803 lines
25 KiB
Python
Vendored
803 lines
25 KiB
Python
Vendored
# -*- coding: utf-8 -*-
|
|
|
|
# Copyright (c) 2023, Tri Dao.
|
|
# https://github.com/state-spaces/mamba/blob/fb7b5310fa865dbd62aa059b1e26f2b431363e2a/mamba_ssm/ops/triton/layernorm.py
|
|
# Implement residual + layer_norm / rms_norm.
|
|
|
|
# Based on the Triton LayerNorm tutorial: https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
|
|
# For the backward pass, we keep weight_grad and bias_grad in registers and accumulate.
|
|
# This is faster for dimensions up to 8k, but after that it's much slower due to register spilling.
|
|
# The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine.
|
|
|
|
from __future__ import annotations
|
|
|
|
import math
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import triton
|
|
import triton.language as tl
|
|
|
|
from fla.utils import contiguous
|
|
|
|
|
|
def layer_norm_ref(x, weight, bias, residual=None, eps=1e-6, prenorm=False, upcast=False):
|
|
dtype = x.dtype
|
|
if upcast:
|
|
weight = weight.float()
|
|
bias = bias.float() if bias is not None else None
|
|
if upcast:
|
|
x = x.float()
|
|
residual = residual.float() if residual is not None else residual
|
|
if residual is not None:
|
|
x = (x + residual).to(x.dtype)
|
|
out = F.layer_norm(x.to(weight.dtype), x.shape[-1:], weight=weight, bias=bias, eps=eps).to(
|
|
dtype
|
|
)
|
|
return out if not prenorm else (out, x)
|
|
|
|
|
|
def rms_norm_ref(x, weight, bias, residual=None, eps=1e-6, prenorm=False, upcast=False):
|
|
dtype = x.dtype
|
|
if upcast:
|
|
weight = weight.float()
|
|
bias = bias.float() if bias is not None else None
|
|
if upcast:
|
|
x = x.float()
|
|
residual = residual.float() if residual is not None else residual
|
|
if residual is not None:
|
|
x = (x + residual).to(x.dtype)
|
|
rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps)
|
|
out = (x * rstd * weight) + \
|
|
bias if bias is not None else (x * rstd * weight)
|
|
out = out.to(dtype)
|
|
return out if not prenorm else (out, x)
|
|
|
|
|
|
@triton.autotune(
|
|
configs=[
|
|
triton.Config({}, num_warps=1),
|
|
triton.Config({}, num_warps=2),
|
|
triton.Config({}, num_warps=4),
|
|
triton.Config({}, num_warps=8),
|
|
triton.Config({}, num_warps=16),
|
|
triton.Config({}, num_warps=32),
|
|
],
|
|
key=["N", "HAS_RESIDUAL", "STORE_RESIDUAL_OUT", "IS_RMS_NORM", "HAS_BIAS"],
|
|
)
|
|
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
|
# @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None})
|
|
@triton.jit
|
|
def _layer_norm_fwd_1pass_kernel(
|
|
X, # pointer to the input
|
|
Y, # pointer to the output
|
|
W, # pointer to the weights
|
|
B, # pointer to the biases
|
|
RESIDUAL, # pointer to the residual
|
|
RESIDUAL_OUT, # pointer to the residual
|
|
Mean, # pointer to the mean
|
|
Rstd, # pointer to the 1/std
|
|
stride_x_row, # how much to increase the pointer when moving by 1 row
|
|
stride_y_row,
|
|
stride_res_row,
|
|
stride_res_out_row,
|
|
N, # number of columns in X
|
|
eps, # epsilon to avoid division by zero
|
|
IS_RMS_NORM: tl.constexpr,
|
|
BLOCK_N: tl.constexpr,
|
|
HAS_RESIDUAL: tl.constexpr,
|
|
STORE_RESIDUAL_OUT: tl.constexpr,
|
|
HAS_WEIGHT: tl.constexpr,
|
|
HAS_BIAS: tl.constexpr
|
|
):
