = gy[ii] / (e1 * bb + e2);
gw += (ga - gb * yy) * e1 * qq;
gu += (vv - yy) * e2 * qq;
q[i] = qq;
r[i] = ww - p;
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
ga = e1 * (aa + ga);
gb = e1 * (bb + gb);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
const int _offsetBC = _b * C + _c;
_gw[_offsetBC] = gw * _w[_c]; // multiply by w because of w -> -exp(w) in python forward()
_gu[_offsetBC] = gu;
aa = 0, bb = 0, pp = MIN_VALUE;
for (int i = T - 1; i >= 0; i--) {
const int ii = i * C;
const F kk = k[ii];
const F vv = v[ii];
const F yy = y[ii];
const F qq = q[i];
const F rr = r[i];
F e1 = qq * exp(rr);
F e2 = exp(kk + pp);
gk[ii] = e1 * (vv - yy) + e2 * (aa * vv + bb);
gv[ii] = e1 + e2 * aa;
const F ww = w + pp;
const F www = rr - u - kk;
const F p = max(ww, www);
e1 = exp(ww - p);
e2 = qq * exp(www - p);
aa = e1 * aa + e2;
bb = e1 * bb - e2 * yy;
pp = p;
}
}
void cuda_forward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y);
}
void cuda_backward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y, float *gy, float *gw, float *gu, float *gk, float *gv) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_backward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, gy, gw, gu, gk, gv);
}

132
finetune/lora/cuda/wkv_cuda_bf16.cu vendored Normal file
View File

@@ -0,0 +1,132 @@
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
#define MIN_VALUE (-1e38)
typedef at::BFloat16 bf16;
__global__ void kernel_forward(const int B, const int T, const int C,
const float *__restrict__ const _w, const bf16 *__restrict__ const _u, const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v,
bf16 *__restrict__ const _y) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
float u = float(_u[_c]);
float w = _w[_c];
const bf16 *__restrict__ const k = _k + _offset;
const bf16 *__restrict__ const v = _v + _offset;
bf16 *__restrict__ const y = _y + _offset;
// aa and bb are running sums divided by exp(pp) (to avoid overflow)
float aa = 0, bb = 0, pp = MIN_VALUE;
for (int i = 0; i < T; i++) {
const int ii = i * C;
const float kk = float(k[ii]);
const float vv = float(v[ii]);
float ww = u + kk;
float p = max(pp, ww);
float e1 = exp(pp - p);
float e2 = exp(ww - p);
y[ii] = bf16((e1 * aa + e2 * vv) / (e1 * bb + e2));
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
}
__global__ void kernel_backward(const int B, const int T, const int C,
const float *__restrict__ const _w, const bf16 *__restrict__ const _u, const bf16 *__restrict__ const _k, const bf16 *__restrict__ const _v,
const bf16 *__restrict__ const _y, const bf16 *__restrict__ const _gy,
bf16 *__restrict__ const _gw, bf16 *__restrict__ const _gu, bf16 *__restrict__ const _gk, bf16 *__restrict__ const _gv) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
float u = float(_u[_c]);
float w = _w[_c];
const bf16 *__restrict__ const k = _k + _offset;
const bf16 *__restrict__ const v = _v + _offset;
const bf16 *__restrict__ const y = _y + _offset;
const bf16 *__restrict__ const gy = _gy + _offset;
bf16 *__restrict__ const gk = _gk + _offset;
bf16 *__restrict__ const gv = _gv + _offset;
float q[Tmax], r[Tmax];
float gw = 0, gu = 0, aa = 0, bb = 0, ga = 0, gb = 0, pp = MIN_VALUE;
for (int i = 0; i < T; i++) {
const int ii = i * C;
const float kk = float(k[ii]);
const float vv = float(v[ii]);
const float yy = float(y[ii]);
float ww = u + kk;
float p = max(pp, ww);
float e1 = exp(pp - p);
float e2 = exp(ww - p);
const float qq = float(gy[ii]) / (e1 * bb + e2);
gw += (ga - gb * yy) * e1 * qq;
gu += (vv - yy) * e2 * qq;
q[i] = qq;
r[i] = ww - p;
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
ga = e1 * (aa + ga);
gb = e1 * (bb + gb);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
const int _offsetBC = _b * C + _c;
_gw[_offsetBC] = bf16(gw * _w[_c]); // multiply by w because of w -> -exp(w) in python forward()
_gu[_offsetBC] = bf16(gu);
aa = 0, bb = 0, pp = MIN_VALUE;
for (int i = T - 1; i >= 0; i--) {
const int ii = i * C;
const float kk = float(k[ii]);
const float vv = float(v[ii]);
const float yy = float(y[ii]);
const float qq = q[i];
const float rr = r[i];
float e1 = qq * exp(rr);
float e2 = exp(kk + pp);
gk[ii] = bf16(e1 * (vv - yy) + e2 * (aa * vv + bb));
gv[ii] = bf16(e1 + e2 * aa);
const float ww = w + pp;
const float www = rr - u - kk;
const float p = max(ww, www);
e1 = exp(ww - p);
e2 = qq * exp(www - p);
aa = e1 * aa + e2;
bb = e1 * bb - e2 * yy;
pp = p;
}
}
void cuda_forward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y);
}
void cuda_backward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, bf16 *gy, bf16 *gw, bf16 *gu, bf16 *gk, bf16 *gv) {
dim3 threadsPerBlock( min(C, 32) ); // requires --maxrregcount 60 for optimal performance
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_backward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, gy, gw, gu, gk, gv);
}

21
finetune/lora/cuda/wkv_op.cpp vendored Normal file
View File

@@ -0,0 +1,21 @@
#include <torch/extension.h>
void cuda_forward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y);
void cuda_backward(int B, int T, int C, float *w, float *u, float *k, float *v, float *y, float *gy, float *gw, float *gu, float *gk, float *gv);
void forward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y) {
cuda_forward(B, T, C, w.data_ptr<float>(), u.data_ptr<float>(), k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>());
}
void backward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y, torch::Tensor &gy, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gk, torch::Tensor &gv) {
cuda_backward(B, T, C, w.data_ptr<float>(), u.data_ptr<float>(), k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>(), gy.data_ptr<float>(), gw.data_ptr<float>(), gu.data_ptr<float>(), gk.data_ptr<float>(), gv.data_ptr<float>());
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "wkv forward");
m.def("backward", &backward, "wkv backward");
}
TORCH_LIBRARY(wkv, m) {
m.def("forward", forward);
m.def("backward", backward);
}

25
finetune/lora/cuda/wkv_op_bf16.cpp vendored Normal file
View File

@@ -0,0 +1,25 @@
#include <torch/extension.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
void cuda_forward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y);
void cuda_backward(int B, int T, int C, float *w, bf16 *u, bf16 *k, bf16 *v, bf16 *y, bf16 *gy, bf16 *gw, bf16 *gu, bf16 *gk, bf16 *gv);
void forward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y) {
cuda_forward(B, T, C, w.data_ptr<float>(), u.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), y.data_ptr<bf16>());
}
void backward(int64_t B, int64_t T, int64_t C, torch::Tensor &w, torch::Tensor &u, torch::Tensor &k, torch::Tensor &v, torch::Tensor &y,
torch::Tensor &gy, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gk, torch::Tensor &gv) {
cuda_backward(B, T, C, w.data_ptr<float>(), u.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), y.data_ptr<bf16>(),
gy.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>());
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "wkv forward");
m.def("backward", &backward, "wkv backward");
}
TORCH_LIBRARY(wkv, m) {
m.def("forward", forward);
m.def("backward", backward);
}

53
finetune/lora/merge_lora.py vendored Normal file
View File

@@ -0,0 +1,53 @@
from collections import OrderedDict
import os
import sys
from typing import Dict
import typing
import torch
if '-h' in sys.argv or '--help' in sys.argv:
print(f'Usage: python3 {sys.argv[0]} [--use-gpu] <lora_alpha> <base_model.pth> <lora_checkpoint.pth> <output.pth>')
if sys.argv[1] == '--use-gpu':
device = 'cuda'
lora_alpha, base_model, lora, output = float(sys.argv[2]), sys.argv[3], sys.argv[4], sys.argv[5]
else:
device = 'cpu'
lora_alpha, base_model, lora, output = float(sys.argv[1]), sys.argv[2], sys.argv[3], sys.argv[4]
with torch.no_grad():
w: Dict[str, torch.Tensor] = torch.load(base_model, map_location='cpu')
# merge LoRA-only slim checkpoint into the main weights
w_lora: Dict[str, torch.Tensor] = torch.load(lora, map_location='cpu')
for k in w_lora.keys():
w[k] = w_lora[k]
output_w: typing.OrderedDict[str, torch.Tensor] = OrderedDict()
# merge LoRA weights
keys = list(w.keys())
for k in keys:
if k.endswith('.weight'):
prefix = k[:-len('.weight')]
lora_A = prefix + '.lora_A'
lora_B = prefix + '.lora_B'
if lora_A in keys:
assert lora_B in keys
print(f'merging {lora_A} and {lora_B} into {k}')
assert w[lora_B].shape[1] == w[lora_A].shape[0]
lora_r = w[lora_B].shape[1]
w[k] = w[k].to(device=device)
w[lora_A] = w[lora_A].to(device=device)
w[lora_B] = w[lora_B].to(device=device)
w[k] += w[lora_B] @ w[lora_A] * (lora_alpha / lora_r)
output_w[k] = w[k].to(device='cpu', copy=True)
del w[k]
del w[lora_A]
del w[lora_B]
continue
if 'lora' not in k:
print(f'retaining {k}')
output_w[k] = w[k].clone()
del w[k]
torch.save(output_w, output)

0
finetune/lora/src/__init__.py vendored Normal file
View File

269
finetune/lora/src/binidx.py vendored Normal file
View File

@@ -0,0 +1,269 @@
from lib2to3.pgen2 import token
import os
import torch
import numpy as np
import shutil
import struct
from functools import lru_cache
from itertools import accumulate
def print_rank_0(*message):
pass
# """If distributed is initialized print only on rank 0."""
# if torch.distributed.is_initialized():
# if torch.distributed.get_rank() == 0:
# print(*message, flush=True)
# else:
# print(*message, flush=True)
def _warmup_mmap_file(path):
pass
# with open(path, "rb") as stream:
# while stream.read(100 * 1024 * 1024):
# pass
dtypes = {
1: np.uint8,
2: np.int8,
3: np.int16,
4: np.int32,
5: np.int64,
6: float,
7: np.double,
8: np.uint16,
}
def code(dtype):
for k in dtypes.keys():
if dtypes[k] == dtype:
return k
raise ValueError(dtype)
def index_file_path(prefix_path):
return prefix_path + ".idx"
def data_file_path(prefix_path):
return prefix_path + ".bin"
class MMapIndexedDataset(torch.utils.data.Dataset):
class Index(object):
_HDR_MAGIC = b"MMIDIDX\x00\x00"
@classmethod
def writer(cls, path, dtype):
class _Writer(object):
def __enter__(self):
self._file = open(path, "wb")
# Write Magic string so we can check the file format then opening it again.
self._file.write(cls._HDR_MAGIC)
# Write version number
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", 1))
# Little endian unsigned 8 Bit integer
self._file.write(struct.pack("<B", code(dtype)))
return self
@staticmethod
def _get_pointers(sizes):
dtype_size = dtype().itemsize
address = 0
pointers = []
for size in sizes:
pointers.append(address)
address += size * dtype_size
return pointers
def write(self, sizes, doc_idx):
pointers = self._get_pointers(sizes)
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", len(sizes)))
# Little endian unsigned 64 Bit integer
self._file.write(struct.pack("<Q", len(doc_idx)))
sizes = np.array(sizes, dtype=np.int32)
self._file.write(sizes.tobytes(order="C"))
del sizes
pointers = np.array(pointers, dtype=np.int64)
self._file.write(pointers.tobytes(order="C"))
del pointers
doc_idx = np.array(doc_idx, dtype=np.int64)
self._file.write(doc_idx.tobytes(order="C"))
def __exit__(self, exc_type, exc_val, exc_tb):
self._file.close()
return _Writer()
def __init__(self, path, skip_warmup=False):
with open(path, "rb") as stream:
magic_test = stream.read(9)
assert self._HDR_MAGIC == magic_test, (
"Index file doesn't match expected format. "
"Make sure that --dataset-impl is configured properly."
)
# Little endian unsigned 64 Bit integer
version = struct.unpack("<Q", stream.read(8))
assert (1,) == version
# Little endian unsigned 8 Bit integer
(dtype_code,) = struct.unpack("<B", stream.read(1))
self._dtype = dtypes[dtype_code]
self._dtype_size = self._dtype().itemsize
self._len = struct.unpack("<Q", stream.read(8))[0]
self._doc_count = struct.unpack("<Q", stream.read(8))[0]
offset = stream.tell()
if not skip_warmup:
print_rank_0(" warming up index mmap file...")
_warmup_mmap_file(path)
self._bin_buffer_mmap = np.memmap(path, mode="r", order="C")
self._bin_buffer = memoryview(self._bin_buffer_mmap)
print_rank_0(" reading sizes...")
self._sizes = np.frombuffer(
self._bin_buffer, dtype=np.int32, count=self._len, offset=offset
)
print_rank_0(" reading pointers...")
self._pointers = np.frombuffer(
self._bin_buffer,
dtype=np.int64,
count=self._len,
offset=offset + self._sizes.nbytes,
)
print_rank_0(" reading document index...")
self._doc_idx = np.frombuffer(
self._bin_buffer,
dtype=np.int64,
count=self._doc_count,
offset=offset + self._sizes.nbytes + self._pointers.nbytes,
)
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
@property
def dtype(self):
return self._dtype
@property
def sizes(self):
return self._sizes
@property
def doc_idx(self):
return self._doc_idx
@lru_cache(maxsize=8)
def __getitem__(self, i):
return self._pointers[i], self._sizes[i]
def __len__(self):
return self._len
def __init__(self, path, skip_warmup=False):
super().__init__()
self._path = None
self._index = None
self._bin_buffer = None
self._do_init(path, skip_warmup)
def __getstate__(self):
return self._path
def __setstate__(self, state):
self._do_init(state)
def _do_init(self, path, skip_warmup):
self._path = path
self._index = self.Index(index_file_path(self._path), skip_warmup)
if not skip_warmup:
print_rank_0(" warming up data mmap file...")
_warmup_mmap_file(data_file_path(self._path))
print_rank_0(" creating numpy buffer of mmap...")
self._bin_buffer_mmap = np.memmap(
data_file_path(self._path), mode="r", order="C"
)
print_rank_0(" creating memory view of numpy buffer...")
self._bin_buffer = memoryview(self._bin_buffer_mmap)
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
del self._index
def __len__(self):
return len(self._index)
# @lru_cache(maxsize=8)
def __getitem__(self, idx):
if isinstance(idx, int):
ptr, size = self._index[idx]
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
)
return np_array
elif isinstance(idx, slice):
start, stop, step = idx.indices(len(self))
if step != 1:
raise ValueError(
"Slices into indexed_dataset must be contiguous")
ptr = self._index._pointers[start]
sizes = self._index._sizes[idx]
offsets = list(accumulate(sizes))
total_size = sum(sizes)
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=total_size, offset=ptr
)
sents = np.split(np_array, offsets[:-1])
return sents
def get(self, idx, offset=0, length=None):
"""Retrieves a single item from the dataset with the option to only
return a portion of the item.
get(idx) is the same as [idx] but get() does not support slicing.
"""
ptr, size = self._index[idx]
if length is None:
length = size - offset
ptr += offset * np.dtype(self._index.dtype).itemsize
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=length, offset=ptr
)
return np_array
@property
def sizes(self):
return self._index.sizes
@property
def doc_idx(self):
return self._index.doc_idx
def get_doc_idx(self):
return self._index._doc_idx
def set_doc_idx(self, doc_idx_):
self._index._doc_idx = doc_idx_
@property
def supports_prefetch(self):
return False
@staticmethod
def exists(path):
return os.path.exists(index_file_path(path)) and os.path.exists(
data_file_path(path)
)

224
finetune/lora/src/dataset.py vendored Normal file
View File

@@ -0,0 +1,224 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import json, math, random, os, sys
import numpy as np
import torch
from torch.utils.data import Dataset
from pytorch_lightning.utilities import rank_zero_info
from .binidx import MMapIndexedDataset
from .utils import MaybeIsPrime
class MyDataset(Dataset):
def __init__(self, args):
self.args = args
if args.data_type == "binidx":
self.vocab_size = args.vocab_size
rank_zero_info(f"Current vocab size = {self.vocab_size} (make sure it's correct)")
if args.data_file.endswith('/'):
d_all = []
for p in os.listdir(args.data_file):
if p.endswith(".idx"):
d_all += [p[:-4]]
d_all.sort()
rank_zero_info(d_all)
exit(0)
else:
self.data = MMapIndexedDataset(args.data_file)
self.data_size = len(self.data._bin_buffer) // self.data._index._dtype_size
rank_zero_info(f"Data has {self.data_size} tokens.")
if args.my_qa_mask > 0:
self.data_pile = MMapIndexedDataset('/fsx/BlinkDL/pile/pile_20B_tokenizer_text_document')
self.data_pile_size = len(self.data_pile._bin_buffer) // self.data._index._dtype_size
if args.my_pile_stage > 0:
# assert self.data_size == 332115325534 and self.vocab_size == 50277
self.samples_per_epoch = args.epoch_steps * args.real_bsz
assert self.samples_per_epoch == 40320
rank_zero_info(f"########## Pile 20b-tokenized stage {args.my_pile_stage} ##########")
dataset_slot = self.data_size // args.ctx_len
if args.my_pile_stage != 4:
assert MaybeIsPrime(args.magic_prime)
assert args.magic_prime % 3 == 2
assert args.magic_prime / dataset_slot > 0.99 and args.magic_prime / dataset_slot <= 1
elif args.data_type == "numpy":
self.data = np.load(args.data_file).astype("int")
self.vocab_size = args.vocab_size
rank_zero_info("Current vocab size =", self.vocab_size, "(make sure it's correct)")
self.data_size = len(self.data)
rank_zero_info(f"Data has {self.data_size} tokens.")
elif args.data_type == "uint16":
self.data = np.fromfile(args.data_file, dtype=np.uint16).astype("int32").reshape(-1, args.my_sample_len)
self.vocab_size = args.vocab_size
rank_zero_info("Current vocab size =", self.vocab_size, "(make sure it's correct)")
self.data_size = self.data.shape[0]
rank_zero_info(f"Data has {self.data_size} samples.")
elif args.data_type == "wds_img":
self.vocab_size = -1
self.data_size = -1
self.data = None
self.error_count = 0
else:
if args.data_type == "dummy":
rank_zero_info("Building dummy data...")
self.data = ""
for i in range(100000):
aa = (i) % 10000
bb = (i * i) % 10000
cc = aa + bb
self.data += f".{aa}+{bb}={cc}."
else:
self.data = open(args.data_file, "r", encoding=args.data_type).read()
rank_zero_info("Building token list...")
unique = sorted(list(set(self.data)))
self.vocab_size = len(unique)
# rank_zero_info()
# for u in unique:
# print(u, end=' ')
# rank_zero_info('\n\n')
xx = 0
xxObj = {}
for u in unique:
xxObj[xx] = u
xx += 1
with open(f"{args.proj_dir}/vocab.json", "w", encoding="utf-16le") as vocab_file:
vocab_file.write(json.dumps(xxObj, ensure_ascii=False))
self.data_size = len(self.data)
rank_zero_info(f"Data has {self.data_size} tokens, {self.vocab_size} vocab size.")
self.stoi = {ch: i for i, ch in enumerate(unique)}
self.itos = {i: ch for i, ch in enumerate(unique)}
def __len__(self):
return self.args.epoch_steps * self.args.micro_bsz
def __getitem__(self, idx):
args = self.args
rank = self.global_rank
epoch = self.real_epoch
world_size = self.world_size
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size}")
if args.data_type == "wds_img":
def init_wds(self, bias=0):
def identity(x):
return x
import webdataset as wds
import torchvision.transforms as transforms
# img_transform = transforms.Compose(
# [transforms.CenterCrop(256)]
# )
img_transform = transforms.Compose([
transforms.CenterCrop(512),
transforms.Resize((args.my_img_size))
])
self.data_raw = wds.WebDataset(args.data_file, resampled=True).shuffle(10000, initial=1000, rng=random.Random(epoch*100000+rank+bias*1e9)).decode("torchrgb").to_tuple("jpg", "json", "txt").map_tuple(img_transform, identity, identity)
for pp in self.data_raw.pipeline:
if 'Resampled' in str(pp):
pp.deterministic = True
def worker_seed():
return rank*100000+epoch+bias*1e9
pp.worker_seed = worker_seed
self.data = iter(self.data_raw)
# print(f"WebDataset loaded for rank {rank} epoch {epoch}")
if self.data == None:
init_wds(self)
trial = 0
while trial < 10:
try:
dd = next(self.data) # jpg, json, txt
break
except:
print(f'[dataloader error - epoch {epoch} rank {rank} - trying a new shuffle]')
self.error_count += 1
init_wds(self, self.error_count)
trial += 1
pass
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size} {dd[2]}")
# with open(f"sample_{rank}.txt", "a", encoding="utf-8") as tmp:
# tmp.write(f"epoch {epoch} idx {idx} rank {rank}/{world_size} {int(dd[1]['key'])}\n")
return dd[0], dd[2]
else:
if args.data_type == "uint16":
i = np.random.randint(0, self.data_size-1)
dix = self.data[i]
x = torch.tensor(dix[:-1], dtype=torch.long)
y = torch.tensor(dix[1:], dtype=torch.long)
else:
ctx_len = args.ctx_len
req_len = ctx_len + 1
magic_prime = args.magic_prime
data = self.data
if args.my_pile_stage > 0 and args.my_pile_stage != 4:
ii = 1 + epoch * self.samples_per_epoch + (idx * world_size) + rank
if args.my_qa_mask > 0:
ii_orig = ii
if ii % 2 == 0:
ii = (ii // 2) * args.magic_prime
if args.ctx_len == 1024:
magic_prime = 324331313
elif args.ctx_len == 2048:
magic_prime = 162165671
elif args.ctx_len == 4096:
magic_prime = 81082817
data = self.data_pile
else:
ii = ii // 2
factor = (math.sqrt(5) - 1) / 2
factor = int(magic_prime * factor)
i = ((factor * ii * ii * ii) % magic_prime) * ctx_len
if (args.my_qa_mask == 0) or (data == self.data_pile):
i = i + args.my_pile_shift
# print(f"epoch {epoch} idx {idx} rank {rank}/{world_size} ii {ii} pos {round(i / self.data_size, 3)}")
else:
# cheat: pick a random spot in dataset
i = np.random.randint(0, self.data_size - req_len)
if args.data_type == "binidx":
dix = data.get(idx=0, offset=i, length=req_len).astype(int)
elif args.data_type == "numpy":
dix = data[i : i + req_len]
else:
dix = [self.stoi[s] for s in data[i : i + req_len]]
if args.my_qa_mask == 1:
if data == self.data_pile:
z = [1] * ctx_len
else:
z = [0] * ctx_len
z_sum = 0
isGood = False
for i in range(3, ctx_len):
if dix[i] == 27 and dix[i-1] == 34 and dix[i-2] == 187 and dix[i-3] == 187:
isGood = True
if dix[i] == 0:
isGood = False
if isGood:
z[i] = 1
z_sum += 1
if z_sum == 0:
z = [1] * ctx_len
i = np.random.randint(0, self.data_pile_size - req_len)
dix = self.data_pile.get(idx=0, offset=i, length=req_len).astype(int)
z = torch.tensor(z, dtype=torch.bfloat16)
x = torch.tensor(dix[:-1], dtype=torch.long)
y = torch.tensor(dix[1:], dtype=torch.long)
# if ii_orig < 50:
# # if rank == 1:
# print('rank', rank, 'i', ii_orig, ii, i, 'x', x[:5], '...', x[-5:])
# else:
# exit(0)
if args.my_qa_mask == 1:
return x, y, z
return x, y

678
finetune/lora/src/model.py vendored Normal file
View File

@@ -0,0 +1,678 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import functools
import os, math, gc, importlib
import torch
# torch._C._jit_set_profiling_executor(True)
# torch._C._jit_set_profiling_mode(True)
import torch.nn as nn
from torch.utils.checkpoint import checkpoint as torch_checkpoint
from torch.nn import functional as F
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
from pytorch_lightning.strategies import DeepSpeedStrategy
if importlib.util.find_spec('deepspeed'):
import deepspeed
from deepspeed.ops.adam import DeepSpeedCPUAdam, FusedAdam
# from deepspeed.runtime.fp16.onebit.zoadam import ZeroOneAdam
LORA_CONFIG = {
"r": 0,
"alpha": 0,
"dropout": 0,
"parts": {"att", "ln", "time"},
}
try:
print('RWKV_MY_TESTING', os.environ["RWKV_MY_TESTING"])
except:
os.environ["RWKV_MY_TESTING"] = ''
def __nop(ob):
return ob
MyModule = nn.Module
MyFunction = __nop
if os.environ["RWKV_JIT_ON"] == "1":
MyModule = torch.jit.ScriptModule
MyFunction = torch.jit.script_method
########################################################################################################
# CUDA Kernel
########################################################################################################
T_MAX = int(os.environ["RWKV_T_MAX"]) # TAKES LOTS OF VRAM!
# it's possible to go beyond CUDA limitations if you slice the ctx and pass the hidden state in each slice
from torch.utils.cpp_extension import load
if os.environ["RWKV_FLOAT_MODE"] == "bf16":
wkv_cuda = load(name=f"wkv_{T_MAX}_bf16", sources=["finetune/lora/cuda/wkv_op_bf16.cpp", "finetune/lora/cuda/wkv_cuda_bf16.cu"], verbose=True, extra_cuda_cflags=["-t 4", "-std=c++17", "-res-usage", "--maxrregcount 60", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-DTmax={T_MAX}"])
class WKV(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, w, u, k, v):
ctx.B = B
ctx.T = T
ctx.C = C
assert T <= T_MAX
assert B * C % min(C, 32) == 0
w = -torch.exp(w.float().contiguous())
u = u.contiguous()
k = k.contiguous()
v = v.contiguous()
y = torch.empty((B, T, C), device=w.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
wkv_cuda.forward(B, T, C, w, u, k, v, y)
ctx.save_for_backward(w, u, k, v, y)
return y
@staticmethod
def backward(ctx, gy):
B = ctx.B
T = ctx.T
C = ctx.C
assert T <= T_MAX
assert B * C % min(C, 32) == 0
w, u, k, v, y = ctx.saved_tensors
gw = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gu = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gk = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
gv = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format, dtype=torch.bfloat16)
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.contiguous(), gw, gu, gk, gv)
gw = torch.sum(gw, dim=0)
gu = torch.sum(gu, dim=0)
return (None, None, None, gw, gu, gk, gv)
else:
wkv_cuda = load(name=f"wkv_{T_MAX}", sources=["finetune/lora/cuda/wkv_op.cpp", "finetune/lora/cuda/wkv_cuda.cu"], verbose=True, extra_cuda_cflags=["-res-usage", "--maxrregcount 60", "--use_fast_math", "-O3", "-Xptxas -O3", "--extra-device-vectorization", f"-DTmax={T_MAX}"])
class WKV(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, w, u, k, v):
ctx.B = B
ctx.T = T
ctx.C = C
assert T <= T_MAX
assert B * C % min(C, 32) == 0
if "32" in os.environ["RWKV_FLOAT_MODE"]:
w = -torch.exp(w.contiguous())
u = u.contiguous()
k = k.contiguous()
v = v.contiguous()
else:
w = -torch.exp(w.float().contiguous())
u = u.float().contiguous()
k = k.float().contiguous()
v = v.float().contiguous()
y = torch.empty((B, T, C), device=w.device, memory_format=torch.contiguous_format)
wkv_cuda.forward(B, T, C, w, u, k, v, y)
ctx.save_for_backward(w, u, k, v, y)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
return y
elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
return y.half()
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
return y.bfloat16()
@staticmethod
def backward(ctx, gy):
B = ctx.B
T = ctx.T
C = ctx.C
assert T <= T_MAX
assert B * C % min(C, 32) == 0
w, u, k, v, y = ctx.saved_tensors
gw = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format)
gu = torch.empty((B, C), device=gy.device, memory_format=torch.contiguous_format)
gk = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format)
gv = torch.empty((B, T, C), device=gy.device, memory_format=torch.contiguous_format)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.contiguous(), gw, gu, gk, gv)
else:
wkv_cuda.backward(B, T, C, w, u, k, v, y, gy.float().contiguous(), gw, gu, gk, gv)
gw = torch.sum(gw, dim=0)
gu = torch.sum(gu, dim=0)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
return (None, None, None, gw, gu, gk, gv)
elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
return (None, None, None, gw.half(), gu.half(), gk.half(), gv.half())
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
return (None, None, None, gw.bfloat16(), gu.bfloat16(), gk.bfloat16(), gv.bfloat16())
def RUN_CUDA(B, T, C, w, u, k, v):
return WKV.apply(B, T, C, w, u, k, v)
########################################################################################################
# LoRA
########################################################################################################
class LoraLinear(nn.Module):
def __init__(self, in_features: int, out_features: int, bias: bool):
super().__init__()
self.weight = nn.Parameter(torch.empty((out_features, in_features)))
assert bias == False, "Biased LoraLinear not supported"
r, alpha, dropout = LORA_CONFIG["r"], LORA_CONFIG[
"alpha"], LORA_CONFIG["dropout"]
self.lora_A = nn.Parameter(torch.empty(r, in_features))
self.lora_B = nn.Parameter(torch.empty(out_features, r))
self.lora_dropout = nn.Dropout(dropout)
self.scaling = alpha / r
nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
nn.init.zeros_(self.lora_B)
def forward(self, x):
return (
F.linear(x, self.weight) + self.scaling *
F.linear(F.linear(self.lora_dropout(x), self.lora_A), self.lora_B))
@functools.wraps(LoraLinear)
def make_linear_att(*args, **kwargs):
if "att" in LORA_CONFIG["parts"] and LORA_CONFIG["r"] > 0:
return LoraLinear(*args, **kwargs)
else:
return nn.Linear(*args, **kwargs)
@functools.wraps(LoraLinear)
def make_linear_ffn(*args, **kwargs):
if "ffn" in LORA_CONFIG["parts"] and LORA_CONFIG["r"] > 0:
return LoraLinear(*args, **kwargs)
else:
return nn.Linear(*args, **kwargs)
########################################################################################################
# RWKV: RWKV Time-mix + RWKV Channel-mix
########################################################################################################
class RWKV_TimeMix(MyModule):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.ctx_len = args.ctx_len
self.n_embd = args.n_embd
with torch.no_grad(): # fancy init
ratio_0_to_1 = layer_id / (args.n_layer - 1) # 0 to 1
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer) # 1 to ~0
ddd = torch.ones(1, 1, args.n_embd)
for i in range(args.n_embd):
ddd[0, 0, i] = i / args.n_embd
# fancy time_decay
decay_speed = torch.ones(args.dim_att)
for h in range(args.dim_att):
decay_speed[h] = -5 + 8 * (h / (args.dim_att - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
self.time_decay = nn.Parameter(decay_speed)
# print(layer_id, self.time_decay.flatten()[:3].cpu().numpy(), '...', self.time_decay.flatten()[-3:].cpu().numpy())
# fancy time_first
zigzag = torch.tensor([(i + 1) % 3 - 1 for i in range(args.dim_att)]) * 0.5
self.time_first = nn.Parameter(torch.ones(args.dim_att) * math.log(0.3) + zigzag)
# fancy time_mix
self.time_mix_k = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_v = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
self.time_mix_r = nn.Parameter(torch.pow(ddd, 0.5 * ratio_1_to_almost0))
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.key = make_linear_att(args.n_embd, args.dim_att, bias=False)
self.value = make_linear_att(args.n_embd, args.dim_att, bias=False)
self.receptance = make_linear_att(args.n_embd, args.dim_att, bias=False)
self.output = nn.Linear(args.dim_att, args.n_embd, bias=False)
if 'a' in os.environ["RWKV_MY_TESTING"]:
self.register_buffer("att_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
d_qkv = args.n_embd // 16
self.qq = nn.Linear(args.n_embd, d_qkv, bias=False)
self.kk = nn.Linear(args.n_embd, d_qkv, bias=False)
self.vv = nn.Linear(args.n_embd, d_qkv, bias=False)
self.oo = nn.Linear(d_qkv, args.n_embd, bias=False)
with torch.no_grad():
self.time_mix_qq = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_kk = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_vv = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0) + 0.3 * ratio_0_to_1)
if 'a' not in os.environ["RWKV_MY_TESTING"]:
@MyFunction
def jit_func(self, x):
xx = self.time_shift(x) # Mix x with the previous timestep to produce xk, xv, xr
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
k = self.key(xk)
v = self.value(xv)
r = self.receptance(xr)
sr = torch.sigmoid(r)
return sr, k, v
def forward(self, x):
B, T, C = x.size() # x = (Batch,Time,Channel)
sr, k, v = self.jit_func(x)
rwkv = sr * RUN_CUDA(B, T, self.args.dim_att, self.time_decay, self.time_first, k, v)
return self.output(rwkv)
if 'a' in os.environ["RWKV_MY_TESTING"]:
@MyFunction
def QKV(self, q, k, v):
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
att = att.masked_fill(self.att_mask == 0, float('-inf'))
att = F.softmax(att, dim = -1)
x = att @ v
return x
@MyFunction
def jit_funcQKV(self, x):
xx = self.time_shift(x) # Mix x with the previous timestep to produce xk, xv, xr
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xv = x * self.time_mix_v + xx * (1 - self.time_mix_v)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
xqq = x * self.time_mix_qq + xx * (1 - self.time_mix_qq)
xkk = x * self.time_mix_kk + xx * (1 - self.time_mix_kk)
xvv = x * self.time_mix_vv + xx * (1 - self.time_mix_vv)
k = self.key(xk)
v = self.value(xv)
r = self.receptance(xr)
sr = torch.sigmoid(r)
qq = self.qq(xqq)
kk = self.kk(xkk)
vv = self.vv(xvv)
return sr, k, v, qq, kk, vv
def forward(self, x):
B, T, C = x.size() # x = (Batch,Time,Channel)
sr, k, v, qq, kk, vv = self.jit_funcQKV(x)
rwkv = sr * RUN_CUDA(B, T, self.args.dim_att, self.time_decay, self.time_first, k, v)
rwkv = self.output(rwkv) + self.oo(self.QKV(qq, kk, vv))
return rwkv
########################################################################################################
class RWKV_ChannelMix(MyModule):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
with torch.no_grad(): # fancy init of time_mix
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer) # 1 to ~0
ddd = torch.ones(1, 1, args.n_embd)
for i in range(args.n_embd):
ddd[0, 0, i] = i / args.n_embd
self.time_mix_k = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.time_mix_r = nn.Parameter(torch.pow(ddd, ratio_1_to_almost0))
self.key = make_linear_ffn(args.n_embd, args.dim_ffn, bias=False)
self.receptance = make_linear_ffn(args.n_embd, args.n_embd, bias=False)
self.value = make_linear_ffn(args.dim_ffn, args.n_embd, bias=False)
@MyFunction
def forward(self, x):
xx = self.time_shift(x)
xk = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xr = x * self.time_mix_r + xx * (1 - self.time_mix_r)
k = self.key(xk)
k = torch.square(torch.relu(k))
kv = self.value(k)
return torch.sigmoid(self.receptance(xr)) * kv
class MishGLU(MyModule):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
with torch.no_grad():
ratio_1_to_almost0 = 1.0 - (layer_id / args.n_layer)
x = torch.ones(1, 1, args.n_embd)
for i in range(args.n_embd):
x[0, 0, i] = i / args.n_embd
self.time_mix_k = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
self.time_mix_r = nn.Parameter(torch.pow(x, ratio_1_to_almost0))
self.aa = nn.Linear(args.n_embd, args.dim_ffn, bias=False)
self.bb = nn.Linear(args.n_embd, args.dim_ffn, bias=False)
self.value = nn.Linear(args.dim_ffn, args.n_embd, bias=False)
@MyFunction
def forward(self, x):
xx = self.time_shift(x)
xa = x * self.time_mix_k + xx * (1 - self.time_mix_k)
xb = x * self.time_mix_r + xx * (1 - self.time_mix_r)
a = self.aa(xa)
b = self.bb(xb)
return self.value(a * F.mish(b))
########################################################################################################
# The RWKV Model with our blocks
########################################################################################################
class Block(nn.Module):
def __init__(self, args, layer_id):
super().__init__()
self.args = args
self.layer_id = layer_id
self.ln1 = nn.LayerNorm(args.n_embd)
self.ln2 = nn.LayerNorm(args.n_embd)
if self.layer_id == 0:
self.ln0 = nn.LayerNorm(args.n_embd)
if args.my_pos_emb > 0:
self.pos_emb_x = nn.Parameter(torch.zeros((1,args.my_pos_emb,args.n_embd)))
self.pos_emb_y = nn.Parameter(torch.zeros((args.my_pos_emb,1,args.n_embd)))
if self.layer_id == 0 and self.args.pre_ffn > 0:
self.ffnPre = RWKV_ChannelMix(args, 0)
else:
self.att = RWKV_TimeMix(args, layer_id)
if 'g' in os.environ["RWKV_MY_TESTING"]:
self.ffn = MishGLU(args, layer_id)
else:
self.ffn = RWKV_ChannelMix(args, layer_id)
if args.tiny_att_dim > 0 and self.layer_id == args.tiny_att_layer:
self.tiny_ln = nn.LayerNorm(args.n_embd)
self.tiny_q = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
self.tiny_k = nn.Linear(args.n_embd, args.tiny_att_dim, bias=False)
self.tiny_v = nn.Linear(args.n_embd, args.n_embd, bias=False)
self.register_buffer("tiny_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
def forward(self, x, x_emb=None):
args = self.args
B, T, C = x.size()
if self.layer_id == 0:
x = self.ln0(x)
if args.my_pos_emb > 0:
pos_emb = (self.pos_emb_x + self.pos_emb_y).reshape(T+1, -1)[:-1,:]
x = x + pos_emb
if self.layer_id == 0 and args.pre_ffn > 0:
x = x + self.ffnPre(self.ln1(x))
else:
x = x + self.att(self.ln1(x))
x = x + self.ffn(self.ln2(x))
if args.tiny_att_dim > 0 and self.layer_id == args.tiny_att_layer:
xx = self.tiny_ln(x)
q = self.tiny_q(xx)[:, :T, :]
k = self.tiny_k(xx)[:, :T, :]
c = (q @ k.transpose(-2, -1)) * (args.tiny_att_dim ** (-0.5))
c = c.masked_fill(self.tiny_mask[:T, :T] == 0, 0)
x = x + c @ self.tiny_v(x_emb)
return x
class L2Wrap(torch.autograd.Function):
@staticmethod
def forward(ctx, loss, y):
ctx.save_for_backward(y)
return loss
@staticmethod
def backward(ctx, grad_output):
y = ctx.saved_tensors[0]
# to encourage the logits to be close to 0
factor = 1e-4 / (y.shape[0] * y.shape[1])
maxx, ids = torch.max(y, -1, keepdim=True)
gy = torch.zeros_like(y)
gy.scatter_(-1, ids, maxx * factor)
return (grad_output, gy)
class RWKV(pl.LightningModule):
def __init__(self, args):
super().__init__()
self.args = args
if not hasattr(args, 'dim_att'):
args.dim_att = args.n_embd
if not hasattr(args, 'dim_ffn'):
args.dim_ffn = args.n_embd * 4
if not hasattr(args, 'tiny_att_layer'):
args.tiny_att_layer = -1
if not hasattr(args, 'tiny_att_dim'):
args.tiny_att_dim = -1
self.emb = nn.Embedding(args.vocab_size, args.n_embd)
self.blocks = nn.ModuleList([Block(args, i) for i in range(args.n_layer)])
self.ln_out = nn.LayerNorm(args.n_embd)
self.head = nn.Linear(args.n_embd, args.vocab_size, bias=False)
if args.head_qk > 0:
self.head_q = nn.Linear(args.n_embd, args.head_qk, bias=False)
self.head_k = nn.Linear(args.n_embd, args.head_qk, bias=False)
self.register_buffer("copy_mask", torch.tril(torch.ones(args.ctx_len, args.ctx_len)))
def configure_optimizers(self):
args = self.args
if args.layerwise_lr > 0:
lr_1x = set()
lr_2x = set()
lr_3x = set()
for n, p in self.named_parameters():
if "time_mix" in n:
if args.my_pile_stage == 2:
lr_2x.add(n)
else:
lr_1x.add(n)
elif "time_decay" in n:
if args.my_pile_stage == 2:
lr_3x.add(n)
else:
lr_2x.add(n)
elif "time_first" in n:
lr_3x.add(n)
else:
lr_1x.add(n)
lr_1x = sorted(list(lr_1x))
lr_2x = sorted(list(lr_2x))
lr_3x = sorted(list(lr_3x))
# print('1x', lr_1x)
# print('2x', lr_2x)
# print('3x', lr_3x)
param_dict = {n: p for n, p in self.named_parameters()}
if args.my_pile_stage == 2:
optim_groups = [
{"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
{"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 2e-3 / args.lr_init},
{"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 5.0},# test: 3e-3 / args.lr_init},
]
else:
optim_groups = [
{"params": [param_dict[n] for n in lr_1x], "weight_decay": 0.0, "my_lr_scale": 1.0},
{"params": [param_dict[n] for n in lr_2x], "weight_decay": 0.0, "my_lr_scale": 2.0},
{"params": [param_dict[n] for n in lr_3x], "weight_decay": 0.0, "my_lr_scale": 3.0},
]
else:
optim_groups = [
{"params": [p for n, p in self.named_parameters()], "weight_decay": 0.0},
]
for g in optim_groups:
g["params"] = [p for p in g["params"] if p.requires_grad]
optim_groups = [g for g in optim_groups if len(g["params"]) > 0]
if self.deepspeed_offload:
return DeepSpeedCPUAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adamw_mode=False, weight_decay=0, amsgrad=False)
return FusedAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, adam_w_mode=False, weight_decay=0, amsgrad=False)
# return ZeroOneAdam(optim_groups, lr=self.args.lr_init, betas=self.args.betas, eps=self.args.adam_eps, bias_correction=True, weight_decay=0, amsgrad=False, cuda_aware=False)
@property
def deepspeed_offload(self) -> bool:
strategy = self.trainer.strategy
if isinstance(strategy, DeepSpeedStrategy):
cfg = strategy.config["zero_optimization"]
return cfg.get("offload_optimizer") or cfg.get("offload_param")
return False
def forward(self, idx):
args = self.args
B, T = idx.size()
assert T <= args.ctx_len, "Cannot forward, model ctx_len is exhausted."
x = self.emb(idx)
x_emb = x
if args.tiny_att_dim > 0:
for block in self.blocks:
if args.grad_cp == 1:
if args.lora:
x = torch_checkpoint(block, x, x_emb, use_reentrant=False)
else:
x = deepspeed.checkpointing.checkpoint(block, x, x_emb)
else:
x = block(x, x_emb)
else:
for block in self.blocks:
if args.grad_cp == 1:
if args.lora:
x = torch_checkpoint(block, x, x_emb, use_reentrant=False)
else:
x = deepspeed.checkpointing.checkpoint(block, x)
else:
x = block(x)
x = self.ln_out(x)
if args.head_qk > 0:
q = self.head_q(x)[:, :T, :]
k = self.head_k(x)[:, :T, :]
c = (q @ k.transpose(-2, -1)) * (1.0 / args.head_qk)
c = c.masked_fill(self.copy_mask[:T, :T] == 0, 0)
if "32" in os.environ["RWKV_FLOAT_MODE"]:
c = c @ F.one_hot(idx, num_classes=args.vocab_size)
elif os.environ["RWKV_FLOAT_MODE"] == "fp16":
c = c @ F.one_hot(idx, num_classes=args.vocab_size).half()
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
c = c @ F.one_hot(idx, num_classes=args.vocab_size).bfloat16()
x = self.head(x) + c
else:
x = self.head(x)
return x
def training_step(self, batch, batch_idx):
args = self.args
if args.my_qa_mask != 1:
idx, targets = batch
logits = self(idx)
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
else:
idx, targets, mask = batch
mask = mask.view(-1)
sum_mask = torch.sum(mask).item()
# if sum_mask == 0:
# return torch.tensor([0.0], requires_grad=True)
logits = self(idx)
if sum_mask == mask.shape[0]:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
# print('rank', self.global_rank, 'loss', loss.item())
else:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), reduction='none')
# loss_raw = loss
loss = torch.sum(loss * mask) / sum_mask
# torch.set_printoptions(threshold=10000)
# if True: #self.global_rank == 1:
# tmp = ''
# sss = 0
# ccc = 0
# for i in range(mask.shape[0]):
# if mask[i] > 0:
# tmp += str(idx.view(-1)[i].item()) + ','
# sss += loss_raw.view(-1)[i].float().item()
# ccc += 1
# print('rank', self.global_rank, 'loss', loss.item(), 'lavg', sss / ccc)#, 'tmp', tmp, 'input', idx)
return L2Wrap.apply(loss, logits)
def training_step_end(self, batch_parts):
all = self.all_gather(batch_parts)
if self.trainer.is_global_zero:
self.trainer.my_loss_all = all
def generate_init_weight(self):
print(
f"""
############################################################################
#
# Init model weight (slow for large models)...
#
############################################################################
"""
)
m = {}
for n in self.state_dict():
p = self.state_dict()[n]
shape = p.shape
gain = 1.0
scale = 1.0
if "ln_" in n or ".ln" in n or "time_" in n or "_mask" in n or "pos_emb" in n or '.mask.' in n:
m[n] = p
else:
if n == "emb.weight":
scale = -1 * self.args.lr_init
else:
if shape[0] > shape[1]:
gain = math.sqrt(shape[0] / shape[1])
for kk in [".att.key.", ".att.receptance.", ".att.output.", ".att.key.", ".ffn.value.", ".ffn.receptance.", ".ffnPre.value.", ".ffnPre.receptance.", "head_q.", '.oo.', '.rr.']:
if kk in n:
scale = 0
if n == "head.weight":
scale = 0.5
if "head_k." in n:
scale = 0.1
if "head_q." in n:
scale = 0
print(f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {str(scale).ljust(4)} {n}")
if self.args.accelerator.upper() == "GPU":
m[n] = torch.empty((shape[0], shape[1]), device="cuda")
else:
m[n] = torch.empty((shape[0], shape[1]))
if scale == 0:
nn.init.zeros_(m[n])
elif scale < 0:
nn.init.uniform_(m[n], a=scale, b=-scale)
else:
nn.init.orthogonal_(m[n], gain=gain * scale)
m[n] = m[n].cpu()
if os.environ["RWKV_FLOAT_MODE"] == "fp16":
m[n] = m[n].half()
elif os.environ["RWKV_FLOAT_MODE"] == "bf16":
m[n] = m[n].bfloat16()
# if n == "emb.weight":
# print(m[n])
gc.collect()
torch.cuda.empty_cache()
return m

