Compare commits

...

164 Commits

Author SHA1 Message Date
8ad19e115c update penalty_decay 2024-06-14 23:45:34 +08:00
250752c620 fix: new OpenAi api 2024-06-12 21:46:14 +08:00
josc146
5e5f21f90e update readme img 2024-05-30 10:07:57 +08:00
github-actions[bot]
017190ccee release v1.8.4 2024-05-29 08:35:25 +00:00
josc146
c485502cb5 release v1.8.4 2024-05-29 16:34:56 +08:00
josc146
e9136d120c fix f05a4a, __init__.py is not embedded 2024-05-29 16:32:52 +08:00
github-actions[bot]
f88cd90ef3 release v1.8.3 2024-05-28 15:06:40 +00:00
josc146
b52be94d76 release v1.8.3 2024-05-28 23:06:13 +08:00
josc146
ed3c55ce9a chore 2024-05-28 22:56:38 +08:00
Beeno Tung
9ff29cd391
fix tsc error, resolve ts-ignore with type-safe version code (#339)
* patch: fix tsc error

* chore: resolve ts-ignore with type-safe version code
2024-05-28 22:49:56 +08:00
josc146
54f358c51c improve default LoRA fine-tune params 2024-05-28 22:45:01 +08:00
josc146
f05a4acb04 sync https://github.com/JL-er/RWKV-PEFT 2024-05-28 22:35:47 +08:00
josc146
3488d22d22 bump webgpu(python) (https://github.com/cryscan/web-rwkv-py) 2024-05-28 21:27:10 +08:00
josc146
6b4381ee77 fix #342, #345: cannot import name 'packaging' from 'pkg_resources' 2024-05-28 21:21:45 +08:00
josc146
1b3aa629da small fix 2024-05-28 21:19:26 +08:00
josc146
79476f66a6 deprecate rwkv-beta 2024-05-28 21:15:47 +08:00
github-actions[bot]
ef4b82a91d release v1.8.2 2024-05-16 05:54:52 +00:00
josc146
58d81f095c release v1.8.2 2024-05-16 13:54:18 +08:00
josc146
d66fd89947 improve dynamic state api 2024-05-16 13:50:48 +08:00
josc146
b24a18cd3a fix a tps error 2024-05-16 13:48:06 +08:00
github-actions[bot]
e1c12202aa release v1.8.1 2024-05-12 15:39:02 +00:00
josc146
bfbf43f45c release v1.8.1 2024-05-12 23:38:21 +08:00
josc146
cc8b22f0fb set the wails version of workflow to v2.8.0 2024-05-12 21:58:56 +08:00
josc146
a2bbbabee2 add support for dynamic state-tuned models 2024-05-12 21:51:24 +08:00
josc146
b52873cb37 revert 4f92366e 2024-05-10 22:16:24 +08:00
josc146
00d82154dc improve 2a55c825 2024-05-10 22:01:09 +08:00
josc146
440b70eb15 disable pre_ffn and head_qk 2024-05-10 16:41:26 +08:00
josc146
2a55c8256d add torch cnMirror 2024-05-10 16:37:31 +08:00
josc146
2ddcd17d23 add tps console output 2024-05-10 16:19:21 +08:00
josc146
14461930ab improve frontend details 2024-05-10 15:38:21 +08:00
josc146
79eff01b33 RWKV-x060-World-7B-v2.1-20240507-ctx4096.pth 2024-05-08 23:28:02 +08:00
josc146
b19ea95f88 chore(deps): bump jossef/action-set-json-field from 2.1 to 2.2 2024-05-08 23:27:57 +08:00
dependabot[bot]
4f92366ea5 chore(deps): bump pdfjs-dist from 4.0.189 to 4.2.67 in /frontend
Bumps [pdfjs-dist](https://github.com/mozilla/pdfjs-dist) from 4.0.189 to 4.2.67.
- [Commits](https://github.com/mozilla/pdfjs-dist/commits)

---
updated-dependencies:
- dependency-name: pdfjs-dist
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-05-08 21:35:34 +08:00
github-actions[bot]
235b587789 release v1.8.0 2024-05-03 05:14:28 +00:00
josc146
c6a4a71cf1 release v1.8.0 2024-05-03 13:13:17 +08:00
josc146
150bb089cf update state-tuned safetensors converter 2024-05-03 13:10:49 +08:00
josc146
5c8a637cf5 fix remote customApiUrl 2024-05-02 14:48:16 +08:00
github-actions[bot]
6c7b40a9c1 release v1.7.9 2024-04-30 15:06:21 +00:00
josc146
d075d6377e release v1.7.9 2024-04-30 23:05:51 +08:00
josc146
ae1d01bd0c update manifest.json 2024-04-30 22:39:06 +08:00
josc146
aae7cfe1a2 change the default value of presystem to false 2024-04-30 22:30:06 +08:00
josc146
38b33a7030 upgrade to rwkv 0.8.26 (state instruct align support) 2024-04-30 22:24:22 +08:00
josc146
70236df3d1 update defaultModelConfigs 2024-04-30 21:58:16 +08:00
josc146
40c5368deb chore 2024-04-30 21:55:24 +08:00
josc146
2d853f92b9 small fix 2024-04-30 21:52:47 +08:00
josc146
2a0ad19bc5 update manifest.json 2024-04-19 13:07:12 +08:00
github-actions[bot]
5deb115625 release v1.7.8 2024-04-03 06:56:57 +00:00
josc146
7f329702ad release v1.7.8 2024-04-03 14:56:07 +08:00
josc146
ff6240d798 chore 2024-04-03 14:54:02 +08:00
josc146
f6614ff4dc update manifest.json 2024-03-30 13:57:54 +08:00
github-actions[bot]
8633134de7 release v1.7.7 2024-03-27 02:20:53 +00:00
josc146
b24be3baec release v1.7.7 2024-03-27 10:20:27 +08:00
josc146
2818700182 avoid program lag caused by frequent triggering of read/write operations due to Linux file system notification 2024-03-27 10:19:35 +08:00
josc146
5f637dc4c7 improve styles 2024-03-27 00:05:17 +08:00
github-actions[bot]
b7aba9c8de release v1.7.6 2024-03-26 15:00:59 +00:00
josc146
e4d440404a release v1.7.6 2024-03-26 23:00:25 +08:00
josc146
e332224c24 update readme 2024-03-26 22:25:30 +08:00
josc146
288724adef proxied fetch 2024-03-26 22:25:24 +08:00
josc146
a15c4bdf63 better compatibility for custom api (ollama etc.) 2024-03-26 21:33:30 +08:00
josc146
253568ef29 improve error messages 2024-03-26 21:29:21 +08:00
josc146
0ab248c478 throttling saveConfigs 2024-03-26 21:27:26 +08:00
josc146
3cef51144f improve DialogButton 2024-03-26 21:25:13 +08:00
josc146
08bc342fd6 proxied fetch support 2024-03-26 21:23:09 +08:00
josc146
c2799c9494 add additional finish conditions to provide better ollama support 2024-03-26 15:02:27 +08:00
josc146
d6b536ace9 improve preset editor 2024-03-26 13:43:27 +08:00
josc146
edf55843e4 bump @fluentui/react-components to fix a dialog bug 2024-03-26 11:16:37 +08:00
josc146
d0ab9c7ec4 add system role support for preset 2024-03-25 16:08:29 +08:00
josc146
16f2201d9f new chat template for /chat/completions (better system support) 2024-03-25 12:52:40 +08:00
josc146
a93610e574 add rwkv version field 2024-03-24 22:29:28 +08:00
josc146
1d5d012ce4 chore 2024-03-24 22:25:02 +08:00
josc146
0e4b6cbd15 make gate and out trainable (834aea0f54) 2024-03-24 15:47:17 +08:00
github-actions[bot]
2f777f1286 release v1.7.5 2024-03-14 05:34:35 +00:00
josc146
d2f56631ee release v1.7.5 2024-03-14 13:34:07 +08:00
josc146
c5077f4ebc fix v6 lora (c03cdbbdaf) 2024-03-14 12:25:09 +08:00
josc146
acf5d02104 update global_penalty desc 2024-03-14 12:24:45 +08:00
github-actions[bot]
bf58841f00 release v1.7.4 2024-03-13 13:38:34 +00:00
josc146
e625e1f783 release v1.7.4 2024-03-13 21:37:58 +08:00
josc146
4bed070556 latex support 2024-03-13 21:37:48 +08:00
josc146
5692579f56 for Chinese users, replace Tsinghua pip mirrors with Alibaba Cloud to avoid 403 http error 2024-03-13 21:37:35 +08:00
josc146
333619839a rwkv6 lora finetune support (https://github.com/JL-er/RWKV-LORA) 2024-03-13 17:51:53 +08:00
josc146
c6024520af improve usability 2024-03-13 16:42:26 +08:00
josc146
cd40261de6 improve theme 2024-03-13 15:36:13 +08:00
josc146
3a637a973c improve markdown rendering 2024-03-13 15:36:02 +08:00
github-actions[bot]
7fbcb5e810 release v1.7.3 2024-03-11 11:08:54 +00:00
josc146
2604d3c47b release v1.7.3 2024-03-11 19:07:08 +08:00
josc146
bb1a6191b0 prevent 'torch' has no attribute 'cuda' error in torch_gc, so user can use CPU or WebGPU (#302) 2024-03-11 19:04:19 +08:00
josc146
dd89041f72 dep_check.py now ignores GPUtil 2024-03-11 18:55:37 +08:00
josc146
91eb72e515 fix the issue where penalty_decay and global_penalty are not being passed to the backend default config when running the model through client 2024-03-11 18:52:35 +08:00
josc146
1c7436c34b fix max_tokens parameter of Chat page not being passed to backend 2024-03-11 18:52:33 +08:00
Steven Hangger
8678f376e9 fix(rwkv.cpp): add build step for librwkv.so 2024-03-07 23:51:32 +09:00
Steven Hangger
050154f406 feat(docker): add Docker support 2024-03-07 23:51:32 +09:00
dependabot[bot]
b3eae8bcfa chore(deps): bump crazy-max/ghaction-chocolatey from 2 to 3
Bumps [crazy-max/ghaction-chocolatey](https://github.com/crazy-max/ghaction-chocolatey) from 2 to 3.
- [Release notes](https://github.com/crazy-max/ghaction-chocolatey/releases)
- [Commits](https://github.com/crazy-max/ghaction-chocolatey/compare/v2...v3)

---
updated-dependencies:
- dependency-name: crazy-max/ghaction-chocolatey
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-05 13:54:36 +09:00
dependabot[bot]
c720362886 chore(deps): bump actions/setup-go from 4 to 5
Bumps [actions/setup-go](https://github.com/actions/setup-go) from 4 to 5.
- [Release notes](https://github.com/actions/setup-go/releases)
- [Commits](https://github.com/actions/setup-go/compare/v4...v5)

---
updated-dependencies:
- dependency-name: actions/setup-go
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-05 13:53:10 +09:00
dependabot[bot]
93029d3f5c chore(deps): bump actions/checkout from 3 to 4
Bumps [actions/checkout](https://github.com/actions/checkout) from 3 to 4.
- [Release notes](https://github.com/actions/checkout/releases)
- [Changelog](https://github.com/actions/checkout/blob/main/CHANGELOG.md)
- [Commits](https://github.com/actions/checkout/compare/v3...v4)

---
updated-dependencies:
- dependency-name: actions/checkout
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-05 13:53:05 +09:00
dependabot[bot]
28244a57b4 chore(deps): bump actions/setup-python from 4 to 5
Bumps [actions/setup-python](https://github.com/actions/setup-python) from 4 to 5.
- [Release notes](https://github.com/actions/setup-python/releases)
- [Commits](https://github.com/actions/setup-python/compare/v4...v5)

---
updated-dependencies:
- dependency-name: actions/setup-python
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-05 13:52:59 +09:00
dependabot[bot]
f6ba9d7451 Bump fastapi from 0.104.0 to 0.109.1 in /backend-python
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.104.0 to 0.109.1.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.104.0...0.109.1)

