RWKV-Runner/backend-python/rwkv_pip/model.py

2486 lines
78 KiB
Python
Raw Normal View History

2023-10-03 13:33:55 +08:00
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
from typing import Optional
import types, gc, os, time, re
import torch
2023-11-24 17:55:16 +08:00
import torch.nn as nn
2023-10-03 13:33:55 +08:00
from torch.nn import functional as F
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
current_path = os.path.dirname(os.path.abspath(__file__))
# https://zhuanlan.zhihu.com/p/612879065
def LoadPreCompileLibrary(file):
import importlib
import os
import torch
# load the custom_op_library and register the custom ops
lib_dir = os.path.dirname(__file__)
if os.name == "nt":
# Register the main torchvision library location on the default DLL path
import ctypes
import sys
kernel32 = ctypes.WinDLL("kernel32.dll", use_last_error=True)
with_load_library_flags = hasattr(kernel32, "AddDllDirectory")
prev_error_mode = kernel32.SetErrorMode(0x0001)
if with_load_library_flags:
kernel32.AddDllDirectory.restype = ctypes.c_void_p
if sys.version_info >= (3, 8):
os.add_dll_directory(lib_dir)
elif with_load_library_flags:
res = kernel32.AddDllDirectory(lib_dir)
if res is None:
err = ctypes.WinError(ctypes.get_last_error())
err.strerror += f' Error adding "{lib_dir}" to the DLL directories.'
raise ValueError(err)
kernel32.SetErrorMode(prev_error_mode)
loader_details = (
importlib.machinery.ExtensionFileLoader,
importlib.machinery.EXTENSION_SUFFIXES,
)
extfinder = importlib.machinery.FileFinder(lib_dir, loader_details)
ext_specs = extfinder.find_spec(file)
if ext_specs is None:
return False
try:
torch.ops.load_library(ext_specs.origin)
except OSError as exc:
return False
return True
2023-10-03 13:33:55 +08:00
########################################################################################################
if os.environ.get("RWKV_JIT_ON") != "0":
os.environ["RWKV_JIT_ON"] = "1"
MyModule = torch.jit.ScriptModule
MyFunction = torch.jit.script_method
MyStatic = torch.jit.script
else:
MyModule = torch.nn.Module
def __nop(ob):
return ob
MyFunction = __nop
MyStatic = __nop
if os.environ.get("RWKV_CUDA_ON") == "1":
DISABLE_CUBLAS_GEMM = False
2023-11-24 17:55:16 +08:00
from torch.utils.cpp_extension import load
2023-10-03 13:33:55 +08:00
if LoadPreCompileLibrary("wkv_cuda") is False:
try:
load(
name=f"wkv_cuda",
sources=[
f"{current_path}/cuda/wrapper.cpp",
f"{current_path}/cuda/operators.cu",
f"{current_path}/cuda/gemm_fp16_cublas.cpp",
],
verbose=True,
extra_ldflags=["cublas.lib" if os.name == "nt" else ""],
extra_cuda_cflags=[
"--use_fast_math",
"-O3",
"--extra-device-vectorization",
],
is_python_module=False,
)
DISABLE_CUBLAS_GEMM = False
except:
print(
"Failed to build cuBLAS matmul, falling back to torch.matmul. Small model with fp16 will overflow."
)
load(
name=f"wkv_cuda",
sources=[
f"{current_path}/cuda/wrapper.cpp",
f"{current_path}/cuda/operators.cu",
],
verbose=True,
extra_cuda_cflags=[
"--use_fast_math",
"-O3",
"--extra-device-vectorization",
],
extra_cflags=["-DDISABLE_CUBLAS_GEMM"],
is_python_module=False,
)
DISABLE_CUBLAS_GEMM = True
2023-10-03 13:33:55 +08:00
@MyStatic
def cuda_wkv(T: int, C: int, w, u, k, v, aa, bb, pp):
assert 1 * C % min(C, 32) == 0
assert (
k.dtype == v.dtype == torch.float16 or k.dtype == v.dtype == torch.float32
)
assert w.dtype == u.dtype == aa.dtype == bb.dtype == pp.dtype == torch.float32
w = w.contiguous()
u = u.contiguous()
k = k.contiguous()
v = v.contiguous()
y = torch.empty(
(T, C),
device=w.device,
memory_format=torch.contiguous_format,
dtype=k.dtype,
)
torch.ops.rwkv.wkv_forward(1, T, C, w, u, k, v, y, aa, bb, pp)
return y, aa, bb, pp
@MyStatic
def cuda_mm8_seq(B: int, N: int, M: int, x, w, mx, rx, my, ry):
assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
assert x.dtype == torch.float32 or x.dtype == torch.float16
assert w.dtype == torch.uint8
assert x.shape == (B, N)
assert w.shape == (N, M)
assert rx.shape == mx.shape == (M,)
assert ry.shape == my.shape == (N, 1)
y = torch.empty((B, M), device=w.device, dtype=x.dtype)
torch.ops.rwkv.mm8_seq(B, N, M, x, w, mx, rx, my, ry, y)
return y
@MyStatic
def cuda_mm8_one(N: int, M: int, x, w, mx, rx, my, ry):
assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
assert x.dtype == torch.float32 or x.dtype == torch.float16
assert w.dtype == torch.uint8
assert x.shape == (N,)
assert w.shape == (N, M)
assert rx.shape == mx.shape == (M,)
assert ry.shape == my.shape == (N, 1)
y = torch.zeros((M,), device=w.device, dtype=torch.float32)
torch.ops.rwkv.mm8_one(N, M, x, w, mx, rx, my, ry, y)
return y.to(dtype=x.dtype)
else:
os.environ["RWKV_CUDA_ON"] = "0"
2023-11-03 23:27:14 +08:00
@MyStatic
def torch_mm8_seq(x, w, mx, rx, my, ry):
return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)
@MyStatic
def torch_mm8_one(x, w, mx, rx, my, ry):
return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)
if os.environ.get("RWKV_CUDA_ON") == "1":
@MyStatic
def mm8_seq(x, w, mx, rx, my, ry):
if w.device.type == "cuda" and x.dtype == torch.float16:
B, N, M = x.shape[0], w.shape[0], w.shape[1]
return cuda_mm8_seq(B, N, M, x, w, mx, rx, my, ry)
else:
return torch_mm8_seq(x, w, mx, rx, my, ry)
2023-10-03 13:33:55 +08:00
@MyStatic
2023-11-03 23:27:14 +08:00
def mm8_one(x, w, mx, rx, my, ry):
if w.device.type == "cuda":
N, M = w.shape[0], w.shape[1]
return cuda_mm8_one(N, M, x, w, mx, rx, my, ry)
else:
return torch_mm8_one(x, w, mx, rx, my, ry)
else:
@MyStatic
def mm8_seq(x, w, mx, rx, my, ry):
return torch_mm8_seq(x, w, mx, rx, my, ry)
@MyStatic
def mm8_one(x, w, mx, rx, my, ry):
return torch_mm8_one(x, w, mx, rx, my, ry)
def mm8(
x: torch.Tensor,
w: torch.Tensor,
mx: torch.Tensor,
rx: torch.Tensor,
my: torch.Tensor,
ry: torch.Tensor,
):
if len(x.shape) == 1:
return mm8_one(x, w, mx, rx, my, ry)
return mm8_seq(x, w, mx, rx, my, ry)
def matmul(
a,
b,
mx: Optional[torch.Tensor] = None,
rx: Optional[torch.Tensor] = None,
my: Optional[torch.Tensor] = None,
ry: Optional[torch.Tensor] = None,
output_dtype: Optional[torch.dtype] = None,
) -> torch.Tensor:
if output_dtype is None:
