# -*- coding: utf-8 -*- import torch import triton import triton.language as tl from torch.cuda.amp import custom_bwd, custom_fwd from fla.utils import contiguous # on-the-fly computation without materializing hidden statets into HBMs @triton.jit def fused_chunk_based_fwd_kernel( # B: batch_size, H: n_heads, T: seq_len, D: d_head q, # query [B, H, L, D_head_K] k, # key [B, H, L, D_head_V] v, # value [B, H, L, D_head_V] o, # output [B, H, L, D_head_V] z, # normalizer [B, H, L, 1] s_qk_h, # stride size: L * D_head_K s_qk_t, # stride size: D_head_K s_qk_d, # stride size: 1 s_vo_h, # stride size: L * D_head_V s_vo_t, # stride size: D_head_V s_vo_d, # stride size: 1 B, # batch size H, # n_heads T, # seq_len scale, # D_head_K ** -0.5 BT: tl.constexpr, # BLOCK SIZE along the sequence dimension, a.k.a. chunk size BK: tl.constexpr, # BLOCK SIZE along the K dimension BV: tl.constexpr, # BLOCK SIZE along the V dimension DK: tl.constexpr, # D_head_K DV: tl.constexpr, # D_head_V ): # indices i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) o_i = tl.arange(0, BT) # [BT, BT] m_s = o_i[:, None] >= o_i[None, :] # [BV], zero-order taylor expansion b_h_0o = tl.zeros([BV], dtype=tl.float32) # [BK, BV], first-order taylor expansion b_h_1o = tl.zeros([BK, BV], dtype=tl.float32) # [BK, BK, BV] second-order taylor expansion b_h_2o = tl.zeros([BK*BK, BV], dtype=tl.float32) # make block pointers p_q = tl.make_block_ptr(q + i_bh * s_qk_h, (T, DK), (s_qk_t, s_qk_d), (0, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr(k + i_bh * s_qk_h, (DK, T), (s_qk_d, s_qk_t), (i_k * BK, 0), (BK, BT), (0, 1)) p_v = tl.make_block_ptr(v + i_bh * s_vo_h, (T, DV), (s_vo_t, s_vo_d), (0, i_v * BV), (BT, BV), (1, 0)) p_o = tl.make_block_ptr(o + (i_bh + i_k*B*H) * s_vo_h, (T, DV), (s_vo_t, s_vo_d), (0, i_v * BV), (BT, BV), (1, 0)) p_z = z + (i_bh + i_k * B * H) * T + tl.arange(0, BT) k_2o = tl.zeros([1, BK * BK], dtype=tl.float32) k_1o = tl.zeros([1, BK], dtype=tl.float32) k_0o = 0 for i in range(0, tl.cdiv(T, BT)): # [BK, BT] b_k = tl.load(p_k, boundary_check=(0, 1)) # [BK*BK, BT] b_k_2o = b_k[:, None, :] * b_k[None, :, :] b_k_2o = tl.reshape(b_k_2o, [BK * BK, BT]).to(b_k.dtype) # [BT, BV] b_v = tl.load(p_v, boundary_check=(0, 1)) # [BT, BK] b_q = (tl.load(p_q, boundary_check=(0, 1)) * scale).to(b_k.dtype) b_o = tl.zeros([BT, BV], dtype=tl.float32) b_z = tl.zeros([BT], dtype=tl.float32) # interchunk # zero-order b_o += b_h_0o b_z += k_0o # first-order b_o += tl.dot(b_q, b_h_1o.to(b_q.dtype), allow_tf32=False) b_z += tl.sum(b_q * k_1o, axis=1) # second-order b_q_2o = b_q[:, :, None] * b_q[:, None, :] b_q_2o = tl.reshape(b_q_2o, [BT, BK * BK]).to(b_k.dtype) b_o += tl.dot(b_q_2o, b_h_2o.to(b_q_2o.dtype), allow_tf32=False) * 0.5 b_z += tl.sum(b_q_2o * k_2o, axis=1) * 0.5 # update running statistics k_1o += tl.sum(b_k, axis=1)[None, :] k_2o += tl.sum(b_k_2o, axis=1)[None, :] k_0o += BT # intrachunk # [BT, BT] b_s = tl.dot(b_q, b_k, allow_tf32=False) b_s = 1 + b_s + 0.5 * b_s * b_s b_s = tl.where(m_s, b_s, 0) b_z += tl.sum(b_s, axis=1) b_o += tl.dot(b_s.to(b_q.dtype), b_v, allow_tf32=False) # [TB, BV] tl.store(p_o, b_o.to(p_o.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_z, b_z.to(p_z.dtype.element_ty), mask=(i * BT + tl.arange(0, BT)) < T) # update hidden state # [BK, BV] b_h_2o = b_h_2o + tl.dot(b_k_2o.to(b_v.dtype), b_v, allow_tf32=False) b_h_1o = b_h_1o + tl.dot(b_k, b_v, allow_tf32=False) b_h_0o = b_h_0o + tl.sum(b_v, axis=0) p_q = tl.advance(p_q, (BT, 0)) p_k = tl.advance(p_k, (0, BT)) p_v = tl.advance(p_v, (BT, 0)) p_o = tl.advance(p_o, (BT, 0)) p_z += BT # Similar to Algorithm1 of https://arxiv.org/abs/2006.16236 @triton.jit def fused_chunk_based_bwd_kernel( # B: batch_size, H: n_heads, T: seq_len, D: d_head # NV: number of split in the V dimension. NK: number of split in the K dimension q, # query [B, H, L, D_head_K] k, # key [B, H, L, D_head_V] v, # value [B, H, L, D_head_V] do, # gradient of output [B, H, L, D_head_V] dz, # gradient of normalizer [B, H, L] dq, # gradient of query [NV, B, H, L, D_head_K] dk, # gradient of key [NV, B, H, L, D_head_K] dv, # gradient of value [NK, B, H, L, D_head_V] s_qk_h, # stride size: L * D_head_K s_qk_t, # stride size: D_head_K s_qk_d, # stride size: 1 s_vo_h, # stride size: L * D_head_V s_vo_t, # stride size: D_head_V s_vo_d, # stride size: 1 B, # batch_size H, # n_heads T, # seq_len scale, # D_head_K ** -0.5 BT: tl.constexpr, # BLOCK SIZE along the sequence dimension, a.k.a. chunk size BK: tl.constexpr, # BLOCK SIZE along the K dimension BV: tl.constexpr, # BLOCK SIZE along the V dimension DK: tl.constexpr, # D_head_K DV: tl.constexpr, # D_head_V ): i_v, i_k, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2) o_i = tl.arange(0, BT) m_s = o_i[:, None] >= o_i[None, :] # [BV], zero-order taylor expansion # b_h_0o = tl.zeros([BV], dtype=tl.float32) # [BK, BV], first-order taylor expansion b_h_1o = tl.zeros([BV, BK], dtype=tl.float32) # [BK, BK, BV] second-order taylor expansion b_h_2o = tl.zeros([BV, BK*BK], dtype=tl.float32) k_1o = tl.zeros([1, BK], dtype=tl.float32) k_2o = tl.zeros([1, BK * BK], dtype=tl.float32) for i in