---
updated-dependencies:
- dependency-name: fastapi
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-05 13:51:37 +09:00
dependabot[bot]
96e431e06b Bump python-multipart from 0.0.6 to 0.0.7 in /backend-python
Bumps [python-multipart](https://github.com/andrew-d/python-multipart) from 0.0.6 to 0.0.7.
- [Release notes](https://github.com/andrew-d/python-multipart/releases)
- [Changelog](https://github.com/Kludex/python-multipart/blob/master/CHANGELOG.md)
- [Commits](https://github.com/andrew-d/python-multipart/compare/0.0.6...0.0.7)

---
updated-dependencies:
- dependency-name: python-multipart
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-05 13:50:47 +09:00
josc146
cb6ddb3674 add pre-release workflow 2024-03-05 12:49:17 +08:00
josc146
07d4ba0d6b fix a generation exception caused by potentially dangerous regex being passed into the stop array 2024-03-04 21:20:53 +08:00
github-actions[bot]
ac139d5bda release v1.7.2 2024-03-02 11:48:20 +00:00
josc146
14acfc1d81 release v1.7.2 2024-03-02 19:47:53 +08:00
josc146
2947162cc4 update defaultModelConfigs 2024-03-02 19:45:14 +08:00
josc146
4f14074a75 expose global_penalty 2024-03-02 17:50:41 +08:00
josc146
53a5574080 improve parameters controllable range 2024-03-02 16:52:53 +08:00
josc146
d91c3c004d allow setting tokenChunkSize of WebGPU mode 2024-03-02 16:41:29 +08:00
github-actions[bot]
c90cefc453 release v1.7.1 2024-03-01 08:03:52 +00:00
josc146
b8abd2fef3 release v1.7.1 2024-03-01 16:03:22 +08:00
josc146
887ba06bd6 allow setting quantizedLayers of WebGPU mode; chore 2024-03-01 14:23:05 +08:00
josc146
c9513822c9 fix the issue where state cache could be modified leading to inconsistent hit results 2024-03-01 13:35:16 +08:00
josc146
e3baa0da86 improve occurrence[token] condition 2024-03-01 13:18:03 +08:00
josc146
ba9aab920e hide MPS and CUDA-Beta Options 2024-03-01 13:09:09 +08:00
josc146
b0f2ef65d9 improve occurrence[token] condition 2024-02-29 17:54:33 +08:00
josc146
c13b28561d update manifest 2024-02-29 17:21:07 +08:00
josc146
5c88ccd9e6 update manifest 2024-02-28 23:48:17 +08:00
josc146
e0a6a279b3 add python3-dev to lora fine-tune dependencies 2024-02-28 23:34:49 +08:00
josc146
9bb3a90977 enable useHfMirror by default for chinese users 2024-02-28 23:28:31 +08:00
josc146
02bbd18acf fix convert_safetensors.py for rwkv6 2024-02-28 23:25:46 +08:00
josc146
18ab8b141f disable AVOID_PENALTY_TOKENS 2024-02-28 23:12:58 +08:00
github-actions[bot]
225abc5202 release v1.7.0 2024-02-21 16:10:31 +00:00
josc146
d33dff7723 release v1.7.0 2024-02-22 01:10:01 +09:00
josc146
771027211a chore 2024-02-22 01:05:52 +09:00
josc146
94fe71b49c change AVOID_PENALTY to \n only 2024-02-22 01:04:05 +09:00
josc146
fafd9f7f6e upgrade to rwkv 0.8.25 2024-02-21 23:50:05 +08:00
josc146
85b10993ec update manifest.json 2024-02-12 14:30:36 +08:00
Guillermo Marcus
11f1d66383 fix typo in requirements.txt 2024-02-06 19:59:50 +08:00
josc146
38e89aec18 update README 2024-02-06 12:21:05 +08:00
josc146
3e336830a3 chore 2024-02-06 12:19:12 +08:00
josc146
a1ae71d221 fix /update-config can make the default value of unclearly specified fields invalid by passing in None fields 2024-02-05 22:27:02 +08:00
github-actions[bot]
0703993bfd release v1.6.9 2024-02-05 04:44:24 +00:00
josc146
50a666a350 release v1.6.9 2024-02-05 12:40:23 +08:00
josc146
9ea86ee4b1 update Related Repositories 2024-02-05 12:32:07 +08:00
josc146
94580f825e chore 2024-02-05 12:31:26 +08:00
josc146
d5cca4e542 improve macos experience 2024-02-05 00:25:04 +08:00
josc146
f1986fa9d0 feat: History Message Number 2024-02-04 23:11:23 +08:00
josc146
1c025c3d29 feat: load conversation 2024-02-04 22:03:59 +08:00
josc146
4added7390 add markdown renderer switch 2024-02-04 20:21:42 +08:00
josc146
ee5cca3ff3 chore 2024-02-04 19:34:36 +08:00
josc146
0da92ec7bf improve fine-tune performance 2024-02-04 19:33:32 +08:00
josc146
e3e075e432 add parse_api_log.py, this script can extract formatted data from api.log 2024-02-04 19:30:47 +08:00
josc146
19eeeab1e1 add AVOID_PENALTY_TOKENS 2024-02-04 16:49:46 +08:00
josc146
78238c24cf update defaultPresets 2024-02-04 16:47:34 +08:00
josc146
932281db0a add Penalty Decay slider to Chat page 2024-02-03 22:40:30 +08:00
josc146
843840baa0 expose penalty_decay, top_k 2024-02-03 22:03:10 +08:00
josc146
7cba526913 update manifest.json 2024-02-03 21:35:28 +08:00
josc146
7fe70c949e update defaultPresets 2024-02-03 21:23:04 +08:00
josc146
1c1c9e2c5f update defaultModelConfigs 2024-02-03 20:39:18 +08:00
josc146
26c2954c8e web-rwkv-py 0.1.2 (Support V4, V5 and V6) https://github.com/cryscan/web-rwkv-py 2024-02-03 20:32:23 +08:00
josc146
5329537a2f improve path processing 2024-02-03 20:29:56 +08:00
josc146
e07f0fa6e3 improve path processing 2024-02-03 15:13:24 +08:00
josc146
b077f1fe42 reduce package size 2024-02-03 13:05:02 +08:00
josc146
5f94d86558 add better custom tokenizer support and tokenizer-midipiano.json 2024-02-03 13:04:13 +08:00
josc146
947e127e34 improve path processing 2024-02-02 22:00:01 +08:00
josc146
95502b900d fix WSL2 WindowsOptionalFeature: Microsoft-Windows-Subsystem-Linux -> VirtualMachinePlatform 2024-01-31 21:35:36 +08:00
josc146
16b636ef83 add EOS state cache point 2024-01-31 21:33:27 +08:00
josc146
4339ce20d5 rename manifest tag "Main" -> "Official" 2024-01-31 21:31:54 +08:00
josc146
c31fc22b6b fix finetune errorsMap ($modelInfo) 2024-01-31 21:31:03 +08:00
josc146
7f49c6025b update manifest.json 2024-01-29 19:41:45 +08:00
github-actions[bot]
2d4f436ebf release v1.6.8 2024-01-05 05:54:16 +00:00
josc146
549f32a743 release v1.6.8 2024-01-05 13:53:50 +08:00
josc146
e3b3452a73 basic abc frontend support 2024-01-05 13:47:00 +08:00
josc146
62350d975d fix finetune errorsMap ($modelInfo) 2024-01-05 12:46:14 +08:00
josc146
8d84b326b8 basic abc frontend support 2024-01-05 12:45:41 +08:00
josc146
16079a3cba abc music inference support 2024-01-05 12:44:44 +08:00
github-actions[bot]
ff330a5487 release v1.6.7 2023-12-29 04:26:57 +00:00
242 changed files with 38797 additions and 4722 deletions

171
.github/workflows/docker.yml vendored Normal file
View File

@ -0,0 +1,171 @@
name: Publish Docker Image
on: [push]
concurrency:
group: ${{ github.ref }}-${{ github.workflow }}
cancel-in-progress: true
jobs:
docker_build:
name: Build ${{ matrix.arch }} Image
runs-on: ubuntu-latest
strategy:
matrix:
include:
- arch: amd64
name: amd64
# - arch: arm64
# name: arm64
steps:
- name: Free up disk spaces
run: |
sudo rm -rf /usr/share/dotnet || true
sudo rm -rf /opt/ghc || true
sudo rm -rf "/usr/local/share/boost" || true
sudo rm -rf "$AGENT_TOOLSDIRECTORY" || true
- name: Get lowercase string for the repository name
id: lowercase-repo-name
uses: ASzc/change-string-case-action@v2
with:
string: ${{ github.event.repository.name }}
- name: Checkout base
uses: actions/checkout@v2
with:
fetch-depth: 0
- name: Cache Docker layers
uses: actions/cache@v2
with:
path: /tmp/.buildx-cache
key: ${{ github.ref }}-${{ matrix.arch }}
restore-keys: |
${{ github.ref }}-${{ matrix.arch }}
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
with:
platforms: linux/${{ matrix.arch }}
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
- name: Docker login
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Get commit SHA
id: vars
run: echo "::set-output name=sha_short::$(git rev-parse --short HEAD)"
- name: Build and export
id: build
if: github.ref == 'refs/heads/master'
uses: docker/build-push-action@v3
with:
push: true
platforms: linux/${{ matrix.arch }}
tags: ${{ secrets.DOCKER_USERNAME }}/${{ steps.lowercase-repo-name.outputs.lowercase }}:${{ matrix.name }}-latest
build-args: |
SHA=${{ steps.vars.outputs.sha_short }}
outputs: type=image,push=true
cache-from: type=local,src=/tmp/.buildx-cache
cache-to: type=local,dest=/tmp/.buildx-cache
- name: Replace tag without `v`
if: startsWith(github.ref, 'refs/tags/')
uses: actions/github-script@v1
id: version
with:
script: |
return context.payload.ref.replace(/\/?refs\/tags\/v/, '')
result-encoding: string
- name: Build release and export
id: build_rel
if: startsWith(github.ref, 'refs/tags/')
uses: docker/build-push-action@v3
with:
push: true
platforms: linux/${{ matrix.arch }}
tags: ${{ secrets.DOCKER_USERNAME }}/${{ steps.lowercase-repo-name.outputs.lowercase }}:${{ matrix.name }}-${{steps.version.outputs.result}}
build-args: |
SHA=${{ steps.version.outputs.result }}
outputs: type=image,push=true
cache-from: type=local,src=/tmp/.buildx-cache
cache-to: type=local,dest=/tmp/.buildx-cache
- name: Save digest
if: github.ref == 'refs/heads/master'
run: echo ${{ steps.build.outputs.digest }} > /tmp/digest.txt
- name: Save release digest
if: startsWith(github.ref, 'refs/tags/')
run: echo ${{ steps.build_rel.outputs.digest }} > /tmp/digest.txt
- name: Upload artifact
uses: actions/upload-artifact@v3
with:
name: digest_${{ matrix.name }}
path: /tmp/digest.txt
manifests:
name: Build manifests
needs: [docker_build]
runs-on: ubuntu-latest
steps:
- name: Get lowercase string for the repository name
id: lowercase-repo-name
uses: ASzc/change-string-case-action@v2
with:
string: ${{ github.event.repository.name }}
- name: Checkout base
uses: actions/checkout@v2
with:
fetch-depth: 0
# https://github.com/docker/setup-qemu-action
- name: Set up QEMU
uses: docker/setup-qemu-action@v2
# https://github.com/docker/setup-buildx-action
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v2
with:
config-inline: |
[worker.oci]
max-parallelism = 1
- name: Download artifact
uses: actions/download-artifact@v3
with:
path: /tmp/images/
- name: Docker login
uses: docker/login-action@v2
with:
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Replace tag without `v`
if: startsWith(github.ref, 'refs/tags/')
uses: actions/github-script@v1
id: version
with:
script: |
return context.payload.ref.replace(/\/?refs\/tags\/v/, '')
result-encoding: string
- name: Merge and push manifest on master branch
if: github.ref == 'refs/heads/master'
run: python scripts/merge_manifest.py "${{ secrets.DOCKER_USERNAME }}/${{ steps.lowercase-repo-name.outputs.lowercase }}"
- name: Merge and push manifest on release
if: startsWith(github.ref, 'refs/tags/')
run: python scripts/merge_manifest.py "${{ secrets.DOCKER_USERNAME }}/${{ steps.lowercase-repo-name.outputs.lowercase }}" ${{steps.version.outputs.result}}

