# -*- coding: utf-8 -*- # Copyright (c) 2023, Yu Zhang, Songlin Yang import torch import triton import triton.language as tl from fla.ops.utils import contiguous from torch.cuda.amp import custom_bwd, custom_fwd from fla.ops.delta_rule.wy_fast import fwd_recompute_w_u, fwd_prepare_wy_repr, bwd_prepare_wy_repr from fla.ops.delta_rule.chunk_fuse import fused_chunk_delta_rule_fwd, fused_chunk_delta_rule_bwd # from fla.ops.delta_rule.utils import bwd_prepare_wy_repr @triton.autotune( configs=[ triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), triton.Config({}, num_warps=32), ], key=["BT", "BK", "BV"], ) @triton.jit def fwd_prepare_dv_kernel( q, k, do, dv, s_qk_h, s_qk_t, s_qk_d, s_vo_h, s_vo_t, s_vo_d, T, K, V, scale, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr ): i_t, i_bh = tl.program_id(0), tl.program_id(1) b_A = tl.zeros([BT, BT], dtype=tl.float32) for i_k in range(tl.cdiv(K, BK)): p_q = tl.make_block_ptr(q + i_bh * s_qk_h, (K, T), (s_qk_d, s_qk_t), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_k = tl.make_block_ptr(k + i_bh * s_qk_h, (T, K), (s_qk_t, s_qk_d), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_k.dtype) b_A += tl.dot(b_k, b_q, allow_tf32=False) b_A = tl.where(tl.arange(0, BT)[:, None] <= tl.arange(0, BT)[None, :], b_A , 0).to(do.dtype.element_ty) for i_v in range(tl.cdiv(V, BV)): p_do = tl.make_block_ptr(do + i_bh * s_vo_h, (T, V), (s_vo_t, s_vo_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) b_do = tl.load(p_do, boundary_check=(0, 1)) p_dv = tl.make_block_ptr(dv + i_bh * s_vo_h, (T, V), (s_vo_t, s_vo_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) b_dv = tl.dot(b_A, b_do, allow_tf32=False) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) def fwd_prepare_dv(q, k, do, BT): dv = torch.empty_like(do) B, H, T, K, V = *k.shape, do.shape[-1] NT = triton.cdiv(T, BT) BK = min(triton.next_power_of_2(K), 64) BV = min(triton.next_power_of_2(V), 64) fwd_prepare_dv_kernel[(NT, B*H)]( q, k, do, dv, k.stride(1), k.stride(2), k.stride(3), do.stride(1), do.stride(2), do.stride(3), T, K, V, K**-0.5, BT, BK, BV ) return dv @triton.autotune( configs=[ triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), triton.Config({}, num_warps=32), ], key=["BT", "BK", "BV"], ) @triton.jit def chunk_delta_rule_fwd_kernel_h( k, v, d, v_new, h, initial_state, # initial state of the chunk [B, H, D_head_K, D_head_V] final_state, # final state of the chunk [B, H, D_head_K, D_head_V] s_qk_h, s_qk_t, s_qk_d, s_vo_h, s_vo_t, s_vo_d, s_h_h, s_h_t, H: tl.constexpr, T: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BC: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, NT: tl.constexpr, USE_INITIAL_STATE: tl.constexpr, STORE_FINAL_STATE: tl.constexpr ): i_k, i_v, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) # [BK, BV] b_h = tl.zeros([BK, BV], dtype=tl.float32) if USE_INITIAL_STATE: p_h0 = tl.make_block_ptr(initial_state + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) b_h = tl.load(p_h0, boundary_check=(0, 1)).to(tl.float32) for i_t in range(NT): p_h = tl.make_block_ptr(h + i_bh * s_h_h + i_t * K * V, (K, V), (s_h_t, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_h, b_h.to(p_h.dtype.element_ty), boundary_check=(0, 