avs2bdnxml/x86inc.asm
2013-07-23 12:04:20 +02:00

1458 lines
39 KiB
NASM

;*****************************************************************************
;* x86inc.asm: x264asm abstraction layer
;*****************************************************************************
;* Copyright (C) 2005-2013 x264 project
;*
;* Authors: Loren Merritt <lorenm@u.washington.edu>
;* Anton Mitrofanov <BugMaster@narod.ru>
;* Jason Garrett-Glaser <darkshikari@gmail.com>
;* Henrik Gramner <hengar-6@student.ltu.se>
;*
;* Permission to use, copy, modify, and/or distribute this software for any
;* purpose with or without fee is hereby granted, provided that the above
;* copyright notice and this permission notice appear in all copies.
;*
;* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
;* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
;* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
;* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
;* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
;* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
;* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
;*****************************************************************************
; This is a header file for the x264ASM assembly language, which uses
; NASM/YASM syntax combined with a large number of macros to provide easy
; abstraction between different calling conventions (x86_32, win64, linux64).
; It also has various other useful features to simplify writing the kind of
; DSP functions that are most often used in x264.
; Unlike the rest of x264, this file is available under an ISC license, as it
; has significant usefulness outside of x264 and we want it to be available
; to the largest audience possible. Of course, if you modify it for your own
; purposes to add a new feature, we strongly encourage contributing a patch
; as this feature might be useful for others as well. Send patches or ideas
; to x264-devel@videolan.org .
%ifndef private_prefix
%define private_prefix asm
%endif
%ifndef public_prefix
%define public_prefix private_prefix
%endif
%define WIN64 0
%define UNIX64 0
%if ARCH_X86_64
%ifidn __OUTPUT_FORMAT__,win32
%define WIN64 1
%elifidn __OUTPUT_FORMAT__,win64
%define WIN64 1
%else
%define UNIX64 1
%endif
%endif
%ifdef PREFIX
%define mangle(x) _ %+ x
%else
%define mangle(x) x
%endif
; Name of the .rodata section.
; Kludge: Something on OS X fails to align .rodata even given an align attribute,
; so use a different read-only section.
%macro SECTION_RODATA 0-1 16
%ifidn __OUTPUT_FORMAT__,macho64
SECTION .text align=%1
%elifidn __OUTPUT_FORMAT__,macho
SECTION .text align=%1
fakegot:
%elifidn __OUTPUT_FORMAT__,aout
section .text
%else
SECTION .rodata align=%1
%endif
%endmacro
; aout does not support align=
%macro SECTION_TEXT 0-1 16
%ifidn __OUTPUT_FORMAT__,aout
SECTION .text
%else
SECTION .text align=%1
%endif
%endmacro
%if WIN64
%define PIC
%elif ARCH_X86_64 == 0
; x86_32 doesn't require PIC.
; Some distros prefer shared objects to be PIC, but nothing breaks if
; the code contains a few textrels, so we'll skip that complexity.
%undef PIC
%endif
%ifdef PIC
default rel
%endif
; Always use long nops (reduces 0x90 spam in disassembly on x86_32)
CPU amdnop
; Macros to eliminate most code duplication between x86_32 and x86_64:
; Currently this works only for leaf functions which load all their arguments
; into registers at the start, and make no other use of the stack. Luckily that
; covers most of x264's asm.
; PROLOGUE:
; %1 = number of arguments. loads them from stack if needed.
; %2 = number of registers used. pushes callee-saved regs if needed.
; %3 = number of xmm registers used. pushes callee-saved xmm regs if needed.
; %4 = (optional) stack size to be allocated. If not aligned (x86-32 ICC 10.x,
; MSVC or YMM), the stack will be manually aligned (to 16 or 32 bytes),
; and an extra register will be allocated to hold the original stack
; pointer (to not invalidate r0m etc.). To prevent the use of an extra
; register as stack pointer, request a negative stack size.
; %4+/%5+ = list of names to define to registers
; PROLOGUE can also be invoked by adding the same options to cglobal
; e.g.
; cglobal foo, 2,3,0, dst, src, tmp
; declares a function (foo), taking two args (dst and src) and one local variable (tmp)
; TODO Some functions can use some args directly from the stack. If they're the
; last args then you can just not declare them, but if they're in the middle
; we need more flexible macro.
; RET:
; Pops anything that was pushed by PROLOGUE, and returns.
; REP_RET:
; Use this instead of RET if it's a branch target.
; registers:
; rN and rNq are the native-size register holding function argument N
; rNd, rNw, rNb are dword, word, and byte size
; rNh is the high 8 bits of the word size
; rNm is the original location of arg N (a register or on the stack), dword
; rNmp is native size
%macro DECLARE_REG 2-3
%define r%1q %2
%define r%1d %2d
%define r%1w %2w
%define r%1b %2b
%define r%1h %2h
%if %0 == 2
%define r%1m %2d
%define r%1mp %2
%elif ARCH_X86_64 ; memory
%define r%1m [rstk + stack_offset + %3]
%define r%1mp qword r %+ %1 %+ m
%else
