521 lines
19 KiB
Python
521 lines
19 KiB
Python
from abc import ABC, abstractmethod
|
||
import os
|
||
import pathlib
|
||
import copy
|
||
import re
|
||
from typing import Dict, Iterable, List, Tuple
|
||
from utils.log import quick_log
|
||
from fastapi import HTTPException
|
||
from pydantic import BaseModel, Field
|
||
import numpy as np
|
||
from routes import state_cache
|
||
|
||
|
||
END_OF_TEXT = 0
|
||
END_OF_LINE_DOUBLE = 535
|
||
|
||
|
||
os.environ["TORCH_EXTENSIONS_DIR"] = f"{pathlib.Path(__file__).parent.parent.resolve()}"
|
||
|
||
|
||
class AbstractRWKV(ABC):
|
||
def __init__(self, model: str, strategy: str, tokens_path: str):
|
||
from rwkv.model import RWKV as Model # dynamic import to make RWKV_CUDA_ON work
|
||
from rwkv_pip.utils import PIPELINE
|
||
|
||
filename, _ = os.path.splitext(os.path.basename(model))
|
||
self.name = filename
|
||
self.model = Model(model, strategy)
|
||
self.pipeline = PIPELINE(self.model, tokens_path)
|
||
self.model_state = None
|
||
self.model_tokens = []
|
||
|
||
self.max_tokens_per_generation = 500
|
||
self.temperature = 1
|
||
self.top_p = 0.3
|
||
self.top_k = 0
|
||
self.penalty_alpha_presence = 0
|
||
self.penalty_alpha_frequency = 1
|
||
|
||
@abstractmethod
|
||
def adjust_occurrence(self, occurrence: Dict, token: int):
|
||
pass
|
||
|
||
@abstractmethod
|
||
def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int):
|
||
pass
|
||
|
||
# Model only saw '\n\n' as [187, 187] before, but the tokenizer outputs [535] for it at the end
|
||
@abstractmethod
|
||
def fix_tokens(self, tokens) -> List[int]:
|
||
pass
|
||
|
||
@abstractmethod
|
||
def run_rnn(
|
||
self, _tokens: List[str], newline_adj: int = 0
|
||
) -> Tuple[List[float], int]:
|
||
pass
|
||
|
||
@abstractmethod
|
||
def delta_postprocess(self, delta: str) -> str:
|
||
pass
|
||
|
||
def get_embedding(self, input: str, fast_mode: bool) -> Tuple[List[float], int]:
|
||
if fast_mode:
|
||
embedding, token_len = self.__fast_embedding(
|
||
self.fix_tokens(self.pipeline.encode(input)), None
|
||
)
|
||
else:
|
||
self.model_state = None
|
||
self.model_tokens = []
|
||
_, token_len = self.run_rnn(self.fix_tokens(self.pipeline.encode(input)))
|
||
embedding = self.model_state[-11].tolist()
|
||
embedding = (embedding / np.linalg.norm(embedding)).tolist()
|
||
return embedding, token_len
|
||
|
||
def __fast_embedding(self, tokens: List[str], state):
|
||
import torch
|
||
|
||
tokens = [int(x) for x in tokens]
|
||
token_len = len(tokens)
|
||
self = self.model
|
||
|
||
with torch.no_grad():
|
||
w = self.w
|
||
args = self.args
|
||
|
||
if state == None:
|
||
state = [None] * args.n_layer * 5
|
||
for i in range(
|
||
args.n_layer
|
||
): # state: 0=att_xx 1=att_aa 2=att_bb 3=att_pp 4=ffn_xx
|
||
dd = self.strategy[i]
|
||
dev = dd.device
|
||
atype = dd.atype
|
||
state[i * 5 + 0] = torch.zeros(
|
||
args.n_embd, dtype=atype, requires_grad=False, device=dev
|
||
).contiguous()
|
||
state[i * 5 + 1] = torch.zeros(
|
||
args.n_embd, dtype=torch.float, requires_grad=False, device=dev
|
||
).contiguous()
|
||
state[i * 5 + 2] = torch.zeros(
|
||
args.n_embd, dtype=torch.float, requires_grad=False, device=dev
|
||
).contiguous()
|
||
state[i * 5 + 3] = (
|
||
torch.zeros(
|
||
args.n_embd,
|
||
dtype=torch.float,
|
||
requires_grad=False,
|
||
device=dev,
|
||
).contiguous()
|
||
- 1e30
|
||
)
|
||
state[i * 5 + 4] = torch.zeros(
|
||
args.n_embd, dtype=atype, requires_grad=False, device=dev
|
||
).contiguous()
|
||
|
||
break
|
||
|
||
seq_mode = len(tokens) > 1
|
||
|
||
x = w["emb.weight"][tokens if seq_mode else tokens[0]]
|
||
|
||
for i in range(args.n_layer):
|
||
bbb = f"blocks.{i}."