output_dtype = a.dtype
if b.dtype in [torch.float16, torch.bfloat16, torch.float32]:
assert a.dtype == b.dtype
return matmul_float(a, b, output_dtype=output_dtype)
elif b.dtype == torch.uint8:
assert mx is not None
assert rx is not None
assert my is not None
assert ry is not None
return mm8(a, b, mx, rx, my, ry).to(output_dtype)
else:
raise ValueError("Unsupported dtype")
if os.environ.get("RWKV_CUDA_ON") == "1" and not DISABLE_CUBLAS_GEMM:
def matmul_float(a, b, output_dtype: Optional[torch.dtype] = None):
2023-10-03 13:33:55 +08:00
if output_dtype is None:
output_dtype = a.dtype
if a.dtype == b.dtype == torch.float16 and a.device.type == "cuda":
if len(a.shape) == 1:
assert len(b.shape) == 2
c = torch.empty((b.shape[-1],), dtype=output_dtype, device=a.device)
a = a.unsqueeze(0)
else:
assert len(a.shape) == len(b.shape)
assert len(a.shape) == 2 or len(a.shape) == 3
# torch.empty((*a.shape[:-1], b.shape[-1])) doesn't work with jit
if len(a.shape) == 2:
c = torch.empty(
(a.shape[0], b.shape[-1]), dtype=output_dtype, device=a.device
)
else:
c = torch.empty(
(a.shape[0], a.shape[1], b.shape[-1]),
dtype=output_dtype,
device=a.device,
)
torch.ops.rwkv.gemm_fp16_cublas(a, b, c)
return c
else:
return (a @ b).to(output_dtype)
else:
2023-11-03 23:27:14 +08:00
def matmul_float(a, b, output_dtype: Optional[torch.dtype] = None):
2023-10-03 13:33:55 +08:00
return (a @ b).to(output_dtype)
########################################################################################################
class RWKV(MyModule):
def __init__(self, model, strategy, verbose=True, convert_and_save_and_exit=None):
super().__init__()
if verbose:
prxxx = lambda *args, **kwargs: print(*args, **kwargs)
else:
prxxx = lambda *args, **kwargs: None
STRATEGY_REGEX = r"^(?:(?:^|->) *(?:cuda(?::[\d]+)?|cpu|mps|dml) (?:fp(?:16|32)|bf16)(?:i8|i4|i3)?(?: \*[\d]+\+?)? *)+$"
2023-10-03 13:33:55 +08:00
if not re.match(STRATEGY_REGEX, strategy):
raise ValueError(
"Invalid strategy. Please read https://pypi.org/project/rwkv/"
)
strategy = ("->".join([x.strip() for x in strategy.split("->")])).replace(
"->", " -> "
)
self.args = types.SimpleNamespace()
args = self.args
args.MODEL_NAME = model
args.strategy_string = strategy
# Rescale for fp16 mode: set x = x/2 every X layer (to avoid fp16 overflow)
try:
self.RESCALE_LAYER = int(
os.environ["RWKV_RESCALE_LAYER"]
) # !!! NOTE: SEEMS YOU SHOULD SET IT TO 999 (disable) FOR RWKV-MUSIC MODELS !!!
except:
self.RESCALE_LAYER = 6 if "fp16" in strategy else 0
prxxx(
f'RWKV_JIT_ON {os.environ["RWKV_JIT_ON"]} RWKV_CUDA_ON {os.environ["RWKV_CUDA_ON"]} RESCALE_LAYER {self.RESCALE_LAYER}\n'
)
args.MODEL_NAME = args.MODEL_NAME.strip()
if not args.MODEL_NAME.endswith(".pth"):
args.MODEL_NAME += ".pth"
prxxx(f"Loading {args.MODEL_NAME} ...")
with torch.no_grad():
self.w = torch.load(
args.MODEL_NAME, map_location="cpu"
) # load model to CPU first
gc.collect()
w = self.w
ALREADY_CONVERTED = False
if "_strategy" in w:
ALREADY_CONVERTED = True
assert (
convert_and_save_and_exit == None
) # you should only convert a raw model
prxxx(
f"Converted model: strategy {w['_strategy']}, version {w['_version']}\n"
)
assert (
w["_strategy"] == args.strategy_string
2023-12-29 00:38:33 +08:00
), "model has been converted and does not match current strategy; if you are using a new strategy, re-convert the model"
2023-10-03 13:33:55 +08:00
assert (
float(w["_version"]) >= 0.7
) # sometimes you should re-convert using latest convert_model.py
assert (
w["_rescale_layer"] == self.RESCALE_LAYER
) # must use same RESCALE_LAYER to avoid mistakes
del w["_strategy"]
del w["_version"]
del w["_rescale_layer"]
args.n_embd = w["emb.weight"].shape[1]
args.n_att = w["blocks.0.att.key.weight"].shape[
0
] # note: transposed matrix
args.n_ffn = w["blocks.0.ffn.key.weight"].shape[
0
] # note: transposed matrix
args.n_layer = 0
keys = list(w.keys())
self.version = 4
for x in keys:
layer_id = int(x.split(".")[1]) if ("blocks." in x) else 0
args.n_layer = max(args.n_layer, layer_id + 1)
if "ln_x" in x:
self.version = max(5, self.version)
if "gate.weight" in x:
self.version = max(5.1, self.version)
if int(self.version) == 5 and "att.time_decay" in x:
args.n_head = w[x].shape[0]
if len(w[x].shape) > 1:
if w[x].shape[1] > 1:
self.version = max(5.2, self.version)
2023-11-24 17:55:16 +08:00
if "time_maa" in x:
self.version = max(6, self.version)
if int(self.version) == 6 and "time_faaaa" in x:
args.n_head = w[x].shape[0]
prxxx(f"Model detected: v{self.version:.1f}")
2023-10-03 13:33:55 +08:00
####################### Compute strategy
s = [x.strip().split(" ") for x in strategy.split("->")]
plan = [0] * len(s)
stream_i = -1
stream_count = 0
to_allocate = args.n_layer + 1
allocated = 0
free_slots = 0
for i in range(len(s)):
si = s[i]
si1 = si[1]
if si1.startswith("fp32"):
si[1] = [torch.float]
elif si1.startswith("fp16"):
si[1] = [torch.float16]
elif si1.startswith("bf16"):
si[1] = [torch.bfloat16]
if si1.endswith("i8"):
si[1] += [torch.uint8]
else:
si[1] += [si[1][0]]
if len(si) > 2:
ss = si[2]
assert ss.startswith("*")
if ss.endswith("+"):
plan[i] = int(ss[1:-1])
stream_i = i
else:
plan[i] = int(ss[1:])
allocated += plan[i]
if allocated >= to_allocate:
plan[i] += to_allocate - allocated
break
else:
free_slots += 1
if stream_i < 0:
if free_slots > 0 and to_allocate > allocated:
for i in range(len(s)):
if plan[i] == 0:
plan[i] = (to_allocate - allocated) // free_slots
allocated += plan[i]
free_slots -= 1
if to_allocate > allocated:
plan[len(s) - 1] += to_allocate - allocated
else:
if to_allocate > allocated:
stream_count = to_allocate - allocated
plan[stream_i] += stream_count
prxxx(f"Strategy: (total {args.n_layer}+1={args.n_layer+1} layers)")
for i in range(len(s)):
ss = s[i]
if i != stream_i:
prxxx(
f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]} layers'
)
else:
prxxx(
f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]-stream_count} layers, stream {stream_count} layers'
)
plan[i] += 0 if i == 0 else plan[i - 1]
self.strategy = [None] * (args.n_layer + 1)
strategy = self.strategy
