RWKV-Runner/finetune/lora/v6/fla/layers/delta_net.py
2024-05-28 22:35:47 +08:00

254 lines
9.9 KiB
Python
Vendored

# -*- coding: utf-8 -*-
# Sect4.2 of Linear Transformers Are Secretly Fast Weight Programmers https://arxiv.org/abs/2102.11174
from __future__ import annotations
from typing import Optional, Tuple
import torch
import torch.nn as nn
from einops import rearrange
from transformers.cache_utils import Cache
from fla.modules import FusedRMSNormSwishGate, RMSNorm, ShortConvolution, LayerNorm
from fla.modules.rotary import RotaryEmbedding
from fla.ops.delta_rule import (fused_chunk_delta_rule,
fused_recurrent_linear_attn_delta_rule,
chunk_delta_rule)
from torch.nn import functional as F
def simple_norm(x):
return (F.normalize(x, dim=-1) * x.shape[-1] ** 0.5).to(x)
# @torch.jit.script
def elu_p1(x):
return (F.elu(x, 1., False) + 1.).to(x)
# @torch.jit.script
def sum_norm(x):
return (x / x.sum(-1, keepdim=True)).to(x)
# @torch.jit.script
def elu_norm(x):
dtype = x.dtype
x = F.elu(x, 1., False) + 1.
return (x / x.sum(-1, keepdim=True)).to(dtype)
# https://github.com/IDSIA/recurrent-fwp/blob/master/algorithmic/layers.py#L86C1-L146C1
class DeltaNet(nn.Module):
def __init__(
self,
d_model: int = None,
hidden_size: int = 1024,
expand_k: float = 1.0,
expand_v: float = 1.0,
num_heads: int = 4,
mode: str = 'fused_chunk',
chunk_size: int = 16,
use_beta: bool = True,
use_gate: bool = True,
use_rope: bool = False,
use_output_norm: bool = True,
use_elu: bool = False,
use_short_conv: bool = True,
conv_size: int = 4,
conv_bias: bool = False,
share_conv_kernel: bool = False,
layer_idx: int = None,
qk_activation: str = 'silu',
qk_norm: str = None,
save_memory: str = False,
**kwargs
) -> DeltaNet:
super().__init__()
self.mode = mode
self.qk_activation = qk_activation
self.qk_norm = qk_norm
assert self.qk_activation in ['silu', 'relu', 'elu', 'identity']
assert self.qk_norm in ['l2', 'sum']
if d_model is not None:
hidden_size = d_model
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.num_heads = num_heads
self.chunk_size = chunk_size
self.use_gate = use_gate
self.use_output_norm = use_output_norm
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.share_conv_kernel = share_conv_kernel
self.key_dim = int(hidden_size * expand_k)
self.value_dim = int(hidden_size * expand_v)
self.head_qk_dim = self.key_dim // num_heads
self.head_v_dim = self.value_dim // num_heads
self.layer_idx = layer_idx
self.silu = torch.nn.SiLU()
assert mode in ['chunk', 'fused_chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
self.use_beta = use_beta
self.use_elu = use_elu
if self.use_beta:
self.b_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
if use_short_conv:
self.conv_size = conv_size
if share_conv_kernel:
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation=None)
else:
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu' if qk_activation == 'silu' else None)
self.k_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu' if qk_activation == 'silu' else None)
self.v_conv1d = ShortConvolution(self.value_dim, conv_size, activation='silu')
if use_gate:
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
if self.use_gate:
self.norm = FusedRMSNormSwishGate(self.head_v_dim)
else:
self.norm = RMSNorm(self.head_v_dim)
