# -*- coding: utf-8 -*- import torch import triton import triton.language as tl from einops import rearrange from torch.cuda.amp import custom_bwd, custom_fwd from fla.utils import contiguous from fla.ops.delta_rule.wy_fast import prepare_wy_repr as prepare_wy_repr2 # Inspired by "THE WY REPRESENTATION FOR PRODUCTS OF HOUSEHOLDER MATRICES" https://epubs.siam.org/doi/pdf/10.1137/0908009 # o: cumprod # o2: cumprodsum @triton.autotune( configs=[ triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), triton.Config({}, num_warps=32), ], key=["BT", "BK", "BV"], ) @triton.jit def fwd_prepare_wy_repr_kernel( k, v, beta, o, o2, T, K, V, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr ): i_t, i_bh = tl.program_id(0), tl.program_id(1) p_k = k + i_bh * T * K + (i_t * BT + tl.arange(0, BT)[:, None]) * K + tl.arange(0, BK)[None, :] p_v = v + i_bh * T * V + (i_t * BT + tl.arange(0, BT)[:, None]) * V + tl.arange(0, BV)[None, :] p_beta = beta + i_bh * T + i_t * BT + tl.arange(0, BT) mask_bt = (tl.arange(0, BT) + i_t * BT) < T mask_bk = tl.arange(0, BK) < K mask_bv = tl.arange(0, BV) < V mask_bk = mask_bk[None, :] & mask_bt[:, None] mask_bv = mask_bv[None, :] & mask_bt[:, None] # [BT, BK] b_k = tl.load(p_k, mask=mask_bk, other=0) # [BT,] b_beta = tl.load(p_beta, mask=mask_bt, other=0).to(tl.float32) # [BT, BV] b_v = tl.load(p_v, mask=mask_bv, other=0) b_v = (b_v * b_beta[:, None]).to(b_v.dtype) # [BT, BK] b_kb = (b_k * b_beta[:, None]).to(b_k.dtype) # [BT, BT] b_A = tl.dot(b_kb, tl.trans(b_k), allow_tf32=False) b_A = -tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :], b_A, 0) for i in range(BT): mask = tl.arange(0, BT) == i b_a = tl.sum(tl.where(mask[:, None], b_A, 0), 0) b_a = b_a + tl.sum(b_a[:, None] * b_A, 0) * (tl.arange(0, BT) < i) b_A = tl.where(mask[:, None], b_a, b_A) b_A += tl.arange(0, BT)[:, None] == tl.arange(0, BT)[None, :] b_A = b_A.to(b_k.dtype) b_w = tl.dot(b_A, b_kb, allow_tf32=False) b_u = tl.dot(b_A, b_v, allow_tf32=False) p_o = o + i_bh * T * K + (i_t * BT + tl.arange(0, BT)[:, None]) * K + tl.arange(0, BK)[None, :] tl.store(p_o, b_w.to(p_o.dtype.element_ty), mask=mask_bk) p_o2 = o2 + i_bh * T * V + (i_t * BT + tl.arange(0, BT)[:, None]) * V + tl.arange(0, BV)[None, :] tl.store(p_o2, b_u.to(p_o2.dtype.element_ty), mask=mask_bv) @triton.autotune( configs=[ triton.Config({}, num_warps=1), triton.Config({}, num_warps=2), triton.Config({}, num_warps=4), triton.Config({}, num_warps=8), triton.Config({}, num_warps=16), triton.Config({}, num_warps=32), ], key=["BT", "BK", "BV"], ) @triton.jit def bwd_prepare_wy_repr_kernel( k, v, beta, o, o2, do, do2, dk, dv, dbeta, NT, K, V, T, BT: tl.constexpr, BK: tl.constexpr, BV: tl.constexpr, ): i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) p_k = k + i_bh * T * K + (i_t * BT + tl.arange(0, BT)[:, None]) * K + tl.arange(0, BK)[None, :] p_do = do + i_bh * T * K + (i_t * BT + tl.arange(0, BT)[:, None]) * K + tl.arange(0, BK)[None, :] p_do2 = do2 + i_bh * T * V + (i_t * BT + tl.arange(0, BT)[:, None]) * V + tl.arange(0, BV)[None, :] p_beta = beta + i_bh * T + i_t * BT + tl.arange(0, BT) mask_bt = (tl.arange(0, BT) + i_t * BT) < T mask_bk = (tl.arange(0, BK) < K)[None, :] & mask_bt[:, None] mask_bv = (tl.arange(0, BV) < V)[None, :] & mask_bt[:, None] b_k, b_beta = tl.load(p_k, mask=mask_bk), tl.load(p_beta, mask=mask_bt) b_beta = b_beta.to(tl.float32) A = tl.dot(b_k, tl.trans(b_k), allow_tf32=False) * b_beta[:, None] A = tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :], A, 0) b_do = tl.load(p_do, mask=mask_bk).to(tl.float32) b_dv = tl.load(p_do2, mask=mask_bv).to(tl.float32) dA = tl.zeros([BT, BT], dtype=tl.float32) b_dk = tl.zeros([BT, BK], dtype=tl.float32) for i in range(BT-1, -1, -1): mask = tl.arange(0, BT) == i attn = tl.sum(tl.where(mask[:, None], A, 0), axis=0) do_ = tl.sum(tl.where(mask[:, None], b_do, 0), axis=0) dv_ = tl.sum(tl.where(mask[:, None], b_dv, 0), axis=0) b_do = b_do - attn[:, None] * do_[None, :] b_dv = b_dv - attn[:, None] * dv_[None, :] tl.debug_barrier() p_v = v + i_bh * T * V + (i_t * BT + tl.arange(0, BT)[:, None]) * V + tl.arange(0, BV)[None, :] b_v = tl.load(p_v, mask=mask_bv) b_dk += b_do * b_beta[:, None] b_dbeta = tl.sum(b_do * b_k, axis=1) b_dbeta += tl.sum(b_dv * b_v, axis=1) b_v = None p_o = o + i_bh * T * K + (i_t * BT + tl.arange(0, BT)[:, None]) * K + tl.arange(0, BK)[None, :] p_o2 = o2 + i_bh * T * V + (i_t * BT + tl.arange(0, BT)[:, None]) * V + tl.arange(0, BV)[None, :] b_o = tl.load(p_o, mask=mask_bk) b_o2 = tl.load(p_o2, mask=mask_bv) dA = -tl.dot(b_do.to(b_o.dtype), tl.trans(b_o), allow_tf32=False) dA -= tl.dot(b_dv.to(b_o2.dtype), tl.trans(b_o2).to(b_o.dtype), allow_tf32=False) dA = tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :], dA, 0) b_dv *= b_beta[:, None] p_dv = dv + i_bh * T * V + (i_t * BT + tl.arange(0, BT)[:, None]) * V + tl.arange(0, BV)[None, :] tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), mask=mask_bv) b_dbeta += tl.sum(dA * tl.dot(b_k, tl.trans(b_k), allow_tf32=False), axis=1) dA = dA * b_beta[:, None] b_dk += tl.dot(tl.trans(dA.to(b_k.dtype)), b_k, allow_tf32=False) b_dk += tl.dot(dA.to(b_k.dtype), b_k, allow_tf32=False) p_dk = dk + i_bh * T * K + (i_t * BT + tl.arange(0, BT)[:, None]) * K + tl.arange(0, BK)[None, :] tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), mask=mask_bk) p_dbeta = dbeta + i_bh * T + i_t * BT + tl.arange(0, BT) tl.store(p_dbeta, b_dbeta.to(p_dbeta.dtype.element_ty), mask=mask_bt) def fwd_prepare_wy_repr(k, v, beta, chunk_size): B, H, T, K, V = *k.shape, v.shape[-1] v_new = torch.empty_like(v) o_cumdecay = torch.empty_like(k) BT = chunk_size NT = triton.cdiv(T, BT) BK = triton.next_power_of_2(K) BV = triton.next_power_of_2(V) fwd_prepare_wy_repr_kernel[(NT, B*H)]( k, v, beta, o_cumdecay, v_new, T, K, V, BT, BK, BV ) return o_cumdecay, v_new def bwd_prepare_wy_repr(k, v, beta, o_cumdecay, v_new, do, do2, chunk_size): b, h, l, d_k = do.shape d_v = v.shape[-1] BK = triton.next_power_of_2(d_k) BV = triton.next_power_of_2(d_v) c = chunk_size BK = d_k NT = triton.cdiv(l, c) dk = torch.empty_like(k) dv = torch.empty_like(v) dbeta = torch.zeros_like(beta) bwd_prepare_wy_repr_kernel[(NT, b*h)]( k, v, beta, o_cumdecay, v_new, do, do2, dk, dv, dbeta, NT, d_k, d_v, l, chunk_size, BK, BV ) return dk, dv, dbeta class WYRepresentationPrepration(torch.autograd.Function): @staticmethod @contiguous @custom_fwd def forward(ctx, k, v, beta, chunk_size): o_cumdecay, v_new = fwd_prepare_wy_repr(k, v, beta, chunk_size) ctx.chunk_size = chunk_size ctx.save_for_backward(k.to(v), v, beta, o_cumdecay, v_new) return o_cumdecay, v_new @staticmethod @contiguous @custom_bwd def backward(ctx, do, do2): k, v, beta, o_cumdecay, v_new = ctx.saved_tensors dk, dv, dbeta = bwd_prepare_wy_repr(k, v, beta, o_cumdecay, v_new, do, do2, ctx.chunk_size) return dk, dv, dbeta, None prepare_wy_repr = WYRepresentationPrepration.apply def naive(k, v, beta, chunk_size): l_org = k.shape[2] l_new = triton.next_power_of_2(l_org) # pad k, v, beta k = torch.cat([k, torch.zeros_like(k)[:, :, :l_new-l_org, :]], dim=2) v = torch.cat([v, torch.zeros_like(v)[:, :, :l_new-l_org, :]], dim=2) beta = torch.cat([beta, torch.zeros_like(beta)[:, :, :l_new-l_org]], dim=2) k, v = map(lambda x: rearrange(x, 'b h (n c) d -> b h n c d', c=chunk_size), (k, v)) # k = torch.nn.functional.normalize(k, dim=-1, p=2) beta = rearrange(beta, 'b h (n c) -> b h n c', c=chunk_size) mask = torch.triu(torch.ones(chunk_size, chunk_size, dtype=torch.bool, device=k.device), diagonal=0) k_beta = k * beta[..., None] v = v * beta[..., None] attn = (k @ k.transpose(-1, -2)).masked_fill_(mask, 0) attn = attn * beta[..., None] x = attn @ v o = torch.zeros_like(k) o2 = torch.zeros_like(v) o[..., 0, :] = k_beta[..., 0, :].clone() o2[..., 0, :] = x[..., 0, :].clone() for i in range(1, chunk_size): o_i = (o[..., :i, :]).clone() o[..., i, :] = -(attn[..., i, :i, None] * o_i).sum(3) + k_beta[..., i, :] o2_i = (o2[..., :i, :]).clone() o2[..., i, :] = -(attn[..., i, :i, None] * o2_i).sum(3) + x[..., i, :] return map(lambda x: rearrange(x, 'b h n c d -> b h (n c) d')[:, :, :l_org], (o, v-o2)) if __name__ == "__main__": torch.set_default_dtype(torch.bfloat16) seq_len = 2048 b = 4 h = 8 k = torch.nn.functional.normalize(torch.randn(b, h, seq_len, 256), dim=-1, p=2) v = torch.randn(b, h, seq_len, 256) beta = torch.rand(b, h, seq_len).sigmoid() require_grad = True k, v, beta = map(lambda x: x.cuda().requires_grad_(require_grad), (k, v, beta)) do = torch.rand_like(k) do2 = torch.rand_like(v) print("Start warmup.") o1, o2 = prepare_wy_repr(k, v, beta, 32) # (o1 * do + o2 * do2).sum().backward() o3, o4 = prepare_wy_repr2(k, v, beta, 32) # (o1 * do + o2 * do2).sum().backward() print((o1 - o3).abs().max()) print((o2 - o4).abs().max()) for i in range(30): o1, o2 = prepare_wy_repr(k, v, beta, 32) (o1 * do + o2 * do2).sum().backward() o1, o2 = prepare_wy_repr2(k, v, beta, 32) (o1 * do + o2 * do2).sum().backward() print("Done warmup.") import time torch.cuda.synchronize() start = time.time() for i in range(200): o1, o2 = prepare_wy_repr(k, v, beta, 64) (o1 * do + o2 * do2).sum().backward() torch.cuda.synchronize() print(time.time() - start) torch.cuda.synchronize() start = time.time() for i in range(200): o1, o2 = prepare_wy_repr2(k, v, beta, 64) (o1 * do + o2 * do2).sum().backward() torch.cuda.synchronize() print(time.time() - start)