for n in range(args.n_layer + 1):
for i in range(len(s)):
if n < plan[i]:
strategy[n] = types.SimpleNamespace()
strategy[n].device = s[i][0]
strategy[n].atype = s[i][1][0]
strategy[n].wtype = s[i][1][1]
strategy[n].stream = False
if strategy[n].device == "dml":
import torch_directml
strategy[n].device = torch_directml.device()
2023-10-03 13:33:55 +08:00
if i == stream_i and n >= (plan[i] - stream_count):
strategy[n].stream = True
break
prxxx(
f"{n}-{strategy[n].device}-{str(strategy[n].atype).replace('torch.','')}-{str(strategy[n].wtype).replace('torch.','')}{'-stream' if strategy[n].stream else ''}",
end=" ",
)
prxxx()
####################### Load weights to self.w
if not ALREADY_CONVERTED:
try: # precompute embedding
w["emb.weight"] = F.layer_norm(
w["emb.weight"],
(args.n_embd,),
weight=w["blocks.0.ln0.weight"],
bias=w["blocks.0.ln0.bias"],
)
except:
w["emb.weight"] = F.layer_norm(
w["emb.weight"].float(),
(args.n_embd,),
weight=w["blocks.0.ln0.weight"].float(),
bias=w["blocks.0.ln0.bias"].float(),
)
del w["blocks.0.ln0.weight"]
del w["blocks.0.ln0.bias"]
print_need_newline = False
REAL_TIME_FIRST = False
for x in list(w.keys()):
if ".time_faaaa" in x:
REAL_TIME_FIRST = True
if REAL_TIME_FIRST:
w = {
k.replace(".time_faaaa", ".time_first")
if ".time_faaaa" in k
else k: v
for k, v in w.items()
}
self.w = w
keys = list(w.keys())
for x in keys:
w[x].requires_grad = False
layer_id = int(x.split(".")[1]) if ("blocks." in x) else 0
if ("ln_out." in x) or ("head." in x):
layer_id = args.n_layer
dd = strategy[layer_id]
DEVICE = dd.device
ATYPE = dd.atype
WTYPE = dd.wtype
if not ALREADY_CONVERTED:
if self.RESCALE_LAYER > 0:
if "att.output.weight" in x:
w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
if "ffn.value.weight" in x:
w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
if ".time_" in x:
w[x] = w[x].squeeze()
if (
"key.weight" in x
or "value.weight" in x
or "receptance.weight" in x
or "gate.weight" in x
or "output.weight" in x
or "head.weight" in x
):
w[x] = w[x].t()
2023-11-24 17:55:16 +08:00
if ".time_decay" in x and "_w" not in x: # need fp32 for this
2023-10-03 13:33:55 +08:00
if self.version == 4:
w[x] = -torch.exp(w[x].float())
elif int(self.version) == 5:
w[x] = torch.exp(-torch.exp(w[x].float())).reshape(-1, 1, 1)
if self.version == 5.2:
w[x] = w[x].reshape(args.n_head, -1, 1)
2023-11-24 17:55:16 +08:00
elif self.version == 6.0:
w[x] = w[x].float().reshape(args.n_head, -1, 1)
2023-10-03 13:33:55 +08:00
elif ".time_first" in x: # need fp32 for this
if self.version == 4:
w[x] = w[x].float()
2023-11-24 17:55:16 +08:00
elif int(self.version) in [5, 6]:
2023-10-03 13:33:55 +08:00
if REAL_TIME_FIRST:
w[x] = w[x].float().reshape(-1, 1, 1)
else:
w[x] = torch.exp(w[x].float()).reshape(-1, 1, 1)
2023-11-24 17:55:16 +08:00
if self.version in [5.2, 6.0]:
2023-10-03 13:33:55 +08:00
w[x] = w[x].reshape(args.n_head, -1, 1)
elif ".ln_x" in x: # need fp32 for group_norm
w[x] = w[x].float()
else:
2024-02-21 23:50:05 +08:00
if (
(len(w[x].shape) == 2)
and ("emb" not in x)
and ("_w1" not in x)
and ("_w2" not in x)
):
2023-10-03 13:33:55 +08:00
if WTYPE != torch.uint8:
w[x] = w[x].to(dtype=WTYPE)
else:
w[x] = w[x].float()
if w[x].shape[0] > w[x].shape[1]:
w[x + "_my"] = torch.amin(w[x], dim=1).unsqueeze(1)
w[x] = w[x] - w[x + "_my"]
w[x + "_mx"] = torch.amin(w[x], dim=0)
w[x] = w[x] - w[x + "_mx"]
w[x + "_rx"] = torch.amax(w[x], dim=0)
w[x] = w[x] / w[x + "_rx"]
w[x + "_ry"] = torch.amax(w[x], dim=1).unsqueeze(1)
w[x] = w[x] / w[x + "_ry"]
else:
w[x + "_mx"] = torch.amin(w[x], dim=0)
w[x] = w[x] - w[x + "_mx"]
w[x + "_my"] = torch.amin(w[x], dim=1).unsqueeze(1)
w[x] = w[x] - w[x + "_my"]
w[x + "_rx"] = torch.amax(w[x], dim=0)
w[x] = w[x] / w[x + "_rx"]
w[x + "_ry"] = torch.amax(w[x], dim=1).unsqueeze(1)
w[x] = w[x] / w[x + "_ry"]
w[x] = torch.clip(
torch.floor(w[x] * 256), min=0, max=255
).to(dtype=torch.uint8)
w[x + "_mx"] = w[x + "_mx"].to(dtype=ATYPE).contiguous()
w[x + "_rx"] = (
(w[x + "_rx"] / 16).to(dtype=ATYPE).contiguous()
)
w[x + "_my"] = w[x + "_my"].to(dtype=ATYPE).contiguous()
w[x + "_ry"] = (
(w[x + "_ry"] / 16).to(dtype=ATYPE).contiguous()
)
else:
w[x] = w[x].to(dtype=ATYPE)
if convert_and_save_and_exit == None:
if "emb." in x:
w[x] = w[x].contiguous()
elif (dd.stream) and (
x.endswith("key.weight")
or x.endswith("value.weight")
or x.endswith("receptance.weight")
or x.endswith("output.weight")
):
try:
w[x] = (
w[x].contiguous().pin_memory()
) # if you see "CUDA error: out of memory" here, that's out of CPU RAM, not VRAM. Get more RAM :)
except:
print(
"Note: You are running out of RAM. Get more CPU RAM. Now this will run much slower."
)
elif DEVICE != "cpu":
w[x] = w[x].to(device=DEVICE).contiguous()
if (dd.stream) or (DEVICE != "cpu"):
try:
w[x + "_mx"] = w[x + "_mx"].to(device=DEVICE).contiguous()
w[x + "_rx"] = w[x + "_rx"].to(device=DEVICE).contiguous()
w[x + "_my"] = w[x + "_my"].to(device=DEVICE).contiguous()
w[x + "_ry"] = w[x + "_ry"].to(device=DEVICE).contiguous()
except:
pass
if "ffn.value.weight" in x:
gc.collect()
if "cuda" in args.strategy_string:
torch.cuda.empty_cache()
shape = [i for i in w[x].shape if i != 1]
if len(shape) > 1:
shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)}"
else:
shape = f" {str(shape[0]).rjust(5)} "
if layer_id == 0 or layer_id >= args.n_layer - 1:
if print_need_newline:
prxxx("\n", end="")
print_need_newline = False
dt = str(w[x].dtype).replace("torch.", "")
dt = (
dt.replace("float32", "f32")
.replace("bfloat16", "bf16")
.replace("float16", "f16")
.replace("uint8", "i8")
)
prxxx(
x.ljust(32),
dt.rjust(4),
str(w[x].device).rjust(8),
shape,
" (pinned)" if w[x].is_pinned() else "",
)
else:
print_need_newline = True
prxxx(".", end="", flush=True)
if convert_and_save_and_exit:
w["_strategy"] = args.strategy_string
w["_rescale_layer"] = self.RESCALE_LAYER
w["_version"] = "0.7"
if not convert_and_save_and_exit.endswith(".pth"):
convert_and_save_and_exit += ".pth"
prxxx(f"Saving to {convert_and_save_and_exit}...")
torch.save(w, convert_and_save_and_exit)
prxxx(f"Converted and saved. Now this will exit.")
