389 lines
14 KiB
Python
Vendored
389 lines
14 KiB
Python
Vendored
# -*- coding: utf-8 -*-
|
|
|
|
# Copyright (c) 2024, Yu Zhang, Songlin Yang
|
|
|
|
from typing import Optional, Tuple
|
|
|
|
import torch
|
|
import triton
|
|
import triton.language as tl
|
|
from torch.cuda.amp import custom_bwd, custom_fwd
|
|
|
|
from fla.utils import contiguous
|
|
|
|
|
|
@triton.jit
|
|
def fused_recurrent_gated_abc_fwd_kernel(
|
|
q,
|
|
k,
|
|
v,
|
|
gk,
|
|
gv,
|
|
o,
|
|
h0,
|
|
ht,
|
|
s_k_h,
|
|
s_v_h,
|
|
scale,
|
|
B: tl.constexpr,
|
|
H: tl.constexpr,
|
|
T: tl.constexpr,
|
|
K: tl.constexpr,
|
|
V: tl.constexpr,
|
|
BK: tl.constexpr,
|
|
BV: tl.constexpr,
|
|
USE_INITIAL_STATE: tl.constexpr,
|
|
STORE_FINAL_STATE: tl.constexpr,
|
|
REVERSE: tl.constexpr,
|
|
USE_GK: tl.constexpr,
|
|
USE_GV: tl.constexpr,
|
|
):
|
|
# indices
|
|
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
|
|
|
p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0)
|
|
p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0)
|
|
p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0)
|
|
p_o = o + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0)
|
|
|
|
if USE_GK:
|
|
p_gk = gk + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0)
|
|
if USE_GV:
|
|
p_gv = gv + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0)
|
|
|
|
mask_bk = (i_k * BK + tl.arange(0, BK)) < K
|
|
mask_bv = (i_v * BV + tl.arange(0, BV)) < V
|
|
|
|
h = tl.zeros([BV, BK], dtype=tl.float32)
|
|
mask_kv = mask_bk[None, :] & mask_bv[:, None]
|
|
|
|
if USE_INITIAL_STATE:
|
|
p_h0 = h0 + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None])
|
|
h += tl.load(p_h0, mask=mask_kv, other=0).to(tl.float32)
|
|
|
|
for _ in range(0, T):
|
|
b_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale
|
|
b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32)
|
|
b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32)
|
|
if USE_GK:
|
|
b_gk = tl.load(p_gk, mask=mask_bk, other=0).to(tl.float32)
|
|
h = h * b_gk[None, :]
|
|
if USE_GV:
|
|
b_gv = tl.load(p_gv, mask=mask_bv, other=0).to(tl.float32)
|
|
h = h * b_gv[:, None]
|
|
h += b_k[None, :] * b_v[:, None]
|
|
b_o = h * b_q[None, :]
|
|
b_o = tl.sum(b_o, axis=1)
|
|
tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_bv)
|
|
p_q += -K if REVERSE else K
|
|
p_k += -K if REVERSE else K
|
|
p_o += -V if REVERSE else V
|
|
p_v += -V if REVERSE else V
|
|
if USE_GK:
|
|
p_gk += -K if REVERSE else K
|
|
if USE_GV:
|
|
p_gv += -V if REVERSE else V
|
|
|
|
if STORE_FINAL_STATE:
|
|
p_ht = ht + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None])
|
|
tl.store(p_ht, h.to(p_ht.dtype.element_ty), mask=mask_kv)
|
|
|
|
|
|
@triton.jit
|
|
def fused_recurrent_gated_abc_bwd_kernel(
|
|
q,
|
|
k,
|
|
v,
|
|
gk,
|
|
gv,
|
|
do,
|
|
dq,
|
|
dk,
|
|
dv,
|
|
h0,
|
|
s_k_h,
|
|
s_v_h,
|
|
scale,
|
|
B: tl.constexpr,
|
|
H: tl.constexpr,
|
|
T: tl.constexpr,
|
|
K: tl.constexpr,
|
|
V: tl.constexpr,
|
|
BK: tl.constexpr,
|
|
BV: tl.constexpr,
|
|
USE_INITIAL_STATE: tl.constexpr,
|
|
REVERSE: tl.constexpr,
|
|
USE_GK: tl.constexpr,
|
|
USE_GV: tl.constexpr,
|
|
):
|
|
i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
|
|
|
p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0)
