from abc import ABC, abstractmethod import os import pathlib import copy import re from typing import Dict, Iterable, List, Tuple, Union from utils.log import quick_log from fastapi import HTTPException from pydantic import BaseModel, Field import numpy as np from routes import state_cache END_OF_TEXT = 0 END_OF_LINE_DOUBLE = 535 os.environ["TORCH_EXTENSIONS_DIR"] = f"{pathlib.Path(__file__).parent.parent.resolve()}" class AbstractRWKV(ABC): def __init__(self, model: str, strategy: str, tokens_path: str): from rwkv.model import RWKV as Model # dynamic import to make RWKV_CUDA_ON work from rwkv_pip.utils import PIPELINE filename, _ = os.path.splitext(os.path.basename(model)) self.name = filename self.model = Model(model, strategy) self.pipeline = PIPELINE(self.model, tokens_path) self.model_state = None self.model_tokens = [] self.max_tokens_per_generation = 500 self.temperature = 1 self.top_p = 0.3 self.top_k = 0 self.penalty_alpha_presence = 0 self.penalty_alpha_frequency = 1 @abstractmethod def adjust_occurrence(self, occurrence: Dict, token: int): pass @abstractmethod def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int): pass # Model only saw '\n\n' as [187, 187] before, but the tokenizer outputs [535] for it at the end @abstractmethod def fix_tokens(self, tokens) -> List[int]: pass @abstractmethod def run_rnn( self, _tokens: List[str], newline_adj: int = 0 ) -> Tuple[List[float], int]: pass @abstractmethod def delta_postprocess(self, delta: str) -> str: pass def get_embedding(self, input: str, fast_mode: bool) -> Tuple[List[float], int]: if fast_mode: embedding, token_len = self.__fast_embedding( self.fix_tokens(self.pipeline.encode(input)), None ) else: self.model_state = None self.model_tokens = [] _, token_len = self.run_rnn(self.fix_tokens(self.pipeline.encode(input))) embedding = self.model_state[-11].tolist() embedding = (embedding / np.linalg.norm(embedding)).tolist() return embedding, token_len def __fast_embedding(self, tokens: List[str], state): import torch tokens = [int(x) for x in tokens] token_len = len(tokens) self = self.model with torch.no_grad(): w = self.w args = self.args if state == None: state = [None] * args.n_layer * 5 for i in range( args.n_layer ): # state: 0=att_xx 1=att_aa 2=att_bb 3=att_pp 4=ffn_xx dd = self.strategy[i] dev = dd.device atype = dd.atype state[i * 5 + 0] = torch.zeros( args.n_embd, dtype=atype, requires_grad=False, device=dev ).contiguous() state[i * 5 + 1] = torch.zeros( args.n_embd, dtype=torch.float, requires_grad=False, device=dev ).contiguous() state[i * 5 + 2] = torch.zeros( args.n_embd, dtype=torch.float, requires_grad=False, device=dev ).contiguous() state[i * 5 + 3] = ( torch.zeros( args.n_embd, dtype=torch.float, requires_grad=False, device=dev, ).contiguous() - 1e30 ) state[i * 5 + 4] = torch.zeros( args.n_embd, dtype=atype, requires_grad=False, device=dev ).contiguous() break seq_mode = len(tokens) > 1 x = w["emb.weight"][tokens if seq_mode else tokens[0]] for i in range(args.n_layer): bbb = f"blocks.{i}." att = f"blocks.{i}.att." ffn = f"blocks.{i}.ffn." dd = self.strategy[i] dev = dd.device atype = dd.atype wtype = dd.wtype if seq_mode: if "cuda" in str(dev) and os.environ["RWKV_CUDA_ON"] == "1": ATT = ( self.cuda_att_seq if wtype != torch.uint8 else self.cuda_att_seq_i8 ) else: ATT = self.att_seq if wtype != torch.uint8 else self.att_seq_i8 FFN = self.ffn_seq if wtype != torch.uint8 else self.ffn_seq_i8 else: ATT = self.att_one if wtype != torch.uint8 else self.att_one_i8 FFN = self.ffn_one if wtype != torch.uint8 else self.ffn_one_i8 x = x.to(dtype=atype, device=dev) kw = w[f"{att}key.weight"] vw = w[f"{att}value.weight"] rw = w[f"{att}receptance.weight"] ow = w[f"{att}output.weight"] if dd.stream: kw = kw.to(device=dev, non_blocking=True) vw = vw.to(device=dev, non_blocking=True) rw = rw.to(device=dev, non_blocking=True) ow = ow.to(device=dev, non_blocking=True) kmx = w[f"{att}key.weight_mx"] if wtype == torch.uint8 else x krx = w[f"{att}key.weight_rx"] if wtype == torch.uint8 else x kmy = w[f"{att}key.weight_my"] if wtype == torch.uint8 else x kry = w[f"{att}key.weight_ry"] if wtype == torch.uint8 else x vmx = w[f"{att}value.weight_mx"] if wtype == torch.uint8 else x vrx = w[f"{att}value.weight_rx"] if wtype == torch.uint8 else x vmy = w[f"{att}value.weight_my"] if wtype == torch.uint8 else x vry = w[f"{att}value.weight_ry"] if wtype == torch.uint8 