exit(0)
if self.version == 5.2 and os.environ["RWKV_CUDA_ON"] == "1":
2023-10-03 13:33:55 +08:00
HEAD_SIZE = args.n_att // args.n_head
if LoadPreCompileLibrary("rwkv5") is True:
rwkv5 = torch.ops.rwkv5
else:
rwkv5 = load(
name="rwkv5",
sources=[
f"{current_path}/cuda/rwkv5_op.cpp",
f"{current_path}/cuda/rwkv5.cu",
],
verbose=True,
extra_cuda_cflags=[
"-res-usage",
"--use_fast_math",
"-O3",
"-Xptxas -O3" if os.name != "nt" else "",
"--extra-device-vectorization",
f"-D_N_={HEAD_SIZE}",
],
)
2023-10-03 13:33:55 +08:00
class RWKV_5(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, H, state, r, k, v, w, u):
with torch.no_grad():
assert HEAD_SIZE == C // H
ctx.B = B
ctx.T = T
ctx.C = C
ctx.H = H
assert state.dtype == torch.float32
assert w.dtype == torch.float32
assert r.is_contiguous()
assert k.is_contiguous()
assert v.is_contiguous()
assert w.is_contiguous()
assert u.is_contiguous()
assert state.is_contiguous()
2023-11-24 17:55:16 +08:00
y = torch.empty(
(B, T, C),
device=w.device,
dtype=r.dtype,
memory_format=torch.contiguous_format,
)
if r.dtype == torch.bfloat16:
rwkv5.forward_bf16(B, T, C, H, state, r, k, v, w, u, y)
elif r.dtype == torch.float16:
rwkv5.forward_fp16(B, T, C, H, state, r, k, v, w, u, y)
elif r.dtype == torch.float32:
rwkv5.forward_fp32(B, T, C, H, state, r, k, v, w, u, y)
return y, state
2023-10-03 13:33:55 +08:00
self.RWKV_5 = RWKV_5
2023-11-24 17:55:16 +08:00
if self.version == 6.0 and os.environ["RWKV_CUDA_ON"] == "1":
HEAD_SIZE = args.n_att // args.n_head
if LoadPreCompileLibrary("rwkv6") is True:
rwkv6 = torch.ops.rwkv6
else:
rwkv6 = load(
name="rwkv6",
sources=[
f"{current_path}/cuda/rwkv6_op.cpp",
f"{current_path}/cuda/rwkv6.cu",
],
verbose=True,
extra_cuda_cflags=[
"-res-usage",
"--use_fast_math",
"-O3",
"-Xptxas -O3" if os.name != "nt" else "",
"--extra-device-vectorization",
f"-D_N_={HEAD_SIZE}",
f"-D_T_={4096}",
],
)
class RWKV_6(torch.autograd.Function):
@staticmethod
def forward(ctx, B, T, C, H, state, r, k, v, w, u):
with torch.no_grad():
assert HEAD_SIZE == C // H
ctx.B = B
ctx.T = T
ctx.C = C
ctx.H = H
assert state.dtype == torch.float32
assert w.dtype == torch.float32
assert r.is_contiguous()
assert k.is_contiguous()
assert v.is_contiguous()
assert w.is_contiguous()
assert u.is_contiguous()
eew = torch.exp(-torch.exp(w.float())).contiguous()
y = torch.empty(
(B, T, C),
device=w.device,
dtype=r.dtype,
memory_format=torch.contiguous_format,
)
if r.dtype == torch.bfloat16:
rwkv6.forward_bf16(
B, T, C, H, state, r, k, v, eew, u, y
)
elif r.dtype == torch.float16:
rwkv6.forward_fp16(
B, T, C, H, state, r, k, v, eew, u, y
)
elif r.dtype == torch.float32:
rwkv6.forward_fp32(
B, T, C, H, state, r, k, v, eew, u, y
)
return y, state
self.RWKV_6 = RWKV_6
2023-10-03 13:33:55 +08:00
gc.collect()
if "cuda" in args.strategy_string:
torch.cuda.empty_cache()
def RUN_RWKV_5(self, B, T, C, H, state, r, k, v, w, u):
return self.RWKV_5.apply(B, T, C, H, state, r, k, v, w, u)
2023-11-24 17:55:16 +08:00
def RUN_RWKV_6(self, B, T, C, H, state, r, k, v, w, u):
return self.RWKV_6.apply(B, T, C, H, state, r, k, v, w, u)
2023-10-03 13:33:55 +08:00
########################################################################################################
@MyFunction
def ffn_one(
self,
x,
sx,
ln_w,
ln_b,
k_mix,
r_mix,
kw,
vw,
rw,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
rx = xx * r_mix + sx * (1 - r_mix)
2023-11-03 23:27:14 +08:00
r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
2023-11-24 17:55:16 +08:00
vx = torch.relu(matmul(kx, kw, kmx, krx, kmy, kry)) ** 2
2023-11-03 23:27:14 +08:00
out = r * matmul(vx, vw, vmx, vrx, vmy, vry)
2023-10-03 13:33:55 +08:00
return x + out, xx
@MyFunction
def ffn_seq(
self,
x,
sx,
ln_w,
ln_b,
k_mix,
r_mix,
kw,
vw,
rw,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1, :]))
kx = xx * k_mix + sx * (1 - k_mix)
rx = xx * r_mix + sx * (1 - r_mix)
2023-11-03 23:27:14 +08:00
r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
2023-11-24 17:55:16 +08:00
vx = torch.relu(matmul(kx, kw, kmx, krx, kmy, kry)) ** 2
out = r * matmul(vx, vw, vmx, vrx, vmy, vry)
return x + out, xx[-1, :]
@MyFunction
def ffn_one_v6(
self,
x,
sx,
ln_w,
ln_b,
k_maa,
r_maa,
kw,
vw,
rw,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = sx - xx
kx = xx + sx * k_maa
rx = xx + sx * r_maa
r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
vx = torch.relu(matmul(kx, kw, kmx, krx, kmy, kry)) ** 2
out = r * matmul(vx, vw, vmx, vrx, vmy, vry)
return x + out, xx
@MyFunction
def ffn_seq_v6(
self,
x,
sx,
ln_w,
ln_b,
k_maa,
r_maa,
kw,
vw,
rw,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1, :]))
sx = sx - xx
kx = xx + sx * k_maa
rx = xx + sx * r_maa
r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
vx = torch.relu(matmul(kx, kw, kmx, krx, kmy, kry)) ** 2
2023-11-03 23:27:14 +08:00
out = r * matmul(vx, vw, vmx, vrx, vmy, vry)
2023-10-03 13:33:55 +08:00
return x + out, xx[-1, :]
########################################################################################################
@MyFunction
def att_one(
self,
x,
sx,
aa,
bb,
pp,
ln_w,
ln_b,
k_mix,
v_mix,
r_mix,
t_decay,
t_first,
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
2023-11-03 23:27:14 +08:00
r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
2023-10-03 13:33:55 +08:00
ww = t_first + k
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
ww = t_decay + pp
p = torch.maximum(ww, k)
e1 = torch.exp(ww - p)
e2 = torch.exp(k - p)
2023-11-03 23:27:14 +08:00
out = matmul(r * wkv, ow, omx, orx, omy, ory)
2023-10-03 13:33:55 +08:00
return x + out, xx, e1 * aa + e2 * v, e1 * bb + e2, p
@MyFunction
def att_seq(
self,
x,
sx,
aa,
bb,
pp,
ln_w,
ln_b,
k_mix,
v_mix,
r_mix,
t_decay,
t_first,
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1, :]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
2023-11-03 23:27:14 +08:00
r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
2023-10-03 13:33:55 +08:00
T = x.shape[0]
for t in range(T):
kk = k[t]
vv = v[t]
ww = t_first + kk
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
ww = t_decay + pp
p = torch.maximum(ww, kk)
e1 = torch.exp(ww - p)
e2 = torch.exp(kk - p)
aa = e1 * aa + e2 * vv
bb = e1 * bb + e2
pp = p
2023-11-03 23:27:14 +08:00
out = matmul(r * sx, ow, omx, orx, omy, ory)
