132 lines
4.0 KiB
Python
132 lines
4.0 KiB
Python
import os
|
||
import pathlib
|
||
from typing import Dict, List
|
||
from pydantic import BaseModel
|
||
from rwkv_pip.utils import PIPELINE
|
||
|
||
|
||
END_OF_TEXT = 0
|
||
END_OF_LINE = 187
|
||
|
||
|
||
os.environ["TORCH_EXTENSIONS_DIR"] = f"{pathlib.Path(__file__).parent.parent.resolve()}"
|
||
|
||
|
||
class RWKV:
|
||
def __init__(self, model: str, strategy: str, tokens_path: str) -> None:
|
||
from rwkv.model import RWKV as Model # dynamic import to make RWKV_CUDA_ON work
|
||
|
||
self.model = Model(model, strategy)
|
||
self.pipeline = PIPELINE(self.model, tokens_path)
|
||
self.model_state = None
|
||
self.model_tokens = []
|
||
|
||
self.CHUNK_LEN = 256
|
||
|
||
self.max_tokens_per_generation = 500
|
||
self.temperature = 1
|
||
self.top_p = 0.5
|
||
self.penalty_alpha_presence = 0.4
|
||
self.penalty_alpha_frequency = 0.4
|
||
|
||
self.interface = ":"
|
||
if "rwkv_vocab" in tokens_path:
|
||
self.user = "Human"
|
||
self.bot = "Bot"
|
||
else:
|
||
self.user = "Bob"
|
||
self.bot = "Alice"
|
||
|
||
self.AVOID_REPEAT_TOKENS = []
|
||
AVOID_REPEAT = ",:?!"
|
||
for i in AVOID_REPEAT:
|
||
dd = self.pipeline.encode(i)
|
||
assert len(dd) == 1
|
||
self.AVOID_REPEAT_TOKENS += dd
|
||
|
||
def run_rnn(self, _tokens: List[str], newline_adj: int = 0):
|
||
tokens = [int(x) for x in _tokens]
|
||
self.model_tokens += tokens
|
||
|
||
while len(tokens) > 0:
|
||
out, self.model_state = self.model.forward(
|
||
tokens[: self.CHUNK_LEN], self.model_state
|
||
)
|
||
tokens = tokens[self.CHUNK_LEN :]
|
||
|
||
out[END_OF_LINE] += newline_adj # adjust \n probability
|
||
|
||
if self.model_tokens[-1] in self.AVOID_REPEAT_TOKENS:
|
||
out[self.model_tokens[-1]] = -999999999
|
||
return out
|
||
|
||
def generate(self, prompt: str, stop: str = None):
|
||
self.model_state = None
|
||
self.model_tokens = []
|
||
logits = self.run_rnn(self.pipeline.encode(prompt))
|
||
begin = len(self.model_tokens)
|
||
out_last = begin
|
||
|
||
occurrence: Dict = {}
|
||
|
||
response = ""
|
||
for i in range(self.max_tokens_per_generation):
|
||
for n in occurrence:
|
||
logits[n] -= (
|
||
self.penalty_alpha_presence
|
||
+ occurrence[n] * self.penalty_alpha_frequency
|
||
)
|
||
token = self.pipeline.sample_logits(
|
||
logits, temperature=self.temperature, top_p=self.top_p
|
||
)
|
||
|
||
if token == END_OF_TEXT:
|
||
break
|
||
if token not in occurrence:
|
||
occurrence[token] = 1
|
||
else:
|
||
occurrence[token] += 1
|
||
|
||
logits = self.run_rnn([token])
|
||
delta: str = self.pipeline.decode(self.model_tokens[out_last:])
|
||
if "\ufffd" not in delta: # avoid utf-8 display issues
|
||
response += delta
|
||
if stop is not None:
|
||
if stop in response:
|
||
response = response.split(stop)[0]
|
||
yield response, ""
|
||
break
|
||
out_last = begin + i + 1
|
||
yield response, delta
|
||
|
||
|
||
class ModelConfigBody(BaseModel):
|
||
max_tokens: int = None
|
||
temperature: float = None
|
||
top_p: float = None
|
||
presence_penalty: float = None
|
||
frequency_penalty: float = None
|
||
|
||
|
||
def set_rwkv_config(model: RWKV, body: ModelConfigBody):
|
||
if body.max_tokens:
|
||
model.max_tokens_per_generation = body.max_tokens
|
||
if body.temperature:
|
||
model.temperature = body.temperature
|
||
if body.top_p:
|
||
model.top_p = body.top_p
|
||
if body.presence_penalty:
|
||
model.penalty_alpha_presence = body.presence_penalty
|
||
if body.frequency_penalty:
|
||
model.penalty_alpha_frequency = body.frequency_penalty
|
||
|
||
|
||
def get_rwkv_config(model: RWKV) -> ModelConfigBody:
|
||
return ModelConfigBody(
|
||
max_tokens=model.max_tokens_per_generation,
|
||
temperature=model.temperature,
|
||
top_p=model.top_p,
|
||
presence_penalty=model.penalty_alpha_presence,
|
||
frequency_penalty=model.penalty_alpha_frequency,
|
||
)
|