RWKV-Runner/finetune/lora/v6/fla/layers/rwkv6.py
2024-05-28 22:35:47 +08:00

265 lines
9.4 KiB
Python
Vendored

# -*- coding: utf-8 -*-
# "Eagle and Finch: RWKV with Matrix-Valued States and Dynamic Recurrence"[https://arxiv.org/abs/2404.05892]
from __future__ import annotations
from typing import Optional, Tuple
import torch
import torch.nn as nn
from einops import rearrange
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache
from fla.modules import FusedLayerNormSwishGate, LayerNorm
from fla.ops.rwkv6 import chunk_rwkv6, fused_recurrent_rwkv6
class RWKV6Attention(nn.Module):
def __init__(
self,
mode: str = 'chunk',
hidden_size: int = 1024,
expand_k: float = 0.5,
expand_v: float = 1.0,
num_heads: int = 4,
gate_fn: str = 'swish',
proj_low_rank_dim: int = 32,
gate_low_rank_dim: int = 64,
fuse_norm: bool = True,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
layer_idx: int = None,
**kwargs
) -> RWKV6Attention:
super().__init__()
self.mode = mode
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.num_heads = num_heads
self.proj_low_rank_dim = proj_low_rank_dim
self.gate_low_rank_dim = gate_low_rank_dim
self.key_dim = int(hidden_size * expand_k)
self.value_dim = int(hidden_size * expand_v)
self.layer_idx = layer_idx
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
self.head_qk_dim = self.key_dim // num_heads
self.head_v_dim = self.value_dim // num_heads
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.x_proj = nn.Sequential(
LerpLinear(hidden_size, proj_low_rank_dim * 5),
nn.Tanh(),
nn.Linear(proj_low_rank_dim * 5, hidden_size, bias=True)
)
self.r_proj = DDLerpLinear(hidden_size, self.key_dim)
self.w_proj = DDLerpLinear(hidden_size, self.key_dim, low_rank_dim=gate_low_rank_dim)
self.k_proj = DDLerpLinear(hidden_size, self.key_dim)
self.v_proj = DDLerpLinear(hidden_size, self.value_dim)
self.g_proj = DDLerpLinear(hidden_size, self.value_dim)
self.bonus = nn.Parameter(torch.zeros(num_heads, self.head_qk_dim))
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
if gate_fn == 'swish' and fuse_norm:
self.g_norm_swish_gate = FusedLayerNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps)
self.fuse_norm_and_gate = True
else:
self.fuse_norm_and_gate = False
self.g_norm = LayerNorm(self.head_v_dim, elementwise_affine, norm_eps)
self.gate_fn = ACT2FN[gate_fn]
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
if isinstance(module, nn.Parameter):
nn.init.xavier_uniform_(module, gain=2 ** -2.5)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
batch_size, seq_len, hidden_size = hidden_states.size()
# launching the triton kernel for just one token will actually be slower
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
delta = self.time_shift(hidden_states) - hidden_states
x = self.x_proj[0](hidden_states, delta).view(batch_size, seq_len, -1, self.proj_low_rank_dim)
r, w, k, v, g = torch.einsum('b l n r, n r d-> b l n d',
self.x_proj[1](x),
self.x_proj[2].weight.view(5, -1, hidden_size)).unbind(-2)
r = self.r_proj(hidden_states, r, delta)
w = self.w_proj(hidden_states, w, delta)
k = self.k_proj(hidden_states, k, delta)
v = self.v_proj(hidden_states, v, delta)
g = self.g_proj(hidden_states, g, delta)
# dealing with left-padding
if attention_mask is not None:
v = v.mul_(attention_mask.unsqueeze(-1))
r, w, k, v = map(lambda x: rearrange(x, 'b l (h d) -> b h l d', h=self.num_heads), (r, w, k, v))
w = -torch.exp(w)
u = self.bonus
last_state = past_key_values[self.layer_idx] if use_cache else None
state = last_state[-1] if use_cache else None
if mode == 'fused_recurrent':
o, recurrent_state = fused_recurrent_rwkv6(r, k, v, w, u, initial_state=state, output_final_state=use_cache)
elif mode == 'chunk':
o, recurrent_state = chunk_rwkv6(r, k, v, w, u, initial_state=state, output_final_state=use_cache)
else:
raise NotImplementedError(f"Not supported mode `{mode}`.")