2023-10-03 13:33:55 +08:00
return x + out, xx[-1, :], aa, bb, pp
########################################################################################################
@MyFunction
def att_one_v5(
self,
x,
sx,
s,
ln_w,
ln_b,
lx_w,
lx_b,
k_mix,
v_mix,
r_mix,
t_decay,
t_first,
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
H = t_decay.shape[0]
2023-11-24 17:55:16 +08:00
N = x.shape[-1] // H
2023-10-03 13:33:55 +08:00
2023-11-24 17:55:16 +08:00
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(H, 1, N)
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(H, N, 1)
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(H, 1, N)
2023-10-03 13:33:55 +08:00
2023-11-03 23:27:14 +08:00
a = matmul(k, v)
2023-10-03 13:33:55 +08:00
out = r @ (t_first * a + s)
s = a + t_decay * s
out = out.flatten()
out = F.group_norm(
2023-11-24 17:55:16 +08:00
out.unsqueeze(0), num_groups=H, weight=lx_w, bias=lx_b, eps=64e-5
2023-10-03 13:33:55 +08:00
).squeeze(0)
out = out.to(dtype=x.dtype)
2023-11-03 23:27:14 +08:00
out = matmul(out, ow, omx, orx, omy, ory)
2023-10-03 13:33:55 +08:00
return x + out, xx, s
@MyFunction
def att_seq_v5(
self,
x,
sx,
s,
ln_w,
ln_b,
lx_w,
lx_b,
k_mix,
v_mix,
r_mix,
t_decay,
t_first,
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1, :]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
H = t_decay.shape[0]
2023-11-24 17:55:16 +08:00
N = x.shape[-1] // H
2023-10-03 13:33:55 +08:00
T = x.shape[0]
w = t_decay.reshape(-1, 1)
u = t_first.reshape(-1, 1)
ws = w.pow(T).reshape(H, 1, 1)
ind = torch.arange(T - 1, -1, -1, device=w.device).unsqueeze(0).repeat(H, 1)
w = w.repeat(1, T).pow(ind)
wk = w.reshape(H, 1, T)
wb = wk.transpose(-2, -1).flip(1)
w = torch.cat([w[:, 1:], u], dim=1)
w = F.pad(w, (0, T))
w = torch.tile(w, [T])
w = w[:, :-T].reshape(-1, T, 2 * T - 1)
w = w[:, :, T - 1 :].reshape(H, T, T)
2023-11-03 23:27:14 +08:00
r = (
matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32)
2023-11-24 17:55:16 +08:00
.view(T, H, N)
2023-11-03 23:27:14 +08:00
.transpose(0, 1)
)
2023-10-03 13:33:55 +08:00
k = (
2023-11-03 23:27:14 +08:00
matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
2023-11-24 17:55:16 +08:00
.view(T, H, N)
.permute(1, 2, 0)
2023-10-03 13:33:55 +08:00
)
2023-11-03 23:27:14 +08:00
v = (
matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
2023-11-24 17:55:16 +08:00
.view(T, H, N)
2023-11-03 23:27:14 +08:00
.transpose(0, 1)
)
2023-10-03 13:33:55 +08:00
out = ((r @ k) * w) @ v + (r @ s) * wb
s = ws * s + (k * wk) @ v
2023-11-24 17:55:16 +08:00
out = out.transpose(0, 1).contiguous().reshape(T, H * N)
out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b, eps=64e-5)
2023-10-03 13:33:55 +08:00
out = out.to(dtype=x.dtype)
2023-11-03 23:27:14 +08:00
out = matmul(out, ow, omx, orx, omy, ory)
2023-10-03 13:33:55 +08:00
return x + out, xx[-1, :], s
########################################################################################################
@MyFunction
def att_one_v5_1(
self,
x,
sx,
s,
ln_w,
ln_b,
lx_w,
lx_b,
k_mix,
v_mix,
r_mix,
g_mix,
t_decay,
t_first,
kw,
vw,
rw,
gw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
2023-11-03 23:27:14 +08:00
gmx,
grx,
gmy,
gry,
2023-10-03 13:33:55 +08:00
omx,
orx,
omy,
ory,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
gx = xx * g_mix + sx * (1 - g_mix)
H = t_decay.shape[0]
2023-11-24 17:55:16 +08:00
N = x.shape[-1] // H
2023-10-03 13:33:55 +08:00
2023-11-24 17:55:16 +08:00
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(H, 1, N)
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(H, N, 1)
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(H, 1, N)
2023-11-03 23:27:14 +08:00
g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
2023-10-03 13:33:55 +08:00
2023-11-03 23:27:14 +08:00
a = matmul(k, v)
2023-10-03 13:33:55 +08:00
out = r @ (t_first * a + s)
s = a + t_decay * s
out = out.flatten()
out = F.group_norm(
2023-11-24 17:55:16 +08:00
out.unsqueeze(0), num_groups=H, weight=lx_w, bias=lx_b, eps=64e-5
2023-10-03 13:33:55 +08:00
).squeeze(0)
out = out.to(dtype=x.dtype) * g
2023-11-03 23:27:14 +08:00
out = matmul(out, ow, omx, orx, omy, ory)
2023-10-03 13:33:55 +08:00
return x + out, xx, s
@MyFunction
def att_seq_v5_1(
self,
x,
sx,
s,
ln_w,
ln_b,
lx_w,
lx_b,
k_mix,
v_mix,
r_mix,
g_mix,
t_decay,
t_first,
kw,
vw,
rw,
gw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
2023-11-03 23:27:14 +08:00
gmx,
grx,
gmy,
gry,
2023-10-03 13:33:55 +08:00
omx,
orx,
omy,
ory,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1, :]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
gx = xx * g_mix + sx * (1 - g_mix)
H = t_decay.shape[0]
2023-11-24 17:55:16 +08:00
N = x.shape[-1] // H
2023-10-03 13:33:55 +08:00
T = x.shape[0]
w = t_decay.reshape(-1, 1)
u = t_first.reshape(-1, 1)
ws = w.pow(T).reshape(H, 1, 1)
ind = torch.arange(T - 1, -1, -1, device=w.device).unsqueeze(0).repeat(H, 1)
w = w.repeat(1, T).pow(ind)
wk = w.reshape(H, 1, T)
wb = wk.transpose(-2, -1).flip(1)
w = torch.cat([w[:, 1:], u], dim=1)
w = F.pad(w, (0, T))
w = torch.tile(w, [T])
w = w[:, :-T].reshape(-1, T, 2 * T - 1)
w = w[:, :, T - 1 :].reshape(H, T, T)
2023-11-03 23:27:14 +08:00
r = (
matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32)
2023-11-24 17:55:16 +08:00
.view(T, H, N)
2023-11-03 23:27:14 +08:00
.transpose(0, 1)
)
2023-10-03 13:33:55 +08:00
k = (
2023-11-03 23:27:14 +08:00
matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
2023-11-24 17:55:16 +08:00
.view(T, H, N)
.permute(1, 2, 0)
2023-10-03 13:33:55 +08:00
)
2023-11-03 23:27:14 +08:00
v = (
matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
2023-11-24 17:55:16 +08:00
.view(T, H, N)
2023-11-03 23:27:14 +08:00
.transpose(0, 1)
)
g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
2023-10-03 13:33:55 +08:00
out = ((r @ k) * w) @ v + (r @ s) * wb
s = ws * s + (k * wk) @ v
2023-11-24 17:55:16 +08:00
out = out.transpose(0, 1).contiguous().reshape(T, H * N)
out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b, eps=64e-5)
2023-10-03 13:33:55 +08:00
out = out.to(dtype=x.dtype) * g
2023-11-03 23:27:14 +08:00
out = matmul(out, ow, omx, orx, omy, ory)
2023-10-03 13:33:55 +08:00
return x + out, xx[-1, :], s
########################################################################################################