114
.github/workflows/pre-release.yml vendored Normal file
View File

@ -0,0 +1,114 @@
name: pre-release
on:
workflow_dispatch:
push:
branches:
- master
paths:
- "backend-python/**"
tags-ignore:
- "v*"
jobs:
windows:
runs-on: windows-2022
steps:
- uses: actions/checkout@v4
with:
ref: master
- uses: actions/setup-go@v5
with:
go-version: "1.20.5"
- uses: actions/setup-python@v5
id: cp310
with:
python-version: "3.10"
- uses: crazy-max/ghaction-chocolatey@v3
with:
args: install upx
- run: |
Start-BitsTransfer https://github.com/josStorer/ai00_rwkv_server/releases/latest/download/webgpu_server_windows_x86_64.exe ./backend-rust/webgpu_server.exe
Start-BitsTransfer https://github.com/josStorer/web-rwkv-converter/releases/latest/download/web-rwkv-converter_windows_x86_64.exe ./backend-rust/web-rwkv-converter.exe
Start-BitsTransfer https://github.com/josStorer/LibreHardwareMonitor.Console/releases/latest/download/LibreHardwareMonitor.Console.zip ./LibreHardwareMonitor.Console.zip
Expand-Archive ./LibreHardwareMonitor.Console.zip -DestinationPath ./components/LibreHardwareMonitor.Console
Start-BitsTransfer https://www.python.org/ftp/python/3.10.11/python-3.10.11-embed-amd64.zip ./python-3.10.11-embed-amd64.zip
Expand-Archive ./python-3.10.11-embed-amd64.zip -DestinationPath ./py310
$content=Get-Content "./py310/python310._pth"; $content | ForEach-Object {if ($_.ReadCount -eq 3) {"Lib\\site-packages"} else {$_}} | Set-Content ./py310/python310._pth
./py310/python ./backend-python/get-pip.py
./py310/python -m pip install Cython==3.0.4
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../include" -Destination "py310/include" -Recurse
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../libs" -Destination "py310/libs" -Recurse
./py310/python -m pip install cyac==1.9
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
del ./backend-python/rwkv_pip/cpp/librwkv.dylib
del ./backend-python/rwkv_pip/cpp/librwkv.so
(Get-Content -Path ./backend-golang/app.go) -replace "//go:custom_build windows ", "" | Set-Content -Path ./backend-golang/app.go
(Get-Content -Path ./backend-golang/utils.go) -replace "//go:custom_build windows ", "" | Set-Content -Path ./backend-golang/utils.go
make
Rename-Item -Path "build/bin/RWKV-Runner.exe" -NewName "RWKV-Runner_windows_x64.exe"
- uses: actions/upload-artifact@v4
with:
name: RWKV-Runner_windows_x64.exe
path: build/bin/RWKV-Runner_windows_x64.exe
linux:
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v4
with:
ref: master
- uses: actions/setup-go@v5
with:
go-version: "1.20.5"
- run: |
wget https://github.com/josStorer/ai00_rwkv_server/releases/latest/download/webgpu_server_linux_x86_64 -O ./backend-rust/webgpu_server
wget https://github.com/josStorer/web-rwkv-converter/releases/latest/download/web-rwkv-converter_linux_x86_64 -O ./backend-rust/web-rwkv-converter
sudo apt-get update
sudo apt-get install upx
sudo apt-get install build-essential libgtk-3-dev libwebkit2gtk-4.0-dev libasound2-dev
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
rm ./backend-python/rwkv_pip/wkv_cuda.pyd
rm ./backend-python/rwkv_pip/rwkv5.pyd
rm ./backend-python/rwkv_pip/rwkv6.pyd
rm ./backend-python/get-pip.py
rm ./backend-python/rwkv_pip/cpp/librwkv.dylib
rm ./backend-python/rwkv_pip/cpp/rwkv.dll
rm ./backend-python/rwkv_pip/webgpu/web_rwkv_py.cp310-win_amd64.pyd
make
mv build/bin/RWKV-Runner build/bin/RWKV-Runner_linux_x64
- uses: actions/upload-artifact@v4
with:
name: RWKV-Runner_linux_x64
path: build/bin/RWKV-Runner_linux_x64
macos:
runs-on: macos-13
steps:
- uses: actions/checkout@v4
with:
ref: master
- uses: actions/setup-go@v5
with:
go-version: "1.20.5"
- run: |
wget https://github.com/josStorer/ai00_rwkv_server/releases/latest/download/webgpu_server_darwin_aarch64 -O ./backend-rust/webgpu_server
wget https://github.com/josStorer/web-rwkv-converter/releases/latest/download/web-rwkv-converter_darwin_aarch64 -O ./backend-rust/web-rwkv-converter
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
rm ./backend-python/rwkv_pip/wkv_cuda.pyd
rm ./backend-python/rwkv_pip/rwkv5.pyd
rm ./backend-python/rwkv_pip/rwkv6.pyd
rm ./backend-python/get-pip.py
rm ./backend-python/rwkv_pip/cpp/rwkv.dll
rm ./backend-python/rwkv_pip/cpp/librwkv.so
rm ./backend-python/rwkv_pip/webgpu/web_rwkv_py.cp310-win_amd64.pyd
make
cp build/darwin/Readme_Install.txt build/bin/Readme_Install.txt
cp build/bin/RWKV-Runner.app/Contents/MacOS/RWKV-Runner build/bin/RWKV-Runner_darwin_universal
cd build/bin && zip -r RWKV-Runner_macos_universal.zip RWKV-Runner.app Readme_Install.txt
- uses: actions/upload-artifact@v4
with:
name: RWKV-Runner_macos_universal.zip
path: build/bin/RWKV-Runner_macos_universal.zip

View File

@ -14,11 +14,11 @@ jobs:
runs-on: ubuntu-22.04
steps:
- run: echo "VERSION=${GITHUB_REF_NAME#v}" >> $GITHUB_ENV
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
ref: master
- uses: jossef/action-set-json-field@v2.1
- uses: jossef/action-set-json-field@v2.2
with:
file: manifest.json
field: version
@ -38,17 +38,17 @@ jobs:
runs-on: windows-2022
needs: create-draft
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
ref: master
- uses: actions/setup-go@v4
- uses: actions/setup-go@v5
with:
go-version: '1.20.5'
- uses: actions/setup-python@v4
go-version: "1.20.5"
- uses: actions/setup-python@v5
id: cp310
with:
python-version: '3.10'
- uses: crazy-max/ghaction-chocolatey@v2
python-version: "3.10"
- uses: crazy-max/ghaction-chocolatey@v3
with:
args: install upx
- run: |
@ -64,7 +64,7 @@ jobs:
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../include" -Destination "py310/include" -Recurse
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../libs" -Destination "py310/libs" -Recurse
./py310/python -m pip install cyac==1.9
go install github.com/wailsapp/wails/v2/cmd/wails@latest
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
del ./backend-python/rwkv_pip/cpp/librwkv.dylib
del ./backend-python/rwkv_pip/cpp/librwkv.so
(Get-Content -Path ./backend-golang/app.go) -replace "//go:custom_build windows ", "" | Set-Content -Path ./backend-golang/app.go
@ -78,23 +78,22 @@ jobs:
runs-on: ubuntu-20.04
needs: create-draft
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
ref: master
- uses: actions/setup-go@v4
- uses: actions/setup-go@v5
with:
go-version: '1.20.5'
go-version: "1.20.5"
- run: |
wget https://github.com/josStorer/ai00_rwkv_server/releases/latest/download/webgpu_server_linux_x86_64 -O ./backend-rust/webgpu_server
wget https://github.com/josStorer/web-rwkv-converter/releases/latest/download/web-rwkv-converter_linux_x86_64 -O ./backend-rust/web-rwkv-converter
sudo apt-get update
sudo apt-get install upx
sudo apt-get install build-essential libgtk-3-dev libwebkit2gtk-4.0-dev libasound2-dev
go install github.com/wailsapp/wails/v2/cmd/wails@latest
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
rm ./backend-python/rwkv_pip/wkv_cuda.pyd
rm ./backend-python/rwkv_pip/rwkv5.pyd
rm ./backend-python/rwkv_pip/rwkv6.pyd
rm ./backend-python/rwkv_pip/beta/wkv_cuda.pyd
rm ./backend-python/get-pip.py
rm ./backend-python/rwkv_pip/cpp/librwkv.dylib
rm ./backend-python/rwkv_pip/cpp/rwkv.dll
@ -108,20 +107,19 @@ jobs:
runs-on: macos-13
needs: create-draft
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
ref: master
- uses: actions/setup-go@v4
- uses: actions/setup-go@v5
with:
go-version: '1.20.5'
go-version: "1.20.5"
- run: |
wget https://github.com/josStorer/ai00_rwkv_server/releases/latest/download/webgpu_server_darwin_aarch64 -O ./backend-rust/webgpu_server
wget https://github.com/josStorer/web-rwkv-converter/releases/latest/download/web-rwkv-converter_darwin_aarch64 -O ./backend-rust/web-rwkv-converter
go install github.com/wailsapp/wails/v2/cmd/wails@latest
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
rm ./backend-python/rwkv_pip/wkv_cuda.pyd
rm ./backend-python/rwkv_pip/rwkv5.pyd
rm ./backend-python/rwkv_pip/rwkv6.pyd
rm ./backend-python/rwkv_pip/beta/wkv_cuda.pyd
rm ./backend-python/get-pip.py
rm ./backend-python/rwkv_pip/cpp/rwkv.dll
rm ./backend-python/rwkv_pip/cpp/librwkv.so
@ -137,5 +135,5 @@ jobs:
runs-on: ubuntu-22.04
needs: [ windows, linux, macos ]
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
- run: gh release edit ${{github.ref_name}} --draft=false

1
.gitignore vendored
View File

@ -19,7 +19,6 @@ __pycache__
/cmd-helper.bat
/install-py-dep.bat
/backend-python/wkv_cuda
/backend-python/rwkv*
*.exe
*.old
.DS_Store

View File

@ -1,10 +1,26 @@
## Changes
## v1.8.4
- rwkv5 lora finetune support (https://github.com/JL-er/RWKV-v5-lora)
- improve memory usage and speed of convert_safetensors.py
- webgpu(python) state cache support
- improve state cache performance (especially for rwkv.cpp)
- chore
- fix f05a4a, __init__.py is not embedded
## v1.8.3
### Deprecations
- rwkv-beta is deprecated
### Upgrades
- bump webgpu(python) (https://github.com/cryscan/web-rwkv-py)
- sync https://github.com/JL-er/RWKV-PEFT (LoRA)
### Improvements
- improve default LoRA fine-tune params
### Fixes
- fix #342, #345: cannot import name 'packaging' from 'pkg_resources'
- fix the huge error prompt that pops up when running in webgpu mode
## Install

55
Dockerfile Normal file
View File

@ -0,0 +1,55 @@
FROM node:21-slim AS frontend
RUN echo "registry=https://registry.npmmirror.com/" > ~/.npmrc
WORKDIR /app
COPY manifest.json manifest.json
COPY frontend frontend
WORKDIR /app/frontend
RUN npm ci
RUN npm run build
FROM nvidia/cuda:11.6.1-devel-ubuntu20.04 AS runtime
ENV DEBIAN_FRONTEND=noninteractive
RUN apt update && \
apt install -yq git curl wget build-essential ninja-build aria2 jq software-properties-common
RUN add-apt-repository -y ppa:deadsnakes/ppa && \
add-apt-repository -y ppa:ubuntu-toolchain-r/test && \
apt install -y g++-11 python3.10 python3.10-distutils python3.10-dev && \
curl -sS http://mirrors.aliyun.com/pypi/get-pip.py | python3.10
RUN python3.10 -m pip install cmake
FROM runtime AS librwkv
WORKDIR /app
RUN git clone https://github.com/RWKV/rwkv.cpp.git && \
cd rwkv.cpp && \
git submodule update --init --recursive && \
mkdir -p build && \
cd build && \
cmake -G Ninja .. && \
cmake --build .
FROM runtime AS final
WORKDIR /app
COPY ./backend-python/requirements.txt ./backend-python/requirements.txt
RUN python3.10 -m pip install --quiet -r ./backend-python/requirements.txt
COPY . .
COPY --from=frontend /app/frontend/dist /app/frontend/dist
COPY --from=librwkv /app/rwkv.cpp/build/librwkv.so /app/backend-python/rwkv_pip/cpp/librwkv.so
EXPOSE 27777
CMD ["python3.10", "./backend-python/main.py", "--port", "27777", "--host", "0.0.0.0", "--webui"]