|
||
att = f"blocks.{i}.att."
|
||
ffn = f"blocks.{i}.ffn."
|
||
dd = self.strategy[i]
|
||
dev = dd.device
|
||
atype = dd.atype
|
||
wtype = dd.wtype
|
||
if seq_mode:
|
||
if "cuda" in str(dev) and os.environ["RWKV_CUDA_ON"] == "1":
|
||
ATT = (
|
||
self.cuda_att_seq
|
||
if wtype != torch.uint8
|
||
else self.cuda_att_seq_i8
|
||
)
|
||
else:
|
||
ATT = self.att_seq if wtype != torch.uint8 else self.att_seq_i8
|
||
FFN = self.ffn_seq if wtype != torch.uint8 else self.ffn_seq_i8
|
||
else:
|
||
ATT = self.att_one if wtype != torch.uint8 else self.att_one_i8
|
||
FFN = self.ffn_one if wtype != torch.uint8 else self.ffn_one_i8
|
||
|
||
x = x.to(dtype=atype, device=dev)
|
||
|
||
kw = w[f"{att}key.weight"]
|
||
vw = w[f"{att}value.weight"]
|
||
rw = w[f"{att}receptance.weight"]
|
||
ow = w[f"{att}output.weight"]
|
||
if dd.stream:
|
||
kw = kw.to(device=dev, non_blocking=True)
|
||
vw = vw.to(device=dev, non_blocking=True)
|
||
rw = rw.to(device=dev, non_blocking=True)
|
||
ow = ow.to(device=dev, non_blocking=True)
|
||
kmx = w[f"{att}key.weight_mx"] if wtype == torch.uint8 else x
|
||
krx = w[f"{att}key.weight_rx"] if wtype == torch.uint8 else x
|
||
kmy = w[f"{att}key.weight_my"] if wtype == torch.uint8 else x
|
||
kry = w[f"{att}key.weight_ry"] if wtype == torch.uint8 else x
|
||
vmx = w[f"{att}value.weight_mx"] if wtype == torch.uint8 else x
|
||
vrx = w[f"{att}value.weight_rx"] if wtype == torch.uint8 else x
|
||
vmy = w[f"{att}value.weight_my"] if wtype == torch.uint8 else x
|
||
vry = w[f"{att}value.weight_ry"] if wtype == torch.uint8 else x
|
||
rmx = w[f"{att}receptance.weight_mx"] if wtype == torch.uint8 else x
|
||
rrx = w[f"{att}receptance.weight_rx"] if wtype == torch.uint8 else x
|
||
rmy = w[f"{att}receptance.weight_my"] if wtype == torch.uint8 else x
|
||
rry = w[f"{att}receptance.weight_ry"] if wtype == torch.uint8 else x
|
||
omx = w[f"{att}output.weight_mx"] if wtype == torch.uint8 else x
|
||
orx = w[f"{att}output.weight_rx"] if wtype == torch.uint8 else x
|
||
omy = w[f"{att}output.weight_my"] if wtype == torch.uint8 else x
|
||
ory = w[f"{att}output.weight_ry"] if wtype == torch.uint8 else x
|
||
(
|
||
x,
|
||
state[i * 5 + 0],
|
||
state[i * 5 + 1],
|
||
state[i * 5 + 2],
|
||
state[i * 5 + 3],
|
||
) = ATT(
|
||
x,
|
||
state[i * 5 + 0],
|
||
state[i * 5 + 1],
|
||
state[i * 5 + 2],
|
||
state[i * 5 + 3],
|
||
w[f"{bbb}ln1.weight"],
|
||
w[f"{bbb}ln1.bias"],
|
||
w[f"{att}time_mix_k"],
|
||
w[f"{att}time_mix_v"],
|
||
w[f"{att}time_mix_r"],
|
||
w[f"{att}time_decay"],
|
||
w[f"{att}time_first"],
|
||
kw,
|
||
vw,
|
||
rw,
|
||
ow,
|
||
kmx,
|
||
krx,
|
||
kmy,
|
||
kry,
|
||
vmx,
|
||
vrx,
|
||
vmy,
|
||
vry,
|
||
rmx,
|
||
rrx,
|
||
rmy,
|
||
rry,
|
||
omx,
|
||
orx,
|
||
omy,
|
||
ory,
|
||
)
|
||
|
||
return state[0].tolist(), token_len
|
||
|
||
def generate(
|
||
self, prompt: str, stop: str | List[str] = None
|
||
) -> Iterable[Tuple[str, str, int, int]]:
|
||
quick_log(None, None, "Generation Prompt:\n" + prompt)
|
||
cache = None
|
||
