213 lines
7.3 KiB
Python
213 lines
7.3 KiB
Python
import os
|
||
import pathlib
|
||
import copy
|
||
from typing import Dict, List
|
||
from fastapi import HTTPException
|
||
from pydantic import BaseModel, Field
|
||
from rwkv_pip.utils import PIPELINE
|
||
from routes import state_cache
|
||
|
||
|
||
END_OF_TEXT = 0
|
||
END_OF_LINE = 187
|
||
|
||
|
||
os.environ["TORCH_EXTENSIONS_DIR"] = f"{pathlib.Path(__file__).parent.parent.resolve()}"
|
||
|
||
|
||
class RWKV:
|
||
def __init__(self, model: str, strategy: str, tokens_path: str) -> None:
|
||
from rwkv.model import RWKV as Model # dynamic import to make RWKV_CUDA_ON work
|
||
|
||
self.model = Model(model, strategy)
|
||
self.pipeline = PIPELINE(self.model, tokens_path)
|
||
self.model_state = None
|
||
self.model_tokens = []
|
||
|
||
self.CHUNK_LEN = 256
|
||
|
||
self.max_tokens_per_generation = 500
|
||
self.temperature = 1
|
||
self.top_p = 0.5
|
||
self.penalty_alpha_presence = 0.4
|
||
self.penalty_alpha_frequency = 0.4
|
||
|
||
self.interface = ":"
|
||
if "rwkv_vocab" in tokens_path:
|
||
self.user = "Question"
|
||
self.bot = "Answer"
|
||
else:
|
||
self.user = "Bob"
|
||
self.bot = "Alice"
|
||
|
||
self.AVOID_REPEAT_TOKENS = []
|
||
AVOID_REPEAT = ",:?!"
|
||
for i in AVOID_REPEAT:
|
||
dd = self.pipeline.encode(i)
|
||
assert len(dd) == 1
|
||
self.AVOID_REPEAT_TOKENS += dd
|
||
|
||
self.preload()
|
||
|
||
def preload(self):
|
||
if self.user == "Bob":
|
||
bot = self.bot
|
||
user = self.user
|
||
preset_system = f"""
|
||
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
|
||
{bot} is very intelligent, creative and friendly. \
|
||
{bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \
|
||
{bot} likes to tell {user} a lot about herself and her opinions. \
|
||
{bot} usually gives {user} kind, helpful and informative advices.\n
|
||
"""
|
||
logits = self.run_rnn(self.pipeline.encode(preset_system))
|
||
try:
|
||
state_cache.add_state(
|
||
state_cache.AddStateBody(
|
||
prompt=preset_system,
|
||
tokens=self.model_tokens,
|
||
state=self.model_state,
|
||
logits=logits,
|
||
)
|
||
)
|
||
except HTTPException:
|
||
pass
|
||
|
||
def run_rnn(self, _tokens: List[str], newline_adj: int = 0):
|
||
tokens = [int(x) for x in _tokens]
|
||
self.model_tokens += tokens
|
||
|
||
while len(tokens) > 0:
|
||
out, self.model_state = self.model.forward(
|
||
tokens[: self.CHUNK_LEN], self.model_state
|
||
)
|
||
tokens = tokens[self.CHUNK_LEN :]
|
||
|
||
out[END_OF_LINE] += newline_adj # adjust \n probability
|
||
|
||
if self.model_tokens[-1] in self.AVOID_REPEAT_TOKENS:
|
||
out[self.model_tokens[-1]] = -999999999
|
||
return out
|
||
|
||
def generate(self, prompt: str, stop: str = None):
|
||
cache = None
|
||
delta_prompt = prompt
|
||
try:
|
||
cache = state_cache.longest_prefix_state(
|
||
state_cache.LongestPrefixStateBody(prompt=prompt)
|
||
)
|
||
except HTTPException:
|
||
pass
|
||
if cache is None or cache["prompt"] == "":
|
||
self.model_state = None
|
||
self.model_tokens = []
|
||
else:
|
||
delta_prompt = prompt[len(cache["prompt"]) :]
|
||