|
|
# Map the program id to the row of X and Y it should compute.
|
|
row = tl.program_id(0)
|
|
X += row * stride_x_row
|
|
Y += row * stride_y_row
|
|
if HAS_RESIDUAL:
|
|
RESIDUAL += row * stride_res_row
|
|
if STORE_RESIDUAL_OUT:
|
|
RESIDUAL_OUT += row * stride_res_out_row
|
|
# Compute mean and variance
|
|
cols = tl.arange(0, BLOCK_N)
|
|
x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
|
|
if HAS_RESIDUAL:
|
|
residual = tl.load(RESIDUAL + cols, mask=cols <
|
|
N, other=0.0).to(tl.float32)
|
|
x += residual
|
|
if STORE_RESIDUAL_OUT:
|
|
tl.store(RESIDUAL_OUT + cols, x, mask=cols < N)
|
|
if not IS_RMS_NORM:
|
|
mean = tl.sum(x, axis=0) / N
|
|
tl.store(Mean + row, mean)
|
|
xbar = tl.where(cols < N, x - mean, 0.0)
|
|
var = tl.sum(xbar * xbar, axis=0) / N
|
|
else:
|
|
xbar = tl.where(cols < N, x, 0.0)
|
|
var = tl.sum(xbar * xbar, axis=0) / N
|
|
rstd = 1 / tl.sqrt(var + eps)
|
|
tl.store(Rstd + row, rstd)
|
|
# Normalize and apply linear transformation
|
|
mask = cols < N
|
|
if HAS_WEIGHT:
|
|
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
|
if HAS_BIAS:
|
|
b = tl.load(B + cols, mask=mask).to(tl.float32)
|
|
x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
|
|
|
|
y = x_hat * w if HAS_WEIGHT else x_hat
|
|
if HAS_BIAS:
|
|
y = y + b
|
|
# Write output
|
|
tl.store(Y + cols, y, mask=mask)
|
|
|
|
|
|
def _layer_norm_fwd(
|
|
x, weight, bias, eps, residual=None, out_dtype=None, residual_dtype=None, is_rms_norm=False
|
|
):
|
|
if residual is not None:
|
|
residual_dtype = residual.dtype
|
|
M, N = x.shape
|
|
assert x.stride(-1) == 1
|
|
if residual is not None:
|
|
assert residual.stride(-1) == 1
|
|
assert residual.shape == (M, N)
|
|
if weight is not None:
|
|
assert weight.shape == (N,)
|
|
assert weight.stride(-1) == 1
|
|
if bias is not None:
|
|
assert bias.stride(-1) == 1
|
|
assert bias.shape == (N,)
|
|
# allocate output
|
|
y = torch.empty_like(x, dtype=x.dtype if out_dtype is None else out_dtype)
|
|
assert y.stride(-1) == 1
|
|
if residual is not None or (residual_dtype is not None and residual_dtype != x.dtype):
|
|
residual_out = torch.empty(M, N, device=x.device, dtype=residual_dtype)
|
|
assert residual_out.stride(-1) == 1
|
|
else:
|
|
residual_out = None
|
|
mean = torch.empty((M,), dtype=torch.float32,
|
|
device="cuda") if not is_rms_norm else None
|
|
rstd = torch.empty((M,), dtype=torch.float32, device="cuda")
|
|
# Less than 64KB per feature: enqueue fused kernel
|
|
MAX_FUSED_SIZE = 65536 // x.element_size()
|
|
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
|
if N > BLOCK_N:
|
|
raise RuntimeError(
|
|
"This layer norm doesn't support feature dim >= 64KB.")
