236 lines
7.5 KiB
Python
Vendored
236 lines
7.5 KiB
Python
Vendored
# -*- coding: utf-8 -*-
|
|
|
|
from __future__ import annotations
|
|
|
|
import math
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
|
|
from fla.modules.layernorm import layer_norm_fn
|
|
from fla.utils import checkpoint
|
|
|
|
|
|
@checkpoint
|
|
def flatten_diag_outer_product(x, y):
|
|
z = torch.einsum("...i,...j->...ij", x, y)
|
|
N = z.size(-1)
|
|
indicies = torch.triu_indices(N, N)
|
|
return z[..., indicies[0], indicies[1]]
|
|
|
|
|
|
@checkpoint
|
|
def flatten_diag_outer_product_off1(x, y):
|
|
z = torch.einsum("...i,...j->...ij", x, y)
|
|
N = z.size(-1)
|
|
indicies = torch.triu_indices(N, N, 1)
|
|
indices2 = torch.arange(0, N)
|
|
return z[..., indicies[0], indicies[1]], z[..., indices2, indices2]
|
|
|
|
|
|
def is_power_of_2(n):
|
|
return (n & (n - 1) == 0) and n != 0
|
|
|
|
|
|
class HedgehogFeatureMap(nn.Module):
|
|
|
|
r"""
|
|
Hedgehog feature map as introduced in
|
|
`The Hedgehog & the Porcupine: Expressive Linear Attentions with Softmax Mimicry <https://arxiv.org/abs/2402.04347>`_
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
head_dim: int
|
|
) -> HedgehogFeatureMap:
|
|
super().__init__()
|
|
# Trainable map
|
|
self.layer = nn.Linear(head_dim, head_dim)
|
|
self.init_weights_()
|
|
|
|
def init_weights_(self):
|
|
"""Initialize trainable map as identity"""
|
|
with torch.no_grad():
|
|
identity = torch.eye(*self.layer.weight.shape[-2:], dtype=torch.float)
|
|
self.layer.weight.copy_(identity.to(self.layer.weight))
|
|
nn.init.zeros_(self.layer.bias)
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
x = self.layer(x) # shape b, h, l, d
|
|
return torch.cat([2*x, -2*x], dim=-1).softmax(-1)
|
|
|
|
|
|
class T2RFeatureMap(nn.Module):
|
|
|
|
r"""
|
|
Simple linear mapping feature map as in
|
|
`Finetuning Pretrained Transformers into RNNs <https://arxiv.org/abs/2103.13076>`_
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
head_dim: int,
|
|
dot_dim: int = None
|
|
) -> T2RFeatureMap:
|
|
super().__init__()
|
|
# Trainable map
|
|
if dot_dim is None:
|
|
dot_dim = head_dim
|
|
self.layer = nn.Linear(head_dim, dot_dim)
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
return self.layer(x).relu()
|
|
|
|
|
|
class DPFPFeatureMap(nn.Module):
|
|
|
|
r"""
|
|
Deterministic Parameter-Free Projection (DPFP) feature map in
|
|
`Linear Transformers Are Secretly Fast Weight Programmers <https://arxiv.org/abs/2102.11174>`_
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
head_dim: int,
|
|
nu: int = 4
|
|
) -> DPFPFeatureMap:
|
|
super().__init__()
|
|
self.nu = nu
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
x = torch.cat([x.relu(), -x.relu()], dim=-1)
|
|
x_rolled = torch.cat([x.roll(shifts=j, dims=-1) for j in range(1, self.nu+1)], dim=-1)
|
|
x_repeat = torch.cat([x] * self.nu, dim=-1)
|
|
return x_repeat * x_rolled
|
|
|
|
|
|
class HadamardFeatureMap(nn.Module):
|
|
def __init__(
|
|
self,
|
|
head_dim: int
|
|
) -> HadamardFeatureMap:
|
|
super().__init__()
|
|
# Trainable map
|
|
self.layer1 = nn.Linear(head_dim, head_dim)
|
|
self.layer2 = nn.Linear(head_dim, head_dim)
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
return self.layer1(x) * self.layer2(x)
|
|
|
|
|
|
class LearnableOuterProductFeatureMap(nn.Module):
|
|
def __init__(
|
|
self,
|
|
head_dim: int,
|
|
feature_dim: int
|
|
) -> LearnableOuterProductFeatureMap:
|
|
super().__init__()
|
|
# Trainable map
|
|
self.layer1 = nn.Linear(head_dim, feature_dim, bias=False)
|
|
self.layer2 = nn.Linear(head_dim, feature_dim, bias=False)
|
|
self.normalizer = feature_dim ** -0.5
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