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
# change to inference mode.
mode = 'fused_recurrent' if hidden_states.shape[1] < 64 else self.mode
last_state = past_key_values[self.layer_idx] if use_cache else None
if attention_mask is not None:
if attention_mask.shape[-1] != hidden_states.shape[-2]:
attention_mask = attention_mask[:, -1:]
if self.use_short_conv:
conv_state = last_state[0] if use_cache else None
if self.share_conv_kernel:
# conv state is updated inplace
hidden_states = self.h_conv1d(hidden_states, attention_mask, conv_state)
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
else:
conv_state_q = last_state[0] if use_cache else None
conv_state_k = last_state[1] if use_cache else None
conv_state_v = last_state[2] if use_cache else None
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
q = self.q_proj(hidden_states)
q = self.q_conv1d(q, attention_mask, conv_state_q)
k = self.k_conv1d(k, attention_mask, conv_state_k)
v = self.v_conv1d(v, attention_mask, conv_state_v)
else:
q = (self.q_proj(hidden_states))
k = (self.k_proj(hidden_states))
v = self.silu(self.v_proj(hidden_states))
# dealing with left-padding
if attention_mask is not None:
v = v.mul_(attention_mask.unsqueeze(-1))
q, k, v = map(lambda x: rearrange(x, 'b l (h d) -> b h l d', h=self.num_heads), (q, k, v))
if self.qk_activation != 'silu':
if self.qk_activation == 'relu':
q, k = q.relu(), k.relu()
elif self.qk_activation == 'elu':
q, k = elu_p1(q), elu_p1(k)
elif self.qk_activation == 'identity':
pass
else:
raise NotImplementedError
if self.qk_norm is not None:
if self.qk_norm == 'l2':
k = torch.nn.functional.normalize(k, dim=-1, p=2).to(v) #auto mixed precision type transfer is annoying.
q = torch.nn.functional.normalize(q, dim=-1, p=2).to(v)
elif self.qk_norm == 'sum':
q = sum_norm(q).to(v)
k = sum_norm(k).to(v)
if self.use_beta:
beta = rearrange(self.b_proj(hidden_states), 'b l h -> b h l').sigmoid()
else:
beta = q.new_ones(q.shape[0], q.shape[1], q.shape[2])
state = past_key_values[self.layer_idx][-1] if use_cache else None
if mode == 'fused_recurrent':
o, recurrent_state = fused_recurrent_linear_attn_delta_rule(q, k, v, beta, state, output_final_state=use_cache)
elif mode == 'fused_chunk':
assert self.chunk_size in [16, 32, 64]
o, recurrent_state = fused_chunk_delta_rule(q, k, v, beta, self.chunk_size, state, output_final_state=use_cache)
elif mode == 'chunk':
assert self.chunk_size in [16, 32, 64]
o, recurrent_state = chunk_delta_rule(q, k, v, beta, self.chunk_size, state, output_final_state=use_cache)
else:
raise NotImplementedError(f"Not supported mode `{mode}`.")
if past_key_values is not None:
if self.use_short_conv:
if self.share_conv_kernel:
state = (conv_state, recurrent_state)
else:
state = (conv_state_q, conv_state_k, conv_state_v, recurrent_state)
else:
state = (recurrent_state,)
past_key_values.update(state, self.layer_idx)
o = rearrange(o, 'b h l d -> b l h d')
if self.use_gate:
g = rearrange(self.g_proj(hidden_states), 'b l (h d) -> b l h d', h=self.num_heads)
o = self.norm(o, g)
else:
o = self.norm(o)
o = rearrange(o, 'b l h d -> b l (h d)')
o = self.o_proj(o)
return o, None, past_key_values
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
param = next(self.parameters())
state = tuple()
if self.use_short_conv:
if self.share_conv_kernel:
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
else:
# for q/k/v each
state += (param.new_zeros(batch_size, self.key_dim, self.conv_size),
param.new_zeros(batch_size, self.key_dim, self.conv_size),
param.new_zeros(batch_size, self.value_dim, self.conv_size))
state += (param.new_zeros(batch_size, self.num_heads, self.head_qk_dim, self.head_v_dim),)
return state