203
finetune/lora/src/trainer.py vendored Normal file
View File

@@ -0,0 +1,203 @@
import os, math, time, datetime, subprocess
import torch
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
from .model import LORA_CONFIG
def my_save(dd, ff):
if '14b-run1' not in ff:
torch.save(dd, ff)
else:
fn = ff.split('/')[-1]
fff = '/dev/shm/' + fn
torch.save(dd, fff)
subprocess.Popen(f" aws s3 mv {fff} s3://rwkv-14b-4k/{fn} --quiet", shell=True)
class train_callback(pl.Callback):
def __init__(self, args):
super().__init__()
self.args = args
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx):
args = self.args
# if args.cuda_cleanup > 0:
# torch.cuda.empty_cache()
real_step = trainer.global_step + args.epoch_begin * args.epoch_steps
# LR schedule
w_step = args.warmup_steps
if args.lr_final == args.lr_init or args.epoch_count == 0:
lr = args.lr_init
else:
decay_step = real_step - args.my_pile_edecay * args.epoch_steps
decay_total = (args.epoch_count - args.my_pile_edecay) * args.epoch_steps
progress = (decay_step - w_step + 1) / (decay_total - w_step)
progress = min(1, max(0, progress))
if args.lr_final == 0 or args.lr_init == 0: # linear decay
lr = args.lr_init + (args.lr_final - args.lr_init) * progress
else: # exp decay
lr = args.lr_init * math.exp(math.log(args.lr_final / args.lr_init) * pow(progress, 1))
if trainer.global_step < w_step:
lr = lr * (0.2 + 0.8 * trainer.global_step / w_step)
# if trainer.is_global_zero:
# print(trainer.global_step, decay_step, decay_total, w_step, progress, lr)
for param_group in trainer.optimizers[0].param_groups:
if args.layerwise_lr > 0:
param_group["lr"] = lr * param_group["my_lr_scale"]
# print(param_group["lr"], param_group["my_lr_scale"])
else:
param_group["lr"] = lr
trainer.my_lr = lr
# rank_zero_info(f"{real_step} {lr}")
if trainer.global_step == 0:
if trainer.is_global_zero: # logging
trainer.my_loss_sum = 0
trainer.my_loss_count = 0
trainer.my_log = open(args.proj_dir + "/train_log.txt", "a")
trainer.my_log.write(f"NEW RUN {args.my_timestamp}\n{vars(self.args)}\n")
try:
print(f"\n{trainer.strategy.config}\n")
trainer.my_log.write(f"{trainer.strategy.config}\n")
except:
pass
trainer.my_log.flush()
if len(args.wandb) > 0:
print("Login to wandb...")
import wandb
wandb.init(
project=args.wandb,
name=args.run_name + " " + args.my_timestamp,
config=args,
save_code=False,
)
trainer.my_wandb = wandb
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
args = self.args
if trainer.is_global_zero: # logging
t_now = time.time_ns()
token_per_step = args.ctx_len * args.real_bsz
real_step = trainer.global_step + args.epoch_begin * args.epoch_steps
kt_s = 0
try:
t_cost = (t_now - trainer.my_time_ns) / 1e9
kt_s = token_per_step / t_cost / 1000
self.log("REAL it/s", 1.0 / t_cost, prog_bar=True, on_step=True)
self.log("Kt/s", kt_s, prog_bar=True, on_step=True)
except:
pass
trainer.my_time_ns = t_now
trainer.my_loss = trainer.my_loss_all.float().mean().item()
trainer.my_loss_sum += trainer.my_loss
trainer.my_loss_count += 1
trainer.my_epoch_loss = trainer.my_loss_sum / trainer.my_loss_count
self.log("lr", trainer.my_lr, prog_bar=True, on_step=True)
self.log("loss", trainer.my_epoch_loss, prog_bar=True, on_step=True)
# self.log("s", real_step, prog_bar=True, on_step=True)
if len(args.wandb) > 0:
lll = {"loss": trainer.my_loss, "lr": trainer.my_lr, "Gtokens": real_step * token_per_step / 1e9}
if kt_s > 0:
lll["kt/s"] = kt_s
trainer.my_wandb.log(lll, step=int(real_step))
if args.magic_prime > 0:
expand_factor = 2 if args.my_qa_mask > 0 else 1
if int(real_step) == int(args.magic_prime * expand_factor // args.real_bsz) - 1:
to_save_dict = pl_module.state_dict()
my_save(
to_save_dict,
f"{args.proj_dir}/rwkv-final.pth",
)
def on_train_epoch_start(self, trainer, pl_module):
args = self.args
dataset = trainer.train_dataloader.dataset.datasets
assert "MyDataset" in str(dataset)
dataset.global_rank = trainer.global_rank
dataset.real_epoch = int(args.epoch_begin + trainer.current_epoch)
dataset.world_size = trainer.world_size
# print(f'########## world_size {dataset.world_size} global_rank {dataset.global_rank} real_epoch {dataset.real_epoch} ##########')
def on_train_epoch_end(self, trainer, pl_module):
args = self.args
if trainer.is_global_zero: # logging & save state_dict
if (args.epoch_save > 0 and trainer.current_epoch % args.epoch_save == 0) or trainer.current_epoch == args.epoch_count - 1:
if args.data_type == 'wds_img':
raw_dict = pl_module.state_dict()
to_save_dict = {}
for k in raw_dict:
if k.startswith('encoder.') or k.startswith('decoder.'):
to_save_dict[k] = raw_dict[k]
else:
to_save_dict = pl_module.state_dict()
if args.lora:
enable_time_finetune = 'time' in LORA_CONFIG["parts"]
enable_ln_finetune = 'ln' in LORA_CONFIG["parts"]
lora_dict = {}
for name, state in to_save_dict.items():
if ('.lora_' in name
or (enable_time_finetune and '.time_' in name)
or (enable_ln_finetune and '.ln' in name)):
lora_dict[name] = state
to_save_dict = lora_dict
try:
my_save(
to_save_dict,
f"{args.proj_dir}/rwkv-{args.epoch_begin + trainer.current_epoch}.pth",
)
except Exception as e:
print('Error\n\n', e, '\n\n')
trainer.my_log.write(f"{args.epoch_begin + trainer.current_epoch} {trainer.my_epoch_loss:.6f} {math.exp(trainer.my_epoch_loss):.4f} {trainer.my_lr:.8f} {datetime.datetime.now()} {trainer.current_epoch}\n")
trainer.my_log.flush()
trainer.my_loss_sum = 0
trainer.my_loss_count = 0
@rank_zero_only
def generate_init_weight(model, init_weight_name):
mm = model.generate_init_weight()
if model.args.my_pile_stage == 1:
if len(model.args.load_model) > 0:
print(f"Combine weights from {model.args.load_model}...")
load_dict = torch.load(model.args.load_model, map_location="cpu")
for k in load_dict:
assert k in mm
src = load_dict[k]
try:
mm[k] = src.reshape(mm[k].shape)
except:
tmp = mm[k].squeeze().clone()
print(k, src.shape, '-->', mm[k].shape)
ss = src.shape[0]
dd = tmp.shape[0]
for i in range(dd):
pos = i / dd * ss
if pos >= ss - 1:
tmp[i] = src[ss-1]
else:
p0 = int(math.floor(pos))
ii = pos - p0
tmp[i] = src[p0] * (1-ii) + src[p0+1] * (ii)
mm[k] = tmp.reshape(mm[k].shape)
sss = src.squeeze().float().cpu().numpy()
print(sss[:10], '...', sss[-10:])
mmm = mm[k].squeeze().float().cpu().numpy()
print(mmm[:10], '...', mmm[-10:])
print(f"Save to {init_weight_name}...")
torch.save(mm, init_weight_name)
if model.args.my_pile_stage == 1:
print("Done. Now go for stage 2.")
exit(0)

130
finetune/lora/src/utils.py vendored Normal file
View File

@@ -0,0 +1,130 @@
import json, time, random, os
import numpy as np
import torch
from torch.nn import functional as F
time_slot = {}
time_ref = time.time_ns()
def record_time(name):
if name not in time_slot:
time_slot[name] = 1e20
tt = (time.time_ns() - time_ref) / 1e9
if tt < time_slot[name]:
time_slot[name] = tt
class TOKENIZER():
def __init__(self, WORD_NAME, UNKNOWN_CHAR='\ue083'):
if 'list' in str(type(WORD_NAME)):
self.charMode = False
if WORD_NAME[0] == WORD_NAME[1]:
from transformers import PreTrainedTokenizerFast
self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=WORD_NAME[0])
else:
from transformers import GPT2TokenizerFast
self.tokenizer = GPT2TokenizerFast(WORD_NAME[0], WORD_NAME[1])
self.vocab_size = len(self.tokenizer)
else:
self.charMode = True
with open(WORD_NAME + '.json', "r", encoding="utf-16") as result_file:
self.word_table = json.load(result_file)
self.vocab_size = len(self.word_table)
self.stoi = {v: int(k) for k, v in self.word_table.items()}
self.itos = {int(k): v for k, v in self.word_table.items()}
self.UNKNOWN_CHAR = self.stoi[UNKNOWN_CHAR]
def refine_context(self, context):
context = context.strip().split('\n')
for c in range(len(context)):
context[c] = context[c].strip().strip('\u3000').strip('\r')
context = list(filter(lambda c: c != '', context))
context = '\n' + ('\n'.join(context)).strip()
if context == '':
context = '\n'
return context
def sample_logits(self, out, x, ctx_len, temperature=1.0, top_p_usual=None, top_p_newline=None):
# out[self.UNKNOWN_CHAR] = -float('Inf')
lastChar = int(x[-1])
probs = F.softmax(out, dim=-1)
if self.charMode:
if self.itos[lastChar] == '\n':
top_p = top_p_newline
else:
top_p = top_p_usual
else:
top_p = top_p_usual
if os.environ["RWKV_RUN_DEVICE"] == "cpu":
probs = probs.numpy()
sorted_probs = np.sort(probs)[::-1]
cumulative_probs = np.cumsum(sorted_probs)
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
probs[probs < cutoff] = 0
if temperature != 1.0:
probs = probs.pow(1.0 / temperature)
probs = probs / np.sum(probs)
out = np.random.choice(a=len(probs), p=probs)
return out
else:
sorted_probs = torch.sort(probs, descending=True)[0]
cumulative_probs = torch.cumsum(sorted_probs, dim=-1).cpu().numpy()
cutoff = float(sorted_probs[np.argmax(cumulative_probs > top_p)])
probs[probs < cutoff] = 0
if temperature != 1.0:
probs = probs.pow(1.0 / temperature)
out = torch.multinomial(probs, num_samples=1)[0]
return out
def MaybeIsPrime(number):
if FermatPrimalityTest(number) and MillerRabinPrimalityTest(number):
return True
else:
return False
def FermatPrimalityTest(number):
if number > 1:
for time in range(3):
randomNumber = random.randint(2, number) - 1
if pow(randomNumber, number - 1, number) != 1:
return False
return True
else:
return False
def MillerRabinPrimalityTest(number):
if number == 2:
return True
elif number == 1 or number % 2 == 0:
return False
oddPartOfNumber = number - 1
timesTwoDividNumber = 0
while oddPartOfNumber % 2 == 0:
oddPartOfNumber = oddPartOfNumber // 2
timesTwoDividNumber = timesTwoDividNumber + 1
for time in range(3):
while True:
randomNumber = random.randint(2, number) - 1
if randomNumber != 0 and randomNumber != 1:
break
randomNumberWithPower = pow(randomNumber, oddPartOfNumber, number)
if (randomNumberWithPower != 1) and (randomNumberWithPower != number - 1):
iterationNumber = 1
while (iterationNumber <= timesTwoDividNumber - 1) and (randomNumberWithPower != number - 1):
randomNumberWithPower = pow(randomNumberWithPower, 2, number)
iterationNumber = iterationNumber + 1
if randomNumberWithPower != (number - 1):
return False
return True

388
finetune/lora/train.py vendored Normal file
View File

@@ -0,0 +1,388 @@
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
if __name__ == "__main__":
from argparse import ArgumentParser
from pytorch_lightning import Trainer
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
rank_zero_info("########## work in progress ##########")
########################################################################################################
#
# example: train a simple L12-D768 RWKV on dummy data
#
# python train.py --load_model "" --wandb "" --proj_dir "out" \
# --data_file "" --data_type "dummy" --vocab_size 0 \
# --ctx_len 128 --epoch_steps 1000 --epoch_count 20 --epoch_begin 0 --epoch_save 10 \
# --micro_bsz 16 --n_layer 12 --n_embd 768 --pre_ffn 0 --head_qk 0 \
# --lr_init 6e-4 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
# --accelerator gpu --devices 1 --precision bf16 --strategy ddp_find_unused_parameters_false --grad_cp 0
# example: train a simple L6-D512 RWKV from scratch on enwik8
#
# python train.py --load_model "" --wandb "" --proj_dir "out" \
# --data_file "../data/enwik8" --data_type "utf-8" --vocab_size 0 \
# --ctx_len 512 --epoch_steps 5000 --epoch_count 500 --epoch_begin 0 --epoch_save 5 \
# --micro_bsz 12 --n_layer 6 --n_embd 512 --pre_ffn 0 --head_qk 0 \
# --lr_init 8e-4 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
# --accelerator gpu --devices 1 --precision bf16 --strategy ddp_find_unused_parameters_false --grad_cp 0
# example: fine-tune RWKV 1.5B using 8xA100 40G = 1.76it/s = 115k token/s, VRAM 37477M
#
# python train.py --load_model "/fsx/BlinkDL/CODE/FP16/out_1b2/all-8040.pth" --wandb "" --proj_dir "out" \
# --data_file "../data/train.npy" --data_type "numpy" --vocab_size 50277 \
# --ctx_len 1024 --epoch_steps 1000 --epoch_count 1000 --epoch_begin 0 --epoch_save 5 \
# --micro_bsz 8 --n_layer 24 --n_embd 2048 --pre_ffn 0 --head_qk 0 \
# --lr_init 1e-5 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.999 --adam_eps 1e-8 \
# --accelerator gpu --devices 8 --precision bf16 --strategy deepspeed_stage_2 --grad_cp 0
# example: fine-tune RWKV 1.5B using 1 GPU fp16 (VRAM 16G) NOTE: fp16 might overflow
#
# python train.py --load_model "/fsx/BlinkDL/CODE/FP16/out_1b2/all-8040.pth" --wandb "" --proj_dir "out" \
# --data_file "../data/train.npy" --data_type "numpy" --vocab_size 50277 \
# --ctx_len 1024 --epoch_steps 200 --epoch_count 1000 --epoch_begin 0 --epoch_save 1 \
# --micro_bsz 11 --n_layer 24 --n_embd 2048 --pre_ffn 0 --head_qk 0 \
# --lr_init 1e-5 --lr_final 1e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.999 --adam_eps 1e-8 \
# --accelerator gpu --devices 1 --precision fp16 --strategy deepspeed_stage_2_offload --grad_cp 1
parser = ArgumentParser()
parser.add_argument("--load_model", default="", type=str) # full path, with .pth
parser.add_argument("--wandb", default="", type=str) # wandb project name. if "" then don't use wandb
parser.add_argument("--proj_dir", default="out", type=str)
parser.add_argument("--random_seed", default="-1", type=int)
parser.add_argument("--data_file", default="", type=str)
parser.add_argument("--data_type", default="utf-8", type=str)
parser.add_argument("--vocab_size", default=0, type=int) # vocab_size = 0 means auto (for char-level LM and .txt data)
parser.add_argument("--ctx_len", default=1024, type=int)
parser.add_argument("--epoch_steps", default=1000, type=int) # a mini "epoch" has [epoch_steps] steps
parser.add_argument("--epoch_count", default=500, type=int) # train for this many "epochs". will continue afterwards with lr = lr_final
parser.add_argument("--epoch_begin", default=0, type=int) # if you load a model trained for x "epochs", set epoch_begin = x
parser.add_argument("--epoch_save", default=5, type=int) # save the model every [epoch_save] "epochs"
parser.add_argument("--micro_bsz", default=12, type=int) # micro batch size (batch size per GPU)
parser.add_argument("--n_layer", default=6, type=int)
parser.add_argument("--n_embd", default=512, type=int)
parser.add_argument("--dim_att", default=0, type=int)
parser.add_argument("--dim_ffn", default=0, type=int)
parser.add_argument("--pre_ffn", default=0, type=int) # replace first att layer by ffn (sometimes better)
parser.add_argument("--head_qk", default=0, type=int) # my headQK trick
parser.add_argument("--tiny_att_dim", default=0, type=int) # tiny attention dim
parser.add_argument("--tiny_att_layer", default=-999, type=int) # tiny attention @ which layer
parser.add_argument("--lr_init", default=6e-4, type=float) # 6e-4 for L12-D768, 4e-4 for L24-D1024, 3e-4 for L24-D2048
parser.add_argument("--lr_final", default=1e-5, type=float)
parser.add_argument("--warmup_steps", default=0, type=int) # try 50 if you load a model
parser.add_argument("--beta1", default=0.9, type=float)
parser.add_argument("--beta2", default=0.99, type=float) # use 0.999 when your model is close to convergence
parser.add_argument("--adam_eps", default=1e-8, type=float)
parser.add_argument("--grad_cp", default=0, type=int) # gradient checkpt: saves VRAM, but slower
parser.add_argument("--my_pile_stage", default=0, type=int) # my special pile mode
parser.add_argument("--my_pile_shift", default=-1, type=int) # my special pile mode - text shift
parser.add_argument("--my_pile_edecay", default=0, type=int)
parser.add_argument("--layerwise_lr", default=1, type=int) # layerwise lr for faster convergence (but slower it/s)
parser.add_argument("--ds_bucket_mb", default=200, type=int) # deepspeed bucket size in MB. 200 seems enough
# parser.add_argument("--cuda_cleanup", default=0, type=int) # extra cuda cleanup (sometimes helpful)
parser.add_argument("--my_img_version", default=0, type=str)
parser.add_argument("--my_img_size", default=0, type=int)
parser.add_argument("--my_img_bit", default=0, type=int)
parser.add_argument("--my_img_clip", default='x', type=str)
parser.add_argument("--my_img_clip_scale", default=1, type=float)
parser.add_argument("--my_img_l1_scale", default=0, type=float)
parser.add_argument("--my_img_encoder", default='x', type=str)
# parser.add_argument("--my_img_noise_scale", default=0, type=float)
parser.add_argument("--my_sample_len", default=0, type=int)
parser.add_argument("--my_ffn_shift", default=1, type=int)
parser.add_argument("--my_att_shift", default=1, type=int)
parser.add_argument("--my_pos_emb", default=0, type=int)
parser.add_argument("--load_partial", default=0, type=int)
parser.add_argument("--magic_prime", default=0, type=int)
parser.add_argument("--my_qa_mask", default=0, type=int)
parser.add_argument("--my_testing", default='', type=str)
parser.add_argument("--lora", action="store_true")
parser.add_argument("--lora_load", default="", type=str)
parser.add_argument("--lora_r", default=8, type=int)
parser.add_argument("--lora_alpha", default=32, type=float)
parser.add_argument("--lora_dropout", default=0.01, type=float)
parser.add_argument("--lora_parts", default="att,ln,time", type=str)
parser = Trainer.add_argparse_args(parser)
args = parser.parse_args()
########################################################################################################
import os, warnings, math, datetime, sys, time, importlib
import numpy as np
import torch
from torch.utils.data import DataLoader
if "deepspeed" in args.strategy:
import deepspeed
import pytorch_lightning as pl
from pytorch_lightning import seed_everything
if args.random_seed >= 0:
print(f"########## WARNING: GLOBAL SEED {args.random_seed} THIS WILL AFFECT MULTIGPU SAMPLING ##########\n" * 3)
seed_everything(args.random_seed)
np.set_printoptions(precision=4, suppress=True, linewidth=200)
warnings.filterwarnings("ignore", ".*Consider increasing the value of the `num_workers` argument*")
warnings.filterwarnings("ignore", ".*The progress bar already tracks a metric with the*")
# os.environ["WDS_SHOW_SEED"] = "1"
args.my_timestamp = datetime.datetime.today().strftime("%Y-%m-%d-%H-%M-%S")
args.enable_checkpointing = False
args.replace_sampler_ddp = False
args.logger = False
args.gradient_clip_val = 1.0
args.num_sanity_val_steps = 0
args.check_val_every_n_epoch = int(1e20)
args.log_every_n_steps = int(1e20)
args.max_epochs = -1 # continue forever
args.betas = (args.beta1, args.beta2)
args.real_bsz = int(args.num_nodes) * int(args.devices) * args.micro_bsz
os.environ["RWKV_T_MAX"] = str(args.ctx_len)
os.environ["RWKV_MY_TESTING"] = args.my_testing
if args.dim_att <= 0:
args.dim_att = args.n_embd
if args.dim_ffn <= 0:
args.dim_ffn = args.n_embd * 4
if args.data_type == "wds_img":
args.run_name = f"v{args.my_img_version}-{args.my_img_size}-{args.my_img_bit}bit-{args.my_img_clip}x{args.my_img_clip_scale}"
args.proj_dir = f"{args.proj_dir}-{args.run_name}"
else:
args.run_name = f"{args.vocab_size} ctx{args.ctx_len} L{args.n_layer} D{args.n_embd}"
if not os.path.exists(args.proj_dir):
os.makedirs(args.proj_dir)
if args.my_pile_stage > 0:
magic_prime_bak = args.magic_prime
if args.ctx_len == 1024:
args.magic_prime = 324331313
args.epoch_count = 8043
elif args.ctx_len == 2048:
args.magic_prime = 162165671
args.epoch_count = 4021
elif args.ctx_len == 4096:
args.magic_prime = 81082817
args.epoch_count = 2010
if args.my_pile_shift < 0:
if args.ctx_len == 1024:
args.my_pile_shift = 0
elif args.ctx_len == 2048:
args.my_pile_shift = 512
elif args.ctx_len == 4096:
args.my_pile_shift = 768
if magic_prime_bak > 0:
args.magic_prime = magic_prime_bak
args.epoch_steps = 40320 // args.real_bsz
assert args.epoch_steps * args.real_bsz == 40320
if args.my_pile_stage == 2:
assert args.lr_final == args.lr_init
if args.my_pile_stage >= 2: # find latest saved model
list_p = []
for p in os.listdir(args.proj_dir):
if p.startswith("rwkv") and p.endswith(".pth"):
p = ((p.split("-"))[1].split("."))[0]
if p == "init":
p = -1
else:
p = int(p)
list_p += [p]
list_p.sort()
max_p = list_p[-1]
if len(list_p) > 1:
args.my_pile_prev_p = list_p[-2] # in case max_p is corrupted
if max_p == -1:
args.load_model = f"{args.proj_dir}/rwkv-init.pth"
else:
args.load_model = f"{args.proj_dir}/rwkv-{max_p}.pth"
if args.my_pile_stage == 2:
args.warmup_steps = 10
else:
args.warmup_steps = 30
args.epoch_begin = max_p + 1
samples_per_epoch = args.epoch_steps * args.real_bsz
tokens_per_epoch = samples_per_epoch * args.ctx_len
rank_zero_info(
f"""
############################################################################
#
# RWKV-4 {args.precision.upper()} on {args.num_nodes}x{args.devices} {args.accelerator.upper()}, bsz {args.num_nodes}x{args.devices}x{args.micro_bsz}={args.real_bsz}, {args.strategy} {'with grad_cp' if args.grad_cp > 0 else ''}
#
# Data = {args.data_file} ({args.data_type}), ProjDir = {args.proj_dir}
#
# Epoch = {args.epoch_begin} to {args.epoch_begin + args.epoch_count - 1} (will continue afterwards), save every {args.epoch_save} epoch
#
# Each "epoch" = {args.epoch_steps} steps, {samples_per_epoch} samples, {tokens_per_epoch} tokens
#
# Model = {args.n_layer} n_layer, {args.n_embd} n_embd, {args.ctx_len} ctx_len
# LoRA = {f'enabled, {args.lora_r} r, {args.lora_alpha} alpha, {args.lora_dropout} dropout, on {args.lora_parts}' if args.lora else 'disabled'}
#
# Adam = lr {args.lr_init} to {args.lr_final}, warmup {args.warmup_steps} steps, beta {args.betas}, eps {args.adam_eps}
#
# Found torch {torch.__version__}, recommend 1.13.1+cu117 or newer
# Found deepspeed {deepspeed.__version__ if importlib.util.find_spec('deepspeed') else 'None'}, recommend 0.7.0 (faster than newer versions)
# Found pytorch_lightning {pl.__version__}, recommend 1.9.1 or newer
#
############################################################################
"""
)
rank_zero_info(str(vars(args)) + "\n")
assert args.data_type in ["utf-8", "utf-16le", "numpy", "binidx", "dummy", "wds_img", "uint16"]
if args.lr_final == 0 or args.lr_init == 0:
rank_zero_info("\n\nNote: lr_final = 0 or lr_init = 0. Using linear LR schedule instead.\n\n")
assert args.precision in ["fp32", "tf32", "fp16", "bf16"]
os.environ["RWKV_FLOAT_MODE"] = args.precision
if args.precision == "fp32":
for i in range(10):
rank_zero_info("\n\nNote: you are using fp32 (very slow). Try bf16 / tf32 for faster training.\n\n")
if args.precision == "fp16":
rank_zero_info("\n\nNote: you are using fp16 (might overflow). Try bf16 / tf32 for stable training.\n\n")
os.environ["RWKV_JIT_ON"] = "1"
if "deepspeed_stage_3" in args.strategy:
os.environ["RWKV_JIT_ON"] = "0"
if args.lora and args.grad_cp == 1:
print('!!!!! LoRA Warning: Gradient Checkpointing requires JIT off, disabling it')
os.environ["RWKV_JIT_ON"] = "0"
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = True
if args.precision == "fp32":
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_tf32 = False
else:
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
if "32" in args.precision:
args.precision = 32
elif args.precision == "fp16":
args.precision = 16
else:
args.precision = "bf16"
########################################################################################################
from src.trainer import train_callback, generate_init_weight
from src.dataset import MyDataset
train_data = MyDataset(args)
args.vocab_size = train_data.vocab_size
if args.data_type == 'wds_img':
from src.model_img import RWKV_IMG
assert args.lora, "LoRA not yet supported for RWKV_IMG"
model = RWKV_IMG(args)
else:
from src.model import RWKV, LORA_CONFIG, LoraLinear
if args.lora:
assert args.lora_r > 0, "LoRA should have its `r` > 0"
LORA_CONFIG["r"] = args.lora_r
LORA_CONFIG["alpha"] = args.lora_alpha
LORA_CONFIG["dropout"] = args.lora_dropout
LORA_CONFIG["parts"] = set(str(args.lora_parts).split(','))
enable_time_finetune = 'time' in LORA_CONFIG["parts"]
enable_ln_finetune = 'ln' in LORA_CONFIG["parts"]
model = RWKV(args)
# only train lora parameters
if args.lora:
model.requires_grad_(False)
for name, module in model.named_modules():
# have to check param name since it may have been wrapped by torchscript
if any(n.startswith("lora_") for n, _ in module.named_parameters()):
print(f' LoRA training module {name}')
for pname, param in module.named_parameters():
param.requires_grad = 'lora_' in pname
elif enable_ln_finetune and '.ln' in name:
print(f' LoRA additionally training module {name}')
for param in module.parameters():
param.requires_grad = True
elif enable_time_finetune and any(n.startswith("time") for n, _ in module.named_parameters()):
for pname, param in module.named_parameters():
if pname.startswith("time"):
print(f' LoRA additionally training parameter {pname}')
param.requires_grad = True
if len(args.load_model) == 0 or args.my_pile_stage == 1: # shall we build the initial weights?
init_weight_name = f"{args.proj_dir}/rwkv-init.pth"
generate_init_weight(model, init_weight_name) # save initial weights
args.load_model = init_weight_name
rank_zero_info(f"########## Loading {args.load_model}... ##########")
try:
load_dict = torch.load(args.load_model, map_location="cpu")
except:
rank_zero_info(f"Bad checkpoint {args.load_model}")
if args.my_pile_stage >= 2: # try again using another checkpoint
max_p = args.my_pile_prev_p
if max_p == -1:
args.load_model = f"{args.proj_dir}/rwkv-init.pth"
else:
args.load_model = f"{args.proj_dir}/rwkv-{max_p}.pth"
args.epoch_begin = max_p + 1
rank_zero_info(f"Trying {args.load_model}")
load_dict = torch.load(args.load_model, map_location="cpu")
if args.load_partial == 1:
load_keys = load_dict.keys()
for k in model.state_dict():
if k not in load_keys:
load_dict[k] = model.state_dict()[k]
# If using LoRA, the LoRA keys might be missing in the original model
model.load_state_dict(load_dict, strict=(not args.lora))
if os.path.isfile(args.lora_load):
model.load_state_dict(torch.load(args.lora_load, map_location="cpu"),
strict=False)
trainer: Trainer = Trainer.from_argparse_args(
args,
callbacks=[train_callback(args)],
)
if (args.lr_init > 1e-4 or trainer.world_size * args.micro_bsz * trainer.accumulate_grad_batches < 8):
if 'I_KNOW_WHAT_IM_DOING' in os.environ:
if trainer.global_rank == 0:
print('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
print(f' WARNING: you are using too large LR ({args.lr_init} > 1e-4) or too small global batch size ({trainer.world_size} * {args.micro_bsz} * {trainer.accumulate_grad_batches} < 8)')
print('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
else:
if trainer.global_rank == 0:
print('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
print(f' ERROR: you are using too large LR ({args.lr_init} > 1e-4) or too small global batch size ({trainer.world_size} * {args.micro_bsz} * {trainer.accumulate_grad_batches} < 8)')
print(f' Unless you are sure this is what you want, adjust them accordingly')
print(f' (to suppress this, set environment variable "I_KNOW_WHAT_IM_DOING")')
print('!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!')
exit(0)
if trainer.global_rank == 0:
for n in model.state_dict():
shape = model.state_dict()[n].shape
shape = [i for i in shape if i != 1]
if len(shape) > 1:
print(f"{str(shape[0]).ljust(5)} {str(shape[1]).ljust(5)} {n}")
else:
print(f"{str(shape[0]).ljust(5)} {n}")
if "deepspeed" in args.strategy:
trainer.strategy.config["zero_optimization"]["allgather_bucket_size"] = args.ds_bucket_mb * 1000 * 1000
trainer.strategy.config["zero_optimization"]["reduce_bucket_size"] = args.ds_bucket_mb * 1000 * 1000
# must set shuffle=False, persistent_workers=False (because worker is in another thread)
data_loader = DataLoader(train_data, shuffle=False, pin_memory=True, batch_size=args.micro_bsz, num_workers=1, persistent_workers=False, drop_last=True)
trainer.fit(model, data_loader)

