RWKV-Runner/backend-python/utils/rwkv.py

556 lines
20 KiB
Python
Raw Normal View History

2023-07-25 08:09:31 +00:00
from abc import ABC, abstractmethod
2023-07-31 14:46:13 +00:00
from enum import Enum, auto
import os
import pathlib
import copy
2023-07-25 08:10:22 +00:00
import re
2023-07-28 14:13:19 +00:00
from typing import Dict, Iterable, List, Tuple, Union
2023-06-12 05:41:51 +00:00
from utils.log import quick_log
from fastapi import HTTPException
2023-05-30 15:13:27 +00:00
from pydantic import BaseModel, Field
import numpy as np
from routes import state_cache
2023-08-14 14:07:15 +00:00
import global_var
2023-05-28 04:53:14 +00:00
END_OF_TEXT = 0
2023-05-31 06:55:13 +00:00
END_OF_LINE_DOUBLE = 535
2023-05-28 04:53:14 +00:00
os.environ["TORCH_EXTENSIONS_DIR"] = f"{pathlib.Path(__file__).parent.parent.resolve()}"
2023-07-31 14:46:13 +00:00
class RWKVType(Enum):
Raven = auto()
World = auto()
Music = auto()
2023-07-25 08:09:31 +00:00
class AbstractRWKV(ABC):
def __init__(self, model: str, strategy: str, tokens_path: str):
2023-08-14 14:07:15 +00:00
rwkv_beta = global_var.get(global_var.Args).rwkv_beta
# dynamic import to make RWKV_CUDA_ON work
if rwkv_beta:
from rwkv_pip.beta.model import (
RWKV as Model,
)
else:
2023-10-03 05:33:55 +00:00
from rwkv_pip.model import (
2023-08-14 14:07:15 +00:00
RWKV as Model,
)
2023-07-25 08:14:29 +00:00
from rwkv_pip.utils import PIPELINE
2023-05-28 04:53:14 +00:00
2023-06-19 14:30:49 +00:00
filename, _ = os.path.splitext(os.path.basename(model))
self.name = filename
2023-05-28 04:53:14 +00:00
self.model = Model(model, strategy)
self.pipeline = PIPELINE(self.model, tokens_path)
self.model_state = None
self.model_tokens = []
2023-07-31 14:46:13 +00:00
self.rwkv_type: RWKVType = None
2023-05-28 04:53:14 +00:00
self.max_tokens_per_generation = 500
self.temperature = 1
2023-07-25 08:09:31 +00:00
self.top_p = 0.3
self.top_k = 0
self.penalty_alpha_presence = 0
self.penalty_alpha_frequency = 1
2023-05-28 04:53:14 +00:00
2023-07-25 08:09:31 +00:00
@abstractmethod
def adjust_occurrence(self, occurrence: Dict, token: int):
pass
2023-05-28 04:53:14 +00:00
2023-07-25 08:09:31 +00:00
@abstractmethod
def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int):
pass
2023-05-28 16:08:13 +00:00
2023-05-31 06:55:13 +00:00
# Model only saw '\n\n' as [187, 187] before, but the tokenizer outputs [535] for it at the end
2023-07-25 08:09:31 +00:00
@abstractmethod
def fix_tokens(self, tokens) -> List[int]:
pass
2023-05-31 06:55:13 +00:00
2023-07-25 08:09:31 +00:00
@abstractmethod
def run_rnn(
self, _tokens: List[str], newline_adj: int = 0
) -> Tuple[List[float], int]:
pass
2023-05-28 04:53:14 +00:00
2023-07-25 08:09:31 +00:00
@abstractmethod
def delta_postprocess(self, delta: str) -> str:
pass
2023-05-28 04:53:14 +00:00
2023-06-20 07:55:52 +00:00
def get_embedding(self, input: str, fast_mode: bool) -> Tuple[List[float], int]:
if fast_mode:
2023-07-25 08:09:31 +00:00
embedding, token_len = self.__fast_embedding(
self.fix_tokens(self.pipeline.encode(input)), None
)
else:
self.model_state = None
self.model_tokens = []
2023-06-20 07:55:52 +00:00
_, token_len = self.run_rnn(self.fix_tokens(self.pipeline.encode(input)))
