# -*- coding: utf-8 -*- # Copyright (c) 2024, Songlin Yang from typing import Tuple import torch import triton import triton.language as tl from torch.cuda.amp import custom_bwd, custom_fwd from fla.ops.utils import chunk_reversed_cumsum_fwd from fla.utils import contiguous @triton.jit def fused_recurrent_rwkv6_fwd_kernel( q, # query [B, H, T, K] k, # key [B, H, T, K] v, # value [B, H, T, V] w, # log gate [B, H, T, K] u, # bonus [B, H, K] o, # output [B, H, T, V] # initial hidden state initialization [B, H, K, V] h0, ht, # final hidden state [B, H, K, V] s_k_h, # stride size: T * K s_v_h, # stride size: T * V scale, # K ** -0.5 B: tl.constexpr, H: tl.constexpr, T: tl.constexpr, K: tl.constexpr, V: tl.constexpr, BK: tl.constexpr, # BLOCK SIZE along the K dimension BV: tl.constexpr, # BLOCK SIZE along the V dimension USE_INITIAL_STATE: tl.constexpr, # whether to use initial state STORE_FINAL_STATE: tl.constexpr, # whether to store final state REVERSE: tl.constexpr, # whether to do autoregressive modeling in the reverse direction ): i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h = i_bh % H p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0) p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0) p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0) p_o = o + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0) p_w = w + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0) p_u = u + i_h * K + tl.arange(0, BK) + i_k * BK mask_bk = (i_k * BK + tl.arange(0, BK)) < K mask_bv = (i_v * BV + tl.arange(0, BV)) < V mask_kv = mask_bv[:, None] & mask_bk[None, :] b_h = tl.zeros([BV, BK], dtype=tl.float32) if USE_INITIAL_STATE: p_h0 = h0 + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None]) b_h += tl.load(p_h0, mask=mask_kv, other=0).to(tl.float32) b_u = tl.load(p_u, mask=mask_bk, other=0).to(tl.float32) for _ in range(0, T): b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32) b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32) b_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale b_w = tl.load(p_w, mask=mask_bk, other=0).to(tl.float32) b_w = tl.exp(b_w) b_kv = b_k[None, :] * b_v[:, None] b_o = (b_h + b_kv * b_u[None, :]) * b_q[None, :] b_o = tl.sum(b_o, axis=1) b_h = b_h * b_w[None, :] b_h += b_kv tl.store(p_o, b_o.to(p_o.dtype.element_ty), mask=mask_bv) p_q += -K if REVERSE else K p_k += -K if REVERSE else K p_o += -V if REVERSE else V p_v += -V if REVERSE else V p_w += -K if REVERSE else K if STORE_FINAL_STATE: p_ht = ht + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None]) tl.store(p_ht, b_h.to(p_ht.dtype.element_ty), mask=mask_kv) # Similar to Algorithm1 of https://arxiv.org/abs/2006.16236 @triton.jit def fused_recurrent_rwkv6_bwd_kernel_dq( # B: B, H: H, T: T, D: d_head # NV: number of split in the V dimension. NK: number of split in the K dimension k, # key [B, H, T, V] v, # value [B, H, T, V] w, # log gate [B, H, T, K] u, # bonus [B, H, K] do, # gradient of output [B, H, T, V] dq, # gradient of query [NV, B, H, T, K] dq_aux, # gradient of query_aux [NV, B, H, T, K] # initial hidden state initialization [B, H, K, V] h0, s_k_h, # stride size: T * K s_v_h, # stride size: T * V scale, # K ** -0.5 B: tl.constexpr, # B H: tl.constexpr, # H T: tl.constexpr, # T BK: tl.constexpr, # BLOCK SIZE along the K dimension BV: tl.constexpr, # BLOCK SIZE along the V dimension K: tl.constexpr, # K V: tl.constexpr, # V USE_INITIAL_STATE: tl.constexpr, # whether to use initial state REVERSE: tl.constexpr, # whether to do autoregressive modeling in the reverse direction ): i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h = i_bh % H p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0) p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0) p_do = do + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T-1) * V if REVERSE else 0) p_dq = dq + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0) p_dq_aux = dq_aux + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0) p_w = w + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T-1) * K if REVERSE else 0) p_u = u + i_h * K + tl.arange(0, BK) + i_k * BK mask_bk = i_k * BK + tl.arange(0, BK) < K mask_bv = i_v * BV + tl.arange(0, BV) < V mask_kv = mask_bv[:, None] & mask_bk[None, :] b_u = tl.load(p_u, mask=mask_bk, other=0).to(tl.float32) b_h = tl.zeros([BV, BK], dtype=tl.float32) if USE_INITIAL_STATE: p_h0 = h0 + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[None, :]) * V + (i_v * BV + tl.arange(0, BV)[:, None]) b_h += tl.load(p_h0, mask=mask_kv, other=0).to(tl.float32) for _ in range(0, T): b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32) b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32) b_kv = b_k[None, :] * b_v[:, None] b_do = tl.load(p_do, mask=mask_bv, other=0).to(tl.float32) b_w = tl.load(p_w, mask=mask_bk, other=0).to(tl.float32) b_w = tl.exp(b_w) h_q = b_h * b_do[:, None] b_dq = tl.sum(h_q + b_kv * b_u[None, :] * b_do[:, None], axis=0) b_dq *= scale b_dq_aux = tl.sum(h_q, axis=0) b_h = b_h * b_w[None, :] b_h += b_kv tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), mask=mask_bk) tl.store(p_dq_aux, b_dq_aux.to(p_dq_aux.dtype.element_ty), mask=mask_bk) p_k += -K if REVERSE else K p_do += -V if REVERSE else V p_v += -V if REVERSE else V p_w += -K if REVERSE else K p_dq += -K if REVERSE else K p_dq_aux += -K if REVERSE else K @triton.jit def fused_recurrent_rwkv6_bwd_kernel_dkv( # B: B, H: H, T: T, D: d_head # NV: number of split in the V dimension. NK: number of split in the K dimension q, # query [B, H, T, K] k, # key [B, H, T, V] v, # value [B, H, T, V] w, # log gate [B, H, T, K] u, # bonus [B, H, K] do, # gradient of output [B, H, T, V] dk, dk_aux, dv, dh0, # initial hidden state initialization [B, H, K, V] s_k_h, # stride size: T * K s_v_h, # stride size: T * V scale, # K ** -0.5 B, # B H, # H T, # T BK: tl.constexpr, # BLOCK SIZE along the K dimension BV: tl.constexpr, # BLOCK SIZE along the V dimension K: tl.constexpr, # K V: tl.constexpr, # V USE_INITIAL_STATE: tl.constexpr, # whether to use initial state REVERSE: tl.constexpr, # whether to do autoregressive modeling in the reverse direction ): i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) i_h = i_bh % H p_q = q + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T - 1) * K if not REVERSE else 0) p_k = k + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T - 1) * K if not REVERSE else 0) p_do = do + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T - 1) * V if not REVERSE else 0) p_v = v + i_bh * s_v_h + i_v * BV + tl.arange(0, BV) + ((T - 1) * V if not REVERSE else 0) p_dk = dk + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange(0, BK) + ((T - 1) * K if not REVERSE else 0) p_dk_aux = dk_aux + (i_bh + i_v * B * H) * s_k_h + i_k * BK + tl.arange(0, BK) + ((T - 1) * K if not REVERSE else 0) p_dv = dv + (i_bh + i_k * B * H) * s_v_h + i_v * BV + tl.arange(0, BV) + ((T - 1) * V if not REVERSE else 0) p_w = w + i_bh * s_k_h + i_k * BK + tl.arange(0, BK) + ((T - 1) * K if not REVERSE else 0) b_dh = tl.zeros([BK, BV], dtype=tl.float32) mask_bk = i_k * BK + tl.arange(0, BK) < K mask_bv = i_v * BV + tl.arange(0, BV) < V mask_kv = mask_bk[:, None] & mask_bv[None, :] p_u = u + i_h * K + tl.arange(0, BK) + i_k * BK b_u = tl.load(p_u, mask=mask_bk, other=0).to(tl.float32) for _ in range(T-1, -1, -1): b_q = tl.load(p_q, mask=mask_bk, other=0).to(tl.float32) * scale b_k = tl.load(p_k, mask=mask_bk, other=0).to(tl.float32) b_v = tl.load(p_v, mask=mask_bv, other=0).to(tl.float32) b_w = tl.load(p_w, mask=mask_bk, other=0).to(tl.float32) b_do = tl.load(p_do, mask=mask_bv, other=0).to(tl.float32) b_dkv = b_q[:, None] * b_do[None, :] b_dk = tl.sum(b_dh * b_v[None, :], axis=1) tl.store(p_dk_aux, b_dk.to(p_dk_aux.dtype.element_ty), mask=mask_bk) b_dk += tl.sum(b_dkv * b_u[:, None] * b_v[None, :], axis=1) b_dv = tl.sum((b_dh + (b_dkv * b_u[:, None])) * b_k[:, None], axis=0) tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), mask=mask_bk) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), mask=mask_bv) b_dh *= tl.exp(b_w)[:, None] b_dh += b_dkv p_q += K if REVERSE else -K p_k += K if REVERSE else -K p_v += V if REVERSE else -V p_w += K if REVERSE else -K p_do += V if REVERSE else -V p_dk += K if REVERSE else -K p_dk_aux += K if REVERSE else -K p_dv += V if REVERSE else -V if USE_INITIAL_STATE: p_dh0 = dh0 + i_bh * K * V + (i_k * BK + tl.arange(0, BK)[:, None]) * V + (i_v * BV + tl.arange(0, BV)[None, :]) tl.store(p_dh0, b_dh.to(p_dh0.dtype.element_ty), mask=mask_kv) class FusedRecurrentRWKV6Function(torch.autograd.Function): @staticmethod @contiguous @custom_fwd def forward(ctx, r, k, v, w, u, scale=None, initial_state=None, output_final_state=False, reverse=False): # alias q = r B, H, T, K, V = *q.shape, v.shape[-1] BK, BV = min(triton.next_power_of_2(K), 32), min(triton.next_power_of_2(V), 32) NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) num_stages = 1 num_warps = 1 if output_final_state: final_state = q.new_empty(B, H, K, V) else: final_state = None o = q.new_empty(NK, B, H, T, V, dtype=torch.float32) grid = (NV, NK, B * H) fused_recurrent_rwkv6_fwd_kernel[grid]( q, k, v, w, u, o, initial_state, final_state, k.stride(1), v.stride(1), scale, B=B, H=H, T=T, K=K, V=V, BK=BK, BV=BV, USE_INITIAL_STATE=initial_state is not None, STORE_FINAL_STATE=final_state is not None, REVERSE=reverse, num_warps=num_warps, num_stages=num_stages ) o = o.sum(0) ctx.save_for_backward(q, k, v, w, u, initial_state, o) ctx.scale = scale ctx.reverse = reverse # we do not need the gradient of the final state from the next chunk # similiar to Trunctated BPTT if final_state is not None: final_state = final_state.detach() return o.to(q.dtype), final_state @staticmethod @contiguous @custom_bwd def backward(ctx, do, d_final_state=None): q, k, v, w, u, initial_state, o = ctx.saved_tensors B, H, T, K, V = *q.shape, v.shape[-1] scale = ctx.scale BK, BV = min(triton.next_power_of_2(K), 16), min(triton.next_power_of_2(V), 64) NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) num_stages = 1 num_warps = 1 dq = q.new_empty(NV, B, H, T, K, dtype=torch.float32) dq_aux = torch.empty_like(dq) grid = (NV, NK, B * H) fused_recurrent_rwkv6_bwd_kernel_dq[grid]( k, v, w, u, do, dq, dq_aux, initial_state, q.stride(1), v.stride(1), scale, B=B, H=H, T=T, K=K, V=V, BK=BK, BV=BV, num_warps=num_warps, num_stages=num_stages, USE_INITIAL_STATE=initial_state is not None, REVERSE=ctx.reverse, ) dq = dq.sum(0).to(q) dq_aux = dq_aux.sum(0) BK, BV = min(triton.next_power_of_2(K), 32), min(triton.next_power_of_2(V), 32) NK, NV = triton.cdiv(K, BK), triton.cdiv(V, BV) dk = q.new_empty(NV, B, H, T, K, dtype=torch.float32) dk_aux = q.new_empty(NV, B, H, T, K, dtype=torch.float32) dv = q.new_empty(NK, B, H, T, V, dtype=torch.float32) dh0 = initial_state.new_empty(B, H, K, V) if initial_state is not None else None grid = (NV, NK, B * H) fused_recurrent_rwkv6_bwd_kernel_dkv[grid]( q, k, v, w, u, do, dk, dk_aux, dv, dh0, q.stride(1), v.stride(1), scale, B=B, H=H, T=T, K=K, V=V, BK=BK, BV=BV, num_warps=num_warps, num_stages=num_stages, USE_INITIAL_STATE=initial_state is not None, REVERSE=ctx.reverse, ) dk = dk.sum(0).to(k) dv = dv.sum(0).to(v) dk_aux = dk_aux.sum(0) dw = (dq_aux * q * scale)[:, :, 1:] - (dk_aux * k)[:, :, 0:-1] dw = torch.nn.functional.pad(dw, (0, 0, 0, 1, 0, 0, 0, 0), value=0) dw = chunk_reversed_cumsum_fwd(dw).to(w) du = ((do * v).sum(-1)[..., None] * k * q * scale).sum([0, -2]).to(u) return dq, dk, dv, dw, du, None, dh0, None, None def fused_recurrent_rwkv6( r: torch.Tensor, k: torch.Tensor, v: torch.Tensor, w: torch.Tensor, u: torch.Tensor, scale: int = -1, initial_state: torch.Tensor = None, output_final_state: bool = False, causal: bool = True ) -> Tuple[torch.Tensor, torch.Tensor]: r""" Args: r (torch.Tensor): reception of shape `(B, H, T, K)`. Alias: q, query in linear attention. k (torch.Tensor): keys of shape `(B, H, T, K)` v (torch.Tensor): values of shape `(B, H, T, V)` w (torch.Tensor): data-dependent decays of shape `(B, H, T, K)` in log space! Alias: g. u (torch.Tensor): bonus of shape `(H, K)` scale (Optional[int]): Scale factor for the RWKV6 attention scores. If not provided, it will default to `1 / sqrt(K)`. Default: `None`. initial_state (Optional[torch.Tensor]): Initial state of shape `(B, H, K, V)`. Default: `None`. output_final_state (Optional[bool]): Whether to output the final state of shape `(B, H, K, V)`. Default: `False`. """ if scale == -1: scale = r.shape[-1] ** -0.5 o, final_state = FusedRecurrentRWKV6Function.apply(r, k, v, w, u, scale, initial_state, output_final_state) return o, final_state