View File

@@ -0,0 +1,3 @@
torch==1.13.1
pytorch_lightning==1.9.5
deepspeed

View File

@@ -12,12 +12,15 @@
"@fluentui/react-icons": "^2.0.201",
"@microsoft/fetch-event-source": "^2.0.1",
"@primer/octicons-react": "^19.1.0",
"chart.js": "^4.3.0",
"classnames": "^2.3.2",
"github-markdown-css": "^5.2.0",
"i18next": "^22.4.15",
"mobx": "^6.9.0",
"mobx-react-lite": "^3.4.3",
"react": "^18.2.0",
"react-beautiful-dnd": "^13.1.1",
"react-chartjs-2": "^5.2.0",
"react-dom": "^18.2.0",
"react-i18next": "^12.2.2",
"react-markdown": "^8.0.7",
@@ -33,6 +36,7 @@
},
"devDependencies": {
"@types/react": "^18.2.6",
"@types/react-beautiful-dnd": "^13.1.4",
"@types/react-dom": "^18.2.4",
"@types/uuid": "^9.0.1",
"@vitejs/plugin-react": "^4.0.0",
@@ -56,7 +60,7 @@
},
"node_modules/@ampproject/remapping": {
"version": "2.2.1",
"resolved": "https://registry.npmmirror.com/@ampproject/remapping/-/remapping-2.2.1.tgz",
"resolved": "https://registry.npmjs.org/@ampproject/remapping/-/remapping-2.2.1.tgz",
"integrity": "sha512-lFMjJTrFL3j7L9yBxwYfCq2k6qqwHyzuUl/XBnif78PWTJYyL/dfowQHWE3sp6U6ZzqWiiIZnpTMO96zhkjwtg==",
"dev": true,
"dependencies": {
@@ -68,42 +72,42 @@
}
},
"node_modules/@babel/code-frame": {
"version": "7.21.4",
"resolved": "https://registry.npmmirror.com/@babel/code-frame/-/code-frame-7.21.4.tgz",
"integrity": "sha512-LYvhNKfwWSPpocw8GI7gpK2nq3HSDuEPC/uSYaALSJu9xjsalaaYFOq0Pwt5KmVqwEbZlDu81aLXwBOmD/Fv9g==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/code-frame/-/code-frame-7.22.5.tgz",
"integrity": "sha512-Xmwn266vad+6DAqEB2A6V/CcZVp62BbwVmcOJc2RPuwih1kw02TjQvWVWlcKGbBPd+8/0V5DEkOcizRGYsspYQ==",
"dev": true,
"dependencies": {
"@babel/highlight": "^7.18.6"
"@babel/highlight": "^7.22.5"
},
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/@babel/compat-data": {
"version": "7.21.7",
"resolved": "https://registry.npmmirror.com/@babel/compat-data/-/compat-data-7.21.7.tgz",
"integrity": "sha512-KYMqFYTaenzMK4yUtf4EW9wc4N9ef80FsbMtkwool5zpwl4YrT1SdWYSTRcT94KO4hannogdS+LxY7L+arP3gA==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/compat-data/-/compat-data-7.22.5.tgz",
"integrity": "sha512-4Jc/YuIaYqKnDDz892kPIledykKg12Aw1PYX5i/TY28anJtacvM1Rrr8wbieB9GfEJwlzqT0hUEao0CxEebiDA==",
"dev": true,
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/@babel/core": {
"version": "7.21.8",
"resolved": "https://registry.npmmirror.com/@babel/core/-/core-7.21.8.tgz",
"integrity": "sha512-YeM22Sondbo523Sz0+CirSPnbj9bG3P0CdHcBZdqUuaeOaYEFbOLoGU7lebvGP6P5J/WE9wOn7u7C4J9HvS1xQ==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/core/-/core-7.22.5.tgz",
"integrity": "sha512-SBuTAjg91A3eKOvD+bPEz3LlhHZRNu1nFOVts9lzDJTXshHTjII0BAtDS3Y2DAkdZdDKWVZGVwkDfc4Clxn1dg==",
"dev": true,
"dependencies": {
"@ampproject/remapping": "^2.2.0",
"@babel/code-frame": "^7.21.4",
"@babel/generator": "^7.21.5",
"@babel/helper-compilation-targets": "^7.21.5",
"@babel/helper-module-transforms": "^7.21.5",
"@babel/helpers": "^7.21.5",
"@babel/parser": "^7.21.8",
"@babel/template": "^7.20.7",
"@babel/traverse": "^7.21.5",
"@babel/types": "^7.21.5",
"@babel/code-frame": "^7.22.5",
"@babel/generator": "^7.22.5",
"@babel/helper-compilation-targets": "^7.22.5",
"@babel/helper-module-transforms": "^7.22.5",
"@babel/helpers": "^7.22.5",
"@babel/parser": "^7.22.5",
"@babel/template": "^7.22.5",
"@babel/traverse": "^7.22.5",
"@babel/types": "^7.22.5",
"convert-source-map": "^1.7.0",
"debug": "^4.1.0",
"gensync": "^1.0.0-beta.2",
@@ -112,15 +116,19 @@
},
"engines": {
"node": ">=6.9.0"
},
"funding": {
"type": "opencollective",
"url": "https://opencollective.com/babel"
}
},
"node_modules/@babel/generator": {
"version": "7.21.5",
"resolved": "https://registry.npmmirror.com/@babel/generator/-/generator-7.21.5.tgz",
"integrity": "sha512-SrKK/sRv8GesIW1bDagf9cCG38IOMYZusoe1dfg0D8aiUe3Amvoj1QtjTPAWcfrZFvIwlleLb0gxzQidL9w14w==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/generator/-/generator-7.22.5.tgz",
"integrity": "sha512-+lcUbnTRhd0jOewtFSedLyiPsD5tswKkbgcezOqqWFUVNEwoUTlpPOBmvhG7OXWLR4jMdv0czPGH5XbflnD1EA==",
"dev": true,
"dependencies": {
"@babel/types": "^7.21.5",
"@babel/types": "^7.22.5",
"@jridgewell/gen-mapping": "^0.3.2",
"@jridgewell/trace-mapping": "^0.3.17",
"jsesc": "^2.5.1"
@@ -130,13 +138,13 @@
}
},
"node_modules/@babel/helper-compilation-targets": {
"version": "7.21.5",
"resolved": "https://registry.npmmirror.com/@babel/helper-compilation-targets/-/helper-compilation-targets-7.21.5.tgz",
"integrity": "sha512-1RkbFGUKex4lvsB9yhIfWltJM5cZKUftB2eNajaDv3dCMEp49iBG0K14uH8NnX9IPux2+mK7JGEOB0jn48/J6w==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/helper-compilation-targets/-/helper-compilation-targets-7.22.5.tgz",
"integrity": "sha512-Ji+ywpHeuqxB8WDxraCiqR0xfhYjiDE/e6k7FuIaANnoOFxAHskHChz4vA1mJC9Lbm01s1PVAGhQY4FUKSkGZw==",
"dev": true,
"dependencies": {
"@babel/compat-data": "^7.21.5",
"@babel/helper-validator-option": "^7.21.0",
"@babel/compat-data": "^7.22.5",
"@babel/helper-validator-option": "^7.22.5",
"browserslist": "^4.21.3",
"lru-cache": "^5.1.1",
"semver": "^6.3.0"
@@ -149,151 +157,151 @@
}
},
"node_modules/@babel/helper-environment-visitor": {
"version": "7.21.5",
"resolved": "https://registry.npmmirror.com/@babel/helper-environment-visitor/-/helper-environment-visitor-7.21.5.tgz",
"integrity": "sha512-IYl4gZ3ETsWocUWgsFZLM5i1BYx9SoemminVEXadgLBa9TdeorzgLKm8wWLA6J1N/kT3Kch8XIk1laNzYoHKvQ==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/helper-environment-visitor/-/helper-environment-visitor-7.22.5.tgz",
"integrity": "sha512-XGmhECfVA/5sAt+H+xpSg0mfrHq6FzNr9Oxh7PSEBBRUb/mL7Kz3NICXb194rCqAEdxkhPT1a88teizAFyvk8Q==",
"dev": true,
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/@babel/helper-function-name": {
"version": "7.21.0",
"resolved": "https://registry.npmmirror.com/@babel/helper-function-name/-/helper-function-name-7.21.0.tgz",
"integrity": "sha512-HfK1aMRanKHpxemaY2gqBmL04iAPOPRj7DxtNbiDOrJK+gdwkiNRVpCpUJYbUT+aZyemKN8brqTOxzCaG6ExRg==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/helper-function-name/-/helper-function-name-7.22.5.tgz",
"integrity": "sha512-wtHSq6jMRE3uF2otvfuD3DIvVhOsSNshQl0Qrd7qC9oQJzHvOL4qQXlQn2916+CXGywIjpGuIkoyZRRxHPiNQQ==",
"dev": true,
"dependencies": {
"@babel/template": "^7.20.7",
"@babel/types": "^7.21.0"
"@babel/template": "^7.22.5",
"@babel/types": "^7.22.5"
},
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/@babel/helper-hoist-variables": {
"version": "7.18.6",
"resolved": "https://registry.npmmirror.com/@babel/helper-hoist-variables/-/helper-hoist-variables-7.18.6.tgz",
"integrity": "sha512-UlJQPkFqFULIcyW5sbzgbkxn2FKRgwWiRexcuaR8RNJRy8+LLveqPjwZV/bwrLZCN0eUHD/x8D0heK1ozuoo6Q==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/helper-hoist-variables/-/helper-hoist-variables-7.22.5.tgz",
"integrity": "sha512-wGjk9QZVzvknA6yKIUURb8zY3grXCcOZt+/7Wcy8O2uctxhplmUPkOdlgoNhmdVee2c92JXbf1xpMtVNbfoxRw==",
"dev": true,
"dependencies": {
"@babel/types": "^7.18.6"
"@babel/types": "^7.22.5"
},
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/@babel/helper-module-imports": {
"version": "7.21.4",
"resolved": "https://registry.npmmirror.com/@babel/helper-module-imports/-/helper-module-imports-7.21.4.tgz",
"integrity": "sha512-orajc5T2PsRYUN3ZryCEFeMDYwyw09c/pZeaQEZPH0MpKzSvn3e0uXsDBu3k03VI+9DBiRo+l22BfKTpKwa/Wg==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/helper-module-imports/-/helper-module-imports-7.22.5.tgz",
"integrity": "sha512-8Dl6+HD/cKifutF5qGd/8ZJi84QeAKh+CEe1sBzz8UayBBGg1dAIJrdHOcOM5b2MpzWL2yuotJTtGjETq0qjXg==",
"dev": true,
"dependencies": {
"@babel/types": "^7.21.4"
"@babel/types": "^7.22.5"
},
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/@babel/helper-module-transforms": {
"version": "7.21.5",
"resolved": "https://registry.npmmirror.com/@babel/helper-module-transforms/-/helper-module-transforms-7.21.5.tgz",
"integrity": "sha512-bI2Z9zBGY2q5yMHoBvJ2a9iX3ZOAzJPm7Q8Yz6YeoUjU/Cvhmi2G4QyTNyPBqqXSgTjUxRg3L0xV45HvkNWWBw==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/helper-module-transforms/-/helper-module-transforms-7.22.5.tgz",
"integrity": "sha512-+hGKDt/Ze8GFExiVHno/2dvG5IdstpzCq0y4Qc9OJ25D4q3pKfiIP/4Vp3/JvhDkLKsDK2api3q3fpIgiIF5bw==",
"dev": true,
"dependencies": {
"@babel/helper-environment-visitor": "^7.21.5",
"@babel/helper-module-imports": "^7.21.4",
"@babel/helper-simple-access": "^7.21.5",
"@babel/helper-split-export-declaration": "^7.18.6",
"@babel/helper-validator-identifier": "^7.19.1",
"@babel/template": "^7.20.7",
"@babel/traverse": "^7.21.5",
"@babel/types": "^7.21.5"
"@babel/helper-environment-visitor": "^7.22.5",
"@babel/helper-module-imports": "^7.22.5",
"@babel/helper-simple-access": "^7.22.5",
"@babel/helper-split-export-declaration": "^7.22.5",
"@babel/helper-validator-identifier": "^7.22.5",
"@babel/template": "^7.22.5",
"@babel/traverse": "^7.22.5",
"@babel/types": "^7.22.5"
},
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/@babel/helper-plugin-utils": {
"version": "7.21.5",
"resolved": "https://registry.npmmirror.com/@babel/helper-plugin-utils/-/helper-plugin-utils-7.21.5.tgz",
"integrity": "sha512-0WDaIlXKOX/3KfBK/dwP1oQGiPh6rjMkT7HIRv7i5RR2VUMwrx5ZL0dwBkKx7+SW1zwNdgjHd34IMk5ZjTeHVg==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/helper-plugin-utils/-/helper-plugin-utils-7.22.5.tgz",
"integrity": "sha512-uLls06UVKgFG9QD4OeFYLEGteMIAa5kpTPcFL28yuCIIzsf6ZyKZMllKVOCZFhiZ5ptnwX4mtKdWCBE/uT4amg==",
"dev": true,
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/@babel/helper-simple-access": {
"version": "7.21.5",
"resolved": "https://registry.npmmirror.com/@babel/helper-simple-access/-/helper-simple-access-7.21.5.tgz",
"integrity": "sha512-ENPDAMC1wAjR0uaCUwliBdiSl1KBJAVnMTzXqi64c2MG8MPR6ii4qf7bSXDqSFbr4W6W028/rf5ivoHop5/mkg==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/helper-simple-access/-/helper-simple-access-7.22.5.tgz",
"integrity": "sha512-n0H99E/K+Bika3++WNL17POvo4rKWZ7lZEp1Q+fStVbUi8nxPQEBOlTmCOxW/0JsS56SKKQ+ojAe2pHKJHN35w==",
"dev": true,
"dependencies": {
"@babel/types": "^7.21.5"
"@babel/types": "^7.22.5"
},
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/@babel/helper-split-export-declaration": {
"version": "7.18.6",
"resolved": "https://registry.npmmirror.com/@babel/helper-split-export-declaration/-/helper-split-export-declaration-7.18.6.tgz",
"integrity": "sha512-bde1etTx6ZyTmobl9LLMMQsaizFVZrquTEHOqKeQESMKo4PlObf+8+JA25ZsIpZhT/WEd39+vOdLXAFG/nELpA==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/helper-split-export-declaration/-/helper-split-export-declaration-7.22.5.tgz",
"integrity": "sha512-thqK5QFghPKWLhAV321lxF95yCg2K3Ob5yw+M3VHWfdia0IkPXUtoLH8x/6Fh486QUvzhb8YOWHChTVen2/PoQ==",
"dev": true,
"dependencies": {
"@babel/types": "^7.18.6"
"@babel/types": "^7.22.5"
},
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/@babel/helper-string-parser": {
"version": "7.21.5",
"resolved": "https://registry.npmmirror.com/@babel/helper-string-parser/-/helper-string-parser-7.21.5.tgz",
"integrity": "sha512-5pTUx3hAJaZIdW99sJ6ZUUgWq/Y+Hja7TowEnLNMm1VivRgZQL3vpBY3qUACVsvw+yQU6+YgfBVmcbLaZtrA1w==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/helper-string-parser/-/helper-string-parser-7.22.5.tgz",
"integrity": "sha512-mM4COjgZox8U+JcXQwPijIZLElkgEpO5rsERVDJTc2qfCDfERyob6k5WegS14SX18IIjv+XD+GrqNumY5JRCDw==",
"dev": true,
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/@babel/helper-validator-identifier": {
"version": "7.19.1",
"resolved": "https://registry.npmmirror.com/@babel/helper-validator-identifier/-/helper-validator-identifier-7.19.1.tgz",
"integrity": "sha512-awrNfaMtnHUr653GgGEs++LlAvW6w+DcPrOliSMXWCKo597CwL5Acf/wWdNkf/tfEQE3mjkeD1YOVZOUV/od1w==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/helper-validator-identifier/-/helper-validator-identifier-7.22.5.tgz",
"integrity": "sha512-aJXu+6lErq8ltp+JhkJUfk1MTGyuA4v7f3pA+BJ5HLfNC6nAQ0Cpi9uOquUj8Hehg0aUiHzWQbOVJGao6ztBAQ==",
"dev": true,
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/@babel/helper-validator-option": {
"version": "7.21.0",
"resolved": "https://registry.npmmirror.com/@babel/helper-validator-option/-/helper-validator-option-7.21.0.tgz",
"integrity": "sha512-rmL/B8/f0mKS2baE9ZpyTcTavvEuWhTTW8amjzXNvYG4AwBsqTLikfXsEofsJEfKHf+HQVQbFOHy6o+4cnC/fQ==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/helper-validator-option/-/helper-validator-option-7.22.5.tgz",
"integrity": "sha512-R3oB6xlIVKUnxNUxbmgq7pKjxpru24zlimpE8WK47fACIlM0II/Hm1RS8IaOI7NgCr6LNS+jl5l75m20npAziw==",
"dev": true,
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/@babel/helpers": {
"version": "7.21.5",
"resolved": "https://registry.npmmirror.com/@babel/helpers/-/helpers-7.21.5.tgz",
"integrity": "sha512-BSY+JSlHxOmGsPTydUkPf1MdMQ3M81x5xGCOVgWM3G8XH77sJ292Y2oqcp0CbbgxhqBuI46iUz1tT7hqP7EfgA==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/helpers/-/helpers-7.22.5.tgz",
"integrity": "sha512-pSXRmfE1vzcUIDFQcSGA5Mr+GxBV9oiRKDuDxXvWQQBCh8HoIjs/2DlDB7H8smac1IVrB9/xdXj2N3Wol9Cr+Q==",
"dev": true,
"dependencies": {
"@babel/template": "^7.20.7",
"@babel/traverse": "^7.21.5",
"@babel/types": "^7.21.5"
"@babel/template": "^7.22.5",
"@babel/traverse": "^7.22.5",
"@babel/types": "^7.22.5"
},
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/@babel/highlight": {
"version": "7.18.6",
"resolved": "https://registry.npmmirror.com/@babel/highlight/-/highlight-7.18.6.tgz",
"integrity": "sha512-u7stbOuYjaPezCuLj29hNW1v64M2Md2qupEKP1fHc7WdOA3DgLh37suiSrZYY7haUB7iBeQZ9P1uiRF359do3g==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/highlight/-/highlight-7.22.5.tgz",
"integrity": "sha512-BSKlD1hgnedS5XRnGOljZawtag7H1yPfQp0tdNJCHoH6AZ+Pcm9VvkrK59/Yy593Ypg0zMxH2BxD1VPYUQ7UIw==",
"dev": true,
"dependencies": {
"@babel/helper-validator-identifier": "^7.18.6",
"@babel/helper-validator-identifier": "^7.22.5",
"chalk": "^2.0.0",
"js-tokens": "^4.0.0"
},
@@ -302,9 +310,9 @@
}
},
"node_modules/@babel/parser": {
"version": "7.21.8",
"resolved": "https://registry.npmmirror.com/@babel/parser/-/parser-7.21.8.tgz",
"integrity": "sha512-6zavDGdzG3gUqAdWvlLFfk+36RilI+Pwyuuh7HItyeScCWP3k6i8vKclAQ0bM/0y/Kz/xiwvxhMv9MgTJP5gmA==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/parser/-/parser-7.22.5.tgz",
"integrity": "sha512-DFZMC9LJUG9PLOclRC32G63UXwzqS2koQC8dkx+PLdmt1xSePYpbT/NbsrJy8Q/muXz7o/h/d4A7Fuyixm559Q==",
"dev": true,
"bin": {
"parser": "bin/babel-parser.js"
@@ -314,12 +322,12 @@
}
},
"node_modules/@babel/plugin-transform-react-jsx-self": {
"version": "7.21.0",
"resolved": "https://registry.npmmirror.com/@babel/plugin-transform-react-jsx-self/-/plugin-transform-react-jsx-self-7.21.0.tgz",
"integrity": "sha512-f/Eq+79JEu+KUANFks9UZCcvydOOGMgF7jBrcwjHa5jTZD8JivnhCJYvmlhR/WTXBWonDExPoW0eO/CR4QJirA==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/plugin-transform-react-jsx-self/-/plugin-transform-react-jsx-self-7.22.5.tgz",
"integrity": "sha512-nTh2ogNUtxbiSbxaT4Ds6aXnXEipHweN9YRgOX/oNXdf0cCrGn/+2LozFa3lnPV5D90MkjhgckCPBrsoSc1a7g==",
"dev": true,
"dependencies": {
"@babel/helper-plugin-utils": "^7.20.2"
"@babel/helper-plugin-utils": "^7.22.5"
},
"engines": {
"node": ">=6.9.0"
@@ -329,12 +337,12 @@
}
},
"node_modules/@babel/plugin-transform-react-jsx-source": {
"version": "7.19.6",
"resolved": "https://registry.npmmirror.com/@babel/plugin-transform-react-jsx-source/-/plugin-transform-react-jsx-source-7.19.6.tgz",
"integrity": "sha512-RpAi004QyMNisst/pvSanoRdJ4q+jMCWyk9zdw/CyLB9j8RXEahodR6l2GyttDRyEVWZtbN+TpLiHJ3t34LbsQ==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/plugin-transform-react-jsx-source/-/plugin-transform-react-jsx-source-7.22.5.tgz",
"integrity": "sha512-yIiRO6yobeEIaI0RTbIr8iAK9FcBHLtZq0S89ZPjDLQXBA4xvghaKqI0etp/tF3htTM0sazJKKLz9oEiGRtu7w==",
"dev": true,
"dependencies": {
"@babel/helper-plugin-utils": "^7.19.0"
"@babel/helper-plugin-utils": "^7.22.5"
},
"engines": {
"node": ">=6.9.0"
@@ -355,33 +363,33 @@
}
},
"node_modules/@babel/template": {
"version": "7.20.7",
"resolved": "https://registry.npmmirror.com/@babel/template/-/template-7.20.7.tgz",
"integrity": "sha512-8SegXApWe6VoNw0r9JHpSteLKTpTiLZ4rMlGIm9JQ18KiCtyQiAMEazujAHrUS5flrcqYZa75ukev3P6QmUwUw==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/template/-/template-7.22.5.tgz",
"integrity": "sha512-X7yV7eiwAxdj9k94NEylvbVHLiVG1nvzCV2EAowhxLTwODV1jl9UzZ48leOC0sH7OnuHrIkllaBgneUykIcZaw==",
"dev": true,
"dependencies": {
"@babel/code-frame": "^7.18.6",
"@babel/parser": "^7.20.7",
"@babel/types": "^7.20.7"
"@babel/code-frame": "^7.22.5",
"@babel/parser": "^7.22.5",
"@babel/types": "^7.22.5"
},
"engines": {
"node": ">=6.9.0"
}
},
"node_modules/@babel/traverse": {
"version": "7.21.5",
"resolved": "https://registry.npmmirror.com/@babel/traverse/-/traverse-7.21.5.tgz",
"integrity": "sha512-AhQoI3YjWi6u/y/ntv7k48mcrCXmus0t79J9qPNlk/lAsFlCiJ047RmbfMOawySTHtywXhbXgpx/8nXMYd+oFw==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/traverse/-/traverse-7.22.5.tgz",
"integrity": "sha512-7DuIjPgERaNo6r+PZwItpjCZEa5vyw4eJGufeLxrPdBXBoLcCJCIasvK6pK/9DVNrLZTLFhUGqaC6X/PA007TQ==",
"dev": true,
"dependencies": {
"@babel/code-frame": "^7.21.4",
"@babel/generator": "^7.21.5",
"@babel/helper-environment-visitor": "^7.21.5",
"@babel/helper-function-name": "^7.21.0",
"@babel/helper-hoist-variables": "^7.18.6",
"@babel/helper-split-export-declaration": "^7.18.6",
"@babel/parser": "^7.21.5",
"@babel/types": "^7.21.5",
"@babel/code-frame": "^7.22.5",
"@babel/generator": "^7.22.5",
"@babel/helper-environment-visitor": "^7.22.5",
"@babel/helper-function-name": "^7.22.5",
"@babel/helper-hoist-variables": "^7.22.5",
"@babel/helper-split-export-declaration": "^7.22.5",
"@babel/parser": "^7.22.5",
"@babel/types": "^7.22.5",
"debug": "^4.1.0",
"globals": "^11.1.0"
},
@@ -390,13 +398,13 @@
}
},
"node_modules/@babel/types": {
"version": "7.21.5",
"resolved": "https://registry.npmmirror.com/@babel/types/-/types-7.21.5.tgz",
"integrity": "sha512-m4AfNvVF2mVC/F7fDEdH2El3HzUg9It/XsCxZiOTTA3m3qYfcSVSbTfM6Q9xG+hYDniZssYhlXKKUMD5m8tF4Q==",
"version": "7.22.5",
"resolved": "https://registry.npmjs.org/@babel/types/-/types-7.22.5.tgz",
"integrity": "sha512-zo3MIHGOkPOfoRXitsgHLjEXmlDaD/5KU1Uzuc9GNiZPhSqVxVRtxuPaSBZDsYZ9qV88AjtMtWW7ww98loJ9KA==",
"dev": true,
"dependencies": {
"@babel/helper-string-parser": "^7.21.5",
"@babel/helper-validator-identifier": "^7.19.1",
"@babel/helper-string-parser": "^7.22.5",
"@babel/helper-validator-identifier": "^7.22.5",
"to-fast-properties": "^2.0.0"
},
"engines": {
@@ -1897,6 +1905,11 @@
"integrity": "sha512-XPSJHWmi394fuUuzDnGz1wiKqWfo1yXecHQMRf2l6hztTO+nPru658AyDngaBe7isIxEkRsPR3FZh+s7iVa4Uw==",
"dev": true
},
"node_modules/@kurkle/color": {
"version": "0.3.2",
"resolved": "https://registry.npmjs.org/@kurkle/color/-/color-0.3.2.tgz",
"integrity": "sha512-fuscdXJ9G1qb7W8VdHi+IwRqij3lBkosAm4ydQtEmbY58OzHXqQhvlxqEkoz0yssNVn38bcpRWgA9PP+OGoisw=="
},
"node_modules/@microsoft/fetch-event-source": {
"version": "2.0.1",
"resolved": "https://registry.npmmirror.com/@microsoft/fetch-event-source/-/fetch-event-source-2.0.1.tgz",
@@ -1980,6 +1993,15 @@
"@types/unist": "*"
}
},
"node_modules/@types/hoist-non-react-statics": {
"version": "3.3.1",
"resolved": "https://registry.npmjs.org/@types/hoist-non-react-statics/-/hoist-non-react-statics-3.3.1.tgz",
"integrity": "sha512-iMIqiko6ooLrTh1joXodJK5X9xeEALT1kM5G3ZLhD3hszxBdIEd5C75U834D9mLcINgD4OyZf5uQXjkuYydWvA==",
"dependencies": {
"@types/react": "*",
"hoist-non-react-statics": "^3.3.0"
}
},
"node_modules/@types/mdast": {
"version": "3.0.11",
"resolved": "https://registry.npmmirror.com/@types/mdast/-/mdast-3.0.11.tgz",
@@ -2013,6 +2035,15 @@
"csstype": "^3.0.2"
}
},
"node_modules/@types/react-beautiful-dnd": {
"version": "13.1.4",
"resolved": "https://registry.npmjs.org/@types/react-beautiful-dnd/-/react-beautiful-dnd-13.1.4.tgz",
"integrity": "sha512-4bIBdzOr0aavN+88q3C7Pgz+xkb7tz3whORYrmSj77wfVEMfiWiooIwVWFR7KM2e+uGTe5BVrXqSfb0aHeflJA==",
"dev": true,
"dependencies": {
"@types/react": "*"
}
},
"node_modules/@types/react-dom": {
"version": "18.2.4",
"resolved": "https://registry.npmmirror.com/@types/react-dom/-/react-dom-18.2.4.tgz",
@@ -2021,6 +2052,17 @@
"@types/react": "*"
}
},
"node_modules/@types/react-redux": {
"version": "7.1.25",
"resolved": "https://registry.npmjs.org/@types/react-redux/-/react-redux-7.1.25.tgz",
"integrity": "sha512-bAGh4e+w5D8dajd6InASVIyCo4pZLJ66oLb80F9OBLO1gKESbZcRCJpTT6uLXX+HAB57zw1WTdwJdAsewuTweg==",
"dependencies": {
"@types/hoist-non-react-statics": "^3.3.0",
"@types/react": "*",
"hoist-non-react-statics": "^3.3.0",
"redux": "^4.0.0"
}
},
"node_modules/@types/scheduler": {
"version": "0.16.3",
"resolved": "https://registry.npmmirror.com/@types/scheduler/-/scheduler-0.16.3.tgz",
@@ -2038,14 +2080,14 @@
"dev": true
},
"node_modules/@vitejs/plugin-react": {
"version": "4.0.0",
"resolved": "https://registry.npmmirror.com/@vitejs/plugin-react/-/plugin-react-4.0.0.tgz",
"integrity": "sha512-HX0XzMjL3hhOYm+0s95pb0Z7F8O81G7joUHgfDd/9J/ZZf5k4xX6QAMFkKsHFxaHlf6X7GD7+XuaZ66ULiJuhQ==",
"version": "4.0.1",
"resolved": "https://registry.npmjs.org/@vitejs/plugin-react/-/plugin-react-4.0.1.tgz",
"integrity": "sha512-g25lL98essfeSj43HJ0o4DMp0325XK0ITkxpgChzJU/CyemgyChtlxfnRbjfwxDGCTRxTiXtQAsdebQXKMRSOA==",
"dev": true,
"dependencies": {
"@babel/core": "^7.21.4",
"@babel/plugin-transform-react-jsx-self": "^7.21.0",
"@babel/plugin-transform-react-jsx-source": "^7.19.6",
"@babel/core": "^7.22.5",
"@babel/plugin-transform-react-jsx-self": "^7.22.5",
"@babel/plugin-transform-react-jsx-source": "^7.22.5",
"react-refresh": "^0.14.0"
},
"engines": {
@@ -2066,7 +2108,7 @@
},
"node_modules/ansi-styles": {
"version": "3.2.1",
"resolved": "https://registry.npmmirror.com/ansi-styles/-/ansi-styles-3.2.1.tgz",
"resolved": "https://registry.npmjs.org/ansi-styles/-/ansi-styles-3.2.1.tgz",
"integrity": "sha512-VT0ZI6kZRdTh8YyJw3SMbYm/u+NqfsAxEpWO0Pf9sq8/e94WxxOpPKx9FR1FlyCtOVDNOQ+8ntlqFxiRc+r5qA==",
"dev": true,
"dependencies": {
@@ -2206,7 +2248,7 @@
},
"node_modules/chalk": {
"version": "2.4.2",
"resolved": "https://registry.npmmirror.com/chalk/-/chalk-2.4.2.tgz",
"resolved": "https://registry.npmjs.org/chalk/-/chalk-2.4.2.tgz",
"integrity": "sha512-Mti+f9lpJNcwF4tWV8/OrTTtF1gZi+f8FqlyAdouralcFWFQWF2+NgCHShjkCb+IFBLq9buZwE1xckQU4peSuQ==",
"dev": true,
"dependencies": {
@@ -2223,6 +2265,17 @@
"resolved": "https://registry.npmmirror.com/character-entities/-/character-entities-2.0.2.tgz",
"integrity": "sha512-shx7oQ0Awen/BRIdkjkvz54PnEEI/EjwXDSIZp86/KKdbafHh1Df/RYGBhn4hbe2+uKC9FnT5UCEdyPz3ai9hQ=="
},
"node_modules/chart.js": {
"version": "4.3.0",
"resolved": "https://registry.npmjs.org/chart.js/-/chart.js-4.3.0.tgz",
"integrity": "sha512-ynG0E79xGfMaV2xAHdbhwiPLczxnNNnasrmPEXriXsPJGjmhOBYzFVEsB65w2qMDz+CaBJJuJD0inE/ab/h36g==",
"dependencies": {
"@kurkle/color": "^0.3.0"
},
"engines": {
"pnpm": ">=7"
}
},
"node_modules/chokidar": {
"version": "3.5.3",
"resolved": "https://registry.npmmirror.com/chokidar/-/chokidar-3.5.3.tgz",
@@ -2285,7 +2338,7 @@
},
"node_modules/color-convert": {
"version": "1.9.3",
"resolved": "https://registry.npmmirror.com/color-convert/-/color-convert-1.9.3.tgz",
"resolved": "https://registry.npmjs.org/color-convert/-/color-convert-1.9.3.tgz",
"integrity": "sha512-QfAUtd+vFdAtFQcC8CCyYt1fYWxSqAiK2cSD6zDB8N3cpsEBAvRxp9zOGg6G/SHHJYAT88/az/IuDGALsNVbGg==",
"dev": true,
"dependencies": {
@@ -2294,7 +2347,7 @@
},
"node_modules/color-name": {
"version": "1.1.3",
"resolved": "https://registry.npmmirror.com/color-name/-/color-name-1.1.3.tgz",
"resolved": "https://registry.npmjs.org/color-name/-/color-name-1.1.3.tgz",
"integrity": "sha512-72fSenhMw2HZMTVHeCA9KCmpEIbzWiQsjN+BHcBbS9vr1mtt+vJjPdksIBNUmKAW8TFUDPJK5SUU3QhE9NEXDw==",
"dev": true
},
@@ -2320,10 +2373,18 @@
},
"node_modules/convert-source-map": {
"version": "1.9.0",
"resolved": "https://registry.npmmirror.com/convert-source-map/-/convert-source-map-1.9.0.tgz",
"resolved": "https://registry.npmjs.org/convert-source-map/-/convert-source-map-1.9.0.tgz",
"integrity": "sha512-ASFBup0Mz1uyiIjANan1jzLQami9z1PoYSZCiiYW2FczPbenXc45FZdBZLzOT+r6+iciuEModtmCti+hjaAk0A==",
"dev": true
},
"node_modules/css-box-model": {
"version": "1.2.1",
"resolved": "https://registry.npmjs.org/css-box-model/-/css-box-model-1.2.1.tgz",
"integrity": "sha512-a7Vr4Q/kd/aw96bnJG332W9V9LkJO69JRcaCYDUqjp6/z0w6VcZjgAcTbgFxEPfBgdnAwlh3iwu+hLopa+flJw==",
"dependencies": {
"tiny-invariant": "^1.0.6"
}
},
"node_modules/cssesc": {
"version": "3.0.0",
"resolved": "https://registry.npmmirror.com/cssesc/-/cssesc-3.0.0.tgz",
@@ -2462,7 +2523,7 @@
},
"node_modules/escape-string-regexp": {
"version": "1.0.5",
"resolved": "https://registry.npmmirror.com/escape-string-regexp/-/escape-string-regexp-1.0.5.tgz",
"resolved": "https://registry.npmjs.org/escape-string-regexp/-/escape-string-regexp-1.0.5.tgz",
"integrity": "sha512-vbRorB5FUQWvla16U8R/qgaFIya2qGzwDrNmCZuYKrbdSUMG6I1ZCGQRefkRVhuOkIGVne7BQ35DSfo1qvJqFg==",
"dev": true,
"engines": {
@@ -2576,7 +2637,7 @@
},
"node_modules/gensync": {
"version": "1.0.0-beta.2",
"resolved": "https://registry.npmmirror.com/gensync/-/gensync-1.0.0-beta.2.tgz",
"resolved": "https://registry.npmjs.org/gensync/-/gensync-1.0.0-beta.2.tgz",
"integrity": "sha512-3hN7NaskYvMDLQY55gnW3NQ+mesEAepTqlg+VEbj7zzqEMBVNhzcGYYeqFo/TlYz6eQiFcp1HcsCZO+nGgS8zg==",
"dev": true,
"engines": {
@@ -2628,7 +2689,7 @@
},
"node_modules/globals": {
"version": "11.12.0",
"resolved": "https://registry.npmmirror.com/globals/-/globals-11.12.0.tgz",
"resolved": "https://registry.npmjs.org/globals/-/globals-11.12.0.tgz",
"integrity": "sha512-WOBp/EEGUiIsJSp7wcv/y6MO+lV9UoncWqxuFfm8eBwzWNgyfBd6Gz+IeKQ9jCmyhoH99g15M3T+QaVHFjizVA==",
"dev": true,
"engines": {
@@ -2649,7 +2710,7 @@
},
"node_modules/has-flag": {
"version": "3.0.0",
"resolved": "https://registry.npmmirror.com/has-flag/-/has-flag-3.0.0.tgz",
"resolved": "https://registry.npmjs.org/has-flag/-/has-flag-3.0.0.tgz",
"integrity": "sha512-sKJf1+ceQBr4SMkvQnBDNDtf4TXpVhVGateu0t918bl30FnbE2m4vNLX+VWe/dpjlb+HugGYzW7uQXH98HPEYw==",
"dev": true,
"engines": {
@@ -2754,6 +2815,19 @@
"node": ">=12.0.0"
}
},
"node_modules/hoist-non-react-statics": {
"version": "3.3.2",
"resolved": "https://registry.npmjs.org/hoist-non-react-statics/-/hoist-non-react-statics-3.3.2.tgz",
"integrity": "sha512-/gGivxi8JPKWNm/W0jSmzcMPpfpPLc3dY/6GxhX2hQ9iGj3aDfklV4ET7NjKpSinLpJ5vafa9iiGIEZg10SfBw==",
"dependencies": {
"react-is": "^16.7.0"
}
},
"node_modules/hoist-non-react-statics/node_modules/react-is": {
"version": "16.13.1",
"resolved": "https://registry.npmjs.org/react-is/-/react-is-16.13.1.tgz",
"integrity": "sha512-24e6ynE2H+OKt4kqsOvNd8kBpV65zoxbA4BVsEOB3ARVWQki/DHzaUoC5KuON/BiccDaCCTZBuOcfZs70kR8bQ=="
},
"node_modules/html-parse-stringify": {
"version": "3.0.1",
"resolved": "https://registry.npmmirror.com/html-parse-stringify/-/html-parse-stringify-3.0.1.tgz",
@@ -2918,7 +2992,7 @@
},
"node_modules/jsesc": {
"version": "2.5.2",
"resolved": "https://registry.npmmirror.com/jsesc/-/jsesc-2.5.2.tgz",
"resolved": "https://registry.npmjs.org/jsesc/-/jsesc-2.5.2.tgz",
"integrity": "sha512-OYu7XEzjkCQ3C5Ps3QIZsQfNpqoJyZZA99wd9aWd05NCtC5pWOkShK2mkL6HXQR6/Cy2lbNdPlZBpuQHXE63gA==",
"dev": true,
"bin": {
@@ -2930,7 +3004,7 @@
},
"node_modules/json5": {
"version": "2.2.3",
"resolved": "https://registry.npmmirror.com/json5/-/json5-2.2.3.tgz",
"resolved": "https://registry.npmjs.org/json5/-/json5-2.2.3.tgz",
"integrity": "sha512-XmOWe7eyHYH14cLdVPoyg+GOH3rYX++KpzrylJwSW98t3Nk+U8XOl8FWKOgwtzdb8lXGf6zYwDUzeHMWfxasyg==",
"dev": true,
"bin": {
@@ -2996,7 +3070,7 @@
},
"node_modules/lru-cache": {
"version": "5.1.1",
"resolved": "https://registry.npmmirror.com/lru-cache/-/lru-cache-5.1.1.tgz",
"resolved": "https://registry.npmjs.org/lru-cache/-/lru-cache-5.1.1.tgz",
"integrity": "sha512-KpNARQA3Iwv+jTA0utUVVbrh+Jlrr1Fv0e56GGzAFOXN7dk/FviaDW8LHmK52DlcH4WP2n6gI8vN1aesBFgo9w==",
"dev": true,
"dependencies": {
@@ -3176,6 +3250,11 @@
"@types/mdast": "^3.0.0"
}
},
"node_modules/memoize-one": {
"version": "5.2.1",
"resolved": "https://registry.npmjs.org/memoize-one/-/memoize-one-5.2.1.tgz",
"integrity": "sha512-zYiwtZUcYyXKo/np96AGZAckk+FWWsUdJ3cHGGmld7+AhvcWmQyGCYUh1hc4Q/pkOhb65dQR/pqCyK0cOaHz4Q=="
},
"node_modules/merge2": {
"version": "1.4.1",
"resolved": "https://registry.npmmirror.com/merge2/-/merge2-1.4.1.tgz",
@@ -3789,6 +3868,11 @@
"integrity": "sha512-NuaNSa6flKT5JaSYQzJok04JzTL1CA6aGhv5rfLW3PgqA+M2ChpZQnAC8h8i4ZFkBS8X5RqkDBHA7r4hej3K9A==",
"dev": true
},
"node_modules/raf-schd": {
"version": "4.0.3",
"resolved": "https://registry.npmjs.org/raf-schd/-/raf-schd-4.0.3.tgz",
"integrity": "sha512-tQkJl2GRWh83ui2DiPTJz9wEiMN20syf+5oKfB03yYP7ioZcJwsIK8FjrtLwH1m7C7e+Tt2yYBlrOpdT+dyeIQ=="
},
"node_modules/react": {
"version": "18.2.0",
"resolved": "https://registry.npmmirror.com/react/-/react-18.2.0.tgz",
@@ -3800,6 +3884,33 @@
"node": ">=0.10.0"
}
},
"node_modules/react-beautiful-dnd": {
"version": "13.1.1",
"resolved": "https://registry.npmjs.org/react-beautiful-dnd/-/react-beautiful-dnd-13.1.1.tgz",
"integrity": "sha512-0Lvs4tq2VcrEjEgDXHjT98r+63drkKEgqyxdA7qD3mvKwga6a5SscbdLPO2IExotU1jW8L0Ksdl0Cj2AF67nPQ==",
"dependencies": {
"@babel/runtime": "^7.9.2",
"css-box-model": "^1.2.0",
"memoize-one": "^5.1.1",
"raf-schd": "^4.0.2",
"react-redux": "^7.2.0",
"redux": "^4.0.4",
"use-memo-one": "^1.1.1"
},
"peerDependencies": {
"react": "^16.8.5 || ^17.0.0 || ^18.0.0",
"react-dom": "^16.8.5 || ^17.0.0 || ^18.0.0"
}
},
"node_modules/react-chartjs-2": {
"version": "5.2.0",
"resolved": "https://registry.npmjs.org/react-chartjs-2/-/react-chartjs-2-5.2.0.tgz",
"integrity": "sha512-98iN5aguJyVSxp5U3CblRLH67J8gkfyGNbiK3c+l1QI/G4irHMPQw44aEPmjVag+YKTyQ260NcF82GTQ3bdscA==",
"peerDependencies": {
"chart.js": "^4.1.1",
"react": "^16.8.0 || ^17.0.0 || ^18.0.0"
}
},
"node_modules/react-dom": {
"version": "18.2.0",
"resolved": "https://registry.npmmirror.com/react-dom/-/react-dom-18.2.0.tgz",
@@ -3872,6 +3983,35 @@
"react": ">=16"
}
},
"node_modules/react-redux": {
"version": "7.2.9",
"resolved": "https://registry.npmjs.org/react-redux/-/react-redux-7.2.9.tgz",
"integrity": "sha512-Gx4L3uM182jEEayZfRbI/G11ZpYdNAnBs70lFVMNdHJI76XYtR+7m0MN+eAs7UHBPhWXcnFPaS+9owSCJQHNpQ==",
"dependencies": {
"@babel/runtime": "^7.15.4",
"@types/react-redux": "^7.1.20",
"hoist-non-react-statics": "^3.3.2",
"loose-envify": "^1.4.0",
"prop-types": "^15.7.2",
"react-is": "^17.0.2"
},
"peerDependencies": {
"react": "^16.8.3 || ^17 || ^18"
},
"peerDependenciesMeta": {
"react-dom": {
"optional": true
},
"react-native": {
"optional": true
}
}
},
"node_modules/react-redux/node_modules/react-is": {
"version": "17.0.2",
"resolved": "https://registry.npmjs.org/react-is/-/react-is-17.0.2.tgz",
"integrity": "sha512-w2GsyukL62IJnlaff/nRegPQR94C/XXamvMWmSHRJ4y7Ts/4ocGRmTHvOs8PSE6pB3dWOrD/nueuU5sduBsQ4w=="
},
"node_modules/react-refresh": {
"version": "0.14.0",
"resolved": "https://registry.npmmirror.com/react-refresh/-/react-refresh-0.14.0.tgz",
@@ -3944,6 +4084,14 @@
"node": ">=8.10.0"
}
},
"node_modules/redux": {
"version": "4.2.1",
"resolved": "https://registry.npmjs.org/redux/-/redux-4.2.1.tgz",
"integrity": "sha512-LAUYz4lc+Do8/g7aeRa8JkyDErK6ekstQaqWQrNRW//MY1TvCEpMtpTWvlQ+FPbWCx+Xixu/6SHt5N0HR+SB4w==",
"dependencies": {
"@babel/runtime": "^7.9.2"
}
},
"node_modules/regenerator-runtime": {
"version": "0.13.11",
"resolved": "https://registry.npmmirror.com/regenerator-runtime/-/regenerator-runtime-0.13.11.tgz",
@@ -4145,7 +4293,7 @@
},
"node_modules/semver": {
"version": "6.3.0",
"resolved": "https://registry.npmmirror.com/semver/-/semver-6.3.0.tgz",
"resolved": "https://registry.npmjs.org/semver/-/semver-6.3.0.tgz",
"integrity": "sha512-b39TBaTSfV6yBrapU89p5fKekE2m/NwnDocOVruQFS1/veMgdzuPcnOM34M6CwxW8jH/lxEa5rBoDeUwu5HHTw==",
"dev": true,
"bin": {
@@ -4238,7 +4386,7 @@
},
"node_modules/supports-color": {
"version": "5.5.0",
"resolved": "https://registry.npmmirror.com/supports-color/-/supports-color-5.5.0.tgz",
"resolved": "https://registry.npmjs.org/supports-color/-/supports-color-5.5.0.tgz",
"integrity": "sha512-QjVjwdXIt408MIiAqCX4oUKsgU2EqAGzs2Ppkm4aQYbjm+ZEWEcW4SfFNTr4uMNZma0ey4f5lgLrkB0aX0QMow==",
"dev": true,
"dependencies": {
@@ -4350,9 +4498,14 @@
"node": ">=0.8"
}
},
"node_modules/tiny-invariant": {
"version": "1.3.1",
"resolved": "https://registry.npmjs.org/tiny-invariant/-/tiny-invariant-1.3.1.tgz",
"integrity": "sha512-AD5ih2NlSssTCwsMznbvwMZpJ1cbhkGd2uueNxzv2jDlEeZdU04JQfRnggJQ8DrcVBGjAsCKwFBbDlVNtEMlzw=="
},
"node_modules/to-fast-properties": {
"version": "2.0.0",
"resolved": "https://registry.npmmirror.com/to-fast-properties/-/to-fast-properties-2.0.0.tgz",
"resolved": "https://registry.npmjs.org/to-fast-properties/-/to-fast-properties-2.0.0.tgz",
"integrity": "sha512-/OaKK0xYrs3DmxRYqL/yDc+FxFUVYhDlXMhRmv3z915w2HF1tnN1omB354j8VUGO/hbRzyD6Y3sA7v7GS/ceog==",
"dev": true,
"engines": {
@@ -4503,6 +4656,14 @@
"react-dom": ">=16.8.0 <19.0.0"
}
},
"node_modules/use-memo-one": {
"version": "1.1.3",
"resolved": "https://registry.npmjs.org/use-memo-one/-/use-memo-one-1.1.3.tgz",
"integrity": "sha512-g66/K7ZQGYrI6dy8GLpVcMsBp4s17xNkYJVSMvTEevGy3nDxHOfE6z8BVE22+5G5x7t3+bhzrlTDB7ObrEE0cQ==",
"peerDependencies": {
"react": "^16.8.0 || ^17.0.0 || ^18.0.0"
}
},
"node_modules/usehooks-ts": {
"version": "2.9.1",
"resolved": "https://registry.npmmirror.com/usehooks-ts/-/usehooks-ts-2.9.1.tgz",
@@ -4580,9 +4741,9 @@
}
},
"node_modules/vite": {
"version": "4.3.6",
"resolved": "https://registry.npmmirror.com/vite/-/vite-4.3.6.tgz",
"integrity": "sha512-cqIyLSbA6gornMS659AXTVKF7cvSHMdKmJJwQ9DXq3lwsT1uZSdktuBRlpHQ8VnOWx0QHtjDwxPpGtyo9Fh/Qg==",
"version": "4.3.9",
"resolved": "https://registry.npmjs.org/vite/-/vite-4.3.9.tgz",
"integrity": "sha512-qsTNZjO9NoJNW7KnOrgYwczm0WctJ8m/yqYAMAK9Lxt4SoySUfS5S8ia9K7JHpa3KEeMfyF8LoJ3c5NeBJy6pg==",
"dev": true,
"dependencies": {
"esbuild": "^0.17.5",
@@ -4701,7 +4862,7 @@
},
"node_modules/yallist": {
"version": "3.1.1",
"resolved": "https://registry.npmmirror.com/yallist/-/yallist-3.1.1.tgz",
"resolved": "https://registry.npmjs.org/yallist/-/yallist-3.1.1.tgz",
"integrity": "sha512-a4UGQaWPH59mOXUYnAG2ewncQS4i4F43Tv3JoAM+s2VDAmS9NsK8GpDMLrCHPksFT7h3K6TOoUNn2pb7RoXx4g==",
"dev": true
},