range(0, tl.cdiv(T, BT)): p_q = tl.make_block_ptr( q + i_bh * s_qk_h, (T, DK), (s_qk_t, s_qk_d), (i * BT, i_k * BK), (BT, BK), (1, 0)) p_k = tl.make_block_ptr( k + i_bh * s_qk_h, (T, DK), (s_qk_t, s_qk_d), (i * BT, i_k * BK), (BT, BK), (1, 0)) p_v = tl.make_block_ptr( v + i_bh * s_vo_h, (DV, T), (s_vo_d, s_vo_t), (i_v * BV, i * BT), (BV, BT), (0, 1)) p_do = tl.make_block_ptr( do + i_bh * s_vo_h, (T, DV), (s_vo_t, s_vo_d), (i * BT, i_v * BV), (BT, BV), (1, 0)) p_dq = tl.make_block_ptr(dq + (i_bh + i_v*B*H) * s_qk_h, (T, DK), (s_qk_t, s_qk_d), (i*BT, i_k*BK), (BT, BK), (1, 0)) p_dz = dz + (i_bh) * T + tl.arange(0, BT) + i * BT b_dq = tl.zeros([BT, BK], dtype=tl.float32) # load tensors # [BT, BK] b_dz = tl.load(p_dz, mask=(tl.arange(0, BT) + i * BT) < T) b_q = tl.load(p_q, boundary_check=(0, 1)) b_q = (b_q * scale).to(b_q.dtype) b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype) b_k = tl.load(p_k, boundary_check=(0, 1)) # [BV, BT] b_v = tl.load(p_v, boundary_check=(0, 1)) # inter-chunk b_dq += tl.dot(b_do, (b_h_1o).to(b_do.dtype), allow_tf32=False) if i_v == 0: b_dq += b_dz[:, None] * k_1o b_dq_2o = tl.dot(b_do, (b_h_2o).to(b_do.dtype), allow_tf32=False) * 0.5 if i_v == 0: b_dq_2o += (b_dz[:, None] * k_2o) * 0.5 b_dq_2o = tl.reshape(b_dq_2o, [BT, BK, BK]) b_dq += tl.sum(b_dq_2o * b_q[:, :, None], axis=1) b_dq += tl.sum(b_dq_2o * b_q[:, None, :], axis=2) b_dq *= scale # intra-chunk # [BT, BT] b_ds = tl.dot(b_do, b_v, allow_tf32=False) if i_v == 0: b_ds += b_dz[:, None] b_ds = tl.where(m_s, b_ds, 0) * scale b_s = tl.dot(b_q, tl.trans(b_k), allow_tf32=False) b_s = tl.where(m_s, b_s, 0) b_dq += tl.dot((b_ds * (1 + b_s)).to(b_q.dtype), b_k, allow_tf32=False) # store tl.store(p_dq, b_dq.to(p_dq.dtype.element_ty), boundary_check=(0, 1)) # update hidden state # [BT, BK*BK] b_k_2o = b_k[:, :, None] * b_k[:, None, :] b_k_2o = tl.reshape(b_k_2o, [BT, BK * BK]).to(b_k.dtype) # [BV, BK*BK] b_h_2o = b_h_2o + tl.dot(b_v, b_k_2o.to(b_v.dtype), allow_tf32=False) # [BV, BK] b_h_1o = b_h_1o + tl.dot(b_v, b_k, allow_tf32=False) if i_v == 0: # update running statistics k_1o += tl.sum(b_k, axis=0)[None, :] k_2o += tl.sum(b_k_2o, axis=0)[None, :] tl.debug_barrier() b_h_1o = None b_h_2o = None # [BK, BV], first-order taylor expansion b_dh_1o = tl.zeros([BK, BV], dtype=tl.float32) # [BK, BK, BV] second-order taylor expansion b_dh_2o = tl.zeros([BK*BK, BV], dtype=tl.float32) b_dh_0o = tl.zeros([BV], dtype=tl.float32) m_s = tl.arange(0, BT)[:, None] <= tl.arange(0, BT)[None, :] dq_1o = tl.zeros([1, BK], dtype=tl.float32) dq_2o = tl.zeros([BK * BK, 