%define r%1m [rstk + stack_offset + %3]
%define r%1mp dword r %+ %1 %+ m
%endif
%define r%1 %2
%endmacro
%macro DECLARE_REG_SIZE 3
%define r%1q r%1
%define e%1q r%1
%define r%1d e%1
%define e%1d e%1
%define r%1w %1
%define e%1w %1
%define r%1h %3
%define e%1h %3
%define r%1b %2
%define e%1b %2
%if ARCH_X86_64 == 0
%define r%1 e%1
%endif
%endmacro
DECLARE_REG_SIZE ax, al, ah
DECLARE_REG_SIZE bx, bl, bh
DECLARE_REG_SIZE cx, cl, ch
DECLARE_REG_SIZE dx, dl, dh
DECLARE_REG_SIZE si, sil, null
DECLARE_REG_SIZE di, dil, null
DECLARE_REG_SIZE bp, bpl, null
; t# defines for when per-arch register allocation is more complex than just function arguments
%macro DECLARE_REG_TMP 1-*
%assign %%i 0
%rep %0
CAT_XDEFINE t, %%i, r%1
%assign %%i %%i+1
%rotate 1
%endrep
%endmacro
%macro DECLARE_REG_TMP_SIZE 0-*
%rep %0
%define t%1q t%1 %+ q
%define t%1d t%1 %+ d
%define t%1w t%1 %+ w
%define t%1h t%1 %+ h
%define t%1b t%1 %+ b
%rotate 1
%endrep
%endmacro
DECLARE_REG_TMP_SIZE 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14
%if ARCH_X86_64
%define gprsize 8
%else
%define gprsize 4
%endif
%macro PUSH 1
push %1
%ifidn rstk, rsp
%assign stack_offset stack_offset+gprsize
%endif
%endmacro
%macro POP 1
pop %1
%ifidn rstk, rsp
%assign stack_offset stack_offset-gprsize
%endif
%endmacro
%macro PUSH_IF_USED 1-*
%rep %0
%if %1 < regs_used
PUSH r%1
%endif
%rotate 1
%endrep
%endmacro
%macro POP_IF_USED 1-*
%rep %0
%if %1 < regs_used
pop r%1
%endif
%rotate 1
%endrep
%endmacro
%macro LOAD_IF_USED 1-*
%rep %0
%if %1 < num_args
mov r%1, r %+ %1 %+ mp
%endif
%rotate 1
%endrep
%endmacro
%macro SUB 2
sub %1, %2
%ifidn %1, rstk
%assign stack_offset stack_offset+(%2)
%endif
%endmacro
%macro ADD 2
add %1, %2
%ifidn %1, rstk
%assign stack_offset stack_offset-(%2)
%endif
%endmacro
%macro movifnidn 2
%ifnidn %1, %2
mov %1, %2
%endif
%endmacro
%macro movsxdifnidn 2
%ifnidn %1, %2
movsxd %1, %2
%endif
%endmacro
%macro ASSERT 1
%if (%1) == 0
%error assert failed
%endif
%endmacro
%macro DEFINE_ARGS 0-*
%ifdef n_arg_names
%assign %%i 0
%rep n_arg_names
CAT_UNDEF arg_name %+ %%i, q
CAT_UNDEF arg_name %+ %%i, d
CAT_UNDEF arg_name %+ %%i, w
CAT_UNDEF arg_name %+ %%i, h
CAT_UNDEF arg_name %+ %%i, b
CAT_UNDEF arg_name %+ %%i, m
CAT_UNDEF arg_name %+ %%i, mp
CAT_UNDEF arg_name, %%i
%assign %%i %%i+1
%endrep
%endif
%xdefine %%stack_offset stack_offset
%undef stack_offset ; so that the current value of stack_offset doesn't get baked in by xdefine
%assign %%i 0
%rep %0
%xdefine %1q r %+ %%i %+ q
%xdefine %1d r %+ %%i %+ d
%xdefine %1w r %+ %%i %+ w
%xdefine %1h r %+ %%i %+ h
%xdefine %1b r %+ %%i %+ b
%xdefine %1m r %+ %%i %+ m
%xdefine %1mp r %+ %%i %+ mp
CAT_XDEFINE arg_name, %%i, %1
%assign %%i %%i+1
%rotate 1
%endrep
%xdefine stack_offset %%stack_offset
%assign n_arg_names %0
%endmacro
%macro ALLOC_STACK 1-2 0 ; stack_size, n_xmm_regs (for win64 only)
%ifnum %1
%if %1 != 0
%assign %%stack_alignment ((mmsize + 15) & ~15)
%assign stack_size %1
%if stack_size < 0
%assign stack_size -stack_size
%endif
%if mmsize != 8
%assign xmm_regs_used %2
%endif
%if mmsize <= 16 && HAVE_ALIGNED_STACK
%assign stack_size_padded stack_size + %%stack_alignment - gprsize - (stack_offset & (%%stack_alignment - 1))
%if xmm_regs_used > 6
%assign stack_size_padded stack_size_padded + (xmm_regs_used - 6) * 16
%endif
SUB rsp, stack_size_padded
%else
%assign %%reg_num (regs_used - 1)
%xdefine rstk r %+ %%reg_num
; align stack, and save original stack location directly above
; it, i.e. in [rsp+stack_size_padded], so we can restore the
; stack in a single instruction (i.e. mov rsp, rstk or mov
; rsp, [rsp+stack_size_padded])
mov rstk, rsp
%assign stack_size_padded stack_size
%if xmm_regs_used > 6
%assign stack_size_padded stack_size_padded + (xmm_regs_used - 6) * 16
%if mmsize == 32 && xmm_regs_used & 1
; re-align to 32 bytes
%assign stack_size_padded (stack_size_padded + 16)
%endif
%endif
%if %1 < 0 ; need to store rsp on stack
sub rsp, gprsize+stack_size_padded
and rsp, ~(%%stack_alignment-1)
%xdefine rstkm [rsp+stack_size_padded]
mov rstkm, rstk
%else ; can keep rsp in rstk during whole function
sub rsp, stack_size_padded
and rsp, ~(%%stack_alignment-1)
%xdefine rstkm rstk
%endif
%endif
%if xmm_regs_used > 6
WIN64_PUSH_XMM
%endif
%endif
%endif
%endmacro
%macro SETUP_STACK_POINTER 1
%ifnum %1
%if %1 != 0 && (HAVE_ALIGNED_STACK == 0 || mmsize == 32)
%if %1 > 0
%assign regs_used (regs_used + 1)
%elif ARCH_X86_64 && regs_used == num_args && num_args <= 4 + UNIX64 * 2
%warning "Stack pointer will overwrite register argument"
%endif
%endif
%endif
%endmacro
%macro DEFINE_ARGS_INTERNAL 3+
%ifnum %2
DEFINE_ARGS %3
%elif %1 == 4
DEFINE_ARGS %2
%elif %1 > 4
DEFINE_ARGS %2, %3
%endif
%endmacro
%if WIN64 ; Windows x64 ;=================================================
DECLARE_REG 0, rcx
DECLARE_REG 1, rdx
DECLARE_REG 2, R8
DECLARE_REG 3, R9
DECLARE_REG 4, R10, 40
DECLARE_REG 5, R11, 48
DECLARE_REG 6, rax, 56
DECLARE_REG 7, rdi, 64
DECLARE_REG 8, rsi, 72
DECLARE_REG 9, rbx, 80
DECLARE_REG 10, rbp, 88
DECLARE_REG 11, R12, 96
DECLARE_REG 12, R13, 104
DECLARE_REG 13, R14, 112
DECLARE_REG 14, R15, 120
%macro PROLOGUE 2-5+ 0 ; #args, #regs, #xmm_regs, [stack_size,] arg_names...