if past_key_values is not None:
past_key_values.update((recurrent_state,), self.layer_idx, r.shape[2])
o = rearrange(o, 'b h l d -> b l h d')
if self.fuse_norm_and_gate:
g = rearrange(g, 'b l (h d) -> b l h d', h=self.num_heads)
o = self.g_norm_swish_gate(o, g)
o = rearrange(o, 'b l h d -> b l (h d)')
else:
o = self.g_norm(o)
o = rearrange(o, 'b l h d -> b l (h d)')
o = o * self.gate_fn(g)
o = self.o_proj(o)
return o, None, past_key_values
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
param = next(self.parameters())
state = (param.new_zeros(batch_size, self.num_heads, self.head_qk_dim, self.head_v_dim),)
return state
def state_size(self, **kwargs) -> int:
state_size = self.key_dim * self.head_v_dim
return state_size
class LoRA(nn.Module):
def __init__(
self,
input_dim: int,
output_dim: int,
low_rank_dim: int,
bias: Optional[bool] = True
):
super().__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.low_rank_dim = low_rank_dim
self.bias = bias
self.lora = nn.Sequential(
nn.Linear(input_dim, low_rank_dim, bias=False),
nn.Tanh(),
nn.Linear(low_rank_dim, output_dim, bias=bias)
)
def __repr__(self) -> str:
s = f"{self.__class__.__name__}("
s += f"input_dim={self.input_dim}, low_rank_dim={self.low_rank_dim}, output_dim={self.output_dim}"
if not self.bias:
s += f", bias={self.bias}"
s += ")"
return s
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.lora(x)
class LerpLinear(nn.Module):
def __init__(
self,
input_dim: int,
output_dim: int,
low_rank_dim: Optional[int] = None
):
super().__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.low_rank_dim = low_rank_dim
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
if low_rank_dim is None:
self.linear = nn.Linear(input_dim, output_dim, bias=False)
else:
self.linear = LoRA(input_dim, output_dim, low_rank_dim)
self.mu = nn.Parameter(torch.zeros(input_dim))
def __repr__(self) -> str:
s = f"{self.__class__.__name__}({self.input_dim}, {self.output_dim}"
if self.low_rank_dim is not None:
s += f", low_rank_dim={self.low_rank_dim}"
s += ")"
return s
def forward(self, x: torch.Tensor, delta: Optional[torch.Tensor] = None) -> torch.Tensor:
if delta is None:
shifted = self.time_shift(x)
if len(shifted.shape) == 2:
shifted = shifted.unsqueeze(1)
delta = shifted - x
return self.linear(x + delta * self.mu)
class DDLerpLinear(nn.Module):
def __init__(
self,
input_dim: int,
output_dim: int,
low_rank_dim: Optional[int] = None
):
super().__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.low_rank_dim = low_rank_dim
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
if low_rank_dim is None:
self.linear = nn.Linear(input_dim, output_dim, bias=False)
else:
self.linear = LoRA(input_dim, output_dim, low_rank_dim)
def __repr__(self) -> str:
s = f"{self.__class__.__name__}({self.input_dim}, {self.output_dim}"
if self.low_rank_dim is not None:
s += f", low_rank_dim={self.low_rank_dim}"
s += ")"
return s
def forward(self, x: torch.Tensor, mu: torch.Tensor, delta: Optional[torch.Tensor] = None) -> torch.Tensor:
if delta is None:
shifted = self.time_shift(x)
if len(shifted.shape) == 2:
shifted = shifted.unsqueeze(1)
delta = shifted - x
return self.linear(x + delta * mu)