RWKV-Runner/finetune/lora/v6/fla/layers/gla.py
2024-05-28 22:35:47 +08:00

269 lines
12 KiB
Python
Vendored

# -*- coding: utf-8 -*-
from __future__ import annotations
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from transformers.cache_utils import Cache
from fla.modules import FusedRMSNormSwishGate, RMSNorm, ShortConvolution
from fla.modules.activations import ACT2FN
from fla.ops.gla import chunk_gla, fused_chunk_gla, fused_recurrent_gla
class GatedLinearAttention(nn.Module):
r"""
The layer implementaion for [Gated Linear Attention Transformers with Hardware-Efficient Training](https://arxiv.org/abs/2312.06635). # noqa
Args:
mode (str, Optional):
Which GLA kernel to use.
Currently available: `chunk`, `fused_recurrent`, and `fused_chunk`.
Default: `chunk`.
hidden_size (int, Optional):
The hidden size of the input. Default: 1024.
expand_k (float, Optional):
The expansion ratio for the key dim. Default: 0.5.
expand_v (float, Optional):
The expansion ratio for the value dim. Default: 1.0.
num_heads (int, Optional):
The number of heads. Default: 4.
num_kv_heads (int, Optional):
The number of key/value heads, used for MQA. Default: None.
feature_map (str, Optional):
Feature map function applied to queries/keys. Default: None.
use_short_conv (bool, Optional):
Whether to use short convolutions. Default: `False`.
conv_size (int, Optional):
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
conv_bias (bool, Optional):
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
share_conv_kernel (bool, Optional):
Whether to apply convolutions berfore q/k/v mapping, only taking effects when `use_short_conv`. Default: `True`.
use_output_gate (bool, Optional):
Whether to use output gate. Default: `True`.
gate_fn (str, Optional):
The activation function for the output gate. Default: `swish`.
elementwise_affine (bool, Optional):
If `True`, applies elementwise affine to LayerNorm with learnable parameters. Default: `True`.
norm_eps (float, Optional):
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
gate_logit_normalizer (int, Optional):
The normalizer for the gate logits, appied after `logsigmoid`. Default: 16.
gate_low_rank_dim (int, Optional):
The low rank dim for the gate projection. Default: 16.
clamp_min (float, Optional):
The minimum value for the gate logits. Default: None.
fuse_norm (bool, Optional):
Whether to fuse the norm and the output gate for better memory footprint. Default: `True`.
layer_idx (int, Optional):
The index of the layer. Default: None.
"""
def __init__(
self,
mode: str = 'chunk',
hidden_size: int = 1024,
expand_k: float = 0.5,
expand_v: float = 1.0,
num_heads: int = 4,
num_kv_heads: Optional[int] = None,
feature_map: Optional[str] = None,
use_short_conv: bool = False,
conv_size: int = 4,
conv_bias: bool = False,
share_conv_kernel: bool = True,
use_output_gate: bool = True,
gate_fn: str = 'swish',
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
gate_logit_normalizer: int = 16,
gate_low_rank_dim: int = 16,
clamp_min: Optional[float] = None,
fuse_norm: bool = True,
layer_idx: int = None,
) -> GatedLinearAttention:
super().__init__()
self.mode = mode
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.num_heads = num_heads
self.num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads
self.num_kv_groups = self.num_heads // self.num_kv_heads
self.feature_map_fn = ACT2FN[feature_map] if feature_map is not None else None
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.share_conv_kernel = share_conv_kernel
self.use_output_gate = use_output_gate
self.key_dim = int(hidden_size * expand_k)
self.value_dim = int(hidden_size * expand_v)
self.key_dim_per_group = self.key_dim // self.num_kv_groups
self.value_dim_per_group = self.value_dim // self.num_kv_groups
self.clamp_min = clamp_min
self.layer_idx = layer_idx
assert mode in ['chunk', 'fused_recurrent', 'fused_chunk'], f"Not suppoerted mode `{mode}`."