View File

@ -8,7 +8,8 @@ endif
build-windows:
@echo ---- build for windows
wails build -upx -ldflags '-s -w -extldflags "-static"' -platform windows/amd64
wails build -ldflags '-s -w -extldflags "-static"' -platform windows/amd64
upx -9 --lzma ./build/bin/RWKV-Runner.exe
build-macos:
@echo ---- build for macos
@ -16,7 +17,8 @@ build-macos:
build-linux:
@echo ---- build for linux
wails build -upx -ldflags '-s -w' -platform linux/amd64
wails build -ldflags '-s -w' -platform linux/amd64
upx -9 --lzma ./build/bin/RWKV-Runner
build-web:
@echo ---- build for web

View File

@ -1,5 +1,5 @@
<p align="center">
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/d24834b0-265d-45f5-93c0-fac1e19562af">
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/65c46133-7506-4b54-b64f-fe49f188afa7">
</p>
<h1 align="center">RWKV Runner</h1>
@ -12,6 +12,7 @@ compatible with the OpenAI API, which means that every ChatGPT client is an RWKV
[![license][license-image]][license-url]
[![release][release-image]][release-url]
[![py-version][py-version-image]][py-version-url]
English | [简体中文](README_ZH.md) | [日本語](README_JA.md)
@ -31,6 +32,10 @@ English | [简体中文](README_ZH.md) | [日本語](README_JA.md)
[release-url]: https://github.com/josStorer/RWKV-Runner/releases/latest
[py-version-image]: https://img.shields.io/pypi/pyversions/fastapi.svg
[py-version-url]: https://github.com/josStorer/RWKV-Runner/tree/master/backend-python
[download-url]: https://github.com/josStorer/RWKV-Runner/releases
[Windows-image]: https://img.shields.io/badge/-Windows-blue?logo=windows
@ -89,7 +94,8 @@ English | [简体中文](README_ZH.md) | [日本語](README_JA.md)
- Built-in model conversion tool.
- Built-in download management and remote model inspection.
- Built-in one-click LoRA Finetune. (Windows Only)
- Can also be used as an OpenAI ChatGPT and GPT-Playground client. (Fill in the API URL and API Key in Settings page)
- Can also be used as an OpenAI ChatGPT, GPT-Playground, Ollama and more clients. (Fill in the API URL and API Key in
Settings page)
- Multilingual localization.
- Theme switching.
- Automatic updates.
@ -231,22 +237,24 @@ computer keyboard as MIDI input.
- ChatRWKV: https://github.com/BlinkDL/ChatRWKV
- RWKV-LM: https://github.com/BlinkDL/RWKV-LM
- RWKV-LM-LoRA: https://github.com/Blealtan/RWKV-LM-LoRA
- RWKV-v5-lora: https://github.com/JL-er/RWKV-v5-lora
- MIDI-LLM-tokenizer: https://github.com/briansemrau/MIDI-LLM-tokenizer
- ai00_rwkv_server: https://github.com/cgisky1980/ai00_rwkv_server
- rwkv.cpp: https://github.com/saharNooby/rwkv.cpp
- web-rwkv-py: https://github.com/cryscan/web-rwkv-py
- web-rwkv: https://github.com/cryscan/web-rwkv
## Preview
### Homepage
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/c9b9cdd0-63f9-4319-9f74-5bf5d7df5a67)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/c1923ed8-22f7-48b4-a274-e215e27a8e01)
### Chat
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/80009872-528f-4932-aeb2-f724fa892e7c)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/e98c9038-3323-47b0-8edb-d639fafd37b2)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/de8d3fa7-c31f-4941-a22b-ded785427ac0)
### Completion

View File

@ -1,5 +1,5 @@
<p align="center">
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/d24834b0-265d-45f5-93c0-fac1e19562af">
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/65c46133-7506-4b54-b64f-fe49f188afa7">
</p>
<h1 align="center">RWKV Runner</h1>
@ -12,6 +12,7 @@
[![license][license-image]][license-url]
[![release][release-image]][release-url]
[![py-version][py-version-image]][py-version-url]
[English](README.md) | [简体中文](README_ZH.md) | 日本語
@ -31,6 +32,10 @@
[release-url]: https://github.com/josStorer/RWKV-Runner/releases/latest
[py-version-image]: https://img.shields.io/pypi/pyversions/fastapi.svg
[py-version-url]: https://github.com/josStorer/RWKV-Runner/tree/master/backend-python
[download-url]: https://github.com/josStorer/RWKV-Runner/releases
[Windows-image]: https://img.shields.io/badge/-Windows-blue?logo=windows
@ -84,8 +89,8 @@
- 内蔵モデル変換ツール
- ダウンロード管理とリモートモデル検査機能内蔵
- 内蔵のLoRA微調整機能を搭載しています (Windowsのみ)
- このプログラムは、OpenAI ChatGPTとGPT Playgroundのクライアントとしても使用できます(設定ページで `API URL``API Key`
を入力してください)
- このプログラムは、OpenAI ChatGPT、GPT Playground、Ollama などのクライアントとしても使用できます(設定ページで `API URL`
`API Key` を入力してください)
- 多言語ローカライズ
- テーマ切り替え
- 自動アップデート
@ -228,22 +233,24 @@ MIDIキーボードをお持ちでない場合、`Virtual Midi Controller 3 LE`
- ChatRWKV: https://github.com/BlinkDL/ChatRWKV
- RWKV-LM: https://github.com/BlinkDL/RWKV-LM
- RWKV-LM-LoRA: https://github.com/Blealtan/RWKV-LM-LoRA
- RWKV-v5-lora: https://github.com/JL-er/RWKV-v5-lora
- MIDI-LLM-tokenizer: https://github.com/briansemrau/MIDI-LLM-tokenizer
- ai00_rwkv_server: https://github.com/cgisky1980/ai00_rwkv_server
- rwkv.cpp: https://github.com/saharNooby/rwkv.cpp
- web-rwkv-py: https://github.com/cryscan/web-rwkv-py
- web-rwkv: https://github.com/cryscan/web-rwkv
## Preview
### ホームページ
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/c9b9cdd0-63f9-4319-9f74-5bf5d7df5a67)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/c1923ed8-22f7-48b4-a274-e215e27a8e01)
### チャット
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/80009872-528f-4932-aeb2-f724fa892e7c)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/e98c9038-3323-47b0-8edb-d639fafd37b2)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/de8d3fa7-c31f-4941-a22b-ded785427ac0)
### 補完

View File

@ -1,5 +1,5 @@
<p align="center">
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/d24834b0-265d-45f5-93c0-fac1e19562af">
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/65c46133-7506-4b54-b64f-fe49f188afa7">
</p>
<h1 align="center">RWKV Runner</h1>
@ -11,6 +11,7 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
[![license][license-image]][license-url]
[![release][release-image]][release-url]
[![py-version][py-version-image]][py-version-url]
[English](README.md) | 简体中文 | [日本語](README_JA.md)
@ -30,6 +31,10 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
[release-url]: https://github.com/josStorer/RWKV-Runner/releases/latest
[py-version-image]: https://img.shields.io/pypi/pyversions/fastapi.svg
[py-version-url]: https://github.com/josStorer/RWKV-Runner/tree/master/backend-python
[download-url]: https://github.com/josStorer/RWKV-Runner/releases
[Windows-image]: https://img.shields.io/badge/-Windows-blue?logo=windows
@ -78,7 +83,7 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
- 内置模型转换工具
- 内置下载管理和远程模型检视
- 内置一键LoRA微调 (仅限Windows)
- 也可用作 OpenAI ChatGPT 和 GPT Playground 客户端 (在设置内填写API URL和API Key)
- 也可用作 OpenAI ChatGPT, GPT Playground, Ollama 等服务的客户端 (在设置内填写API URL和API Key)
- 多语言本地化
- 主题切换
- 自动更新
@ -210,22 +215,24 @@ for i in np.argsort(embeddings_cos_sim)[::-1]:
- ChatRWKV: https://github.com/BlinkDL/ChatRWKV
- RWKV-LM: https://github.com/BlinkDL/RWKV-LM
- RWKV-LM-LoRA: https://github.com/Blealtan/RWKV-LM-LoRA
- RWKV-v5-lora: https://github.com/JL-er/RWKV-v5-lora
- MIDI-LLM-tokenizer: https://github.com/briansemrau/MIDI-LLM-tokenizer
- ai00_rwkv_server: https://github.com/cgisky1980/ai00_rwkv_server
- rwkv.cpp: https://github.com/saharNooby/rwkv.cpp
- web-rwkv-py: https://github.com/cryscan/web-rwkv-py
- web-rwkv: https://github.com/cryscan/web-rwkv
## Preview
### 主页
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/cd82674e-3ee3-4175-bd9c-a11d45437327)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/3265b11a-ab19-4e19-bfea-fc687f59aaf9)
### 聊天
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/9570e73b-dca2-4316-9e92-09961f3c48c4)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/54bb0e2b-cdc4-4ea0-8d16-9beaf57c232c)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/162fce43-8568-4850-a6af-ab60af988da6)
### 续写