|
|
# heuristics for number of warps
|
|
with torch.cuda.device(x.device.index):
|
|
_layer_norm_fwd_1pass_kernel[(M,)](
|
|
x,
|
|
y,
|
|
weight,
|
|
bias,
|
|
residual,
|
|
residual_out,
|
|
mean,
|
|
rstd,
|
|
x.stride(0),
|
|
y.stride(0),
|
|
residual.stride(0) if residual is not None else 0,
|
|
residual_out.stride(0) if residual_out is not None else 0,
|
|
N,
|
|
eps,
|
|
is_rms_norm,
|
|
BLOCK_N,
|
|
residual is not None,
|
|
residual_out is not None,
|
|
weight is not None,
|
|
bias is not None,
|
|
)
|
|
# residual_out is None if residual is None and residual_dtype == input_dtype
|
|
return y, mean, rstd, residual_out if residual_out is not None else x
|
|
|
|
|
|
@triton.autotune(
|
|
configs=[
|
|
triton.Config({}, num_warps=1),
|
|
triton.Config({}, num_warps=2),
|
|
triton.Config({}, num_warps=4),
|
|
triton.Config({}, num_warps=8),
|
|
triton.Config({}, num_warps=16),
|
|
triton.Config({}, num_warps=32),
|
|
],
|
|
key=["N", "HAS_DRESIDUAL", "STORE_DRESIDUAL", "IS_RMS_NORM", "HAS_BIAS"],
|
|
)
|
|
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
|
# @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None})
|
|
# @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None})
|
|
@triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None})
|
|
@triton.jit
|
|
def _layer_norm_bwd_kernel(
|
|
X, # pointer to the input
|
|
W, # pointer to the weights
|
|
B, # pointer to the biases
|
|
Y, # pointer to the output to be recomputed
|
|
DY, # pointer to the output gradient
|
|
DX, # pointer to the input gradient
|
|
DW, # pointer to the partial sum of weights gradient
|
|
DB, # pointer to the partial sum of biases gradient
|
|
DRESIDUAL,
|
|
DRESIDUAL_IN,
|
|
Mean, # pointer to the mean
|
|
Rstd, # pointer to the 1/std
|
|
stride_x_row, # how much to increase the pointer when moving by 1 row
|
|
stride_y_row,
|
|
stride_dy_row,
|
|
stride_dx_row,
|
|
stride_dres_row,
|
|
stride_dres_in_row,
|
|
M, # number of rows in X
|
|
N, # number of columns in X
|
|
eps, # epsilon to avoid division by zero
|
|
rows_per_program,
|
|
IS_RMS_NORM: tl.constexpr,
|
|
BLOCK_N: tl.constexpr,
|
|
HAS_DRESIDUAL: tl.constexpr,
|
|
STORE_DRESIDUAL: tl.constexpr,
|
|
HAS_WEIGHT: tl.constexpr,
|
|
HAS_BIAS: tl.constexpr,
|
|
RECOMPUTE_OUTPUT: tl.constexpr,
|
|
):
|
|
# Map the program id to the elements of X, DX, and DY it should compute.
|
|
row_block_id = tl.program_id(0)
|
|
row_start = row_block_id * rows_per_program
|
|
cols = tl.arange(0, BLOCK_N)
|
|
mask = cols < N
|
|
X += row_start * stride_x_row
|
|
if HAS_DRESIDUAL:
|
|
DRESIDUAL += row_start * stride_dres_row
|
|
if STORE_DRESIDUAL:
|
|
DRESIDUAL_IN += row_start * stride_dres_in_row
|
|
DY += row_start * stride_dy_row
|
|
DX += row_start * stride_dx_row
|
|
if RECOMPUTE_OUTPUT:
|
|
Y += row_start * stride_y_row
|
|
if HAS_WEIGHT:
|
|
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
|
dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
|
if RECOMPUTE_OUTPUT and HAS_BIAS:
|
|
b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32)
|
|
if HAS_BIAS:
|
|
db = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
|
row_end = min((row_block_id + 1) * rows_per_program, M)
|
|
for row in range(row_start, row_end):
|
|
# Load data to SRAM
|
|
x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
|
|
dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
|
|
if not IS_RMS_NORM:
|
|
mean = tl.load(Mean + row)
|
|
rstd = tl.load(Rstd + row)
|
|
# Compute dx
|
|
xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
|
|
xhat = tl.where(mask, xhat, 0.0)
|
|
if RECOMPUTE_OUTPUT:
|
|
y = xhat * w if HAS_WEIGHT else xhat
|
|
if HAS_BIAS:
|
|
y = y + b
|
|
tl.store(Y + cols, y, mask=mask)
|
|
wdy = dy
|
|
if HAS_WEIGHT:
|
|
wdy = dy * w
|
|
dw += dy * xhat
|
|
if HAS_BIAS:
|
|
db += dy
|
|
if not IS_RMS_NORM:
|
|
c1 = tl.sum(xhat * wdy, axis=0) / N
|
|
c2 = tl.sum(wdy, axis=0) / N
|
|
dx = (wdy - (xhat * c1 + c2)) * rstd
|
|
else:
|
|
c1 = tl.sum(xhat * wdy, axis=0) / N
|
|
dx = (wdy - xhat * c1) * rstd
|
|
if HAS_DRESIDUAL:
|
|
dres = tl.load(DRESIDUAL + cols, mask=mask, other=0).to(tl.float32)
|
|
dx += dres
|
|
# Write dx
|
|
if STORE_DRESIDUAL:
|
|
tl.store(DRESIDUAL_IN + cols, dx, mask=mask)
|
|
tl.store(DX + cols, dx, mask=mask)
|
|
|
|
X += stride_x_row
|
|
if HAS_DRESIDUAL:
|
|
DRESIDUAL += stride_dres_row
|
|
if STORE_DRESIDUAL:
|
|
DRESIDUAL_IN += stride_dres_in_row
|
|
if RECOMPUTE_OUTPUT:
|
|
Y += stride_y_row
|
|
DY += stride_dy_row
|
|
DX += stride_dx_row
|
|
if HAS_WEIGHT:
|
|
tl.store(DW + row_block_id * N + cols, dw, mask=mask)
|
|
if HAS_BIAS:
|
|
tl.store(DB + row_block_id * N + cols, db, mask=mask)
|
|
|
|
|
|
def _layer_norm_bwd(
|
|
dy,
|
|
x,
|
|
weight,
|
|
bias,
|
|
eps,
|
|
mean,
|
|
rstd,
|
|
dresidual=None,
|
|
has_residual=False,
|
|
is_rms_norm=False,
|
|
x_dtype=None,
|
|
recompute_output=False,
|
|
):
|
|
M, N = x.shape
|
|
assert x.stride(-1) == 1
|
|
assert dy.stride(-1) == 1
|
|
assert dy.shape == (M, N)
|
|
if dresidual is not None:
|
|
assert dresidual.stride(-1) == 1
|
|
assert dresidual.shape == (M, N)
|
|
if weight is not None:
|
|
assert weight.shape == (N,)
|
|
assert weight.stride(-1) == 1
|
|
if bias is not None:
|
|
assert bias.stride(-1) == 1
|
|
assert bias.shape == (N,)
|
|
# allocate output
|
|
dx = (
|
|
torch.empty_like(x)
|
|
if x_dtype is None
|
|
else torch.empty(M, N, dtype=x_dtype, device=x.device)
|
|
)
|
|
dresidual_in = torch.empty_like(
|
|
x) if has_residual and dx.dtype != x.dtype else None
|
|
y = torch.empty(M, N, dtype=dy.dtype,
|
|
device=dy.device) if recompute_output else None
|
|
|
|
# Less than 64KB per feature: enqueue fused kernel
|
|
MAX_FUSED_SIZE = 65536 // x.element_size()
|
|
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
|
if N > BLOCK_N:
|
|
raise RuntimeError(
|
|
"This layer norm doesn't support feature dim >= 64KB.")
|
|
sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count
|
|
_dw = (
|
|
torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)
|
|
if weight is not None
|
|
else None
|
|
)
|
|
_db = (
|
|
torch.empty((sm_count, N), dtype=torch.float32, device=bias.device)
|
|
if bias is not None
|
|
else None
|
|
)
|
|
rows_per_program = math.ceil(M / sm_count)
|
|
grid = (sm_count,)
|
|
with torch.cuda.device(x.device.index):
|
|
_layer_norm_bwd_kernel[grid](
|
|
x,
|
|
weight,
|
|
bias,
|
|
y,
|
|
dy,
|
|
dx,
|
|
_dw,
|
|
_db,
|
|
dresidual,
|
|
dresidual_in,
|
|
mean,
|
|
rstd,
|
|
x.stride(0),
|
|
0 if not recompute_output else y.stride(0),
|
|
dy.stride(0),
|
|
dx.stride(0),
|
|
dresidual.stride(0) if dresidual is not None else 0,
|
|
dresidual_in.stride(0) if dresidual_in is not None else 0,
