########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################

import types, gc, os, time, re
import torch
from torch.nn import functional as F
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
current_path = os.path.dirname(os.path.abspath(__file__))

# https://zhuanlan.zhihu.com/p/612879065
def LoadPreCompileLibrary(file):
    import importlib
    import os

    import torch

    # load the custom_op_library and register the custom ops
    lib_dir = os.path.dirname(__file__)
    if os.name == "nt":
        # Register the main torchvision library location on the default DLL path
        import ctypes
        import sys

        kernel32 = ctypes.WinDLL("kernel32.dll", use_last_error=True)
        with_load_library_flags = hasattr(kernel32, "AddDllDirectory")
        prev_error_mode = kernel32.SetErrorMode(0x0001)

        if with_load_library_flags:
            kernel32.AddDllDirectory.restype = ctypes.c_void_p

        if sys.version_info >= (3, 8):
            os.add_dll_directory(lib_dir)
        elif with_load_library_flags:
            res = kernel32.AddDllDirectory(lib_dir)
            if res is None:
                err = ctypes.WinError(ctypes.get_last_error())
                err.strerror += f' Error adding "{lib_dir}" to the DLL directories.'
                raise ValueError(err)

        kernel32.SetErrorMode(prev_error_mode)

    loader_details = (
        importlib.machinery.ExtensionFileLoader,
        importlib.machinery.EXTENSION_SUFFIXES,
    )

    extfinder = importlib.machinery.FileFinder(lib_dir, loader_details)
    ext_specs = extfinder.find_spec(file)
    if ext_specs is None:
        return False

    try:
        torch.ops.load_library(ext_specs.origin)
    except OSError as exc:
        return False
    return True

########################################################################################################

if os.environ.get('RWKV_JIT_ON') != '0':
    os.environ["RWKV_JIT_ON"] = '1'
    MyModule = torch.jit.ScriptModule
    MyFunction = torch.jit.script_method
    MyStatic = torch.jit.script
else:
    MyModule = torch.nn.Module
    def __nop(ob):
        return ob
    MyFunction = __nop
    MyStatic = __nop

if os.environ.get('RWKV_CUDA_ON') == '1':
    if LoadPreCompileLibrary('wkv_cuda') is False:
        from torch.utils.cpp_extension import load
        load(
            name=f"wkv_cuda",
            sources=[f"{current_path}/cuda/wrapper.cpp", f"{current_path}/cuda/operators.cu"],
            verbose=True,
            extra_cuda_cflags=["-t 4", "-std=c++17", "--use_fast_math", "-O3", "--extra-device-vectorization"],
            is_python_module=False)

    @MyStatic
    def cuda_wkv(T: int, C: int, w, u, k, v, aa, bb, pp):
        assert 1 * C % min(C, 32) == 0
        assert k.dtype == v.dtype == torch.float16 or k.dtype == v.dtype == torch.float32
        assert w.dtype == u.dtype == aa.dtype == bb.dtype == pp.dtype == torch.float32
        w = w.contiguous()
        u = u.contiguous()
        k = k.contiguous()
        v = v.contiguous()
        y = torch.empty((T, C), device=w.device, memory_format=torch.contiguous_format, dtype=k.dtype)
        torch.ops.rwkv.wkv_forward(1, T, C, w, u, k, v, y, aa, bb, pp)
        return y, aa, bb, pp
    @MyStatic
    def cuda_mm8_seq(B: int, N: int, M: int, x, w, mx, rx, my, ry):
        assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
        assert x.dtype == torch.float32 or x.dtype == torch.float16
        assert w.dtype == torch.uint8
        assert x.shape == [B, N]
        assert w.shape == [N, M]
        assert rx.shape == mx.shape == [M]
        assert ry.shape == my.shape == [N, 1]
        y = torch.empty((B, M), device=w.device, dtype=x.dtype)
        torch.ops.rwkv.mm8_seq(B, N, M, x, w, mx, rx, my, ry, y)
        return y
    @MyStatic
    def cuda_mm8_one(N: int, M: int, x, w, mx, rx, my, ry):
        assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype
        assert x.dtype == torch.float32 or x.dtype == torch.float16
        assert w.dtype == torch.uint8
        assert x.shape == [N]
        assert w.shape == [N, M]
        assert rx.shape == mx.shape == [M]
        assert ry.shape == my.shape == [N, 1]
        y = torch.zeros((M,), device=w.device, dtype=torch.float32)
        torch.ops.rwkv.mm8_one(N, M, x, w, mx, rx, my, ry, y)
        return y.to(dtype=x.dtype)
else:
    os.environ["RWKV_CUDA_ON"] = '0'

