RWKV-Runner/finetune/lora/v6/fla/ops/gla/recurrent_fuse.py
2024-05-28 22:35:47 +08:00

405 lines
15 KiB
Python
Vendored

# -*- coding: utf-8 -*-
# Copyright (c) 2023, Songlin Yang
from typing import Tuple
import torch
import triton
import triton.language as tl
from torch.cuda.amp import custom_bwd, custom_fwd
from fla.utils import contiguous
# on-the-fly computation without materializing hidden statets into HBMs
@triton.jit
def fused_recurrent_gla_fwd_kernel(
# B: batch_size, H: n_heads, T: seq_len, D: d_head
q, # query [B, H, L, D_head_K]
k, # key [B, H, L, D_head_K]
v, # value [B, H, L, D_head_V]
gk, # log gate [B, H, L, D_head_K]
gv, # log gate [B, H, L, D_head_V]
o, # output [B, H, L, D_head_V]
# initial hidden state initialization [B, H, D_head_K, D_head_V]
initial_state,
final_state, # final hidden state [B, H, D_head_K, D_head_V]
s_qk_h, # stride size: L * D_head_K
s_qk_t, # stride size: D_head_K
s_qk_d, # stride size: 1
s_vo_h, # stride size: L * D_head_V
s_vo_t, # stride size: D_head_V
s_vo_d, # stride size: 1
B, # batch size
H, # n_heads
T, # seq_len
scale, # D_head_K ** -0.5
BK: tl.constexpr, # BLOCK SIZE along the K dimension
BV: tl.constexpr, # BLOCK SIZE along the V dimension
DK: tl.constexpr, # D_head_K
DV: tl.constexpr, # D_head_V
USE_INITIAL_STATE: tl.constexpr, # whether to use initial state
STORE_FINAL_STATE: tl.constexpr, # whether to store final state
REVERSE: tl.constexpr, # whether to do autoregressive modeling in the reverse direction
USE_GK: tl.constexpr, # whether to use gk
USE_GV: tl.constexpr, # whether to use gv
):
# indices
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
p_q = q + i_bh * s_qk_h + i_k * BK + \
tl.arange(0, BK) + ((T-1) * DK if REVERSE else 0)
p_k = k + i_bh * s_qk_h + i_k * BK + \
tl.arange(0, BK) + ((T-1) * DK if REVERSE else 0)
p_v = v + i_bh * s_vo_h + i_v * BV + \
tl.arange(0, BV) + ((T-1) * DV if REVERSE else 0)
p_o = o + (i_bh + i_k * B * H) * s_vo_h + i_v * BV + \
tl.arange(0, BV) + ((T-1) * DV if REVERSE else 0)
if USE_GK:
p_gk = gk + i_bh * s_qk_h + i_k * BK + \
tl.arange(0, BK) + ((T-1) * DK if REVERSE else 0)
if USE_GV:
p_gv = gv + i_bh * s_vo_h + i_v * BV + \
tl.arange(0, BV) + ((T-1) * DV if REVERSE else 0)
mask_bk = (i_k * BK + tl.arange(0, BK)) < DK
mask_bv = (i_v * BV + tl.arange(0, BV)) < DV
h = tl.zeros([BV, BK], dtype=tl.float32)
mask_kv = mask_bk[None, :] & mask_bv[:, None]
if USE_INITIAL_STATE:
p_init_s = initial_state + i_bh * DK * DV + \
(i_k * BK + tl.arange(0, BK)[None, :]) * \
DV + (i_v * BV + tl.arange(0, BV)[:, None])
h += tl.load(p_init_s, mask=mask_kv, other=0).to(tl.float32)
for _ in range(0, T):
_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32)
_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32)
_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale
if USE_GK:
_gk = tl.load(p_gk, mask=mask_bk, other=0).to(tl.float32)
h = h * _gk[None, :]
if USE_GV:
_gv = tl.load(p_gv, mask=mask_bv, other=0).to(tl.float32)
h = h * _gv[:, None]
h += _k[None, :] * _v[:, None]
_o = h * _q[None, :]
_o = tl.sum(_o, axis=1)
tl.store(p_o, _o.to(p_o.dtype.element_ty), mask=mask_bv)
p_q += -DK if REVERSE else DK
p_k += -DK if REVERSE else DK
p_o += -DV if REVERSE else DV