View File

@@ -13,12 +13,15 @@
"@fluentui/react-icons": "^2.0.201",
"@microsoft/fetch-event-source": "^2.0.1",
"@primer/octicons-react": "^19.1.0",
"chart.js": "^4.3.0",
"classnames": "^2.3.2",
"github-markdown-css": "^5.2.0",
"i18next": "^22.4.15",
"mobx": "^6.9.0",
"mobx-react-lite": "^3.4.3",
"react": "^18.2.0",
"react-beautiful-dnd": "^13.1.1",
"react-chartjs-2": "^5.2.0",
"react-dom": "^18.2.0",
"react-i18next": "^12.2.2",
"react-markdown": "^8.0.7",
@@ -34,6 +37,7 @@
},
"devDependencies": {
"@types/react": "^18.2.6",
"@types/react-beautiful-dnd": "^13.1.4",
"@types/react-dom": "^18.2.4",
"@types/uuid": "^9.0.1",
"@vitejs/plugin-react": "^4.0.0",

View File

@@ -28,10 +28,10 @@ import { FC, useEffect, useState } from 'react';
import { Route, Routes, useLocation, useNavigate } from 'react-router';
import { pages } from './pages';
import { useMediaQuery } from 'usehooks-ts';
import { ToastContainer } from 'react-toastify';
import commonStore from './stores/commonStore';
import { observer } from 'mobx-react-lite';
import { useTranslation } from 'react-i18next';
import { CustomToastContainer } from './components/CustomToastContainer';
const App: FC = observer(() => {
const { t } = useTranslation();
@@ -87,21 +87,7 @@ const App: FC = observer(() => {
</Routes>
</div>
</div>
<ToastContainer
style={{
width: '350px'
}}
position="top-center"
autoClose={4000}
pauseOnHover={true}
hideProgressBar={true}
newestOnTop={true}
closeOnClick={false}
rtl={false}
pauseOnFocusLoss={false}
draggable={false}
theme={commonStore.settings.darkMode ? 'dark' : 'light'}
/>
<CustomToastContainer />
</FluentProvider>
);
});

View File

@@ -16,15 +16,15 @@
"Stored Layers": "载入显存层数",
"Precision": "精度",
"Device": "设备",
"Convert model with these configs": "用这些设置转换模型",
"Convert model with these configs. Using a converted model will greatly improve the loading speed, but model parameters of the converted model cannot be modified.": "用这些设置转换模型. 使用转换过的模型能大大提升载入速度, 但是转换后的模型无法再修改模型参数.",
"Manage Models": "管理模型",
"Model": "模型",
"Model Parameters": "模型参数",
"Frequency Penalty *": "Frequency Penalty *",
"Presence Penalty *": "Presence Penalty *",
"Top_P *": "Top_P *",
"Temperature *": "Temperature *",
"Max Response Token *": "最大响应 Token *",
"Frequency Penalty": "Frequency Penalty",
"Presence Penalty": "Presence Penalty",
"Top_P": "Top_P",
"Temperature": "Temperature",
"Max Response Token": "最大响应 Token",
"API Port": "API 端口",
"Hover your mouse over the text to view a detailed description. Settings marked with * will take effect immediately after being saved.": "把鼠标悬停在文本上查看详细描述. 标记了星号 * 的设置在保存后会立即生效.",
"Default API Parameters": "默认 API 参数",
@@ -70,24 +70,25 @@
"Type your message here": "在此输入消息",
"Copy": "复制",
"Read Aloud": "朗读",
"Hello! I'm RWKV, an open-source and commercially available large language model.": "你好! 我是RWKV, 一个开源可商用的大语言模型.",
"Hello! I'm RWKV, an open-source and commercially usable large language model.": "你好我是RWKV一个开源可商用的大语言模型",
"This tool's API is compatible with OpenAI API. It can be used with any ChatGPT tool you like. Go to the settings of some ChatGPT tool, replace the 'https://api.openai.com' part in the API address with '": "本工具的API与OpenAI API兼容. 因此可以配合任意你喜欢的ChatGPT工具使用. 打开某个ChatGPT工具的设置, 将API地址中的'https://api.openai.com'部分替换为'",
"New Version Available": "新版本可用",
"Update": "更新",
"Please click the button in the top right corner to start the model": "请点击右上角的按钮启动模型",
"Update Error, Please restart this program": "更新出错, 请重启本程序",
"Update Error": "更新出错",
"Open the following URL with your browser to view the API documentation": "使用浏览器打开以下地址查看API文档",
"By default, the maximum number of tokens that can be answered in a single response, it can be changed by the user by specifying API parameters.": "默认情况下, 单个回复最多回答的token数目, 用户可以通过自行指定API参数改变这个值",
"Sampling temperature, the higher the stronger the randomness and creativity, while the lower, the more focused and deterministic it will be.": "采样温度, 越大随机性越强, 更具创造力, 越小则越保守稳定",
"Consider the results of the top n% probability mass, 0.1 considers the top 10%, with higher quality but more conservative, 1 considers all results, with lower quality but more diverse.": "考虑前 n% 概率质量的结果, 0.1 考虑前 10%, 质量更高, 但更保守, 1 考虑所有质量结果, 质量降低, 但更多样",
"Sampling temperature, it's like giving alcohol to a model, the higher the stronger the randomness and creativity, while the lower, the more focused and deterministic it will be.": "采样温度, 就像给模型喝酒, 越大随机性越强, 更具创造力, 越小则越保守稳定",
"Just like feeding sedatives to the model. Consider the results of the top n% probability mass, 0.1 considers the top 10%, with higher quality but more conservative, 1 considers all results, with lower quality but more diverse.": "就像给模型喂镇静剂. 考虑前 n% 概率质量的结果, 0.1 考虑前 10%, 质量更高, 但更保守, 1 考虑所有质量结果, 质量降低, 但更多样",
"Positive values penalize new tokens based on whether they appear in the text so far, increasing the model's likelihood to talk about new topics.": "存在惩罚. 正值根据新token在至今的文本中是否出现过, 来对其进行惩罚, 从而增加了模型涉及新话题的可能性",
"Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.": "频率惩罚. 正值根据新token在至今的文本中出现的频率/次数, 来对其进行惩罚, 从而减少模型原封不动地重复相同句子的可能性",
"int8 uses less VRAM, but has slightly lower quality. fp16 has higher quality, and fp32 has the best quality.": "int8占用显存更低, 但质量略微下降. fp16质量更好, fp32质量最好",
"Number of the neural network layers loaded into VRAM, the more you load, the faster the speed, but it consumes more VRAM.": "载入显存的神经网络层数, 载入越多, 速度越快, 但显存消耗越大",
"Number of the neural network layers loaded into VRAM, the more you load, the faster the speed, but it consumes more VRAM. (If your VRAM is not enough, it will fail to load)": "载入显存的神经网络层数, 载入越多, 速度越快, 但显存消耗越大 (如果你的显存不够, 会载入失败)",
"Whether to use CPU to calculate the last output layer of the neural network with FP32 precision to obtain better quality.": "是否使用cpu以fp32精度计算神经网络的最后一层输出层, 以获得更好的质量",
"Downloads": "下载",
"Pause": "暂停",
"Continue": "继续",
"Resume": "继续",
"Check": "查看",
"Model file not found": "模型文件不存在",
"Can not find download url": "找不到下载地址",
@@ -99,7 +100,128 @@
"Model Config Exception": "模型配置异常",
"Use Gitee Updates Source": "使用Gitee更新源",
"Use Custom CUDA kernel to Accelerate": "使用自定义CUDA算子加速",
"Enabling this option can greatly improve inference speed, but there may be compatibility issues. If it fails to start, please turn off this option.": "开启这个选项能大大提升推理速度,但可能存在兼容性问题,如果启动失败,请关闭此选项",
"Enabling this option can greatly improve inference speed and save some VRAM, but there may be compatibility issues. If it fails to start, please turn off this option.": "开启这个选项能大大提升推理速度并节省显存,但可能存在兼容性问题,如果启动失败,请关闭此选项",
"Supported custom cuda file not found": "没有找到支持的自定义cuda文件",
"Failed to copy custom cuda file": "自定义cuda文件复制失败"
"Failed to copy custom cuda file": "自定义cuda文件复制失败",
"Downloading update, please wait. If it is not completed, please manually download the program from GitHub and replace the original program.": "正在下载更新请等待。如果一直未完成请从Github手动下载并覆盖原程序",
"Completion": "补全",
"Parameters": "参数",
"Stop Sequences": "停止词",
"When this content appears in the response result, the generation will end.": "响应结果出现该内容时就结束生成",
"Reset": "重置",
"Generate": "生成",
"Writer": "写作",
"Translator": "翻译",
"Catgirl": "猫娘",
"Explain Code": "代码解释",
"Werewolf": "狼人杀",
"Instruction": "指令",
"Blank": "空白",
"The following is an epic science fiction masterpiece that is immortalized, with delicate descriptions and grand depictions of interstellar civilization wars.\nChapter 1.\n": "《背影》\n我与父亲不相见已二年余了我最不能忘记的是他的背影。\n那年冬天祖母死了父亲的差使也交卸了正是祸不单行的日子。我从北京到徐州打算",
"The following is a conversation between a cat girl and her owner. The cat girl is a humanized creature that behaves like a cat but is humanoid. At the end of each sentence in the dialogue, she will add \"Meow~\". In the following content, Bob represents the owner and Alice represents the cat girl.\n\nBob: Hello.\n\nAlice: I'm here, meow~.\n\nBob: Can you tell jokes?": "以下是一位猫娘的主人和猫娘的对话内容,猫娘是一种拟人化的生物,其行为似猫但类人,在每一句对话末尾都会加上\"喵~\"。以下内容中Bob代表主人Alice代表猫娘。\n\nBob: 你好\n\nAlice: 主人我在哦,喵~\n\nBob: 你会讲笑话吗?",
"When response finished, inject this content.": "响应结束时,插入此内容到末尾",
"Inject start text": "起始注入文本",
"Inject end text": "结尾注入文本",
"Before the response starts, inject this content.": "响应开始前,在开头插入此内容",
"There is currently a game of Werewolf with six players, including a Seer (who can check identities at night), two Werewolves (who can choose someone to kill at night), a Bodyguard (who can choose someone to protect at night), two Villagers (with no special abilities), and a game host. Bob will play as Player 1, Alice will play as Players 2-6 and the game host, and they will begin playing together. Every night, the host will ask Bob for his action and simulate the actions of the other players. During the day, the host will oversee the voting process and ask Bob for his vote. \n\nAlice: Next, I will act as the game host and assign everyone their roles, including randomly assigning yours. Then, I will simulate the actions of Players 2-6 and let you know what happens each day. Based on your assigned role, you can tell me your actions and I will let you know the corresponding results each day.\n\nBob: Okay, I understand. Let's begin. Please assign me a role. Am I the Seer, Werewolf, Villager, or Bodyguard?\n\nAlice: You are the Seer. Now that night has fallen, please choose a player to check his identity.\n\nBob: Tonight, I want to check Player 2 and find out his role.": "现在有一场六人狼人杀游戏,包括一名预言家(可以在夜晚查验身份),两名狼人(可以在夜晚选择杀人),一名守卫(可以在夜晚选择要守护的人),两名平民(无技能)一名主持人以下内容中Bob将扮演其中的1号玩家Alice来扮演2-6号玩家以及主持人并开始与Bob进行游戏主持人每晚都会询问Bob的行动并模拟其他人的行动在白天则要主持投票并同样询问Bob投票对象公布投票结果。\n\nAlice: 接下来我将首先作为主持人进行角色分配并给你赋予随机的角色之后我将模拟2-6号玩家进行行动告知你每天的动态根据你被分配的角色你可以回复我你做的行动我会告诉你每天对应的结果\n\nBob: 好的,我明白了,那么开始吧。请先给我一个角色身份。我是预言家,狼人,平民,守卫中的哪一个呢?\n\nAlice: 你的身份是预言家。现在夜晚降临,请选择你要查验的玩家。\n\nBob: 今晚我要验2号玩家他是什么身份",
"Writer, Translator, Role-playing": "写作,翻译,角色扮演",
"Chinese Kongfu": "情境冒险",
"Allow external access to the API (service must be restarted)": "允许外部访问API (必须重启服务)",
"Custom": "自定义",
"Reset All Configs": "重置所有配置",
"Cancel": "取消",
"Confirm": "确认",
"Are you sure you want to reset all configs? This will obtain the latest preset configs, but will override your custom configs and cannot be undone.": "你确定要重置所有配置吗?这会获取最新的预设配置,但会覆盖你的自定义配置,并且无法撤销",
"Advanced": "高级",
"Custom Python Path": "自定义Python路径",
"Custom Models Path": "自定义模型路径",
"Microsoft Visual C++ Redistributable is not installed, would you like to download it?": "微软VC++组件未安装, 是否下载?",
"File Path Cannot Contain Space": "文件路径不能包含空格",
"Current Strategy": "当前Strategy",
"MacOS is not yet supported for performing this operation, please do it manually.": "MacOS尚未支持此操作, 请手动执行",
"Linux is not yet supported for performing this operation, please do it manually.": "Linux尚未支持此操作, 请手动执行",
"On Linux system, you must manually install python dependencies.": "在Linux系统下, 你必须手动安装python依赖",
"Update completed, please restart the program.": "更新完成, 请重启程序",
"Are you sure you want to reset this page? It cannot be undone.": "你确定要重置本页吗?这无法撤销",
"Model file download is not complete": "模型文件下载未完成",
"Error": "错误",
"Are you sure you want to clear the conversation? It cannot be undone.": "你确定要清空对话吗?这无法撤销",
"Save": "保存",
"Conversation Saved": "对话已保存",
"Open": "打开",
"DPI Scaling": "显示缩放",
"Restart the app to apply DPI Scaling.": "重启应用以使显示缩放生效",
"Restart": "重启",
"API Chat Model Name": "API聊天模型名",
"API Completion Model Name": "API补全模型名",
"Localhost": "本地",
"Retry": "重试",
"Delete": "删除",
"Edit": "编辑",
"Memory is not enough, try to increase the virtual memory or use a smaller model.": "内存不足,尝试增加虚拟内存,或使用一个更小规模的模型",
"Bad PyTorch version, please reinstall PyTorch with cuda.": "错误的PyTorch版本请重新安装CUDA版本的PyTorch",
"The model file is corrupted, please download again.": "模型文件损坏,请重新下载",
"Found no NVIDIA driver, please install the latest driver.": "没有找到NVIDIA驱动请安装最新驱动",
"VRAM is not enough, please reduce stored layers or use a lower precision in Configs page.": "显存不足,请在配置页面减少载入显存层数,或使用更低的精度",
"Failed to enable custom CUDA kernel, ninja is required to load C++ extensions. You may be using the CPU version of PyTorch, please reinstall PyTorch with CUDA. Or if you are using a custom Python interpreter, you must compile the CUDA kernel by yourself or disable Custom CUDA kernel acceleration.": "自定义CUDA算子开启失败需要安装Ninja来读取C++扩展。你可能正在使用CPU版本的PyTorch请重新安装CUDA版本的PyTorch。如果你正在使用自定义Python解释器你必须自己编译CUDA算子或禁用自定义CUDA算子加速",
"Presets": "预设",
"Online": "在线",
"english": "英文",
"chinese": "中文",
"default": "默认",
"japanese": "日文",
"New Preset": "新建预设",
"Import": "导入",
"Name": "名称",
"Imported successfully": "导入成功",
"Failed to import. Please copy a preset to the clipboard.": "导入失败。请复制一个预设到剪贴板",
"Clipboard is empty.": "剪贴板没有内容",
"Successfully copied to clipboard.": "成功复制到剪贴板",
"Edit Messages": "编辑对话",
"Go Back": "返回",
"Description": "描述",
"Avatar Url": "头像图片地址",
"Welcome Message": "欢迎语",
"Display Preset Messages": "显示预设中的对话",
"Tag": "标签",
"Activate": "激活",
"New": "新建",
"user": "用户",
"assistant": "AI",
"system": "系统",
"Regenerate": "重新生成",
"LoRA Finetune": "LoRA微调",
"Command Stopped": "命令已终止",
"Please convert data first.": "请先转换数据",
"Ubuntu is not installed, do you want to install it?": "Ubuntu未安装是否安装",
"Install Ubuntu": "安装Ubuntu",
"Please install Ubuntu using Microsoft Store, after installation click the Open button in Microsoft Store and then click the Train button": "请用Microsoft Store安装Ubuntu安装完成后点击Microsoft Store界面的“打开”按钮然后点击“训练”按钮",
"WSL is not enabled, do you want to enable it?": "WSL未启用是否启用",
"Enable WSL": "启用WSL",
"After installation, please restart your computer to enable WSL": "安装完成后请重启电脑以启用WSL",
"Data Process": "数据处理",
"Data Path": "数据路径",
"Vocab Path": "词表路径",
"Train Parameters": "训练参数",
"Base Model": "基底模型",
"LoRA Model": "LoRA模型",
"Merge Model": "合并模型",
"Devices": "显卡数量",
"Gradient Checkpoint": "梯度检查点标志",
"Context Length": "上下文长度",
"Epoch Steps": "每轮训练步数",
"Epoch Count": "训练轮次",
"Epoch Begin": "起始轮次",
"Epoch Save": "保存间隔轮次",
"Learning Rate Init": "初始学习率",
"Learning Rate Final": "最终学习率",
"Micro Batch Size": "微批次大小",
"Accumulate Gradient Batches": "梯度累积批次",
"Warmup Steps": "学习率预热步数",
"Pre-FFN": "前馈网络预处理",
"None": "空",
"Merge model successfully": "合并模型成功",
"Convert Data successfully": "数据转换成功",
"Please select a LoRA model": "请选择一个LoRA模型",
"You are using sample data for training. For formal training, please make sure to create your own jsonl file.": "你正在使用示例数据训练对于正式训练场合请务必创建你自己的jsonl训练数据"
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.8 MiB

After

Width:  |  Height:  |  Size: 238 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.4 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 132 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 115 KiB

View File

@@ -4,7 +4,7 @@ import { useTranslation } from 'react-i18next';
import { ClipboardSetText } from '../../wailsjs/runtime';
import { ToolTipButton } from './ToolTipButton';
export const CopyButton: FC<{ content: string }> = ({ content }) => {
export const CopyButton: FC<{ content: string, showDelay?: number, }> = ({ content, showDelay = 0 }) => {
const { t } = useTranslation();
const [copied, setCopied] = useState(false);
@@ -19,7 +19,8 @@ export const CopyButton: FC<{ content: string }> = ({ content }) => {
};
return (
<ToolTipButton desc={t('Copy')} size="small" appearance="subtle" icon={copied ? <CheckIcon /> : <CopyIcon />}
<ToolTipButton desc={t('Copy')} size="small" appearance="subtle" showDelay={showDelay}
icon={copied ? <CheckIcon /> : <CopyIcon />}
onClick={onClick} />
);
};

View File

@@ -0,0 +1,17 @@
import commonStore from '../stores/commonStore';
import { ToastContainer } from 'react-toastify';
export const CustomToastContainer = () =>
<ToastContainer
style={{ width: '350px' }}
position="top-center"
autoClose={4000}
pauseOnHover={true}
hideProgressBar={true}
newestOnTop={true}
closeOnClick={false}
rtl={false}
pauseOnFocusLoss={false}
draggable={false}
theme={commonStore.settings.darkMode ? 'dark' : 'light'}
/>;

View File

@@ -0,0 +1,58 @@
import { FC, ReactElement } from 'react';
import {
Button,
Dialog,
DialogActions,
DialogBody,
DialogContent,
DialogSurface,
DialogTitle,
DialogTrigger
} from '@fluentui/react-components';
import { ToolTipButton } from './ToolTipButton';
import { useTranslation } from 'react-i18next';
export const DialogButton: FC<{
text?: string | null
icon?: ReactElement,
tooltip?: string | null,
className?: string,
title: string,
contentText: string,
onConfirm: () => void,
size?: 'small' | 'medium' | 'large',
shape?: 'rounded' | 'circular' | 'square',
appearance?: 'secondary' | 'primary' | 'outline' | 'subtle' | 'transparent',
}> = ({
text, icon, tooltip, className, title, contentText,
onConfirm, size, shape, appearance
}) => {
const { t } = useTranslation();
return <Dialog>
<DialogTrigger disableButtonEnhancement>
{tooltip ?
<ToolTipButton className={className} desc={tooltip} text={text} icon={icon} size={size} shape={shape}
appearance={appearance} /> :
<Button className={className} icon={icon} size={size} shape={shape} appearance={appearance}>{text}</Button>
}
</DialogTrigger>
<DialogSurface>
<DialogBody>
<DialogTitle>{title}</DialogTitle>
<DialogContent>
{contentText}
</DialogContent>
<DialogActions>
<DialogTrigger disableButtonEnhancement>
<Button appearance="secondary">{t('Cancel')}</Button>
</DialogTrigger>
<DialogTrigger disableButtonEnhancement>
<Button appearance="primary" onClick={onConfirm}>{t('Confirm')}
</Button>
</DialogTrigger>
</DialogActions>
</DialogBody>
</DialogSurface>
</Dialog>;
};

View File

@@ -3,25 +3,38 @@ import { Label, Tooltip } from '@fluentui/react-components';
import classnames from 'classnames';
export const Labeled: FC<{
label: string; desc?: string | null, content: ReactElement, flex?: boolean, spaceBetween?: boolean
label: string;
desc?: string | null,
descComponent?: ReactElement,
content: ReactElement,
flex?: boolean,
spaceBetween?: boolean,
breakline?: boolean,
onMouseEnter?: () => void
onMouseLeave?: () => void
}> = ({
label,
desc,
descComponent,
content,
flex,
spaceBetween
spaceBetween,
breakline,
onMouseEnter,
onMouseLeave
}) => {
return (
<div className={classnames(
'items-center',
!breakline ? 'items-center' : '',
flex ? 'flex' : 'grid grid-cols-2',
breakline ? 'flex-col' : '',
spaceBetween && 'justify-between')
}>
{desc ?
<Tooltip content={desc} showDelay={0} hideDelay={0} relationship="description">
<Label>{label}</Label>
{(desc || descComponent) ?
<Tooltip content={descComponent ? descComponent : desc!} showDelay={0} hideDelay={0} relationship="description">
<Label onMouseEnter={onMouseEnter} onMouseLeave={onMouseLeave}>{label}</Label>
</Tooltip> :
<Label>{label}</Label>
<Label onMouseEnter={onMouseEnter} onMouseLeave={onMouseLeave}>{label}</Label>
}
{content}
</div>

View File

@@ -7,13 +7,28 @@ import { observer } from 'mobx-react-lite';
const synth = window.speechSynthesis;
export const ReadButton: FC<{ content: string }> = observer(({ content }) => {
export const ReadButton: FC<{
content: string,
inSpeaking?: boolean,
showDelay?: number,
setSpeakingOuter?: (speaking: boolean) => void
}> = observer(({
content,
inSpeaking = false,
showDelay = 0,
setSpeakingOuter
}) => {
const { t } = useTranslation();
const [speaking, setSpeaking] = useState(false);
const [speaking, setSpeaking] = useState(inSpeaking);
let lang: string = commonStore.settings.language;
if (lang === 'dev')
lang = 'en';
const setSpeakingInner = (speaking: boolean) => {
setSpeakingOuter?.(speaking);
setSpeaking(speaking);
};
const startSpeak = () => {
synth.cancel();
@@ -31,22 +46,22 @@ export const ReadButton: FC<{ content: string }> = observer(({ content }) => {
Object.assign(utterance, {
rate: 1,
volume: 1,
onend: () => setSpeaking(false),
onerror: () => setSpeaking(false),
onend: () => setSpeakingInner(false),
onerror: () => setSpeakingInner(false),
voice: voice
});
synth.speak(utterance);
setSpeaking(true);
setSpeakingInner(true);
};
const stopSpeak = () => {
synth.cancel();
setSpeaking(false);
setSpeakingInner(false);
};
return (
<ToolTipButton desc={t('Read Aloud')} size="small" appearance="subtle"
<ToolTipButton desc={t('Read Aloud')} size="small" appearance="subtle" showDelay={showDelay}
icon={speaking ? <MuteIcon /> : <UnmuteIcon />}
onClick={speaking ? stopSpeak : startSpeak} />
);

View File

@@ -0,0 +1,18 @@
import React, { FC } from 'react';
import { DialogButton } from './DialogButton';
import { useTranslation } from 'react-i18next';
import { ArrowReset20Regular } from '@fluentui/react-icons';
import commonStore from '../stores/commonStore';
import { defaultModelConfigs, defaultModelConfigsMac } from '../pages/defaultModelConfigs';
export const ResetConfigsButton: FC<{ afterConfirm?: () => void }> = ({ afterConfirm }) => {
const { t } = useTranslation();
return <DialogButton icon={<ArrowReset20Regular />} tooltip={t('Reset All Configs')} title={t('Reset All Configs')}
contentText={t('Are you sure you want to reset all configs? This will obtain the latest preset configs, but will override your custom configs and cannot be undone.')}
onConfirm={() => {
commonStore.setModelConfigs(commonStore.platform != 'darwin' ? defaultModelConfigs : defaultModelConfigsMac, false);
commonStore.setCurrentConfigIndex(0, true);
afterConfirm?.();
}} />;
};