########################################################################################################

class RWKV(MyModule):
    def __init__(self, model, strategy, verbose = True, convert_and_save_and_exit = None):
        super().__init__()
        if verbose:
            prxxx = lambda *args, **kwargs: print(*args, **kwargs)
        else:
            prxxx = lambda *args, **kwargs: None

        STRATEGY_REGEX = r"^(?:(?:^|->) *(?:cuda(?::[\d]+)?|cpu|mps) (?:fp(?:16|32)|bf16)(?:i8|i4|i3)?(?: \*[\d]+\+?)? *)+$"
        if not re.match(STRATEGY_REGEX, strategy):
            raise ValueError("Invalid strategy. Please read https://pypi.org/project/rwkv/")

        strategy = ('->'.join([x.strip() for x in strategy.split('->')])).replace('->', ' -> ')
        self.args = types.SimpleNamespace()
        args = self.args
        args.MODEL_NAME = model
        args.strategy_string = strategy

        # Rescale for fp16 mode: set x = x/2 every X layer (to avoid fp16 overflow)
        self.RESCALE_LAYER = 6 if 'fp16' in strategy else 0
        prxxx(f'RWKV_JIT_ON {os.environ["RWKV_JIT_ON"]} RWKV_CUDA_ON {os.environ["RWKV_CUDA_ON"]} RESCALE_LAYER {self.RESCALE_LAYER}\n')

        args.MODEL_NAME = args.MODEL_NAME.strip()
        if not args.MODEL_NAME.endswith('.pth'):
            args.MODEL_NAME += '.pth'
        prxxx(f'Loading {args.MODEL_NAME} ...')
        with torch.no_grad():
            self.w = torch.load(args.MODEL_NAME, map_location='cpu') # load model to CPU first
            gc.collect()
            w = self.w

            ALREADY_CONVERTED = False
            if '_strategy' in w:
                ALREADY_CONVERTED = True
                assert convert_and_save_and_exit == None # you should only convert a raw model
                prxxx(f"Converted model: strategy {w['_strategy']}, version {w['_version']}\n")
                assert w['_strategy'] == args.strategy_string # if you are using a new strategy, re-convert the model
                assert float(w['_version']) >= 0.7 # sometimes you should re-convert using latest convert_model.py
                assert w['_rescale_layer'] == self.RESCALE_LAYER
                del w['_strategy']
                del w['_version']
                del w['_rescale_layer']
            
            args.n_embd = w['emb.weight'].shape[1]
            args.n_layer = 0
            keys = list(w.keys())
            for x in keys:
                layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
                args.n_layer = max(args.n_layer, layer_id+1)