2023-07-25 12:30:43 +00:00
embedding = self.model_state[-11].tolist()
embedding = (embedding / np.linalg.norm(embedding)).tolist()
2023-06-20 07:55:52 +00:00
return embedding, token_len
2023-07-25 08:09:31 +00:00
def __fast_embedding(self, tokens: List[str], state):
2023-07-25 08:14:29 +00:00
import torch
tokens = [int(x) for x in tokens]
2023-06-20 07:55:52 +00:00
token_len = len(tokens)
self = self.model
with torch.no_grad():
w = self.w
args = self.args
if state == None:
state = [None] * args.n_layer * 5
for i in range(
args.n_layer
): # state: 0=att_xx 1=att_aa 2=att_bb 3=att_pp 4=ffn_xx
dd = self.strategy[i]
dev = dd.device
atype = dd.atype
state[i * 5 + 0] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()
state[i * 5 + 1] = torch.zeros(
args.n_embd, dtype=torch.float, requires_grad=False, device=dev
).contiguous()
state[i * 5 + 2] = torch.zeros(
args.n_embd, dtype=torch.float, requires_grad=False, device=dev
).contiguous()
state[i * 5 + 3] = (
torch.zeros(
args.n_embd,
dtype=torch.float,
requires_grad=False,
device=dev,
).contiguous()
- 1e30
)
state[i * 5 + 4] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()
break
seq_mode = len(tokens) > 1
x = w["emb.weight"][tokens if seq_mode else tokens[0]]
for i in range(args.n_layer):
bbb = f"blocks.{i}."
att = f"blocks.{i}.att."
ffn = f"blocks.{i}.ffn."
dd = self.strategy[i]
dev = dd.device
atype = dd.atype
wtype = dd.wtype
if seq_mode:
if "cuda" in str(dev) and os.environ["RWKV_CUDA_ON"] == "1":
ATT = (
self.cuda_att_seq
if wtype != torch.uint8
else self.cuda_att_seq_i8
)
else:
ATT = self.att_seq if wtype != torch.uint8 else self.att_seq_i8
FFN = self.ffn_seq if wtype != torch.uint8 else self.ffn_seq_i8
else:
ATT = self.att_one if wtype != torch.uint8 else self.att_one_i8
FFN = self.ffn_one if wtype != torch.uint8 else self.ffn_one_i8
x = x.to(dtype=atype, device=dev)
kw = w[f"{att}key.weight"]
vw = w[f"{att}value.weight"]
rw = w[f"{att}receptance.weight"]
ow = w[f"{att}output.weight"]
if dd.stream:
kw = kw.to(device=dev, non_blocking=True)
vw = vw.to(device=dev, non_blocking=True)
rw = rw.to(device=dev, non_blocking=True)
ow = ow.to(device=dev, non_blocking=True)
kmx = w[f"{att}key.weight_mx"] if wtype == torch.uint8 else x
krx = w[f"{att}key.weight_rx"] if wtype == torch.uint8 else x
kmy = w[f"{att}key.weight_my"] if wtype == torch.uint8 else x
kry = w[f"{att}key.weight_ry"] if wtype == torch.uint8 else x
vmx = w[f"{att}value.weight_mx"] if wtype == torch.uint8 else x
vrx = w[f"{att}value.weight_rx"] if wtype == torch.uint8 else x
vmy = w[f"{att}value.weight_my"] if wtype == torch.uint8 else x
vry = w[f"{att}value.weight_ry"] if wtype == torch.uint8 else x
rmx = w[f"{att}receptance.weight_mx"] if wtype == torch.uint8 else x
rrx = w[f"{att}receptance.weight_rx"] if wtype == torch.uint8 else x
rmy = w[f"{att}receptance.weight_my"] if wtype == torch.uint8 else x
rry = w[f"{att}receptance.weight_ry"] if wtype == torch.uint8 else x
omx = w[f"{att}output.weight_mx"] if wtype == torch.uint8 else x
orx = w[f"{att}output.weight_rx"] if wtype == torch.uint8 else x
omy = w[f"{att}output.weight_my"] if wtype == torch.uint8 else x