self.model_state = copy.deepcopy(cache["state"])
|
||
self.model_tokens = copy.deepcopy(cache["tokens"])
|
||
logits = copy.deepcopy(cache["logits"])
|
||
|
||
if delta_prompt != "":
|
||
logits = self.run_rnn(self.pipeline.encode(delta_prompt))
|
||
try:
|
||
state_cache.add_state(
|
||
state_cache.AddStateBody(
|
||
prompt=prompt,
|
||
tokens=self.model_tokens,
|
||
state=self.model_state,
|
||
logits=logits,
|
||
)
|
||
)
|
||
except HTTPException:
|
||
pass
|
||
|
||
begin = len(self.model_tokens)
|
||
out_last = begin
|
||
|
||
occurrence: Dict = {}
|
||
|
||
response = ""
|
||
for i in range(self.max_tokens_per_generation):
|
||
for n in occurrence:
|
||
logits[n] -= (
|
||
self.penalty_alpha_presence
|
||
+ occurrence[n] * self.penalty_alpha_frequency
|
||
)
|
||
token = self.pipeline.sample_logits(
|
||
logits, temperature=self.temperature, top_p=self.top_p
|
||
)
|
||
|
||
if token == END_OF_TEXT:
|
||
yield response, ""
|
||
break
|
||
if token not in occurrence:
|
||
occurrence[token] = 1
|
||
else:
|
||
occurrence[token] += 1
|
||
|
||
logits = self.run_rnn([token])
|
||
delta: str = self.pipeline.decode(self.model_tokens[out_last:])
|
||
if "\ufffd" not in delta: # avoid utf-8 display issues
|
||
response += delta
|
||
if stop is not None:
|
||
if stop in response:
|
||
response = response.split(stop)[0]
|
||
try:
|
||
state_cache.add_state(
|
||
state_cache.AddStateBody(
|
||
prompt=prompt + response,
|
||
tokens=self.model_tokens,
|
||
state=self.model_state,
|
||
logits=logits,
|
||
)
|
||
)
|
||
except HTTPException:
|
||
pass
|
||
yield response, ""
|
||
break
|
||
out_last = begin + i + 1
|
||
if i == self.max_tokens_per_generation - 1:
|
||
try:
|
||
state_cache.add_state(
|
||
state_cache.AddStateBody(
|
||
prompt=prompt + response,
|
||
tokens=self.model_tokens,
|
||
state=self.model_state,
|
||
logits=logits,
|
||
)
|
||
)
|
||
except HTTPException:
|
||
pass
|
||
yield response, delta
|
||
|
||
|
||
class ModelConfigBody(BaseModel):
|
||
max_tokens: int = Field(default=None, gt=0, le=102400)
|
||
temperature: float = Field(default=None, ge=0, le=2)
|
||
top_p: float = Field(default=None, ge=0, le=1)
|
||
presence_penalty: float = Field(default=None, ge=-2, le=2)
|
||
frequency_penalty: float = Field(default=None, ge=-2, le=2)
|
||
|
||
|
||
def set_rwkv_config(model: RWKV, body: ModelConfigBody):
|
||
if body.max_tokens is not None:
|
||
model.max_tokens_per_generation = body.max_tokens
|
||
if body.temperature is not None:
|
||
model.temperature = body.temperature
|
||
if body.top_p is not None:
|
||
model.top_p = body.top_p
|
||
if body.presence_penalty is not None:
|
||
model.penalty_alpha_presence = body.presence_penalty
|
||
if body.frequency_penalty is not None:
|
||
model.penalty_alpha_frequency = body.frequency_penalty
|
||
|
||
|
||
def get_rwkv_config(model: RWKV) -> ModelConfigBody:
|
||
return ModelConfigBody(
|
||
max_tokens=model.max_tokens_per_generation,
|
||
temperature=model.temperature,
|
||
top_p=model.top_p,
|
||
presence_penalty=model.penalty_alpha_presence,
|
||
frequency_penalty=model.penalty_alpha_frequency,
|
||
)
|