|
|
p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0)
|
|
p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0)
|
|
p_do = do + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0)
|
|
p_dq = dq + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0)
|
|
if USE_GK:
|
|
p_gk = gk + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0)
|
|
if USE_GV:
|
|
p_gv = gv + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0)
|
|
mask_bk = i_k * BK + tl.arange(0, BK) < K
|
|
mask_bv = i_v * BV + tl.arange(0, BV) < V
|
|
mask_kv = mask_bk[:, None] & mask_bv[None, :]
|
|
h = tl.zeros([BK, BV], dtype=tl.float32)
|
|
|
|
if USE_INITIAL_STATE:
|
|
p_h0 = h0 + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[:, None]) * V + (i_v * BV + tl.arange(0, BV)[None, :])
|
|
h += tl.load(p_h0, mask=mask_kv, other=0).to(tl.float32)
|
|
|
|
for _ in range(0, T):
|
|
b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32)
|
|
b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32)
|
|
b_do = tl.load(p_do, mask=mask_bv, other=0).to(tl.float32)
|
|
if USE_GK:
|
|
b_gk = tl.load(p_gk, mask=mask_bk, other=0).to(tl.float32)
|
|
h = h * b_gk[:, None]
|
|
if USE_GV:
|
|
b_gv = tl.load(p_gv, mask=mask_bv, other=0).to(tl.float32)
|
|
h = h * b_gv[None, :]
|
|
h += b_k[:, None] * b_v[None, :]
|
|
b_dq = tl.sum(h * b_do[None, :], axis=1) * scale
|
|
tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), mask=mask_bk)
|
|
|
|
p_k += -K if REVERSE else K
|
|
p_v += -V if REVERSE else V
|
|
p_q += -K if REVERSE else K
|
|
p_do += -V if REVERSE else V
|
|
p_dq += -K if REVERSE else K
|
|
if USE_GK:
|
|
p_gk += -K if REVERSE else K
|
|
if USE_GV:
|
|
p_gv += -V if REVERSE else V
|
|
|
|
# sync threads
|
|
tl.debug_barrier()
|
|
|
|
p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T - 1) * K if not REVERSE else 0)
|
|
p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T - 1) * K if not REVERSE else 0)
|
|
p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T - 1) * V if not REVERSE else 0)
|
|
p_do = do + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T - 1) * V if not REVERSE else 0)
|
|
p_dk = dk + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange(0, BK) + ((T - 1) * K if not REVERSE else 0)
|
|
p_dv = dv + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV) + ((T - 1) * V if not REVERSE else 0)
|
|
if USE_GK:
|
|
p_gk = gk + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T - 1) * K if not REVERSE else 0)
|
|
if USE_GV:
|
|
p_gv = gv + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T - 1) * V if not REVERSE else 0)
|
|
|
|
b_dh = tl.zeros([BK, BV], dtype=tl.float32)
|
|
for _ in range(T):
|
|
b_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale
|
|
b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32)
|
|
b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32)
|
|
b_do = tl.load(p_do, mask=mask_bv, other=0).to(tl.float32)
|
|
b_dh += b_q[:, None] * b_do[None, :]
|
|
b_dk = tl.sum(b_dh * b_v[None, :], axis=1)
|
|
b_dv = tl.sum(b_dh * b_k[:, None], axis=0)
|
|
if USE_GK:
|
|
b_gk = tl.load(p_gk, mask=mask_bk, other=0).to(tl.float32)
|
|
b_dh *= b_gk[:, None]
|
|
if USE_GV:
|
|
b_gv = tl.load(p_gv, mask=mask_bv, other=0).to(tl.float32)
|
|