1], dtype=tl.float32) for i in range(tl.cdiv(T, BT) * BT - BT, -BT, -BT): p_q = tl.make_block_ptr( q + i_bh * s_qk_h, (DK, T), (s_qk_d, s_qk_t), (i_k * BK, i), (BK, BT), (0, 1)) p_k = tl.make_block_ptr( k + i_bh * s_qk_h, (T, DK), (s_qk_t, s_qk_d), (i, i_k * BK), (BT, BK), (1, 0)) p_v = tl.make_block_ptr( v + i_bh * s_vo_h, (T, DV), (s_vo_t, s_vo_d), (i, i_v * BV), (BT, BV), (1, 0)) p_do = tl.make_block_ptr( do + i_bh * s_vo_h, (T, DV), (s_vo_t, s_vo_d), (i, i_v * BV), (BT, BV), (1, 0)) p_dk = tl.make_block_ptr(dk + (i_bh+i_v*B*H) * s_qk_h, (T, DK), (s_qk_t, s_qk_d), (i, i_k*BK), (BT, BK), (1, 0)) p_dv = tl.make_block_ptr(dv + (i_bh+i_k*B*H) * s_vo_h, (T, DV), (s_vo_t, s_vo_d), (i, i_v*BV), (BT, BV), (1, 0)) p_dz = dz + (i_bh) * T + tl.arange(0, BT) + i b_dk = tl.zeros([BT, BK], dtype=tl.float32) b_dv = tl.zeros([BT, BV], dtype=tl.float32) b_dz = tl.load(p_dz, mask=(tl.arange(0, BT)+i) < T) b_q = tl.load(p_q, boundary_check=(0, 1)) b_k = tl.load(p_k, boundary_check=(0, 1)) b_v = tl.load(p_v, boundary_check=(0, 1)) b_do = tl.load(p_do, boundary_check=(0, 1)).to(b_q.dtype) b_q = (b_q * scale).to(b_k.dtype) # intra chunk b_ds = tl.dot(b_v, tl.trans(b_do), allow_tf32=False) if i_v == 0: b_ds += b_dz[None, :] b_ds = tl.where(m_s, b_ds, 0) b_s = tl.dot(b_k, b_q, allow_tf32=False) b_s2 = 1 + b_s + 0.5 * b_s * b_s b_s = tl.where(m_s, b_s, 0) b_s2 = tl.where(m_s, b_s2, 0) b_ds *= (1+b_s) b_dk += tl.dot(b_ds.to(b_k.dtype), tl.trans(b_q), allow_tf32=False) b_dv += tl.dot(b_s2.to(b_do.dtype), b_do, allow_tf32=False) # inter chunk b_k_2o = b_k[:, :, None] * b_k[:, None, :] b_k_2o = tl.reshape(b_k_2o, [BT, BK * BK]).to(b_k.dtype) b_dv += tl.dot(b_k, b_dh_1o.to(b_k.dtype), allow_tf32=False) b_dv += tl.dot(b_k_2o, b_dh_2o.to(b_k.dtype), allow_tf32=False) b_dv += b_dh_0o b_dk += tl.dot(b_v, tl.trans(b_dh_1o).to(b_k.dtype), allow_tf32=False) if i_v == 0: b_dk += dq_1o b_dk_2o = tl.dot(b_dh_2o.to(b_k.dtype), tl.trans(b_v), allow_tf32=False) if i_v == 0: b_dk_2o += dq_2o b_dk_2o = tl.reshape(b_dk_2o, [BK, BK, BT]) b_k_fp32 = tl.trans(b_k.to(tl.float32)) b_dk2 = tl.sum(b_dk_2o * b_k_fp32[:, None, :], axis=0) b_dk2 += tl.sum(b_dk_2o * b_k_fp32[None, :, :], axis=1) b_dk += tl.trans(b_dk2) # hidden state update b_dh_0o += tl.sum(b_do, axis=0) b_dh_1o = b_dh_1o + tl.dot(b_q, b_do, allow_tf32=False) b_q_2o = b_q[None, :, :] * b_q[:, None, :] b_q_2o = tl.reshape(b_q_2o, [BK * BK, BT]).to(b_k.dtype) b_dh_2o = b_dh_2o + tl.dot(b_q_2o, b_do, allow_tf32=False) * 0.5 if i_v == 0: dq_1o += (tl.sum(b_dz[None, :] * b_q, axis=1))[None, :] dq_2o += (tl.sum(b_dz[None, :] * b_q_2o, axis=1) * 