RWKV-Runner/backend-python/utils/rwkv.py
2023-05-29 20:51:20 +08:00

213 lines
7.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import pathlib
import copy
from typing import Dict, List
from fastapi import HTTPException
from pydantic import BaseModel
from rwkv_pip.utils import PIPELINE
from routes import state_cache
END_OF_TEXT = 0
END_OF_LINE = 187
os.environ["TORCH_EXTENSIONS_DIR"] = f"{pathlib.Path(__file__).parent.parent.resolve()}"
class RWKV:
def __init__(self, model: str, strategy: str, tokens_path: str) -> None:
from rwkv.model import RWKV as Model # dynamic import to make RWKV_CUDA_ON work
self.model = Model(model, strategy)
self.pipeline = PIPELINE(self.model, tokens_path)
self.model_state = None
self.model_tokens = []
self.CHUNK_LEN = 256
self.max_tokens_per_generation = 500
self.temperature = 1
self.top_p = 0.5
self.penalty_alpha_presence = 0.4
self.penalty_alpha_frequency = 0.4
self.interface = ":"
if "rwkv_vocab" in tokens_path:
self.user = "Question"
self.bot = "Answer"
else:
self.user = "Bob"
self.bot = "Alice"
self.AVOID_REPEAT_TOKENS = []
AVOID_REPEAT = ""
for i in AVOID_REPEAT:
dd = self.pipeline.encode(i)
assert len(dd) == 1
self.AVOID_REPEAT_TOKENS += dd
self.preload()
def preload(self):
if self.user == "Bob":
bot = self.bot
user = self.user
preset_system = f"""
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
{bot} is very intelligent, creative and friendly. \
{bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \
{bot} likes to tell {user} a lot about herself and her opinions. \
{bot} usually gives {user} kind, helpful and informative advices.\n
"""
logits = self.run_rnn(self.pipeline.encode(preset_system))
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=preset_system,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
def run_rnn(self, _tokens: List[str], newline_adj: int = 0):
tokens = [int(x) for x in _tokens]
self.model_tokens += tokens
while len(tokens) > 0:
out, self.model_state = self.model.forward(
tokens[: self.CHUNK_LEN], self.model_state
)
tokens = tokens[self.CHUNK_LEN :]
out[END_OF_LINE] += newline_adj # adjust \n probability
if self.model_tokens[-1] in self.AVOID_REPEAT_TOKENS:
out[self.model_tokens[-1]] = -999999999
return out
def generate(self, prompt: str, stop: str = None):
cache = None
delta_prompt = prompt
try:
cache = state_cache.longest_prefix_state(
state_cache.LongestPrefixStateBody(prompt=prompt)
)
except HTTPException:
pass
if cache is None or cache["prompt"] == "":
self.model_state = None
self.model_tokens = []
else:
delta_prompt = prompt[len(cache["prompt"]) :]
self.model_state = copy.deepcopy(cache["state"])
self.model_tokens = copy.deepcopy(cache["tokens"])
logits = copy.deepcopy(cache["logits"])
if delta_prompt != "":
logits = self.run_rnn(self.pipeline.encode(delta_prompt))
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
begin = len(self.model_tokens)
out_last = begin
occurrence: Dict = {}
response = ""
for i in range(self.max_tokens_per_generation):
for n in occurrence:
logits[n] -= (
self.penalty_alpha_presence
+ occurrence[n] * self.penalty_alpha_frequency
)
token = self.pipeline.sample_logits(
logits, temperature=self.temperature, top_p=self.top_p
)
if token == END_OF_TEXT:
yield response, ""
break
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
logits = self.run_rnn([token])
delta: str = self.pipeline.decode(self.model_tokens[out_last:])
if "\ufffd" not in delta: # avoid utf-8 display issues
response += delta
if stop is not None:
if stop in response:
response = response.split(stop)[0]
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
yield response, ""
break
out_last = begin + i + 1
if i == self.max_tokens_per_generation - 1:
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
yield response, delta
class ModelConfigBody(BaseModel):
max_tokens: int = None
temperature: float = None
top_p: float = None
presence_penalty: float = None
frequency_penalty: float = None
def set_rwkv_config(model: RWKV, body: ModelConfigBody):
if body.max_tokens:
model.max_tokens_per_generation = body.max_tokens
if body.temperature:
model.temperature = body.temperature
if body.top_p:
model.top_p = body.top_p
if body.presence_penalty:
model.penalty_alpha_presence = body.presence_penalty
if body.frequency_penalty:
model.penalty_alpha_frequency = body.frequency_penalty
def get_rwkv_config(model: RWKV) -> ModelConfigBody:
return ModelConfigBody(
max_tokens=model.max_tokens_per_generation,
temperature=model.temperature,
top_p=model.top_p,
presence_penalty=model.penalty_alpha_presence,
frequency_penalty=model.penalty_alpha_frequency,
)