b_dh *= b_gv[None, :]
|
|
tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), mask=mask_bk)
|
|
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), mask=mask_bv)
|
|
|
|
p_q += K if REVERSE else -K
|
|
p_k += K if REVERSE else -K
|
|
p_v += V if REVERSE else -V
|
|
p_do += V if REVERSE else -V
|
|
p_dk += K if REVERSE else -K
|
|
p_dv += V if REVERSE else -V
|
|
if USE_GK:
|
|
p_gk += K if REVERSE else -K
|
|
if USE_GV:
|
|
p_gv += V if REVERSE else -V
|
|
|
|
|
|
class FusedRecurrentGatedABCFunction(torch.autograd.Function):
|
|
|
|
@staticmethod
|
|
@contiguous
|
|
@custom_fwd
|
|
def forward(ctx, q, k, v, s, g, scale=None, initial_state=None, output_final_state=False, reverse=False):
|
|
B, H, T, K, V, M = *q.shape, v.shape[-1], s.shape[-1]
|
|
# default scale
|
|
if scale is None:
|
|
scale = K ** -0.5
|
|
|
|
BK, BV, BM = min(K, 32), min(V, 32), min(M, 32)
|
|
NK, NV, NM = triton.cdiv(K, BK), triton.cdiv(V, BV), triton.cdiv(M, BM)
|
|
num_stages = 1
|
|
num_warps = 1
|
|
|
|
g = g.float().exp()
|
|
|
|
final_state = (None, None)
|
|
if output_final_state:
|
|
final_state = (q.new_empty(B, H, K, M), q.new_empty(B, H, M, V))
|
|
|
|
ok = q.new_empty(NK, B, H, T, M, dtype=torch.float)
|
|
gk, gv = None, g
|
|
grid = (NM, NK, B * H)
|
|
fused_recurrent_gated_abc_fwd_kernel[grid](
|
|
q, k, s, gk, gv, ok, initial_state[0], final_state[0],
|
|
k.stride(1),
|
|
s.stride(1),
|
|
scale=scale,
|
|
B=B, H=H, T=T, K=K, V=M, BK=BK, BV=BM,
|
|
USE_INITIAL_STATE=initial_state[0] is not None,
|
|
STORE_FINAL_STATE=final_state[0] is not None,
|
|
USE_GK=False,
|
|
USE_GV=True,
|
|
REVERSE=reverse,
|
|
num_warps=num_warps,
|
|
num_stages=num_stages
|
|
)
|
|
ok = ok.sum(0)
|
|
|
|
qv = ok.softmax(-1, dtype=torch.float)
|
|
ov = q.new_empty(NM, B, H, T, V, dtype=torch.float)
|
|
gk, gv = g, None
|
|
grid = (NV, NM, B * H)
|
|
fused_recurrent_gated_abc_fwd_kernel[grid](
|
|
qv, s, v, gk, gv, ov, initial_state[1], final_state[1],
|
|
s.stride(1),
|
|
v.stride(1),
|
|
scale=1.,
|
|
B=B, H=H, T=T, K=M, V=V, BK=BM, BV=BV,
|
|
USE_INITIAL_STATE=initial_state[0] is not None,
|
|
STORE_FINAL_STATE=final_state[0] is not None,
|
|
USE_GK=True,
|
|
USE_GV=False,
|
|
REVERSE=reverse,
|
|
num_warps=num_warps,
|
|
num_stages=num_stages
|
|
)
|
|
ov = ov.sum(0)
|
|
|
|
ctx.save_for_backward(q, k, v, s, g, qv, *initial_state, ok)
|
|
ctx.scale = scale
|
|
ctx.reverse = reverse
|
|
# we do not need the gradient of the final state from the next chunk
|
|
# similiar to Trunctated BPTT
|
|
if final_state is not None:
|
|
final_state = tuple(i.detach() for i in final_state)
|
|
return ov.to(q.dtype), final_state
|
|
|
|
@staticmethod
|
|
@contiguous
|
|
@custom_bwd
|
|
def backward(ctx, do, dht=None):
|
|
q, k, v, s, g, qv, *initial_state, ok = ctx.saved_tensors
|
|
B, H, T, K, V, M = *q.shape, v.shape[-1], s.shape[-1]
|
|
V = v.shape[-1]
|
|
scale = ctx.scale
|
|
|
|
BK, BV, BM = min(K, 32), min(V, 32), min(M, 32)
|
|
NK, NV, NM = triton.cdiv(K, BK), triton.cdiv(V, BV), triton.cdiv(M, BM)
|
|
num_stages = 1
|
|
num_warps = 1
|
|
|
|
dqv = q.new_empty(NV, B, H, T, M, dtype=torch.float)
|
|
dsv = q.new_empty(NV, B, H, T, M, dtype=torch.float)
|
|
dv = q.new_empty(NM, B, H, T, V, dtype=torch.float)
|
|