ory = w[f"{att}output.weight_ry"] if wtype == torch.uint8 else x
(
x,
state[i * 5 + 0],
state[i * 5 + 1],
state[i * 5 + 2],
state[i * 5 + 3],
) = ATT(
x,
state[i * 5 + 0],
state[i * 5 + 1],
state[i * 5 + 2],
state[i * 5 + 3],
w[f"{bbb}ln1.weight"],
w[f"{bbb}ln1.bias"],
w[f"{att}time_mix_k"],
w[f"{att}time_mix_v"],
w[f"{att}time_mix_r"],
w[f"{att}time_decay"],
w[f"{att}time_first"],
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
)
2023-06-20 07:55:52 +00:00
return state[0].tolist(), token_len
2023-07-25 08:09:31 +00:00
def generate(
2023-08-14 14:07:15 +00:00
self, prompt: str, stop: Union[str, List[str], None] = None
2023-07-25 08:09:31 +00:00
) -> Iterable[Tuple[str, str, int, int]]:
2023-06-12 05:41:51 +00:00
quick_log(None, None, "Generation Prompt:\n" + prompt)
cache = None
delta_prompt = prompt
try:
cache = state_cache.longest_prefix_state(
state_cache.LongestPrefixStateBody(prompt=prompt), None
)
except HTTPException:
pass
if cache is None or cache["prompt"] == "":
self.model_state = None
self.model_tokens = []
else:
delta_prompt = prompt[len(cache["prompt"]) :]
self.model_state = copy.deepcopy(cache["state"])
self.model_tokens = copy.deepcopy(cache["tokens"])
logits = copy.deepcopy(cache["logits"])
2023-06-20 07:55:52 +00:00
prompt_token_len = 0
if delta_prompt != "":
2023-06-20 07:55:52 +00:00
logits, prompt_token_len = self.run_rnn(
self.fix_tokens(self.pipeline.encode(delta_prompt))
)
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
2023-05-28 04:53:14 +00:00
begin = len(self.model_tokens)
out_last = begin
occurrence: Dict = {}
2023-06-20 07:55:52 +00:00
completion_token_len = 0
2023-05-28 04:53:14 +00:00
response = ""
for i in range(self.max_tokens_per_generation):
2023-07-25 08:09:31 +00:00
self.adjust_forward_logits(logits, occurrence, i)
2023-05-28 04:53:14 +00:00
token = self.pipeline.sample_logits(
2023-07-25 08:09:31 +00:00
logits, temperature=self.temperature, top_p=self.top_p, top_k=self.top_k
2023-05-28 04:53:14 +00:00
)
if token == END_OF_TEXT:
2023-06-20 07:55:52 +00:00
yield response, "", prompt_token_len, completion_token_len
2023-05-28 04:53:14 +00:00
break
2023-07-25 08:09:31 +00:00
self.adjust_occurrence(occurrence, token)
2023-05-28 04:53:14 +00:00
2023-06-20 07:55:52 +00:00
logits, _ = self.run_rnn([token])
completion_token_len = completion_token_len + 1
2023-07-25 08:09:31 +00:00
delta: str = self.delta_postprocess(
self.pipeline.decode(self.model_tokens[out_last:])
)
2023-05-28 04:53:14 +00:00
if "\ufffd" not in delta: # avoid utf-8 display issues
response += delta
if stop is not None:
2023-07-25 08:10:22 +00:00
if type(stop) == str:
if stop in response:
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
2023-07-25 08:10:22 +00:00
except HTTPException:
pass
response = response.split(stop)[0]
yield response, "", prompt_token_len, completion_token_len
break
elif type(stop) == list:
stop_exist_regex = "|".join(stop)
matched = re.search(stop_exist_regex, response)
if matched:
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
response = response.split(matched.group())[0]
yield response, "", prompt_token_len, completion_token_len
break
2023-05-28 04:53:14 +00:00
out_last = begin + i + 1
