54 lines
1.4 KiB
Python
Vendored
54 lines
1.4 KiB
Python
Vendored
import json
|
|
import os
|
|
import sys
|
|
import copy
|
|
import torch
|
|
from safetensors.torch import load_file, save_file
|
|
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--input", type=str, help="Path to input pth model")
|
|
parser.add_argument(
|
|
"--output",
|
|
type=str,
|
|
default="./converted.st",
|
|
help="Path to output safetensors model",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
|
|
def convert_file(
|
|
pt_filename: str,
|
|
sf_filename: str,
|
|
):
|
|
loaded = torch.load(pt_filename, map_location="cpu")
|
|
if "state_dict" in loaded:
|
|
loaded = loaded["state_dict"]
|
|
|
|
loaded = {k: v.clone().half() for k, v in loaded.items()}
|
|
for k, v in loaded.items():
|
|
print(f"{k}\t{v.shape}\t{v.dtype}")
|
|
|
|
# For tensors to be contiguous
|
|
loaded = {k: v.contiguous() for k, v in loaded.items()}
|
|
|
|
dirname = os.path.dirname(sf_filename)
|
|
os.makedirs(dirname, exist_ok=True)
|
|
save_file(loaded, sf_filename, metadata={"format": "pt"})
|
|
reloaded = load_file(sf_filename)
|
|
for k in loaded:
|
|
pt_tensor = loaded[k]
|
|
sf_tensor = reloaded[k]
|
|
if not torch.equal(pt_tensor, sf_tensor):
|
|
raise RuntimeError(f"The output tensors do not match for key {k}")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
try:
|
|
convert_file(args.input, args.output)
|
|
print(f"Saved to {args.output}")
|
|
except Exception as e:
|
|
with open("error.txt", "w") as f:
|
|
f.write(str(e))
|