View File

@@ -1,19 +1,11 @@
import React, { FC, MouseEventHandler, ReactElement } from 'react';
import commonStore, { ModelStatus } from '../stores/commonStore';
import {
AddToDownloadList,
CopyFile,
DepCheck,
FileExists,
InstallPyDep,
StartServer
} from '../../wailsjs/go/backend_golang/App';
import { AddToDownloadList, CopyFile, FileExists, StartServer } from '../../wailsjs/go/backend_golang/App';
import { Button } from '@fluentui/react-components';
import { observer } from 'mobx-react-lite';
import { exit, getStatus, readRoot, switchModel, updateConfig } from '../apis';
import { toast } from 'react-toastify';
import manifest from '../../../manifest.json';
import { getStrategy, getSupportedCustomCudaFile, saveCache, toastWithButton } from '../utils';
import { checkDependencies, getStrategy, getSupportedCustomCudaFile, toastWithButton } from '../utils';
import { useTranslation } from 'react-i18next';
import { ToolTipButton } from './ToolTipButton';
import { Play16Regular, Stop16Regular } from '@fluentui/react-icons';
@@ -43,56 +35,32 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
const navigate = useNavigate();
const onClickMainButton = async () => {
if (commonStore.status.modelStatus === ModelStatus.Offline) {
commonStore.setStatus({ modelStatus: ModelStatus.Starting });
if (commonStore.status.status === ModelStatus.Offline) {
commonStore.setStatus({ status: ModelStatus.Starting });
const modelConfig = commonStore.getCurrentModelConfig();
let modelName = '';
let modelPath = '';
if (modelConfig && modelConfig.modelParameters) {
modelName = modelConfig.modelParameters.modelName;
modelPath = `./${manifest.localModelDir}/${modelName}`;
modelPath = `${commonStore.settings.customModelsPath}/${modelName}`;
} else {
toast(t('Model Config Exception'), { type: 'error' });
commonStore.setStatus({ modelStatus: ModelStatus.Offline });
commonStore.setStatus({ status: ModelStatus.Offline });
return;
}
if (!commonStore.depComplete) {
let depErrorMsg = '';
await DepCheck().catch((e) => {
depErrorMsg = e.message || e;
WindowShow();
if (depErrorMsg === 'python zip not found') {
toastWithButton(t('Python target not found, would you like to download it?'), t('Download'), () => {
toastWithButton(`${t('Downloading')} Python`, t('Check'), () => {
navigate({ pathname: '/downloads' });
}, { autoClose: 3000 });
AddToDownloadList('python-3.10.11-embed-amd64.zip', 'https://www.python.org/ftp/python/3.10.11/python-3.10.11-embed-amd64.zip');
});
} else if (depErrorMsg.includes('DepCheck Error')) {
toastWithButton(t('Python dependencies are incomplete, would you like to install them?'), t('Install'), () => {
InstallPyDep(commonStore.settings.cnMirror);
setTimeout(WindowShow, 1000);
});
} else {
toast(depErrorMsg, { type: 'error' });
}
});
if (depErrorMsg) {
commonStore.setStatus({ modelStatus: ModelStatus.Offline });
return;
}
commonStore.setDepComplete(true);
CopyFile('./backend-python/wkv_cuda_utils/wkv_cuda_model.py', './py310/Lib/site-packages/rwkv/model.py');
saveCache();
}
const ok = await checkDependencies(navigate);
if (!ok)
return;
if (!await FileExists(modelPath)) {
toastWithButton(t('Model file not found'), t('Download'), () => {
const downloadUrl = commonStore.modelSourceList.find(item => item.name === modelName)?.downloadUrl;
const currentModelSource = commonStore.modelSourceList.find(item => item.name === modelName);
const showDownloadPrompt = (promptInfo: string, downloadName: string) => {
toastWithButton(promptInfo, t('Download'), () => {
const downloadUrl = currentModelSource?.downloadUrl;
if (downloadUrl) {
toastWithButton(`${t('Downloading')} ${modelName}`, t('Check'), () => {
toastWithButton(`${t('Downloading')} ${downloadName}`, t('Check'), () => {
navigate({ pathname: '/downloads' });
},
{ autoClose: 3000 });
@@ -101,8 +69,15 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
toast(t('Can not find download url'), { type: 'error' });
}
});
};
commonStore.setStatus({ modelStatus: ModelStatus.Offline });
if (!await FileExists(modelPath)) {
showDownloadPrompt(t('Model file not found'), modelName);
commonStore.setStatus({ status: ModelStatus.Offline });
return;
} else if (!currentModelSource?.isComplete) {
showDownloadPrompt(t('Model file download is not complete'), modelName);
commonStore.setStatus({ status: ModelStatus.Offline });
return;
}
@@ -110,7 +85,13 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
await exit(1000).catch(() => {
});
StartServer(port);
StartServer(commonStore.settings.customPythonPath, port, commonStore.settings.host !== '127.0.0.1' ? '0.0.0.0' : '127.0.0.1').catch((e) => {
const errMsg = e.message || e;
if (errMsg.includes('path contains space'))
toast(`${t('Error')} - ${t('File Path Cannot Contain Space')}`, { type: 'error' });
else
toast(t('Error') + ' - ' + errMsg, { type: 'error' });
});
setTimeout(WindowShow, 1000);
let timeoutCount = 6;
@@ -125,7 +106,7 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
if (status)
commonStore.setStatus(status);
});
commonStore.setStatus({ modelStatus: ModelStatus.Loading });
commonStore.setStatus({ status: ModelStatus.Loading });
toast(t('Loading Model'), { type: 'info' });
updateConfig({
max_tokens: modelConfig.apiParameters.maxResponseToken,
@@ -135,73 +116,94 @@ export const RunButton: FC<{ onClickRun?: MouseEventHandler, iconMode?: boolean
frequency_penalty: modelConfig.apiParameters.frequencyPenalty
});
const strategy = getStrategy(modelConfig);
let customCudaFile = '';
if (modelConfig.modelParameters.useCustomCuda) {
customCudaFile = getSupportedCustomCudaFile();
if (customCudaFile) {
FileExists('./py310/Lib/site-packages/rwkv/model.py').then((exist) => {
// defensive measure. As Python has already been launched, will only take effect the next time it runs.
if (!exist) CopyFile('./backend-python/wkv_cuda_utils/wkv_cuda_model.py', './py310/Lib/site-packages/rwkv/model.py');
});
await CopyFile(customCudaFile, './py310/Lib/site-packages/rwkv/wkv_cuda.pyd').catch(() => {
customCudaFile = '';
toast(t('Failed to copy custom cuda file'), { type: 'error' });
});
} else
toast(t('Supported custom cuda file not found'), { type: 'warning' });
if ((modelConfig.modelParameters.device === 'CUDA' || modelConfig.modelParameters.device === 'Custom')
&& modelConfig.modelParameters.useCustomCuda && !strategy.includes('fp32')) {
if (commonStore.platform === 'windows') {
customCudaFile = getSupportedCustomCudaFile();
if (customCudaFile) {
FileExists('./py310/Lib/site-packages/rwkv/model.py').then((exist) => {
// defensive measure. As Python has already been launched, will only take effect the next time it runs.
if (!exist) CopyFile('./backend-python/wkv_cuda_utils/wkv_cuda_model.py', './py310/Lib/site-packages/rwkv/model.py');
});
await CopyFile(customCudaFile, './py310/Lib/site-packages/rwkv/wkv_cuda.pyd').catch(() => {
FileExists('./py310/Lib/site-packages/rwkv/wkv_cuda.pyd').then((exist) => {
if (!exist) {
customCudaFile = '';
toast(t('Failed to copy custom cuda file'), { type: 'error' });
}
});
});
} else
toast(t('Supported custom cuda file not found'), { type: 'warning' });
} else {
customCudaFile = 'any';
}
}
switchModel({
model: `${manifest.localModelDir}/${modelConfig.modelParameters.modelName}`,
strategy: getStrategy(modelConfig),
model: modelPath,
strategy: strategy,
customCuda: customCudaFile !== ''
}).then((r) => {
}).then(async (r) => {
if (r.ok) {
commonStore.setStatus({ modelStatus: ModelStatus.Working });
commonStore.setStatus({ status: ModelStatus.Working });
toastWithButton(t('Startup Completed'), t('Chat'), () => {
navigate({ pathname: '/chat' });
}, { type: 'success', autoClose: 3000 });
} else if (r.status === 304) {
toast(t('Loading Model'), { type: 'info' });
} else {
commonStore.setStatus({ modelStatus: ModelStatus.Offline });
toast(t('Failed to switch model'), { type: 'error' });
commonStore.setStatus({ status: ModelStatus.Offline });
const error = await r.text();
const errorsMap = {
'not enough memory': 'Memory is not enough, try to increase the virtual memory or use a smaller model.',
'not compiled with CUDA': 'Bad PyTorch version, please reinstall PyTorch with cuda.',
'invalid header or archive is corrupted': 'The model file is corrupted, please download again.',
'no NVIDIA driver': 'Found no NVIDIA driver, please install the latest driver.',
'CUDA out of memory': 'VRAM is not enough, please reduce stored layers or use a lower precision in Configs page.',
'Ninja is required to load C++ extensions': 'Failed to enable custom CUDA kernel, ninja is required to load C++ extensions. You may be using the CPU version of PyTorch, please reinstall PyTorch with CUDA. Or if you are using a custom Python interpreter, you must compile the CUDA kernel by yourself or disable Custom CUDA kernel acceleration.'
};
const matchedError = Object.entries(errorsMap).find(([key, _]) => error.includes(key));
const message = matchedError ? t(matchedError[1]) : error;
toast(t('Failed to switch model') + ' - ' + message, { autoClose: 5000, type: 'error' });
}
}).catch(() => {
commonStore.setStatus({ modelStatus: ModelStatus.Offline });
toast(t('Failed to switch model'), { type: 'error' });
}).catch((e) => {
commonStore.setStatus({ status: ModelStatus.Offline });
toast(t('Failed to switch model') + ' - ' + (e.message || e), { type: 'error' });
});
}
}).catch(() => {
if (timeoutCount <= 0) {
clearInterval(intervalId);
commonStore.setStatus({ modelStatus: ModelStatus.Offline });
commonStore.setStatus({ status: ModelStatus.Offline });
}
});
timeoutCount--;
}, 1000);
} else {
commonStore.setStatus({ modelStatus: ModelStatus.Offline });
commonStore.setStatus({ status: ModelStatus.Offline });
exit();
}
};
const onClick = async (e: any) => {
if (commonStore.status.modelStatus === ModelStatus.Offline)
if (commonStore.status.status === ModelStatus.Offline)
await onClickRun?.(e);
await onClickMainButton();
};
return (iconMode ?
<ToolTipButton disabled={commonStore.status.modelStatus === ModelStatus.Starting}
icon={iconModeButtonIcon[commonStore.status.modelStatus]}
desc={t(mainButtonText[commonStore.status.modelStatus])}
<ToolTipButton disabled={commonStore.status.status === ModelStatus.Starting}
icon={iconModeButtonIcon[commonStore.status.status]}
desc={t(mainButtonText[commonStore.status.status])}
size="small" onClick={onClick} />
:
<Button disabled={commonStore.status.modelStatus === ModelStatus.Starting} appearance="primary" size="large"
<Button disabled={commonStore.status.status === ModelStatus.Starting} appearance="primary" size="large"
onClick={onClick}>
{t(mainButtonText[commonStore.status.modelStatus])}
{t(mainButtonText[commonStore.status.status])}
</Button>
);
});

View File

@@ -1,29 +1,35 @@
import React, { FC, MouseEventHandler, ReactElement } from 'react';
import React, { CSSProperties, FC, MouseEventHandler, ReactElement } from 'react';
import { Button, Tooltip } from '@fluentui/react-components';
export const ToolTipButton: FC<{
text?: string | null,
desc: string,
icon?: ReactElement,
className?: string,
style?: CSSProperties,
size?: 'small' | 'medium' | 'large',
shape?: 'rounded' | 'circular' | 'square';
appearance?: 'secondary' | 'primary' | 'outline' | 'subtle' | 'transparent';
disabled?: boolean,
onClick?: MouseEventHandler
showDelay?: number,
}> = ({
text,
desc,
icon,
className,
style,
size,
shape,
appearance,
disabled,
onClick
onClick,
showDelay = 0
}) => {
return (
<Tooltip content={desc} showDelay={0} hideDelay={0} relationship="label">
<Button disabled={disabled} icon={icon} onClick={onClick} size={size} shape={shape}
appearance={appearance}>{text}</Button>
<Tooltip content={desc} showDelay={showDelay} hideDelay={0} relationship="label">
<Button style={style} className={className} disabled={disabled} icon={icon} onClick={onClick} size={size}
shape={shape} appearance={appearance}>{text}</Button>
</Tooltip>
);
};

View File

@@ -0,0 +1,46 @@
import React, { FC } from 'react';
import { observer } from 'mobx-react-lite';
import { Divider, PresenceBadge, Text } from '@fluentui/react-components';
import commonStore, { ModelStatus } from '../stores/commonStore';
import { ConfigSelector } from './ConfigSelector';
import { RunButton } from './RunButton';
import { PresenceBadgeStatus } from '@fluentui/react-badge';
import { useTranslation } from 'react-i18next';
const statusText = {
[ModelStatus.Offline]: 'Offline',
[ModelStatus.Starting]: 'Starting',
[ModelStatus.Loading]: 'Loading',
[ModelStatus.Working]: 'Working'
};
const badgeStatus: { [modelStatus: number]: PresenceBadgeStatus } = {
[ModelStatus.Offline]: 'unknown',
[ModelStatus.Starting]: 'away',
[ModelStatus.Loading]: 'away',
[ModelStatus.Working]: 'available'
};
export const WorkHeader: FC = observer(() => {
const { t } = useTranslation();
const port = commonStore.getCurrentModelConfig().apiParameters.apiPort;
return (
<div className="flex flex-col gap-1">
<div className="flex justify-between items-center">
<div className="flex items-center gap-2">
<PresenceBadge status={badgeStatus[commonStore.status.status]} />
<Text size={100}>{t('Model Status') + ': ' + t(statusText[commonStore.status.status])}</Text>
</div>
<div className="flex items-center gap-2">
<ConfigSelector size="small" />
<RunButton iconMode />
</div>
</div>
<Text size={100}>
{t('This tool\'s API is compatible with OpenAI API. It can be used with any ChatGPT tool you like. Go to the settings of some ChatGPT tool, replace the \'https://api.openai.com\' part in the API address with \'') + `http://127.0.0.1:${port}` + '\'.'}
</Text>
<Divider style={{ flexGrow: 0 }} />
</div>
);
});

View File

@@ -6,6 +6,7 @@ import App from './App';
import { HashRouter } from 'react-router-dom';
import { startup } from './startup';
import './_locales/i18n-react';
import { WindowShow } from '../wailsjs/runtime';
startup().then(() => {
const container = document.getElementById('root');
@@ -17,4 +18,7 @@ startup().then(() => {
<App />
</HashRouter>
);
// force display the window
WindowShow();
});

View File

@@ -1,26 +1,31 @@
import React, { FC, useEffect, useRef, useState } from 'react';
import React, { FC, useCallback, useEffect, useRef, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { RunButton } from '../components/RunButton';
import { Avatar, Divider, PresenceBadge, Text, Textarea } from '@fluentui/react-components';
import { Avatar, Button, Menu, MenuPopover, MenuTrigger, PresenceBadge, Textarea } from '@fluentui/react-components';
import commonStore, { ModelStatus } from '../stores/commonStore';
import { observer } from 'mobx-react-lite';
import { PresenceBadgeStatus } from '@fluentui/react-badge';
import { ConfigSelector } from '../components/ConfigSelector';
import { v4 as uuid } from 'uuid';
import classnames from 'classnames';
import { fetchEventSource } from '@microsoft/fetch-event-source';
import { ConversationPair, getConversationPairs, Record } from '../utils/get-conversation-pairs';
import logo from '../../../build/appicon.png';
import { KebabHorizontalIcon, PencilIcon, SyncIcon, TrashIcon } from '@primer/octicons-react';
import logo from '../assets/images/logo.jpg';
import MarkdownRender from '../components/MarkdownRender';
import { ToolTipButton } from '../components/ToolTipButton';
import { ArrowCircleUp28Regular, Delete28Regular, RecordStop28Regular } from '@fluentui/react-icons';
import { ArrowCircleUp28Regular, Delete28Regular, RecordStop28Regular, Save28Regular } from '@fluentui/react-icons';
import { CopyButton } from '../components/CopyButton';
import { ReadButton } from '../components/ReadButton';
import { toast } from 'react-toastify';
import { WorkHeader } from '../components/WorkHeader';
import { DialogButton } from '../components/DialogButton';
import { OpenFileFolder, OpenSaveFileDialog } from '../../wailsjs/go/backend_golang/App';
import { toastWithButton } from '../utils';
import { PresetsButton } from './PresetsManager/PresetsButton';
import { useMediaQuery } from 'usehooks-ts';
export const userName = 'M E';
export const botName = 'A I';
export const welcomeUuid = 'welcome';
export enum MessageType {
Normal,
Error
@@ -41,23 +46,151 @@ export type MessageItem = {
done: boolean
}
export type Conversations = {
export type Conversation = {
[uuid: string]: MessageItem
}
export type Role = 'assistant' | 'user' | 'system';
export type ConversationMessage = {
role: Role;
content: string;
}
let chatSseController: AbortController | null = null;
const MoreUtilsButton: FC<{ uuid: string, setEditing: (editing: boolean) => void }> = observer(({
uuid,
setEditing
}) => {
const { t } = useTranslation();
const [speaking, setSpeaking] = useState(false);
const messageItem = commonStore.conversation[uuid];
return <Menu>
<MenuTrigger disableButtonEnhancement>
<Button icon={<KebabHorizontalIcon />} size="small" appearance="subtle" />
</MenuTrigger>
<MenuPopover style={{ minWidth: 0 }}>
<CopyButton content={messageItem.content} showDelay={500} />
<ReadButton content={messageItem.content} inSpeaking={speaking} showDelay={500} setSpeakingOuter={setSpeaking} />
<ToolTipButton desc={t('Edit')} icon={<PencilIcon />} showDelay={500} size="small" appearance="subtle"
onClick={() => {
setEditing(true);
}} />
<ToolTipButton desc={t('Delete')} icon={<TrashIcon />} showDelay={500} size="small" appearance="subtle"
onClick={() => {
commonStore.conversationOrder.splice(commonStore.conversationOrder.indexOf(uuid), 1);
delete commonStore.conversation[uuid];
}} />
</MenuPopover>
</Menu>;
});
const ChatMessageItem: FC<{
uuid: string, onSubmit: (message: string | null, answerId: string | null,
startUuid: string | null, endUuid: string | null, includeEndUuid: boolean) => void
}> = observer(({ uuid, onSubmit }) => {
const { t } = useTranslation();
const [editing, setEditing] = useState(false);
const textareaRef = useRef<HTMLTextAreaElement>(null);
const messageItem = commonStore.conversation[uuid];
console.log(uuid);
const setEditingInner = (editing: boolean) => {
setEditing(editing);
if (editing) {
setTimeout(() => {
const textarea = textareaRef.current;
if (textarea) {
textarea.focus();
textarea.selectionStart = textarea.value.length;
textarea.selectionEnd = textarea.value.length;
textarea.style.height = textarea.scrollHeight + 'px';
}
});
}
};
return <div
className={classnames(
'flex gap-2 mb-2 overflow-hidden',
messageItem.side === 'left' ? 'flex-row' : 'flex-row-reverse'
)}
onMouseEnter={() => {
const utils = document.getElementById('utils-' + uuid);
if (utils) utils.classList.remove('invisible');
}}
onMouseLeave={() => {
const utils = document.getElementById('utils-' + uuid);
if (utils) utils.classList.add('invisible');
}}
>
<Avatar
color={messageItem.color}
name={messageItem.sender}
image={(commonStore.activePreset && messageItem.sender === botName) ? { src: commonStore.activePreset.avatarImg } : messageItem.avatarImg ? { src: messageItem.avatarImg } : undefined}
/>
<div
className={classnames(
'flex p-2 rounded-lg overflow-hidden',
editing ? 'grow' : '',
messageItem.side === 'left' ? 'bg-gray-200' : 'bg-blue-500',
messageItem.side === 'left' ? 'text-gray-600' : 'text-white'
)}
>
{!editing ?
<MarkdownRender>{messageItem.content}</MarkdownRender> :
<Textarea ref={textareaRef}
className="grow"
style={{ minWidth: 0 }}
value={messageItem.content}
onChange={(e) => {
messageItem.content = e.target.value;
}}
onBlur={() => {
setEditingInner(false);
}} />}
</div>
<div className="flex flex-col gap-1 items-start">
<div className="grow" />
{(messageItem.type === MessageType.Error || !messageItem.done) &&
<PresenceBadge size="extra-small" status={
messageItem.type === MessageType.Error ? 'busy' : 'away'
} />
}
<div className="flex invisible" id={'utils-' + uuid}>
{
messageItem.sender === botName && uuid !== welcomeUuid &&
<ToolTipButton desc={t('Retry')} size="small" appearance="subtle"
icon={<SyncIcon />} onClick={() => {
onSubmit(null, uuid, null, uuid, false);
}} />
}
<ToolTipButton desc={t('Edit')} icon={<PencilIcon />} size="small" appearance="subtle"
onClick={() => {
setEditingInner(true);
}} />
<MoreUtilsButton uuid={uuid} setEditing={setEditingInner} />
</div>
</div>
</div>;
});
const ChatPanel: FC = observer(() => {
const { t } = useTranslation();
const [message, setMessage] = useState('');
const bodyRef = useRef<HTMLDivElement>(null);
const inputRef = useRef<HTMLTextAreaElement>(null);
const mq = useMediaQuery('(min-width: 640px)');
const port = commonStore.getCurrentModelConfig().apiParameters.apiPort;
const sseControllerRef = useRef<AbortController | null>(null);
let lastMessageId: string;
let generating: boolean = false;
if (commonStore.conversationsOrder.length > 0) {
lastMessageId = commonStore.conversationsOrder[commonStore.conversationsOrder.length - 1];
const lastMessage = commonStore.conversations[lastMessageId];
if (commonStore.conversationOrder.length > 0) {
lastMessageId = commonStore.conversationOrder[commonStore.conversationOrder.length - 1];
const lastMessage = commonStore.conversation[lastMessageId];
if (lastMessage.sender === botName)
generating = !lastMessage.done;
}
@@ -69,16 +202,16 @@ const ChatPanel: FC = observer(() => {
}, []);
useEffect(() => {
if (commonStore.conversationsOrder.length === 0) {
commonStore.setConversationsOrder(['welcome']);
commonStore.setConversations({
'welcome': {
if (commonStore.conversationOrder.length === 0) {
commonStore.setConversationOrder([welcomeUuid]);
commonStore.setConversation({
[welcomeUuid]: {
sender: botName,
type: MessageType.Normal,
color: 'colorful',
avatarImg: logo,
time: new Date().toISOString(),
content: t('Hello! I\'m RWKV, an open-source and commercially available large language model.'),
content: t('Hello! I\'m RWKV, an open-source and commercially usable large language model.'),
side: 'left',
done: true
}
@@ -95,49 +228,59 @@ const ChatPanel: FC = observer(() => {
e.stopPropagation();
if (e.type === 'click' || (e.keyCode === 13 && !e.shiftKey)) {
e.preventDefault();
if (commonStore.status.modelStatus === ModelStatus.Offline) {
if (commonStore.status.status === ModelStatus.Offline && !commonStore.settings.apiUrl) {
toast(t('Please click the button in the top right corner to start the model'), { type: 'warning' });
return;
}
if (!message) return;
onSubmit(message);
setMessage('');
if (!commonStore.currentInput) return;
onSubmit(commonStore.currentInput);
commonStore.setCurrentInput('');
}
};
const onSubmit = (message: string) => {
const newId = uuid();
commonStore.conversations[newId] = {
sender: userName,
type: MessageType.Normal,
color: 'brand',
time: new Date().toISOString(),
content: message,
side: 'right',
done: true
};
commonStore.setConversations(commonStore.conversations);
commonStore.conversationsOrder.push(newId);
commonStore.setConversationsOrder(commonStore.conversationsOrder);
// if message is not null, create a user message;
// if answerId is not null, override the answer with new response;
// if startUuid is null, start generating api body messages from first message;
// if endUuid is null, generate api body messages until last message;
const onSubmit = useCallback((message: string | null = null, answerId: string | null = null,
startUuid: string | null = null, endUuid: string | null = null, includeEndUuid: boolean = false) => {
if (message) {
const newId = uuid();
commonStore.conversation[newId] = {
sender: userName,
type: MessageType.Normal,
color: 'brand',
time: new Date().toISOString(),
content: message,
side: 'right',
done: true
};
commonStore.setConversation(commonStore.conversation);
commonStore.conversationOrder.push(newId);
commonStore.setConversationOrder(commonStore.conversationOrder);
}
const records: Record[] = [];
commonStore.conversationsOrder.forEach((uuid, index) => {
const conversation = commonStore.conversations[uuid];
if (conversation.done && conversation.type === MessageType.Normal && conversation.sender === botName) {
if (index > 0) {
const questionId = commonStore.conversationsOrder[index - 1];
const question = commonStore.conversations[questionId];
if (question.done && question.type === MessageType.Normal && question.sender === userName) {
records.push({ question: question.content, answer: conversation.content });
}
}
let startIndex = startUuid ? commonStore.conversationOrder.indexOf(startUuid) : 0;
let endIndex = endUuid ? (commonStore.conversationOrder.indexOf(endUuid) + (includeEndUuid ? 1 : 0)) : commonStore.conversationOrder.length;
let targetRange = commonStore.conversationOrder.slice(startIndex, endIndex);
const messages: ConversationMessage[] = [];
targetRange.forEach((uuid, index) => {
if (uuid === welcomeUuid)
return;
const messageItem = commonStore.conversation[uuid];
if (messageItem.done && messageItem.type === MessageType.Normal && messageItem.sender === userName) {
messages.push({ role: 'user', content: messageItem.content });
} else if (messageItem.done && messageItem.type === MessageType.Normal && messageItem.sender === botName) {
messages.push({ role: 'assistant', content: messageItem.content });
}
});
const messages = getConversationPairs(records, false);
(messages as ConversationPair[]).push({ role: 'user', content: message });
const answerId = uuid();
commonStore.conversations[answerId] = {
if (answerId === null) {
answerId = uuid();
commonStore.conversationOrder.push(answerId);
}
commonStore.conversation[answerId] = {
sender: botName,
type: MessageType.Normal,
color: 'colorful',
@@ -147,33 +290,34 @@ const ChatPanel: FC = observer(() => {
side: 'left',
done: false
};
commonStore.setConversations(commonStore.conversations);
commonStore.conversationsOrder.push(answerId);
commonStore.setConversationsOrder(commonStore.conversationsOrder);
commonStore.setConversation(commonStore.conversation);
commonStore.setConversationOrder(commonStore.conversationOrder);
setTimeout(scrollToBottom);
let answer = '';
sseControllerRef.current = new AbortController();
fetchEventSource(`http://127.0.0.1:${port}/chat/completions`, // https://api.openai.com/v1/chat/completions || http://127.0.0.1:${port}/chat/completions
chatSseController = new AbortController();
fetchEventSource( // https://api.openai.com/v1/chat/completions || http://127.0.0.1:${port}/chat/completions
commonStore.settings.apiUrl ?
commonStore.settings.apiUrl + '/v1/chat/completions' :
`http://127.0.0.1:${port}/chat/completions`,
{
method: 'POST',
headers: {
'Content-Type': 'application/json',
Authorization: `Bearer sk-`
Authorization: `Bearer ${commonStore.settings.apiKey}`
},
body: JSON.stringify({
messages,
stream: true,
model: 'gpt-3.5-turbo'
model: commonStore.settings.apiChatModelName // 'gpt-3.5-turbo'
}),
signal: sseControllerRef.current?.signal,
signal: chatSseController?.signal,
onmessage(e) {
console.log('sse message', e);
scrollToBottom();
if (e.data === '[DONE]') {
commonStore.conversations[answerId].done = true;
commonStore.conversations[answerId].content = commonStore.conversations[answerId].content.trim();
commonStore.setConversations(commonStore.conversations);
commonStore.setConversationsOrder([...commonStore.conversationsOrder]);
commonStore.conversation[answerId!].done = true;
commonStore.conversation[answerId!].content = commonStore.conversation[answerId!].content.trim();
commonStore.setConversation(commonStore.conversation);
commonStore.setConversationOrder([...commonStore.conversationOrder]);
return;
}
let data;
@@ -185,148 +329,116 @@ const ChatPanel: FC = observer(() => {
}
if (data.choices && Array.isArray(data.choices) && data.choices.length > 0) {
answer += data.choices[0]?.delta?.content || '';
commonStore.conversations[answerId].content = answer;
commonStore.setConversations(commonStore.conversations);
commonStore.setConversationsOrder([...commonStore.conversationsOrder]);
commonStore.conversation[answerId!].content = answer;
commonStore.setConversation(commonStore.conversation);
commonStore.setConversationOrder([...commonStore.conversationOrder]);
}
},
async onopen(response) {
if (response.status !== 200) {
commonStore.conversation[answerId!].content += '\n[ERROR]\n```\n' + response.statusText + '\n' + (await response.text()) + '\n```';
commonStore.setConversation(commonStore.conversation);
commonStore.setConversationOrder([...commonStore.conversationOrder]);
setTimeout(scrollToBottom);
}
},
onclose() {
console.log('Connection closed');
},
onerror(err) {
commonStore.conversations[answerId].type = MessageType.Error;
commonStore.conversations[answerId].done = true;
commonStore.setConversations(commonStore.conversations);
commonStore.setConversationsOrder([...commonStore.conversationsOrder]);
commonStore.conversation[answerId!].type = MessageType.Error;
commonStore.conversation[answerId!].done = true;
err = err.message || err;
if (err && !err.includes('ReadableStreamDefaultReader'))
commonStore.conversation[answerId!].content += '\n[ERROR]\n```\n' + err + '\n```';
commonStore.setConversation(commonStore.conversation);
commonStore.setConversationOrder([...commonStore.conversationOrder]);
setTimeout(scrollToBottom);
throw err;
}
});
};
}, []);
return (
<div className="flex flex-col w-full grow gap-4 pt-4 overflow-hidden">
<div ref={bodyRef} className="grow overflow-y-scroll overflow-x-hidden pr-2">
{commonStore.conversationsOrder.map((uuid, index) => {
const conversation = commonStore.conversations[uuid];
return <div
key={uuid}
className={classnames(
'flex gap-2 mb-2 overflow-hidden',
conversation.side === 'left' ? 'flex-row' : 'flex-row-reverse'
)}
onMouseEnter={() => {
const utils = document.getElementById('utils-' + uuid);
if (utils) utils.classList.remove('invisible');
}}
onMouseLeave={() => {
const utils = document.getElementById('utils-' + uuid);
if (utils) utils.classList.add('invisible');
}}
>
<Avatar
color={conversation.color}
name={conversation.sender}
image={conversation.avatarImg ? { src: conversation.avatarImg } : undefined}
/>
<div
className={classnames(
'p-2 rounded-lg overflow-hidden',
conversation.side === 'left' ? 'bg-gray-200' : 'bg-blue-500',
conversation.side === 'left' ? 'text-gray-600' : 'text-white'
)}
>
<MarkdownRender>{conversation.content}</MarkdownRender>
</div>
<div className="flex flex-col gap-1 items-start">
<div className="grow" />
{(conversation.type === MessageType.Error || !conversation.done) &&
<PresenceBadge size="extra-small" status={
conversation.type === MessageType.Error ? 'busy' : 'away'
} />
}
<div className="flex invisible" id={'utils-' + uuid}>
<ReadButton content={conversation.content} />
<CopyButton content={conversation.content} />
</div>
</div>
</div>;
})}
{commonStore.conversationOrder.map(uuid =>
<ChatMessageItem key={uuid} uuid={uuid} onSubmit={onSubmit} />
)}
</div>
<div className="flex items-end gap-2">
<ToolTipButton desc={t('Clear')}
<div className={classnames('flex items-end', mq ? 'gap-2' : '')}>
<PresetsButton tab="Chat" size={mq ? 'large' : 'small'} shape="circular" appearance="subtle" />
<DialogButton tooltip={t('Clear')}
icon={<Delete28Regular />}
size="large" shape="circular" appearance="subtle"
onClick={(e) => {
size={mq ? 'large' : 'small'} shape="circular" appearance="subtle" title={t('Clear')}
contentText={t('Are you sure you want to clear the conversation? It cannot be undone.')}
onConfirm={() => {
if (generating)
sseControllerRef.current?.abort();
commonStore.setConversations({});
commonStore.setConversationsOrder([]);
}}
/>
chatSseController?.abort();
commonStore.setConversation({});
commonStore.setConversationOrder([]);
}} />
<Textarea
ref={inputRef}
style={{ minWidth: 0 }}
className="grow"
resize="vertical"
placeholder={t('Type your message here')!}
value={message}
onChange={(e) => setMessage(e.target.value)}
value={commonStore.currentInput}
onChange={(e) => commonStore.setCurrentInput(e.target.value)}
onKeyDown={handleKeyDownOrClick}
/>
<ToolTipButton desc={generating ? t('Stop') : t('Send')}
icon={generating ? <RecordStop28Regular /> : <ArrowCircleUp28Regular />}
size="large" shape="circular" appearance="subtle"
size={mq ? 'large' : 'small'} shape="circular" appearance="subtle"
onClick={(e) => {
if (generating) {
sseControllerRef.current?.abort();
chatSseController?.abort();
if (lastMessageId) {
commonStore.conversations[lastMessageId].type = MessageType.Error;
commonStore.conversations[lastMessageId].done = true;
commonStore.setConversations(commonStore.conversations);
commonStore.setConversationsOrder([...commonStore.conversationsOrder]);
commonStore.conversation[lastMessageId].type = MessageType.Error;
commonStore.conversation[lastMessageId].done = true;
commonStore.setConversation(commonStore.conversation);
commonStore.setConversationOrder([...commonStore.conversationOrder]);
}
} else {
handleKeyDownOrClick(e);
}
}} />
<ToolTipButton desc={t('Save')}
icon={<Save28Regular />}
size={mq ? 'large' : 'small'} shape="circular" appearance="subtle"
onClick={() => {
let savedContent: string = '';
const isWorldModel = commonStore.getCurrentModelConfig().modelParameters.modelName.toLowerCase().includes('world');
const user = isWorldModel ? 'Question' : 'Bob';
const bot = isWorldModel ? 'Answer' : 'Alice';
commonStore.conversationOrder.forEach((uuid) => {
if (uuid === welcomeUuid)
return;
const messageItem = commonStore.conversation[uuid];
if (messageItem.type !== MessageType.Error) {
savedContent += `${messageItem.sender === userName ? user : bot}: ${messageItem.content}\n\n`;
}
});
OpenSaveFileDialog('*.md', 'conversation.md', savedContent).then((path) => {
if (path)
toastWithButton(t('Conversation Saved'), t('Open'), () => {
OpenFileFolder(path, false);
});
}).catch(e => {
toast(t('Error') + ' - ' + (e.message || e), { type: 'error', autoClose: 2500 });
});
}} />
</div>
</div>
);
});
const statusText = {
[ModelStatus.Offline]: 'Offline',
[ModelStatus.Starting]: 'Starting',
[ModelStatus.Loading]: 'Loading',
[ModelStatus.Working]: 'Working'
};
const badgeStatus: { [modelStatus: number]: PresenceBadgeStatus } = {
[ModelStatus.Offline]: 'unknown',
[ModelStatus.Starting]: 'away',
[ModelStatus.Loading]: 'away',
[ModelStatus.Working]: 'available'
};
export const Chat: FC = observer(() => {
const { t } = useTranslation();
const port = commonStore.getCurrentModelConfig().apiParameters.apiPort;
return (
<div className="flex flex-col gap-1 p-2 h-full overflow-hidden">
<div className="flex justify-between items-center">
<div className="flex items-center gap-2">
<PresenceBadge status={badgeStatus[commonStore.status.modelStatus]} />
<Text size={100}>{t('Model Status') + ': ' + t(statusText[commonStore.status.modelStatus])}</Text>
</div>
<div className="flex items-center gap-2">
<ConfigSelector size="small" />
<RunButton iconMode />
</div>
</div>
<Text size={100}>
{t('This tool\'s API is compatible with OpenAI API. It can be used with any ChatGPT tool you like. Go to the settings of some ChatGPT tool, replace the \'https://api.openai.com\' part in the API address with \'') + `http://127.0.0.1:${port}` + '\'.'}
</Text>
<Divider style={{ flexGrow: 0 }} />
<WorkHeader />
<ChatPanel />
</div>
);