@MyFunction
2023-10-03 13:33:55 +08:00
def att_seq_v5_2(
self,
x,
sx,
s,
ln_w,
ln_b,
lx_w,
lx_b,
k_mix,
v_mix,
r_mix,
g_mix,
t_decay,
t_first,
kw,
vw,
rw,
gw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
2023-11-03 23:27:14 +08:00
gmx,
grx,
gmy,
gry,
2023-10-03 13:33:55 +08:00
omx,
orx,
omy,
ory,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1, :]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
gx = xx * g_mix + sx * (1 - g_mix)
H = t_decay.shape[0]
2023-11-24 17:55:16 +08:00
N = x.shape[-1] // H
2023-10-03 13:33:55 +08:00
T = x.shape[0]
2023-11-03 23:27:14 +08:00
r = (
matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32)
2023-11-24 17:55:16 +08:00
.view(T, H, N)
2023-11-03 23:27:14 +08:00
.transpose(0, 1)
)
k = (
2023-11-03 23:27:14 +08:00
matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
2023-11-24 17:55:16 +08:00
.view(T, H, N)
.permute(1, 2, 0)
2023-10-03 13:33:55 +08:00
)
2023-11-03 23:27:14 +08:00
v = (
matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
2023-11-24 17:55:16 +08:00
.view(T, H, N)
2023-11-03 23:27:14 +08:00
.transpose(0, 1)
)
g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
2023-10-03 13:33:55 +08:00
2023-11-24 17:55:16 +08:00
out = torch.empty((T, H, N), dtype=r.dtype, device=r.device)
for t in range(T):
rt = r[:, t : t + 1, :]
kt = k[:, :, t : t + 1]
vt = v[:, t : t + 1, :]
2023-11-03 23:27:14 +08:00
at = matmul(kt, vt)
out[t] = (rt @ (t_first * at + s)).squeeze(1)
s = at + t_decay * s
2023-11-24 17:55:16 +08:00
out = out.reshape(T, H * N)
out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b, eps=64e-5)
out = out.to(dtype=x.dtype) * g
out = matmul(out, ow, omx, orx, omy, ory)
return x + out, xx[-1, :], s
########################################################################################################
@MyFunction
def att_one_v6_0(
self,
x,
sx,
s,
ln_w,
ln_b,
lx_w,
lx_b,
x_maa,
w_maa,
k_maa,
v_maa,
r_maa,
g_maa,
tm_w1,
tm_w2,
td_w1,
td_w2,
t_decay,
t_first,
kw,
vw,
rw,
gw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
gmx,
grx,
gmy,
gry,
omx,
orx,
omy,
ory,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = sx - xx
xxx = xx + sx * x_maa
xxx = torch.tanh(xxx @ tm_w1).view(5, 1, -1)
xxx = torch.bmm(xxx, tm_w2).view(5, -1)
mw, mk, mv, mr, mg = xxx.unbind(dim=0)
wx = xx + sx * (w_maa + mw)
kx = xx + sx * (k_maa + mk)
vx = xx + sx * (v_maa + mv)
rx = xx + sx * (r_maa + mr)
gx = xx + sx * (g_maa + mg)
H = t_decay.shape[0]
N = x.shape[-1] // H
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32).view(H, 1, N)
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32).view(H, N, 1)
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32).view(H, 1, N)
g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
w = t_decay + (torch.tanh(wx @ td_w1) @ td_w2).float().view(H, N, 1)
w = torch.exp(-torch.exp(w.float()))
a = matmul(k, v)
out = r @ (t_first * a + s)
s = a + w * s
out = out.flatten()
out = F.group_norm(
out.unsqueeze(0), num_groups=H, weight=lx_w, bias=lx_b, eps=64e-5
).squeeze(0)
out = out.to(dtype=x.dtype) * g
out = matmul(out, ow, omx, orx, omy, ory)
return x + out, xx, s
@MyFunction
def att_seq_v6_0(
self,
x,
sx,
s,
ln_w,
ln_b,
lx_w,
lx_b,
x_maa,
w_maa,
k_maa,
v_maa,
r_maa,
g_maa,
tm_w1,
tm_w2,
td_w1,
td_w2,
t_decay,
t_first,
kw,
vw,
rw,
gw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
gmx,
grx,
gmy,
gry,
omx,
orx,
omy,
ory,
):
H = t_decay.shape[0]
N = x.shape[-1] // H
T = x.shape[0]
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1, :])) - xx
xxx = xx + sx * x_maa
xxx = torch.tanh(xxx @ tm_w1).view(T, 5, -1).transpose(0, 1)
xxx = torch.bmm(xxx, tm_w2).view(5, T, -1)
mw, mk, mv, mr, mg = xxx.unbind(dim=0)
wx = xx + sx * (w_maa + mw)
kx = xx + sx * (k_maa + mk)
vx = xx + sx * (v_maa + mv)
rx = xx + sx * (r_maa + mr)
gx = xx + sx * (g_maa + mg)
r = (
matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32)
.view(T, H, N)
.transpose(0, 1)
)
k = (
matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
.view(T, H, N)
.permute(1, 2, 0)
)
v = (
matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
.view(T, H, N)
.transpose(0, 1)
)
g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
w = t_decay.view(1, H, N, 1) + (torch.tanh(wx @ td_w1) @ td_w2).float().view(
T, H, N, 1
)
w = torch.exp(-torch.exp(w.float()))
out = torch.empty((T, H, N), dtype=r.dtype, device=r.device)
for t in range(T):
rt = r[:, t : t + 1, :]
kt = k[:, :, t : t + 1]
vt = v[:, t : t + 1, :]
at = matmul(kt, vt)
out[t] = (rt @ (t_first * at + s)).squeeze(1)
s = at + w[t] * s
out = out.reshape(T, H * N)
out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b, eps=64e-5)
2023-10-03 13:33:55 +08:00
out = out.to(dtype=x.dtype) * g
2023-11-03 23:27:14 +08:00
out = matmul(out, ow, omx, orx, omy, ory)
2023-10-03 13:33:55 +08:00
return x + out, xx[-1, :], s
########################################################################################################
if os.environ["RWKV_CUDA_ON"] == "1":
@MyFunction
def cuda_att_seq(
self,
x,
sx,
aa,
bb,
pp,
ln_w,
ln_b,
k_mix,
v_mix,
r_mix,
t_decay,
t_first,
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
):
T, C = x.shape
xx = F.layer_norm(x, (C,), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1, :]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
2023-11-03 23:27:14 +08:00
r = torch.sigmoid(matmul(rx, rw, rmx, rrx, rmy, rry))
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
2023-10-03 13:33:55 +08:00
y, aa, bb, pp = cuda_wkv(T, C, t_decay, t_first, k, v, aa, bb, pp)
2023-11-03 23:27:14 +08:00
out = matmul(r * y.to(x.dtype), ow, omx, orx, omy, ory)
2023-10-03 13:33:55 +08:00
return x + out, xx[-1, :], aa, bb, pp
2023-11-24 17:55:16 +08:00
@MyFunction
def v5_2_before(
self,
x,
sx,
s,
ln_w,
ln_b,
lx_w,
lx_b,
k_mix,
v_mix,
r_mix,
g_mix,
t_decay,
t_first,
kw,
vw,
rw,
gw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
2023-11-03 23:27:14 +08:00
gmx,
grx,
gmy,
gry,
omx,
orx,
omy,
ory,
):
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1, :]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
gx = xx * g_mix + sx * (1 - g_mix)
2023-11-24 17:55:16 +08:00
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32)