return flatten_diag_outer_product(self.layer1(x), self.layer2(x))
|
|
|
|
|
|
class LearnablePolySketchNonNegativeFeatureMap(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
head_dim: int,
|
|
sketch_size: Optional[int] = None,
|
|
degree: Optional[int] = 2
|
|
) -> LearnablePolySketchNonNegativeFeatureMap:
|
|
super().__init__()
|
|
|
|
assert is_power_of_2(degree) and degree >= 2, f"The degree {degree} must be a power of 2"
|
|
|
|
self.head_dim = head_dim
|
|
self.sketch_size = sketch_size if sketch_size is not None else head_dim
|
|
self.degree = degree
|
|
|
|
self.gamma = nn.Parameter(torch.ones(head_dim))
|
|
self.beta = nn.Parameter(torch.zeros(head_dim))
|
|
# NOTE: the sketch layers defined here are quite different from the original paper
|
|
# currently we simply use linear layers without any non-linear activations
|
|
self.sketches1 = nn.ModuleList([
|
|
nn.Linear(head_dim, sketch_size, bias=False),
|
|
*[nn.Linear(sketch_size, sketch_size, bias=False) for _ in range(int(math.log2(self.degree)) - 2)]
|
|
])
|
|
self.sketches2 = nn.ModuleList([
|
|
nn.Linear(head_dim, sketch_size, bias=False),
|
|
*[nn.Linear(sketch_size, sketch_size, bias=False) for _ in range(int(math.log2(self.degree)) - 2)]
|
|
])
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
# Section 2.1
|
|
x = layer_norm_fn(x, self.gamma, self.beta)
|
|
# first map the input to sketch size with learnable parameters
|
|
x = self.sketches1[0](x) * self.sketches2[0](x) * self.head_dim ** -0.5
|
|
for i in range(1, int(math.log2(self.degree)) - 1):
|
|
x = self.sketches1[i](x) * self.sketches2[i](x) * self.head_dim ** -0.5
|
|
# do sketch mapping for log2(p) - 1 times in total
|
|
# do p=2 mapping to ensure non-negativity
|
|
return flatten_diag_outer_product(x, x)
|
|
|
|
|
|
class TaylorFeatureMap(nn.Module):
|
|
def __init__(
|
|
self,
|
|
head_dim: int
|
|
) -> TaylorFeatureMap:
|
|
super().__init__()
|
|
self.head_dim = head_dim
|
|
self.r2 = math.sqrt(2)
|
|
self.rd = math.sqrt(self.head_dim)
|
|
self.rrd = math.sqrt(self.rd)
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
x2_1, x2_2 = flatten_diag_outer_product_off1(x, x)
|
|
return torch.cat([torch.ones_like(x[..., 0:1]), x / self.rrd, x2_2 / (self.rd * self.r2), x2_1 / self.rd], dim=-1)
|
|
|
|
|
|
class RebasedFeatureMap(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
head_dim: int,
|
|
use_gamma: Optional[bool] = True,
|
|
use_beta: Optional[bool] = True,
|
|
normalize: Optional[bool] = True
|
|
) -> RebasedFeatureMap:
|
|
super().__init__()
|
|
|
|
self.head_dim = head_dim
|
|
self.use_gamma = use_gamma
|
|
self.use_beta = use_beta
|
|
self.normalize = normalize
|
|
|
|
self.gamma = None
|
|
self.beta = None
|
|
if use_gamma:
|
|
self.gamma = nn.Parameter(torch.ones(head_dim))
|
|
if use_beta:
|
|
self.beta = nn.Parameter(torch.zeros(head_dim))
|
|
|
|
def forward(self, x: torch.Tensor, flatten: Optional[bool] = True):
|
|
if self.use_beta and self.use_gamma and self.normalize:
|
|
x = layer_norm_fn(x, self.gamma, self.beta)
|
|
elif self.normalize:
|
|
x = F.layer_norm(x, (self.head_dim,), self.gamma, self.beta)
|
|
elif self.use_gamma and self.use_beta:
|
|
x = torch.addcmul(self.beta, x, self.gamma)
|
|
elif self.use_gamma:
|
|
x = x.mul(self.gamma)
|
|
else:
|
|
raise RuntimeError(f"Not supported combination of `use_gamma`, `use_beta` and `normalize`, "
|
|
f"which is currentlt set as (`{self.use_gamma}`, `{self.use_beta}`, `{self.normalize}`)")
|
|
if not flatten:
|
|
return x
|
|
x2_1, x2_2 = flatten_diag_outer_product_off1(x, x)
|
|
# rebased use learnable parameters to approximate any quadratic function
|
|
return torch.cat([x2_2 * self.head_dim ** -0.5, x2_1 * (2 / self.head_dim) ** 0.5], dim=-1)
|