%assign num_args %1
%assign regs_used %2
ASSERT regs_used >= num_args
SETUP_STACK_POINTER %4
ASSERT regs_used <= 15
PUSH_IF_USED 7, 8, 9, 10, 11, 12, 13, 14
ALLOC_STACK %4, %3
%if mmsize != 8 && stack_size == 0
WIN64_SPILL_XMM %3
%endif
LOAD_IF_USED 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
DEFINE_ARGS_INTERNAL %0, %4, %5
%endmacro
%macro WIN64_PUSH_XMM 0
%assign %%i xmm_regs_used
%rep (xmm_regs_used-6)
%assign %%i %%i-1
movaps [rsp + (%%i-6)*16 + stack_size + (~stack_offset&8)], xmm %+ %%i
%endrep
%endmacro
%macro WIN64_SPILL_XMM 1
%assign xmm_regs_used %1
ASSERT xmm_regs_used <= 16
%if xmm_regs_used > 6
SUB rsp, (xmm_regs_used-6)*16+16
WIN64_PUSH_XMM
%endif
%endmacro
%macro WIN64_RESTORE_XMM_INTERNAL 1
%if xmm_regs_used > 6
%assign %%i xmm_regs_used
%rep (xmm_regs_used-6)
%assign %%i %%i-1
movaps xmm %+ %%i, [%1 + (%%i-6)*16+stack_size+(~stack_offset&8)]
%endrep
%if stack_size_padded == 0
add %1, (xmm_regs_used-6)*16+16
%endif
%endif
%if stack_size_padded > 0
%if stack_size > 0 && (mmsize == 32 || HAVE_ALIGNED_STACK == 0)
mov rsp, rstkm
%else
add %1, stack_size_padded
%endif
%endif
%endmacro
%macro WIN64_RESTORE_XMM 1
WIN64_RESTORE_XMM_INTERNAL %1
%assign stack_offset (stack_offset-stack_size_padded)
%assign xmm_regs_used 0
%endmacro
%define has_epilogue regs_used > 7 || xmm_regs_used > 6 || mmsize == 32 || stack_size > 0
%macro RET 0
WIN64_RESTORE_XMM_INTERNAL rsp
POP_IF_USED 14, 13, 12, 11, 10, 9, 8, 7
%if mmsize == 32
vzeroupper
%endif
AUTO_REP_RET
%endmacro
%elif ARCH_X86_64 ; *nix x64 ;=============================================
DECLARE_REG 0, rdi
DECLARE_REG 1, rsi
DECLARE_REG 2, rdx
DECLARE_REG 3, rcx
DECLARE_REG 4, R8
DECLARE_REG 5, R9
DECLARE_REG 6, rax, 8
DECLARE_REG 7, R10, 16
DECLARE_REG 8, R11, 24
DECLARE_REG 9, rbx, 32
DECLARE_REG 10, rbp, 40
DECLARE_REG 11, R12, 48
DECLARE_REG 12, R13, 56
DECLARE_REG 13, R14, 64
DECLARE_REG 14, R15, 72
%macro PROLOGUE 2-5+ ; #args, #regs, #xmm_regs, [stack_size,] arg_names...
%assign num_args %1
%assign regs_used %2
ASSERT regs_used >= num_args
SETUP_STACK_POINTER %4
ASSERT regs_used <= 15
PUSH_IF_USED 9, 10, 11, 12, 13, 14
ALLOC_STACK %4
LOAD_IF_USED 6, 7, 8, 9, 10, 11, 12, 13, 14
DEFINE_ARGS_INTERNAL %0, %4, %5
%endmacro
%define has_epilogue regs_used > 9 || mmsize == 32 || stack_size > 0
%macro RET 0
%if stack_size_padded > 0
%if mmsize == 32 || HAVE_ALIGNED_STACK == 0
mov rsp, rstkm
%else
add rsp, stack_size_padded
%endif
%endif
POP_IF_USED 14, 13, 12, 11, 10, 9
%if mmsize == 32
vzeroupper
%endif
AUTO_REP_RET
%endmacro
%else ; X86_32 ;==============================================================
DECLARE_REG 0, eax, 4
DECLARE_REG 1, ecx, 8
DECLARE_REG 2, edx, 12
DECLARE_REG 3, ebx, 16
DECLARE_REG 4, esi, 20
DECLARE_REG 5, edi, 24
DECLARE_REG 6, ebp, 28
%define rsp esp
%macro DECLARE_ARG 1-*
%rep %0
%define r%1m [rstk + stack_offset + 4*%1 + 4]
%define r%1mp dword r%1m
%rotate 1
%endrep
%endmacro
DECLARE_ARG 7, 8, 9, 10, 11, 12, 13, 14
%macro PROLOGUE 2-5+ ; #args, #regs, #xmm_regs, [stack_size,] arg_names...
%assign num_args %1
%assign regs_used %2
ASSERT regs_used >= num_args
%if num_args > 7
%assign num_args 7
%endif
%if regs_used > 7
%assign regs_used 7
%endif
SETUP_STACK_POINTER %4
ASSERT regs_used <= 7
PUSH_IF_USED 3, 4, 5, 6
ALLOC_STACK %4
LOAD_IF_USED 0, 1, 2, 3, 4, 5, 6
DEFINE_ARGS_INTERNAL %0, %4, %5
%endmacro
%define has_epilogue regs_used > 3 || mmsize == 32 || stack_size > 0
%macro RET 0
%if stack_size_padded > 0
%if mmsize == 32 || HAVE_ALIGNED_STACK == 0
mov rsp, rstkm
%else
add rsp, stack_size_padded
%endif
%endif
POP_IF_USED 6, 5, 4, 3
%if mmsize == 32
vzeroupper
%endif
AUTO_REP_RET
%endmacro
%endif ;======================================================================
%if WIN64 == 0
%macro WIN64_SPILL_XMM 1
%endmacro
%macro WIN64_RESTORE_XMM 1
%endmacro
%macro WIN64_PUSH_XMM 0
%endmacro
%endif
; On AMD cpus <=K10, an ordinary ret is slow if it immediately follows either
; a branch or a branch target. So switch to a 2-byte form of ret in that case.
; We can automatically detect "follows a branch", but not a branch target.
; (SSSE3 is a sufficient condition to know that your cpu doesn't have this problem.)
%macro REP_RET 0
%if has_epilogue
RET
%else
rep ret
%endif
%endmacro
%define last_branch_adr $$
%macro AUTO_REP_RET 0
%ifndef cpuflags
times ((last_branch_adr-$)>>31)+1 rep ; times 1 iff $ != last_branch_adr.