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
return r, k, v, g, xx[-1, :], s.transpose(-1, -2).contiguous()
@MyFunction
def v5_2_after(
self, t_decay, out, s, x, xxx, g, lx_w, lx_b, ow, omx, orx, omy, ory
):
H = t_decay.shape[0]
N = x.shape[-1] // H
T = x.shape[0]
2023-11-24 17:55:16 +08:00
s = s.transpose(-1, -2)
out = out.reshape(T, H * N)
out = F.group_norm(out, num_groups=H, weight=lx_w, bias=lx_b, eps=64e-5)
out = out.to(dtype=x.dtype) * g
out = matmul(out, ow, omx, orx, omy, ory)
return x + out, xxx, s
def cuda_att_seq_v5_2(
self,
x,
sx,
s,
ln_w,
ln_b,
lx_w,
lx_b,
k_mix,
v_mix,
r_mix,
g_mix,
t_decay,
t_first,
kw,
vw,
rw,
gw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
gmx,
grx,
gmy,
gry,
omx,
orx,
omy,
ory,
):
H = t_decay.shape[0]
N = x.shape[-1] // H
T = x.shape[0]
r, k, v, g, xxx, ss = self.v5_2_before(
x,
sx,
s,
ln_w,
ln_b,
lx_w,
lx_b,
k_mix,
v_mix,
r_mix,
g_mix,
t_decay,
t_first,
kw,
vw,
rw,
gw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
gmx,
grx,
gmy,
gry,
omx,
orx,
omy,
ory,
)
out, s = self.RUN_RWKV_5(
1, T, self.args.n_att, H, ss, r, k, v, w=t_decay, u=t_first
)
return self.v5_2_after(
t_decay, out, s, x, xxx, g, lx_w, lx_b, ow, omx, orx, omy, ory
)
@MyFunction
def v6_0_before(
self,
x,
sx,
s,
ln_w,
ln_b,
lx_w,
lx_b,
x_maa,
w_maa,
k_maa,
v_maa,
r_maa,
g_maa,
tm_w1,
tm_w2,
td_w1,
td_w2,
t_decay,
t_first,
kw,
vw,
rw,
gw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
gmx,
grx,
gmy,
gry,
omx,
orx,
omy,
ory,
):
H = t_decay.shape[0]
N = x.shape[-1] // H
T = x.shape[0]
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1, :])) - xx
xxx = xx + sx * x_maa
xxx = torch.tanh(xxx @ tm_w1).view(T, 5, -1).transpose(0, 1)
xxx = torch.bmm(xxx, tm_w2).view(5, T, -1)
mw, mk, mv, mr, mg = xxx.unbind(dim=0)
wx = xx + sx * (w_maa + mw)
kx = xx + sx * (k_maa + mk)
vx = xx + sx * (v_maa + mv)
rx = xx + sx * (r_maa + mr)
gx = xx + sx * (g_maa + mg)
2023-11-03 23:27:14 +08:00
r = matmul(rx, rw, rmx, rrx, rmy, rry, output_dtype=torch.float32)
k = matmul(kx, kw, kmx, krx, kmy, kry, output_dtype=torch.float32)
v = matmul(vx, vw, vmx, vrx, vmy, vry, output_dtype=torch.float32)
g = F.silu(matmul(gx, gw, gmx, grx, gmy, gry))
2023-11-24 17:55:16 +08:00
w = t_decay.view(1, H, N, 1) + (
torch.tanh(wx @ td_w1) @ td_w2
).float().view(T, H, N, 1)
2023-11-24 17:55:16 +08:00
return r, k, v, g, w, xx[-1, :], s.transpose(-1, -2).contiguous()
2023-11-24 17:55:16 +08:00
def cuda_att_seq_v6_0(
self,
x,
sx,
s,
ln_w,
ln_b,
lx_w,
lx_b,
x_maa,
w_maa,
k_maa,
v_maa,
r_maa,
g_maa,
tm_w1,
tm_w2,
td_w1,
td_w2,
t_decay,
t_first,
kw,
vw,
rw,
gw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
gmx,
grx,
gmy,
gry,
omx,
orx,
omy,
ory,
):
H = t_decay.shape[0]
N = x.shape[-1] // H
T = x.shape[0]
r, k, v, g, w, xxx, ss = self.v6_0_before(
x,
sx,
s,
ln_w,
ln_b,
lx_w,
lx_b,
x_maa,
w_maa,
k_maa,
v_maa,
r_maa,
g_maa,
tm_w1,
tm_w2,
td_w1,
td_w2,
t_decay,
t_first,
kw,
vw,
rw,
gw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
gmx,
grx,
gmy,
gry,
omx,
orx,
omy,
ory,
)
out, s = self.RUN_RWKV_6(
1, T, self.args.n_att, H, ss, r, k, v, w=w, u=t_first
)
return self.v5_2_after(
t_decay, out, s, x, xxx, g, lx_w, lx_b, ow, omx, orx, omy, ory
)
2023-10-03 13:33:55 +08:00
########################################################################################################
def forward(self, tokens, state, full_output=False):
with torch.no_grad():
w = self.w
args = self.args
if state == None:
if self.version == 4:
state = [None] * args.n_layer * 5
for i in range(
args.n_layer
): # state: 0=att_xx 1=att_aa 2=att_bb 3=att_pp 4=ffn_xx
dd = self.strategy[i]
dev = dd.device
atype = dd.atype
state[i * 5 + 0] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()
state[i * 5 + 1] = torch.zeros(
args.n_att,
dtype=torch.float,
requires_grad=False,
device=dev,
).contiguous()
state[i * 5 + 2] = torch.zeros(
args.n_att,
dtype=torch.float,
requires_grad=False,
device=dev,
).contiguous()
state[i * 5 + 3] = (
torch.zeros(
args.n_att,
dtype=torch.float,
requires_grad=False,
device=dev,
).contiguous()
- 1e30
)
state[i * 5 + 4] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()
2023-11-24 17:55:16 +08:00
elif int(self.version) in [5, 6]:
2023-10-03 13:33:55 +08:00
state = [None] * args.n_layer * 3
for i in range(args.n_layer): # state: 0=att_xx 1=att_kv 2=ffn_xx
dd = self.strategy[i]
dev = dd.device
atype = dd.atype
state[i * 3 + 0] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()
state[i * 3 + 1] = torch.zeros(
(
args.n_head,
args.n_att // args.n_head,
args.n_att // args.n_head,
),
dtype=torch.float,
requires_grad=False,
device=dev,
).contiguous()
state[i * 3 + 2] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()
seq_mode = len(tokens) > 1
x = w["emb.weight"][tokens if seq_mode else tokens[0]]
for i in range(args.n_layer):
bbb = f"blocks.{i}."
att = f"blocks.{i}.att."
ffn = f"blocks.{i}.ffn."
dd = self.strategy[i]
dev = dd.device
atype = dd.atype
wtype = dd.wtype
if seq_mode:
cuda_applicable = os.environ[
"RWKV_CUDA_ON"
] == "1" and "cuda" in str(dev)
if cuda_applicable:
2023-11-03 23:27:14 +08:00
ATT = self.cuda_att_seq
2023-10-03 13:33:55 +08:00
else:
2023-11-03 23:27:14 +08:00
ATT = self.att_seq
2023-10-03 13:33:55 +08:00
if self.version == 5:
ATT = self.att_seq_v5
elif self.version == 5.1:
ATT = self.att_seq_v5_1
elif self.version == 5.2:
ATT = self.att_seq_v5_2
if cuda_applicable:
ATT = self.cuda_att_seq_v5_2
2023-11-24 17:55:16 +08:00
elif self.version == 6.0:
ATT = self.att_seq_v6_0
if cuda_applicable:
ATT = self.cuda_att_seq_v6_0
2023-11-03 23:27:14 +08:00
FFN = self.ffn_seq
2023-11-24 17:55:16 +08:00
if self.version >= 6.0:
FFN = self.ffn_seq_v6
2023-10-03 13:33:55 +08:00
else:
2023-11-03 23:27:14 +08:00
ATT = self.att_one
2023-10-03 13:33:55 +08:00
if self.version == 5:
ATT = self.att_one_v5
elif self.version == 5.1:
ATT = self.att_one_v5_1
elif self.version == 5.2:
ATT = self.att_one_v5_1 # same as v5.1
2023-11-24 17:55:16 +08:00
elif self.version == 6.0:
ATT = self.att_one_v6_0
2023-11-03 23:27:14 +08:00
FFN = self.ffn_one
2023-11-24 17:55:16 +08:00
if self.version >= 6.0:
FFN = self.ffn_one_v6
2023-10-03 13:33:55 +08:00
x = x.to(dtype=atype, device=dev)
kw = w[f"{att}key.weight"]
vw = w[f"{att}value.weight"]
rw = w[f"{att}receptance.weight"]