p_v += -DV if REVERSE else DV
if USE_GK:
p_gk += -DK if REVERSE else DK
if USE_GV:
p_gv += -DV if REVERSE else DV
if STORE_FINAL_STATE:
p_final_s = final_state + i_bh * DK * DV + \
(i_k * BK + tl.arange(0, BK)[None, :]) * \
DV + (i_v * BV + tl.arange(0, BV)[:, None])
tl.store(p_final_s, h.to(p_final_s.dtype.element_ty), mask=mask_kv)
# Similar to Algorithm1 of https://arxiv.org/abs/2006.16236
@triton.jit
def fused_recurrent_gla_bwd_kernel(
# B: batch_size, H: n_heads, T: seq_len, D: d_head
# NV: number of split in the V dimension. NK: number of split in the K dimension
q, # query [B, H, L, D_head_K]
k, # key [B, H, L, D_head_V]
v, # value [B, H, L, D_head_V]
gk, # log gate [B, H, L, D_head_K] \alpha
gv, # log gate [B, H, L, D_head_V] \bete
do, # gradient of output [B, H, L, D_head_V]
dq, # gradient of query [NV, B, H, L, D_head_K]
dk, # gradient of key [NV, B, H, L, D_head_K]
dv, # gradient of value [NK, B, H, L, D_head_V]
# initial hidden state initialization [B, H, D_head_K, D_head_V]
initial_state,
s_qk_h, # stride size: L * D_head_K
s_qk_t, # stride size: D_head_K
s_qk_d, # stride size: 1
s_vo_h, # stride size: L * D_head_V
s_vo_t, # stride size: D_head_V
s_vo_d, # stride size: 1
B, # batch_size
H, # n_heads
T, # seq_len
scale, # D_head_K ** -0.5
BK: tl.constexpr, # BLOCK SIZE along the K dimension
BV: tl.constexpr, # BLOCK SIZE along the V dimension
DK: tl.constexpr, # D_head_K
DV: tl.constexpr, # D_head_V
USE_INITIAL_STATE: tl.constexpr, # whether to use initial state
REVERSE: tl.constexpr, # whether to do autoregressive modeling in the reverse direction
USE_GK: tl.constexpr, # whether to use gk
USE_GV: tl.constexpr, # whether to use gv
):
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
p_q = q + i_bh * s_qk_h + i_k * BK + \
tl.arange(0, BK) + ((T-1) * DK if REVERSE else 0)
p_k = k + i_bh * s_qk_h + i_k * BK + \
tl.arange(0, BK) + ((T-1) * DK if REVERSE else 0)
p_v = v + i_bh * s_vo_h + i_v * BV + \
tl.arange(0, BV) + ((T-1) * DV if REVERSE else 0)
p_do = do + i_bh * s_vo_h + i_v * BV + \
tl.arange(0, BV) + ((T-1) * DV if REVERSE else 0)
p_dq = dq + (i_bh + i_v * B * H) * s_qk_h + i_k * BK + \
tl.arange(0, BK) + ((T-1) * DK if REVERSE else 0)
if USE_GK:
p_gk = gk + i_bh * s_qk_h + i_k * BK + \
tl.arange(0, BK) + ((T-1) * DK if REVERSE else 0)
if USE_GV:
p_gv = gv + i_bh * s_vo_h + i_v * BV + \
tl.arange(0, BV) + ((T-1) * DV if REVERSE else 0)
mask_bk = i_k * BK + tl.arange(0, BK) < DK
mask_bv = i_v * BV + tl.arange(0, BV) < DV
mask_kv = mask_bk[:, None] & mask_bv[None, :]
h = tl.zeros([BK, BV], dtype=tl.float32)
if USE_INITIAL_STATE:
p_init_s = initial_state + i_bh * DK * DV + \
(i_k * BK + tl.arange(0, BK)[:, None]) * \
DV + (i_v * BV + tl.arange(0, BV)[None, :])
h += tl.load(p_init_s, mask=mask_kv, other=0).to(tl.float32)
for i in range(0, T):
_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32)
_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32)
_do = tl.load(p_do, mask=mask_bv, other=0).to(tl.float32)
if USE_GK:
_gk = tl.load(p_gk, mask=mask_bk, other=0).to(tl.float32)
h = h * _gk[:, None]
if USE_GV:
_gv = tl.load(p_gv, mask=mask_bv, other=0).to(tl.float32)
h = h * _gv[None, :]
h += _k[:, None] * _v[None, :]