delta_prompt = prompt
|
||
try:
|
||
cache = state_cache.longest_prefix_state(
|
||
state_cache.LongestPrefixStateBody(prompt=prompt), None
|
||
)
|
||
except HTTPException:
|
||
pass
|
||
if cache is None or cache["prompt"] == "":
|
||
self.model_state = None
|
||
self.model_tokens = []
|
||
else:
|
||
delta_prompt = prompt[len(cache["prompt"]) :]
|
||
self.model_state = copy.deepcopy(cache["state"])
|
||
self.model_tokens = copy.deepcopy(cache["tokens"])
|
||
logits = copy.deepcopy(cache["logits"])
|
||
|
||
prompt_token_len = 0
|
||
if delta_prompt != "":
|
||
logits, prompt_token_len = self.run_rnn(
|
||
self.fix_tokens(self.pipeline.encode(delta_prompt))
|
||
)
|
||
try:
|
||
state_cache.add_state(
|
||
state_cache.AddStateBody(
|
||
prompt=prompt,
|
||
tokens=self.model_tokens,
|
||
state=self.model_state,
|
||
logits=logits,
|
||
)
|
||
)
|
||
except HTTPException:
|
||
pass
|
||
|
||
begin = len(self.model_tokens)
|
||
out_last = begin
|
||
|
||
occurrence: Dict = {}
|
||
|
||
completion_token_len = 0
|
||
response = ""
|
||
for i in range(self.max_tokens_per_generation):
|
||
self.adjust_forward_logits(logits, occurrence, i)
|
||
|
||
token = self.pipeline.sample_logits(
|
||
logits, temperature=self.temperature, top_p=self.top_p, top_k=self.top_k
|
||
)
|
||
|
||
if token == END_OF_TEXT:
|
||
yield response, "", prompt_token_len, completion_token_len
|
||
break
|
||
|
||
self.adjust_occurrence(occurrence, token)
|
||
|
||
logits, _ = self.run_rnn([token])
|
||
completion_token_len = completion_token_len + 1
|
||
delta: str = self.delta_postprocess(
|
||
self.pipeline.decode(self.model_tokens[out_last:])
|
||
)
|
||
if "\ufffd" not in delta: # avoid utf-8 display issues
|
||
response += delta
|
||
if stop is not None:
|
||
if type(stop) == str:
|
||
if stop in response:
|
||
try:
|
||
state_cache.add_state(
|
||
state_cache.AddStateBody(
|
||
prompt=prompt + response,
|
||
tokens=self.model_tokens,
|
||
state=self.model_state,
|
||
logits=logits,
|
||
)
|
||
)
|
||
except HTTPException:
|
||
pass
|
||
response = response.split(stop)[0]
|
||
yield response, "", prompt_token_len, completion_token_len
|
||
break
|
||
elif type(stop) == list:
|
||
stop_exist_regex = "|".join(stop)
|
||
matched = re.search(stop_exist_regex, response)
|
||
if matched:
|
||
try:
|
||
state_cache.add_state(
|
||
state_cache.AddStateBody(
|
||
prompt=prompt + response,
|
||
tokens=self.model_tokens,
|
||
state=self.model_state,
|
||
logits=logits,
|
||
)
|
||
)
|
||
except HTTPException:
|
||
pass
|
||
response = response.split(matched.group())[0]
|
||
yield response, "", prompt_token_len, completion_token_len
|
||
break
|
||
out_last = begin + i + 1
|
||
if i == self.max_tokens_per_generation - 1:
|
||
try:
|
||
state_cache.add_state(
|
||
state_cache.AddStateBody(
|
||
prompt=prompt + response,
|
||
tokens=self.model_tokens,
|
||
state=self.model_state,
|
||
logits=logits,
|
||
)
|
||
)
|
||
except HTTPException:
|
||
pass
|
||
yield response, delta, prompt_token_len, completion_token_len
|
||
|
||
|
||