if i == self.max_tokens_per_generation - 1:
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
2023-06-20 07:55:52 +00:00
yield response, delta, prompt_token_len, completion_token_len
2023-05-17 03:39:00 +00:00
2023-07-25 08:09:31 +00:00
class TextRWKV(AbstractRWKV):
def __init__(self, model: str, strategy: str, tokens_path: str) -> None:
super().__init__(model, strategy, tokens_path)
self.CHUNK_LEN = 256
self.max_tokens_per_generation = 500
self.temperature = 1
self.top_p = 0.3
self.top_k = 0
self.penalty_alpha_presence = 0
self.penalty_alpha_frequency = 1
self.interface = ":"
if "world" in self.name.lower():
2023-07-31 14:46:13 +00:00
self.rwkv_type = RWKVType.World
2023-07-25 08:09:31 +00:00
self.user = "Question"
self.bot = "Answer"
self.END_OF_LINE = 11
else:
2023-07-31 14:46:13 +00:00
self.rwkv_type = RWKVType.Raven
2023-07-25 08:09:31 +00:00
self.user = "Bob"
self.bot = "Alice"
self.END_OF_LINE = 187
self.AVOID_REPEAT_TOKENS = []
AVOID_REPEAT = ""
for i in AVOID_REPEAT:
dd = self.pipeline.encode(i)
assert len(dd) == 1
self.AVOID_REPEAT_TOKENS += dd
self.__preload()
def adjust_occurrence(self, occurrence: Dict, token: int):
for xxx in occurrence:
occurrence[xxx] *= 0.996
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int):
for n in occurrence:
logits[n] -= (
self.penalty_alpha_presence
+ occurrence[n] * self.penalty_alpha_frequency
)
2023-07-31 14:02:28 +00:00
if i == 0:
for token in self.model_tokens:
token = int(token)
for xxx in occurrence:
occurrence[xxx] *= 0.996
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
2023-07-25 08:09:31 +00:00
# Model only saw '\n\n' as [187, 187] before, but the tokenizer outputs [535] for it at the end
def fix_tokens(self, tokens) -> List[int]:
2023-07-31 14:46:13 +00:00
if self.rwkv_type == RWKVType.World:
2023-07-25 08:09:31 +00:00
return tokens
if len(tokens) > 0 and tokens[-1] == END_OF_LINE_DOUBLE:
tokens = tokens[:-1] + [self.END_OF_LINE, self.END_OF_LINE]
return tokens
def run_rnn(
self, _tokens: List[str], newline_adj: int = 0
) -> Tuple[List[float], int]:
tokens = [int(x) for x in _tokens]
token_len = len(tokens)
self.model_tokens += tokens
while len(tokens) > 0:
out, self.model_state = self.model.forward(
tokens[: self.CHUNK_LEN], self.model_state
)
tokens = tokens[self.CHUNK_LEN :]
out[self.END_OF_LINE] += newline_adj # adjust \n probability
if self.model_tokens[-1] in self.AVOID_REPEAT_TOKENS:
out[self.model_tokens[-1]] = -999999999
return out, token_len
def delta_postprocess(self, delta: str) -> str:
return delta
def __preload(self):
interface = self.interface
user = self.user
bot = self.bot
preset_system = (
f"""
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
{bot} is very intelligent, creative and friendly. \
{bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \
{bot} likes to tell {user} a lot about herself and her opinions. \
{bot} usually gives {user} kind, helpful and informative advices.\n
"""
2023-07-31 14:46:13 +00:00
if self.rwkv_type == RWKVType.Raven
2023-08-14 14:07:15 +00:00
else (
f"{user}{interface} hi\n\n{bot}{interface} Hi. "
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
)
2023-07-25 08:09:31 +00:00