            ####################### Compute strategy

            s = [x.strip().split(' ') for x in strategy.split('->')]
            plan = [0] * len(s)
            stream_i = -1
            stream_count = 0
            to_allocate = args.n_layer + 1
            allocated = 0
            free_slots = 0
            for i in range(len(s)):
                si = s[i]
                si1 = si[1]
                if si1.startswith('fp32'): si[1] = [torch.float]
                elif si1.startswith('fp16'): si[1] = [torch.float16]
                elif si1.startswith('bf16'): si[1] = [torch.bfloat16]
                if si1.endswith('i8'): si[1] += [torch.uint8]
                else: si[1] += [si[1][0]]
                if len(si) > 2:
                    ss = si[2]
                    assert ss.startswith('*')
                    if ss.endswith('+'):
                        plan[i] = int(ss[1:-1])
                        stream_i = i
                    else:
                        plan[i] = int(ss[1:])
                    allocated += plan[i]
                    if allocated >= to_allocate:
                        plan[i] += to_allocate - allocated
                        break
                else:
                    free_slots += 1
            if stream_i < 0:
                if free_slots > 0 and to_allocate > allocated:
                    for i in range(len(s)):
                        if plan[i] == 0:
                            plan[i] = (to_allocate - allocated) // free_slots
                            allocated += plan[i]
                            free_slots -= 1
                if to_allocate > allocated:
                    plan[len(s)-1] += to_allocate - allocated
            else:
                if to_allocate > allocated:
                    stream_count = to_allocate - allocated
                    plan[stream_i] += stream_count
            prxxx(f'Strategy: (total {args.n_layer}+1={args.n_layer+1} layers)')
            for i in range(len(s)):
                ss = s[i]
                if i != stream_i:
                    prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]} layers')
                else:
                    prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]-stream_count} layers, stream {stream_count} layers')
                plan[i] += (0 if i == 0 else plan[i-1])
            self.strategy = [None] * (args.n_layer + 1)
            strategy = self.strategy
            for n in range(args.n_layer + 1):
                for i in range(len(s)):
                    if n < plan[i]:
                        strategy[n] = types.SimpleNamespace()
                        strategy[n].device = s[i][0]
                        strategy[n].atype = s[i][1][0]
                        strategy[n].wtype = s[i][1][1]
                        strategy[n].stream = False
                        if i == stream_i and n >= (plan[i] - stream_count):
                            strategy[n].stream = True
                        break
                prxxx(f"{n}-{strategy[n].device}-{str(strategy[n].atype).replace('torch.','')}-{str(strategy[n].wtype).replace('torch.','')}{'-stream' if strategy[n].stream else ''}",end=' ')
            prxxx()

            ####################### Load weights to self.w

            if not ALREADY_CONVERTED:
                try: # precompute embedding
                    w['emb.weight'] = F.layer_norm(w['emb.weight'], (args.n_embd,), weight=w['blocks.0.ln0.weight'], bias=w['blocks.0.ln0.bias'])
                except:
                    w['emb.weight'] = F.layer_norm(w['emb.weight'].float(), (args.n_embd,), weight=w['blocks.0.ln0.weight'].float(), bias=w['blocks.0.ln0.bias'].float())
                del w['blocks.0.ln0.weight']
                del w['blocks.0.ln0.bias']

            print_need_newline = False
            keys = list(w.keys())
            for x in keys:
                w[x].requires_grad = False
                layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0
                if ('ln_out.' in x) or ('head.' in x):
                    layer_id = args.n_layer
                dd = strategy[layer_id]
                DEVICE = dd.device
                ATYPE = dd.atype
                WTYPE = dd.wtype

                if not ALREADY_CONVERTED:
                    if self.RESCALE_LAYER > 0:
                        if 'att.output.weight' in x:
                            w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))
                        if 'ffn.value.weight' in x:
                            w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER))

                    if '.time_' in x:
                        w[x] = w[x].squeeze()
                    if 'key.weight' in x or 'value.weight' in x or 'receptance.weight' in x or 'output.weight' in x or 'head.weight' in x:
                        w[x] = w[x].t()

                    if '.time_decay' in x: # need fp32 for this
                        w[x] = -torch.exp(w[x].float())
                    elif '.time_first' in x: # need fp32 for this
                        w[x] = w[x].float()
                    else:
                        if (len(w[x].shape) == 2) and ('emb' not in x):
                            if WTYPE != torch.uint8:
                                w[x] = w[x].to(dtype=WTYPE)
                            else:
                                w[x] = w[x].float()