|
|
M,
|
|
N,
|
|
eps,
|
|
rows_per_program,
|
|
is_rms_norm,
|
|
BLOCK_N,
|
|
dresidual is not None,
|
|
dresidual_in is not None,
|
|
weight is not None,
|
|
bias is not None,
|
|
)
|
|
dw = _dw.sum(0).to(weight.dtype) if weight is not None else None
|
|
db = _db.sum(0).to(bias.dtype) if bias is not None else None
|
|
# Don't need to compute dresidual_in separately in this case
|
|
if has_residual and dx.dtype == x.dtype:
|
|
dresidual_in = dx
|
|
return (dx, dw, db, dresidual_in) if not recompute_output else (dx, dw, db, dresidual_in, y)
|
|
|
|
|
|
class LayerNormFn(torch.autograd.Function):
|
|
|
|
@staticmethod
|
|
@contiguous
|
|
def forward(
|
|
ctx,
|
|
x,
|
|
weight,
|
|
bias,
|
|
residual=None,
|
|
eps=1e-6,
|
|
prenorm=False,
|
|
residual_in_fp32=False,
|
|
is_rms_norm=False,
|
|
):
|
|
x_shape_og = x.shape
|
|
# reshape input data into 2D tensor
|
|
x = x.reshape(-1, x.shape[-1])
|
|
if residual is not None:
|
|
assert residual.shape == x_shape_og
|
|
residual = residual.reshape(-1, residual.shape[-1])
|
|
residual_dtype = (
|
|
residual.dtype
|
|
if residual is not None
|
|
else (torch.float32 if residual_in_fp32 else None)
|
|
)
|
|
y, mean, rstd, residual_out = _layer_norm_fwd(
|
|
x, weight, bias, eps, residual, residual_dtype=residual_dtype, is_rms_norm=is_rms_norm
|
|
)
|
|
ctx.save_for_backward(residual_out, weight, bias, mean, rstd)
|
|
ctx.x_shape_og = x_shape_og
|
|
ctx.eps = eps
|
|
ctx.is_rms_norm = is_rms_norm
|
|
ctx.has_residual = residual is not None
|
|
ctx.prenorm = prenorm
|
|
ctx.x_dtype = x.dtype
|
|
y = y.reshape(x_shape_og)
|
|
return y if not prenorm else (y, residual_out.reshape(x_shape_og))
|
|
|
|
@staticmethod
|
|
@contiguous
|
|
def backward(ctx, dy, *args):
|
|
x, weight, bias, mean, rstd = ctx.saved_tensors
|
|
dy = dy.reshape(-1, dy.shape[-1])
|
|
assert dy.shape == x.shape
|
|
if ctx.prenorm:
|
|
dresidual = args[0]
|
|
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
|
|
assert dresidual.shape == x.shape
|
|
else:
|
|
dresidual = None
|
|
dx, dw, db, dresidual_in = _layer_norm_bwd(
|
|
dy,
|
|
x,
|
|
weight,
|
|
bias,
|
|
ctx.eps,
|
|
mean,
|
|
rstd,
|
|
dresidual,
|
|
ctx.has_residual,
|
|
ctx.is_rms_norm,
|
|
x_dtype=ctx.x_dtype,
|
|
)
|
|
return (
|
|
dx.reshape(ctx.x_shape_og),
|
|
dw,
|
|
db,
|
|
dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
)
|
|
|
|
|
|
def layer_norm_fn(
|
|
x,
|
|
weight,
|
|
bias,
|
|
residual=None,
|
|
eps=1e-6,
|
|
prenorm=False,
|
|
residual_in_fp32=False,
|
|
is_rms_norm=False,
|
|
):
|
|
return LayerNormFn.apply(x, weight, bias, residual, eps, prenorm, residual_in_fp32, is_rms_norm)
|
|
|
|
|
|
def rms_norm_fn(
|
|
x,
|
|
weight,
|
|
bias,
|
|
residual=None,
|
|
prenorm=False,
|
|
residual_in_fp32=False,
|
|
eps=1e-6
|
|
):
|
|
return LayerNormFn.apply(x, weight, bias, residual, eps, prenorm, residual_in_fp32, True)
|
|
|
|
|
|
class LayerNorm(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
elementwise_affine: bool = True,
|
|
eps: float = 1e-5
|
|
) -> LayerNorm:
|
|
super().__init__()
|
|
|
|
self.hidden_size = hidden_size
|
|
self.elementwise_affine = elementwise_affine
|
|
self.eps = eps
|
|
|
|
if elementwise_affine:
|
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
else:
|
|
self.register_parameter("weight", None)
|
|
self.register_parameter("bias", None)