View File

@@ -0,0 +1,412 @@
import React, { FC, useEffect, useRef } from 'react';
import { observer } from 'mobx-react-lite';
import { WorkHeader } from '../components/WorkHeader';
import { Button, Dropdown, Input, Option, Textarea } from '@fluentui/react-components';
import { Labeled } from '../components/Labeled';
import { ValuedSlider } from '../components/ValuedSlider';
import { useTranslation } from 'react-i18next';
import { ApiParameters } from './Configs';
import commonStore, { ModelStatus } from '../stores/commonStore';
import { fetchEventSource } from '@microsoft/fetch-event-source';
import { toast } from 'react-toastify';
import { DialogButton } from '../components/DialogButton';
import { PresetsButton } from './PresetsManager/PresetsButton';
import { ToolTipButton } from '../components/ToolTipButton';
import { ArrowSync20Regular } from '@fluentui/react-icons';
export type CompletionParams = Omit<ApiParameters, 'apiPort'> & {
stop: string,
injectStart: string,
injectEnd: string
};
export type CompletionPreset = {
name: string,
prompt: string,
params: CompletionParams
}
export const defaultPresets: CompletionPreset[] = [{
name: 'Writer',
prompt: 'The following is an epic science fiction masterpiece that is immortalized, with delicate descriptions and grand depictions of interstellar civilization wars.\nChapter 1.\n',
params: {
maxResponseToken: 500,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4,
stop: '\\n\\nBob',
injectStart: '',
injectEnd: ''
}
}, {
name: 'Translator',
prompt: 'Translate this into Chinese.\n\nEnglish: What rooms do you have available?',
params: {
maxResponseToken: 500,
temperature: 1,
topP: 0.3,
presencePenalty: 0.4,
frequencyPenalty: 0.4,
stop: '\\nEnglish',
injectStart: '\\nChinese: ',
injectEnd: '\\nEnglish: '
}
}, {
name: 'Catgirl',
prompt: 'The following is a conversation between a cat girl and her owner. The cat girl is a humanized creature that behaves like a cat but is humanoid. At the end of each sentence in the dialogue, she will add \"Meow~\". In the following content, Bob represents the owner and Alice represents the cat girl.\n\nBob: Hello.\n\nAlice: I\'m here, meow~.\n\nBob: Can you tell jokes?',
params: {
maxResponseToken: 500,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4,
stop: '\\n\\nBob',
injectStart: '\\n\\nAlice: ',
injectEnd: '\\n\\nBob: '
}
}, {
name: 'Chinese Kongfu',
prompt: 'Bob: 请你扮演一个文本冒险游戏,我是游戏主角。这是一个玄幻修真世界,有四大门派。我输入我的行动,请你显示行动结果,并具体描述环境。我的第一个行动是“醒来”,请开始故事。',
params: {
maxResponseToken: 500,
temperature: 1.1,
topP: 0.7,
presencePenalty: 0.3,
frequencyPenalty: 0.3,
stop: '\\n\\nBob',
injectStart: '\\n\\nAlice: ',
injectEnd: '\\n\\nBob: '
}
}, {
// }, {
// name: 'Explain Code',
// prompt: 'export async function startup() {\n FileExists(\'cache.json\').then((exists) => {\n if (exists)\n downloadProgramFiles();\n else {\n deleteDynamicProgramFiles().then(downloadProgramFiles);\n }\n });\n EventsOn(\'downloadList\', (data) => {\n if (data)\n commonStore.setDownloadList(data);\n });\n\n initCache().then(initRemoteText);\n\n await initConfig();\n\n if (commonStore.settings.autoUpdatesCheck) // depends on config settings\n checkUpdate();\n\n getStatus(1000).then(status => { // depends on config api port\n if (status)\n commonStore.setStatus(status);\n });\n}\n\n\"\"\"\nHere\'s what the above code is doing, explained in a concise way:\n',
// params: {
// maxResponseToken: 500,
// temperature: 0.8,
// topP: 0.7,
// presencePenalty: 0.4,
// frequencyPenalty: 0.4,
// stop: '\\n\\n',
// injectStart: '',
// injectEnd: ''
// }
// }, {
name: 'Werewolf',
prompt: 'There is currently a game of Werewolf with six players, including a Seer (who can check identities at night), two Werewolves (who can choose someone to kill at night), a Bodyguard (who can choose someone to protect at night), two Villagers (with no special abilities), and a game host. Bob will play as Player 1, Alice will play as Players 2-6 and the game host, and they will begin playing together. Every night, the host will ask Bob for his action and simulate the actions of the other players. During the day, the host will oversee the voting process and ask Bob for his vote. \n\nAlice: Next, I will act as the game host and assign everyone their roles, including randomly assigning yours. Then, I will simulate the actions of Players 2-6 and let you know what happens each day. Based on your assigned role, you can tell me your actions and I will let you know the corresponding results each day.\n\nBob: Okay, I understand. Let\'s begin. Please assign me a role. Am I the Seer, Werewolf, Villager, or Bodyguard?\n\nAlice: You are the Seer. Now that night has fallen, please choose a player to check his identity.\n\nBob: Tonight, I want to check Player 2 and find out his role.',
params: {
maxResponseToken: 500,
temperature: 1.2,
topP: 0.4,
presencePenalty: 0.5,
frequencyPenalty: 0.5,
stop: '\\n\\nBob',
injectStart: '\\n\\nAlice: ',
injectEnd: '\\n\\nBob: '
}
}, {
name: 'Instruction',
prompt: 'Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n# Instruction:\nWrite a story using the following information\n\n# Input:\nA man named Alex chops a tree down\n\n# Response:\n',
params: {
maxResponseToken: 500,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4,
stop: '',
injectStart: '',
injectEnd: ''
}
}, {
name: 'Blank',
prompt: '',
params: {
maxResponseToken: 500,
temperature: 1,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4,
stop: '',
injectStart: '',
injectEnd: ''
}
}];
let completionSseController: AbortController | null = null;
const CompletionPanel: FC = observer(() => {
const { t } = useTranslation();
const inputRef = useRef<HTMLTextAreaElement>(null);
const port = commonStore.getCurrentModelConfig().apiParameters.apiPort;
const scrollToBottom = () => {
if (inputRef.current)
inputRef.current.scrollTop = inputRef.current.scrollHeight;
};
useEffect(() => {
if (inputRef.current)
inputRef.current.style.height = '100%';
scrollToBottom();
}, []);
const setPreset = (preset: CompletionPreset) => {
commonStore.setCompletionSubmittedPrompt(t(preset.prompt));
commonStore.setCompletionPreset({
...preset,
prompt: t(preset.prompt)
});
};
if (!commonStore.completionPreset)
setPreset(defaultPresets[0]);
const name = commonStore.completionPreset!.name;
const prompt = commonStore.completionPreset!.prompt;
const setPrompt = (prompt: string) => {
commonStore.setCompletionPreset({
...commonStore.completionPreset!,
prompt
});
};
const params = commonStore.completionPreset!.params;
const setParams = (newParams: Partial<CompletionParams>) => {
commonStore.setCompletionPreset({
...commonStore.completionPreset!,
params: {
...commonStore.completionPreset!.params,
...newParams
}
});
};
const onSubmit = (prompt: string) => {
commonStore.setCompletionSubmittedPrompt(prompt);
if (commonStore.status.status === ModelStatus.Offline && !commonStore.settings.apiUrl) {
toast(t('Please click the button in the top right corner to start the model'), { type: 'warning' });
commonStore.setCompletionGenerating(false);
return;
}
prompt += params.injectStart.replaceAll('\\n', '\n');
let answer = '';
completionSseController = new AbortController();
fetchEventSource( // https://api.openai.com/v1/completions || http://127.0.0.1:${port}/completions
commonStore.settings.apiUrl ?
commonStore.settings.apiUrl + '/v1/completions' :
`http://127.0.0.1:${port}/completions`,
{
method: 'POST',
headers: {
'Content-Type': 'application/json',
Authorization: `Bearer ${commonStore.settings.apiKey}`
},
body: JSON.stringify({
prompt,
stream: true,
model: commonStore.settings.apiCompletionModelName, // 'text-davinci-003'
max_tokens: params.maxResponseToken,
temperature: params.temperature,
top_p: params.topP,
presence_penalty: params.presencePenalty,
frequency_penalty: params.frequencyPenalty,
stop: params.stop.replaceAll('\\n', '\n') || undefined
}),
signal: completionSseController?.signal,
onmessage(e) {
scrollToBottom();
if (e.data === '[DONE]') {
commonStore.setCompletionGenerating(false);
return;
}
let data;
try {
data = JSON.parse(e.data);
} catch (error) {
console.debug('json error', error);
return;
}
if (data.choices && Array.isArray(data.choices) && data.choices.length > 0) {
answer += data.choices[0].text;
setPrompt(prompt + answer.trim() + params.injectEnd.replaceAll('\\n', '\n'));
}
},
async onopen(response) {
if (response.status !== 200) {
toast(response.statusText + '\n' + (await response.text()), {
type: 'error'
});
}
},
onclose() {
console.log('Connection closed');
},
onerror(err) {
err = err.message || err;
if (err && !err.includes('ReadableStreamDefaultReader'))
toast(err, {
type: 'error'
});
commonStore.setCompletionGenerating(false);
throw err;
}
});
};
return (
<div className="flex flex-col sm:flex-row gap-2 overflow-hidden grow">
<Textarea
ref={inputRef}
className="grow"
value={prompt}
onChange={(e) => {
commonStore.setCompletionSubmittedPrompt(e.target.value);
setPrompt(e.target.value);
}}
/>
<div className="flex flex-col gap-1 max-h-48 sm:max-w-sm sm:max-h-full">
<div className="flex gap-2">
<Dropdown style={{ minWidth: 0 }}
className="grow"
value={t(commonStore.completionPreset!.name)!}
selectedOptions={[commonStore.completionPreset!.name]}
onOptionSelect={(_, data) => {
if (data.optionValue) {
setPreset(defaultPresets.find((preset) => preset.name === data.optionValue)!);
}
}}>
{
defaultPresets.map((preset) =>
<Option key={preset.name} value={preset.name}>{t(preset.name)!}</Option>)
}
</Dropdown>
<PresetsButton tab="Completion" />
</div>
<div className="flex flex-col gap-1 overflow-x-hidden overflow-y-auto p-1">
<Labeled flex breakline label={t('Max Response Token')}
desc={t('By default, the maximum number of tokens that can be answered in a single response, it can be changed by the user by specifying API parameters.')}
content={
<ValuedSlider value={params.maxResponseToken} min={100} max={8100}
step={400}
input
onChange={(e, data) => {
setParams({
maxResponseToken: data.value
});
}} />
} />
<Labeled flex breakline label={t('Temperature')}
desc={t('Sampling temperature, it\'s like giving alcohol to a model, the higher the stronger the randomness and creativity, while the lower, the more focused and deterministic it will be.')}
content={
<ValuedSlider value={params.temperature} min={0} max={2} step={0.1}
input
onChange={(e, data) => {
setParams({
temperature: data.value
});
}} />
} />
<Labeled flex breakline label={t('Top_P')}
desc={t('Just like feeding sedatives to the model. Consider the results of the top n% probability mass, 0.1 considers the top 10%, with higher quality but more conservative, 1 considers all results, with lower quality but more diverse.')}
content={
<ValuedSlider value={params.topP} min={0} max={1} step={0.1} input
onChange={(e, data) => {
setParams({
topP: data.value
});
}} />
} />
<Labeled flex breakline label={t('Presence Penalty')}
desc={t('Positive values penalize new tokens based on whether they appear in the text so far, increasing the model\'s likelihood to talk about new topics.')}
content={
<ValuedSlider value={params.presencePenalty} min={0} max={2}
step={0.1} input
onChange={(e, data) => {
setParams({
presencePenalty: data.value
});
}} />
} />
<Labeled flex breakline label={t('Frequency Penalty')}
desc={t('Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model\'s likelihood to repeat the same line verbatim.')}
content={
<ValuedSlider value={params.frequencyPenalty} min={0} max={2}
step={0.1} input
onChange={(e, data) => {
setParams({
frequencyPenalty: data.value
});
}} />
} />
<Labeled flex breakline label={t('Stop Sequences')}
desc={t('When this content appears in the response result, the generation will end.')}
content={
<Input value={params.stop}
onChange={(e, data) => {
setParams({
stop: data.value
});
}} />
} />
<Labeled flex breakline label={t('Inject start text')}
desc={t('Before the response starts, inject this content.')}
content={
<Input value={params.injectStart}
onChange={(e, data) => {
setParams({
injectStart: data.value
});
}} />
} />
<Labeled flex breakline label={t('Inject end text')}
desc={t('When response finished, inject this content.')}
content={
<Input value={params.injectEnd}
onChange={(e, data) => {
setParams({
injectEnd: data.value
});
}} />
} />
</div>
<div className="grow" />
<div className="flex justify-between gap-2">
<ToolTipButton desc={t('Regenerate')} icon={<ArrowSync20Regular />} onClick={() => {
completionSseController?.abort();
commonStore.setCompletionGenerating(true);
setPrompt(commonStore.completionSubmittedPrompt);
onSubmit(commonStore.completionSubmittedPrompt);
}} />
<DialogButton className="grow" text={t('Reset')} title={t('Reset')}
contentText={t('Are you sure you want to reset this page? It cannot be undone.')}
onConfirm={() => {
setPreset(defaultPresets.find((preset) => preset.name === name)!);
}} />
<Button className="grow" appearance="primary" onClick={() => {
if (commonStore.completionGenerating) {
completionSseController?.abort();
commonStore.setCompletionGenerating(false);
} else {
commonStore.setCompletionGenerating(true);
onSubmit(prompt);
}
}}>{!commonStore.completionGenerating ? t('Generate') : t('Stop')}</Button>
</div>
</div>
</div>
);
});
export const Completion: FC = observer(() => {
return (
<div className="flex flex-col gap-1 p-2 h-full overflow-hidden">
<WorkHeader />
<CompletionPanel />
</div>
);
});

View File

@@ -1,4 +1,4 @@
import { Dropdown, Input, Label, Option, Select, Switch } from '@fluentui/react-components';
import { Dropdown, Input, Label, Option, Select, Switch, Text } from '@fluentui/react-components';
import { AddCircle20Regular, DataUsageSettings20Regular, Delete20Regular, Save20Regular } from '@fluentui/react-icons';
import React, { FC } from 'react';
import { Section } from '../components/Section';
@@ -14,10 +14,12 @@ import { useNavigate } from 'react-router';
import { RunButton } from '../components/RunButton';
import { updateConfig } from '../apis';
import { ConvertModel, FileExists } from '../../wailsjs/go/backend_golang/App';
import manifest from '../../../manifest.json';
import { getStrategy, refreshLocalModels } from '../utils';
import { useTranslation } from 'react-i18next';
import { WindowShow } from '../../wailsjs/runtime/runtime';
import strategyImg from '../assets/images/strategy.jpg';
import strategyZhImg from '../assets/images/strategy_zh.jpg';
import { ResetConfigsButton } from '../components/ResetConfigsButton';
export type ApiParameters = {
apiPort: number
@@ -28,7 +30,7 @@ export type ApiParameters = {
frequencyPenalty: number;
}
export type Device = 'CPU' | 'CUDA';
export type Device = 'CPU' | 'CUDA' | 'MPS' | 'Custom';
export type Precision = 'fp16' | 'int8' | 'fp32';
export type ModelParameters = {
@@ -38,8 +40,8 @@ export type ModelParameters = {
precision: Precision;
storedLayers: number;
maxStoredLayers: number;
enableHighPrecisionForLastLayer: boolean;
useCustomCuda?: boolean;
customStrategy?: string;
}
export type ModelConfig = {
@@ -49,507 +51,11 @@ export type ModelConfig = {
modelParameters: ModelParameters
}
export const defaultModelConfigs: ModelConfig[] = [
{
name: 'GPU-2G-1B5-EN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-1B5-v12-Eng98%-Other2%-20230520-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 4,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: true
}
},
{
name: 'GPU-4G-1B5-EN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-1B5-v12-Eng98%-Other2%-20230520-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
}
},
{
name: 'GPU-4G-3B-EN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-3B-v12-Eng98%-Other2%-20230520-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 24,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: true
}
},
{
name: 'GPU-4G-3B-CN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-3B-v11-Eng49%-Chn49%-Jpn1%-Other1%-20230429-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 24,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: true
}
},
{
name: 'GPU-4G-7B-EN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 8,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: true
}
},
{
name: 'GPU-4G-7B-CN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v11-Eng49%-Chn49%-Jpn1%-Other1%-20230430-ctx8192.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 8,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: true
}
},
{
name: 'GPU-6G-1B5-EN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-1B5-v12-Eng98%-Other2%-20230520-ctx4096.pth',
device: 'CUDA',
precision: 'fp16',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
}
},
{
name: 'GPU-6G-3B-EN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-3B-v12-Eng98%-Other2%-20230520-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
}
},
{
name: 'GPU-6G-3B-CN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-3B-v11-Eng49%-Chn49%-Jpn1%-Other1%-20230429-ctx4096.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
}
},
{
name: 'GPU-6G-7B-EN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 18,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: true
}
},
{
name: 'GPU-6G-7B-CN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v11-Eng49%-Chn49%-Jpn1%-Other1%-20230430-ctx8192.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 18,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: true
}
},
{
name: 'GPU-8G-3B-EN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-3B-v12-Eng98%-Other2%-20230520-ctx4096.pth',
device: 'CUDA',
precision: 'fp16',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
}
},
{
name: 'GPU-8G-3B-CN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-3B-v11-Eng49%-Chn49%-Jpn1%-Other1%-20230429-ctx4096.pth',
device: 'CUDA',
precision: 'fp16',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
}
},
{
name: 'GPU-10G-7B-EN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
}
},
{
name: 'GPU-10G-7B-CN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v11-Eng49%-Chn49%-Jpn1%-Other1%-20230430-ctx8192.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
}
},
{
name: 'GPU-12G-7B-EN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192.pth',
device: 'CUDA',
precision: 'fp16',
storedLayers: 22,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
}
},
{
name: 'GPU-12G-7B-CN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v11-Eng49%-Chn49%-Jpn1%-Other1%-20230430-ctx8192.pth',
device: 'CUDA',
precision: 'fp16',
storedLayers: 22,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
}
},
{
name: 'GPU-16G-7B-EN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192.pth',
device: 'CUDA',
precision: 'fp16',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
}
},
{
name: 'GPU-16G-7B-CN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v11-Eng49%-Chn49%-Jpn1%-Other1%-20230430-ctx8192.pth',
device: 'CUDA',
precision: 'fp16',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
}
},
{
name: 'GPU-18G-14B-EN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-14B-v12-Eng98%-Other2%-20230523-ctx8192.pth',
device: 'CUDA',
precision: 'int8',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
}
},
{
name: 'GPU-32G-14B-EN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-14B-v12-Eng98%-Other2%-20230523-ctx8192.pth',
device: 'CUDA',
precision: 'fp16',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
}
},
{
name: 'CPU-6G-1B5-EN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-1B5-v12-Eng98%-Other2%-20230520-ctx4096.pth',
device: 'CPU',
precision: 'fp32',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
}
},
{
name: 'CPU-12G-3B-EN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-3B-v12-Eng98%-Other2%-20230520-ctx4096.pth',
device: 'CPU',
precision: 'fp32',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
}
},
{
name: 'CPU-12G-3B-CN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-3B-v11-Eng49%-Chn49%-Jpn1%-Other1%-20230429-ctx4096.pth',
device: 'CPU',
precision: 'fp32',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
}
},
{
name: 'CPU-28G-7B-EN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v12-Eng98%-Other2%-20230521-ctx8192.pth',
device: 'CPU',
precision: 'fp32',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
}
},
{
name: 'CPU-28G-7B-CN',
apiParameters: {
apiPort: 8000,
maxResponseToken: 4100,
temperature: 1.2,
topP: 0.5,
presencePenalty: 0.4,
frequencyPenalty: 0.4
},
modelParameters: {
modelName: 'RWKV-4-Raven-7B-v11-Eng49%-Chn49%-Jpn1%-Other1%-20230430-ctx8192.pth',
device: 'CPU',
precision: 'fp32',
storedLayers: 41,
maxStoredLayers: 41,
enableHighPrecisionForLastLayer: false
}
}
];
export const Configs: FC = observer(() => {
const { t } = useTranslation();
const [selectedIndex, setSelectedIndex] = React.useState(commonStore.currentModelConfigIndex);
const [selectedConfig, setSelectedConfig] = React.useState(commonStore.modelConfigs[selectedIndex]);
const [displayStrategyImg, setDisplayStrategyImg] = React.useState(false);
const navigate = useNavigate();
const port = selectedConfig.apiParameters.apiPort;
@@ -618,6 +124,10 @@ export const Configs: FC = observer(() => {
commonStore.deleteModelConfig(selectedIndex);
updateSelectedIndex(Math.min(selectedIndex, commonStore.modelConfigs.length - 1));
}} />
<ResetConfigsButton afterConfirm={() => {
setSelectedIndex(0);
setSelectedConfig(commonStore.modelConfigs[0]);
}} />
<ToolTipButton desc={t('Save Config')} icon={<Save20Regular />} onClick={onClickSave} />
</div>
<div className="flex items-center gap-4">
@@ -643,7 +153,7 @@ export const Configs: FC = observer(() => {
});
}} />
} />
<Labeled label={t('Max Response Token *')}
<Labeled label={t('Max Response Token') + ' *'}
desc={t('By default, the maximum number of tokens that can be answered in a single response, it can be changed by the user by specifying API parameters.')}
content={
<ValuedSlider value={selectedConfig.apiParameters.maxResponseToken} min={100} max={8100}
@@ -655,8 +165,8 @@ export const Configs: FC = observer(() => {
});
}} />
} />
<Labeled label={t('Temperature *')}
desc={t('Sampling temperature, the higher the stronger the randomness and creativity, while the lower, the more focused and deterministic it will be.')}
<Labeled label={t('Temperature') + ' *'}
desc={t('Sampling temperature, it\'s like giving alcohol to a model, the higher the stronger the randomness and creativity, while the lower, the more focused and deterministic it will be.')}
content={
<ValuedSlider value={selectedConfig.apiParameters.temperature} min={0} max={2} step={0.1}
input
@@ -666,8 +176,8 @@ export const Configs: FC = observer(() => {
});
}} />
} />
<Labeled label={t('Top_P *')}
desc={t('Consider the results of the top n% probability mass, 0.1 considers the top 10%, with higher quality but more conservative, 1 considers all results, with lower quality but more diverse.')}
<Labeled label={t('Top_P') + ' *'}
desc={t('Just like feeding sedatives to the model. Consider the results of the top n% probability mass, 0.1 considers the top 10%, with higher quality but more conservative, 1 considers all results, with lower quality but more diverse.')}
content={
<ValuedSlider value={selectedConfig.apiParameters.topP} min={0} max={1} step={0.1} input
onChange={(e, data) => {
@@ -676,7 +186,7 @@ export const Configs: FC = observer(() => {
});
}} />
} />
<Labeled label={t('Presence Penalty *')}
<Labeled label={t('Presence Penalty') + ' *'}
desc={t('Positive values penalize new tokens based on whether they appear in the text so far, increasing the model\'s likelihood to talk about new topics.')}
content={
<ValuedSlider value={selectedConfig.apiParameters.presencePenalty} min={-2} max={2}
@@ -687,7 +197,7 @@ export const Configs: FC = observer(() => {
});
}} />
} />
<Labeled label={t('Frequency Penalty *')}
<Labeled label={t('Frequency Penalty') + ' *'}
desc={t('Positive values penalize new tokens based on their existing frequency in the text so far, decreasing the model\'s likelihood to repeat the same line verbatim.')}
content={
<ValuedSlider value={selectedConfig.apiParameters.frequencyPenalty} min={-2} max={2}
@@ -714,8 +224,12 @@ export const Configs: FC = observer(() => {
modelName: data.value
});
}}>
{!commonStore.modelSourceList.find(item => item.name === selectedConfig.modelParameters.modelName)?.isComplete
&& <option key={-1}
value={selectedConfig.modelParameters.modelName}>{selectedConfig.modelParameters.modelName}
</option>}
{commonStore.modelSourceList.map((modelItem, index) =>
modelItem.isLocal && <option key={index} value={modelItem.name}>{modelItem.name}</option>
modelItem.isComplete && <option key={index} value={modelItem.name}>{modelItem.name}</option>
)}
</Select>
<ToolTipButton desc={t('Manage Models')} icon={<DataUsageSettings20Regular />} onClick={() => {
@@ -723,87 +237,131 @@ export const Configs: FC = observer(() => {
}} />
</div>
} />
<ToolTipButton text={t('Convert')} desc={t('Convert model with these configs')} onClick={async () => {
const modelPath = `${manifest.localModelDir}/${selectedConfig.modelParameters.modelName}`;
if (await FileExists(modelPath)) {
const strategy = getStrategy(selectedConfig);
const newModelPath = modelPath + '-' + strategy.replace(/[> *+]/g, '-');
toast(t('Start Converting'), { autoClose: 1000, type: 'info' });
ConvertModel(modelPath, strategy, newModelPath).then(() => {
toast(`${t('Convert Success')} - ${newModelPath}`, { type: 'success' });
refreshLocalModels({ models: commonStore.modelSourceList }, false);
}).catch(e => {
toast(`${t('Convert Failed')} - ${e.message || e}`, { type: 'error' });
});
setTimeout(WindowShow, 1000);
} else {
toast(`${t('Model Not Found')} - ${modelPath}`, { type: 'error' });
}
}} />
<Labeled label={t('Device')} content={
<Dropdown style={{ minWidth: 0 }} className="grow" value={selectedConfig.modelParameters.device}
<ToolTipButton text={t('Convert')}
desc={t('Convert model with these configs. Using a converted model will greatly improve the loading speed, but model parameters of the converted model cannot be modified.')}
onClick={async () => {
if (commonStore.platform == 'darwin') {
toast(t('MacOS is not yet supported for performing this operation, please do it manually.'), { type: 'info' });
return;
} else if (commonStore.platform == 'linux') {
toast(t('Linux is not yet supported for performing this operation, please do it manually.'), { type: 'info' });
return;
}
const modelPath = `${commonStore.settings.customModelsPath}/${selectedConfig.modelParameters.modelName}`;
if (await FileExists(modelPath)) {
const strategy = getStrategy(selectedConfig);
const newModelPath = modelPath + '-' + strategy.replace(/[:> *+]/g, '-');
toast(t('Start Converting'), { autoClose: 1000, type: 'info' });
ConvertModel(commonStore.settings.customPythonPath, modelPath, strategy, newModelPath).then(() => {
toast(`${t('Convert Success')} - ${newModelPath}`, { type: 'success' });
refreshLocalModels({ models: commonStore.modelSourceList }, false);
}).catch(e => {
const errMsg = e.message || e;
if (errMsg.includes('path contains space'))
toast(`${t('Convert Failed')} - ${t('File Path Cannot Contain Space')}`, { type: 'error' });
else
toast(`${t('Convert Failed')} - ${e.message || e}`, { type: 'error' });
});
setTimeout(WindowShow, 1000);
} else {
toast(`${t('Model Not Found')} - ${modelPath}`, { type: 'error' });
}
}} />
<Labeled label={t('Strategy')} content={
<Dropdown style={{ minWidth: 0 }} className="grow" value={t(selectedConfig.modelParameters.device)!}
selectedOptions={[selectedConfig.modelParameters.device]}
onOptionSelect={(_, data) => {
if (data.optionText) {
if (data.optionValue) {
setSelectedConfigModelParams({
device: data.optionText as Device
device: data.optionValue as Device
});
}
}}>
<Option>CPU</Option>
<Option>CUDA</Option>
<Option value="CPU">CPU</Option>
{commonStore.platform === 'darwin' && <Option value="MPS">MPS</Option>}
<Option value="CUDA">CUDA</Option>
<Option value="Custom">{t('Custom')!}</Option>
</Dropdown>
} />
<Labeled label={t('Precision')}
desc={t('int8 uses less VRAM, but has slightly lower quality. fp16 has higher quality, and fp32 has the best quality.')}
content={
<Dropdown style={{ minWidth: 0 }} className="grow"
value={selectedConfig.modelParameters.precision}
selectedOptions={[selectedConfig.modelParameters.precision]}
onOptionSelect={(_, data) => {
if (data.optionText) {
{
selectedConfig.modelParameters.device != 'Custom' && <Labeled label={t('Precision')}
desc={t('int8 uses less VRAM, but has slightly lower quality. fp16 has higher quality, and fp32 has the best quality.')}
content={
<Dropdown style={{ minWidth: 0 }} className="grow"
value={selectedConfig.modelParameters.precision}
selectedOptions={[selectedConfig.modelParameters.precision]}
onOptionSelect={(_, data) => {
if (data.optionText) {
setSelectedConfigModelParams({
precision: data.optionText as Precision
});
}
}}>
<Option>fp16</Option>
<Option>int8</Option>
<Option>fp32</Option>
</Dropdown>
} />
}
{
selectedConfig.modelParameters.device == 'CUDA' &&
<Labeled label={t('Current Strategy')}
content={<Text> {getStrategy(selectedConfig)} </Text>} />
}
{
selectedConfig.modelParameters.device == 'CUDA' &&
<Labeled label={t('Stored Layers')}
desc={t('Number of the neural network layers loaded into VRAM, the more you load, the faster the speed, but it consumes more VRAM. (If your VRAM is not enough, it will fail to load)')}
content={
<ValuedSlider value={selectedConfig.modelParameters.storedLayers} min={0}
max={selectedConfig.modelParameters.maxStoredLayers} step={1} input
onChange={(e, data) => {
setSelectedConfigModelParams({
precision: data.optionText as Precision
storedLayers: data.value
});
}
}}>
<Option>fp16</Option>
<Option>int8</Option>
<Option>fp32</Option>
</Dropdown>
} />
<div />
<Labeled label={t('Stored Layers')}
desc={t('Number of the neural network layers loaded into VRAM, the more you load, the faster the speed, but it consumes more VRAM.')}
content={
<ValuedSlider value={selectedConfig.modelParameters.storedLayers} min={0}
max={selectedConfig.modelParameters.maxStoredLayers} step={1} input
onChange={(e, data) => {
setSelectedConfigModelParams({
storedLayers: data.value
});
}} />
} />
<Labeled label={t('Enable High Precision For Last Layer')}
desc={t('Whether to use CPU to calculate the last output layer of the neural network with FP32 precision to obtain better quality.')}
content={
<Switch checked={selectedConfig.modelParameters.enableHighPrecisionForLastLayer}
onChange={(e, data) => {
setSelectedConfigModelParams({
enableHighPrecisionForLastLayer: data.checked
});
}} />
} />
<Labeled label={t('Use Custom CUDA kernel to Accelerate')}
desc={t('Enabling this option can greatly improve inference speed, but there may be compatibility issues. If it fails to start, please turn off this option.')}
content={
<Switch checked={selectedConfig.modelParameters.useCustomCuda}
onChange={(e, data) => {
setSelectedConfigModelParams({
useCustomCuda: data.checked
});
}} />
} />
}} />
} />
}
{
selectedConfig.modelParameters.device == 'CUDA' && <div />
}
{
displayStrategyImg &&
<img style={{ width: '80vh', height: 'auto', zIndex: 100 }}
className="fixed left-0 top-0 rounded-xl select-none"
src={commonStore.settings.language === 'zh' ? strategyZhImg : strategyImg} />
}
{
selectedConfig.modelParameters.device == 'Custom' &&
<Labeled label="Strategy"
onMouseEnter={() => setDisplayStrategyImg(true)}
onMouseLeave={() => setDisplayStrategyImg(false)}
content={
<Input className="grow"
placeholder={commonStore.platform != 'darwin' ? 'cuda:0 fp16 *20 -> cuda:1 fp16' : 'mps fp32'}
value={selectedConfig.modelParameters.customStrategy}
onChange={(e, data) => {
setSelectedConfigModelParams({
customStrategy: data.value
});
}} />
} />
}
{selectedConfig.modelParameters.device == 'Custom' && <div />}
{
selectedConfig.modelParameters.device != 'CPU' && selectedConfig.modelParameters.device != 'MPS' &&
<Labeled label={t('Use Custom CUDA kernel to Accelerate')}
desc={t('Enabling this option can greatly improve inference speed and save some VRAM, but there may be compatibility issues. If it fails to start, please turn off this option.')}
content={
<Switch checked={selectedConfig.modelParameters.useCustomCuda}
onChange={(e, data) => {
setSelectedConfigModelParams({
useCustomCuda: data.checked
});
}} />
} />
}
</div>
}
/>

View File

@@ -7,7 +7,7 @@ import { Divider, Field, ProgressBar } from '@fluentui/react-components';
import { bytesToGb, bytesToKb, bytesToMb, refreshLocalModels } from '../utils';
import { ToolTipButton } from '../components/ToolTipButton';
import { Folder20Regular, Pause20Regular, Play20Regular } from '@fluentui/react-icons';
import { ContinueDownload, OpenFileFolder, PauseDownload } from '../../wailsjs/go/backend_golang/App';
import { AddToDownloadList, OpenFileFolder, PauseDownload } from '../../wailsjs/go/backend_golang/App';
export type DownloadStatus = {
name: string;
@@ -30,10 +30,27 @@ export const Downloads: FC = observer(() => {
console.log('finishedModelsLen:', finishedModelsLen);
}, [finishedModelsLen]);
let displayList = commonStore.downloadList.slice();
const downloadListNames = displayList.map(s => s.name);
commonStore.lastUnfinishedModelDownloads.forEach((status) => {
const unfinishedIndex = downloadListNames.indexOf(status.name);
if (unfinishedIndex === -1) {
displayList.push(status);
} else {
const unfinishedStatus = displayList[unfinishedIndex];
if (unfinishedStatus.transferred < status.transferred) {
status.downloading = unfinishedStatus.downloading;
delete displayList[unfinishedIndex];
displayList.push(status);
}
}
});
displayList = displayList.reverse();
return (
<Page title={t('Downloads')} content={
<div className="flex flex-col gap-2 overflow-y-auto overflow-x-hidden p-1">
{commonStore.downloadList.slice().reverse().map((status, index) => {
{displayList.map((status, index) => {
const downloadProgress = `${status.progress.toFixed(2)}%`;
const downloadSpeed = `${status.downloading ? bytesToMb(status.speed) : '0'}MB/s`;
let downloadDetails: string;
@@ -53,16 +70,16 @@ export const Downloads: FC = observer(() => {
<div className="flex items-center gap-2">
<ProgressBar className="grow" value={status.progress} max={100} />
{!status.done &&
<ToolTipButton desc={status.downloading ? t('Pause') : t('Continue')}
<ToolTipButton desc={status.downloading ? t('Pause') : t('Resume')}
icon={status.downloading ? <Pause20Regular /> : <Play20Regular />}
onClick={() => {
if (status.downloading)
PauseDownload(status.url);
else
ContinueDownload(status.url);
AddToDownloadList(status.path, status.url);
}} />}
<ToolTipButton desc={t('Open Folder')} icon={<Folder20Regular />} onClick={() => {
OpenFileFolder(status.path);
OpenFileFolder(status.path, false);
}} />
</div>
</Field>

View File

@@ -3,9 +3,9 @@ import React, { FC, ReactElement } from 'react';
import banner from '../assets/images/banner.jpg';
import {
Chat20Regular,
ClipboardEdit20Regular,
DataUsageSettings20Regular,
DocumentSettings20Regular,
Storage20Regular
DocumentSettings20Regular
} from '@fluentui/react-icons';
import { useNavigate } from 'react-router';
import { observer } from 'mobx-react-lite';
@@ -16,6 +16,8 @@ import { useTranslation } from 'react-i18next';
import { ConfigSelector } from '../components/ConfigSelector';
import MarkdownRender from '../components/MarkdownRender';
import commonStore from '../stores/commonStore';
import { Completion } from './Completion';
import { ResetConfigsButton } from '../components/ResetConfigsButton';
export type IntroductionContent = { [lang: string]: string }
@@ -33,6 +35,12 @@ const navCards: NavCard[] = [
path: '/chat',
icon: <Chat20Regular />
},
{
label: 'Completion',
desc: 'Writer, Translator, Role-playing',
path: '/completion',
icon: <ClipboardEdit20Regular />
},
{
label: 'Configs',
desc: 'Manage your configs',
@@ -44,12 +52,6 @@ const navCards: NavCard[] = [
desc: 'Manage models',
path: '/models',
icon: <DataUsageSettings20Regular />
},
{
label: 'Train',
desc: '',
path: '/train',
icon: <Storage20Regular />
}
];
@@ -64,7 +66,8 @@ export const Home: FC = observer(() => {
return (
<div className="flex flex-col justify-between h-full">
<img className="rounded-xl select-none hidden sm:block" src={banner} />
<img className="rounded-xl select-none hidden sm:block"
style={{ maxHeight: '40%', margin: '0 auto' }} src={banner} />
<div className="flex flex-col gap-2">
<Text size={600} weight="medium">{t('Introduction')}</Text>
<div className="h-40 overflow-y-auto overflow-x-hidden p-1">
@@ -84,6 +87,7 @@ export const Home: FC = observer(() => {
<div className="flex flex-col gap-2">
<div className="flex flex-row-reverse sm:fixed bottom-2 right-2">
<div className="flex gap-3">
<ResetConfigsButton />
<ConfigSelector />
<RunButton />
</div>

View File

@@ -18,7 +18,6 @@ import { observer } from 'mobx-react-lite';
import commonStore from '../stores/commonStore';
import { BrowserOpenURL } from '../../wailsjs/runtime';
import { AddToDownloadList, OpenFileFolder } from '../../wailsjs/go/backend_golang/App';
import manifest from '../../../manifest.json';
import { Page } from '../components/Page';
import { bytesToGb, refreshModels, saveConfigs, toastWithButton } from '../utils';
import { useTranslation } from 'react-i18next';
@@ -32,8 +31,11 @@ export type ModelSourceItem = {
SHA256?: string;
url?: string;
downloadUrl?: string;
isComplete?: boolean;
isLocal?: boolean;
localSize?: number;
lastUpdatedMs?: number;
hide?: boolean;
};
const columns: TableColumnDefinition<ModelSourceItem>[] = [
@@ -125,7 +127,7 @@ const columns: TableColumnDefinition<ModelSourceItem>[] = [
createTableColumn<ModelSourceItem>({
columnId: 'actions',
compare: (a, b) => {
return a.isLocal ? -1 : 1;
return a.isComplete ? -1 : 1;
},
renderHeaderCell: () => {
const { t } = useTranslation();
@@ -140,18 +142,18 @@ const columns: TableColumnDefinition<ModelSourceItem>[] = [
<TableCellLayout>
<div className="flex gap-1">
{
item.isLocal &&
item.isComplete &&
<ToolTipButton desc={t('Open Folder')} icon={<Folder20Regular />} onClick={() => {
OpenFileFolder(`./${manifest.localModelDir}/${item.name}`);
OpenFileFolder(`${commonStore.settings.customModelsPath}/${item.name}`, true);
}} />
}
{item.downloadUrl && !item.isLocal &&
{item.downloadUrl && !item.isComplete &&
<ToolTipButton desc={t('Download')} icon={<ArrowDownload20Regular />} onClick={() => {
toastWithButton(`${t('Downloading')} ${item.name}`, t('Check'), () => {
navigate({ pathname: '/downloads' });
},
{ autoClose: 3000 });
AddToDownloadList(`./${manifest.localModelDir}/${item.name}`, item.downloadUrl!);
AddToDownloadList(`${commonStore.settings.customModelsPath}/${item.name}`, item.downloadUrl!);
}} />}
{item.url && <ToolTipButton desc={t('Open Url')} icon={<Open20Regular />} onClick={() => {
BrowserOpenURL(item.url!);
@@ -203,6 +205,7 @@ export const Models: FC = observer(() => {
<div className="overflow-y-auto overflow-x-hidden">
<DataGridBody<ModelSourceItem>>
{({ item, rowId }) => (
(!item.hide || item.isComplete) &&
<DataGridRow<ModelSourceItem> key={rowId}>
{({ renderCell }) => (
<DataGridCell>{renderCell(item)}</DataGridCell>