%elif notcpuflag(ssse3)
times ((last_branch_adr-$)>>31)+1 rep
%endif
ret
%endmacro
%macro BRANCH_INSTR 0-*
%rep %0
%macro %1 1-2 %1
%2 %1
%%branch_instr:
%xdefine last_branch_adr %%branch_instr
%endmacro
%rotate 1
%endrep
%endmacro
BRANCH_INSTR jz, je, jnz, jne, jl, jle, jnl, jnle, jg, jge, jng, jnge, ja, jae, jna, jnae, jb, jbe, jnb, jnbe, jc, jnc, js, jns, jo, jno, jp, jnp
%macro TAIL_CALL 2 ; callee, is_nonadjacent
%if has_epilogue
call %1
RET
%elif %2
jmp %1
%endif
%endmacro
;=============================================================================
; arch-independent part
;=============================================================================
%assign function_align 16
; Begin a function.
; Applies any symbol mangling needed for C linkage, and sets up a define such that
; subsequent uses of the function name automatically refer to the mangled version.
; Appends cpuflags to the function name if cpuflags has been specified.
; The "" empty default parameter is a workaround for nasm, which fails if SUFFIX
; is empty and we call cglobal_internal with just %1 %+ SUFFIX (without %2).
%macro cglobal 1-2+ "" ; name, [PROLOGUE args]
cglobal_internal 1, %1 %+ SUFFIX, %2
%endmacro
%macro cvisible 1-2+ "" ; name, [PROLOGUE args]
cglobal_internal 0, %1 %+ SUFFIX, %2
%endmacro
%macro cglobal_internal 2-3+
%if %1
%xdefine %%FUNCTION_PREFIX private_prefix
%xdefine %%VISIBILITY hidden
%else
%xdefine %%FUNCTION_PREFIX public_prefix
%xdefine %%VISIBILITY
%endif
%ifndef cglobaled_%2
%xdefine %2 mangle(%%FUNCTION_PREFIX %+ _ %+ %2)
%xdefine %2.skip_prologue %2 %+ .skip_prologue
CAT_XDEFINE cglobaled_, %2, 1
%endif
%xdefine current_function %2
%ifidn __OUTPUT_FORMAT__,elf
global %2:function %%VISIBILITY
%else
global %2
%endif
align function_align
%2:
RESET_MM_PERMUTATION ; not really needed, but makes disassembly somewhat nicer
%xdefine rstk rsp
%assign stack_offset 0
%assign stack_size 0
%assign stack_size_padded 0
%assign xmm_regs_used 0
%ifnidn %3, ""
PROLOGUE %3
%endif
%endmacro
%macro cextern 1
%xdefine %1 mangle(private_prefix %+ _ %+ %1)
CAT_XDEFINE cglobaled_, %1, 1
extern %1
%endmacro
; like cextern, but without the prefix
%macro cextern_naked 1
%xdefine %1 mangle(%1)
CAT_XDEFINE cglobaled_, %1, 1
extern %1
%endmacro
%macro const 1-2+
%xdefine %1 mangle(private_prefix %+ _ %+ %1)
%ifidn __OUTPUT_FORMAT__,elf
global %1:data hidden
%else
global %1
%endif
%1: %2
%endmacro
; This is needed for ELF, otherwise the GNU linker assumes the stack is
; executable by default.
%ifidn __OUTPUT_FORMAT__,elf
SECTION .note.GNU-stack noalloc noexec nowrite progbits
%endif
; cpuflags
%assign cpuflags_mmx (1<<0)
%assign cpuflags_mmx2 (1<<1) | cpuflags_mmx
%assign cpuflags_3dnow (1<<2) | cpuflags_mmx
%assign cpuflags_3dnowext (1<<3) | cpuflags_3dnow
%assign cpuflags_sse (1<<4) | cpuflags_mmx2
%assign cpuflags_sse2 (1<<5) | cpuflags_sse
%assign cpuflags_sse2slow (1<<6) | cpuflags_sse2
%assign cpuflags_sse3 (1<<7) | cpuflags_sse2
%assign cpuflags_ssse3 (1<<8) | cpuflags_sse3
%assign cpuflags_sse4 (1<<9) | cpuflags_ssse3
%assign cpuflags_sse42 (1<<10)| cpuflags_sse4
%assign cpuflags_avx (1<<11)| cpuflags_sse42
%assign cpuflags_xop (1<<12)| cpuflags_avx
%assign cpuflags_fma4 (1<<13)| cpuflags_avx
%assign cpuflags_avx2 (1<<14)| cpuflags_avx
%assign cpuflags_fma3 (1<<15)| cpuflags_avx
%assign cpuflags_cache32 (1<<16)
%assign cpuflags_cache64 (1<<17)
%assign cpuflags_slowctz (1<<18)
%assign cpuflags_lzcnt (1<<19)
%assign cpuflags_misalign (1<<20)
%assign cpuflags_aligned (1<<21) ; not a cpu feature, but a function variant
%assign cpuflags_atom (1<<22)
%assign cpuflags_bmi1 (1<<23)|cpuflags_lzcnt
%assign cpuflags_bmi2 (1<<24)|cpuflags_bmi1
%define cpuflag(x) ((cpuflags & (cpuflags_ %+ x)) == (cpuflags_ %+ x))
%define notcpuflag(x) ((cpuflags & (cpuflags_ %+ x)) != (cpuflags_ %+ x))
; Takes up to 2 cpuflags from the above list.
; All subsequent functions (up to the next INIT_CPUFLAGS) is built for the specified cpu.
; You shouldn't need to invoke this macro directly, it's a subroutine for INIT_MMX &co.
%macro INIT_CPUFLAGS 0-2
CPU amdnop
%if %0 >= 1
%xdefine cpuname %1
%assign cpuflags cpuflags_%1
%if %0 >= 2
%xdefine cpuname %1_%2
%assign cpuflags cpuflags | cpuflags_%2
%endif
%xdefine SUFFIX _ %+ cpuname
%if cpuflag(avx)
%assign avx_enabled 1
%endif
%if (mmsize == 16 && notcpuflag(sse2)) || (mmsize == 32 && notcpuflag(avx2))
%define mova movaps
%define movu movups
%define movnta movntps
%endif
%if cpuflag(aligned)
%define movu mova
%elifidn %1, sse3
%define movu lddqu
%endif
%if ARCH_X86_64 == 0 && notcpuflag(sse2)
CPU basicnop
%endif
%else
%xdefine SUFFIX
%undef cpuname
%undef cpuflags
%endif
%endmacro
; Merge mmx and sse*
; m# is a simd regsiter of the currently selected size
; xm# is the corresponding xmmreg (if selcted xmm or ymm size), or mmreg (if selected mmx)
; ym# is the corresponding ymmreg (if selcted xmm or ymm size), or mmreg (if selected mmx)
; (All 3 remain in sync through SWAP.)
