# -*- coding: utf-8 -*- from __future__ import annotations from typing import Optional import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from transformers.activations import ACT2FN from fla.modules import FusedRMSNormSwishGate, RMSNorm from fla.ops.simple_gla import chunk_simple_gla class SimpleGatedLinearAttention(nn.Module): r""" The layer implementaion for [Gated Linear Attention Transformers with Hardware-Efficient Training](https://arxiv.org/abs/2312.06635). # noqa This layer calls the simplified GLA kernel in which the gating is head-wise instead of elementwise. Args: mode (str, Optional): Which GLA kernel to use. Currently available: `chunk`. Default: `chunk`. hidden_size (int, Optional): The hidden size of the input. Default: 1024. expand_k (float, Optional): The expansion ratio for the key dim. Default: 0.5. expand_v (float, Optional): The expansion ratio for the value dim. Default: 1.0. num_heads (int, Optional): The number of heads. Default: 4. gate_fn (str, Optional): The activation function for the output gate. Default: `swish`. elementwise_affine (bool, Optional): If `True`, applies elementwise affine to LayerNorm with learnable parameters. Default: `True`. norm_eps (float, Optional): The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5. gate_logit_normalizer (int, Optional): The normalizer for the gate logits, appied after `logsigmoid`. Default: 16. fuse_norm (bool, Optional): Whether to fuse the norm and the output gate for better memory footprint. Default: `True`. layer_idx (int, Optional): The index of the layer. Default: None. """ def __init__( self, mode: str = 'chunk', hidden_size: int = 1024, expand_k: float = 1.0, expand_v: float = 2.0, num_heads: int = 4, gate_fn: str = 'swish', elementwise_affine: Optional[bool] = True, norm_eps: float = 1e-5, gate_logit_normalizer: int = 16, fuse_norm: bool = True, **kwargs ) -> SimpleGatedLinearAttention: super().__init__() self.hidden_size = hidden_size self.mode = mode self.key_dim = int(hidden_size * expand_k) self.value_dim = int(hidden_size * expand_v) assert mode in ['chunk'], f"Not suppoerted mode `{mode}`." assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}" assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}" self.num_heads = num_heads self.head_qk_dim = self.key_dim // num_heads self.head_v_dim = self.value_dim // num_heads self.gate_fn = ACT2FN[gate_fn] self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False) self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False) self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False) self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False) self.gk_proj = nn.Linear(hidden_size, self.num_heads) self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False) if gate_fn == 'swish' and fuse_norm: self.g_norm_swish_gate = FusedRMSNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps) self.fuse_norm_and_gate = True else: self.fuse_norm_and_gate = False self.g_norm = RMSNorm(self.head_v_dim, elementwise_affine, norm_eps) self.gate_logit_normalizer = gate_logit_normalizer self.apply(self._initialize_weights) def _initialize_weights(self, module: nn.Module): if getattr(module, "_is_hf_initialized", False): return if isinstance(module, nn.Linear): nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5) if module.bias is not None: nn.init.zeros_(module.bias) module._is_hf_initialized = True def forward(self, x): mode = self.mode q = rearrange(self.q_proj(x), 'b n (h d) -> b h n d', h=self.num_heads) k = rearrange(self.k_proj(x), 'b n (h d) -> b h n d', h=self.num_heads) v = rearrange(self.v_proj(x), 'b n (h d) -> b h n d', h=self.num_heads) gk = rearrange(self.gk_proj(x), 'b n h -> b h n') gk = (F.logsigmoid(gk) / self.gate_logit_normalizer) if mode == 'chunk': o = chunk_simple_gla(q, k, v, gk) else: raise NotImplementedError(f"Not supported mode `{mode}`.") o = rearrange(o, 'b h l d -> b l h d') g = self.g_proj(x) if self.fuse_norm_and_gate: g = rearrange(g, 'b l (h d) -> b l h d', h=self.num_heads) o = self.g_norm_swish_gate(o, g) o = rearrange(o, 'b l h d -> b l (h d)') else: o = self.g_norm(o) o = rearrange(o, 'b l h d -> b l (h d)') o = o * self.gate_fn(g) o = self.o_proj(o) return o if __name__ == '__main__': batch = 4 seq_len = 1024 hidden_size = 2048 x = torch.randn(batch, seq_len, hidden_size).to(torch.bfloat16).cuda().requires_grad_(True) model = SimpleGatedLinearAttention(hidden_size=hidden_size, mode='chunk').to(torch.bfloat16).cuda() y = model(x) print(y.shape) y.sum().backward() print(x.grad.shape)