_d_q = h * _do[None, :]
d_q = tl.sum(_d_q, axis=1) * scale
tl.store(p_dq, d_q.to(p_dq.dtype.element_ty), mask=mask_bk)
p_k += -DK if REVERSE else DK
p_v += -DV if REVERSE else DV
p_q += -DK if REVERSE else DK
p_do += -DV if REVERSE else DV
p_dq += -DK if REVERSE else DK
if USE_GK:
p_gk += -DK if REVERSE else DK
if USE_GV:
p_gv += -DV if REVERSE else DV
# sync threads
tl.debug_barrier()
p_q = q + i_bh * s_qk_h + i_k * BK + \
tl.arange(0, BK) + ((T - 1) * DK if not REVERSE else 0)
p_k = k + i_bh * s_qk_h + i_k * BK + \
tl.arange(0, BK) + ((T - 1) * DK if not REVERSE else 0)
p_do = do + i_bh * s_vo_h + i_v * BV + \
tl.arange(0, BV) + ((T - 1) * DV if not REVERSE else 0)
p_v = v + i_bh * s_vo_h + i_v * BV + \
tl.arange(0, BV) + ((T - 1) * DV if not REVERSE else 0)
p_dk = dk + (i_bh + i_v * B * H) * s_qk_h + i_k * \
BK + tl.arange(0, BK) + ((T - 1) * DK if not REVERSE else 0)
p_dv = dv + (i_bh + i_k * B * H) * s_vo_h + i_v * \
BV + tl.arange(0, BV) + ((T - 1) * DV if not REVERSE else 0)
if USE_GK:
p_gk = gk + i_bh * s_qk_h + i_k * BK + \
tl.arange(0, BK) + ((T - 1) * DK if not REVERSE else 0)
if USE_GV:
p_gv = gv + i_bh * s_vo_h + i_v * BV + \
tl.arange(0, BV) + ((T - 1) * DV if not REVERSE else 0)
d_h = tl.zeros([BK, BV], dtype=tl.float32)
for _ in range(T):
_do = tl.load(p_do, mask=mask_bv, other=0).to(tl.float32)
_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale
_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32)
_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32)
d_h += _q[:, None] * _do[None, :]
d_k = tl.sum(d_h * _v[None, :], axis=1)
d_v = tl.sum(d_h * _k[:, None], axis=0)
if USE_GK:
_gk = tl.load(p_gk, mask=mask_bk, other=0).to(tl.float32)
d_h *= _gk[:, None]
if USE_GV:
_gv = tl.load(p_gv, mask=mask_bv, other=0).to(tl.float32)
d_h *= _gv[None, :]
tl.store(p_dk, d_k.to(p_dk.dtype.element_ty), mask=mask_bk)
tl.store(p_dv, d_v.to(p_dv.dtype.element_ty), mask=mask_bv)
p_do += DV if REVERSE else -DV
p_q += DK if REVERSE else -DK
p_k += DK if REVERSE else -DK
p_v += DV if REVERSE else -DV
p_dk += DK if REVERSE else -DK
p_dv += DV if REVERSE else -DV
if USE_GK:
p_gk += DK if REVERSE else -DK
if USE_GV:
p_gv += DV if REVERSE else -DV
class FusedRecurrentGLAFunction(torch.autograd.Function):
@staticmethod
@contiguous
@custom_fwd
def forward(ctx, q, k, v, gk, gv, scale=None, initial_state=None, output_final_state=False, reverse=False):
batch_size, n_heads, seq_len, d_head_qk = q.shape
d_head_v = v.shape[-1]
# default scale
if scale is None:
scale = d_head_qk ** -0.5
if gk is not None:
gk = gk.float().exp()
if gv is not None:
gv = gv.float().exp()
BK, BV = min(d_head_qk, 32), min(d_head_v, 32)
NK, NV = triton.cdiv(d_head_qk, BK), triton.cdiv(d_head_v, BV)
num_stages = 1
num_warps = 1
o = q.new_empty(NK, batch_size, n_heads, seq_len,
d_head_v, dtype=torch.float32)
if output_final_state:
final_state = q.new_empty(batch_size, n_heads, d_head_qk, d_head_v)
else:
final_state = None
grid = (NV, NK, batch_size * n_heads)
fused_recurrent_gla_fwd_kernel[grid](
q, k, v, gk, gv, o, initial_state, final_state,
q.stride(1), q.stride(2), q.stride(3),
v.stride(1), v.stride(2), v.stride(3),
batch_size, n_heads, seq_len, scale,