class TextRWKV(AbstractRWKV):
|
||
def __init__(self, model: str, strategy: str, tokens_path: str) -> None:
|
||
super().__init__(model, strategy, tokens_path)
|
||
|
||
self.CHUNK_LEN = 256
|
||
|
||
self.max_tokens_per_generation = 500
|
||
self.temperature = 1
|
||
self.top_p = 0.3
|
||
self.top_k = 0
|
||
self.penalty_alpha_presence = 0
|
||
self.penalty_alpha_frequency = 1
|
||
|
||
self.interface = ":"
|
||
if "world" in self.name.lower():
|
||
self.user = "Question"
|
||
self.bot = "Answer"
|
||
self.END_OF_LINE = 11
|
||
else:
|
||
self.user = "Bob"
|
||
self.bot = "Alice"
|
||
self.END_OF_LINE = 187
|
||
|
||
self.AVOID_REPEAT_TOKENS = []
|
||
AVOID_REPEAT = ",:?!"
|
||
for i in AVOID_REPEAT:
|
||
dd = self.pipeline.encode(i)
|
||
assert len(dd) == 1
|
||
self.AVOID_REPEAT_TOKENS += dd
|
||
|
||
self.__preload()
|
||
|
||
def adjust_occurrence(self, occurrence: Dict, token: int):
|
||
for xxx in occurrence:
|
||
occurrence[xxx] *= 0.996
|
||
if token not in occurrence:
|
||
occurrence[token] = 1
|
||
else:
|
||
occurrence[token] += 1
|
||
|
||
def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int):
|
||
for n in occurrence:
|
||
logits[n] -= (
|
||
self.penalty_alpha_presence
|
||
+ occurrence[n] * self.penalty_alpha_frequency
|
||
)
|
||
|
||
# Model only saw '\n\n' as [187, 187] before, but the tokenizer outputs [535] for it at the end
|
||
def fix_tokens(self, tokens) -> List[int]:
|
||
if "world" in self.name.lower():
|
||
return tokens
|
||
if len(tokens) > 0 and tokens[-1] == END_OF_LINE_DOUBLE:
|
||
tokens = tokens[:-1] + [self.END_OF_LINE, self.END_OF_LINE]
|
||
return tokens
|
||
|
||
def run_rnn(
|
||
self, _tokens: List[str], newline_adj: int = 0
|
||
) -> Tuple[List[float], int]:
|
||
tokens = [int(x) for x in _tokens]
|
||
token_len = len(tokens)
|
||
self.model_tokens += tokens
|
||
|
||
while len(tokens) > 0:
|
||
out, self.model_state = self.model.forward(
|
||
tokens[: self.CHUNK_LEN], self.model_state
|
||
)
|
||
tokens = tokens[self.CHUNK_LEN :]
|
||
|
||
out[self.END_OF_LINE] += newline_adj # adjust \n probability
|
||
|
||
if self.model_tokens[-1] in self.AVOID_REPEAT_TOKENS:
|
||
out[self.model_tokens[-1]] = -999999999
|
||
return out, token_len
|
||
|
||
def delta_postprocess(self, delta: str) -> str:
|
||
return delta
|
||
|
||
def __preload(self):
|
||
interface = self.interface
|
||
user = self.user
|
||
bot = self.bot
|
||
preset_system = (
|
||
f"""
|
||
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
|
||
{bot} is very intelligent, creative and friendly. \
|
||
{bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \
|
||
{bot} likes to tell {user} a lot about herself and her opinions. \
|
||
{bot} usually gives {user} kind, helpful and informative advices.\n
|
||
"""
|
||
if self.user == "Bob"
|
||
else f"{user}{interface} hi\n\n{bot}{interface} Hi. "
|
||
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
|
||
)
|
||
logits, _ = self.run_rnn(self.fix_tokens(self.pipeline.encode(preset_system)))
|
||
try:
|
||
state_cache.add_state(