|
|
|
|
def __repr__(self) -> str:
|
|
s = f"{self.__class__.__name__}({self.hidden_size}"
|
|
if not self.elementwise_affine:
|
|
s += f", elementwise_affine={self.elementwise_affine}"
|
|
s += f", eps={self.eps}"
|
|
s += ")"
|
|
return s
|
|
|
|
def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
|
|
return layer_norm_fn(
|
|
x,
|
|
self.weight,
|
|
self.bias,
|
|
residual=residual,
|
|
eps=self.eps,
|
|
prenorm=prenorm,
|
|
residual_in_fp32=residual_in_fp32
|
|
)
|
|
|
|
|
|
class RMSNorm(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
elementwise_affine: bool = True,
|
|
eps: float = 1e-5
|
|
) -> RMSNorm:
|
|
super().__init__()
|
|
|
|
self.hidden_size = hidden_size
|
|
self.elementwise_affine = elementwise_affine
|
|
self.eps = eps
|
|
|
|
if elementwise_affine:
|
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
else:
|
|
self.register_parameter("weight", None)
|
|
self.register_parameter("bias", None)
|
|
|
|
def __repr__(self) -> str:
|
|
s = f"{self.__class__.__name__}({self.hidden_size}"
|
|
if not self.elementwise_affine:
|
|
s += f", elementwise_affine={self.elementwise_affine}"
|
|
s += f", eps={self.eps}"
|
|
s += ")"
|
|
return s
|
|
|
|
def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
|
|
return rms_norm_fn(
|
|
x,
|
|
self.weight,
|
|
self.bias,
|
|
residual=residual,
|
|
eps=self.eps,
|
|
prenorm=prenorm,
|
|
residual_in_fp32=residual_in_fp32,
|
|
)
|
|
|
|
|
|
class LayerNormLinearFn(torch.autograd.Function):
|
|
|
|
@staticmethod
|
|
@contiguous
|
|
def forward(
|
|
ctx,
|
|
x,
|
|
norm_weight,
|
|
norm_bias,
|
|
linear_weight,
|
|
linear_bias,
|
|
residual=None,
|
|
eps=1e-6,
|
|
prenorm=False,
|
|
residual_in_fp32=False,
|
|
is_rms_norm=False,
|
|
):
|
|
x_shape_og = x.shape
|
|
# reshape input data into 2D tensor
|
|
x = x.reshape(-1, x.shape[-1])
|
|
if residual is not None:
|
|
assert residual.shape == x_shape_og
|
|
residual = residual.reshape(-1, residual.shape[-1])
|
|
residual_dtype = (
|
|
residual.dtype
|
|
if residual is not None
|
|
else (torch.float32 if residual_in_fp32 else None)
|
|
)
|
|
y, mean, rstd, residual_out = _layer_norm_fwd(
|
|
x,
|
|
norm_weight,
|
|
norm_bias,
|
|
eps,
|
|
residual,
|
|
out_dtype=None if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype(),
|
|
residual_dtype=residual_dtype,
|
|
is_rms_norm=is_rms_norm,
|
|
)
|
|
y = y.reshape(x_shape_og)
|
|
dtype = torch.get_autocast_gpu_dtype() if torch.is_autocast_enabled() else y.dtype
|
|
linear_weight = linear_weight.to(dtype)
|
|
linear_bias = linear_bias.to(
|
|
dtype) if linear_bias is not None else None
|
|
out = F.linear(y.to(linear_weight.dtype), linear_weight, linear_bias)
|
|
# We don't store y, will be recomputed in the backward pass to save memory
|
|
ctx.save_for_backward(residual_out, norm_weight,
|
|
norm_bias, linear_weight, mean, rstd)
|
|
ctx.x_shape_og = x_shape_og
|
|
ctx.eps = eps
|
|
ctx.is_rms_norm = is_rms_norm
|
|
ctx.has_residual = residual is not None
|
|
ctx.prenorm = prenorm
|
|
ctx.x_dtype = x.dtype
|
|
ctx.linear_bias_is_none = linear_bias is None
|
|
return out if not prenorm else (out, residual_out.reshape(x_shape_og))
|
|
|
|
@staticmethod
|
|
@contiguous
|
|
def backward(ctx, dout, *args):
|
|
x, norm_weight, norm_bias, linear_weight, mean, rstd = ctx.saved_tensors
|
|