                                if w[x].shape[0] > w[x].shape[1]:
                                    w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
                                    w[x] = w[x] - w[x+'_my']
                                    w[x+'_mx'] = torch.amin(w[x], dim=0)
                                    w[x] = w[x] - w[x+'_mx']
                                    w[x+'_rx'] = torch.amax(w[x], dim=0)
                                    w[x] = w[x] / w[x+'_rx']
                                    w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
                                    w[x] = w[x] / w[x+'_ry']
                                else:
                                    w[x+'_mx'] = torch.amin(w[x], dim=0)
                                    w[x] = w[x] - w[x+'_mx']
                                    w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1)
                                    w[x] = w[x] - w[x+'_my']
                                    w[x+'_rx'] = torch.amax(w[x], dim=0)
                                    w[x] = w[x] / w[x+'_rx']
                                    w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1)
                                    w[x] = w[x] / w[x+'_ry']

                                w[x] = torch.clip(torch.floor(w[x] * 256), min=0, max=255).to(dtype=torch.uint8)
                                w[x+'_mx'] = w[x+'_mx'].to(dtype=ATYPE).contiguous()
                                w[x+'_rx'] = (w[x+'_rx'] / 16).to(dtype=ATYPE).contiguous()
                                w[x+'_my'] = w[x+'_my'].to(dtype=ATYPE).contiguous()
                                w[x+'_ry'] = (w[x+'_ry'] / 16).to(dtype=ATYPE).contiguous()
                        else:
                            w[x] = w[x].to(dtype=ATYPE)
                
                if convert_and_save_and_exit == None:
                    if 'emb.' in x:
                        w[x] = w[x].contiguous()
                    elif (dd.stream) and (x.endswith('key.weight') or x.endswith('value.weight') or x.endswith('receptance.weight') or x.endswith('output.weight')):
                        try:
                            w[x] = w[x].contiguous().pin_memory() # if you see "CUDA error: out of memory" here, that's out of CPU RAM, not VRAM. Get more RAM :)
                        except:
                            print('Note: You are running out of RAM. Get more CPU RAM. Now this will run much slower.')
                    elif DEVICE != 'cpu':
                        w[x] = w[x].to(device=DEVICE).contiguous()
                    
                    if (dd.stream) or (DEVICE != 'cpu'):
                        try:
                            w[x+'_mx'] = w[x+'_mx'].to(device=DEVICE).contiguous()
                            w[x+'_rx'] = w[x+'_rx'].to(device=DEVICE).contiguous()
                            w[x+'_my'] = w[x+'_my'].to(device=DEVICE).contiguous()
                            w[x+'_ry'] = w[x+'_ry'].to(device=DEVICE).contiguous()
                        except:
                            pass

                if 'ffn.value.weight' in x:
                    gc.collect()
                    if 'cuda' in args.strategy_string:
                        torch.cuda.empty_cache()

                shape = [i for i in w[x].shape if i != 1]
                if len(shape) > 1:
                    shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)}"
                else:
                    shape = f" {str(shape[0]).rjust(5)}      "
                if layer_id == 0 or layer_id >= args.n_layer-1:
                    if print_need_newline:
                        prxxx('\n', end = '')
                        print_need_newline = False
                    dt = str(w[x].dtype).replace('torch.', '')
                    dt = dt.replace('float32', 'f32').replace('bfloat16', 'bf16').replace('float16', 'f16').replace('uint8', 'i8')
                    prxxx(x.ljust(32), dt.rjust(4), str(w[x].device).rjust(8), shape, ' (pinned)' if w[x].is_pinned() else '')
                else:
                    print_need_newline = True
                    prxxx('.', end = '', flush = True)
            
            if convert_and_save_and_exit:
                w['_strategy'] = args.strategy_string
                w['_rescale_layer'] = self.RESCALE_LAYER
                w['_version'] = '0.7'
                if not convert_and_save_and_exit.endswith('.pth'):
                    convert_and_save_and_exit += '.pth'
                prxxx(f'Saving to {convert_and_save_and_exit}...')
                torch.save(w, convert_and_save_and_exit)
                prxxx(f'Converted and saved. Now this will exit.')
                exit(0)
            
            gc.collect()
            if 'cuda' in args.strategy_string:
                torch.cuda.empty_cache()