%macro CAT_XDEFINE 3
%xdefine %1%2 %3
%endmacro
%macro CAT_UNDEF 2
%undef %1%2
%endmacro
%macro INIT_MMX 0-1+
%assign avx_enabled 0
%define RESET_MM_PERMUTATION INIT_MMX %1
%define mmsize 8
%define num_mmregs 8
%define mova movq
%define movu movq
%define movh movd
%define movnta movntq
%assign %%i 0
%rep 8
CAT_XDEFINE m, %%i, mm %+ %%i
CAT_XDEFINE nmm, %%i, %%i
%assign %%i %%i+1
%endrep
%rep 8
CAT_UNDEF m, %%i
CAT_UNDEF nmm, %%i
%assign %%i %%i+1
%endrep
INIT_CPUFLAGS %1
%endmacro
%macro INIT_XMM 0-1+
%assign avx_enabled 0
%define RESET_MM_PERMUTATION INIT_XMM %1
%define mmsize 16
%define num_mmregs 8
%if ARCH_X86_64
%define num_mmregs 16
%endif
%define mova movdqa
%define movu movdqu
%define movh movq
%define movnta movntdq
%assign %%i 0
%rep num_mmregs
CAT_XDEFINE m, %%i, xmm %+ %%i
CAT_XDEFINE nxmm, %%i, %%i
%assign %%i %%i+1
%endrep
INIT_CPUFLAGS %1
%endmacro
%macro INIT_YMM 0-1+
%assign avx_enabled 1
%define RESET_MM_PERMUTATION INIT_YMM %1
%define mmsize 32
%define num_mmregs 8
%if ARCH_X86_64
%define num_mmregs 16
%endif
%define mova movdqa
%define movu movdqu
%undef movh
%define movnta movntdq
%assign %%i 0
%rep num_mmregs
CAT_XDEFINE m, %%i, ymm %+ %%i
CAT_XDEFINE nymm, %%i, %%i
%assign %%i %%i+1
%endrep
INIT_CPUFLAGS %1
%endmacro
INIT_XMM
%macro DECLARE_MMCAST 1
%define mmmm%1 mm%1
%define mmxmm%1 mm%1
%define mmymm%1 mm%1
%define xmmmm%1 mm%1
%define xmmxmm%1 xmm%1
%define xmmymm%1 xmm%1
%define ymmmm%1 mm%1
%define ymmxmm%1 ymm%1
%define ymmymm%1 ymm%1
%define xm%1 xmm %+ m%1
%define ym%1 ymm %+ m%1
%endmacro
%assign i 0
%rep 16
DECLARE_MMCAST i
%assign i i+1
%endrep
; I often want to use macros that permute their arguments. e.g. there's no
; efficient way to implement butterfly or transpose or dct without swapping some
; arguments.
;
; I would like to not have to manually keep track of the permutations:
; If I insert a permutation in the middle of a function, it should automatically
; change everything that follows. For more complex macros I may also have multiple
; implementations, e.g. the SSE2 and SSSE3 versions may have different permutations.
;
; Hence these macros. Insert a PERMUTE or some SWAPs at the end of a macro that
; permutes its arguments. It's equivalent to exchanging the contents of the
; registers, except that this way you exchange the register names instead, so it
; doesn't cost any cycles.
%macro PERMUTE 2-* ; takes a list of pairs to swap
%rep %0/2
%xdefine %%tmp%2 m%2
%rotate 2
%endrep
%rep %0/2
%xdefine m%1 %%tmp%2
CAT_XDEFINE n, m%1, %1
%rotate 2
%endrep
%endmacro
%macro SWAP 2+ ; swaps a single chain (sometimes more concise than pairs)
%ifnum %1 ; SWAP 0, 1, ...
SWAP_INTERNAL_NUM %1, %2
%else ; SWAP m0, m1, ...
SWAP_INTERNAL_NAME %1, %2
%endif
%endmacro
%macro SWAP_INTERNAL_NUM 2-*
%rep %0-1
%xdefine %%tmp m%1
%xdefine m%1 m%2
%xdefine m%2 %%tmp
CAT_XDEFINE n, m%1, %1
CAT_XDEFINE n, m%2, %2
%rotate 1
%endrep
%endmacro
%macro SWAP_INTERNAL_NAME 2-*
%xdefine %%args n %+ %1
%rep %0-1
%xdefine %%args %%args, n %+ %2
%rotate 1
%endrep
SWAP_INTERNAL_NUM %%args
%endmacro
; If SAVE_MM_PERMUTATION is placed at the end of a function, then any later
; calls to that function will automatically load the permutation, so values can
; be returned in mmregs.
%macro SAVE_MM_PERMUTATION 0-1
%if %0
%xdefine %%f %1_m
%else
%xdefine %%f current_function %+ _m
%endif
%assign %%i 0
%rep num_mmregs
CAT_XDEFINE %%f, %%i, m %+ %%i
%assign %%i %%i+1
%endrep
%endmacro
%macro LOAD_MM_PERMUTATION 1 ; name to load from
%ifdef %1_m0
%assign %%i 0
%rep num_mmregs
CAT_XDEFINE m, %%i, %1_m %+ %%i
CAT_XDEFINE n, m %+ %%i, %%i
%assign %%i %%i+1
%endrep
%endif
%endmacro
; Append cpuflags to the callee's name iff the appended name is known and the plain name isn't
%macro call 1
call_internal %1, %1 %+ SUFFIX
%endmacro
%macro call_internal 2
%xdefine %%i %1
%ifndef cglobaled_%1
%ifdef cglobaled_%2
%xdefine %%i %2
%endif
%endif
call %%i
LOAD_MM_PERMUTATION %%i
%endmacro
; Substitutions that reduce instruction size but are functionally equivalent
%macro add 2
%ifnum %2
%if %2==128
sub %1, -128
%else
add %1, %2
%endif
%else
add %1, %2
%endif
%endmacro
%macro sub 2
%ifnum %2
%if %2==128
add %1, -128
%else
sub %1, %2
%endif
%else
sub %1, %2
%endif
%endmacro
;=============================================================================
; AVX abstraction layer
;=============================================================================
%assign i 0
%rep 16
%if i < 8
CAT_XDEFINE sizeofmm, i, 8
%endif
CAT_XDEFINE sizeofxmm, i, 16
CAT_XDEFINE sizeofymm, i, 32
%assign i i+1
%endrep
%undef i
%macro CHECK_AVX_INSTR_EMU 3-*
%xdefine %%opcode %1
%xdefine %%dst %2
%rep %0-2
%ifidn %%dst, %3
%error non-avx emulation of ``%%opcode'' is not supported
%endif
%rotate 1
%endrep
%endmacro
;%1 == instruction
;%2 == 1 if float, 0 if int
;%3 == 1 if non-destructive or 4-operand (xmm, xmm, xmm, imm), 0 otherwise
;%4 == 1 if commutative (i.e. doesn't matter which src arg is which), 0 if not
;%5+: operands
%macro RUN_AVX_INSTR 5-8+
%ifnum sizeof%6
%assign %%sizeofreg sizeof%6
%elifnum sizeof%5
%assign %%sizeofreg sizeof%5
%else
%assign %%sizeofreg mmsize
%endif
%assign %%emulate_avx 0
%if avx_enabled && %%sizeofreg >= 16
%xdefine %%instr v%1
%else
%xdefine %%instr %1
%if %0 >= 7+%3
%assign %%emulate_avx 1
%endif
%endif
%if %%emulate_avx
%xdefine %%src1 %6
%xdefine %%src2 %7
%ifnidn %5, %6
%if %0 >= 8
CHECK_AVX_INSTR_EMU {%1 %5, %6, %7, %8}, %5, %7, %8
%else
CHECK_AVX_INSTR_EMU {%1 %5, %6, %7}, %5, %7
%endif
%if %4 && %3 == 0
%ifnid %7
; 3-operand AVX instructions with a memory arg can only have it in src2,
; whereas SSE emulation prefers to have it in src1 (i.e. the mov).