else x rmx = w[f"{att}receptance.weight_mx"] if wtype == torch.uint8 else x rrx = w[f"{att}receptance.weight_rx"] if wtype == torch.uint8 else x rmy = w[f"{att}receptance.weight_my"] if wtype == torch.uint8 else x rry = w[f"{att}receptance.weight_ry"] if wtype == torch.uint8 else x omx = w[f"{att}output.weight_mx"] if wtype == torch.uint8 else x orx = w[f"{att}output.weight_rx"] if wtype == torch.uint8 else x omy = w[f"{att}output.weight_my"] if wtype == torch.uint8 else x ory = w[f"{att}output.weight_ry"] if wtype == torch.uint8 else x ( x, state[i * 5 + 0], state[i * 5 + 1], state[i * 5 + 2], state[i * 5 + 3], ) = ATT( x, state[i * 5 + 0], state[i * 5 + 1], state[i * 5 + 2], state[i * 5 + 3], w[f"{bbb}ln1.weight"], w[f"{bbb}ln1.bias"], w[f"{att}time_mix_k"], w[f"{att}time_mix_v"], w[f"{att}time_mix_r"], w[f"{att}time_decay"], w[f"{att}time_first"], kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory, ) return state[0].tolist(), token_len def generate( self, prompt: str, stop: Union[str, List[str]] = None ) -> Iterable[Tuple[str, str, int, int]]: quick_log(None, None, "Generation Prompt:\n" + prompt) cache = None delta_prompt = prompt try: cache = state_cache.longest_prefix_state( state_cache.LongestPrefixStateBody(prompt=prompt), None ) except HTTPException: pass if cache is None or cache["prompt"] == "": self.model_state = None self.model_tokens = [] else: delta_prompt = prompt[len(cache["prompt"]) :] self.model_state = copy.deepcopy(cache["state"]) self.model_tokens = copy.deepcopy(cache["tokens"]) logits = copy.deepcopy(cache["logits"]) prompt_token_len = 0 if delta_prompt != "": logits, prompt_token_len = self.run_rnn( self.fix_tokens(self.pipeline.encode(delta_prompt)) ) try: state_cache.add_state( state_cache.AddStateBody( prompt=prompt, tokens=self.model_tokens, state=self.model_state, logits=logits, ) ) except HTTPException: pass begin = len(self.model_tokens) out_last = begin occurrence: Dict = {} completion_token_len = 0 response = "" for i in range(self.max_tokens_per_generation): self.adjust_forward_logits(logits, occurrence, i) token = self.pipeline.sample_logits( logits, temperature=self.temperature, top_p=self.top_p, top_k=self.top_k ) if token == END_OF_TEXT: yield response, "", prompt_token_len, completion_token_len break self.adjust_occurrence(occurrence, token) logits, _ = self.run_rnn([token]) completion_token_len = completion_token_len + 1 delta: str = self.delta_postprocess( self.pipeline.decode(self.model_tokens[out_last:]) ) if "\ufffd" not in delta: # avoid utf-8 display issues response += delta if stop is not None: if type(stop) == str: if stop in response: try: state_cache.add_state( state_cache.AddStateBody( prompt=prompt + response, tokens=self.model_tokens, state=self.model_state, logits=logits, ) ) except HTTPException: pass response = response.split(stop)[0] yield response, "", prompt_token_len, completion_token_len break elif type(stop) == list: stop_exist_regex = "|".join(stop) matched = re.search(stop_exist_regex, response) if matched: try: state_cache.add_state( state_cache.AddStateBody( prompt=prompt + response, tokens=self.model_tokens, state=self.model_state, logits=logits, ) ) except HTTPException: pass response = response.split(matched.group())[0] yield response, "", prompt_token_len, completion_token_len break out_last = begin + i + 1 if i == self.max_tokens_per_generation - 1: try: state_cache.add_state( state_cache.AddStateBody( prompt=prompt + response, tokens=self.model_tokens, state=self.model_state, logits=logits, ) ) except HTTPException: pass yield response, delta, prompt_token_len, completion_token_len class TextRWKV(AbstractRWKV): def __init__(self, model: str, strategy: str, tokens_path: str) -> None: super().__init__(model, strategy, tokens_path) self.CHUNK_LEN = 256 self.max_tokens_per_generation = 500 self.temperature = 1 self.top_p = 0.3 self.top_k = 0 self.penalty_alpha_presence = 0 self.penalty_alpha_frequency = 1 self.interface = ":" if "world" in self.name.lower(): self.user = "Question" self.bot = "Answer" self.END_OF_LINE = 11 else: self.user = "Bob" self.bot = "Alice" self.END_OF_LINE = 187 self.AVOID_REPEAT_TOKENS = [] AVOID_REPEAT = ",:?!" for i in AVOID_REPEAT: dd = self.pipeline.encode(i) assert len(dd) == 1 self.AVOID_REPEAT_TOKENS += dd self.