######################################################################################################## # The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM ######################################################################################################## import types, gc, os, time, re import torch from torch.nn import functional as F torch.backends.cudnn.benchmark = True torch.backends.cudnn.allow_tf32 = True torch.backends.cuda.matmul.allow_tf32 = True current_path = os.path.dirname(os.path.abspath(__file__)) # https://zhuanlan.zhihu.com/p/612879065 def LoadPreCompileLibrary(file): import importlib import os import torch # load the custom_op_library and register the custom ops lib_dir = os.path.dirname(__file__) if os.name == "nt": # Register the main torchvision library location on the default DLL path import ctypes import sys kernel32 = ctypes.WinDLL("kernel32.dll", use_last_error=True) with_load_library_flags = hasattr(kernel32, "AddDllDirectory") prev_error_mode = kernel32.SetErrorMode(0x0001) if with_load_library_flags: kernel32.AddDllDirectory.restype = ctypes.c_void_p if sys.version_info >= (3, 8): os.add_dll_directory(lib_dir) elif with_load_library_flags: res = kernel32.AddDllDirectory(lib_dir) if res is None: err = ctypes.WinError(ctypes.get_last_error()) err.strerror += f' Error adding "{lib_dir}" to the DLL directories.' raise ValueError(err) kernel32.SetErrorMode(prev_error_mode) loader_details = ( importlib.machinery.ExtensionFileLoader, importlib.machinery.EXTENSION_SUFFIXES, ) extfinder = importlib.machinery.FileFinder(lib_dir, loader_details) ext_specs = extfinder.find_spec(file) if ext_specs is None: return False try: torch.ops.load_library(ext_specs.origin) except OSError as exc: return False return True ######################################################################################################## if os.environ.get('RWKV_JIT_ON') != '0': os.environ["RWKV_JIT_ON"] = '1' MyModule = torch.jit.ScriptModule MyFunction = torch.jit.script_method MyStatic = torch.jit.script else: MyModule = torch.nn.Module def __nop(ob): return ob MyFunction = __nop MyStatic = __nop if os.environ.get('RWKV_CUDA_ON') == '1': if LoadPreCompileLibrary('wkv_cuda') is False: from torch.utils.cpp_extension import load load( name=f"wkv_cuda", sources=[f"{current_path}/cuda/wrapper.cpp", f"{current_path}/cuda/operators.cu"], verbose=True, extra_cuda_cflags=["-t 4", "-std=c++17", "--use_fast_math", "-O3", "--extra-device-vectorization"], is_python_module=False) @MyStatic def cuda_wkv(T: int, C: int, w, u, k, v, aa, bb, pp): assert 1 * C % min(C, 32) == 0 assert k.dtype == v.dtype == torch.float16 or k.dtype == v.dtype == torch.float32 assert w.dtype == u.dtype == aa.dtype == bb.dtype == pp.dtype == torch.float32 w = w.contiguous() u = u.contiguous() k = k.contiguous() v = v.contiguous() y = torch.empty((T, C), device=w.device, memory_format=torch.contiguous_format, dtype=k.dtype) torch.ops.rwkv.wkv_forward(1, T, C, w, u, k, v, y, aa, bb, pp) return y, aa, bb, pp @MyStatic def cuda_mm8_seq(B: int, N: int, M: int, x, w, mx, rx, my, ry): assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype assert x.dtype == torch.float32 or x.dtype == torch.float16 assert w.dtype == torch.uint8 assert x.shape == [B, N] assert w.shape == [N, M] assert rx.shape == mx.shape == [M] assert ry.shape == my.shape == [N, 1] y = torch.empty((B, M), device=w.device, dtype=x.dtype) torch.ops.rwkv.mm8_seq(B, N, M, x, w, mx, rx, my, ry, y) return y @MyStatic def cuda_mm8_one(N: int, M: int, x, w, mx, rx, my, ry): assert