View File

@ -1,15 +1,22 @@
package backend_golang
import (
"archive/zip"
"bufio"
"bytes"
"context"
"errors"
"io"
"log"
"net"
"net/http"
"net/http/httputil"
"net/url"
"os"
"os/exec"
"path/filepath"
"runtime"
"strings"
"syscall"
"time"
@ -23,6 +30,8 @@ type App struct {
ctx context.Context
HasConfigData bool
ConfigData map[string]any
Dev bool
proxyPort int
exDir string
cmdPrefix string
}
@ -32,6 +41,63 @@ func NewApp() *App {
return &App{}
}
func (a *App) newFetchProxy() {
go func() {
handler := func(w http.ResponseWriter, r *http.Request) {
if r.Method == "OPTIONS" {
w.Header().Set("Access-Control-Allow-Methods", "GET, POST, OPTIONS")
w.Header().Set("Access-Control-Allow-Headers", "*")
w.Header().Set("Access-Control-Allow-Origin", "*")
return
}
proxy := &httputil.ReverseProxy{
ModifyResponse: func(res *http.Response) error {
res.Header.Set("Access-Control-Allow-Origin", "*")
return nil
},
Director: func(req *http.Request) {
realTarget := req.Header.Get("Real-Target")
if realTarget != "" {
realTarget, err := url.PathUnescape(realTarget)
if err != nil {
log.Printf("Error decoding target URL: %v\n", err)
return
}
target, err := url.Parse(realTarget)
if err != nil {
log.Printf("Error parsing target URL: %v\n", err)
return
}
req.Header.Set("Accept", "*/*")
req.Header.Del("Origin")
req.Header.Del("Referer")
req.Header.Del("Real-Target")
req.Header.Del("Sec-Fetch-Dest")
req.Header.Del("Sec-Fetch-Mode")
req.Header.Del("Sec-Fetch-Site")
req.URL.Scheme = target.Scheme
req.URL.Host = target.Host
req.URL.Path = target.Path
req.URL.RawQuery = url.PathEscape(target.RawQuery)
log.Println("Proxying to", realTarget)
} else {
log.Println("Real-Target header is missing")
}
},
}
proxy.ServeHTTP(w, r)
}
http.HandleFunc("/", handler)
listener, err := net.Listen("tcp", "127.0.0.1:0")
if err != nil {
return
}
a.proxyPort = listener.Addr().(*net.TCPAddr).Port
http.Serve(listener, nil)
}()
}
// startup is called when the app starts. The context is saved
// so we can call the runtime methods
func (a *App) OnStartup(ctx context.Context) {
@ -39,20 +105,31 @@ func (a *App) OnStartup(ctx context.Context) {
a.exDir = ""
a.cmdPrefix = ""
if runtime.GOOS == "darwin" {
ex, _ := os.Executable()
a.exDir = filepath.Dir(ex) + "/../../../"
a.cmdPrefix = "cd " + a.exDir + " && "
ex, err := os.Executable()
if err == nil {
if runtime.GOOS == "darwin" {
a.exDir = filepath.Dir(ex) + "/../../../"
a.cmdPrefix = "cd " + a.exDir + " && "
} else {
a.exDir = filepath.Dir(ex) + "/"
a.cmdPrefix = "cd " + a.exDir + " && "
}
if a.Dev {
a.exDir = ""
} else {
os.Chdir(a.exDir)
}
}
os.Chmod(a.exDir+"backend-rust/webgpu_server", 0777)
os.Chmod(a.exDir+"backend-rust/web-rwkv-converter", 0777)
os.Mkdir(a.exDir+"models", os.ModePerm)
os.Mkdir(a.exDir+"lora-models", os.ModePerm)
os.Mkdir(a.exDir+"state-models", os.ModePerm)
os.Mkdir(a.exDir+"finetune/json2binidx_tool/data", os.ModePerm)
trainLogPath := a.exDir + "lora-models/train_log.txt"
trainLogPath := "lora-models/train_log.txt"
if !a.FileExists(trainLogPath) {
f, err := os.Create(trainLogPath)
f, err := os.Create(a.exDir + trainLogPath)
if err == nil {
f.Close()
}
@ -62,6 +139,7 @@ func (a *App) OnStartup(ctx context.Context) {
a.midiLoop()
a.watchFs()
a.monitorHardware()
a.newFetchProxy()
}
func (a *App) OnBeforeClose(ctx context.Context) bool {
@ -74,8 +152,9 @@ func (a *App) OnBeforeClose(ctx context.Context) bool {
func (a *App) watchFs() {
watcher, err := fsnotify.NewWatcher()
if err == nil {
watcher.Add(a.exDir + "./lora-models")
watcher.Add(a.exDir + "./models")
watcher.Add(a.exDir + "./lora-models")
watcher.Add(a.exDir + "./state-models")
go func() {
for {
select {
@ -149,6 +228,7 @@ func (a *App) UpdateApp(url string) (broken bool, err error) {
ticker := time.NewTicker(250 * time.Millisecond)
defer ticker.Stop()
// update progress
go func() {
for {
<-ticker.C
@ -168,13 +248,35 @@ func (a *App) UpdateApp(url string) (broken bool, err error) {
}
}
}()
err = selfupdate.Apply(pr, selfupdate.Options{})
var updateFile io.Reader = pr
// extract macos binary from zip
if strings.HasSuffix(url, ".zip") && runtime.GOOS == "darwin" {
zipBytes, err := io.ReadAll(pr)
if err != nil {
return false, err
}
archive, err := zip.NewReader(bytes.NewReader(zipBytes), int64(len(zipBytes)))
if err != nil {
return false, err
}
file, err := archive.Open("RWKV-Runner.app/Contents/MacOS/RWKV-Runner")
if err != nil {
return false, err
}
defer file.Close()
updateFile = file
}
// apply update
err = selfupdate.Apply(updateFile, selfupdate.Options{})
if err != nil {
if rerr := selfupdate.RollbackError(err); rerr != nil {
return true, rerr
}
return false, err
}
// restart app
if runtime.GOOS == "windows" {
name, err := os.Executable()
if err != nil {
@ -202,3 +304,7 @@ func (a *App) RestartApp() error {
func (a *App) GetPlatform() string {
return runtime.GOOS
}
func (a *App) GetProxyPort() int {
return a.proxyPort
}

View File

@ -10,7 +10,11 @@ import (
)
func (a *App) DownloadFile(path string, url string) error {
_, err := grab.Get(a.exDir+path, url)
absPath, err := a.GetAbsPath(path)
if err != nil {
return err
}
_, err = grab.Get(absPath, url)
if err != nil {
return err
}
@ -88,11 +92,15 @@ func (a *App) ContinueDownload(url string) {
}
func (a *App) AddToDownloadList(path string, url string) {
if !existsInDownloadList(a.exDir+path, url) {
absPath, err := a.GetAbsPath(path)
if err != nil {
return
}
if !existsInDownloadList(absPath, url) {
downloadList = append(downloadList, &DownloadStatus{
resp: nil,
Name: filepath.Base(path),
Path: a.exDir + path,
Path: absPath,
Url: url,
Downloading: false,
})

View File

@ -14,27 +14,55 @@ import (
wruntime "github.com/wailsapp/wails/v2/pkg/runtime"
)
func (a *App) GetAbsPath(path string) (string, error) {
var absPath string
var err error
if filepath.IsAbs(path) {
absPath = filepath.Clean(path)
} else {
absPath, err = filepath.Abs(filepath.Join(a.exDir, path))
if err != nil {
return "", err
}
}
absPath = strings.ReplaceAll(absPath, "/", string(os.PathSeparator))
println("GetAbsPath:", absPath)
return absPath, nil
}
func (a *App) SaveFile(path string, savedContent []byte) error {
if err := os.WriteFile(a.exDir+path, savedContent, 0644); err != nil {
absPath, err := a.GetAbsPath(path)
if err != nil {
return err
}
if err := os.WriteFile(absPath, savedContent, 0644); err != nil {
return err
}
return nil
}
func (a *App) SaveJson(fileName string, jsonData any) error {
func (a *App) SaveJson(path string, jsonData any) error {
text, err := json.MarshalIndent(jsonData, "", " ")
if err != nil {
return err
}
if err := os.WriteFile(a.exDir+fileName, text, 0644); err != nil {
absPath, err := a.GetAbsPath(path)
if err != nil {
return err
}
if err := os.WriteFile(absPath, text, 0644); err != nil {
return err
}
return nil
}
func (a *App) ReadJson(fileName string) (any, error) {
file, err := os.ReadFile(a.exDir + fileName)
func (a *App) ReadJson(path string) (any, error) {
absPath, err := a.GetAbsPath(path)
if err != nil {
return nil, err
}
file, err := os.ReadFile(absPath)
if err != nil {
return nil, err
}
@ -48,8 +76,12 @@ func (a *App) ReadJson(fileName string) (any, error) {
return data, nil
}
func (a *App) FileExists(fileName string) bool {
_, err := os.Stat(a.exDir + fileName)
func (a *App) FileExists(path string) bool {
absPath, err := a.GetAbsPath(path)
if err != nil {
return false
}
_, err = os.Stat(absPath)
return err == nil
}
@ -60,8 +92,12 @@ type FileInfo struct {
ModTime string `json:"modTime"`
}
func (a *App) ReadFileInfo(fileName string) (*FileInfo, error) {
info, err := os.Stat(a.exDir + fileName)
func (a *App) ReadFileInfo(path string) (*FileInfo, error) {
absPath, err := a.GetAbsPath(path)
if err != nil {
return nil, err
}
info, err := os.Stat(absPath)
if err != nil {
return nil, err
}
@ -74,7 +110,11 @@ func (a *App) ReadFileInfo(fileName string) (*FileInfo, error) {
}
func (a *App) ListDirFiles(dirPath string) ([]FileInfo, error) {
files, err := os.ReadDir(a.exDir + dirPath)
absDirPath, err := a.GetAbsPath(dirPath)
if err != nil {
return nil, err
}
files, err := os.ReadDir(absDirPath)
if err != nil {
return nil, err
}
@ -96,7 +136,11 @@ func (a *App) ListDirFiles(dirPath string) ([]FileInfo, error) {
}
func (a *App) DeleteFile(path string) error {
err := os.Remove(a.exDir + path)
absPath, err := a.GetAbsPath(path)
if err != nil {
return err
}
err = os.Remove(absPath)
if err != nil {
return err
}
@ -104,18 +148,27 @@ func (a *App) DeleteFile(path string) error {
}
func (a *App) CopyFile(src string, dst string) error {
sourceFile, err := os.Open(a.exDir + src)
absSrc, err := a.GetAbsPath(src)
if err != nil {
return err
}
absDst, err := a.GetAbsPath(dst)
if err != nil {
return err
}
sourceFile, err := os.Open(absSrc)
if err != nil {
return err
}
defer sourceFile.Close()
err = os.MkdirAll(a.exDir+dst[:strings.LastIndex(dst, "/")], 0755)
err = os.MkdirAll(filepath.Dir(absDst), 0755)
if err != nil {
return err
}
destFile, err := os.Create(a.exDir + dst)
destFile, err := os.Create(absDst)
if err != nil {
return err
}
@ -166,14 +219,8 @@ func (a *App) OpenOpenFileDialog(filterPattern string) (string, error) {
return path, nil
}
func (a *App) OpenFileFolder(path string, relative bool) error {
var absPath string
var err error
if relative {
absPath, err = filepath.Abs(a.exDir + path)
} else {
absPath, err = filepath.Abs(path)
}
func (a *App) OpenFileFolder(path string) error {
absPath, err := a.GetAbsPath(path)
if err != nil {
return err
}