dout = dout.reshape(-1, dout.shape[-1])
|
|
dy = F.linear(dout, linear_weight.t())
|
|
dlinear_bias = None if ctx.linear_bias_is_none else dout.sum(0)
|
|
assert dy.shape == x.shape
|
|
if ctx.prenorm:
|
|
dresidual = args[0]
|
|
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
|
|
assert dresidual.shape == x.shape
|
|
else:
|
|
dresidual = None
|
|
dx, dnorm_weight, dnorm_bias, dresidual_in, y = _layer_norm_bwd(
|
|
dy,
|
|
x,
|
|
norm_weight,
|
|
norm_bias,
|
|
ctx.eps,
|
|
mean,
|
|
rstd,
|
|
dresidual,
|
|
ctx.has_residual,
|
|
ctx.is_rms_norm,
|
|
x_dtype=ctx.x_dtype,
|
|
recompute_output=True,
|
|
)
|
|
dlinear_weight = torch.einsum("bo,bi->oi", dout, y)
|
|
return (
|
|
dx.reshape(ctx.x_shape_og),
|
|
dnorm_weight,
|
|
dnorm_bias,
|
|
dlinear_weight,
|
|
dlinear_bias,
|
|
dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
)
|
|
|
|
|
|
def layer_norm_linear_fn(
|
|
x,
|
|
norm_weight,
|
|
norm_bias,
|
|
linear_weight,
|
|
linear_bias,
|
|
residual=None,
|
|
eps=1e-6,
|
|
prenorm=False,
|
|
residual_in_fp32=False,
|
|
is_rms_norm=False,
|
|
):
|
|
return LayerNormLinearFn.apply(
|
|
x,
|
|
norm_weight,
|
|
norm_bias,
|
|
linear_weight,
|
|
linear_bias,
|
|
residual,
|
|
eps,
|
|
prenorm,
|
|
residual_in_fp32,
|
|
is_rms_norm,
|
|
)
|
|
|
|
|
|
class LayerNormLinear(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size,
|
|
elementwise_affine: bool = True,
|
|
eps=1e-5
|
|
) -> LayerNormLinear:
|
|
super().__init__()
|
|
|
|
self.hidden_size = hidden_size
|
|
self.elementwise_affine = elementwise_affine
|
|
self.eps = eps
|
|
|
|
if elementwise_affine:
|
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
else:
|
|
self.register_parameter("weight", None)
|
|
self.register_parameter("bias", None)
|
|
|
|
def __repr__(self) -> str:
|
|
s = f"{self.__class__.__name__}({self.hidden_size}"
|
|
if not self.elementwise_affine:
|
|
s += f", elementwise_affine={self.elementwise_affine}"
|
|
s += f", eps={self.eps}"
|
|
s += ")"
|
|
return s
|
|
|
|
def forward(self, x, weight, bias, residual=None, prenorm=False, residual_in_fp32=False):
|
|
return layer_norm_linear_fn(
|
|
x,
|
|
self.weight,
|
|
self.bias,
|
|
weight,
|
|
bias,
|
|
residual=residual,
|
|
eps=self.eps,
|
|
prenorm=prenorm,
|
|
residual_in_fp32=residual_in_fp32,
|
|
is_rms_norm=False
|
|
)
|
|
|
|
|
|
class RMSNormLinear(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size,
|
|
elementwise_affine: bool = True,
|
|
eps=1e-5
|
|
) -> RMSNormLinear:
|
|
super().__init__()
|
|
|
|
self.hidden_size = hidden_size
|
|
self.elementwise_affine = elementwise_affine
|
|
self.eps = eps
|
|
|
|
if elementwise_affine:
|
|
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
else:
|
|
self.register_parameter("weight", None)
|
|
self.register_parameter("bias", None)
|
|
|
|
def __repr__(self) -> str:
|
|
s = f"{self.__class__.__name__}({self.hidden_size}"
|
|
if not self.elementwise_affine:
|
|
s += f", elementwise_affine={self.elementwise_affine}"
|
|
s += f", eps={self.eps}"
|
|
s += ")"
|
|
return s
|
|
|
|
def forward(self, x, weight, bias, residual=None, prenorm=False, residual_in_fp32=False):
|
|
return layer_norm_linear_fn(
|
|
x,
|
|
self.weight,
|
|
self.bias,
|
|
weight,
|
|
bias,
|
|
residual=residual,
|
|
eps=self.eps,
|
|
prenorm=prenorm,
|
|
residual_in_fp32=residual_in_fp32,
|
|
is_rms_norm=True
|
|
)
|