)
logits, _ = self.run_rnn(self.fix_tokens(self.pipeline.encode(preset_system)))
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=preset_system,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
class MusicRWKV(AbstractRWKV):
def __init__(self, model: str, strategy: str, tokens_path: str):
super().__init__(model, strategy, tokens_path)
self.max_tokens_per_generation = 500
self.temperature = 1
self.top_p = 0.8
self.top_k = 8
2023-07-31 14:46:13 +00:00
self.rwkv_type = RWKVType.Music
2023-07-25 08:09:31 +00:00
def adjust_occurrence(self, occurrence: Dict, token: int):
for n in occurrence:
occurrence[n] *= 0.997 #### decay repetition penalty
if token >= 128 or token == 127:
occurrence[token] = 1 + (occurrence[token] if token in occurrence else 0)
else:
occurrence[token] = 0.3 + (occurrence[token] if token in occurrence else 0)
def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int):
for n in occurrence:
logits[n] -= 0 + occurrence[n] * 0.5
logits[0] += (i - 2000) / 500 # try not to be too short or too long
logits[127] -= 1 # avoid "t125"
def fix_tokens(self, tokens) -> List[int]:
return tokens
def run_rnn(
self, _tokens: List[str], newline_adj: int = 0
) -> Tuple[List[float], int]:
tokens = [int(x) for x in _tokens]
token_len = len(tokens)
self.model_tokens += tokens
out, self.model_state = self.model.forward(tokens, self.model_state)
return out, token_len
def delta_postprocess(self, delta: str) -> str:
return " " + delta
2023-05-17 03:39:00 +00:00
class ModelConfigBody(BaseModel):
2023-05-30 15:13:27 +00:00
max_tokens: int = Field(default=None, gt=0, le=102400)
temperature: float = Field(default=None, ge=0, le=2)
top_p: float = Field(default=None, ge=0, le=1)
presence_penalty: float = Field(default=None, ge=-2, le=2)
frequency_penalty: float = Field(default=None, ge=-2, le=2)
2023-05-17 03:39:00 +00:00
2023-06-15 13:52:22 +00:00
class Config:
schema_extra = {
"example": {
"max_tokens": 1000,
"temperature": 1.2,
"top_p": 0.5,
"presence_penalty": 0.4,
"frequency_penalty": 0.4,
}
}
2023-05-17 03:39:00 +00:00
2023-07-25 08:09:31 +00:00
def set_rwkv_config(model: AbstractRWKV, body: ModelConfigBody):
2023-05-30 15:13:27 +00:00
if body.max_tokens is not None:
2023-05-17 03:39:00 +00:00
model.max_tokens_per_generation = body.max_tokens
2023-05-30 15:13:27 +00:00
if body.temperature is not None:
if body.temperature < 0.1:
model.temperature = 0.1
else:
model.temperature = body.temperature
2023-05-30 15:13:27 +00:00
if body.top_p is not None:
2023-05-17 03:39:00 +00:00
model.top_p = body.top_p
2023-05-30 15:13:27 +00:00
if body.presence_penalty is not None:
2023-05-17 03:39:00 +00:00
model.penalty_alpha_presence = body.presence_penalty
2023-05-30 15:13:27 +00:00
if body.frequency_penalty is not None:
2023-05-17 03:39:00 +00:00
model.penalty_alpha_frequency = body.frequency_penalty
2023-07-25 08:09:31 +00:00
def get_rwkv_config(model: AbstractRWKV) -> ModelConfigBody:
2023-05-17 03:39:00 +00:00
return ModelConfigBody(
max_tokens=model.max_tokens_per_generation,
temperature=model.temperature,
top_p=model.top_p,
presence_penalty=model.penalty_alpha_presence,
frequency_penalty=model.penalty_alpha_frequency,
)