View File

@ -1,3 +1,4 @@
// Considering some whitespace and multilingual support, the functions in rwkv.go should always be executed with cwd as RWKV-Runner, and never use a.GetAbsPath() here.
package backend_golang
import (
@ -11,19 +12,23 @@ import (
)
func (a *App) StartServer(python string, port int, host string, webui bool, rwkvBeta bool, rwkvcpp bool, webgpu bool) (string, error) {
var err error
execFile := "./backend-python/main.py"
_, err := os.Stat(execFile)
if err != nil {
return "", err
}
if python == "" {
python, err = GetPython()
}
if err != nil {
return "", err
}
args := []string{python, "./backend-python/main.py"}
args := []string{python, execFile}
if webui {
args = append(args, "--webui")
}
if rwkvBeta {
args = append(args, "--rwkv-beta")
// args = append(args, "--rwkv-beta")
}
if rwkvcpp {
args = append(args, "--rwkv.cpp")
@ -36,41 +41,77 @@ func (a *App) StartServer(python string, port int, host string, webui bool, rwkv
}
func (a *App) StartWebGPUServer(port int, host string) (string, error) {
args := []string{"./backend-rust/webgpu_server"}
var execFile string
execFiles := []string{"./backend-rust/webgpu_server", "./backend-rust/webgpu_server.exe"}
for _, file := range execFiles {
_, err := os.Stat(file)
if err == nil {
execFile = file
break
}
}
if execFile == "" {
return "", errors.New(execFiles[0] + " not found")
}
args := []string{execFile}
args = append(args, "--port", strconv.Itoa(port), "--ip", host)
return Cmd(args...)
}
func (a *App) ConvertModel(python string, modelPath string, strategy string, outPath string) (string, error) {
var err error
execFile := "./backend-python/convert_model.py"
_, err := os.Stat(execFile)
if err != nil {
return "", err
}
if python == "" {
python, err = GetPython()
}
if err != nil {
return "", err
}
return Cmd(python, "./backend-python/convert_model.py", "--in", modelPath, "--out", outPath, "--strategy", strategy)
return Cmd(python, execFile, "--in", modelPath, "--out", outPath, "--strategy", strategy)
}
func (a *App) ConvertSafetensors(modelPath string, outPath string) (string, error) {
args := []string{"./backend-rust/web-rwkv-converter"}
var execFile string
execFiles := []string{"./backend-rust/web-rwkv-converter", "./backend-rust/web-rwkv-converter.exe"}
for _, file := range execFiles {
_, err := os.Stat(file)
if err == nil {
execFile = file
break
}
}
if execFile == "" {
return "", errors.New(execFiles[0] + " not found")
}
args := []string{execFile}
args = append(args, "--input", modelPath, "--output", outPath)
return Cmd(args...)
}
func (a *App) ConvertSafetensorsWithPython(python string, modelPath string, outPath string) (string, error) {
var err error
execFile := "./backend-python/convert_safetensors.py"
_, err := os.Stat(execFile)
if err != nil {
return "", err
}
if python == "" {
python, err = GetPython()
}
if err != nil {
return "", err
}
return Cmd(python, "./backend-python/convert_safetensors.py", "--input", modelPath, "--output", outPath)
return Cmd(python, execFile, "--input", modelPath, "--output", outPath)
}
func (a *App) ConvertGGML(python string, modelPath string, outPath string, Q51 bool) (string, error) {
var err error
execFile := "./backend-python/convert_pytorch_to_ggml.py"
_, err := os.Stat(execFile)
if err != nil {
return "", err
}
if python == "" {
python, err = GetPython()
}
@ -81,11 +122,15 @@ func (a *App) ConvertGGML(python string, modelPath string, outPath string, Q51 b
if Q51 {
dataType = "Q5_1"
}
return Cmd(python, "./backend-python/convert_pytorch_to_ggml.py", modelPath, outPath, dataType)
return Cmd(python, execFile, modelPath, outPath, dataType)
}
func (a *App) ConvertData(python string, input string, outputPrefix string, vocab string) (string, error) {
var err error
execFile := "./finetune/json2binidx_tool/tools/preprocess_data.py"
_, err := os.Stat(execFile)
if err != nil {
return "", err
}
if python == "" {
python, err = GetPython()
}
@ -129,19 +174,23 @@ func (a *App) ConvertData(python string, input string, outputPrefix string, voca
return "", err
}
return Cmd(python, "./finetune/json2binidx_tool/tools/preprocess_data.py", "--input", input, "--output-prefix", outputPrefix, "--vocab", vocab,
return Cmd(python, execFile, "--input", input, "--output-prefix", outputPrefix, "--vocab", vocab,
"--tokenizer-type", tokenizerType, "--dataset-impl", "mmap", "--append-eod")
}
func (a *App) MergeLora(python string, useGpu bool, loraAlpha int, baseModel string, loraPath string, outputPath string) (string, error) {
var err error
execFile := "./finetune/lora/merge_lora.py"
_, err := os.Stat(execFile)
if err != nil {
return "", err
}
if python == "" {
python, err = GetPython()
}
if err != nil {
return "", err
}
args := []string{python, "./finetune/lora/merge_lora.py"}
args := []string{python, execFile}
if useGpu {
args = append(args, "--use-gpu")
}
@ -157,17 +206,21 @@ func (a *App) DepCheck(python string) error {
if err != nil {
return err
}
out, err := exec.Command(python, a.exDir+"./backend-python/dep_check.py").CombinedOutput()
out, err := exec.Command(python, a.exDir+"backend-python/dep_check.py").CombinedOutput()
if err != nil {
return errors.New("DepCheck Error: " + string(out))
return errors.New("DepCheck Error: " + string(out) + " GError: " + err.Error())
}
return nil
}
func (a *App) InstallPyDep(python string, cnMirror bool) (string, error) {
var err error
torchWhlUrl := "torch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 --index-url https://download.pytorch.org/whl/cu117"
if python == "" {
python, err = GetPython()
if cnMirror && python == "py310/python.exe" {
torchWhlUrl = "https://mirrors.aliyun.com/pytorch-wheels/cu117/torch-1.13.1+cu117-cp310-cp310-win_amd64.whl"
}
if runtime.GOOS == "windows" {
python = `"%CD%/` + python + `"`
}
@ -178,14 +231,14 @@ func (a *App) InstallPyDep(python string, cnMirror bool) (string, error) {
if runtime.GOOS == "windows" {
ChangeFileLine("./py310/python310._pth", 3, "Lib\\site-packages")
installScript := python + " ./backend-python/get-pip.py -i https://pypi.tuna.tsinghua.edu.cn/simple --no-warn-script-location\n" +
python + " -m pip install torch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 --index-url https://download.pytorch.org/whl/cu117 --no-warn-script-location\n" +
python + " -m pip install -r ./backend-python/requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple --no-warn-script-location\n" +
installScript := python + " ./backend-python/get-pip.py -i https://mirrors.aliyun.com/pypi/simple --no-warn-script-location\n" +
python + " -m pip install " + torchWhlUrl + " --no-warn-script-location\n" +
python + " -m pip install -r ./backend-python/requirements.txt -i https://mirrors.aliyun.com/pypi/simple --no-warn-script-location\n" +
"exit"
if !cnMirror {
installScript = strings.Replace(installScript, " -i https://pypi.tuna.tsinghua.edu.cn/simple", "", -1)
installScript = strings.Replace(installScript, " -i https://mirrors.aliyun.com/pypi/simple", "", -1)
}
err = os.WriteFile("./install-py-dep.bat", []byte(installScript), 0644)
err = os.WriteFile(a.exDir+"install-py-dep.bat", []byte(installScript), 0644)
if err != nil {
return "", err
}
@ -193,7 +246,7 @@ func (a *App) InstallPyDep(python string, cnMirror bool) (string, error) {
}
if cnMirror {
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_without_cyac.txt", "-i", "https://pypi.tuna.tsinghua.edu.cn/simple")
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_without_cyac.txt", "-i", "https://mirrors.aliyun.com/pypi/simple")
} else {
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_without_cyac.txt")
}

View File

@ -23,14 +23,19 @@ func CmdHelper(hideWindow bool, args ...string) (*exec.Cmd, error) {
if runtime.GOOS != "windows" {
return nil, errors.New("unsupported OS")
}
filename := "./cmd-helper.bat"
_, err := os.Stat(filename)
ex, err := os.Executable()
if err != nil {
if err := os.WriteFile(filename, []byte("start %*"), 0644); err != nil {
return nil, err
}
exDir := filepath.Dir(ex) + "/"
path := exDir + "cmd-helper.bat"
_, err = os.Stat(path)
if err != nil {
if err := os.WriteFile(path, []byte("start %*"), 0644); err != nil {
return nil, err
}
}
cmdHelper, err := filepath.Abs(filename)
cmdHelper, err := filepath.Abs(path)
if err != nil {
return nil, err
}
@ -86,16 +91,18 @@ func Cmd(args ...string) (string, error) {
}
func CopyEmbed(efs embed.FS) error {
prefix := ""
ex, err := os.Executable()
if err != nil {
return err
}
var prefix string
if runtime.GOOS == "darwin" {
ex, err := os.Executable()
if err != nil {
return err
}
prefix = filepath.Dir(ex) + "/../../../"
} else {
prefix = filepath.Dir(ex) + "/"
}
err := fs.WalkDir(efs, ".", func(path string, d fs.DirEntry, err error) error {
err = fs.WalkDir(efs, ".", func(path string, d fs.DirEntry, err error) error {
if d.IsDir() {
return nil
}
@ -136,13 +143,19 @@ func CopyEmbed(efs embed.FS) error {
func GetPython() (string, error) {
switch platform := runtime.GOOS; platform {
case "windows":
_, err := os.Stat("py310/python.exe")
ex, err := os.Executable()
if err != nil {
_, err := os.Stat("python-3.10.11-embed-amd64.zip")
return "", err
}
exDir := filepath.Dir(ex) + "/"
pyexe := exDir + "py310/python.exe"
_, err = os.Stat(pyexe)
if err != nil {
_, err := os.Stat(exDir + "python-3.10.11-embed-amd64.zip")
if err != nil {
return "", errors.New("python zip not found")
} else {
err := Unzip("python-3.10.11-embed-amd64.zip", "py310")
err := Unzip(exDir+"python-3.10.11-embed-amd64.zip", exDir+"py310")
if err != nil {
return "", errors.New("failed to unzip python")
} else {

View File

@ -9,7 +9,6 @@ import (
"io"
"os"
"os/exec"
"path/filepath"
"strings"
"time"
@ -133,26 +132,20 @@ func (a *App) WslStop() error {
}
func (a *App) WslIsEnabled() error {
ex, err := os.Executable()
if err != nil {
return err
}
exDir := filepath.Dir(ex)
data, err := os.ReadFile(exDir + "/wsl.state")
data, err := os.ReadFile(a.exDir + "wsl.state")
if err == nil {
if strings.Contains(string(data), "Enabled") {
return nil
}
}
cmd := `-Command (Get-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Linux).State | Out-File -Encoding utf8 -FilePath ` + exDir + "/wsl.state"
_, err = su.ShellExecute(su.RUNAS, "powershell", cmd, exDir)
cmd := `-Command (Get-WindowsOptionalFeature -Online -FeatureName VirtualMachinePlatform).State | Out-File -Encoding utf8 -FilePath ` + a.exDir + "wsl.state"
_, err = su.ShellExecute(su.RUNAS, "powershell", cmd, a.exDir)
if err != nil {
return err
}
time.Sleep(2 * time.Second)
data, err = os.ReadFile(exDir + "/wsl.state")
data, err = os.ReadFile(a.exDir + "wsl.state")
if err != nil {
return err
}
@ -164,13 +157,13 @@ func (a *App) WslIsEnabled() error {
}
func (a *App) WslEnable(forceMode bool) error {
cmd := `/online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux`
cmd := `/online /enable-feature /featurename:VirtualMachinePlatform`
_, err := su.ShellExecute(su.RUNAS, "dism", cmd, `C:\`)
if err != nil {
return err
}
if forceMode {
os.WriteFile("./wsl.state", []byte("Enabled"), 0644)
os.WriteFile(a.exDir+"wsl.state", []byte("Enabled"), 0644)
}
return nil
}

View File

@ -54,19 +54,21 @@ def convert_file(pt_filename: str, sf_filename: str, rename={}, transpose_names=
loaded[k].unsqueeze(1).repeat(1, n_emb // loaded[k].shape[0])
)
for k in kk:
new_k = rename_key(rename, k).lower()
v = loaded[k].half()
del loaded[k]
for transpose_name in transpose_names:
if transpose_name in k:
v = v.transpose(0, 1)
print(f"{new_k}\t{v.shape}\t{v.dtype}")
loaded[new_k] = {
"dtype": str(v.dtype).split(".")[-1],
"shape": v.shape,
"data": v.numpy().tobytes(),
}
with torch.no_grad():
for k in kk:
new_k = rename_key(rename, k).lower()
v = loaded[k].half()
del loaded[k]
for transpose_name in transpose_names:
if transpose_name in new_k:
dims = len(v.shape)
v = v.transpose(dims - 2, dims - 1)
print(f"{new_k}\t{v.shape}\t{v.dtype}")
loaded[new_k] = {
"dtype": str(v.dtype).split(".")[-1],
"shape": v.shape,
"data": v.numpy().tobytes(),
}
dirname = os.path.dirname(sf_filename)
os.makedirs(dirname, exist_ok=True)
@ -100,6 +102,8 @@ if __name__ == "__main__":
"time_mix_w2",
"time_decay_w1",
"time_decay_w2",
"time_state",
"lora.0",
],
)
print(f"Saved to {args.output}")

View File

@ -1,3 +1,8 @@
import setuptools
if setuptools.__version__ >= "70.0.0":
raise ImportError("setuptools>=70.0.0 is not supported")
import multipart
import fitz
import safetensors
@ -7,7 +12,6 @@ import lm_dataformat
import ftfy
import tqdm
import tiktoken
import GPUtil
import torch
import rwkv

View File

@ -5,6 +5,7 @@ Model = "model"
Model_Status = "model_status"
Model_Config = "model_config"
Deploy_Mode = "deploy_mode"
Midi_Vocab_Config_Type = "midi_vocab_config_type"
class ModelStatus(Enum):
@ -13,11 +14,17 @@ class ModelStatus(Enum):
Working = 3
class MidiVocabConfig(Enum):
Default = auto()
Piano = auto()
def init():
global GLOBALS
GLOBALS = {}
set(Model_Status, ModelStatus.Offline)
set(Deploy_Mode, False)
set(Midi_Vocab_Config_Type, MidiVocabConfig.Default)
def set(key, value):

View File

@ -27,11 +27,6 @@ def get_args(args: Union[Sequence[str], None] = None):
action="store_true",
help="whether to enable WebUI (default: False)",
)
group.add_argument(
"--rwkv-beta",
action="store_true",
help="whether to use rwkv-beta (default: False)",
)
group.add_argument(
"--rwkv.cpp",
action="store_true",

View File

@ -1,9 +1,10 @@
torch
torchvision
torchaudio
rwkv==0.8.22
setuptools==69.5.1
rwkv==0.8.26
langchain==0.0.322
fastapi==0.104.0
fastapi==0.109.1
uvicorn==0.23.2
sse-starlette==1.6.5
pydantic==2.4.2
@ -19,7 +20,7 @@ midi2audio==0.1.1
mido==1.3.0
safetensors==0.4.0
PyMuPDF==1.23.5
python-multipart==0.0.6
python-multipart==0.0.7
Cython==3.0.4
cyac==1.9
torch_directml==0.1.13.1.dev230413
torch-directml==0.1.13.1.dev230413