    @MyFunction
    def torch_mm8_seq(self, x, w, mx, rx, my, ry):
        return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)

    @MyFunction
    def torch_mm8_one(self, x, w, mx, rx, my, ry):
        return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx)

    if os.environ.get('RWKV_CUDA_ON') == '1':
        @MyFunction
        def mm8_seq(self, x, w, mx, rx, my, ry):
            if w.device.type == 'cuda' and x.dtype == torch.float16:
                B, N, M = x.shape[0], w.shape[0], w.shape[1]
                return cuda_mm8_seq(B, N, M, x, w, mx, rx, my, ry)
            else:
                return self.torch_mm8_seq(x, w, mx, rx, my, ry)
        @MyFunction
        def mm8_one(self, x, w, mx, rx, my, ry):
            if w.device.type == 'cuda':
                N, M = w.shape[0], w.shape[1]
                return cuda_mm8_one(N, M, x, w, mx, rx, my, ry)
            else:
                return self.torch_mm8_one(x, w, mx, rx, my, ry)
    else:
        @MyFunction
        def mm8_seq(self, x, w, mx, rx, my, ry):
            return self.torch_mm8_seq(x, w, mx, rx, my, ry)
        @MyFunction
        def mm8_one(self, x, w, mx, rx, my, ry):
            return self.torch_mm8_one(x, w, mx, rx, my, ry)

    ########################################################################################################

    @MyFunction
    def ffn_one(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
        xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
        kx = xx * k_mix + sx * (1 - k_mix)
        rx = xx * r_mix + sx * (1 - r_mix)

        r = torch.sigmoid(rx @ rw)
        vx = torch.square(torch.relu(kx @ kw))
        out = r * (vx @ vw)
        return x + out, xx

    @MyFunction
    def ffn_one_i8(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
        xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
        kx = xx * k_mix + sx * (1 - k_mix)
        rx = xx * r_mix + sx * (1 - r_mix)

        r = torch.sigmoid(self.mm8_one(rx, rw, rmx, rrx, rmy, rry))
        vx = torch.square(torch.relu(self.mm8_one(kx, kw, kmx, krx, kmy, kry)))
        out = r * (self.mm8_one(vx, vw, vmx, vrx, vmy, vry))
        return x + out, xx
    
    ########################################################################################################

    @MyFunction
    def ffn_seq(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
        xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
        sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
        kx = xx * k_mix + sx * (1 - k_mix)
        rx = xx * r_mix + sx * (1 - r_mix)

        r = torch.sigmoid(rx @ rw)
        vx = torch.square(torch.relu(kx @ kw))
        out = r * (vx @ vw)
        return x + out, xx[-1,:]

    @MyFunction
    def ffn_seq_i8(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry):
        xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
        sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
        kx = xx * k_mix + sx * (1 - k_mix)
        rx = xx * r_mix + sx * (1 - r_mix)

        r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
        vx = torch.square(torch.relu(self.mm8_seq(kx, kw, kmx, krx, kmy, kry)))
        out = r * (self.mm8_seq(vx, vw, vmx, vrx, vmy, vry))
        return x + out, xx[-1,:]

    ########################################################################################################

    @MyFunction
    def att_one(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
        xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
        kx = xx * k_mix + sx * (1 - k_mix)
        vx = xx * v_mix + sx * (1 - v_mix)
        rx = xx * r_mix + sx * (1 - r_mix)

        r = torch.sigmoid(rx @ rw)
        k = (kx @ kw).float()
        v = (vx @ vw).float()

        ww = t_first + k
        p = torch.maximum(pp, ww)
        e1 = torch.exp(pp - p)
        e2 = torch.exp(ww - p)
        wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
        ww = t_decay + pp
        p = torch.maximum(ww, k)
        e1 = torch.exp(ww - p)
        e2 = torch.exp(k - p)

        out = (r * wkv) @ ow
        return x + out, xx, e1 * aa + e2 * v, e1 * bb + e2, p