1)) b_h_cumsum = tl.zeros([BK, BV], dtype=tl.float32) # since we need to make all DK in the SRAM. we face serve SRAM memory burden. By subchunking we allievate such burden for i_c in range(tl.cdiv(BT, BC)): p_k = tl.make_block_ptr(k + i_bh * s_qk_h, (K, T), (s_qk_d, s_qk_t), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) p_d = tl.make_block_ptr(d + i_bh * s_qk_h, (T, K), (s_qk_t, s_qk_d), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * s_vo_h, (T, V), (s_vo_t, s_vo_d), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) p_v_new = tl.make_block_ptr(v_new + i_bh * s_vo_h, (T, V), (s_vo_t, s_vo_d), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) b_k = tl.load(p_k, boundary_check=(0, 1)) # [BT, BK] b_d = tl.load(p_d, boundary_check=(0, 1)) # [BT, BV] b_v = tl.load(p_v, boundary_check=(0, 1)) b_v -= tl.dot(b_d, b_h.to(b_k.dtype), allow_tf32=False) # [BK, BV] tl.store(p_v_new, b_v.to(p_v_new.dtype.element_ty), boundary_check=(0, 1)) b_h_cumsum += tl.dot(b_k, b_v.to(b_k.dtype), allow_tf32=False) b_h += b_h_cumsum if STORE_FINAL_STATE: p_ht = tl.make_block_ptr(final_state + i_bh * K * V, (K, V), (V, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), boundary_check=(0, 1)) @triton.autotune( configs=[ triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), triton.Config({}, num_warps=32), ], key=["BT", "BK", "BV"], ) @triton.jit def chunk_linear_attn_fwd_kernel_o( q, k, v, h, o, s_qk_h, s_qk_t, s_qk_d, s_vo_h, s_vo_t, s_vo_d, s_h_h, s_h_t, scale, H: tl.constexpr, T: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr ): i_v, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) o_i = tl.arange(0, BT) m_s = o_i[:, None] >= o_i[None, :] b_o = tl.zeros([BT, BV], dtype=tl.float32) b_s = tl.zeros([BT, BT], dtype=tl.float32) for i_k in range(tl.cdiv(K, BK)): p_q = tl.make_block_ptr(q + i_bh * s_qk_h, (T, K), (s_qk_t, s_qk_d), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bh * s_qk_h, (K, T), (s_qk_d, s_qk_t), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_h = tl.make_block_ptr(h + i_bh * s_h_h + i_t * K * V, (K, V), (s_h_t, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) # [BT, BK] b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) # [BK, BT] b_k = tl.load(p_k, boundary_check=(0, 1)) # [BK, BV] b_h = tl.load(p_h, boundary_check=(0, 1)) b_o += tl.dot(b_q, b_h, allow_tf32=False) b_s += tl.dot(b_q, b_k, allow_tf32=False) b_s = tl.where(m_s, b_s, 0) p_v = tl.make_block_ptr(v + i_bh * s_vo_h, (T, V), (s_vo_t, s_vo_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_o = (b_o + tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False)) p_o = tl.make_block_ptr(o + i_bh * s_vo_h, (T, V), (s_vo_t, s_vo_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) @triton.autotune( configs=[ triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), triton.Config({}, num_warps=32), ], key=["BT", "BK", "BV"], ) @triton.jit def chunk_delta_rule_bwd_kernel_dhu( q, k, d, do, dh, dv, dv2, s_qk_h, s_qk_t, s_qk_d, s_vo_h, s_vo_t, s_vo_d, s_h_h, s_h_t, scale, H: tl.constexpr, T: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BC: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, NT: tl.constexpr ): i_k, i_v, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) # [BK, BV] b_dh = tl.zeros([BK, BV], dtype=tl.float32) for i_t in range(NT - 1, -1, -1): p_dh = tl.make_block_ptr(dh + i_bh * s_h_h + i_t * K * V, (K, V), (s_h_t, 1), (i_k * BK, i_v * BV), (BK, BV), (1, 0)) tl.store(p_dh, b_dh.to(p_dh.dtype.element_ty), boundary_check=(0, 1)) b_dh_tmp = tl.zeros([BK, BV], dtype=tl.float32) for i_c in range(tl.cdiv(BT, BC) - 1, -1, -1): p_q = tl.make_block_ptr(q + i_bh * s_qk_h, (K, T), (s_qk_d, s_qk_t), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) p_k = tl.make_block_ptr(k + i_bh * s_qk_h, (T, K), (s_qk_t, s_qk_d), (i_t * BT + i_c * BC, i_k * BK), (BC, BK), (1, 0)) p_d = tl.make_block_ptr(d + i_bh * s_qk_h, (K, T), (s_qk_d, s_qk_t), (i_k * BK, i_t * BT + i_c * BC), (BK, BC), (0, 1)) p_dv = tl.make_block_ptr(dv + i_bh * s_vo_h, (T, V), (s_vo_t, s_vo_d), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) p_do = tl.make_block_ptr(do + i_bh * s_vo_h, (T, V), (s_vo_t, s_vo_d), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) # [BK, BT] b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) # [BT, BK] b_k = tl.load(p_k, boundary_check=(0, 1)) b_d = tl.load(p_d, boundary_check=(0, 1)) # [BT, V] b_do = tl.load(p_do, boundary_check=(0, 1)) # [BT, BT] # b_s = tl.dot(b_k, b_q, allow_tf32=False) # b_s = tl.where(m_s, b_s, 0) # b_dv = tl.dot(b_s.to(b_do.dtype), b_do, allow_tf32=False) + tl.dot(b_k, b_dh.to(b_k.dtype), allow_tf32=False) b_dv = tl.load(p_dv, boundary_check=(0, 1)) b_dv += tl.dot(b_k, b_dh.to(b_k.dtype), allow_tf32=False) p_dv2 = tl.make_block_ptr(dv2 + i_bh * s_vo_h, (T, V), (s_vo_t, s_vo_d), (i_t * BT + i_c * BC, i_v * BV), (BC, BV), (1, 0)) tl.store(p_dv2, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) # [BK, BV] b_dh_tmp += tl.dot(b_q, b_do.to(b_q.dtype), allow_tf32=False) b_dh_tmp -= tl.dot(b_d, b_dv.to(b_q.dtype), allow_tf32=False) b_dh += b_dh_tmp @triton.autotune( configs=[ triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), triton.Config({}, num_warps=32), ], key=["BT", "BK", "BV"], ) @triton.jit def chunk_delta_rule_bwd_kernel_dqkw( q, k, v, w, h, do, dh, dq, dk, dv, dw, s_qk_h, s_qk_t, s_qk_d, s_vo_h, s_vo_t, s_vo_d, s_h_h, s_h_t, scale, H: tl.constexpr, T: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, NT: tl.constexpr ): i_k, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) n_bh = tl.num_programs(2) o_i = tl.arange(0, BT) p_q = tl.make_block_ptr(q + i_bh * s_qk_h, (K, T), (s_qk_d, s_qk_t), (i_k * BK, i_t * BT), (BK, BT), (0, 1)) p_k = tl.make_block_ptr(k + i_bh * s_qk_h, (T, K), (s_qk_t, s_qk_d), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_s = tl.dot(b_k, b_q, allow_tf32=False) * scale b_s = tl.where(o_i[:, None] <= o_i[None, :], b_s, 0) b_dq = tl.zeros([BT, BK], dtype=tl.float32) b_dk = tl.zeros([BT, BK], dtype=tl.float32) b_dw = tl.zeros([BT, BK], dtype=tl.float32) b_ds = tl.zeros([BT, BT], dtype=tl.float32) for i_v in range(tl.cdiv(V, BV)): p_v = tl.make_block_ptr(v + i_bh * s_vo_h, (T, V), (s_vo_t, s_vo_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_h = tl.make_block_ptr(h + i_bh * s_h_h, (V, NT * K), (1, s_h_t), (i_v * BV, i_t * K + i_k * BK), (BV, BK), (0, 1)) p_do = tl.make_block_ptr(do + i_bh * s_vo_h, (T, V), (s_vo_t, s_vo_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) p_dh = tl.make_block_ptr(dh + i_bh * s_h_h, (NT * K, V), (s_h_t, 1), (i_t * K + i_k * BK, i_v * BV), (BK, BV), (1, 0)) p_dv = tl.make_block_ptr(dv + i_bh * s_vo_h, (T, V), (s_vo_t, s_vo_d), (i_t * BT, i_v * BV), (BT, BV), (1, 0)) # [BT, BV] b_v = tl.load(p_v, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)) # [BV, BK] b_h = tl.load(p_h, boundary_check=(0, 1)) # [BK, BV] b_dh = tl.load(p_dh, boundary_check=(0, 1)) # [BT, BT] b_ds += tl.dot(b_do, tl.trans(b_v), allow_tf32=False) # [BT, BK] b_dq += tl.dot(b_do, b_h, allow_tf32=False) * scale b_dk += tl.dot(b_v, tl.trans(b_dh), allow_tf32=False) b_dv = tl.load(p_dv, boundary_check=(0, 1)) b_dw += tl.dot(b_dv.to(b_k.dtype), b_h.to(b_k.dtype), allow_tf32=False) # [BT, BT] b_ds = tl.where(o_i[:, None] >= o_i[None, :], b_ds * scale, 0).to(b_q.dtype) # [BT, BK] b_dq += tl.dot(b_ds, b_k, allow_tf32=False) b_dk += tl.trans(tl.dot(b_q, b_ds, allow_tf32=False)) p_dq = tl.make_block_ptr(dq + i_bh * s_qk_h, (T, K), (s_qk_t, s_qk_d), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dk = tl.make_block_ptr(dk + i_bh * s_qk_h, (T, K), (s_qk_t, s_qk_d), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) p_dw = tl.make_block_ptr(dw + i_bh * s_qk_h, (T, K), (s_qk_t, s_qk_d), (i_t * BT, i_k * BK), (BT, BK), (1, 0)) tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dw, -b_dw.to(p_dw.dtype.element_ty), boundary_check=(0, 1)) def chunk_fwd_h_fn(k, w, u, BT, initial_state, final_state): B, H, T, K, V = *k.shape, u.shape[-1] BK = triton.next_power_of_2(K) assert BK <= 256, "current kernel does not support head dimension larger than 256." BV = 16 if BK > 128 else 32 BV = 64 if BK <= 64 else BV BC = 16 if BK > 128 else 32 BC = 64 if BK <= 64 else BC BC = min(BT, BC) NT, NK, NV = triton.cdiv(T, BT), triton.cdiv(K, BK), triton.cdiv(V, BV) assert NK == 1, 'NK > 1 is not supported because it involves time-consuming synchronization' h = k.new_empty(B, H, NT * K, V) grid = (NK, NV, B * H) v_new = torch.empty_like(u) chunk_delta_rule_fwd_kernel_h[grid]( k, u, w, v_new, h, initial_state, final_state, k.stride(1), k.stride(2), k.stride(3), u.stride(1), u.stride(2), u.stride(3), h.stride(1), h.stride(2), H=H, T=T, K=K, V=V, BT=BT, BC=BC, BK=BK, BV=BV, NT=NT, USE_INITIAL_STATE=initial_state is not None, STORE_FINAL_STATE=final_state is not None, ) return h, v_new def chunk_bwd_dhu_fn(q, k, w, do, dv, BT): B, H, T, K, V = *q.shape, do.shape[-1] BK = triton.next_power_of_2(K) assert BK <= 256, "current kernel does not support head dimension being larger than 256." BV = 16 if BK > 128 else 32 BV = 64 if BK <= 64 else BV BC = 16 if BK > 128 else 32 BC = 64 if BK <= 64 else BC BC = min(BT, BC) NT, NK, NV = triton.cdiv(T, BT), triton.cdiv(K, BK), triton.cdiv(V, BV) assert NK == 1, 'NK > 1 is not supported because it involves time-consuming synchronization' dh = q.new_empty(B, H, NT * K, V) # dv_new = torch.empty_like(do) grid = (NK, NV, B * H) dv2 = torch.empty_like(dv) chunk_delta_rule_bwd_kernel_dhu[grid]( q, k, w, do, dh, dv, dv2, q.stride(1), q.stride(2), q.stride(3), do.stride(1), do.stride(2), do.stride(3), dh.stride(1), dh.stride(2), K**-0.5, H=H, T=T, K=K, V=V, BT=BT, BC=BC, BK=BK, BV=BV, NT=NT, ) return dh, dv2 def chunk_fwd_o_fn(q, k, v_new, h, BT): B, H, T, K, V = *q.shape, v_new.shape[-1] BK = triton.next_power_of_2(K) o = torch.empty_like(v_new) BK = min(triton.next_power_of_2(K), 64) BV = min(triton.next_power_of_2(K), 64) NV = triton.cdiv(V, BV) NT = triton.cdiv(T, BT) grid = (NV, NT, B * H) chunk_linear_attn_fwd_kernel_o[grid]( q, k, v_new, h, o, q.stride(1), q.stride(2), q.stride(3), v_new.stride(1), v_new.stride(2), v_new.stride(3), h.stride(1), h.stride(2), scale=K**-0.5, H=H, T=T, K=K, V=V, BT=BT, BK=BK, BV=BV, ) return o def chunk_bwd_dqkw_fn(q, k, v_new, w, h, du, do, dh, BT): B, H, T, K, V = *q.shape, v_new.shape[-1] BK = triton.next_power_of_2(K) BK = min(triton.next_power_of_2(K), 64) BV = min(triton.next_power_of_2(V), 64) NV = triton.cdiv(V, BV) NT = triton.cdiv(T, BT) grid = (NV, NT, B * H) dq = torch.empty_like(q) dk = torch.empty_like(k) dw = torch.empty_like(w) chunk_delta_rule_bwd_kernel_dqkw[grid]( q, k, v_new, w, h, do, dh, dq, dk, du, dw, q.stride(1), q.stride(2), q.stride(3), v_new.stride(1), v_new.stride(2), v_new.stride(3), dh.stride(1), dh.stride(2), scale = K ** -0.5, H=H, T=T, K=K, V=V, BT=BT, BK=BK, BV=BV, NT=NT, ) return dq.to(q.dtype), dk.to(k.dtype), dw.to(w.dtype) class ChunkDeltaRuleFunction(torch.autograd.Function): @staticmethod @custom_fwd @contiguous def forward(ctx, q, k, v, beta, BT, initial_state, output_final_state, checkpoint_level=1): ### obtain WY representation. u is actually the new v. w, u, A = fwd_prepare_wy_repr(k, v, beta, BT) # ### forward_h final_state = None if output_final_state: final_state = q.new_empty(B, H, K, V, dtype=torch.float32, requires_grad=False) h, v_new = chunk_fwd_h_fn(k, w, u, BT, initial_state, final_state) ## obtain output o = chunk_fwd_o_fn(q, k, v_new, h, BT) # save memory if checkpoint_level == 1: h, v_new = None, None ctx.save_for_backward(q, k, v, beta, A, h, v_new, initial_state) ctx.BT = BT return o.to(q.dtype), final_state @staticmethod @custom_bwd @contiguous def backward(ctx, do, d_ht=None): q, k, v, beta, A, h, v_new, initial_state = ctx.saved_tensors scale = q.shape[-1] ** -0.5 BT = ctx.BT w, u = fwd_recompute_w_u(k, v, beta, A, BT) # checkpont_level=1, recomputation. if h is None: h, v_new = chunk_fwd_h_fn(k, w, u, BT, initial_state, None) dv = fwd_prepare_dv(q, k, do, BT) dh, dv = chunk_bwd_dhu_fn(q, k, w, do, dv, BT) dq, dk, dw = chunk_bwd_dqkw_fn(q, k, v_new, w, h, dv, do, dh, BT) dk2, dv, dbeta = bwd_prepare_wy_repr(k, v, beta, A, dw, dv, BT) dk.add_(dk2) return dq.to(q.dtype), dk.to(k.dtype), dv.to(v.dtype), dbeta.to(beta.dtype), None, None, None, None def chunk_delta_rule( q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, beta: torch.Tensor, BT: int, initial_state: torch.Tensor = None, output_final_state: bool = False ): assert q.dtype == k.dtype == v.dtype if initial_state is not None: initial_state = initial_state.detach() o, final_state = ChunkDeltaRuleFunction.apply(q, k, v, beta, BT, initial_state, output_final_state) return o, final_state