x.dtype == mx.dtype == rx.dtype == my.dtype == ry.dtype assert x.dtype == torch.float32 or x.dtype == torch.float16 assert w.dtype == torch.uint8 assert x.shape == [N] assert w.shape == [N, M] assert rx.shape == mx.shape == [M] assert ry.shape == my.shape == [N, 1] y = torch.zeros((M,), device=w.device, dtype=torch.float32) torch.ops.rwkv.mm8_one(N, M, x, w, mx, rx, my, ry, y) return y.to(dtype=x.dtype) else: os.environ["RWKV_CUDA_ON"] = '0' ######################################################################################################## class RWKV(MyModule): def __init__(self, model, strategy, verbose = True, convert_and_save_and_exit = None): super().__init__() if verbose: prxxx = lambda *args, **kwargs: print(*args, **kwargs) else: prxxx = lambda *args, **kwargs: None STRATEGY_REGEX = r"^(?:(?:^|->) *(?:cuda(?::[\d]+)?|cpu|mps) (?:fp(?:16|32)|bf16)(?:i8|i4|i3)?(?: \*[\d]+\+?)? *)+$" if not re.match(STRATEGY_REGEX, strategy): raise ValueError("Invalid strategy. Please read https://pypi.org/project/rwkv/") strategy = ('->'.join([x.strip() for x in strategy.split('->')])).replace('->', ' -> ') self.args = types.SimpleNamespace() args = self.args args.MODEL_NAME = model args.strategy_string = strategy # Rescale for fp16 mode: set x = x/2 every X layer (to avoid fp16 overflow) self.RESCALE_LAYER = 6 if 'fp16' in strategy else 0 prxxx(f'RWKV_JIT_ON {os.environ["RWKV_JIT_ON"]} RWKV_CUDA_ON {os.environ["RWKV_CUDA_ON"]} RESCALE_LAYER {self.RESCALE_LAYER}\n') args.MODEL_NAME = args.MODEL_NAME.strip() if not args.MODEL_NAME.endswith('.pth'): args.MODEL_NAME += '.pth' prxxx(f'Loading {args.MODEL_NAME} ...') with torch.no_grad(): self.w = torch.load(args.MODEL_NAME, map_location='cpu') # load model to CPU first gc.collect() w = self.w ALREADY_CONVERTED = False if '_strategy' in w: ALREADY_CONVERTED = True assert convert_and_save_and_exit == None # you should only convert a raw model prxxx(f"Converted model: strategy {w['_strategy']}, version {w['_version']}\n") assert w['_strategy'] == args.strategy_string # if you are using a new strategy, re-convert the model assert float(w['_version']) >= 0.7 # sometimes you should re-convert using latest convert_model.py assert w['_rescale_layer'] == self.RESCALE_LAYER del w['_strategy'] del w['_version'] del w['_rescale_layer'] args.n_embd = w['emb.weight'].shape[1] args.n_layer = 0 keys = list(w.keys()) for x in keys: layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0 args.n_layer = max(args.n_layer, layer_id+1) ####################### Compute strategy s = [x.strip().split(' ') for x in strategy.split('->')] plan = [0] * len(s) stream_i = -1 stream_count = 0 to_allocate = args.n_layer + 1 allocated = 0 free_slots = 0 for i in range(len(s)): si = s[i] si1 = si[1] if si1.startswith('fp32'): si[1] = [torch.float] elif si1.startswith('fp16'): si[1] = [torch.float16] elif si1.startswith('bf16'): si[1] = [torch.bfloat16] if si1.endswith('i8'): si[1] += [torch.uint8] else: si[1] += [si[1][0]] if len(si) > 2: ss = si[2] assert ss.startswith('*') if ss.endswith('+'): plan[i] = int(ss[1:-1]) stream_i = i else: plan[i] = int(ss[1:]) allocated += plan[i] if allocated >= to_allocate: plan[i] += to_allocate - allocated break else: free_slots += 1 if stream_i < 0: if free_slots > 0 and to_allocate > allocated: for i in range(len(s)): if plan[i] == 0: plan[i] = (to_allocate - allocated) // free_slots allocated += plan[i] free_slots -= 1 if to_allocate > allocated: plan[len(s)-1] += to_allocate - allocated else: if to_allocate > allocated: stream_count = to_allocate - allocated plan[stream_i] += stream_count prxxx(f'Strategy: (total {args.n_layer}+1={args.n_layer+1} layers)') for i in range(len(s)): ss = s[i] if i != stream_i: prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]} layers') else: prxxx(f'* {ss[0]} {str(ss[1]).replace("torch.","")}, store {plan[i]-stream_count} layers, stream {stream_count} layers') plan[i] += (0 if i == 0 else plan[i-1]) self.strategy = [None] * (args.n_layer + 1) strategy = self.strategy for n in range(args.n_layer + 1): for i in range(len(s)): if n < plan[i]: strategy[n] = types.SimpleNamespace() strategy[n].device = s[i][0] strategy[n].atype = s[i][1][0] strategy[n].wtype = s[i][1][1] strategy[n].stream = False if i == stream_i and n >= (plan[i] - stream_count): strategy[n].stream = True break prxxx(f"{n}-{strategy[n].device}-{str(strategy[n].atype).replace('torch.','')}-{str(strategy[n].wtype).replace('torch.','')}{'-stream' if strategy[n].stream else ''}",end=' ') prxxx() ####################### Load weights to self.w if not ALREADY_CONVERTED: try: # precompute embedding w['emb.weight'] = F.layer_norm(w['emb.weight'], (args.n_embd,), weight=w['blocks.0.ln0.weight'], bias=w['blocks.0.ln0.bias']) except: w['emb.weight'] = F.layer_norm(w['emb.weight'].float(), (args.n_embd,), weight=w['blocks.0.ln0.weight'].float(), bias=w['blocks.0.ln0.bias'].float()) del w['blocks.0.ln0.weight'] del w['blocks.0.ln0.bias'] print_need_newline = False keys = list(w.keys()) for x in keys: w[x].requires_grad = False layer_id = int(x.split('.')[1]) if ('blocks.' in x) else 0 if ('ln_out.' in x) or ('head.' in x): layer_id = args.n_layer dd = strategy[layer_id] DEVICE = dd.device ATYPE = dd.atype WTYPE = dd.wtype if not ALREADY_CONVERTED: if self.RESCALE_LAYER > 0: if 'att.output.weight' in x: w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER)) if 'ffn.value.weight' in x: w[x] = w[x] / (2 ** int(layer_id // self.RESCALE_LAYER)) if '.time_' in x: w[x] = w[x].squeeze() if 'key.weight' in x or 'value.weight' in x or 'receptance.weight' in x or 'output.weight' in x or 'head.weight' in x: w[x] = w[x].t() if '.time_decay' in x: # need fp32 for this w[x] = -torch.exp(w[x].float()) elif '.time_first' in x: # need fp32 for this w[x] = w[x].float() else: if (len(w[x].shape) == 2) and ('emb' not in x): if WTYPE != torch.uint8: w[x] = w[x].to(dtype=WTYPE) else: w[x] = w[x].float() if w[x].shape[0] > w[x].shape[1]: w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1) w[x] = w[x] - w[x+'_my'] w[x+'_mx'] = torch.amin(w[x], dim=0) w[x] = w[x] - w[x+'_mx'] w[x+'_rx'] = torch.amax(w[x], dim=0) w[x] = w[x] / w[x+'_rx'] w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1) w[x] = w[x] / w[x+'_ry'] else: w[x+'_mx'] = torch.amin(w[x], dim=0) w[x] = w[x] - w[x+'_mx'] w[x+'_my'] = torch.amin(w[x], dim=1).unsqueeze(1) w[x] = w[x] - w[x+'_my'] w[x+'_rx'] = torch.amax(w[x], dim=0) w[x] = w[x] / w[x+'_rx'] w[x+'_ry'] = torch.amax(w[x], dim=1).unsqueeze(1) w[x] = w[x] / w[x+'_ry'] w[x] = torch.clip(torch.floor(w[x] * 256), min=0, max=255).to(dtype=torch.uint8) w[x+'_mx'] = w[x+'_mx'].to(dtype=ATYPE).contiguous() w[x+'_rx'] = (w[x+'_rx'] / 16).to(dtype=ATYPE).contiguous() w[x+'_my'] = w[x+'_my'].to(dtype=ATYPE).contiguous() w[x+'_ry'] = (w[x+'_ry'] / 16).to(dtype=ATYPE).contiguous() else: w[x] = w[x].to(dtype=ATYPE) if convert_and_save_and_exit == None: if 'emb.' in x: w[x] = w[x].contiguous() elif (dd.stream) and (x.endswith('key.weight') or x.endswith('value.weight') or x.endswith('receptance.weight') or x.endswith('output.weight')): try: w[x] = w[x].contiguous().pin_memory() # if you see "CUDA error: out of memory" here, that's out of CPU RAM, not VRAM. Get more RAM :) except: print('Note: You are running out of RAM. Get more CPU RAM. Now this will run much slower.') elif DEVICE != 'cpu': w[x] = w[x].to(device=DEVICE).contiguous() if (dd.stream) or (DEVICE != 'cpu'): try: w[x+'_mx'] = w[x+'_mx'].to(device=DEVICE).contiguous() w[x+'_rx'] = w[x+'_rx'].to(device=DEVICE).contiguous() w[x+'_my'] = w[x+'_my'].to(device=DEVICE).contiguous() w[x+'_ry'] = w[x+'_ry'].to(device=DEVICE).contiguous() except: pass if 'ffn.value.weight' in x: gc.collect() if 'cuda' in args.strategy_string: torch.cuda.empty_cache() shape = [i for i in w[x].shape if i != 1] if len(shape) > 1: shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)}" else: shape = f" {str(shape[0]).rjust(5)} " if layer_id == 0 or layer_id >= args.n_layer-1: if print_need_newline: prxxx('\n', end = '') print_need_newline = False dt = str(w[x].dtype).replace('torch.', '') dt = dt.replace('float32', 'f32').replace('bfloat16', 'bf16').replace('float16', 'f16').replace('uint8', 'i8') prxxx(x.ljust(32), dt.rjust(4), str(w[x].device).rjust(8), shape, ' (pinned)' if w[x].is_pinned() else '') else: print_need_newline = True prxxx('.', end = '', flush = True) if convert_and_save_and_exit: w['_strategy'] = args.strategy_string w['_rescale_layer'] = self.RESCALE_LAYER w['_version'] = '0.7' if not convert_and_save_and_exit.endswith('.pth'): convert_and_save_and_exit += '.pth' prxxx(f'Saving to {convert_and_save_and_exit}...') torch.save(w, convert_and_save_and_exit) prxxx(f'Converted and saved. Now this will exit.') exit(0) gc.collect() if 'cuda' in args.strategy_string: torch.cuda.empty_cache() @MyFunction def torch_mm8_seq(self, x, w, mx, rx, my, ry): return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx) @MyFunction def torch_mm8_one(self, x, w, mx, rx, my, ry): return x @ ((w.to(dtype=x.dtype) + 0.5) * ry * rx + my + mx) if os.environ.get('RWKV_CUDA_ON') == '1': @MyFunction def mm8_seq(self, x, w, mx, rx, my, ry): if w.device.type == 'cuda' and x.dtype == torch.float16: B, N, M = x.shape[0], w.shape[0], w.shape[1] return cuda_mm8_seq(B, N, M, x, w, mx, rx, my, ry) else: return self.torch_mm8_seq(x, w, mx, rx, my, ry) @MyFunction def mm8_one(self, x, w, mx, rx, my, ry): if w.device.type == 'cuda': N, M = w.shape[0], w.shape[1] return cuda_mm8_one(N, M, x, w, mx, rx, my, ry) else: return self.torch_mm8_one(x, w, mx, rx, my, ry) else: @MyFunction def mm8_seq(self, x, w, mx, rx, my, ry): return self.torch_mm8_seq(x, w, mx, rx, my, ry) @MyFunction def mm8_one(self, x, w, mx, rx, my, ry): return self.torch_mm8_one(x, w, mx, rx, my, ry) ######################################################################################################## @MyFunction def ffn_one(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry): xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b) kx = xx * k_mix + sx * (1 - k_mix) rx = xx * r_mix + sx * (1 - r_mix) r = torch.sigmoid(rx @ rw) vx = torch.square(torch.relu(kx @ kw)) out = r * (vx @ vw) return x + out, xx @MyFunction def ffn_one_i8(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry): xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b) kx = xx * k_mix + sx * (1 - k_mix) rx = xx * r_mix + sx * (1 - r_mix) r = torch.sigmoid(self.mm8_one(rx, rw, rmx, rrx, rmy, rry)) vx = torch.square(torch.relu(self.mm8_one(kx, kw, kmx, krx, kmy, kry))) out = r * (self.mm8_one(vx, vw, vmx, vrx, vmy, vry)) return x + out, xx ######################################################################################################## @MyFunction def ffn_seq(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry): xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b) sx = torch.cat((sx.unsqueeze(0), xx[:-1,:])) kx = xx * k_mix + sx * (1 - k_mix) rx = xx * r_mix + sx * (1 - r_mix) r = torch.sigmoid(rx @ rw) vx = torch.square(torch.relu(kx @ kw)) out = r * (vx @ vw) return x + out, xx[-1,:] @MyFunction def ffn_seq_i8(self, x, sx, ln_w, ln_b, k_mix, r_mix, kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry): xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b) sx = torch.cat((sx.unsqueeze(0), xx[:-1,:])) kx = xx * k_mix + sx * (1 - k_mix) rx = xx * r_mix + sx * (1 - r_mix) r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry)) vx = torch.square(torch.relu(self.mm8_seq(kx, kw, kmx, krx, kmy, kry))) out = r * (self.mm8_seq(vx, vw, vmx, vrx, vmy, vry)) return x + out, xx[-1,:] ######################################################################################################## @MyFunction def att_one(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory): xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b) kx = xx * k_mix + sx * (1 - k_mix) vx = xx * v_mix + sx * (1 - v_mix) rx = xx * r_mix + sx * (1 - r_mix) r = torch.sigmoid(rx @ rw) k = (kx @ kw).float() v = (vx @ vw).float() ww = t_first + k p = torch.maximum(pp, ww) e1 = torch.exp(pp - p) e2 = torch.exp(ww - p) wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype) ww = t_decay + pp p = torch.maximum(ww, k) e1 = torch.exp(ww - p) e2 = torch.exp(k - p) out = (r * wkv) @ ow return x + out, xx, e1 * aa + e2 * v, e1 * bb + e2, p @MyFunction def att_one_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory): xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b) kx = xx * k_mix + sx * (1 - k_mix) vx = xx * v_mix + sx * (1 - v_mix) rx = xx * r_mix + sx * (1 - r_mix) r = torch.sigmoid(self.mm8_one(rx, rw, rmx, rrx, rmy, rry)) k = (self.mm8_one(kx, kw, kmx, krx, kmy, kry)).float() v = (self.mm8_one(vx, vw, vmx, vrx, vmy, vry)).float() ww = t_first + k p = torch.maximum(pp, ww) e1 = torch.exp(pp - p) e2 = torch.exp(ww - p) wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype) ww = t_decay + pp p = torch.maximum(ww, k) e1 = torch.exp(ww - p) e2 = torch.exp(k - p) out = self.mm8_one(r * wkv, ow, omx, orx, omy, ory) return x + out, xx, e1 * aa + e2 * v, e1 * bb + e2, p ######################################################################################################## @MyFunction def att_seq(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory): xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b) sx = torch.cat((sx.unsqueeze(0), xx[:-1,:])) kx = xx * k_mix + sx * (1 - k_mix) vx = xx * v_mix + sx * (1 - v_mix) rx = xx * r_mix + sx * (1 - r_mix) r = torch.sigmoid(rx @ rw) k = (kx @ kw).float() v = (vx @ vw).float() T = x.shape[0] for t in range(T): kk = k[t] vv = v[t] ww = t_first + kk p = torch.maximum(pp, ww) e1 = torch.exp(pp - p) e2 = torch.exp(ww - p) sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype) ww = t_decay + pp p = torch.maximum(ww, kk) e1 = torch.exp(ww - p) e2 = torch.exp(kk - p) aa = e1 * aa + e2 * vv bb = e1 * bb + e2 pp = p out = (r * sx) @ ow return x + out, xx[-1,:], aa, bb, pp @MyFunction def att_seq_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory): xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b) sx = torch.cat((sx.unsqueeze(0), xx[:-1,:])) kx = xx * k_mix + sx * (1 - k_mix) vx = xx * v_mix + sx * (1 - v_mix) rx = xx * r_mix + sx * (1 - r_mix) r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry)) k = self.mm8_seq(kx, kw, kmx, krx, kmy, kry).float() v = self.mm8_seq(vx, vw, vmx, vrx, vmy, vry).float() T = x.shape[0] for t in range(T): kk = k[t] vv = v[t] ww = t_first + kk p = torch.maximum(pp, ww) e1 = torch.exp(pp - p) e2 = torch.exp(ww - p) sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype) ww = t_decay + pp p = torch.maximum(ww, kk) e1 = torch.exp(ww - p) e2 = torch.exp(kk - p) aa = e1 * aa + e2 * vv bb = e1 * bb + e2 pp = p out = self.mm8_seq(r * sx, ow, omx, orx, omy, ory) return x + out, xx[-1,:], aa, bb, pp ######################################################################################################## if os.environ["RWKV_CUDA_ON"] == '1': @MyFunction def cuda_att_seq(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory): T, C = x.size() xx = F.layer_norm(x, (C,), weight=ln_w, bias=ln_b) sx = torch.cat((sx.unsqueeze(0), xx[:-1,:])) kx = xx * k_mix + sx * (1 - k_mix) vx = xx * v_mix + sx * (1 - v_mix) rx = xx * r_mix + sx * (1 - r_mix) r = torch.sigmoid(rx @ rw) k = kx @ kw v = vx @ vw y, aa, bb, pp = cuda_wkv(T, C, t_decay, t_first, k, v, aa, bb, pp) out = (r * y) @ ow return x + out, xx[-1,:], aa, bb, pp @MyFunction def cuda_att_seq_i8(self, x, sx, aa, bb, pp, ln_w, ln_b, k_mix, v_mix, r_mix, t_decay, t_first, kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory): T, C = x.size() xx = F.layer_norm(x, (C,), weight=ln_w, bias=ln_b) sx = torch.cat((sx.unsqueeze(0), xx[:-1,:])) kx = xx * k_mix + sx * (1 - k_mix) vx = xx * v_mix + sx * (1 - v_mix) rx = xx * r_mix + sx * (1 - r_mix) r = torch.sigmoid(self.mm8_seq(rx, rw, rmx, rrx, rmy, rry)) k = self.mm8_seq(kx, kw, kmx, krx, kmy, kry) v = self.mm8_seq(vx, vw, vmx, vrx, vmy, vry) y, aa, bb, pp = cuda_wkv(T, C, t_decay, t_first, k, v, aa, bb, pp) out = self.mm8_seq(r * y, ow, omx, orx, omy, ory) return x + out, xx[-1,:], aa, bb, pp ######################################################################################################## def forward(self, tokens, state, full_output=False): with torch.no_grad(): w = self.w args = self.args if state == None: state = [None] * args.n_layer * 5 for i in range(args.n_layer): # state: 0=att_xx 1=att_aa 2=att_bb 3=att_pp 4=ffn_xx dd = self.strategy[i] dev = dd.device atype = dd.atype state[i*5+0] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous() state[i*5+1] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous() state[i*5+2] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous() state[i*5+3] = torch.zeros(args.n_embd, dtype=torch.float, requires_grad=False, device=dev).contiguous() - 1e30 state[i*5+4] = torch.zeros(args.n_embd, dtype=atype, requires_grad=False, device=dev).contiguous() seq_mode = len(tokens) > 1 x = w['emb.weight'][tokens if seq_mode else tokens[0]] for i in range(args.n_layer): bbb = f'blocks.{i}.' att = f'blocks.{i}.att.' ffn = f'blocks.{i}.ffn.' dd = self.strategy[i] dev = dd.device atype = dd.atype wtype = dd.wtype if seq_mode: if 'cuda' in str(dev) and os.environ["RWKV_CUDA_ON"] == '1': ATT = self.cuda_att_seq if wtype != torch.uint8 else self.cuda_att_seq_i8 else: ATT = self.att_seq if wtype != torch.uint8 else self.att_seq_i8 FFN = self.ffn_seq if wtype != torch.uint8 else self.ffn_seq_i8 else: ATT = self.att_one if wtype != torch.uint8 else self.att_one_i8 FFN = self.ffn_one if wtype != torch.uint8 else self.ffn_one_i8 x = x.to(dtype=atype, device=dev) kw = w[f'{att}key.weight'] vw = w[f'{att}value.weight'] rw = w[f'{att}receptance.weight'] ow = w[f'{att}output.weight'] if dd.stream: kw = kw.to(device=dev, non_blocking=True) vw = vw.to(device=dev, non_blocking=True) rw = rw.to(device=dev, non_blocking=True) ow = ow.to(device=dev, non_blocking=True) kmx = w[f'{att}key.weight_mx'] if wtype == torch.uint8 else x krx = w[f'{att}key.weight_rx'] if wtype == torch.uint8 else x kmy = w[f'{att}key.weight_my'] if wtype == torch.uint8 else x kry = w[f'{att}key.weight_ry'] if wtype == torch.uint8 else x vmx = w[f'{att}value.weight_mx'] if wtype == torch.uint8 else x vrx = w[f'{att}value.weight_rx'] if wtype == torch.uint8 else x vmy = w[f'{att}value.weight_my'] if wtype == torch.uint8 else x vry = w[f'{att}value.weight_ry'] if wtype == torch.uint8 else x rmx = w[f'{att}receptance.weight_mx'] if wtype == torch.uint8 else x rrx = w[f'{att}receptance.weight_rx'] if wtype == torch.uint8 else x rmy = w[f'{att}receptance.weight_my'] if wtype == torch.uint8 else x rry = w[f'{att}receptance.weight_ry'] if wtype == torch.uint8 else x omx = w[f'{att}output.weight_mx'] if wtype == torch.uint8 else x orx = w[f'{att}output.weight_rx'] if wtype == torch.uint8 else x omy = w[f'{att}output.weight_my'] if wtype == torch.uint8 else x ory = w[f'{att}output.weight_ry'] if wtype == torch.uint8 else x x, state[i*5+0], state[i*5+1], state[i*5+2], state[i*5+3] = ATT( x, state[i*5+0], state[i*5+1], state[i*5+2], state[i*5+3], w[f'{bbb}ln1.weight'], w[f'{bbb}ln1.bias'], w[f'{att}time_mix_k'], w[f'{att}time_mix_v'], w[f'{att}time_mix_r'], w[f'{att}time_decay'], w[f'{att}time_first'], kw, vw, rw, ow, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, omx, orx, omy, ory, ) if dd.stream: del kw, vw, rw, ow kw = w[f'{ffn}key.weight'] vw = w[f'{ffn}value.weight'] rw = w[f'{ffn}receptance.weight'] if dd.stream: kw = kw.to(device=dev, non_blocking=True) vw = vw.to(device=dev, non_blocking=True) rw = rw.to(device=dev, non_blocking=True) kmx = w[f'{ffn}key.weight_mx'] if wtype == torch.uint8 else x krx = w[f'{ffn}key.weight_rx'] if wtype == torch.uint8 else x kmy = w[f'{ffn}key.weight_my'] if wtype == torch.uint8 else x kry = w[f'{ffn}key.weight_ry'] if wtype == torch.uint8 else x vmx = w[f'{ffn}value.weight_mx'] if wtype == torch.uint8 else x vrx = w[f'{ffn}value.weight_rx'] if wtype == torch.uint8 else x vmy = w[f'{ffn}value.weight_my'] if wtype == torch.uint8 else x vry = w[f'{ffn}value.weight_ry'] if wtype == torch.uint8 else x rmx = w[f'{ffn}receptance.weight_mx'] if wtype == torch.uint8 else x rrx = w[f'{ffn}receptance.weight_rx'] if wtype == torch.uint8 else x rmy = w[f'{ffn}receptance.weight_my'] if wtype == torch.uint8 else x rry = w[f'{ffn}receptance.weight_ry'] if wtype == torch.uint8 else x x, state[i*5+4] = FFN( x, state[i*5+4], w[f'{bbb}ln2.weight'], w[f'{bbb}ln2.bias'], w[f'{ffn}time_mix_k'], w[f'{ffn}time_mix_r'], kw, vw, rw, kmx, krx, kmy, kry, vmx, vrx, vmy, vry, rmx, rrx, rmy, rry, ) if dd.stream: del kw, vw, rw if self.RESCALE_LAYER > 0: if (i+1) % self.RESCALE_LAYER == 0: x = x / 2 dd = self.strategy[args.n_layer] x = x[-1,:] if (seq_mode and (not full_output)) else x x = x.to(dtype=dd.atype, device=dd.device) x = F.layer_norm(x, (args.n_embd,), weight=w['ln_out.weight'], bias=w['ln_out.bias']) if w['head.weight'].dtype != torch.uint8: x = x @ w['head.weight'] else: if seq_mode and full_output: x = self.mm8_seq(x, w['head.weight'], w['head.weight_mx'], w['head.weight_rx'], w['head.weight_my'], w['head.weight_ry']) else: x = self.mm8_one(x, w['head.weight'], w['head.weight_mx'], w['head.weight_rx'], w['head.weight_my'], w['head.weight_ry']) return x.float(), state