    @MyFunction
    def att_one_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
        xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
        kx = xx * k_mix + sx * (1 - k_mix)
        vx = xx * v_mix + sx * (1 - v_mix)
        rx = xx * r_mix + sx * (1 - r_mix)

        r = torch.sigmoid(self.mm8_one(rx, rw, rmx, rrx, rmy, rry))
        k = (self.mm8_one(kx, kw, kmx, krx, kmy, kry)).float()
        v = (self.mm8_one(vx, vw, vmx, vrx, vmy, vry)).float()

        ww = t_first + k
        p = torch.maximum(pp, ww)
        e1 = torch.exp(pp - p)
        e2 = torch.exp(ww - p)
        wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
        ww = t_decay + pp
        p = torch.maximum(ww, k)
        e1 = torch.exp(ww - p)
        e2 = torch.exp(k - p)

        out = self.mm8_one(r * wkv, ow, omx, orx, omy, ory)
        return x + out, xx, e1 * aa + e2 * v, e1 * bb + e2, p

    ########################################################################################################

    @MyFunction
    def att_seq(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
        xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
        sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
        kx = xx * k_mix + sx * (1 - k_mix)
        vx = xx * v_mix + sx * (1 - v_mix)
        rx = xx * r_mix + sx * (1 - r_mix)

        r = torch.sigmoid(rx @ rw)
        k = (kx @ kw).float()
        v = (vx @ vw).float()

        T = x.shape[0]
        for t in range(T):
            kk = k[t]
            vv = v[t]
            ww = t_first + kk
            p = torch.maximum(pp, ww)
            e1 = torch.exp(pp - p)
            e2 = torch.exp(ww - p)
            sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
            ww = t_decay + pp
            p = torch.maximum(ww, kk)
            e1 = torch.exp(ww - p)
            e2 = torch.exp(kk - p)
            aa = e1 * aa + e2 * vv
            bb = e1 * bb + e2
            pp = p
        out = (r * sx) @ ow
        return x + out, xx[-1,:], aa, bb, pp

    @MyFunction
    def att_seq_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
        xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
        sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
        kx = xx * k_mix + sx * (1 - k_mix)
        vx = xx * v_mix + sx * (1 - v_mix)
        rx = xx * r_mix + sx * (1 - r_mix)

        r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
        k = self.mm8_seq(kx, kw, kmx, krx, kmy, kry).float()
        v = self.mm8_seq(vx, vw, vmx, vrx, vmy, vry).float()

        T = x.shape[0]
        for t in range(T):
            kk = k[t]
            vv = v[t]
            ww = t_first + kk
            p = torch.maximum(pp, ww)
            e1 = torch.exp(pp - p)
            e2 = torch.exp(ww - p)
            sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
            ww = t_decay + pp
            p = torch.maximum(ww, kk)
            e1 = torch.exp(ww - p)
            e2 = torch.exp(kk - p)
            aa = e1 * aa + e2 * vv
            bb = e1 * bb + e2
            pp = p
        out = self.mm8_seq(r * sx, ow, omx, orx, omy, ory)
        return x + out, xx[-1,:], aa, bb, pp

    ########################################################################################################

    if os.environ["RWKV_CUDA_ON"] == '1':
        @MyFunction
        def cuda_att_seq(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
            T, C = x.size()
            xx = F.layer_norm(x, (C,), weight=ln_w, bias=ln_b)
            sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
            kx = xx * k_mix + sx * (1 - k_mix)
            vx = xx * v_mix + sx * (1 - v_mix)
            rx = xx * r_mix + sx * (1 - r_mix)

            r = torch.sigmoid(rx @ rw)
            k = kx @ kw
            v = vx @ vw
            y, aa, bb, pp = cuda_wkv(T, C, t_decay, t_first, k, v, aa, bb, pp)
            
