RWKV-Runner/finetune/lora/v6/fla/ops/hgrn/recurrent_fuse.py
2024-05-28 22:35:47 +08:00

186 lines
5.3 KiB
Python
Vendored

# -*- coding: utf-8 -*-
# Copyright (c) 2023, Songlin Yang
from typing import Tuple
import torch
import triton
import triton.language as tl
from fla.utils import contiguous
@triton.autotune(
configs=[
triton.Config({'BD': 32}, num_warps=1),
triton.Config({'BD': 32}, num_warps=2),
triton.Config({'BD': 32}, num_warps=4),
triton.Config({'BD': 32}, num_warps=8),
triton.Config({'BD': 64}, num_warps=1),
triton.Config({'BD': 64}, num_warps=2),
triton.Config({'BD': 64}, num_warps=4),
triton.Config({'BD': 64}, num_warps=8),
triton.Config({'BD': 128}, num_warps=1),
triton.Config({'BD': 128}, num_warps=2),
triton.Config({'BD': 128}, num_warps=4),
triton.Config({'BD': 128}, num_warps=8),
],
key=['D']
)
@triton.jit
def fused_recurrent_hgrn_fwd_kernel(
x,
g,
o,
h0,
ht,
T: tl.constexpr,
D: tl.constexpr,
BD: tl.constexpr,
USE_INITIAL_STATE: tl.constexpr,
STORE_FINAL_STATE: tl.constexpr
):
i_d, i_bh = tl.program_id(0), tl.program_id(1)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
p_x = x + i_bh * T * D + o_d
p_g = g + i_bh * T * D + o_d
p_o = o + i_bh * T * D + o_d
b_h = tl.zeros([BD], dtype=tl.float32)
if USE_INITIAL_STATE:
p_h0 = h0 + i_bh * D + o_d
b_h += tl.load(p_h0, mask=mask, other=0).to(tl.float32)
for _ in range(0, T):
b_x = tl.load(p_x, mask=mask, other=0).to(tl.float32)
b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32)
b_h = tl.exp(b_g) * b_h + b_x
tl.store(p_o, b_h.to(p_o.dtype.element_ty), mask=mask)
p_x += D
p_g += D
p_o += D
if STORE_FINAL_STATE:
p_ht = ht + i_bh * D + o_d
tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask)
@triton.autotune(
configs=[
triton.Config({'BD': 32}, num_warps=1),
triton.Config({'BD': 32}, num_warps=2),
triton.Config({'BD': 32}, num_warps=4),
triton.Config({'BD': 32}, num_warps=8),
triton.Config({'BD': 64}, num_warps=1),
triton.Config({'BD': 64}, num_warps=2),
triton.Config({'BD': 64}, num_warps=4),
triton.Config({'BD': 64}, num_warps=8),
triton.Config({'BD': 128}, num_warps=1),
triton.Config({'BD': 128}, num_warps=2),
triton.Config({'BD': 128}, num_warps=4),
triton.Config({'BD': 128}, num_warps=8),
],
key=['D']
)
@triton.jit
def fused_recurrent_hgrn_bwd_kernel(
g,
o,
dx,
dg,
do,
h0,
T: tl.constexpr,
D: tl.constexpr,
BD: tl.constexpr,
USE_INITIAL_STATE: tl.constexpr
):
i_d, i_bh = tl.program_id(0), tl.program_id(1)
o_d = i_d * BD + tl.arange(0, BD)
mask = o_d < D
p_g = g + (i_bh * T + T - 1) * D + o_d
p_o = o + (i_bh * T + T - 2) * D + o_d
p_dx = dx + (i_bh * T + T - 1) * D + o_d
p_dg = dg + (i_bh * T + T - 1) * D + o_d
p_do = do + (i_bh * T + T - 1) * D + o_d
b_dh = tl.zeros([BD], dtype=tl.float32)
for i in range(T - 1, -1, -1):
b_g = tl.load(p_g, mask=mask, other=0).to(tl.float32)
b_do = tl.load(p_do, mask=mask, other=0).to(tl.float32)
if i > 0:
b_o = tl.load(p_o, mask=mask, other=0).to(tl.float32)
elif USE_INITIAL_STATE:
b_o = tl.load(h0 + i_bh * D + o_d, mask=mask, other=0).to(tl.float32)
else:
b_o = tl.zeros([BD], dtype=tl.float32)
b_dh = b_dh + b_do
b_dx = b_dh
b_dh = b_dh * tl.exp(b_g)
b_dg = b_dh * b_o
tl.store(p_dx, b_dx.to(p_dx.dtype.element_ty), mask=mask)
tl.store(p_dg, b_dg.to(p_dg.dtype.element_ty), mask=mask)
p_g -= D
p_o -= D
p_dx -= D
p_dg -= D
p_do -= D
class FusedRecurrentHGRNFunction(torch.autograd.Function):
@staticmethod
@contiguous
def forward(ctx, x, g, initial_state=None, output_final_state=False):
B, H, T, D = x.shape
final_state = None
if output_final_state:
final_state = x.new_empty(B, H, D)
o = torch.empty_like(x)
def grid(meta): return (triton.cdiv(D, meta['BD']), B * H)
fused_recurrent_hgrn_fwd_kernel[grid](
x, g, o, initial_state, final_state,
T, D,
USE_INITIAL_STATE=initial_state is not None,
STORE_FINAL_STATE=final_state is not None
)
ctx.save_for_backward(g, o, initial_state)
return o, final_state
@staticmethod
@contiguous
def backward(ctx, do, dht=None):
g, o, initial_state = ctx.saved_tensors
B, H, T, D = do.shape
dx = torch.empty_like(o)
dg = torch.empty_like(g)
def grid(meta): return (triton.cdiv(D, meta['BD']), B * H)
fused_recurrent_hgrn_bwd_kernel[grid](
g, o, dx, dg, do, initial_state,
T, D,
USE_INITIAL_STATE=initial_state is not None,
)
return dx, dg, None, None
def fused_recurrent_hgrn(
x: torch.Tensor,
g: torch.Tensor,
initial_state: torch.Tensor = None,
output_final_state: bool = False
) -> Tuple[torch.Tensor, torch.Tensor]:
if initial_state is not None:
initial_state = initial_state.detach()
o, final_state = FusedRecurrentHGRNFunction.apply(x, g, initial_state, output_final_state)
return o, final_state