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
self.head_qk_dim = self.key_dim // num_heads
self.head_v_dim = self.value_dim // num_heads
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(hidden_size, self.key_dim_per_group, bias=False)
self.v_proj = nn.Linear(hidden_size, self.value_dim_per_group, bias=False)
if self.use_output_gate:
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
if use_short_conv:
self.conv_size = conv_size
if share_conv_kernel:
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation='silu')
else:
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
self.gk_proj = nn.Sequential(nn.Linear(hidden_size, gate_low_rank_dim, bias=False),
nn.Linear(gate_low_rank_dim, self.key_dim_per_group, bias=True))
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
if gate_fn == 'swish' and fuse_norm and use_output_gate:
self.g_norm_swish_gate = FusedRMSNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps)
self.fuse_norm_and_gate = True
else:
self.fuse_norm_and_gate = False
self.g_norm = RMSNorm(self.head_v_dim, elementwise_affine, norm_eps)
self.gate_fn = ACT2FN[gate_fn]
self.gate_logit_normalizer = gate_logit_normalizer
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
# launching the triton kernel for just one token will actually be slower
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
last_state = past_key_values[self.layer_idx] if use_cache else None
if self.use_short_conv:
conv_state = last_state[0] if use_cache else None
if self.share_conv_kernel:
# conv state is updated inplace
hidden_states = self.h_conv1d(hidden_states, attention_mask, conv_state)
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
else:
conv_state_q = last_state[0] if use_cache else None
conv_state_k = last_state[1] if use_cache else None
conv_state_v = last_state[2] if use_cache else None
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
q = self.q_conv1d(q, attention_mask, conv_state_q)
k = self.k_conv1d(k, attention_mask, conv_state_k)
v = self.v_conv1d(v, attention_mask, conv_state_v)
else:
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
gk = self.gk_proj(hidden_states)
if self.feature_map_fn is not None:
q, k = map(self.feature_map_fn, (q, k))
# dealing with left-padding
if attention_mask is not None:
v = v.mul_(attention_mask.unsqueeze(-1))
q = rearrange(q, 'b l (h d) -> b h l d', h=self.num_heads)
if self.num_kv_groups > 1:
k, v, gk = (repeat(x, 'b l (h d) -> b (h g) l d', h=self.num_kv_heads, g=self.num_kv_groups) for x in (k, v, gk))
else:
k, v, gk = (rearrange(x, 'b l (h d) -> b h l d', h=self.num_kv_heads) for x in (k, v, gk))
gk = F.logsigmoid(gk) / self.gate_logit_normalizer
if self.clamp_min is not None:
gk = torch.clamp_min(gk, self.clamp_min)
recurrent_state = last_state[-1] if use_cache else None
if mode == 'fused_recurrent':
o, recurrent_state = fused_recurrent_gla(q, k, v, gk, initial_state=recurrent_state, output_final_state=use_cache)
elif mode == 'fused_chunk':
o, recurrent_state = fused_chunk_gla(q, k, v, gk, initial_state=recurrent_state, output_final_state=use_cache)
elif mode == 'chunk':
o, recurrent_state = chunk_gla(q, k, v, gk, initial_state=recurrent_state, output_final_state=use_cache)
else:
raise NotImplementedError(f"Not supported mode `{mode}`.")
if past_key_values is not None:
if self.use_short_conv:
if self.share_conv_kernel:
last_state = (conv_state, recurrent_state)
else:
last_state = (conv_state_q, conv_state_k, conv_state_v, recurrent_state)
else:
last_state = (recurrent_state,)
past_key_values.update(last_state, self.layer_idx, q.shape[2])
o = rearrange(o, 'b h l d -> b l h d')
if self.use_output_gate:
g = self.g_proj(hidden_states)
if self.fuse_norm_and_gate:
g = rearrange(g, 'b l (h d) -> b l h d', h=self.num_heads)
o = self.g_norm_swish_gate(o, g)
o = rearrange(o, 'b l h d -> b l (h d)')
else:
o = rearrange(self.g_norm(o), 'b l h d -> b l (h d)')
o = o * self.gate_fn(g)
else:
o = rearrange(self.g_norm(o), 'b l h d -> b l (h d)')
o = self.o_proj(o)
return o, None, past_key_values
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
param = next(self.parameters())
state = tuple()
if self.use_short_conv:
if self.share_conv_kernel:
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
else:
state += (param.new_zeros(batch_size, self.key_dim, self.conv_size),
param.new_zeros(batch_size, self.key_dim, self.conv_size),
param.new_zeros(batch_size, self.value_dim, self.conv_size))
state += (param.new_zeros(batch_size, self.num_heads, self.head_qk_dim, self.head_v_dim),)
return state
def state_size(self, **kwargs) -> int:
state_size = self.key_dim * self.head_v_dim
for module in self.children():
if isinstance(module, ShortConvolution):
state_size += module.state_size
return state_size