204 lines
8.8 KiB
Python
Vendored
204 lines
8.8 KiB
Python
Vendored
import os, math, time, datetime, subprocess
|
|
import torch
|
|
from torch.utils.data import DataLoader
|
|
import pytorch_lightning as pl
|
|
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
|
|
from .model import LORA_CONFIG
|
|
|
|
def my_save(dd, ff):
|
|
if '14b-run1' not in ff:
|
|
torch.save(dd, ff)
|
|
else:
|
|
fn = ff.split('/')[-1]
|
|
fff = '/dev/shm/' + fn
|
|
torch.save(dd, fff)
|
|
subprocess.Popen(f" aws s3 mv {fff} s3://rwkv-14b-4k/{fn} --quiet", shell=True)
|
|
|
|
class train_callback(pl.Callback):
|
|
def __init__(self, args):
|
|
super().__init__()
|
|
self.args = args
|
|
|
|
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx):
|
|
args = self.args
|
|
# if args.cuda_cleanup > 0:
|
|
# torch.cuda.empty_cache()
|
|
real_step = trainer.global_step + args.epoch_begin * args.epoch_steps
|
|
|
|
# LR schedule
|
|
w_step = args.warmup_steps
|
|
if args.lr_final == args.lr_init or args.epoch_count == 0:
|
|
lr = args.lr_init
|
|
else:
|
|
decay_step = real_step - args.my_pile_edecay * args.epoch_steps
|
|
decay_total = (args.epoch_count - args.my_pile_edecay) * args.epoch_steps
|
|
progress = (decay_step - w_step + 1) / (decay_total - w_step)
|
|
progress = min(1, max(0, progress))
|
|
|
|
if args.lr_final == 0 or args.lr_init == 0: # linear decay
|
|
lr = args.lr_init + (args.lr_final - args.lr_init) * progress
|
|
else: # exp decay
|
|
lr = args.lr_init * math.exp(math.log(args.lr_final / args.lr_init) * pow(progress, 1))
|
|
|
|
if trainer.global_step < w_step:
|
|
lr = lr * (0.2 + 0.8 * trainer.global_step / w_step)
|
|
# if trainer.is_global_zero:
|
|
# print(trainer.global_step, decay_step, decay_total, w_step, progress, lr)
|
|
|
|
for param_group in trainer.optimizers[0].param_groups:
|
|
if args.layerwise_lr > 0:
|
|
param_group["lr"] = lr * param_group["my_lr_scale"]
|
|
# print(param_group["lr"], param_group["my_lr_scale"])
|
|
else:
|
|
param_group["lr"] = lr
|
|
|
|
trainer.my_lr = lr
|
|
# rank_zero_info(f"{real_step} {lr}")
|
|
|
|
if trainer.global_step == 0:
|
|
if trainer.is_global_zero: # logging
|
|
trainer.my_loss_sum = 0
|
|
trainer.my_loss_count = 0
|
|
trainer.my_log = open(args.proj_dir + "/train_log.txt", "a")
|
|
trainer.my_log.write(f"NEW RUN {args.my_timestamp}\n{vars(self.args)}\n")
|
|
try:
|
|
print(f"\n{trainer.strategy.config}\n")
|
|
trainer.my_log.write(f"{trainer.strategy.config}\n")
|
|
except:
|
|
pass
|
|
trainer.my_log.flush()
|
|
if len(args.wandb) > 0:
|
|
print("Login to wandb...")
|
|
import wandb
|
|
wandb.init(
|
|
project=args.wandb,
|
|
name=args.run_name + " " + args.my_timestamp,
|
|
config=args,
|
|
save_code=False,
|
|
)
|
|
trainer.my_wandb = wandb
|
|
|
|
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
|
|
args = self.args
|
|
if trainer.is_global_zero: # logging
|
|
t_now = time.time_ns()
|
|
token_per_step = args.ctx_len * args.real_bsz
|
|
real_step = trainer.global_step + args.epoch_begin * args.epoch_steps
|
|
kt_s = 0
|
|
try:
|
|
t_cost = (t_now - trainer.my_time_ns) / 1e9
|
|
kt_s = token_per_step / t_cost / 1000
|
|
self.log("REAL it/s", 1.0 / t_cost, prog_bar=True, on_step=True)
|
|
self.log("Kt/s", kt_s, prog_bar=True, on_step=True)
|
|
except:
|
|
pass
|
|
trainer.my_time_ns = t_now
|
|
trainer.my_loss = trainer.my_loss_all.float().mean().item()
|
|
trainer.my_loss_sum += trainer.my_loss
|
|
trainer.my_loss_count += 1
|
|
trainer.my_epoch_loss = trainer.my_loss_sum / trainer.my_loss_count
|
|
self.log("lr", trainer.my_lr, prog_bar=True, on_step=True)
|
|
self.log("loss", trainer.my_epoch_loss, prog_bar=True, on_step=True)