View File

@ -1,9 +1,10 @@
torch
torchvision
torchaudio
rwkv==0.8.22
setuptools==69.5.1
rwkv==0.8.26
langchain==0.0.322
fastapi==0.104.0
fastapi==0.109.1
uvicorn==0.23.2
sse-starlette==1.6.5
pydantic==2.4.2
@ -19,5 +20,5 @@ midi2audio==0.1.1
mido==1.3.0
safetensors==0.4.0
PyMuPDF==1.23.5
python-multipart==0.0.6
python-multipart==0.0.7
Cython==3.0.4

View File

@ -4,6 +4,7 @@ from threading import Lock
from typing import List, Union
from enum import Enum
import base64
import time
from fastapi import APIRouter, Request, status, HTTPException
from sse_starlette.sse import EventSourceResponse
@ -53,8 +54,11 @@ class ChatCompletionBody(ModelConfigBody):
assistant_name: Union[str, None] = Field(
None, description="Internal assistant name", min_length=1
)
system_name: Union[str, None] = Field(
None, description="Internal system name", min_length=1
)
presystem: bool = Field(
True, description="Whether to insert default system prompt at the beginning"
False, description="Whether to insert default system prompt at the beginning"
)
model_config = {
@ -68,12 +72,13 @@ class ChatCompletionBody(ModelConfigBody):
"stop": None,
"user_name": None,
"assistant_name": None,
"system_name": None,
"presystem": True,
"max_tokens": 1000,
"temperature": 1.2,
"top_p": 0.5,
"presence_penalty": 0.4,
"frequency_penalty": 0.4,
"temperature": 1,
"top_p": 0.3,
"presence_penalty": 0,
"frequency_penalty": 1,
}
}
}
@ -94,10 +99,10 @@ class CompletionBody(ModelConfigBody):
"stream": False,
"stop": None,
"max_tokens": 100,
"temperature": 1.2,
"top_p": 0.5,
"presence_penalty": 0.4,
"frequency_penalty": 0.4,
"temperature": 1,
"top_p": 0.3,
"presence_penalty": 0,
"frequency_penalty": 1,
}
}
}
@ -144,39 +149,57 @@ async def eval_rwkv(
return
set_rwkv_config(model, global_var.get(global_var.Model_Config))
set_rwkv_config(model, body)
print(get_rwkv_config(model))
response, prompt_tokens, completion_tokens = "", 0, 0
completion_start_time = None
for response, delta, prompt_tokens, completion_tokens in model.generate(
prompt,
stop=stop,
):
if not completion_start_time:
completion_start_time = time.time()
if await request.is_disconnected():
break
if stream:
yield json.dumps(
{
"object": "chat.completion.chunk"
if chat_mode
else "text_completion",
"object": (
"chat.completion.chunk"
if chat_mode
else "text_completion"
),
# "response": response,
"model": model.name,
"id": "chatcmpl-123",
"system_fingerprint": "fp_44709d6fcb",
"choices": [
{
"delta": {"content": delta},
"index": 0,
"finish_reason": None,
}
if chat_mode
else {
"text": delta,
"index": 0,
"finish_reason": None,
}
(
{
"delta": {"role":Role.Assistant.value,"content": delta},
"index": 0,
"finish_reason": None,
"logprobs":None
}
if chat_mode
else {
"text": delta,
"index": 0,
"finish_reason": None,
}
)
],
}
)
# torch_gc()
requests_num = requests_num - 1
completion_end_time = time.time()
completion_interval = completion_end_time - completion_start_time
tps = 0
if completion_interval > 0:
tps = completion_tokens / completion_interval
print(f"Generation TPS: {tps:.2f}")
if await request.is_disconnected():
print(f"{request.client} Stop Waiting")
quick_log(
@ -193,23 +216,28 @@ async def eval_rwkv(
if stream:
yield json.dumps(
{
"object": "chat.completion.chunk"
if chat_mode
else "text_completion",
"object": (
"chat.completion.chunk" if chat_mode else "text_completion"
),
# "response": response,
"model": model.name,
"id": "chatcmpl-123",
"system_fingerprint": "fp_44709d6fcb",
"choices": [
{
"delta": {},
"index": 0,
"finish_reason": "stop",
}
if chat_mode
else {
"text": "",
"index": 0,
"finish_reason": "stop",
}
(
{
"delta": {},
"index": 0,
"logprobs": None,
"finish_reason": "stop",
}
if chat_mode
else {
"text": "",
"index": 0,
"finish_reason": "stop",
}
)
],
}
)
@ -225,38 +253,29 @@ async def eval_rwkv(
"total_tokens": prompt_tokens + completion_tokens,
},
"choices": [
{
"message": {
"role": Role.Assistant.value,
"content": response,
},
"index": 0,
"finish_reason": "stop",
}
if chat_mode
else {
"text": response,
"index": 0,
"finish_reason": "stop",
}
(
{
"message": {
"role": Role.Assistant.value,
"content": response,
},
"index": 0,
"finish_reason": "stop",
}
if chat_mode
else {
"text": response,
"index": 0,
"finish_reason": "stop",
}
)
],
}
@router.post("/v1/chat/completions", tags=["Completions"])
@router.post("/chat/completions", tags=["Completions"])
async def chat_completions(body: ChatCompletionBody, request: Request):
model: TextRWKV = global_var.get(global_var.Model)
if model is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "model not loaded")
if body.messages is None or body.messages == []:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "messages not found")
interface = model.interface
user = model.user if body.user_name is None else body.user_name
bot = model.bot if body.assistant_name is None else body.assistant_name
def chat_template_old(
model: TextRWKV, body: ChatCompletionBody, interface: str, user: str, bot: str
):
is_raven = model.rwkv_type == RWKVType.Raven
completion_text: str = ""
@ -325,6 +344,53 @@ The following is a coherent verbose detailed conversation between a girl named {
completion_text += append_message + "\n\n"
completion_text += f"{bot}{interface}"
return completion_text
def chat_template(
model: TextRWKV, body: ChatCompletionBody, interface: str, user: str, bot: str
):
completion_text: str = ""
if body.presystem:
completion_text = (
f"{user}{interface} hi\n\n{bot}{interface} Hi. "
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
)
system = "System" if body.system_name is None else body.system_name
for message in body.messages:
append_message: str = ""
if message.role == Role.User:
append_message = f"{user}{interface} " + message.content
elif message.role == Role.Assistant:
append_message = f"{bot}{interface} " + message.content
elif message.role == Role.System:
append_message = f"{system}{interface} " + message.content
completion_text += append_message + "\n\n"
completion_text += f"{bot}{interface}"
return completion_text
@router.post("/v1/chat/completions", tags=["Completions"])
@router.post("/chat/completions", tags=["Completions"])
async def chat_completions(body: ChatCompletionBody, request: Request):
model: TextRWKV = global_var.get(global_var.Model)
if model is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "model not loaded")
if body.messages is None or body.messages == []:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "messages not found")
interface = model.interface
user = model.user if body.user_name is None else body.user_name
bot = model.bot if body.assistant_name is None else body.assistant_name
if model.version < 5:
completion_text = chat_template_old(model, body, interface, user, bot)
else:
completion_text = chat_template(model, body, interface, user, bot)
user_code = model.pipeline.decode([model.pipeline.encode(user)[0]])
bot_code = model.pipeline.decode([model.pipeline.encode(bot)[0]])
if type(body.stop) == str:
@ -333,9 +399,9 @@ The following is a coherent verbose detailed conversation between a girl named {
body.stop.append(f"\n\n{user_code}")
body.stop.append(f"\n\n{bot_code}")
elif body.stop is None:
body.stop = default_stop
if not body.presystem:
body.stop.append("\n\n")
body.stop = default_stop + [f"\n\n{user_code}", f"\n\n{bot_code}"]
# if not body.presystem:
# body.stop.append("\n\n")
if body.stream:
return EventSourceResponse(

View File

@ -86,32 +86,58 @@ def switch_model(body: SwitchModelBody, response: Response, request: Request):
if body.deploy:
global_var.set(global_var.Deploy_Mode, True)
if global_var.get(global_var.Model_Config) is None:
global_var.set(
global_var.Model_Config, get_rwkv_config(global_var.get(global_var.Model))
)
saved_model_config = global_var.get(global_var.Model_Config)
init_model_config = get_rwkv_config(global_var.get(global_var.Model))
if saved_model_config is not None:
merge_model(init_model_config, saved_model_config)
global_var.set(global_var.Model_Config, init_model_config)
global_var.set(global_var.Model_Status, global_var.ModelStatus.Working)
return "success"
def merge_model(to_model: BaseModel, from_model: BaseModel):
from_model_fields = [x for x in from_model.dict().keys()]
to_model_fields = [x for x in to_model.dict().keys()]
for field_name in from_model_fields:
if field_name in to_model_fields:
from_value = getattr(from_model, field_name)
if from_value is not None:
setattr(to_model, field_name, from_value)
@router.post("/update-config", tags=["Configs"])
def update_config(body: ModelConfigBody):
"""
Will not update the model config immediately, but set it when completion called to avoid modifications during generation
"""
print(body)
global_var.set(global_var.Model_Config, body)
model_config = global_var.get(global_var.Model_Config)
if model_config is None:
model_config = ModelConfigBody()
global_var.set(global_var.Model_Config, model_config)
merge_model(model_config, body)
exception = load_rwkv_state(
global_var.get(global_var.Model), model_config.state, True
)
if exception is not None:
raise exception
print("Updated Model Config:", model_config)
return "success"
@router.get("/status", tags=["Configs"])
def status():
import GPUtil
try:
import GPUtil
gpus = GPUtil.getGPUs()
gpus = GPUtil.getGPUs()
except:
gpus = []
if len(gpus) == 0:
device_name = "CPU"
else:

View File

@ -23,7 +23,11 @@ class TextToMidiBody(BaseModel):
@router.post("/text-to-midi", tags=["MIDI"])
def text_to_midi(body: TextToMidiBody):
vocab_config = "backend-python/utils/midi_vocab_config.json"
vocab_config_type = global_var.get(global_var.Midi_Vocab_Config_Type)
if vocab_config_type == global_var.MidiVocabConfig.Piano:
vocab_config = "backend-python/utils/vocab_config_piano.json"
else:
vocab_config = "backend-python/utils/midi_vocab_config.json"
cfg = VocabConfig.from_json(vocab_config)
mid = convert_str_to_midi(cfg, body.text.strip())
mid_data = io.BytesIO()
@ -35,7 +39,11 @@ def text_to_midi(body: TextToMidiBody):
@router.post("/midi-to-text", tags=["MIDI"])
async def midi_to_text(file_data: UploadFile):
vocab_config = "backend-python/utils/midi_vocab_config.json"
vocab_config_type = global_var.get(global_var.Midi_Vocab_Config_Type)
if vocab_config_type == global_var.MidiVocabConfig.Piano:
vocab_config = "backend-python/utils/vocab_config_piano.json"
else:
vocab_config = "backend-python/utils/midi_vocab_config.json"
cfg = VocabConfig.from_json(vocab_config)
filter_config = "backend-python/utils/midi_filter_config.json"
filter_cfg = FilterConfig.from_json(filter_config)
@ -69,7 +77,11 @@ def txt_to_midi(body: TxtToMidiBody):
if not body.midi_path.startswith("midi/"):
raise HTTPException(status.HTTP_400_BAD_REQUEST, "bad output path")
vocab_config = "backend-python/utils/midi_vocab_config.json"
vocab_config_type = global_var.get(global_var.Midi_Vocab_Config_Type)
if vocab_config_type == global_var.MidiVocabConfig.Piano:
vocab_config = "backend-python/utils/vocab_config_piano.json"
else:
vocab_config = "backend-python/utils/midi_vocab_config.json"
cfg = VocabConfig.from_json(vocab_config)
with open(body.txt_path, "r") as f:
text = f.read()