; So, if the instruction is commutative with a memory arg, swap them.
%xdefine %%src1 %7
%xdefine %%src2 %6
%endif
%endif
%if %%sizeofreg == 8
MOVQ %5, %%src1
%elif %2
MOVAPS %5, %%src1
%else
MOVDQA %5, %%src1
%endif
%endif
%if %0 >= 8
%1 %5, %%src2, %8
%else
%1 %5, %%src2
%endif
%elif %0 >= 8
%%instr %5, %6, %7, %8
%elif %0 == 7
%%instr %5, %6, %7
%elif %0 == 6
%%instr %5, %6
%else
%%instr %5
%endif
%endmacro
;%1 == instruction
;%2 == 1 if float, 0 if int
;%3 == 1 if non-destructive or 4-operand (xmm, xmm, xmm, imm), 0 otherwise
;%4 == 1 if commutative (i.e. doesn't matter which src arg is which), 0 if not
%macro AVX_INSTR 1-4 0, 1, 0
%macro %1 1-9 fnord, fnord, fnord, fnord, %1, %2, %3, %4
%ifidn %2, fnord
RUN_AVX_INSTR %6, %7, %8, %9, %1
%elifidn %3, fnord
RUN_AVX_INSTR %6, %7, %8, %9, %1, %2
%elifidn %4, fnord
RUN_AVX_INSTR %6, %7, %8, %9, %1, %2, %3
%elifidn %5, fnord
RUN_AVX_INSTR %6, %7, %8, %9, %1, %2, %3, %4
%else
RUN_AVX_INSTR %6, %7, %8, %9, %1, %2, %3, %4, %5
%endif
%endmacro
%endmacro
; Instructions with both VEX and non-VEX encodings
; Non-destructive instructions are written without parameters
AVX_INSTR addpd, 1, 0, 1
AVX_INSTR addps, 1, 0, 1
AVX_INSTR addsd, 1, 0, 1
AVX_INSTR addss, 1, 0, 1
AVX_INSTR addsubpd, 1, 0, 0
AVX_INSTR addsubps, 1, 0, 0
AVX_INSTR aesdec, 0, 0, 0
AVX_INSTR aesdeclast, 0, 0, 0
AVX_INSTR aesenc, 0, 0, 0
AVX_INSTR aesenclast, 0, 0, 0
AVX_INSTR aesimc
AVX_INSTR aeskeygenassist
AVX_INSTR andnpd, 1, 0, 0
AVX_INSTR andnps, 1, 0, 0
AVX_INSTR andpd, 1, 0, 1
AVX_INSTR andps, 1, 0, 1
AVX_INSTR blendpd, 1, 0, 0
AVX_INSTR blendps, 1, 0, 0
AVX_INSTR blendvpd, 1, 0, 0
AVX_INSTR blendvps, 1, 0, 0
AVX_INSTR cmppd, 1, 1, 0
AVX_INSTR cmpps, 1, 1, 0
AVX_INSTR cmpsd, 1, 1, 0
AVX_INSTR cmpss, 1, 1, 0
AVX_INSTR comisd
AVX_INSTR comiss
AVX_INSTR cvtdq2pd
AVX_INSTR cvtdq2ps
AVX_INSTR cvtpd2dq
AVX_INSTR cvtpd2ps
AVX_INSTR cvtps2dq
AVX_INSTR cvtps2pd
AVX_INSTR cvtsd2si
AVX_INSTR cvtsd2ss
AVX_INSTR cvtsi2sd
AVX_INSTR cvtsi2ss
AVX_INSTR cvtss2sd
AVX_INSTR cvtss2si
AVX_INSTR cvttpd2dq
AVX_INSTR cvttps2dq
AVX_INSTR cvttsd2si
AVX_INSTR cvttss2si
AVX_INSTR divpd, 1, 0, 0
AVX_INSTR divps, 1, 0, 0
AVX_INSTR divsd, 1, 0, 0
AVX_INSTR divss, 1, 0, 0
AVX_INSTR dppd, 1, 1, 0
AVX_INSTR dpps, 1, 1, 0
AVX_INSTR extractps
AVX_INSTR haddpd, 1, 0, 0
AVX_INSTR haddps, 1, 0, 0
AVX_INSTR hsubpd, 1, 0, 0
AVX_INSTR hsubps, 1, 0, 0
AVX_INSTR insertps, 1, 1, 0
AVX_INSTR lddqu
AVX_INSTR ldmxcsr
AVX_INSTR maskmovdqu
AVX_INSTR maxpd, 1, 0, 1
AVX_INSTR maxps, 1, 0, 1
AVX_INSTR maxsd, 1, 0, 1
AVX_INSTR maxss, 1, 0, 1
AVX_INSTR minpd, 1, 0, 1
AVX_INSTR minps, 1, 0, 1
AVX_INSTR minsd, 1, 0, 1
AVX_INSTR minss, 1, 0, 1
AVX_INSTR movapd
AVX_INSTR movaps
AVX_INSTR movd
AVX_INSTR movddup
AVX_INSTR movdqa
AVX_INSTR movdqu
AVX_INSTR movhlps, 1, 0, 0
AVX_INSTR movhpd, 1, 0, 0
AVX_INSTR movhps, 1, 0, 0
AVX_INSTR movlhps, 1, 0, 0
AVX_INSTR movlpd, 1, 0, 0
AVX_INSTR movlps, 1, 0, 0
AVX_INSTR movmskpd
AVX_INSTR movmskps
AVX_INSTR movntdq
AVX_INSTR movntdqa
AVX_INSTR movntpd
AVX_INSTR movntps
AVX_INSTR movq
AVX_INSTR movsd, 1, 0, 0
AVX_INSTR movshdup
AVX_INSTR movsldup
AVX_INSTR movss, 1, 0, 0