__preload() def adjust_occurrence(self, occurrence: Dict, token: int): for xxx in occurrence: occurrence[xxx] *= 0.996 if token not in occurrence: occurrence[token] = 1 else: occurrence[token] += 1 def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int): for n in occurrence: logits[n] -= ( self.penalty_alpha_presence + occurrence[n] * self.penalty_alpha_frequency ) # Model only saw '\n\n' as [187, 187] before, but the tokenizer outputs [535] for it at the end def fix_tokens(self, tokens) -> List[int]: if "world" in self.name.lower(): return tokens if len(tokens) > 0 and tokens[-1] == END_OF_LINE_DOUBLE: tokens = tokens[:-1] + [self.END_OF_LINE, self.END_OF_LINE] return tokens def run_rnn( self, _tokens: List[str], newline_adj: int = 0 ) -> Tuple[List[float], int]: tokens = [int(x) for x in _tokens] token_len = len(tokens) self.model_tokens += tokens while len(tokens) > 0: out, self.model_state = self.model.forward( tokens[: self.CHUNK_LEN], self.model_state ) tokens = tokens[self.CHUNK_LEN :] out[self.END_OF_LINE] += newline_adj # adjust \n probability if self.model_tokens[-1] in self.AVOID_REPEAT_TOKENS: out[self.model_tokens[-1]] = -999999999 return out, token_len def delta_postprocess(self, delta: str) -> str: return delta def __preload(self): interface = self.interface user = self.user bot = self.bot preset_system = ( f""" The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \ {bot} is very intelligent, creative and friendly. \ {bot} is unlikely to disagree with {user}, and {bot} doesn't like to ask {user} questions. \ {bot} likes to tell {user} a lot about herself and her opinions. \ {bot} usually gives {user} kind, helpful and informative advices.\n """ if self.user == "Bob" else f"{user}{interface} hi\n\n{bot}{interface} Hi. " + "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n" ) logits, _ = self.run_rnn(self.fix_tokens(self.pipeline.encode(preset_system))) try: state_cache.add_state( state_cache.AddStateBody( prompt=preset_system, tokens=self.model_tokens, state=self.model_state, logits=logits, ) ) except HTTPException: pass class MusicRWKV(AbstractRWKV): def __init__(self, model: str, strategy: str, tokens_path: str): super().__init__(model, strategy, tokens_path) self.max_tokens_per_generation = 500 self.temperature = 1 self.top_p = 0.8 self.top_k = 8 def adjust_occurrence(self, occurrence: Dict, token: int): for n in occurrence: occurrence[n] *= 0.997 #### decay repetition penalty if token >= 128 or token == 127: occurrence[token] = 1 + (occurrence[token] if token in occurrence else 0) else: occurrence[token] = 0.3 + (occurrence[token] if token in occurrence else 0) def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int): for n in occurrence: logits[n] -= 0 + occurrence[n] * 0.5 logits[0] += (i - 2000) / 500 # try not to be too short or too long logits[127] -= 1 # avoid "t125" def fix_tokens(self, tokens) -> List[int]: return tokens def run_rnn( self, _tokens: List[str], newline_adj: int = 0 ) -> Tuple[List[float], int]: tokens = [int(x) for x in _tokens] token_len = len(tokens) self.model_tokens += tokens out, self.model_state = self.model.forward(tokens, self.model_state) return out, token_len def delta_postprocess(self, delta: str) -> str: return " " + delta class ModelConfigBody(BaseModel): max_tokens: int = Field(default=None, gt=0, le=102400) temperature: float = Field(default=None, ge=0, le=2) top_p: float = Field(default=None, ge=0, le=1) presence_penalty: float = Field(default=None, ge=-2, le=2) frequency_penalty: float = Field(default=None, ge=-2, le=2) class Config: schema_extra = { "example": { "max_tokens": 1000, "temperature": 1.2, "top_p": 0.5, "presence_penalty": 0.4, "frequency_penalty": 0.4, } } def set_rwkv_config(model: AbstractRWKV, body: ModelConfigBody): if body.max_tokens is not None: model.max_tokens_per_generation = body.max_tokens if body.temperature is not None: if body.temperature < 0.1: model.temperature = 0.1 else: model.temperature = body.temperature if body.top_p is not None: model.top_p = body.top_p if body.presence_penalty is not None: model.penalty_alpha_presence = body.presence_penalty if body.frequency_penalty is not None: model.penalty_alpha_frequency = body.frequency_penalty def get_rwkv_config(model: AbstractRWKV) -> ModelConfigBody: return ModelConfigBody( max_tokens=model.max_tokens_per_generation, temperature=model.temperature, top_p=model.top_p, presence_penalty=model.penalty_alpha_presence, frequency_penalty=model.penalty_alpha_frequency, )