View File

@@ -0,0 +1,154 @@
import React, { FC, useState } from 'react';
import { DragDropContext, Draggable, Droppable, DropResult } from 'react-beautiful-dnd';
import commonStore from '../../stores/commonStore';
import { Preset } from './PresetsButton';
import { observer } from 'mobx-react-lite';
import { v4 as uuid } from 'uuid';
import { Button, Card, Dropdown, Option, Textarea } from '@fluentui/react-components';
import { useTranslation } from 'react-i18next';
import { ToolTipButton } from '../../components/ToolTipButton';
import { Delete20Regular, ReOrderDotsVertical20Regular } from '@fluentui/react-icons';
import { ConversationMessage, Role } from '../Chat';
type Item = {
id: string;
role: Role;
content: string;
}
const getItems = (messages: ConversationMessage[]) =>
messages.map((message, index) => ({
id: uuid(),
role: message.role,
content: message.content
})) as Item[];
const reorder = (list: Item[], startIndex: number, endIndex: number) => {
const result = Array.from(list);
const [removed] = result.splice(startIndex, 1);
result.splice(endIndex, 0, removed);
return result;
};
export const MessagesEditor: FC = observer(() => {
const { t } = useTranslation();
const editingPreset = commonStore.editingPreset!;
const setEditingPreset = (newParams: Partial<Preset>) => {
commonStore.setEditingPreset({
...editingPreset,
...newParams
});
};
const [items, setItems] = useState(getItems(editingPreset.messages));
const updateItems = (items: Item[]) => {
setEditingPreset({
messages: items.map(item => ({
role: item.role,
content: item.content
}))
});
setItems(items);
};
const onDragEnd = (result: DropResult) => {
if (!result.destination) {
return;
}
const newItems = reorder(
items,
result.source.index,
result.destination.index
);
updateItems(newItems);
};
const createNewItem = () => {
const newItems: Item[] = [...items, {
id: uuid(),
role: 'assistant',
content: ''
}];
updateItems(newItems);
};
const deleteItem = (id: string) => {
const newItems: Item[] = items.filter(item => item.id !== id);
updateItems(newItems);
};
return (
<div className="grid grid-cols-1 gap-2 overflow-hidden">
<Button style={{ width: '100%' }} onClick={createNewItem}>{t('New')}</Button>
<div className="overflow-x-hidden overflow-y-auto p-2">
<DragDropContext onDragEnd={onDragEnd}>
<Droppable droppableId="droppable">
{(provided, snapshot) => (
<div
{...provided.droppableProps}
ref={provided.innerRef}
>
{items.map((item, index) => (
<Draggable key={item.id} draggableId={item.id} index={index}>
{(provided, snapshot) => (
<div
ref={provided.innerRef}
{...provided.draggableProps}
{...provided.dragHandleProps}
style={provided.draggableProps.style}
className="select-none mb-2"
>
<div className="flex">
<Card appearance="outline"
style={{ borderTopRightRadius: 0, borderBottomRightRadius: 0 }}>
<ReOrderDotsVertical20Regular />
</Card>
<Dropdown style={{ minWidth: 0, borderRadius: 0 }} listbox={{ style: { minWidth: 0 } }}
value={t(item.role)!}
selectedOptions={[item.role]}
onOptionSelect={(_, data) => {
if (data.optionValue) {
items[index] = {
...item,
role: data.optionValue as Role
};
updateItems([...items]);
}
}}>
<Option value="user">{t('user')!}</Option>
<Option value="assistant">{t('assistant')!}</Option>
{/* TODO <Option value="system">{t('system')!}</Option>*/}
</Dropdown>
<Textarea resize="vertical" className="grow" value={item.content}
style={{ minWidth: 0, borderRadius: 0 }}
onChange={(e, data) => {
items[index] = {
...item,
content: data.value
};
updateItems([...items]);
}}></Textarea>
<ToolTipButton
style={{ borderTopLeftRadius: 0, borderBottomLeftRadius: 0 }} desc={t('Delete')}
icon={<Delete20Regular />} onClick={() => {
deleteItem(item.id);
}} />
</div>
</div>
)}
</Draggable>
))}
{provided.placeholder}
</div>
)}
</Droppable>
</DragDropContext>
</div>
</div>
);
});

View File

@@ -0,0 +1,431 @@
// TODO refactor
import React, { FC, PropsWithChildren, ReactElement, useState } from 'react';
import {
Button,
Dialog,
DialogBody,
DialogContent,
DialogSurface,
DialogTrigger,
Input,
Switch,
Tab,
TabList,
Text
} from '@fluentui/react-components';
import {
Accessibility28Regular,
Chat20Regular,
ClipboardEdit20Regular,
Delete20Regular,
Dismiss20Regular,
Edit20Regular,
Globe20Regular
} from '@fluentui/react-icons';
import { ToolTipButton } from '../../components/ToolTipButton';
import { useTranslation } from 'react-i18next';
import { botName, Conversation, ConversationMessage, MessageType, userName } from '../Chat';
import { SelectTabEventHandler } from '@fluentui/react-tabs';
import { Labeled } from '../../components/Labeled';
import commonStore from '../../stores/commonStore';
import logo from '../../assets/images/logo.jpg';
import { observer } from 'mobx-react-lite';
import { MessagesEditor } from './MessagesEditor';
import { ClipboardGetText, ClipboardSetText } from '../../../wailsjs/runtime';
import { toast } from 'react-toastify';
import { CustomToastContainer } from '../../components/CustomToastContainer';
import { v4 as uuid } from 'uuid';
export type PresetType = 'chat' | 'completion' | 'chatInCompletion'
export type Preset = {
name: string,
tag: string,
// if name and sourceUrl are same, it will be overridden when importing
sourceUrl: string,
desc: string,
avatarImg: string,
type: PresetType,
// chat
welcomeMessage: string,
messages: ConversationMessage[],
displayPresetMessages: boolean,
// completion
prompt: string,
stop: string,
injectStart: string,
injectEnd: string,
}
export const defaultPreset: Preset = {
name: 'RWKV',
tag: 'default',
sourceUrl: '',
desc: '',
avatarImg: logo,
type: 'chat',
welcomeMessage: '',
displayPresetMessages: true,
messages: [],
prompt: '',
stop: '',
injectStart: '',
injectEnd: ''
};
const setActivePreset = (preset: Preset) => {
commonStore.setActivePreset(preset);
//TODO if (preset.displayPresetMessages) {
const conversation: Conversation = {};
const conversationOrder: string[] = [];
for (const message of preset.messages) {
const newUuid = uuid();
conversationOrder.push(newUuid);
conversation[newUuid] = {
sender: message.role === 'user' ? userName : botName,
type: MessageType.Normal,
color: message.role === 'user' ? 'brand' : 'colorful',
time: new Date().toISOString(),
content: message.content,
side: message.role === 'user' ? 'right' : 'left',
done: true
};
}
commonStore.setConversation(conversation);
commonStore.setConversationOrder(conversationOrder);
//}
};
export const PresetCardFrame: FC<PropsWithChildren & { onClick?: () => void }> = (props) => {
return <Button
className="flex flex-col gap-1 w-32 h-56 break-all"
style={{ minWidth: 0, borderRadius: '0.75rem', justifyContent: 'unset' }}
onClick={props.onClick}
>
{props.children}
</Button>;
};
export const PresetCard: FC<{
avatarImg: string,
name: string,
desc: string,
tag: string,
editable: boolean,
presetIndex: number,
onClick?: () => void
}> = observer(({
avatarImg, name, desc, tag, editable, presetIndex, onClick
}) => {
const { t } = useTranslation();
return <PresetCardFrame onClick={onClick}>
<img src={avatarImg} className="rounded-xl select-none ml-auto mr-auto h-28" />
<Text size={400}>{name}</Text>
<Text size={200} style={{
overflow: 'hidden', textOverflow: 'ellipsis',
display: '-webkit-box', WebkitLineClamp: 3, WebkitBoxOrient: 'vertical'
}}>{desc}</Text>
<div className="grow" />
<div className="flex justify-between w-full items-end">
<div className="text-xs font-thin text-gray-500">{t(tag)}</div>
{editable ?
<ChatPresetEditor presetIndex={presetIndex} triggerButton={
<ToolTipButton size="small" appearance="transparent" desc={t('Edit')} icon={<Edit20Regular />}
onClick={() => {
commonStore.setEditingPreset({ ...commonStore.presets[presetIndex] });
}} />
} />
: <div />
}
</div>
</PresetCardFrame>;
});
export const ChatPresetEditor: FC<{
triggerButton: ReactElement,
presetIndex: number
}> = observer(({ triggerButton, presetIndex }) => {
const { t } = useTranslation();
const [editingMessages, setEditingMessages] = useState(false);
if (!commonStore.editingPreset)
commonStore.setEditingPreset({ ...defaultPreset });
const editingPreset = commonStore.editingPreset!;
const setEditingPreset = (newParams: Partial<Preset>) => {
commonStore.setEditingPreset({
...editingPreset,
...newParams
});
};
const importPreset = () => {
ClipboardGetText().then((text) => {
try {
const preset = JSON.parse(text);
setEditingPreset(preset);
toast(t('Imported successfully'), {
type: 'success',
autoClose: 1000
});
} catch (e) {
toast(t('Failed to import. Please copy a preset to the clipboard.'), {
type: 'error',
autoClose: 2500
});
}
}).catch(() => {
toast(t('Clipboard is empty.'), {
type: 'info',
autoClose: 1000
});
});
};
const copyPreset = () => {
ClipboardSetText(JSON.stringify(editingPreset)).then((success) => {
if (success)
toast(t('Successfully copied to clipboard.'), {
type: 'success',
autoClose: 1000
});
});
};
const savePreset = () => {
if (presetIndex === -1) {
commonStore.setPresets([...commonStore.presets, { ...editingPreset }]);
setEditingPreset(defaultPreset);
} else {
commonStore.presets[presetIndex] = editingPreset;
commonStore.setPresets(commonStore.presets);
}
};
const activatePreset = () => {
savePreset();
setActivePreset(editingPreset);
};
const deletePreset = () => {
commonStore.presets.splice(presetIndex, 1);
commonStore.setPresets(commonStore.presets);
};
return <Dialog>
<DialogTrigger disableButtonEnhancement>
{triggerButton}
</DialogTrigger>
<DialogSurface style={{
paddingTop: 0,
maxWidth: '80vw',
maxHeight: '80vh',
width: '500px',
height: '100%'
}}>
<DialogBody style={{ height: '100%', overflow: 'hidden' }}>
<DialogContent className="flex flex-col gap-1 overflow-hidden">
<CustomToastContainer />
<div className="flex justify-between">{
presetIndex === -1
? <div />
: <DialogTrigger disableButtonEnhancement>
<Button appearance="subtle" icon={<Delete20Regular />} onClick={deletePreset} />
</DialogTrigger>
}
<DialogTrigger disableButtonEnhancement>
<Button appearance="subtle" icon={<Dismiss20Regular />} />
</DialogTrigger>
</div>
<img src={editingPreset.avatarImg} className="rounded-xl select-none ml-auto mr-auto h-28" />
<Labeled flex breakline label={t('Name')}
content={
<div className="flex gap-2">
<Input className="grow" value={editingPreset.name} onChange={(e, data) => {
setEditingPreset({
name: data.value
});
}} />
<Button onClick={() => {
setEditingMessages(!editingMessages);
}}>{!editingMessages ? t('Edit Messages') : t('Go Back')}</Button>
</div>
} />
{
editingMessages ?
<MessagesEditor /> :
<div className="flex flex-col gap-1 p-2 overflow-x-hidden overflow-y-auto">
<Labeled flex breakline label={t('Description')}
content={
<Input value={editingPreset.desc} onChange={(e, data) => {
setEditingPreset({
desc: data.value
});
}} />
} />
<Labeled flex breakline label={t('Avatar Url')}
content={
<Input value={editingPreset.avatarImg} onChange={(e, data) => {
setEditingPreset({
avatarImg: data.value
});
}} />
} />
<Labeled flex breakline label={t('Welcome Message')}
content={
<Input disabled value={editingPreset.welcomeMessage} onChange={(e, data) => {
setEditingPreset({
welcomeMessage: data.value
});
}} />
} />
<Labeled flex spaceBetween label={t('Display Preset Messages')}
content={
<Switch disabled checked={editingPreset.displayPresetMessages}
onChange={(e, data) => {
setEditingPreset({
displayPresetMessages: data.checked
});
}} />
} />
<Labeled flex breakline label={t('Tag')}
content={
<Input value={editingPreset.tag} onChange={(e, data) => {
setEditingPreset({
tag: data.value
});
}} />
} />
</div>
}
<div className="grow" />
<div className="flex justify-between">
<Button onClick={importPreset}>{t('Import')}</Button>
<Button onClick={copyPreset}>{t('Copy')}</Button>
</div>
<div className="flex justify-between">
<DialogTrigger disableButtonEnhancement>
<Button appearance="primary" onClick={savePreset}>{t('Save')}</Button>
</DialogTrigger>
<DialogTrigger disableButtonEnhancement>
<Button appearance="primary" onClick={activatePreset}>{t('Activate')}</Button>
</DialogTrigger>
</div>
</DialogContent>
</DialogBody>
</DialogSurface>
</Dialog>;
});
export const ChatPresets: FC = observer(() => {
const { t } = useTranslation();
return <div className="flex flex-wrap gap-2">
<ChatPresetEditor presetIndex={-1} triggerButton={
<PresetCardFrame>
<div className="h-full flex items-center">
{t('New Preset')}
</div>
</PresetCardFrame>}
/>
{/*TODO <PresetCardFrame>*/}
{/* <div className="h-full flex items-center">*/}
{/* {t('Import')}*/}
{/* </div>*/}
{/*</PresetCardFrame>*/}
<PresetCard
presetIndex={-1}
editable={false}
onClick={() => {
setActivePreset(defaultPreset);
}} avatarImg={defaultPreset.avatarImg} name={defaultPreset.name} desc={defaultPreset.desc} tag={defaultPreset.tag}
/>
{commonStore.presets.map((preset, index) => {
return <PresetCard
presetIndex={index}
editable={true}
onClick={() => {
setActivePreset(preset);
}}
key={index} avatarImg={preset.avatarImg} name={preset.name} desc={preset.desc} tag={preset.tag}
/>;
})}
</div>;
});
type PresetsNavigationItem = {
icon: ReactElement;
element: ReactElement;
};
const pages: { [label: string]: PresetsNavigationItem } = {
Chat: {
icon: <Chat20Regular />,
element: <ChatPresets />
},
Completion: {
icon: <ClipboardEdit20Regular />,
element: <div>In Development</div>
},
Online: {
icon: <Globe20Regular />,
element: <div>In Development</div>
}
};
export const PresetsManager: FC<{ initTab: string }> = ({ initTab }) => {
const { t } = useTranslation();
const [tab, setTab] = useState(initTab);
const selectTab: SelectTabEventHandler = (e, data) =>
typeof data.value === 'string' ? setTab(data.value) : null;
return <div className="flex flex-col gap-2 w-full h-full">
<div className="flex justify-between">
<TabList
size="small"
appearance="subtle"
selectedValue={tab}
onTabSelect={selectTab}
>
{Object.entries(pages).map(([label, { icon }]) => (
<Tab icon={icon} key={label} value={label}>
{t(label)}
</Tab>
))}
</TabList>
<DialogTrigger disableButtonEnhancement>
<Button appearance="subtle" icon={<Dismiss20Regular />} />
</DialogTrigger>
</div>
<div className="grow overflow-x-hidden overflow-y-auto">
{pages[tab].element}
</div>
</div>;
};
export const PresetsButton: FC<{
tab: string,
size?: 'small' | 'medium' | 'large',
shape?: 'rounded' | 'circular' | 'square';
appearance?: 'secondary' | 'primary' | 'outline' | 'subtle' | 'transparent';
}> = ({ tab, size, shape, appearance }) => {
const { t } = useTranslation();
return <Dialog>
<DialogTrigger disableButtonEnhancement>
<ToolTipButton desc={t('Presets')} size={size} shape={shape} appearance={appearance}
icon={<Accessibility28Regular />} />
</DialogTrigger>
<DialogSurface style={{ paddingTop: 0, maxWidth: '90vw', width: 'fit-content' }}>
<DialogBody>
<DialogContent>
<CustomToastContainer />
<PresetsManager initTab={tab} />
</DialogContent>
</DialogBody>
</DialogSurface>
</Dialog>;
};

View File

@@ -1,11 +1,21 @@
import React, { FC } from 'react';
import React, { FC, useEffect, useRef } from 'react';
import { Page } from '../components/Page';
import { Dropdown, Option, Switch } from '@fluentui/react-components';
import {
Accordion,
AccordionHeader,
AccordionItem,
AccordionPanel,
Dropdown,
Input,
Option,
Switch
} from '@fluentui/react-components';
import { Labeled } from '../components/Labeled';
import commonStore from '../stores/commonStore';
import { observer } from 'mobx-react-lite';
import { useTranslation } from 'react-i18next';
import { checkUpdate } from '../utils';
import { checkUpdate, toastWithButton } from '../utils';
import { RestartApp } from '../../wailsjs/go/backend_golang/App';
export const Languages = {
dev: 'English', // i18n default
@@ -15,19 +25,33 @@ export const Languages = {
export type Language = keyof typeof Languages;
export type SettingsType = {
language: Language,
language: Language
darkMode: boolean
autoUpdatesCheck: boolean
giteeUpdatesSource: boolean
cnMirror: boolean
host: string
dpiScaling: number
customModelsPath: string
customPythonPath: string
apiUrl: string
apiKey: string
apiChatModelName: string
apiCompletionModelName: string
}
export const Settings: FC = observer(() => {
const { t, i18n } = useTranslation();
const advancedHeaderRef = useRef<HTMLDivElement>(null);
useEffect(() => {
if (advancedHeaderRef.current)
(advancedHeaderRef.current.firstElementChild as HTMLElement).style.padding = '0';
}, []);
return (
<Page title={t('Settings')} content={
<div className="flex flex-col gap-2 overflow-hidden">
<div className="flex flex-col gap-2 overflow-y-auto overflow-x-hidden p-1">
<Labeled label={t('Language')} flex spaceBetween content={
<Dropdown style={{ minWidth: 0 }} listbox={{ style: { minWidth: 0 } }}
value={Languages[commonStore.settings.language]}
@@ -38,7 +62,6 @@ export const Settings: FC = observer(() => {
commonStore.setSettings({
language: lang
});
i18n.changeLanguage(lang);
}
}}>
{
@@ -47,6 +70,31 @@ export const Settings: FC = observer(() => {
}
</Dropdown>
} />
{
commonStore.platform === 'windows' &&
<Labeled label={t('DPI Scaling')} flex spaceBetween content={
<Dropdown style={{ minWidth: 0 }} listbox={{ style: { minWidth: 0 } }}
value={commonStore.settings.dpiScaling + '%'}
selectedOptions={[commonStore.settings.dpiScaling.toString()]}
onOptionSelect={(_, data) => {
if (data.optionValue) {
commonStore.setSettings({
dpiScaling: Number(data.optionValue)
});
toastWithButton(t('Restart the app to apply DPI Scaling.'), t('Restart'), () => {
RestartApp();
}, {
autoClose: 5000
});
}
}}>
{
Array.from({ length: 7 }, (_, i) => (i + 2) * 25).map((v, i) =>
<Option key={i} value={v.toString()}>{v + '%'}</Option>)
}
</Dropdown>
} />
}
<Labeled label={t('Dark Mode')} flex spaceBetween content={
<Switch checked={commonStore.settings.darkMode}
onChange={(e, data) => {
@@ -77,7 +125,7 @@ export const Settings: FC = observer(() => {
} />
}
{
commonStore.settings.language === 'zh' &&
commonStore.settings.language === 'zh' && commonStore.platform != 'linux' &&
<Labeled label={t('Use Tsinghua Pip Mirrors')} flex spaceBetween content={
<Switch checked={commonStore.settings.cnMirror}
onChange={(e, data) => {
@@ -87,6 +135,143 @@ export const Settings: FC = observer(() => {
}} />
} />
}
<Labeled label={t('Allow external access to the API (service must be restarted)')} flex spaceBetween content={
<Switch checked={commonStore.settings.host !== '127.0.0.1'}
onChange={(e, data) => {
commonStore.setSettings({
host: data.checked ? '0.0.0.0' : '127.0.0.1'
});
}} />
} />
<Accordion collapsible openItems={!commonStore.advancedCollapsed && 'advanced'} onToggle={(e, data) => {
if (data.value === 'advanced')
commonStore.setAdvancedCollapsed(!commonStore.advancedCollapsed);
}}>
<AccordionItem value="advanced">
<AccordionHeader ref={advancedHeaderRef} size="large">{t('Advanced')}</AccordionHeader>
<AccordionPanel>
<div className="flex flex-col gap-2 overflow-hidden">
{commonStore.platform !== 'darwin' &&
<Labeled label={t('Custom Models Path')}
content={
<Input className="grow" placeholder="./models" value={commonStore.settings.customModelsPath}
onChange={(e, data) => {
commonStore.setSettings({
customModelsPath: data.value
});
}} />
} />
}
<Labeled label={t('Custom Python Path')} // if set, will not use precompiled cuda kernel
content={
<Input className="grow" placeholder="./py310/python" value={commonStore.settings.customPythonPath}
onChange={(e, data) => {
commonStore.setDepComplete(false);
commonStore.setSettings({
customPythonPath: data.value
});
}} />
} />
<Labeled label={'API URL'}
content={
<div className="flex gap-2">
<Input style={{ minWidth: 0 }} className="grow" value={commonStore.settings.apiUrl}
onChange={(e, data) => {
commonStore.setSettings({
apiUrl: data.value
});
}} />
<Dropdown style={{ minWidth: 0 }} listbox={{ style: { minWidth: 0 } }}
value="..." selectedOptions={[]} expandIcon={null}
onOptionSelect={(_, data) => {
commonStore.setSettings({
apiUrl: data.optionValue
});
if (data.optionText === 'OpenAI') {
if (commonStore.settings.apiChatModelName === 'rwkv')
commonStore.setSettings({
apiChatModelName: 'gpt-3.5-turbo'
});
if (commonStore.settings.apiCompletionModelName === 'rwkv')
commonStore.setSettings({
apiCompletionModelName: 'text-davinci-003'
});
}
}}>
<Option value="">{t('Localhost')!}</Option>
<Option value="https://api.openai.com">OpenAI</Option>
</Dropdown>
</div>
} />
<Labeled label={'API Key'}
content={
<Input className="grow" placeholder="sk-" value={commonStore.settings.apiKey}
onChange={(e, data) => {
commonStore.setSettings({
apiKey: data.value
});
}} />
} />
<Labeled label={t('API Chat Model Name')}
content={
<div className="flex gap-2">
<Input style={{ minWidth: 0 }} className="grow" placeholder="rwkv"
value={commonStore.settings.apiChatModelName}
onChange={(e, data) => {
commonStore.setSettings({
apiChatModelName: data.value
});
}} />
<Dropdown style={{ minWidth: 0 }} listbox={{ style: { minWidth: 0 } }}
value="..." selectedOptions={[]} expandIcon={null}
onOptionSelect={(_, data) => {
if (data.optionValue) {
commonStore.setSettings({
apiChatModelName: data.optionValue
});
}
}}>
{
['rwkv', 'gpt-4', 'gpt-4-0613', 'gpt-4-32k', 'gpt-4-32k-0613', 'gpt-3.5-turbo', 'gpt-3.5-turbo-0613', 'gpt-3.5-turbo-16k', 'gpt-3.5-turbo-16k-0613']
.map((v, i) =>
<Option key={i} value={v}>{v}</Option>
)
}
</Dropdown>
</div>
} />
<Labeled label={t('API Completion Model Name')}
content={
<div className="flex gap-2">
<Input style={{ minWidth: 0 }} className="grow" placeholder="rwkv"
value={commonStore.settings.apiCompletionModelName}
onChange={(e, data) => {
commonStore.setSettings({
apiCompletionModelName: data.value
});
}} />
<Dropdown style={{ minWidth: 0 }} listbox={{ style: { minWidth: 0 } }}
value="..." selectedOptions={[]} expandIcon={null}
onOptionSelect={(_, data) => {
if (data.optionValue) {
commonStore.setSettings({
apiCompletionModelName: data.optionValue
});
}
}}>
{
['rwkv', 'text-davinci-003', 'text-davinci-002', 'text-curie-001', 'text-babbage-001', 'text-ada-001']
.map((v, i) =>
<Option key={i} value={v}>{v}</Option>
)
}
</Dropdown>
</div>
} />
</div>
</AccordionPanel>
</AccordionItem>
</Accordion>
</div>
} />
);

View File

@@ -1,13 +1,572 @@
import React, { FC } from 'react';
import { Text } from '@fluentui/react-components';
import React, { FC, ReactElement, useEffect, useRef, useState } from 'react';
import { useTranslation } from 'react-i18next';
import { Button, Dropdown, Input, Option, Select, Switch, Tab, TabList } from '@fluentui/react-components';
import {
ConvertData,
FileExists,
MergeLora,
OpenFileFolder,
WslCommand,
WslEnable,
WslInstallUbuntu,
WslIsEnabled,
WslStart,
WslStop
} from '../../wailsjs/go/backend_golang/App';
import { toast } from 'react-toastify';
import commonStore from '../stores/commonStore';
import { observer } from 'mobx-react-lite';
import { SelectTabEventHandler } from '@fluentui/react-tabs';
import { checkDependencies, refreshLocalModels, toastWithButton } from '../utils';
import { Section } from '../components/Section';
import { Labeled } from '../components/Labeled';
import { ToolTipButton } from '../components/ToolTipButton';
import { DataUsageSettings20Regular, Folder20Regular } from '@fluentui/react-icons';
import { useNavigate } from 'react-router';
import { Precision } from './Configs';
import {
CategoryScale,
Chart as ChartJS,
Legend,
LinearScale,
LineElement,
PointElement,
Title,
Tooltip
} from 'chart.js';
import { Line } from 'react-chartjs-2';
import { ChartJSOrUndefined } from 'react-chartjs-2/dist/types';
import { WindowShow } from '../../wailsjs/runtime';
ChartJS.register(
CategoryScale,
LinearScale,
PointElement,
LineElement,
Tooltip,
Title,
Legend
);
const parseLossData = (data: string) => {
const regex = /Epoch (\d+):\s+(\d+%)\|[\s\S]*\| (\d+)\/(\d+) \[(\d+:\d+)<(\d+:\d+),\s+(\d+.\d+it\/s), loss=(\d+.\d+),[\s\S]*\]/g;
const matches = Array.from(data.matchAll(regex));
if (matches.length === 0)
return;
const lastMatch = matches[matches.length - 1];
const epoch = parseInt(lastMatch[1]);
const loss = parseFloat(lastMatch[8]);
commonStore.setChartTitle(`Epoch ${epoch}: ${lastMatch[2]} - ${lastMatch[3]}/${lastMatch[4]} - ${lastMatch[5]}/${lastMatch[6]} - ${lastMatch[7]} Loss=${loss}`);
addLossDataToChart(epoch, loss);
};
let chartLine: ChartJSOrUndefined<'line', (number | null)[], string>;
const addLossDataToChart = (epoch: number, loss: number) => {
const epochIndex = commonStore.chartData.labels!.findIndex(l => l.includes(epoch.toString()));
if (epochIndex === -1) {
if (epoch === 0) {
commonStore.chartData.labels!.push('Init');
commonStore.chartData.datasets[0].data = [...commonStore.chartData.datasets[0].data, loss];
}
commonStore.chartData.labels!.push('Epoch ' + epoch.toString());
commonStore.chartData.datasets[0].data = [...commonStore.chartData.datasets[0].data, loss];
} else {
if (chartLine) {
const newData = [...commonStore.chartData.datasets[0].data];
newData[epochIndex] = loss;
chartLine.data.datasets[0].data = newData;
chartLine.update();
}
}
commonStore.setChartData(commonStore.chartData);
};
export type DataProcessParameters = {
dataPath: string;
vocabPath: string;
}
export type LoraFinetunePrecision = 'bf16' | 'fp16' | 'fp32' | 'tf32';
export type LoraFinetuneParameters = {
baseModel: string;
ctxLen: number;
epochSteps: number;
epochCount: number;
epochBegin: number;
epochSave: number;
microBsz: number;
accumGradBatches: number;
preFfn: boolean;
headQk: boolean;
lrInit: string;
lrFinal: string;
warmupSteps: number;
beta1: number;
beta2: number;
adamEps: string;
devices: number;
precision: LoraFinetunePrecision;
gradCp: boolean;
loraR: number;
loraAlpha: number;
loraDropout: number;
loraLoad: string
}
const loraFinetuneParametersOptions: Array<[key: keyof LoraFinetuneParameters, type: string, name: string]> = [
['devices', 'number', 'Devices'],
['precision', 'LoraFinetunePrecision', 'Precision'],
['gradCp', 'boolean', 'Gradient Checkpoint'],
['ctxLen', 'number', 'Context Length'],
['epochSteps', 'number', 'Epoch Steps'],
['epochCount', 'number', 'Epoch Count'],
['epochBegin', 'number', 'Epoch Begin'],
['epochSave', 'number', 'Epoch Save'],
['lrInit', 'string', 'Learning Rate Init'],
['lrFinal', 'string', 'Learning Rate Final'],
['microBsz', 'number', 'Micro Batch Size'],
['accumGradBatches', 'number', 'Accumulate Gradient Batches'],
['warmupSteps', 'number', 'Warmup Steps'],
['adamEps', 'string', 'Adam Epsilon'],
['beta1', 'number', 'Beta 1'],
['beta2', 'number', 'Beta 2'],
['loraR', 'number', 'LoRA R'],
['loraAlpha', 'number', 'LoRA Alpha'],
['loraDropout', 'number', 'LoRA Dropout'],
['beta1', 'any', ''],
['preFfn', 'boolean', 'Pre-FFN'],
['headQk', 'boolean', 'Head QK']
];
export const wslHandler = (data: string) => {
if (data) {
addWslMessage(data);
parseLossData(data);
}
};
const addWslMessage = (message: string) => {
const newData = commonStore.wslStdout + '\n' + message;
let lines = newData.split('\n');
const result = lines.slice(-100).join('\n');
commonStore.setWslStdout(result);
};
const TerminalDisplay: FC = observer(() => {
const bodyRef = useRef<HTMLDivElement>(null);
const scrollToBottom = () => {
if (bodyRef.current)
bodyRef.current.scrollTop = bodyRef.current.scrollHeight;
};
useEffect(() => {
scrollToBottom();
});
return (
<div ref={bodyRef} className="grow overflow-x-hidden overflow-y-auto border-gray-500 border-2 rounded-md">
<div className="whitespace-pre-line">
{commonStore.wslStdout}
</div>
</div>
);
});
const Terminal: FC = observer(() => {
const { t } = useTranslation();
const [input, setInput] = useState('');
const handleKeyDown = (e: any) => {
e.stopPropagation();
if (e.keyCode === 13) {
e.preventDefault();
if (!input) return;
WslStart().then(() => {
addWslMessage('WSL> ' + input);
setInput('');
WslCommand(input).catch((e: any) => {
toast((e.message || e), { type: 'error' });
});
}).catch((e: any) => {
toast((e.message || e), { type: 'error' });
});
}
};
return (
<div className="flex flex-col h-full gap-4">
<TerminalDisplay />
<div className="flex gap-2 items-center">
WSL:
<Input className="grow" value={input} onChange={(e) => {
setInput(e.target.value);
}} onKeyDown={handleKeyDown}></Input>
<Button onClick={() => {
WslStop().then(() => {
toast(t('Command Stopped'), { type: 'success' });
}).catch((e: any) => {
toast((e.message || e), { type: 'error' });
});
}}>
{t('Stop')}
</Button>
</div>
</div>
);
});
const LoraFinetune: FC = observer(() => {
const { t } = useTranslation();
const navigate = useNavigate();
const chartRef = useRef<ChartJSOrUndefined<'line', (number | null)[], string>>(null);
const dataParams = commonStore.dataProcessParams;
const loraParams = commonStore.loraFinetuneParams;
if (chartRef.current)
chartLine = chartRef.current;
const setDataParams = (newParams: Partial<DataProcessParameters>) => {
commonStore.setDataProcessParams({
...dataParams,
...newParams
});
};
const setLoraParams = (newParams: Partial<LoraFinetuneParameters>) => {
commonStore.setLoraFinetuneParameters({
...loraParams,
...newParams
});
};
useEffect(() => {
if (loraParams.baseModel === '')
setLoraParams({
baseModel: commonStore.modelSourceList.find(m => m.isComplete)?.name || ''
});
}, []);
const StartLoraFinetune = async () => {
const ok = await checkDependencies(navigate);
if (!ok)
return;
const convertedDataPath = `./finetune/json2binidx_tool/data/${dataParams.dataPath.split('/').pop()!.split('.')[0]}_text_document`;
if (!await FileExists(convertedDataPath + '.idx')) {
toast(t('Please convert data first.'), { type: 'error' });
return;
}
WslIsEnabled().then(() => {
WslStart().then(() => {
setTimeout(WindowShow, 1000);
let ctxLen = loraParams.ctxLen;
if (dataParams.dataPath === 'finetune/data/sample.jsonl') {
ctxLen = 150;
toast(t('You are using sample data for training. For formal training, please make sure to create your own jsonl file.'), {
type: 'info',
autoClose: 6000
});
}
commonStore.setChartData({
labels: [],
datasets: [
{
label: 'Loss',
data: [],
borderColor: 'rgb(53, 162, 235)',
backgroundColor: 'rgba(53, 162, 235, 0.5)'
}
]
});
WslCommand(`export cnMirror=${commonStore.settings.cnMirror ? '1' : '0'} ` +
`&& export loadModel=models/${loraParams.baseModel} ` +
`&& chmod +x finetune/install-wsl-dep-and-train.sh && ./finetune/install-wsl-dep-and-train.sh ` +
(loraParams.baseModel ? `--load_model models/${loraParams.baseModel} ` : '') +
(loraParams.loraLoad ? `--lora_load lora-models/${loraParams.loraLoad} ` : '') +
`--data_file ${convertedDataPath} ` +
`--vocab_size ${loraParams.baseModel.toLowerCase().includes('world') ? '65536' : '50277'} ` +
`--ctx_len ${ctxLen} --epoch_steps ${loraParams.epochSteps} --epoch_count ${loraParams.epochCount} ` +
`--epoch_begin ${loraParams.epochBegin} --epoch_save ${loraParams.epochSave} ` +
`--micro_bsz ${loraParams.microBsz} --accumulate_grad_batches ${loraParams.accumGradBatches} ` +
`--pre_ffn ${loraParams.preFfn ? '1' : '0'} --head_qk ${loraParams.headQk ? '1' : '0'} --lr_init ${loraParams.lrInit} --lr_final ${loraParams.lrFinal} ` +
`--warmup_steps ${loraParams.warmupSteps} ` +
`--beta1 ${loraParams.beta1} --beta2 ${loraParams.beta2} --adam_eps ${loraParams.adamEps} ` +
`--devices ${loraParams.devices} --precision ${loraParams.precision} ` +
`--grad_cp ${loraParams.gradCp ? '1' : '0'} ` +
`--lora_r ${loraParams.loraR} --lora_alpha ${loraParams.loraAlpha} --lora_dropout ${loraParams.loraDropout}`).catch((e: any) => {
toast((e.message || e), { type: 'error' });
});
}).catch(e => {
const msg = e.message || e;
if (msg === 'ubuntu not found') {
WindowShow();
toastWithButton(t('Ubuntu is not installed, do you want to install it?'), t('Install Ubuntu'), () => {
WslInstallUbuntu().then(() => {
WindowShow();
toast(t('Please install Ubuntu using Microsoft Store, after installation click the Open button in Microsoft Store and then click the Train button'), {
type: 'info',
autoClose: 10000
});
});
});
}
});
}).catch(e => {
const msg = e.message || e;
const enableWsl = (forceMode: boolean) => {
WindowShow();
toastWithButton(t('WSL is not enabled, do you want to enable it?'), t('Enable WSL'), () => {
WslEnable(forceMode).then(() => {
WindowShow();
toast(t('After installation, please restart your computer to enable WSL'), {
type: 'info',
autoClose: false
});
}).catch(e => {
toast((e.message || e), { type: 'error' });
});
});
};
if (msg === 'wsl is not enabled') {
enableWsl(false);
} else if (msg.includes('wsl.state: The system cannot find the file')) {
enableWsl(true);
} else {
toast(msg, { type: 'error' });
}
});
};
return (
<div className="flex flex-col h-full w-full gap-2">
{(commonStore.wslStdout.length > 0 || commonStore.chartData.labels!.length !== 0) &&
<div className="flex" style={{ height: '35%' }}>
{commonStore.wslStdout.length > 0 && commonStore.chartData.labels!.length === 0 && <TerminalDisplay />}
{commonStore.chartData.labels!.length !== 0 &&
<Line ref={chartRef} data={commonStore.chartData} options={{
responsive: true,
showLine: true,
plugins: {
legend: {
position: 'right',
align: 'start'
},
title: {
display: true,
text: commonStore.chartTitle
}
},
scales: {
y: {
beginAtZero: true
}
},
maintainAspectRatio: false
}} style={{ width: '100%' }} />}
</div>
}
<div>
<Section
title={t('Data Process')}
content={
<div className="flex flex-col gap-2">
<Labeled flex label={t('Data Path')}
content={
<div className="grow flex gap-2">
<Input className="grow ml-2" value={dataParams.dataPath}
onChange={(e, data) => {
setDataParams({ dataPath: data.value });
}} />
<ToolTipButton desc={t('Open Folder')} icon={<Folder20Regular />} onClick={() => {
OpenFileFolder(dataParams.dataPath, false);
}} />
</div>
} />
<div className="flex gap-2 items-center">
{t('Vocab Path')}
<Input className="grow" style={{ minWidth: 0 }} value={dataParams.vocabPath}
onChange={(e, data) => {
setDataParams({ vocabPath: data.value });
}} />
<Button appearance="secondary" size="large" onClick={() => {
ConvertData(commonStore.settings.customPythonPath, dataParams.dataPath,
'./finetune/json2binidx_tool/data/' + dataParams.dataPath.split('/').pop()!.split('.')[0],
dataParams.vocabPath).then(() => {
toast(t('Convert Data successfully'), { type: 'success' });
}).catch((e: any) => {
toast((e.message || e), { type: 'error' });
});
}}>{t('Convert')}</Button>
</div>
</div>
}
/>
</div>
<Section
title={t('Train Parameters')}
content={
<div className="grid grid-cols-1 sm:grid-cols-2 gap-2">
<div className="flex gap-2 items-center">
{t('Base Model')}
<Select style={{ minWidth: 0 }} className="grow"
value={loraParams.baseModel}
onChange={(e, data) => {
setLoraParams({
baseModel: data.value
});
}}>
{commonStore.modelSourceList.map((modelItem, index) =>
modelItem.isComplete && <option key={index} value={modelItem.name}>{modelItem.name}</option>
)}
</Select>
<ToolTipButton desc={t('Manage Models')} icon={<DataUsageSettings20Regular />} onClick={() => {
navigate({ pathname: '/models' });
}} />
</div>
<div className="flex gap-2 items-center">
{t('LoRA Model')}
<Select style={{ minWidth: 0 }} className="grow"
value={loraParams.loraLoad}
onChange={(e, data) => {
setLoraParams({
loraLoad: data.value
});
}}>
<option value="">{t('None')}</option>
{commonStore.loraModels.map((name, index) =>
<option key={index} value={name}>{name}</option>
)}
</Select>
<Button onClick={async () => {
const ok = await checkDependencies(navigate);
if (!ok)
return;
if (loraParams.loraLoad) {
MergeLora(commonStore.settings.customPythonPath, true, loraParams.loraAlpha,
'models/' + loraParams.baseModel, 'lora-models/' + loraParams.loraLoad,
`models/${loraParams.baseModel}-LoRA-${loraParams.loraLoad}`).then(() => {
toast(t('Merge model successfully'), { type: 'success' });
refreshLocalModels({ models: commonStore.modelSourceList }, false);
}).catch((e: any) => {
toast((e.message || e), { type: 'error' });
});
} else {
toast(t('Please select a LoRA model'), { type: 'info' });
}
}}>{t('Merge Model')}</Button>
</div>
{
loraFinetuneParametersOptions.map(([key, type, name], index) => {
return (
<Labeled key={index} label={t(name)} content={
type === 'number' ?
<Input type="number" className="grow" value={loraParams[key].toString()}
onChange={(e, data) => {
setLoraParams({
[key]: Number(data.value)
});
}} /> :
type === 'boolean' ?
<Switch className="grow" checked={loraParams[key] as boolean}
onChange={(e, data) => {
setLoraParams({
[key]: data.checked
});
}} /> :
type === 'string' ?
<Input className="grow" value={loraParams[key].toString()}
onChange={(e, data) => {
setLoraParams({
[key]: data.value
});
}} /> :
type === 'LoraFinetunePrecision' ?
<Dropdown style={{ minWidth: 0 }} className="grow"
value={loraParams[key].toString()}
selectedOptions={[loraParams[key].toString()]}
onOptionSelect={(_, data) => {
if (data.optionText) {
setLoraParams({
precision: data.optionText as LoraFinetunePrecision
});
}
}}
>
<Option>bf16</Option>
<Option>fp16</Option>
<Option>fp32</Option>
<Option>tf32</Option>
</Dropdown>
: <div />
} />
);
})
}
</div>
}
/>
<div className="grow" />
<div className="flex gap-2">
<div className="grow" />
<Button appearance="secondary" size="large" onClick={() => {
WslStop().then(() => {
toast(t('Command Stopped'), { type: 'success' });
}).catch((e: any) => {
toast((e.message || e), { type: 'error' });
});
}}>{t('Stop')}</Button>
<Button appearance="primary" size="large" onClick={StartLoraFinetune}>{t('Train')}</Button>
</div>
</div>
);
});
type TrainNavigationItem = {
element: ReactElement;
};
const pages: { [label: string]: TrainNavigationItem } = {
'LoRA Finetune': {
element: <LoraFinetune />
},
WSL: {
element: <Terminal />
}
};
export const Train: FC = () => {
const { t } = useTranslation();
const [tab, setTab] = useState('LoRA Finetune');
return (
<div className="flex flex-col box-border gap-5 p-2">
<Text size={600}>{t('In Development')}</Text>
const selectTab: SelectTabEventHandler = (e, data) =>
typeof data.value === 'string' ? setTab(data.value) : null;
return <div className="flex flex-col gap-2 w-full h-full">
<TabList
size="small"
appearance="subtle"
selectedValue={tab}
onTabSelect={selectTab}
>
{Object.entries(pages).map(([label]) => (
<Tab key={label} value={label}>
{t(label)}
</Tab>
))}
</TabList>
<div className="grow overflow-hidden">
{pages[tab].element}
</div>
);
</div>;
};