gk, gv = g, None
|
|
grid = (NV, NM, B * H)
|
|
fused_recurrent_gated_abc_bwd_kernel[grid](
|
|
qv, s, v, gk, gv, do, dqv, dsv, dv, initial_state[1],
|
|
s.stride(1),
|
|
v.stride(1),
|
|
scale=1.,
|
|
B=B, H=H, T=T, K=M, V=V, BK=BM, BV=BV,
|
|
num_warps=num_warps,
|
|
num_stages=num_stages,
|
|
USE_INITIAL_STATE=initial_state[1] is not None,
|
|
REVERSE=ctx.reverse,
|
|
USE_GK=gk is not None,
|
|
USE_GV=gv is not None
|
|
)
|
|
dqv = dqv.sum(0)
|
|
dsv = dsv.sum(0)
|
|
dv = dv.sum(0)
|
|
dgk = dqv * qv.float() - dsv * s.float()
|
|
dgk_cumsum = dgk.cumsum(-2)
|
|
dgk = dgk + dgk_cumsum[:, :, -1, None] - dgk_cumsum
|
|
|
|
dok = qv * (dqv - (qv * dqv).sum(-1, True))
|
|
dq = q.new_empty(NM, B, H, T, K, dtype=torch.float)
|
|
dk = q.new_empty(NM, B, H, T, K, dtype=torch.float)
|
|
dsk = q.new_empty(NK, B, H, T, M, dtype=torch.float)
|
|
gk, gv = None, g
|
|
grid = (NM, NK, B * H)
|
|
fused_recurrent_gated_abc_bwd_kernel[grid](
|
|
q, k, s, gk, gv, dok, dq, dk, dsk, initial_state[0],
|
|
q.stride(1),
|
|
s.stride(1),
|
|
scale=scale,
|
|
B=B, H=H, T=T, K=K, V=M, BK=BK, BV=BM,
|
|
num_warps=num_warps,
|
|
num_stages=num_stages,
|
|
USE_INITIAL_STATE=initial_state[0] is not None,
|
|
REVERSE=ctx.reverse,
|
|
USE_GK=gk is not None,
|
|
USE_GV=gv is not None
|
|
)
|
|
dq = dq.sum(0)
|
|
dk = dk.sum(0)
|
|
dsk = dsk.sum(0)
|
|
|
|
dgv = dok.float() * ok.float() - dsk * s.float()
|
|
dgv_cumsum = dgv.cumsum(-2)
|
|
dgv = dgv + dgv_cumsum[:, :, -1, None] - dgv_cumsum
|
|
|
|
ds = dsk.add_(dsv)
|
|
dg = dgk.add_(dgv)
|
|
|
|
return dq.to(q), dk.to(k), dv.to(v), ds.to(s), dg.to(g), None, None, None, None
|
|
|
|
|
|
def fused_recurrent_gated_abc(
|
|
q: torch.Tensor,
|
|
k: torch.Tensor,
|
|
v: torch.Tensor,
|
|
s: torch.Tensor,
|
|
g: Optional[torch.Tensor] = None,
|
|
scale: Optional[int] = None,
|
|
initial_state: Optional[Tuple[torch.Tensor]] = None,
|
|
output_final_state: Optional[bool] = False
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
r"""
|
|
Args:
|
|
q (torch.Tensor):
|
|
queries of shape `(B, H, T, K)`
|
|
k (torch.Tensor):
|
|
keys of shape `(B, H, T, K)`
|
|
v (torch.Tensor):
|
|
values of shape `(B, H, T, V)`
|
|
g (torch.Tensor):
|
|
Forget gates of shape `(B, H, T, M)` applied to keys.
|
|
If not provided, this function is equivalent to vanilla ABC.
|
|
scale (Optional[int]):
|
|
Scale factor for attention scores.
|
|
If not provided, it will default to `1 / sqrt(K)`. Default: `None`.
|
|
initial_state (Optional[Tuple[torch.Tensor]]):
|
|
Initial state tuple having tensors of shape `(B, H, K, V)`. Default: `None`.
|
|
output_final_state (Optional[bool]):
|
|
Whether to output the final state tuple, having tensors of shape `(B, H, K, V)`. Default: `False`.
|
|
"""
|
|
if initial_state is not None:
|
|
initial_state = tuple(i.detach() for i in initial_state)
|
|
if g is None:
|
|
# TODO: this 3 steps took huge amount of time, ought to be optimized
|
|
z = s.float().logcumsumexp(2)
|
|
g = torch.cat((z[:, :, :1], z[:, :, :-1]), 2) - z
|
|
s = torch.exp(s - z).to(k.dtype)
|
|
if scale is None:
|
|
scale = q.shape[-1] ** -0.5
|
|
ov, final_state = FusedRecurrentGatedABCFunction.apply(q, k, v, s, g, scale, initial_state, output_final_state)
|
|
return ov, final_state
|