            out = (r * y) @ ow
            return x + out, xx[-1,:], aa, bb, pp

        @MyFunction
        def cuda_att_seq_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory):
            T, C = x.size()
            xx = F.layer_norm(x, (C,), weight=ln_w, bias=ln_b)
            sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
            kx = xx * k_mix + sx * (1 - k_mix)
            vx = xx * v_mix + sx * (1 - v_mix)
            rx = xx * r_mix + sx * (1 - r_mix)

            r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry))
            k = self.mm8_seq(kx, kw, kmx, krx, kmy, kry)
            v = self.mm8_seq(vx, vw, vmx, vrx, vmy, vry)
            y, aa, bb, pp = cuda_wkv(T, C, t_decay, t_first, k, v, aa, bb, pp)

            out = self.mm8_seq(r * y, ow, omx, orx, omy, ory)
            return x + out, xx[-1,:], aa, bb, pp

    ########################################################################################################

    def forward(self, tokens, state, full_output=False):
        with torch.no_grad():
            w = self.w
            args = self.args

            if state == None:
                state = [None] * args.n_layer * 5
                for i in range(args.n_layer): # state: 0=att_xx 1=att_aa 2=att_bb 3=att_pp 4=ffn_xx
                    dd = self.strategy[i]
                    dev = dd.device
                    atype = dd.atype
                    state[i*5+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()
                    state[i*5+1] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous()
                    state[i*5+2] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous()
                    state[i*5+3] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous() - 1e30
                    state[i*5+4] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous()

            seq_mode = len(tokens) > 1

            x = w['emb.weight'][tokens if seq_mode else tokens[0]]

            for i in range(args.n_layer):
                bbb = f'blocks.{i}.'
                att = f'blocks.{i}.att.'
                ffn = f'blocks.{i}.ffn.'
                dd = self.strategy[i]
                dev = dd.device
                atype = dd.atype
                wtype = dd.wtype
                if seq_mode:
                    if 'cuda' in str(dev) and os.environ["RWKV_CUDA_ON"] == '1':
                        ATT = self.cuda_att_seq if wtype != torch.uint8 else self.cuda_att_seq_i8
                    else:
                        ATT = self.att_seq if wtype != torch.uint8 else self.att_seq_i8
                    FFN = self.ffn_seq if wtype != torch.uint8 else self.ffn_seq_i8
                else:
                    ATT = self.att_one if wtype != torch.uint8 else self.att_one_i8
                    FFN = self.ffn_one if wtype != torch.uint8 else self.ffn_one_i8

                x = x.to(dtype=atype, device=dev)

                kw = w[f'{att}key.weight']
                vw = w[f'{att}value.weight']
                rw = w[f'{att}receptance.weight']
                ow = w[f'{att}output.weight']
                if dd.stream:
                    kw = kw.to(device=dev, non_blocking=True)
                    vw = vw.to(device=dev, non_blocking=True)
                    rw = rw.to(device=dev, non_blocking=True)
                    ow = ow.to(device=dev, non_blocking=True)
                kmx = w[f'{att}key.weight_mx'] if wtype == torch.uint8 else x
                krx = w[f'{att}key.weight_rx'] if wtype == torch.uint8 else x
                kmy = w[f'{att}key.weight_my'] if wtype == torch.uint8 else x
                kry = w[f'{att}key.weight_ry'] if wtype == torch.uint8 else x
                vmx = w[f'{att}value.weight_mx'] if wtype == torch.uint8 else x
                vrx = w[f'{att}value.weight_rx'] if wtype == torch.uint8 else x
                vmy = w[f'{att}value.weight_my'] if wtype == torch.uint8 else x
                vry = w[f'{att}value.weight_ry'] if wtype == torch.uint8 else x
                rmx = w[f'{att}receptance.weight_mx'] if wtype == torch.uint8 else x
                rrx = w[f'{att}receptance.weight_rx'] if wtype == torch.uint8 else x
                rmy = w[f'{att}receptance.weight_my'] if wtype == torch.uint8 else x
                rry = w[f'{att}receptance.weight_ry'] if wtype == torch.uint8 else x
                omx = w[f'{att}output.weight_mx'] if wtype == torch.uint8 else x
                orx = w[f'{att}output.weight_rx'] if wtype == torch.uint8 else x
                omy = w[f'{att}output.weight_my'] if wtype == torch.uint8 else x
                ory = w[f'{att}output.weight_ry'] if wtype == torch.uint8 else x
                x, state[i*5+0], state[i*5+1], state[i*5+2], state[i*5+3] = ATT(
                    x, state[i*5+0], state[i*5+1], state[i*5+2], state[i*5+3],
                    w[f'{bbb}ln1.weight'], w[f'{bbb}ln1.bias'],
                    w[f'{att}time_mix_k'], w[f'{att}time_mix_v'], w[f'{att}time_mix_r'],
                    w[f'{att}time_decay'], w[f'{att}time_first'],
                    kw, vw, rw, ow,
                    kmx, krx, kmy, kry,
                    vmx, vrx, vmy, vry,
                    rmx, rrx, rmy, rry,
                    omx, orx, omy, ory,
                    )
                if dd.stream:
                    del kw, vw, rw, ow