ow = w[f"{att}output.weight"]
if dd.stream:
kw = kw.to(device=dev, non_blocking=True)
vw = vw.to(device=dev, non_blocking=True)
rw = rw.to(device=dev, non_blocking=True)
ow = ow.to(device=dev, non_blocking=True)
kmx = w[f"{att}key.weight_mx"] if wtype == torch.uint8 else x
krx = w[f"{att}key.weight_rx"] if wtype == torch.uint8 else x
kmy = w[f"{att}key.weight_my"] if wtype == torch.uint8 else x
kry = w[f"{att}key.weight_ry"] if wtype == torch.uint8 else x
vmx = w[f"{att}value.weight_mx"] if wtype == torch.uint8 else x
vrx = w[f"{att}value.weight_rx"] if wtype == torch.uint8 else x
vmy = w[f"{att}value.weight_my"] if wtype == torch.uint8 else x
vry = w[f"{att}value.weight_ry"] if wtype == torch.uint8 else x
rmx = w[f"{att}receptance.weight_mx"] if wtype == torch.uint8 else x
rrx = w[f"{att}receptance.weight_rx"] if wtype == torch.uint8 else x
rmy = w[f"{att}receptance.weight_my"] if wtype == torch.uint8 else x
rry = w[f"{att}receptance.weight_ry"] if wtype == torch.uint8 else x
omx = w[f"{att}output.weight_mx"] if wtype == torch.uint8 else x
orx = w[f"{att}output.weight_rx"] if wtype == torch.uint8 else x
omy = w[f"{att}output.weight_my"] if wtype == torch.uint8 else x
ory = w[f"{att}output.weight_ry"] if wtype == torch.uint8 else x
2023-11-24 17:55:16 +08:00
if self.version in [5.1, 5.2, 6.0]:
2023-10-03 13:33:55 +08:00
gw = w[f"{att}gate.weight"]
if dd.stream:
gw = gw.to(device=dev, non_blocking=True)
gmx = w[f"{att}gate.weight_mx"] if wtype == torch.uint8 else x
grx = w[f"{att}gate.weight_rx"] if wtype == torch.uint8 else x
gmy = w[f"{att}gate.weight_my"] if wtype == torch.uint8 else x
gry = w[f"{att}gate.weight_ry"] if wtype == torch.uint8 else x
if self.version == 4:
(
x,
state[i * 5 + 0],
state[i * 5 + 1],
state[i * 5 + 2],
state[i * 5 + 3],
) = ATT(
x,
state[i * 5 + 0],
state[i * 5 + 1],
state[i * 5 + 2],
state[i * 5 + 3],
w[f"{bbb}ln1.weight"],
w[f"{bbb}ln1.bias"],
w[f"{att}time_mix_k"],
w[f"{att}time_mix_v"],
w[f"{att}time_mix_r"],
w[f"{att}time_decay"],
w[f"{att}time_first"],
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
)
elif self.version == 5:
x, state[i * 3 + 0], state[i * 3 + 1] = ATT(
x,
state[i * 3 + 0],
state[i * 3 + 1],
w[f"{bbb}ln1.weight"],
w[f"{bbb}ln1.bias"],
w[f"{att}ln_x.weight"],
w[f"{att}ln_x.bias"],
w[f"{att}time_mix_k"],
w[f"{att}time_mix_v"],
w[f"{att}time_mix_r"],
w[f"{att}time_decay"],
w[f"{att}time_first"],
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
)
2023-11-24 17:55:16 +08:00
elif self.version in [5.1, 5.2]:
2023-10-03 13:33:55 +08:00
x, state[i * 3 + 0], state[i * 3 + 1] = ATT(
x,
state[i * 3 + 0],
state[i * 3 + 1],
w[f"{bbb}ln1.weight"],
w[f"{bbb}ln1.bias"],
w[f"{att}ln_x.weight"],
w[f"{att}ln_x.bias"],
w[f"{att}time_mix_k"],
w[f"{att}time_mix_v"],
w[f"{att}time_mix_r"],
w[f"{att}time_mix_g"],
w[f"{att}time_decay"],
w[f"{att}time_first"],
kw,
vw,
rw,
gw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
2023-11-03 23:27:14 +08:00
gmx,
grx,
gmy,
gry,
2023-10-03 13:33:55 +08:00
omx,
orx,
omy,
ory,
)
2023-11-24 17:55:16 +08:00
elif self.version == 6.0:
x, state[i * 3 + 0], state[i * 3 + 1] = ATT(
x,
state[i * 3 + 0],
state[i * 3 + 1],
w[f"{bbb}ln1.weight"],
w[f"{bbb}ln1.bias"],
w[f"{att}ln_x.weight"],
w[f"{att}ln_x.bias"],
w[f"{att}time_maa_x"],
w[f"{att}time_maa_w"],
w[f"{att}time_maa_k"],
w[f"{att}time_maa_v"],
w[f"{att}time_maa_r"],
w[f"{att}time_maa_g"],
w[f"{att}time_maa_w1"],
w[f"{att}time_maa_w2"],
w[f"{att}time_decay_w1"],
w[f"{att}time_decay_w2"],
w[f"{att}time_decay"],
w[f"{att}time_first"],
kw,
vw,
rw,
gw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
gmx,
grx,
gmy,
gry,
omx,
orx,
omy,
ory,
)
2023-10-03 13:33:55 +08:00
if dd.stream:
del kw, vw, rw, ow
2023-11-24 17:55:16 +08:00
if self.version in [5.1, 5.2, 6.0]:
del gw
2023-10-03 13:33:55 +08:00
kw = w[f"{ffn}key.weight"]
vw = w[f"{ffn}value.weight"]
rw = w[f"{ffn}receptance.weight"]
if dd.stream:
kw = kw.to(device=dev, non_blocking=True)
vw = vw.to(device=dev, non_blocking=True)
rw = rw.to(device=dev, non_blocking=True)
kmx = w[f"{ffn}key.weight_mx"] if wtype == torch.uint8 else x
krx = w[f"{ffn}key.weight_rx"] if wtype == torch.uint8 else x
kmy = w[f"{ffn}key.weight_my"] if wtype == torch.uint8 else x
kry = w[f"{ffn}key.weight_ry"] if wtype == torch.uint8 else x
vmx = w[f"{ffn}value.weight_mx"] if wtype == torch.uint8 else x
vrx = w[f"{ffn}value.weight_rx"] if wtype == torch.uint8 else x
vmy = w[f"{ffn}value.weight_my"] if wtype == torch.uint8 else x
vry = w[f"{ffn}value.weight_ry"] if wtype == torch.uint8 else x
rmx = w[f"{ffn}receptance.weight_mx"] if wtype == torch.uint8 else x
rrx = w[f"{ffn}receptance.weight_rx"] if wtype == torch.uint8 else x
rmy = w[f"{ffn}receptance.weight_my"] if wtype == torch.uint8 else x
rry = w[f"{ffn}receptance.weight_ry"] if wtype == torch.uint8 else x
if self.version == 4:
offset = i * 5 + 4
2023-11-24 17:55:16 +08:00
elif int(self.version) in [5, 6]:
2023-10-03 13:33:55 +08:00
offset = i * 3 + 2
2023-11-24 17:55:16 +08:00
if self.version < 6.0:
x, state[offset] = FFN(
x,
state[offset],
w[f"{bbb}ln2.weight"],
w[f"{bbb}ln2.bias"],
w[f"{ffn}time_mix_k"],
w[f"{ffn}time_mix_r"],
kw,
vw,
rw,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
)
else:
x, state[offset] = FFN(
x,
state[offset],
w[f"{bbb}ln2.weight"],
w[f"{bbb}ln2.bias"],
w[f"{ffn}time_maa_k"],
w[f"{ffn}time_maa_r"],
kw,
vw,
rw,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
)
2023-10-03 13:33:55 +08:00
if dd.stream:
del kw, vw, rw
if self.RESCALE_LAYER > 0:
if (i + 1) % self.RESCALE_LAYER == 0:
x = x / 2
dd = self.strategy[args.n_layer]
x = x[-1, :] if (seq_mode and (not full_output)) else x
x = x.to(dtype=dd.atype, device=dd.device)
x = F.layer_norm(
x, (args.n_embd,), weight=w["ln_out.weight"], bias=w["ln_out.bias"]
)
if w["head.weight"].dtype != torch.uint8:
x = x @ w["head.weight"]
else:
if seq_mode and full_output:
2023-11-03 23:27:14 +08:00
x = mm8_seq(
2023-10-03 13:33:55 +08:00
x,
w["head.weight"],
w["head.weight_mx"],
w["head.weight_rx"],
w["head.weight_my"],
w["head.weight_ry"],
)
else:
2023-11-03 23:27:14 +08:00
x = mm8_one(
2023-10-03 13:33:55 +08:00
x,
w["head.weight"],
w["head.weight_mx"],
w["head.weight_rx"],
w["head.weight_my"],
w["head.weight_ry"],
)
return x.float(), state