File diff suppressed because it is too large Load Diff

View File

@@ -3,6 +3,7 @@ import { Configs } from './Configs';
import {
ArrowDownload20Regular,
Chat20Regular,
ClipboardEdit20Regular,
DataUsageSettings20Regular,
DocumentSettings20Regular,
Home20Regular,
@@ -17,6 +18,7 @@ import { Train } from './Train';
import { Settings } from './Settings';
import { About } from './About';
import { Downloads } from './Downloads';
import { Completion } from './Completion';
type NavigationItem = {
label: string;
@@ -41,6 +43,13 @@ export const pages: NavigationItem[] = [
element: <Chat />,
top: true
},
{
label: 'Completion',
path: '/completion',
icon: <ClipboardEdit20Regular />,
element: <Completion />,
top: true
},
{
label: 'Configs',
path: '/configs',

View File

@@ -1,9 +1,12 @@
import commonStore from './stores/commonStore';
import { ReadJson } from '../wailsjs/go/backend_golang/App';
import { Cache, checkUpdate, downloadProgramFiles, LocalConfig, refreshModels, saveCache } from './utils';
import commonStore, { Platform } from './stores/commonStore';
import { GetPlatform, ListDirFiles, ReadJson } from '../wailsjs/go/backend_golang/App';
import { Cache, checkUpdate, downloadProgramFiles, LocalConfig, refreshModels } from './utils';
import { getStatus } from './apis';
import { EventsOn } from '../wailsjs/runtime';
import { defaultModelConfigs } from './pages/Configs';
import manifest from '../../manifest.json';
import { defaultModelConfigs, defaultModelConfigsMac } from './pages/defaultModelConfigs';
import { Preset } from './pages/PresetsManager/PresetsButton';
import { wslHandler } from './pages/Train';
export async function startup() {
downloadProgramFiles();
@@ -11,15 +14,23 @@ export async function startup() {
if (data)
commonStore.setDownloadList(data);
});
EventsOn('wsl', wslHandler);
EventsOn('wslerr', (e) => {
console.log(e);
});
initLoraModels();
initCache().then(initRemoteText);
initPresets();
await GetPlatform().then(p => commonStore.setPlatform(p as Platform));
await initConfig();
initCache(true).then(initRemoteText); // depends on config customModelsPath
if (commonStore.settings.autoUpdatesCheck) // depends on config settings
checkUpdate();
getStatus(500).then(status => { // depends on config api port
getStatus(1000).then(status => { // depends on config api port
if (status)
commonStore.setStatus(status);
});
@@ -28,11 +39,13 @@ export async function startup() {
async function initRemoteText() {
await fetch('https://cdn.jsdelivr.net/gh/josstorer/RWKV-Runner@master/manifest.json', { cache: 'no-cache' })
.then(r => r.json()).then((data) => {
if (data.introduction)
commonStore.setIntroduction(data.introduction);
if (data.about)
commonStore.setAbout(data.about);
}).then(saveCache);
if (data.version > manifest.version) {
if (data.introduction)
commonStore.setIntroduction(data.introduction);
if (data.about)
commonStore.setAbout(data.about);
}
});
}
async function initConfig() {
@@ -43,6 +56,12 @@ async function initConfig() {
if (configData.settings)
commonStore.setSettings(configData.settings, false);
if (configData.dataProcessParams)
commonStore.setDataProcessParams(configData.dataProcessParams, false);
if (configData.loraFinetuneParams)
commonStore.setLoraFinetuneParameters(configData.loraFinetuneParams, false);
if (configData.modelConfigs && Array.isArray(configData.modelConfigs))
commonStore.setModelConfigs(configData.modelConfigs, false);
else throw new Error('Invalid config.json');
@@ -50,19 +69,43 @@ async function initConfig() {
configData.currentModelConfigIndex >= 0 && configData.currentModelConfigIndex < configData.modelConfigs.length)
commonStore.setCurrentConfigIndex(configData.currentModelConfigIndex, false);
}).catch(() => {
commonStore.setModelConfigs(defaultModelConfigs, true);
commonStore.setModelConfigs(commonStore.platform != 'darwin' ? defaultModelConfigs : defaultModelConfigsMac, true);
});
}
async function initCache() {
async function initCache(initUnfinishedModels: boolean) {
await ReadJson('cache.json').then((cacheData: Cache) => {
if (cacheData.introduction)
commonStore.setIntroduction(cacheData.introduction);
if (cacheData.about)
commonStore.setAbout(cacheData.about);
if (cacheData.depComplete)
commonStore.setDepComplete(cacheData.depComplete);
if (cacheData.version === manifest.version && cacheData.depComplete)
commonStore.setDepComplete(cacheData.depComplete, false);
}).catch(() => {
});
await refreshModels(false);
}
await refreshModels(false, initUnfinishedModels);
}
async function initPresets() {
await ReadJson('presets.json').then((presets: Preset[]) => {
commonStore.setPresets(presets, false);
}).catch(() => {
});
}
async function initLoraModels() {
const refreshLoraModels = () => {
ListDirFiles('lora-models').then((data) => {
if (!data) return;
const loraModels = [];
for (const f of data) {
if (!f.isDir && f.name.endsWith('.pth')) {
loraModels.push(f.name);
}
}
commonStore.setLoraModels(loraModels);
});
};
refreshLoraModels();
EventsOn('fsnotify', (data: string) => {
if (data.includes('lora-models'))
refreshLoraModels();
});
}

View File

@@ -1,15 +1,21 @@
import { makeAutoObservable } from 'mobx';
import { getUserLanguage, isSystemLightMode, saveConfigs } from '../utils';
import { getUserLanguage, isSystemLightMode, saveCache, saveConfigs, savePresets } from '../utils';
import { WindowSetDarkTheme, WindowSetLightTheme } from '../../wailsjs/runtime';
import manifest from '../../../manifest.json';
import { defaultModelConfigs, ModelConfig } from '../pages/Configs';
import { Conversations } from '../pages/Chat';
import { ModelConfig } from '../pages/Configs';
import { Conversation } from '../pages/Chat';
import { ModelSourceItem } from '../pages/Models';
import { DownloadStatus } from '../pages/Downloads';
import { SettingsType } from '../pages/Settings';
import { IntroductionContent } from '../pages/Home';
import { AboutContent } from '../pages/About';
import i18n from 'i18next';
import { CompletionPreset } from '../pages/Completion';
import { defaultModelConfigs, defaultModelConfigsMac } from '../pages/defaultModelConfigs';
import commonStore from './commonStore';
import { Preset } from '../pages/PresetsManager/PresetsButton';
import { DataProcessParameters, LoraFinetuneParameters } from '../pages/Train';
import { ChartData } from 'chart.js';
export enum ModelStatus {
Offline,
@@ -19,24 +25,38 @@ export enum ModelStatus {
}
export type Status = {
modelStatus: ModelStatus;
status: ModelStatus;
pid: number;
device_name: string;
}
export type Platform = 'windows' | 'darwin' | 'linux';
const labels = ['January', 'February', 'March', 'April', 'May', 'June', 'July'];
class CommonStore {
// global
status: Status = {
modelStatus: ModelStatus.Offline,
status: ModelStatus.Offline,
pid: 0,
device_name: 'CPU'
};
depComplete: boolean = false;
platform: Platform = 'windows';
// presets manager
editingPreset: Preset | null = null;
presets: Preset[] = [];
// home
introduction: IntroductionContent = manifest.introduction;
// chat
conversations: Conversations = {};
conversationsOrder: string[] = [];
currentInput: string = '';
conversation: Conversation = {};
conversationOrder: string[] = [];
activePreset: Preset | null = null;
// completion
completionPreset: CompletionPreset | null = null;
completionGenerating: boolean = false;
completionSubmittedPrompt: string = '';
// configs
currentModelConfigIndex: number = 0;
modelConfigs: ModelConfig[] = [];
@@ -45,13 +65,57 @@ class CommonStore {
modelSourceList: ModelSourceItem[] = [];
// downloads
downloadList: DownloadStatus[] = [];
lastUnfinishedModelDownloads: DownloadStatus[] = [];
// train
wslStdout: string = '';
chartTitle: string = '';
chartData: ChartData<'line', (number | null)[], string> = { labels: [], datasets: [] };
loraModels: string[] = [];
dataProcessParams: DataProcessParameters = {
dataPath: 'finetune/data/sample.jsonl',
vocabPath: 'backend-python/rwkv_pip/rwkv_vocab_v20230424.txt'
};
loraFinetuneParams: LoraFinetuneParameters = {
baseModel: '',
ctxLen: 1024,
epochSteps: 1000,
epochCount: 20,
epochBegin: 0,
epochSave: 5,
microBsz: 1,
accumGradBatches: 8,
preFfn: false,
headQk: false,
lrInit: '5e-5',
lrFinal: '5e-5',
warmupSteps: 0,
beta1: 0.9,
beta2: 0.999,
adamEps: '1e-8',
devices: 1,
precision: 'bf16',
gradCp: false,
loraR: 8,
loraAlpha: 32,
loraDropout: 0.01,
loraLoad: ''
};
// settings
advancedCollapsed: boolean = true;
settings: SettingsType = {
language: getUserLanguage(),
darkMode: !isSystemLightMode(),
autoUpdatesCheck: true,
giteeUpdatesSource: getUserLanguage() === 'zh',
cnMirror: getUserLanguage() === 'zh'
cnMirror: getUserLanguage() === 'zh',
host: '127.0.0.1',
dpiScaling: 100,
customModelsPath: './models',
customPythonPath: '',
apiUrl: '',
apiKey: 'sk-',
apiChatModelName: 'rwkv',
apiCompletionModelName: 'rwkv'
};
// about
about: AboutContent = manifest.about;
@@ -81,14 +145,17 @@ class CommonStore {
};
setModelConfigs = (configs: ModelConfig[], saveConfig: boolean = true) => {
this.modelConfigs = configs;
this.modelConfigs = JSON.parse(JSON.stringify(configs)); // deep copy
if (saveConfig)
saveConfigs();
};
createModelConfig = (config: ModelConfig = defaultModelConfigs[0], saveConfig: boolean = true) => {
if (config.name === defaultModelConfigs[0].name)
if (config.name === defaultModelConfigs[0].name) {
// deep copy
config = JSON.parse(JSON.stringify(commonStore.platform != 'darwin' ? defaultModelConfigs[0] : defaultModelConfigsMac[0]));
config.name = new Date().toLocaleString();
}
this.modelConfigs.push(config);
if (saveConfig)
saveConfigs();
@@ -140,21 +207,93 @@ class CommonStore {
this.about = value;
};
setDepComplete = (value: boolean) => {
setDepComplete = (value: boolean, inSaveCache: boolean = true) => {
this.depComplete = value;
if (inSaveCache)
saveCache();
};
setDownloadList = (value: DownloadStatus[]) => {
this.downloadList = value;
};
setConversations = (value: Conversations) => {
this.conversations = value;
setConversation = (value: Conversation) => {
this.conversation = value;
};
setConversationsOrder = (value: string[]) => {
this.conversationsOrder = value;
setConversationOrder = (value: string[]) => {
this.conversationOrder = value;
};
setCompletionPreset(value: CompletionPreset) {
this.completionPreset = value;
}
setCompletionGenerating(value: boolean) {
this.completionGenerating = value;
}
setPlatform(value: Platform) {
this.platform = value;
}
setCurrentInput(value: string) {
this.currentInput = value;
}
setAdvancedCollapsed(value: boolean) {
this.advancedCollapsed = value;
}
setLastUnfinishedModelDownloads(value: DownloadStatus[]) {
this.lastUnfinishedModelDownloads = value;
}
setEditingPreset(value: Preset) {
this.editingPreset = value;
}
setPresets(value: Preset[], savePreset: boolean = true) {
this.presets = value;
if (savePreset)
savePresets();
}
setActivePreset(value: Preset) {
this.activePreset = value;
}
setCompletionSubmittedPrompt(value: string) {
this.completionSubmittedPrompt = value;
}
setWslStdout(value: string) {
this.wslStdout = value;
}
setDataProcessParams(value: DataProcessParameters, saveConfig: boolean = true) {
this.dataProcessParams = value;
if (saveConfig)
saveConfigs();
}
setLoraFinetuneParameters(value: LoraFinetuneParameters, saveConfig: boolean = true) {
this.loraFinetuneParams = value;
if (saveConfig)
saveConfigs();
}
setChartTitle(value: string) {
this.chartTitle = value;
}
setChartData(value: ChartData<'line', (number | null)[], string>) {
this.chartData = value;
}
setLoraModels(value: string[]) {
this.loraModels = value;
}
}
export default new CommonStore();

View File

@@ -1,27 +0,0 @@
export type Record = {
question: string;
answer: string;
}
export type ConversationPair = {
role: string;
content: string;
}
export function getConversationPairs(records: Record[], isCompletion: boolean): string | ConversationPair[] {
let pairs;
if (isCompletion) {
pairs = '';
for (const record of records) {
pairs += 'Human: ' + record.question + '\nAI: ' + record.answer + '\n';
}
} else {
pairs = [];
for (const record of records) {
pairs.push({ role: 'user', content: record.question });
pairs.push({ role: 'assistant', content: record.answer });
}
}
return pairs;
}

View File

@@ -1,15 +1,17 @@
import {
AddToDownloadList,
CopyFile,
DeleteFile,
DownloadFile,
FileExists,
DepCheck,
InstallPyDep,
ListDirFiles,
ReadFileInfo,
ReadJson,
SaveJson,
UpdateApp
} from '../../wailsjs/go/backend_golang/App';
import manifest from '../../../manifest.json';
import commonStore from '../stores/commonStore';
import commonStore, { ModelStatus } from '../stores/commonStore';
import { toast } from 'react-toastify';
import { t } from 'i18next';
import { ToastOptions } from 'react-toastify/dist/types';
@@ -17,13 +19,14 @@ import { Button } from '@fluentui/react-components';
import { Language, Languages, SettingsType } from '../pages/Settings';
import { ModelSourceItem } from '../pages/Models';
import { ModelConfig, ModelParameters } from '../pages/Configs';
import { IntroductionContent } from '../pages/Home';
import { AboutContent } from '../pages/About';
import { DownloadStatus } from '../pages/Downloads';
import { DataProcessParameters, LoraFinetuneParameters } from '../pages/Train';
import { BrowserOpenURL, WindowShow } from '../../wailsjs/runtime';
import { NavigateFunction } from 'react-router';
export type Cache = {
version: string
models: ModelSourceItem[]
introduction: IntroductionContent,
about: AboutContent
depComplete: boolean
}
@@ -31,7 +34,9 @@ export type LocalConfig = {
modelSourceManifestList: string
currentModelConfigIndex: number
modelConfigs: ModelConfig[]
settings: SettingsType
settings: SettingsType,
dataProcessParams: DataProcessParameters,
loraFinetuneParams: LoraFinetuneParameters
}
export async function refreshBuiltInModels(readCache: boolean = false) {
@@ -52,19 +57,22 @@ export async function refreshBuiltInModels(readCache: boolean = false) {
return cache;
}
export async function refreshLocalModels(cache: { models: ModelSourceItem[] }, filter: boolean = true) {
export async function refreshLocalModels(cache: {
models: ModelSourceItem[]
}, filter: boolean = true, initUnfinishedModels: boolean = false) {
if (filter)
cache.models = cache.models.filter(m => !m.isLocal); //TODO BUG cause local but in manifest files to be removed, so currently cache is disabled
cache.models = cache.models.filter(m => !m.isComplete); //TODO BUG cause local but in manifest files to be removed, so currently cache is disabled
await ListDirFiles(manifest.localModelDir).then((data) => {
await ListDirFiles(commonStore.settings.customModelsPath).then((data) => {
cache.models.push(...data.flatMap(d => {
if (!d.isDir && d.name.endsWith('.pth'))
return [{
name: d.name,
size: d.size,
lastUpdated: d.modTime,
isComplete: true,
isLocal: true
}];
}] as ModelSourceItem[];
return [];
}));
}).catch(() => {
@@ -85,17 +93,43 @@ export async function refreshLocalModels(cache: { models: ModelSourceItem[] }, f
} else {
cache.models[i] = Object.assign({}, cache.models[j], cache.models[i]);
}
} // else is bad local file
} // else is not complete local file
cache.models[i].isLocal = true;
cache.models[i].localSize = cache.models[j].size;
cache.models.splice(j, 1);
j--;
}
}
}
commonStore.setModelSourceList(cache.models);
if (initUnfinishedModels)
initLastUnfinishedModelDownloads();
await saveCache().catch(() => {
});
}
function initLastUnfinishedModelDownloads() {
const list: DownloadStatus[] = [];
commonStore.modelSourceList.forEach((item) => {
if (item.isLocal && !item.isComplete) {
list.push(
{
name: item.name,
path: `${commonStore.settings.customModelsPath}/${item.name}`,
url: item.downloadUrl!,
transferred: item.localSize!,
size: item.size,
speed: 0,
progress: item.localSize! / item.size * 100,
downloading: false,
done: false
}
);
}
});
commonStore.setLastUnfinishedModelDownloads(list);
}
export async function refreshRemoteModels(cache: { models: ModelSourceItem[] }) {
const manifestUrls = commonStore.modelSourceManifestList.split(/[,;\n]/);
const requests = manifestUrls.filter(url => url.endsWith('.json')).map(
@@ -114,16 +148,16 @@ export async function refreshRemoteModels(cache: { models: ModelSourceItem[] })
cache.models = cache.models.filter((model, index, self) => {
return model.name.endsWith('.pth')
&& index === self.findIndex(
m => m.name === model.name || (m.SHA256 === model.SHA256 && m.size === model.size));
m => m.name === model.name || (m.SHA256 && m.SHA256 === model.SHA256 && m.size === model.size));
});
commonStore.setModelSourceList(cache.models);
await saveCache().catch(() => {
});
}
export const refreshModels = async (readCache: boolean = false) => {
export const refreshModels = async (readCache: boolean = false, initUnfinishedModels: boolean = false) => {
const cache = await refreshBuiltInModels(readCache);
await refreshLocalModels(cache);
await refreshLocalModels(cache, false, initUnfinishedModels);
await refreshRemoteModels(cache);
};
@@ -131,13 +165,35 @@ export const getStrategy = (modelConfig: ModelConfig | undefined = undefined) =>
let params: ModelParameters;
if (modelConfig) params = modelConfig.modelParameters;
else params = commonStore.getCurrentModelConfig().modelParameters;
const modelName = params.modelName.toLowerCase();
const avoidOverflow = params.precision !== 'fp32' && modelName.includes('world') && (modelName.includes('0.1b') || modelName.includes('0.4b') ||
modelName.includes('1.5b') || modelName.includes('1b5'));
let strategy = '';
strategy += (params.device === 'CPU' ? 'cpu' : 'cuda') + ' ';
strategy += params.device === 'CPU' ? 'fp32' : (params.precision === 'fp16' ? 'fp16' : params.precision === 'int8' ? 'fp16i8' : 'fp32');
if (params.storedLayers < params.maxStoredLayers)
strategy += ` *${params.storedLayers}+`;
if (params.enableHighPrecisionForLastLayer)
strategy += ' -> cpu fp32 *1';
switch (params.device) {
case 'CPU':
if (avoidOverflow)
strategy = 'cpu fp32 *1 -> ';
strategy += 'cpu ';
strategy += params.precision === 'int8' ? 'fp32i8' : 'fp32';
break;
case 'CUDA':
if (avoidOverflow)
strategy = 'cuda fp32 *1 -> ';
strategy += 'cuda ';
strategy += params.precision === 'fp16' ? 'fp16' : params.precision === 'int8' ? 'fp16i8' : 'fp32';
if (params.storedLayers < params.maxStoredLayers)
strategy += ` *${params.storedLayers}+`;
break;
case 'MPS':
if (avoidOverflow)
strategy = 'mps fp32 *1 -> ';
strategy += 'mps ';
strategy += params.precision === 'fp16' ? 'fp16' : params.precision === 'int8' ? 'fp16i8' : 'fp32';
break;
case 'Custom':
strategy = params.customStrategy || '';
break;
}
return strategy;
};
@@ -146,21 +202,26 @@ export const saveConfigs = async () => {
modelSourceManifestList: commonStore.modelSourceManifestList,
currentModelConfigIndex: commonStore.currentModelConfigIndex,
modelConfigs: commonStore.modelConfigs,
settings: commonStore.settings
settings: commonStore.settings,
dataProcessParams: commonStore.dataProcessParams,
loraFinetuneParams: commonStore.loraFinetuneParams
};
return SaveJson('config.json', data);
};
export const saveCache = async () => {
const data: Cache = {
version: manifest.version,
models: commonStore.modelSourceList,
introduction: commonStore.introduction,
about: commonStore.about,
depComplete: commonStore.depComplete
};
return SaveJson('cache.json', data);
};
export const savePresets = async () => {
return SaveJson('presets.json', commonStore.presets);
};
export function getUserLanguage(): Language {
// const l = navigator.language.toLowerCase();
// if (['zh-hk', 'zh-mo', 'zh-tw', 'zh-cht', 'zh-hant'].includes(l)) return 'zhHant'
@@ -176,24 +237,31 @@ export function isSystemLightMode() {
export function downloadProgramFiles() {
manifest.programFiles.forEach(({ url, path }) => {
FileExists(path).then(exists => {
if (!exists)
AddToDownloadList(path, url);
});
if (path)
ReadFileInfo(path).then(info => {
if (info.size == 0 && url)
AddToDownloadList(path, url.replace('@master', '@v' + manifest.version));
}).catch(() => {
if (url)
AddToDownloadList(path, url.replace('@master', '@v' + manifest.version));
});
});
}
export function forceDownloadProgramFiles() {
manifest.programFiles.forEach(({ url, path }) => {
DownloadFile(path, url);
if (path && url)
AddToDownloadList(path, url.replace('@master', '@v' + manifest.version));
});
}
export function deleteDynamicProgramFiles() {
DeleteFile('cache.json');
export async function deleteDynamicProgramFiles() {
let promises: Promise<void>[] = [];
manifest.programFiles.forEach(({ path }) => {
if ((path.endsWith('.py') && !path.includes('get-pip.py')) || path.includes('requirements'))
DeleteFile(path);
if ((path.endsWith('.py') && !path.includes('get-pip.py')) || path.includes('requirements') || path.endsWith('.pyd'))
promises.push(DeleteFile(path));
});
return await Promise.allSettled(promises).catch(() => {
});
}
@@ -210,8 +278,7 @@ export function bytesToKb(size: number) {
}
export async function checkUpdate(notifyEvenLatest: boolean = false) {
let updateUrl = '';
await fetch(!commonStore.settings.giteeUpdatesSource ?
fetch(!commonStore.settings.giteeUpdatesSource ?
'https://api.github.com/repos/josstorer/RWKV-Runner/releases/latest' :
'https://gitee.com/api/v5/repos/josc146/RWKV-Runner/releases/latest'
).then((r) => {
@@ -220,23 +287,52 @@ export async function checkUpdate(notifyEvenLatest: boolean = false) {
if (data.tag_name) {
const versionTag = data.tag_name;
if (versionTag.replace('v', '') > manifest.version) {
updateUrl = !commonStore.settings.giteeUpdatesSource ?
`https://github.com/josStorer/RWKV-Runner/releases/download/${versionTag}/RWKV-Runner_windows_x64.exe` :
`https://gitee.com/josc146/RWKV-Runner/releases/download/${versionTag}/RWKV-Runner_windows_x64.exe`;
toastWithButton(t('New Version Available') + ': ' + versionTag, t('Update'), () => {
deleteDynamicProgramFiles();
setTimeout(() => {
UpdateApp(updateUrl).catch((e) => {
toast(t('Update Error, Please restart this program') + ' - ' + e.message || e, {
type: 'error',
position: 'bottom-left',
autoClose: false
});
const verifyUrl = !commonStore.settings.giteeUpdatesSource ?
`https://api.github.com/repos/josstorer/RWKV-Runner/releases/tags/${versionTag}` :
`https://gitee.com/api/v5/repos/josc146/RWKV-Runner/releases/tags/${versionTag}`;
fetch(verifyUrl).then((r) => {
if (r.ok) {
r.json().then((data) => {
if (data.assets && data.assets.length > 0) {
const asset = data.assets.find((a: any) => a.name.toLowerCase().includes(commonStore.platform.toLowerCase()));
if (asset) {
const updateUrl = !commonStore.settings.giteeUpdatesSource ?
`https://github.com/josStorer/RWKV-Runner/releases/download/${versionTag}/${asset.name}` :
`https://gitee.com/josc146/RWKV-Runner/releases/download/${versionTag}/${asset.name}`;
toastWithButton(t('New Version Available') + ': ' + versionTag, t('Update'), () => {
DeleteFile('cache.json');
toast(t('Downloading update, please wait. If it is not completed, please manually download the program from GitHub and replace the original program.'), {
type: 'info',
position: 'bottom-left',
autoClose: false
});
setTimeout(() => {
UpdateApp(updateUrl).then(() => {
toast(t('Update completed, please restart the program.'), {
type: 'success',
position: 'bottom-left',
autoClose: false
}
);
}).catch((e) => {
toast(t('Update Error') + ' - ' + (e.message || e), {
type: 'error',
position: 'bottom-left',
autoClose: false
});
});
}, 500);
}, {
autoClose: false,
position: 'bottom-left'
});
}
}
});
}, 500);
}, {
autoClose: false,
position: 'bottom-left'
} else {
throw new Error('Verify response was not ok.');
}
});
} else {
if (notifyEvenLatest) {
@@ -252,27 +348,85 @@ export async function checkUpdate(notifyEvenLatest: boolean = false) {
}
}
).catch((e) => {
toast(t('Updates Check Error') + ' - ' + e.message || e, { type: 'error', position: 'bottom-left' });
toast(t('Updates Check Error') + ' - ' + (e.message || e), { type: 'error', position: 'bottom-left' });
});
return updateUrl;
}
export const checkDependencies = async (navigate: NavigateFunction) => {
if (!commonStore.depComplete) {
let depErrorMsg = '';
await DepCheck(commonStore.settings.customPythonPath).catch((e) => {
depErrorMsg = e.message || e;
WindowShow();
if (depErrorMsg === 'python zip not found') {
toastWithButton(t('Python target not found, would you like to download it?'), t('Download'), () => {
toastWithButton(`${t('Downloading')} Python`, t('Check'), () => {
navigate({ pathname: '/downloads' });
}, { autoClose: 3000 });
AddToDownloadList('python-3.10.11-embed-amd64.zip', 'https://www.python.org/ftp/python/3.10.11/python-3.10.11-embed-amd64.zip');
});
} else if (depErrorMsg.includes('DepCheck Error')) {
if (depErrorMsg.includes('vc_redist')) {
toastWithButton(t('Microsoft Visual C++ Redistributable is not installed, would you like to download it?'), t('Download'), () => {
BrowserOpenURL('https://aka.ms/vs/16/release/vc_redist.x64.exe');
});
} else {
toast(depErrorMsg, { type: 'info', position: 'bottom-left' });
if (commonStore.platform != 'linux')
toastWithButton(t('Python dependencies are incomplete, would you like to install them?'), t('Install'), () => {
InstallPyDep(commonStore.settings.customPythonPath, commonStore.settings.cnMirror).catch((e) => {
const errMsg = e.message || e;
toast(t('Error') + ' - ' + errMsg, { type: 'error' });
});
setTimeout(WindowShow, 1000);
}, {
autoClose: 8000
});
else
toastWithButton(t('On Linux system, you must manually install python dependencies.'), t('Check'), () => {
BrowserOpenURL('https://github.com/josStorer/RWKV-Runner/blob/master/build/linux/Readme_Install.txt');
});
}
} else {
toast(depErrorMsg, { type: 'error' });
}
});
if (depErrorMsg) {
commonStore.setStatus({ status: ModelStatus.Offline });
return false;
}
commonStore.setDepComplete(true);
if (commonStore.platform === 'windows')
CopyFile('./backend-python/wkv_cuda_utils/wkv_cuda_model.py', './py310/Lib/site-packages/rwkv/model.py');
}
return true;
};
export function toastWithButton(text: string, buttonText: string, onClickButton: () => void, options?: ToastOptions) {
return toast(
let triggered = false;
const id = toast(
<div className="flex flex-row items-center justify-between">
<div>{text}</div>
<Button appearance="primary" onClick={onClickButton}>{buttonText}</Button>
<Button appearance="primary" onClick={() => {
if (!triggered) {
triggered = true;
toast.dismiss(id);
onClickButton();
}
}}>{buttonText}</Button>
</div>,
{
type: 'info',
...options
});
return id;
}
export function getSupportedCustomCudaFile() {
if ([' 10', ' 20', ' 30'].some(v => commonStore.status.device_name.includes(v)))
if ([' 10', ' 16', ' 20', ' 30', 'MX', 'Tesla P', 'Quadro P', 'NVIDIA P', 'TITAN X', 'TITAN RTX', 'RTX A',
'Quadro RTX 4000', 'Quadro RTX 5000', 'Tesla T4', 'NVIDIA A10', 'NVIDIA A40'].some(v => commonStore.status.device_name.includes(v)))
return './backend-python/wkv_cuda_utils/wkv_cuda10_30.pyd';
else if ([' 40'].some(v => commonStore.status.device_name.includes(v)))
else if ([' 40', 'RTX 5000 Ada', 'RTX 6000 Ada', 'RTX TITAN Ada', 'NVIDIA L40'].some(v => commonStore.status.device_name.includes(v)))
return './backend-python/wkv_cuda_utils/wkv_cuda40.pyd';
else
return '';

30
frontend/wailsjs/go/backend_golang/App.d.ts generated vendored Normal file → Executable file
View File

@@ -6,13 +6,15 @@ export function AddToDownloadList(arg1:string,arg2:string):Promise<void>;
export function ContinueDownload(arg1:string):Promise<void>;
export function ConvertModel(arg1:string,arg2:string,arg3:string):Promise<string>;
export function ConvertData(arg1:string,arg2:string,arg3:string,arg4:string):Promise<string>;
export function ConvertModel(arg1:string,arg2:string,arg3:string,arg4:string):Promise<string>;
export function CopyFile(arg1:string,arg2:string):Promise<void>;
export function DeleteFile(arg1:string):Promise<void>;
export function DepCheck():Promise<void>;
export function DepCheck(arg1:string):Promise<void>;
export function DownloadFile(arg1:string,arg2:string):Promise<void>;
@@ -20,11 +22,15 @@ export function FileExists(arg1:string):Promise<boolean>;
export function GetPlatform():Promise<string>;
export function InstallPyDep(arg1:boolean):Promise<string>;
export function InstallPyDep(arg1:string,arg2:boolean):Promise<string>;
export function ListDirFiles(arg1:string):Promise<Array<backend_golang.FileInfo>>;
export function OpenFileFolder(arg1:string):Promise<void>;
export function MergeLora(arg1:string,arg2:boolean,arg3:number,arg4:string,arg5:string,arg6:string):Promise<string>;
export function OpenFileFolder(arg1:string,arg2:boolean):Promise<void>;
export function OpenSaveFileDialog(arg1:string,arg2:string,arg3:string):Promise<string>;
export function PauseDownload(arg1:string):Promise<void>;
@@ -32,8 +38,22 @@ export function ReadFileInfo(arg1:string):Promise<backend_golang.FileInfo>;
export function ReadJson(arg1:string):Promise<any>;
export function RestartApp():Promise<void>;
export function SaveJson(arg1:string,arg2:any):Promise<void>;
export function StartServer(arg1:number):Promise<string>;
export function StartServer(arg1:string,arg2:number,arg3:string):Promise<string>;
export function UpdateApp(arg1:string):Promise<boolean>;
export function WslCommand(arg1:string):Promise<void>;
export function WslEnable(arg1:boolean):Promise<void>;
export function WslInstallUbuntu():Promise<void>;
export function WslIsEnabled():Promise<void>;
export function WslStart():Promise<void>;
export function WslStop():Promise<void>;

60
frontend/wailsjs/go/backend_golang/App.js generated Normal file → Executable file
View File

@@ -10,8 +10,12 @@ export function ContinueDownload(arg1) {
return window['go']['backend_golang']['App']['ContinueDownload'](arg1);
}
export function ConvertModel(arg1, arg2, arg3) {
return window['go']['backend_golang']['App']['ConvertModel'](arg1, arg2, arg3);
export function ConvertData(arg1, arg2, arg3, arg4) {
return window['go']['backend_golang']['App']['ConvertData'](arg1, arg2, arg3, arg4);
}
export function ConvertModel(arg1, arg2, arg3, arg4) {
return window['go']['backend_golang']['App']['ConvertModel'](arg1, arg2, arg3, arg4);
}
export function CopyFile(arg1, arg2) {
@@ -22,8 +26,8 @@ export function DeleteFile(arg1) {
return window['go']['backend_golang']['App']['DeleteFile'](arg1);
}
export function DepCheck() {
return window['go']['backend_golang']['App']['DepCheck']();
export function DepCheck(arg1) {
return window['go']['backend_golang']['App']['DepCheck'](arg1);
}
export function DownloadFile(arg1, arg2) {
@@ -38,16 +42,24 @@ export function GetPlatform() {
return window['go']['backend_golang']['App']['GetPlatform']();
}
export function InstallPyDep(arg1) {
return window['go']['backend_golang']['App']['InstallPyDep'](arg1);
export function InstallPyDep(arg1, arg2) {
return window['go']['backend_golang']['App']['InstallPyDep'](arg1, arg2);
}
export function ListDirFiles(arg1) {
return window['go']['backend_golang']['App']['ListDirFiles'](arg1);
}
export function OpenFileFolder(arg1) {
return window['go']['backend_golang']['App']['OpenFileFolder'](arg1);
export function MergeLora(arg1, arg2, arg3, arg4, arg5, arg6) {
return window['go']['backend_golang']['App']['MergeLora'](arg1, arg2, arg3, arg4, arg5, arg6);
}
export function OpenFileFolder(arg1, arg2) {
return window['go']['backend_golang']['App']['OpenFileFolder'](arg1, arg2);
}
export function OpenSaveFileDialog(arg1, arg2, arg3) {
return window['go']['backend_golang']['App']['OpenSaveFileDialog'](arg1, arg2, arg3);
}
export function PauseDownload(arg1) {
@@ -62,14 +74,42 @@ export function ReadJson(arg1) {
return window['go']['backend_golang']['App']['ReadJson'](arg1);
}
export function RestartApp() {
return window['go']['backend_golang']['App']['RestartApp']();
}
export function SaveJson(arg1, arg2) {
return window['go']['backend_golang']['App']['SaveJson'](arg1, arg2);
}
export function StartServer(arg1) {
return window['go']['backend_golang']['App']['StartServer'](arg1);
export function StartServer(arg1, arg2, arg3) {
return window['go']['backend_golang']['App']['StartServer'](arg1, arg2, arg3);
}
export function UpdateApp(arg1) {
return window['go']['backend_golang']['App']['UpdateApp'](arg1);
}
export function WslCommand(arg1) {
return window['go']['backend_golang']['App']['WslCommand'](arg1);
}
export function WslEnable(arg1) {
return window['go']['backend_golang']['App']['WslEnable'](arg1);
}
export function WslInstallUbuntu() {
return window['go']['backend_golang']['App']['WslInstallUbuntu']();
}
export function WslIsEnabled() {
return window['go']['backend_golang']['App']['WslIsEnabled']();
}
export function WslStart() {
return window['go']['backend_golang']['App']['WslStart']();
}
export function WslStop() {
return window['go']['backend_golang']['App']['WslStop']();
}

Some files were not shown because too many files have changed in this diff Show More