# -*- coding: utf-8 -*- import torch import triton import triton.language as tl from torch.cuda.amp import custom_bwd, custom_fwd from fla.utils import contiguous # Based: An Educational and Effective Sequence Mixer # https://hazyresearch.stanford.edu/blog/2023-12-11-zoology2-based @triton.jit def parallel_based_fwd_kernel( # B: batch_size, H: n_heads, T: seq_len, D: d_head q, # query [B, H, L, D_head_K] k, # key [B, H, L, D_head_V] v, # value [B, H, L, D_head_V] o, # output [B, H, L, D_head_V] z, # normalizer [B, H, L] s_qk_h, # stride size: L * D_head_K s_qk_t, # stride size: D_head_K s_qk_d, # stride size: 1 s_vo_h, # stride size: L * D_head_V s_vo_t, # stride size: D_head_V s_vo_d, # stride size: 1 B, # batch size H, # n_heads T, # seq_len scale, # D_head_K ** -0.5 BTL: tl.constexpr, # BLOCK SIZE along the sequence dimension for Q BTS: tl.constexpr, # BLOCK SIZE along the sequence dimension for K/V BK: tl.constexpr, # BLOCK SIZE along the K dimension BV: tl.constexpr, # BLOCK SIZE along the V dimension DK: tl.constexpr, # D_head_K DV: tl.constexpr, # D_head_V ): # i_c: chunk index. used for sequence parallelism i_kv, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) NV = tl.cdiv(DV, BV) i_k = i_kv // (NV) i_v = i_kv % (NV) p_q = tl.make_block_ptr(q + i_bh * s_qk_h, (T, DK), (s_qk_t, s_qk_d), (i_c * BTL, i_k * BK), (BTL, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bh * s_qk_h, (DK, T), (s_qk_d, s_qk_t), (i_k * BK, 0), (BK, BTS), (0, 1)) p_v = tl.make_block_ptr(v + i_bh * s_vo_h, (T, DV), (s_vo_t, s_vo_d), (0, i_v * BV), (BTS, BV), (1, 0)) # [BQ, BD] block Q, in the shared memory throughout the whole kernel b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) b_o = tl.zeros([BTL, BV], dtype=tl.float32) b_z = tl.zeros([BTL], dtype=tl.float32) # Q block and K block have no overlap # no need for mask, thereby saving flops for _ in range(0, i_c * BTL, BTS): # [BK, BTS] b_k = tl.load(p_k, boundary_check=(0, 1)) # [BTS, BV] b_v = tl.load(p_v, boundary_check=(0, 1)) # [BTL, BTS] b_s = tl.dot(b_q, (b_k), allow_tf32=False) b_s = 1 + b_s + 0.5 * b_s * b_s b_z += tl.sum(b_s, axis=1) # [BQ, BD] b_o = b_o + tl.dot(b_s.to(b_v.dtype), b_v, allow_tf32=False) p_k = tl.advance(p_k, (0, BTS)) p_v = tl.advance(p_v, (BTS, 0)) # # rescale interchunk output tl.debug_barrier() o_q = tl.arange(0, BTL) # # sync threads, easy for compiler to optimize # tl.debug_barrier() o_k = tl.arange(0, BTS) p_k = tl.make_block_ptr(k + i_bh * s_qk_h, (DK, T), (s_qk_d, s_qk_t), (i_k * BK, i_c * BTL), (BK, BTS), (0, 1)) p_v = tl.make_block_ptr(v + i_bh * s_vo_h, (T, DV), (s_vo_t, s_vo_d), (i_c * BTL, i_v * BV), (BTS, BV), (1, 0)) # Q block and K block have overlap. masks required for _ in range(i_c * BTL, (i_c + 1) * BTL, BTS): # [BK, BTS] b_k = tl.load(p_k, boundary_check=(0, 1)) # [BTS, BV] b_v = tl.load(p_v, boundary_check=(0, 1)) # [BTL, BTS] m_s = o_q[:, None] >= o_k[None, :] b_s = tl.dot(b_q, b_k, allow_tf32=False) b_s = 1 + b_s + 0.5 * b_s * b_s b_s = tl.where(m_s, b_s, 0) b_z += tl.sum(b_s, axis=1) # [BTL, BV] b_o += tl.dot(b_s.to(b_q.dtype), b_v, allow_tf32=False) p_k = tl.advance(p_k, (0, BTS)) p_v = tl.advance(p_v, (BTS, 0)) o_k += BTS p_o = tl.make_block_ptr(o + (i_bh + B * H * i_k) * s_vo_h, (T, DV), (s_vo_t, s_vo_d), (i_c*BTL, i_v*BV), (BTL, BV), (1, 0)) p_z = z + (i_bh + B * H * i_k) * T + i_c * BTL + tl.arange(0, BTL) tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_z, b_z.to(p_z.dtype.element_ty), mask=((i_c * BTL + tl.arange(0, BTL)) < T)) @triton.jit def _parallel_based_bwd_dq( i_bh, i_c, i_k, i_v, i_h, q, k, v, do, dz, dq, s_qk_h, s_qk_t, s_qk_d, s_vo_h, s_vo_t, s_vo_d, B, H, T, scale, BTL: tl.constexpr, BTS: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, DK: tl.constexpr, DV: tl.constexpr, ): p_do = tl.make_block_ptr(do + i_bh * s_vo_h, (T, DV), (s_vo_t, s_vo_d), (i_c * BTL, i_v * BV), (BTL, BV), (1, 0)) p_q = tl.make_block_ptr(q + (i_bh) * s_qk_h, (T, DK), (s_qk_t, s_qk_d), (i_c*BTL, i_k*BK), (BTL, BK), (1, 0)) b_q = tl.load(p_q, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype) b_q = (b_q * scale).to(b_q.dtype) b_dq = tl.zeros([BTL, BK], dtype=tl.float32) p_k = tl.make_block_ptr(k + i_bh * s_qk_h, (T, DK), (s_qk_t, s_qk_d), (0, i_k * BK), (BTS, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * s_vo_h, (DV, T), (s_vo_d, s_vo_t), (i_v * BV, 0), (BV, BTS), (0, 1)) p_dz = dz + i_bh * T + i_c * BTL + tl.arange(0, BTL) b_dz = tl.load(p_dz, mask=(i_c * BTL + tl.arange(0, BTL)) < T) for _ in range(0, i_c * BTL, BTS): # [BTS, BK] b_k = tl.load(p_k, boundary_check=(0, 1)) # [BV, BTS] b_v = tl.load(p_v, boundary_check=(0, 1)) # [BTL, BTS] b_ds = tl.dot(b_do, b_v, allow_tf32=False) if i_v == 0: b_ds += b_dz[:, None] else: b_ds = b_ds b_s = tl.dot(b_q, tl.trans(b_k), allow_tf32=False) # [BQ, BD] b_dq += tl.dot((b_ds * (1 + b_s)).to(b_v.dtype), b_k, allow_tf32=False) p_k = tl.advance(p_k, (BTS, 0)) p_v = tl.advance(p_v, (0, BTS)) b_dq *= scale o_q = tl.arange(0, BTL) o_k = tl.arange(0, BTS) p_k = tl.make_block_ptr(k + i_bh * s_qk_h, (T, DK), (s_qk_t, s_qk_d), (i_c * BTL, i_k * BK), (BTS, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * s_vo_h, (DV, T), (s_vo_d, s_vo_t), (i_v * BV, i_c * BTL), (BV, BTS), (0, 1)) # Q block and K block have overlap. masks required for _ in range(i_c * BTL, (i_c + 1) * BTL, BTS): # [BTS, BK] b_k = tl.load(p_k, boundary_check=(0, 1)) # [BV, BTS] b_v = tl.load(p_v, boundary_check=(0, 1)) # [BTL, BTS] m_s = o_q[:, None] >= o_k[None, :] b_ds = tl.dot(b_do, b_v, allow_tf32=False) if i_v == 0: b_ds += b_dz[:, None] else: b_ds = b_ds b_ds = tl.where(m_s, b_ds, 0) * scale b_s = tl.dot(b_q, tl.trans(b_k), allow_tf32=False) b_s = tl.where(m_s, b_s, 0) # [BTL, BK] b_dq += tl.dot((b_ds + b_ds * b_s).to(b_k.dtype), b_k, allow_tf32=False) p_k = tl.advance(p_k, (BTS, 0)) p_v = tl.advance(p_v, (0, BTS)) o_k += BTS p_dq = tl.make_block_ptr(dq + (i_bh + B * H * i_v) * s_qk_h, (T, DK), (s_qk_t, s_qk_d), (i_c*BTL, i_k*BK), (BTL, BK), (1, 0)) tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) return @triton.jit def _parallel_based_bwd_dkv( i_bh, i_c, i_k, i_v, i_h, q, k, v, do, dz, dk, dv, s_qk_h, s_qk_t, s_qk_d, s_vo_h, s_vo_t, s_vo_d, B, H, T, scale, BTL: tl.constexpr, BTS: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, DK: tl.constexpr, DV: tl.constexpr, ): # compute dk dv p_k = tl.make_block_ptr(k + i_bh * s_qk_h, (T, DK), (s_qk_t, s_qk_d), (i_c * BTL, i_k * BK), (BTL, BK), (1, 0)) p_v = tl.make_block_ptr(v + i_bh * s_vo_h, (T, DV), (s_vo_t, s_vo_d), (i_c * BTL, i_v * BV), (BTL, BV), (1, 0)) b_k, b_v = tl.load(p_k, boundary_check=(0, 1)), tl.load( p_v, boundary_check=(0, 1)) b_dk, b_dv = tl.zeros([BTL, BK], dtype=tl.float32), tl.zeros( [BTL, BV], dtype=tl.float32) for i in range((tl.cdiv(T, BTS) * BTS)-BTS, (i_c + 1) * BTL - BTS, -BTS): p_q = tl.make_block_ptr( q + i_bh * s_qk_h, (DK, T), (s_qk_d, s_qk_t), (i_k * BK, i), (BK, BTS), (0, 1)) p_do = tl.make_block_ptr( do + i_bh * s_vo_h, (DV, T), (s_vo_d, s_vo_t), (i_v * BV, i), (BV, BTS), (0, 1)) p_dz = dz + i_bh * T + i + tl.arange(0, BTS) b_q = tl.load(p_q, boundary_check=(0, 1)) # [BK, BTS] b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype) # [BV, BTS] b_dz = tl.load(p_dz, mask=(i + tl.arange(0, BTS)) < T) b_s = tl.dot(b_k.to(b_q.dtype), b_q, allow_tf32=False) * \ scale # [BTL, BTS] b_s2 = 1 + b_s + 0.5 * b_s * b_s b_dv += tl.dot(b_s2.to(b_q.dtype), tl.trans(b_do), allow_tf32=False) b_ds = tl.dot(b_v, b_do, allow_tf32=False) * scale if i_v == 0: b_ds += b_dz[None, :] * scale else: b_ds = b_ds b_dk += tl.dot((b_ds + b_ds * b_s).to(b_q.dtype), tl.trans(b_q), allow_tf32=False) tl.debug_barrier() o_q, o_k = tl.arange(0, BTS), tl.arange(0, BTL) for i in range(i_c*BTL, (i_c+1)*BTL, BTS): p_q = tl.make_block_ptr( q + i_bh * s_qk_h, (DK, T), (s_qk_d, s_qk_t), (i_k * BK, i), (BK, BTS), (0, 1)) p_do = tl.make_block_ptr( do + i_bh * s_vo_h, (DV, T), (s_vo_d, s_vo_t), (i_v * BV, i), (BV, BTS), (0, 1)) p_dz = dz + i_bh * T + i + tl.arange(0, BTS) b_q = tl.load(p_q, boundary_check=(0, 1)) # [BD, BQ] b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype) b_dz = tl.load(p_dz, mask=(i + tl.arange(0, BTS)) < T) # [BK, BQ] m_s = o_k[:, None] <= o_q[None, :] b_s = tl.dot(b_k, b_q, allow_tf32=False) * scale b_s2 = 1 + b_s + 0.5 * b_s * b_s b_s = tl.where(m_s, b_s, 0) b_s2 = tl.where(m_s, b_s2, 0) b_ds = tl.dot(b_v, b_do, allow_tf32=False) if i_v == 0: b_ds += b_dz[None, :] else: b_ds = b_ds b_ds = tl.where(m_s, b_ds, 0) * scale # [BK, BD] b_dv += tl.dot(b_s2.to(b_q.dtype), tl.trans(b_do), allow_tf32=False) b_dk += tl.dot((b_ds + b_ds * b_s).to(b_q.dtype), tl.trans(b_q), allow_tf32=False) o_q += BTS p_dk = tl.make_block_ptr(dk + (i_bh + B * H * i_v) * s_qk_h, (T, DK), (s_qk_t, s_qk_d), (i_c*BTL, i_k*BK), (BTL, BK), (1, 0)) p_dv = tl.make_block_ptr(dv + (i_bh + B * H * i_k) * s_vo_h, (T, DV), (s_vo_t, s_vo_d), (i_c*BTL, i_v*BV), (BTL, BV), (1, 0)) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) return @triton.jit def parallel_based_bwd_kernel( q, k, v, do, dz, dq, dk, dv, s_qk_h, s_qk_t, s_qk_d, s_vo_h, s_vo_t, s_vo_d, B, H, T, scale, BTL: tl.constexpr, BTS: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, DK: tl.constexpr, DV: tl.constexpr, ): i_kv, i_c, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) NV = tl.cdiv(DV, BV) i_k = i_kv // (NV) i_v = i_kv % (NV) i_h = i_bh % H _parallel_based_bwd_dq( i_bh, i_c, i_k, i_v, i_h, q, k, v, do, dz, dq, s_qk_h, s_qk_t, s_qk_d, s_vo_h, s_vo_t, s_vo_d, B, H, T, scale, BTL=BTL, BTS=BTS, BK=BK, BV=BV, DK=DK, DV=DV ) tl.debug_barrier() _parallel_based_bwd_dkv( i_bh, i_c, i_k, i_v, i_h, q, k, v, do, dz, dk, dv, s_qk_h, s_qk_t, s_qk_d, s_vo_h, s_vo_t, s_vo_d, B, H, T, scale, BTL, BTS, BK, BV, DK, DV ) class ParallelBasedFunction(torch.autograd.Function): @staticmethod @contiguous @custom_fwd def forward(ctx, q, k, v, scale): BTL, BTS = 128, 32 assert BTL % BTS == 0 # assert q.shape[-1] % 16 == 0 BK = min(128, triton.next_power_of_2(k.shape[-1])) BV = min(128, triton.next_power_of_2(v.shape[-1])) BK, BV = max(BK, 16), max(BV, 16) batch_size, n_heads, seq_len, d_head_qk = q.shape d_head_v = v.shape[-1] num_stages = 2 num_warps = 4 NK = triton.cdiv(d_head_qk, BK) NV = triton.cdiv(d_head_v, BV) grid = (NK * NV, triton.cdiv(seq_len, BTL), batch_size * n_heads) assert NK == 1, "will encounter some synchronization issue if not." o = torch.empty(NK, batch_size, n_heads, seq_len, d_head_v, device=q.device) z = torch.empty(NK, batch_size, n_heads, seq_len, device=q.device) parallel_based_fwd_kernel[grid]( q, k, v, o, z, q.stride(1), q.stride(2), q.stride(3), v.stride(1), v.stride(2), v.stride(3), batch_size, n_heads, seq_len, scale, BTL=BTL, BTS=BTS, BK=BK, BV=BV, DK=d_head_qk, DV=d_head_v, num_warps=num_warps, num_stages=num_stages ) ctx.save_for_backward(q, k, v) ctx.scale = scale return o.sum(0).to(q.dtype), z.sum(0).to(q.dtype) @staticmethod @custom_bwd @contiguous def backward(ctx, do, dz): q, k, v = ctx.saved_tensors scale = ctx.scale BTL, BTS = 64, 32 assert BTL % BTS == 0 BK = min(128, triton.next_power_of_2(k.shape[-1])) BV = min(128, triton.next_power_of_2(v.shape[-1])) BK, BV = max(BK, 16), max(BV, 16) batch_size, n_heads, seq_len, d_head_qk = q.shape d_head_v = v.shape[-1] num_stages = 2 num_warps = 4 NK = triton.cdiv(d_head_qk, BK) NV = triton.cdiv(d_head_v, BV) grid = (NK * NV, triton.cdiv(seq_len, BTL), batch_size * n_heads) assert NK == 1, "will encounter some synchronization issue if not" dq = torch.empty(NV, batch_size, n_heads, seq_len, d_head_qk, dtype=q.dtype, device=q.device) dk = torch.empty(NV, batch_size, n_heads, seq_len, d_head_qk, dtype=q.dtype, device=q.device) dv = torch.empty(NK, batch_size, n_heads, seq_len, d_head_v, dtype=q.dtype, device=q.device) parallel_based_bwd_kernel[grid]( q, k, v, do, dz, dq, dk, dv, q.stride(1), q.stride(2), q.stride(3), v.stride(1), v.stride(2), v.stride(3), batch_size, n_heads, seq_len, scale, BTL=BTL, BTS=BTS, BK=BK, BV=BV, DK=d_head_qk, DV=d_head_v, num_warps=num_warps, num_stages=num_stages ) return dq.sum(0).to(q.dtype), dk.sum(0).to(k.dtype), dv.sum(0).to(v.dtype), None triton_parallel_based = ParallelBasedFunction.apply def parallel_based(q, k, v, use_scale=True, use_normalize=True, return_both=False): assert q.shape[-1] <= 128, "only support feature dim up to 128" if use_scale: scale = q.shape[-1] ** -0.5 else: scale = 1 o, z = triton_parallel_based(q, k, v, scale) if return_both: return o, z if use_normalize: o = o / (z[..., None] + 1e-6) else: o = o return o.to(q.dtype)