AVX_INSTR movupd
AVX_INSTR movups
AVX_INSTR mpsadbw, 0, 1, 0
AVX_INSTR mulpd, 1, 0, 1
AVX_INSTR mulps, 1, 0, 1
AVX_INSTR mulsd, 1, 0, 1
AVX_INSTR mulss, 1, 0, 1
AVX_INSTR orpd, 1, 0, 1
AVX_INSTR orps, 1, 0, 1
AVX_INSTR pabsb
AVX_INSTR pabsd
AVX_INSTR pabsw
AVX_INSTR packsswb, 0, 0, 0
AVX_INSTR packssdw, 0, 0, 0
AVX_INSTR packuswb, 0, 0, 0
AVX_INSTR packusdw, 0, 0, 0
AVX_INSTR paddb, 0, 0, 1
AVX_INSTR paddw, 0, 0, 1
AVX_INSTR paddd, 0, 0, 1
AVX_INSTR paddq, 0, 0, 1
AVX_INSTR paddsb, 0, 0, 1
AVX_INSTR paddsw, 0, 0, 1
AVX_INSTR paddusb, 0, 0, 1
AVX_INSTR paddusw, 0, 0, 1
AVX_INSTR palignr, 0, 1, 0
AVX_INSTR pand, 0, 0, 1
AVX_INSTR pandn, 0, 0, 0
AVX_INSTR pavgb, 0, 0, 1
AVX_INSTR pavgw, 0, 0, 1
AVX_INSTR pblendvb, 0, 0, 0
AVX_INSTR pblendw, 0, 1, 0
AVX_INSTR pclmulqdq, 0, 1, 0
AVX_INSTR pcmpestri
AVX_INSTR pcmpestrm
AVX_INSTR pcmpistri
AVX_INSTR pcmpistrm
AVX_INSTR pcmpeqb, 0, 0, 1
AVX_INSTR pcmpeqw, 0, 0, 1
AVX_INSTR pcmpeqd, 0, 0, 1
AVX_INSTR pcmpeqq, 0, 0, 1
AVX_INSTR pcmpgtb, 0, 0, 0
AVX_INSTR pcmpgtw, 0, 0, 0
AVX_INSTR pcmpgtd, 0, 0, 0
AVX_INSTR pcmpgtq, 0, 0, 0
AVX_INSTR pextrb
AVX_INSTR pextrd
AVX_INSTR pextrq
AVX_INSTR pextrw
AVX_INSTR phaddw, 0, 0, 0
AVX_INSTR phaddd, 0, 0, 0
AVX_INSTR phaddsw, 0, 0, 0
AVX_INSTR phminposuw
AVX_INSTR phsubw, 0, 0, 0
AVX_INSTR phsubd, 0, 0, 0
AVX_INSTR phsubsw, 0, 0, 0
AVX_INSTR pinsrb, 0, 1, 0
AVX_INSTR pinsrd, 0, 1, 0
AVX_INSTR pinsrq, 0, 1, 0
AVX_INSTR pinsrw, 0, 1, 0
AVX_INSTR pmaddwd, 0, 0, 1
AVX_INSTR pmaddubsw, 0, 0, 0
AVX_INSTR pmaxsb, 0, 0, 1
AVX_INSTR pmaxsw, 0, 0, 1
AVX_INSTR pmaxsd, 0, 0, 1
AVX_INSTR pmaxub, 0, 0, 1
AVX_INSTR pmaxuw, 0, 0, 1
AVX_INSTR pmaxud, 0, 0, 1
AVX_INSTR pminsb, 0, 0, 1
AVX_INSTR pminsw, 0, 0, 1
AVX_INSTR pminsd, 0, 0, 1
AVX_INSTR pminub, 0, 0, 1
AVX_INSTR pminuw, 0, 0, 1
AVX_INSTR pminud, 0, 0, 1
AVX_INSTR pmovmskb
AVX_INSTR pmovsxbw
AVX_INSTR pmovsxbd
AVX_INSTR pmovsxbq
AVX_INSTR pmovsxwd
AVX_INSTR pmovsxwq
AVX_INSTR pmovsxdq
AVX_INSTR pmovzxbw
AVX_INSTR pmovzxbd
AVX_INSTR pmovzxbq
AVX_INSTR pmovzxwd
AVX_INSTR pmovzxwq
AVX_INSTR pmovzxdq
AVX_INSTR pmuldq, 0, 0, 1
AVX_INSTR pmulhrsw, 0, 0, 1
AVX_INSTR pmulhuw, 0, 0, 1
AVX_INSTR pmulhw, 0, 0, 1
AVX_INSTR pmullw, 0, 0, 1
AVX_INSTR pmulld, 0, 0, 1
AVX_INSTR pmuludq, 0, 0, 1
AVX_INSTR por, 0, 0, 1
AVX_INSTR psadbw, 0, 0, 1
AVX_INSTR pshufb, 0, 0, 0
AVX_INSTR pshufd
AVX_INSTR pshufhw
AVX_INSTR pshuflw
AVX_INSTR psignb, 0, 0, 0
AVX_INSTR psignw, 0, 0, 0
AVX_INSTR psignd, 0, 0, 0
AVX_INSTR psllw, 0, 0, 0
AVX_INSTR pslld, 0, 0, 0
AVX_INSTR psllq, 0, 0, 0
AVX_INSTR pslldq, 0, 0, 0
AVX_INSTR psraw, 0, 0, 0
AVX_INSTR psrad, 0, 0, 0
AVX_INSTR psrlw, 0, 0, 0
AVX_INSTR psrld, 0, 0, 0
AVX_INSTR psrlq, 0, 0, 0
AVX_INSTR psrldq, 0, 0, 0
AVX_INSTR psubb, 0, 0, 0
AVX_INSTR psubw, 0, 0, 0
AVX_INSTR psubd, 0, 0, 0
AVX_INSTR psubq, 0, 0, 0
AVX_INSTR psubsb, 0, 0, 0
AVX_INSTR psubsw, 0, 0, 0
AVX_INSTR psubusb, 0, 0, 0
AVX_INSTR psubusw, 0, 0, 0
AVX_INSTR ptest
AVX_INSTR punpckhbw, 0, 0, 0
AVX_INSTR punpckhwd, 0, 0, 0
AVX_INSTR punpckhdq, 0, 0, 0
AVX_INSTR punpckhqdq, 0, 0, 0
AVX_INSTR punpcklbw, 0, 0, 0
AVX_INSTR punpcklwd, 0, 0, 0
AVX_INSTR punpckldq, 0, 0, 0