DK=d_head_qk, DV=d_head_v, BK=BK, BV=BV,
USE_INITIAL_STATE=initial_state is not None,
STORE_FINAL_STATE=final_state is not None,
USE_GK=gk is not None,
USE_GV=gv is not None,
REVERSE=reverse,
num_warps=num_warps,
num_stages=num_stages
)
o = o.sum(0)
ctx.save_for_backward(q, k, v, gk, gv, initial_state, o)
ctx.scale = scale
ctx.reverse = reverse
# we do not need the gradient of the final state from the next chunk
# similiar to Trunctated BPTT
if final_state is not None:
final_state = final_state.detach()
return o.to(q.dtype), final_state
@staticmethod
@contiguous
@custom_bwd
def backward(ctx, do, d_final_state=None):
q, k, v, gk, gv, initial_state, o = ctx.saved_tensors
batch_size, n_heads, seq_len, d_head_qk = q.shape
d_head_v = v.shape[-1]
scale = ctx.scale
BK, BV = min(d_head_qk, 32), min(d_head_v, 32)
NK, NV = triton.cdiv(d_head_qk, BK), triton.cdiv(d_head_v, BV)
num_stages = 1
num_warps = 1
dq = q.new_empty(NV, batch_size, n_heads, seq_len,
d_head_qk, dtype=torch.float32)
dk = q.new_empty(NV, batch_size, n_heads, seq_len,
d_head_qk, dtype=torch.float32)
dv = q.new_empty(NK, batch_size, n_heads, seq_len,
d_head_v, dtype=torch.float32)
grid = (NV, NK, batch_size * n_heads)
fused_recurrent_gla_bwd_kernel[grid](
q, k, v, gk, gv, do, dq, dk, dv, initial_state,
q.stride(1), q.stride(2), q.stride(3),
v.stride(1), v.stride(2), v.stride(3),
batch_size, n_heads, seq_len, scale,
DK=d_head_qk, DV=d_head_v, BK=BK, BV=BV,
num_warps=num_warps,
num_stages=num_stages,
USE_INITIAL_STATE=initial_state is not None,
REVERSE=ctx.reverse,
USE_GK=gk is not None,
USE_GV=gv is not None
)
dq = dq.sum(0)
dk = dk.sum(0)
dv = dv.sum(0)
if gk is not None:
_dgk = dq * q.float() - dk * k.float()
if ctx.reverse:
dgk = _dgk.cumsum(-2)
else:
_dgk_cumsum = _dgk.cumsum(-2)
dgk = _dgk + _dgk_cumsum[:, :, -1, None] - _dgk_cumsum
else:
dgk = None
if gv is not None:
_dgv = do.float() * o.float() - dv * v.float()
if ctx.reverse:
dgv = _dgv.cumsum(-2)
else:
_dgv_cumsum = _dgv.cumsum(-2)
dgv = _dgv + _dgv_cumsum[:, :, -1, None] - _dgv_cumsum
else:
dgv = None
return dq.to(q.dtype), dk.to(k.dtype), dv.to(v.dtype), dgk, dgv, None, None, None, None
# if scale is None, use d_head_qk ** -0.5 by default. Otherwise specify the scale yourself. e.g. scale = 1.0
def fused_recurrent_gla(
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
gk: torch.Tensor = None,
gv: torch.Tensor = None,
scale: int = -1,
initial_state: torch.Tensor = None,
output_final_state: bool = False,
causal: bool = True
) -> Tuple[torch.Tensor, torch.Tensor]:
if scale == -1:
scale = q.shape[-1] ** -0.5
if initial_state is not None:
initial_state = initial_state.detach()
if causal:
o, final_state = FusedRecurrentGLAFunction.apply(q, k, v, gk, gv, scale, initial_state, output_final_state)
return o, final_state
else:
# do not support initial_state yet. looks very strange for bidirectional modeling
assert initial_state is None
assert output_final_state is False
o, final_state = FusedRecurrentGLAFunction.apply(
q, k, v, gk, gv, scale, initial_state, output_final_state, False)
o_reversed, final_state = FusedRecurrentGLAFunction.apply(
q, k, v, gk, gv, scale, initial_state, output_final_state, True)
return [o, o_reversed]