|
||
state_cache.AddStateBody(
|
||
prompt=preset_system,
|
||
tokens=self.model_tokens,
|
||
state=self.model_state,
|
||
logits=logits,
|
||
)
|
||
)
|
||
except HTTPException:
|
||
pass
|
||
|
||
|
||
class MusicRWKV(AbstractRWKV):
|
||
def __init__(self, model: str, strategy: str, tokens_path: str):
|
||
super().__init__(model, strategy, tokens_path)
|
||
|
||
self.max_tokens_per_generation = 500
|
||
self.temperature = 1
|
||
self.top_p = 0.8
|
||
self.top_k = 8
|
||
|
||
def adjust_occurrence(self, occurrence: Dict, token: int):
|
||
for n in occurrence:
|
||
occurrence[n] *= 0.997 #### decay repetition penalty
|
||
if token >= 128 or token == 127:
|
||
occurrence[token] = 1 + (occurrence[token] if token in occurrence else 0)
|
||
else:
|
||
occurrence[token] = 0.3 + (occurrence[token] if token in occurrence else 0)
|
||
|
||
def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int):
|
||
for n in occurrence:
|
||
logits[n] -= 0 + occurrence[n] * 0.5
|
||
|
||
logits[0] += (i - 2000) / 500 # try not to be too short or too long
|
||
logits[127] -= 1 # avoid "t125"
|
||
|
||
def fix_tokens(self, tokens) -> List[int]:
|
||
return tokens
|
||
|
||
def run_rnn(
|
||
self, _tokens: List[str], newline_adj: int = 0
|
||
) -> Tuple[List[float], int]:
|
||
tokens = [int(x) for x in _tokens]
|
||
token_len = len(tokens)
|
||
self.model_tokens += tokens
|
||
out, self.model_state = self.model.forward(tokens, self.model_state)
|
||
return out, token_len
|
||
|
||
def delta_postprocess(self, delta: str) -> str:
|
||
return " " + delta
|
||
|
||
|
||
class ModelConfigBody(BaseModel):
|
||
max_tokens: int = Field(default=None, gt=0, le=102400)
|
||
temperature: float = Field(default=None, ge=0, le=2)
|
||
top_p: float = Field(default=None, ge=0, le=1)
|
||
presence_penalty: float = Field(default=None, ge=-2, le=2)
|
||
frequency_penalty: float = Field(default=None, ge=-2, le=2)
|
||
|
||
class Config:
|
||
schema_extra = {
|
||
"example": {
|
||
"max_tokens": 1000,
|
||
"temperature": 1.2,
|
||
"top_p": 0.5,
|
||
"presence_penalty": 0.4,
|
||
"frequency_penalty": 0.4,
|
||
}
|
||
}
|
||
|
||
|
||
def set_rwkv_config(model: AbstractRWKV, body: ModelConfigBody):
|
||
if body.max_tokens is not None:
|
||
model.max_tokens_per_generation = body.max_tokens
|
||
if body.temperature is not None:
|
||
if body.temperature < 0.1:
|
||
model.temperature = 0.1
|
||
else:
|
||
model.temperature = body.temperature
|
||
if body.top_p is not None:
|
||
model.top_p = body.top_p
|
||
if body.presence_penalty is not None:
|
||
model.penalty_alpha_presence = body.presence_penalty
|
||
if body.frequency_penalty is not None:
|
||
model.penalty_alpha_frequency = body.frequency_penalty
|
||
|
||
|
||
def get_rwkv_config(model: AbstractRWKV) -> ModelConfigBody:
|
||
return ModelConfigBody(
|
||
max_tokens=model.max_tokens_per_generation,
|
||
temperature=model.temperature,
|
||
top_p=model.top_p,
|
||
presence_penalty=model.penalty_alpha_presence,
|
||
frequency_penalty=model.penalty_alpha_frequency,
|
||
)
|