                kw = w[f'{ffn}key.weight']
                vw = w[f'{ffn}value.weight']
                rw = w[f'{ffn}receptance.weight']
                if dd.stream:
                    kw = kw.to(device=dev, non_blocking=True)
                    vw = vw.to(device=dev, non_blocking=True)
                    rw = rw.to(device=dev, non_blocking=True)
                kmx = w[f'{ffn}key.weight_mx'] if wtype == torch.uint8 else x
                krx = w[f'{ffn}key.weight_rx'] if wtype == torch.uint8 else x
                kmy = w[f'{ffn}key.weight_my'] if wtype == torch.uint8 else x
                kry = w[f'{ffn}key.weight_ry'] if wtype == torch.uint8 else x
                vmx = w[f'{ffn}value.weight_mx'] if wtype == torch.uint8 else x
                vrx = w[f'{ffn}value.weight_rx'] if wtype == torch.uint8 else x
                vmy = w[f'{ffn}value.weight_my'] if wtype == torch.uint8 else x
                vry = w[f'{ffn}value.weight_ry'] if wtype == torch.uint8 else x
                rmx = w[f'{ffn}receptance.weight_mx'] if wtype == torch.uint8 else x
                rrx = w[f'{ffn}receptance.weight_rx'] if wtype == torch.uint8 else x
                rmy = w[f'{ffn}receptance.weight_my'] if wtype == torch.uint8 else x
                rry = w[f'{ffn}receptance.weight_ry'] if wtype == torch.uint8 else x                    
                x, state[i*5+4] = FFN(
                    x, state[i*5+4],
                    w[f'{bbb}ln2.weight'], w[f'{bbb}ln2.bias'],
                    w[f'{ffn}time_mix_k'], w[f'{ffn}time_mix_r'],
                    kw, vw, rw,
                    kmx, krx, kmy, kry,
                    vmx, vrx, vmy, vry,
                    rmx, rrx, rmy, rry,                    
                    )
                if dd.stream:                
                    del kw, vw, rw
                
                if self.RESCALE_LAYER > 0:
                    if (i+1) % self.RESCALE_LAYER == 0:
                        x = x / 2
            
            dd = self.strategy[args.n_layer]
            x = x[-1,:] if (seq_mode and (not full_output)) else x
            x = x.to(dtype=dd.atype, device=dd.device)
            
            x = F.layer_norm(x, (args.n_embd,), weight=w['ln_out.weight'], bias=w['ln_out.bias'])
            if w['head.weight'].dtype != torch.uint8:
                x = x @ w['head.weight']
            else:
                if seq_mode and full_output:
                    x = self.mm8_seq(x, w['head.weight'], w['head.weight_mx'], w['head.weight_rx'], w['head.weight_my'], w['head.weight_ry'])
                else:
                    x = self.mm8_one(x, w['head.weight'], w['head.weight_mx'], w['head.weight_rx'], w['head.weight_my'], w['head.weight_ry'])

            return x.float(), state