AVX_INSTR punpcklqdq, 0, 0, 0
AVX_INSTR pxor, 0, 0, 1
AVX_INSTR rcpps, 1, 0, 0
AVX_INSTR rcpss, 1, 0, 0
AVX_INSTR roundpd
AVX_INSTR roundps
AVX_INSTR roundsd
AVX_INSTR roundss
AVX_INSTR rsqrtps, 1, 0, 0
AVX_INSTR rsqrtss, 1, 0, 0
AVX_INSTR shufpd, 1, 1, 0
AVX_INSTR shufps, 1, 1, 0
AVX_INSTR sqrtpd, 1, 0, 0
AVX_INSTR sqrtps, 1, 0, 0
AVX_INSTR sqrtsd, 1, 0, 0
AVX_INSTR sqrtss, 1, 0, 0
AVX_INSTR stmxcsr
AVX_INSTR subpd, 1, 0, 0
AVX_INSTR subps, 1, 0, 0
AVX_INSTR subsd, 1, 0, 0
AVX_INSTR subss, 1, 0, 0
AVX_INSTR ucomisd
AVX_INSTR ucomiss
AVX_INSTR unpckhpd, 1, 0, 0
AVX_INSTR unpckhps, 1, 0, 0
AVX_INSTR unpcklpd, 1, 0, 0
AVX_INSTR unpcklps, 1, 0, 0
AVX_INSTR xorpd, 1, 0, 1
AVX_INSTR xorps, 1, 0, 1
; 3DNow instructions, for sharing code between AVX, SSE and 3DN
AVX_INSTR pfadd, 1, 0, 1
AVX_INSTR pfsub, 1, 0, 0
AVX_INSTR pfmul, 1, 0, 1
; base-4 constants for shuffles
%assign i 0
%rep 256
%assign j ((i>>6)&3)*1000 + ((i>>4)&3)*100 + ((i>>2)&3)*10 + (i&3)
%if j < 10
CAT_XDEFINE q000, j, i
%elif j < 100
CAT_XDEFINE q00, j, i
%elif j < 1000
CAT_XDEFINE q0, j, i
%else
CAT_XDEFINE q, j, i
%endif
%assign i i+1
%endrep
%undef i
%undef j
%macro FMA_INSTR 3
%macro %1 4-7 %1, %2, %3
%if cpuflag(xop)
v%5 %1, %2, %3, %4
%else
%6 %1, %2, %3
%7 %1, %4
%endif
%endmacro
%endmacro
FMA_INSTR pmacsdd, pmulld, paddd
FMA_INSTR pmacsww, pmullw, paddw
FMA_INSTR pmadcswd, pmaddwd, paddd
; convert FMA4 to FMA3 if possible
%macro FMA4_INSTR 4
%macro %1 4-8 %1, %2, %3, %4
%if cpuflag(fma4)
v%5 %1, %2, %3, %4
%elifidn %1, %2
v%6 %1, %4, %3 ; %1 = %1 * %3 + %4
%elifidn %1, %3
v%7 %1, %2, %4 ; %1 = %2 * %1 + %4
%elifidn %1, %4
v%8 %1, %2, %3 ; %1 = %2 * %3 + %1
%else
%error fma3 emulation of ``%5 %1, %2, %3, %4'' is not supported
%endif
%endmacro
%endmacro
FMA4_INSTR fmaddpd, fmadd132pd, fmadd213pd, fmadd231pd
FMA4_INSTR fmaddps, fmadd132ps, fmadd213ps, fmadd231ps
FMA4_INSTR fmaddsd, fmadd132sd, fmadd213sd, fmadd231sd
FMA4_INSTR fmaddss, fmadd132ss, fmadd213ss, fmadd231ss
FMA4_INSTR fmaddsubpd, fmaddsub132pd, fmaddsub213pd, fmaddsub231pd
FMA4_INSTR fmaddsubps, fmaddsub132ps, fmaddsub213ps, fmaddsub231ps
FMA4_INSTR fmsubaddpd, fmsubadd132pd, fmsubadd213pd, fmsubadd231pd
FMA4_INSTR fmsubaddps, fmsubadd132ps, fmsubadd213ps, fmsubadd231ps
FMA4_INSTR fmsubpd, fmsub132pd, fmsub213pd, fmsub231pd
FMA4_INSTR fmsubps, fmsub132ps, fmsub213ps, fmsub231ps
FMA4_INSTR fmsubsd, fmsub132sd, fmsub213sd, fmsub231sd
FMA4_INSTR fmsubss, fmsub132ss, fmsub213ss, fmsub231ss
FMA4_INSTR fnmaddpd, fnmadd132pd, fnmadd213pd, fnmadd231pd
FMA4_INSTR fnmaddps, fnmadd132ps, fnmadd213ps, fnmadd231ps
FMA4_INSTR fnmaddsd, fnmadd132sd, fnmadd213sd, fnmadd231sd
FMA4_INSTR fnmaddss, fnmadd132ss, fnmadd213ss, fnmadd231ss
FMA4_INSTR fnmsubpd, fnmsub132pd, fnmsub213pd, fnmsub231pd
FMA4_INSTR fnmsubps, fnmsub132ps, fnmsub213ps, fnmsub231ps
FMA4_INSTR fnmsubsd, fnmsub132sd, fnmsub213sd, fnmsub231sd
FMA4_INSTR fnmsubss, fnmsub132ss, fnmsub213ss, fnmsub231ss
; workaround: vpbroadcastq is broken in x86_32 due to a yasm bug
%if ARCH_X86_64 == 0
%macro vpbroadcastq 2
%if sizeof%1 == 16
movddup %1, %2
%else
vbroadcastsd %1, %2
%endif
%endmacro
%endif