0.5)[:, None] tl.store(p_dk, b_dk.to(p_dk.dtype.element_ty), boundary_check=(0, 1)) tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1)) class FusedChunkBasedFunction(torch.autograd.Function): @staticmethod @contiguous @custom_fwd def forward(ctx, q, k, v, scale=1): batch_size, n_heads, seq_len, d_head_qk = q.shape # assert d_head_qk == 16, "currently we do not support feature dim other than 16" d_head_v = v.shape[-1] scale = scale BT = 16 BK, BV = min(d_head_qk, 16), min(d_head_v, 32) BK, BV = max(BK, 16), max(BV, 16) NK, NV = triton.cdiv(d_head_qk, BK), triton.cdiv(d_head_v, BV) num_warps = 4 # the norm of o might explode, so we need to use float32 here o = q.new_empty(NK, batch_size, n_heads, seq_len, d_head_v, dtype=torch.float32) z = q.new_empty(NK, batch_size, n_heads, seq_len, dtype=torch.float32) grid = (NV, NK, batch_size * n_heads) fused_chunk_based_fwd_kernel[grid]( q, k, v, o, z, q.stride(1), q.stride(2), q.stride(3), v.stride(1), v.stride(2), v.stride(3), batch_size, n_heads, seq_len, scale, BT=BT, DK=d_head_qk, DV=d_head_v, BK=BK, BV=BV, num_warps=num_warps, ) o = o.sum(0) z = z.sum(0) ctx.save_for_backward(q, k, v) ctx.scale = scale return o.to(q.dtype), z.to(z.dtype) @staticmethod @contiguous @custom_bwd def backward(ctx, do, dz): q, k, v = ctx.saved_tensors batch_size, n_heads, seq_len, d_head_qk = q.shape d_head_v = v.shape[-1] scale = ctx.scale BT = 16 BK, BV = min(d_head_qk, 16), min(d_head_v, 32) BK, BV = max(BK, 16), max(BV, 16) NK, NV = triton.cdiv(d_head_qk, BK), triton.cdiv(d_head_v, BV) num_stages = 1 num_warps = 4 dq = q.new_empty(NV, batch_size, n_heads, seq_len, d_head_qk) dk = q.new_empty(NV, batch_size, n_heads, seq_len, d_head_qk) dv = q.new_empty(NK, batch_size, n_heads, seq_len, d_head_v) grid = (NV, NK, batch_size * n_heads) fused_chunk_based_bwd_kernel[grid]( q, k, v, do, dz, dq, dk, dv, q.stride(1), q.stride(2), q.stride(3), v.stride(1), v.stride(2), v.stride(3), batch_size, n_heads, seq_len, scale, BT=BT, DK=d_head_qk, DV=d_head_v, BK=BK, BV=BV, num_warps=num_warps, num_stages=num_stages ) dq = dq.sum(0) dk = dk.sum(0) dv = dv.sum(0) return dq.to(q.dtype), dk.to(k.dtype), dv.to(v.dtype), None triton_fused_chunk_based = FusedChunkBasedFunction.apply def fused_chunk_based(q, k, v, use_scale=True, use_normalize=True): assert q.shape[-1] <= 16, 'only support feature dimension up to 16.' if use_scale: scale = q.shape[-1] ** -0.5 else: scale = 1 o, z = triton_fused_chunk_based(q, k, v, scale) if use_normalize: o = o / (z[..., None] + 1e-6) else: o = o return o.to(q.dtype)