import {Button, CompoundButton, Dropdown, Link, Option, Text} from '@fluentui/react-components'; import React, {FC, ReactElement} from 'react'; import Banner from '../assets/images/banner.jpg'; import { Chat20Regular, DataUsageSettings20Regular, DocumentSettings20Regular, Storage20Regular } from '@fluentui/react-icons'; import {useNavigate} from 'react-router'; import {SaveJson} from '../../wailsjs/go/backend_golang/App'; type NavCard = { label: string; desc: string; path: string; icon: ReactElement; }; export const navCards: NavCard[] = [ { label: 'Chat', desc: 'Go to chat page', path: '/chat', icon: }, { label: 'Configs', desc: 'Manage your configs', path: '/configs', icon: }, { label: 'Models', desc: 'Manage models', path: '/models', icon: }, { label: 'Train', desc: '', path: '/train', icon: } ]; export const Home: FC = () => { const [selectedConfig, setSelectedConfig] = React.useState('RWKV-3B-4G MEM'); const navigate = useNavigate(); const onClickNavCard = (path: string) => { navigate({pathname: path}); }; return (
Introduction
RWKV is an RNN with Transformer-level LLM performance, which can also be directly trained like a GPT transformer (parallelizable). And it's 100% attention-free. You only need the hidden state at position t to compute the state at position t+1. You can use the "GPT" mode to quickly compute the hidden state for the "RNN" mode.
So it's combining the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, "infinite" ctx_len, and free sentence embedding (using the final hidden state).
{navCards.map(({label, path, icon, desc}, index) => ( onClickNavCard(path)}> {label} ))}
{ if (data.optionValue) setSelectedConfig(data.optionValue); }}>
Version: 1.0.0 Help
); };