|
|
# self.log("s", real_step, prog_bar=True, on_step=True)
|
|
|
|
if len(args.wandb) > 0:
|
|
lll = {"loss": trainer.my_loss, "lr": trainer.my_lr, "Gtokens": real_step * token_per_step / 1e9}
|
|
if kt_s > 0:
|
|
lll["kt/s"] = kt_s
|
|
trainer.my_wandb.log(lll, step=int(real_step))
|
|
if args.magic_prime > 0:
|
|
expand_factor = 2 if args.my_qa_mask > 0 else 1
|
|
if int(real_step) == int(args.magic_prime * expand_factor // args.real_bsz) - 1:
|
|
to_save_dict = pl_module.state_dict()
|
|
my_save(
|
|
to_save_dict,
|
|
f"{args.proj_dir}/rwkv-final.pth",
|
|
)
|
|
|
|
|
|
def on_train_epoch_start(self, trainer, pl_module):
|
|
args = self.args
|
|
dataset = trainer.train_dataloader.dataset.datasets
|
|
assert "MyDataset" in str(dataset)
|
|
dataset.global_rank = trainer.global_rank
|
|
dataset.real_epoch = int(args.epoch_begin + trainer.current_epoch)
|
|
dataset.world_size = trainer.world_size
|
|
# print(f'########## world_size {dataset.world_size} global_rank {dataset.global_rank} real_epoch {dataset.real_epoch} ##########')
|
|
|
|
def on_train_epoch_end(self, trainer, pl_module):
|
|
args = self.args
|
|
if trainer.is_global_zero: # logging & save state_dict
|
|
if (args.epoch_save > 0 and trainer.current_epoch % args.epoch_save == 0) or trainer.current_epoch == args.epoch_count - 1:
|
|
if args.data_type == 'wds_img':
|
|
raw_dict = pl_module.state_dict()
|
|
to_save_dict = {}
|
|
for k in raw_dict:
|
|
if k.startswith('encoder.') or k.startswith('decoder.'):
|
|
to_save_dict[k] = raw_dict[k]
|
|
else:
|
|
to_save_dict = pl_module.state_dict()
|
|
|
|
if args.lora:
|
|
enable_time_finetune = 'time' in LORA_CONFIG["parts"]
|
|
enable_ln_finetune = 'ln' in LORA_CONFIG["parts"]
|
|
lora_dict = {}
|
|
for name, state in to_save_dict.items():
|
|
if ('.lora_' in name
|
|
or (enable_time_finetune and '.time_' in name)
|
|
or (enable_ln_finetune and '.ln' in name)):
|
|
lora_dict[name] = state
|
|
to_save_dict = lora_dict
|
|
|
|
try:
|
|
my_save(
|
|
to_save_dict,
|
|
f"{args.proj_dir}/rwkv-{args.epoch_begin + trainer.current_epoch}.pth",
|
|
)
|
|
except Exception as e:
|
|
print('Error\n\n', e, '\n\n')
|
|
trainer.my_log.write(f"{args.epoch_begin + trainer.current_epoch} {trainer.my_epoch_loss:.6f} {math.exp(trainer.my_epoch_loss):.4f} {trainer.my_lr:.8f} {datetime.datetime.now()} {trainer.current_epoch}\n")
|
|
trainer.my_log.flush()
|
|
|
|
trainer.my_loss_sum = 0
|
|
trainer.my_loss_count = 0
|
|
|
|
|
|
@rank_zero_only
|
|
def generate_init_weight(model, init_weight_name):
|
|
mm = model.generate_init_weight()
|
|
|
|
if model.args.my_pile_stage == 1:
|
|
if len(model.args.load_model) > 0:
|
|
print(f"Combine weights from {model.args.load_model}...")
|
|
load_dict = torch.load(model.args.load_model, map_location="cpu")
|
|
for k in load_dict:
|
|
assert k in mm
|
|
src = load_dict[k]
|
|
try:
|
|
mm[k] = src.reshape(mm[k].shape)
|
|
except:
|
|
tmp = mm[k].squeeze().clone()
|
|
print(k, src.shape, '-->', mm[k].shape)
|
|
ss = src.shape[0]
|
|
dd = tmp.shape[0]
|
|
for i in range(dd):
|
|
pos = i / dd * ss
|
|
if pos >= ss - 1:
|
|
tmp[i] = src[ss-1]
|
|
else:
|
|
p0 = int(math.floor(pos))
|
|
ii = pos - p0
|
|
tmp[i] = src[p0] * (1-ii) + src[p0+1] * (ii)
|
|
mm[k] = tmp.reshape(mm[k].shape)
|
|
sss = src.squeeze().float().cpu().numpy()
|
|
print(sss[:10], '...', sss[-10:])
|
|
mmm = mm[k].squeeze().float().cpu().numpy()
|
|
print(mmm[:10], '...', mmm[-10:])
|
|
|
|
print(f"Save to {init_weight_name}...")
|
|
torch.save(mm, init_weight_name)
|
|
|
|
if model.args.my_pile_stage == 1:
|
|
print("Done. Now go for stage 2.")
|
|
exit(0)
|