View File

@ -76,6 +76,33 @@ class AddStateBody(BaseModel):
logits: Any
def copy_tensor_to_cpu(tensors):
import torch
import numpy as np
devices: List[torch.device] = []
copied: Union[Any, None] = None
tensors_type = type(tensors)
if tensors_type == list:
if hasattr(tensors[0], "device"): # torch state
devices = [tensor.device for tensor in tensors]
copied = [tensor.cpu() for tensor in tensors]
else: # WebGPU logits
copied = tensors
elif tensors_type == torch.Tensor: # torch logits
devices = [tensors.device]
copied = tensors.cpu()
elif tensors_type == np.ndarray: # rwkv.cpp
copied = tensors
else: # WebGPU state
model = global_var.get(global_var.Model)
if model:
copied = model.model.model.back_state()
return copied, devices
# @router.post("/add-state", tags=["State Cache"])
def add_state(body: AddStateBody):
global trie, dtrie, loop_del_trie_id
@ -91,23 +118,24 @@ def add_state(body: AddStateBody):
try:
devices: List[torch.device] = []
logits_device: Union[torch.device, None] = None
state: Union[Any, None] = None
logits: Union[Any, None] = None
if body.state is not None:
if type(body.state) == list and hasattr(body.state[0], "device"): # torch
devices = [tensor.device for tensor in body.state]
state = [tensor.cpu() for tensor in body.state]
elif type(body.state) == np.ndarray: # rwkv.cpp
state = body.state
else: # WebGPU
state = body.state.back()
state, devices = copy_tensor_to_cpu(body.state)
if body.logits is not None:
logits, logits_devices = copy_tensor_to_cpu(body.logits)
if len(logits_devices) > 0:
logits_device = logits_devices[0]
id: int = trie.insert(body.prompt)
dtrie[id] = {
"tokens": body.tokens,
"state": state,
"logits": body.logits,
"logits": logits,
"devices": devices,
"logits_device": logits_device,
}
if len(trie) >= max_trie_len:
@ -125,6 +153,7 @@ def add_state(body: AddStateBody):
)
return "success"
except Exception as e:
print(e) # should not happen
raise HTTPException(
status.HTTP_400_BAD_REQUEST, f"insert failed, bad prompt.\n{e}"
)
@ -149,6 +178,19 @@ def reset_state():
return "success"
def force_reset_state():
global trie, dtrie
if trie is None:
return
import cyac
trie = cyac.Trie()
dtrie = {}
gc.collect()
class LongestPrefixStateBody(BaseModel):
prompt: str
@ -192,18 +234,38 @@ def longest_prefix_state(body: LongestPrefixStateBody, request: Request):
if id != -1:
prompt: str = trie[id]
v = dtrie[id]
tokens: List[Union[str, int]] = copy.deepcopy(v["tokens"])
devices: List[torch.device] = v["devices"]
logits_device: Union[torch.device, None] = v["logits_device"]
state: Union[Any, None] = v["state"]
logits: Union[Any, None] = v["logits"]
if type(state) == list and hasattr(state[0], "device"): # torch
state = [tensor.to(devices[i]) for i, tensor in enumerate(state)]
state_type = type(state)
if state_type == list and hasattr(state[0], "device"): # torch
state = [
(
tensor.to(devices[i])
if devices[i] != torch.device("cpu")
else tensor.clone()
)
for i, tensor in enumerate(state)
]
logits = (
logits.to(logits_device)
if logits_device != torch.device("cpu")
else logits.clone()
)
elif state_type == np.ndarray: # rwkv.cpp
logits = np.copy(logits)
else: # WebGPU
logits = np.copy(logits)
quick_log(request, body, "Hit:\n" + prompt)
return {
"prompt": prompt,
"tokens": v["tokens"],
"tokens": tokens,
"state": state,
"logits": v["logits"],
"logits": logits,
}
else:
return {"prompt": "", "tokens": [], "state": None, "logits": None}

View File

@ -1,124 +0,0 @@
#include "ATen/ATen.h"
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <torch/extension.h>
#include "element_wise.h"
#include "util.h"
// Equivalent Python code:
// ww = t_first + k
// p = torch.maximum(pp, ww)
// e1 = torch.exp(pp - p)
// e2 = torch.exp(ww - p)
// wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
// ww = t_decay + pp
// p = torch.maximum(ww, k)
// e1 = torch.exp(ww - p)
// e2 = torch.exp(k - p)
// t1 = e1 * aa + e2 * v
// t2 = e1 * bb + e2
// r = r * wkv
// return t1, t2, p, r
struct WkvForwardOne {
const float *t_first;
const float *k;
const float *pp;
const float *aa;
const float *bb;
const float *t_decay;
const float *v;
/* out */ float *t1;
/* out */ float *t2;
/* out */ float *p;
/* in & out */ half *r;
__device__ void operator()(int i) const {
float ww = t_first[i] + k[i];
float pp_ = pp[i];
float p_ = (pp_ > ww) ? pp_ : ww;
float e1 = expf(pp_ - p_);
float e2 = expf(ww - p_);
float aa_ = aa[i];
float bb_ = bb[i];
float v_ = v[i];
r[i] = __hmul(r[i], __float2half(((e1 * aa_ + e2 * v_) / (e1 * bb_ + e2))));
ww = t_decay[i] + pp_;
float k_ = k[i];
p_ = (ww > k_) ? ww : k_;
e1 = expf(ww - p_);
e2 = expf(k_ - p_);
t1[i] = e1 * aa_ + e2 * v_;
t2[i] = e1 * bb_ + e2;
p[i] = p_;
}
};
/*
Equivalent Python code:
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
*/
struct Mix {
const half *xx;
const half *sx;
const half *k_mix;
const half *v_mix;
const half *r_mix;
/* out */ half *kx;
/* out */ half *vx;
/* out */ half *rx;
__device__ void operator()(int i) const {
half xx_ = xx[i];
half sx_ = sx[i];
half k_mix_ = k_mix[i];
half v_mix_ = v_mix[i];
half r_mix_ = r_mix[i];
kx[i] = __hadd(__hmul(xx_, k_mix_),
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
vx[i] = __hadd(__hmul(xx_, v_mix_),
__hmul(sx_, __hsub(__float2half(1), v_mix_)));
rx[i] = __hadd(__hmul(xx_, r_mix_),
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
}
};
using torch::Tensor;
void gemm_fp16_cublas_tensor(Tensor a, Tensor b, Tensor c);
Tensor att_one(Tensor x, Tensor ln_w, Tensor ln_b, Tensor sx, Tensor k_mix,
Tensor v_mix, Tensor r_mix, Tensor kw,
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx, Tensor rw,
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
/* imm */ Tensor k, Tensor pp, Tensor ww, Tensor aa, Tensor bb,
Tensor t_decay, /* imm */ Tensor v, /* in & out */ Tensor r,
/* out */ Tensor x_plus_out, /* out */ Tensor t1,
/* out */ Tensor t2, /* out */ Tensor p) {
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
element_wise(Mix{data_ptr<half>(xx), data_ptr<half>(sx),
data_ptr<half>(k_mix), data_ptr<half>(v_mix),
data_ptr<half>(r_mix), data_ptr<half>(kx),
data_ptr<half>(vx), data_ptr<half>(rx)},
x.numel());
gemm_fp16_cublas_tensor(kx, kw, k);
gemm_fp16_cublas_tensor(vx, vw, v);
gemm_fp16_cublas_tensor(rx, rw, r);
at::sigmoid_(r);
element_wise(WkvForwardOne{data_ptr<float>(t_first), data_ptr<float>(k),
data_ptr<float>(pp), data_ptr<float>(aa),
data_ptr<float>(bb), data_ptr<float>(t_decay),
data_ptr<float>(v), data_ptr<float>(t1),
data_ptr<float>(t2), data_ptr<float>(p),
data_ptr<half>(r)},
x.numel());
gemm_fp16_cublas_tensor(r, ow, x_plus_out);
x_plus_out += x;
return xx;
}

View File

@ -1,109 +0,0 @@
#include "ATen/ATen.h"
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <torch/extension.h>
#include "element_wise.h"
#include "util.h"
// Equivalent Python code:
// s1 = t_first * a + s
// s2 = a + t_decay * s
struct Fused1 {
const float *t_first;
const float *t_decay;
const float *a;
const float *s;
const int32_t inner_size;
/* out */ float *s1;
/* out */ float *s2;
__device__ void operator()(int i) const {
const int j = i / inner_size;
s1[i] = t_first[j] * a[i] + s[i];
s2[i] = a[i] + t_decay[j] * s[i];
}
};
/*
Equivalent Python code:
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
*/
struct Mix {
const half *xx;
const half *sx;
const half *k_mix;
const half *v_mix;
const half *r_mix;
/* out */ half *kx;
/* out */ half *vx;
/* out */ half *rx;
__device__ void operator()(int i) const {
half xx_ = xx[i];
half sx_ = sx[i];
half k_mix_ = k_mix[i];
half v_mix_ = v_mix[i];
half r_mix_ = r_mix[i];
kx[i] = __hadd(__hmul(xx_, k_mix_),
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
vx[i] = __hadd(__hmul(xx_, v_mix_),
__hmul(sx_, __hsub(__float2half(1), v_mix_)));
rx[i] = __hadd(__hmul(xx_, r_mix_),
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
}
};
using torch::Tensor;
void gemm_fp16_cublas_tensor(Tensor a, Tensor b, Tensor c);
Tensor att_one_v5(Tensor x, Tensor sx, Tensor s, Tensor ln_w, Tensor ln_b,
Tensor lx_w, Tensor lx_b, Tensor k_mix, Tensor v_mix,
Tensor r_mix, Tensor kw,
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx,
Tensor rw,
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
/* imm */ Tensor k, Tensor t_decay, /* imm */ Tensor v,
/* imm */ Tensor r, /* imm */ Tensor s1,
/* out */ Tensor x_plus_out, /* out */ Tensor s2) {
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
element_wise(Mix{data_ptr<half>(xx), data_ptr<half>(sx),
data_ptr<half>(k_mix), data_ptr<half>(v_mix),
data_ptr<half>(r_mix), data_ptr<half>(kx),
data_ptr<half>(vx), data_ptr<half>(rx)},
x.numel());
int H = t_decay.size(0);
int S = x.size(-1) / H;
gemm_fp16_cublas_tensor(rx, rw, r);
r = at::reshape(r, {H, 1, S});
gemm_fp16_cublas_tensor(kx, kw, k);
k = at::reshape(k, {H, S, 1});
gemm_fp16_cublas_tensor(vx, vw, v);
v = at::reshape(v, {H, 1, S});
{
Tensor a = at::matmul(k, v);
// s1 = t_first * a + s
// s2 = a + t_decay * s
element_wise(Fused1{data_ptr<float>(t_first), data_ptr<float>(t_decay),
data_ptr<float>(a), data_ptr<float>(s),
static_cast<int32_t>(a.size(1) * a.size(2)),
data_ptr<float>(s1), data_ptr<float>(s2)},
a.numel());
}
Tensor out = at::matmul(r, s1);
out = at::flatten(out);
out = at::squeeze(at::group_norm(at::unsqueeze(out, 0), H, lx_w, lx_b), 0);
out = at::_cast_Half(out);
gemm_fp16_cublas_tensor(out, ow, x_plus_out);
x_plus_out += x;
return xx;
}

View File

@ -1,178 +0,0 @@
#include "ATen/ATen.h"
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <torch/extension.h>
#include "util.h"
#include "element_wise.h"
using torch::Tensor;
void gemm_fp16_cublas(const void *a, const void *b, void *c, int m,
int n, int k, bool output_fp32);
// based on `kernel_wkv_forward`, fusing more operations
__global__ void kernel_wkv_forward_new(
const int B, const int T, const int C, const float *__restrict__ const _w,
const float *__restrict__ const _u, const float *__restrict__ const _k,
const float *__restrict__ const _v, const half *__restrict__ const r,
half *__restrict__ const _y, float *__restrict__ const _aa,
float *__restrict__ const _bb, float *__restrict__ const _pp) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
const int _state_offset = _b * C + _c;
float u = _u[_c];
float w = _w[_c];
const float *__restrict__ const k = _k + _offset;
const float *__restrict__ const v = _v + _offset;
half *__restrict__ const y = _y + _offset;
float aa = _aa[_state_offset];
float bb = _bb[_state_offset];
float pp = _pp[_state_offset];
for (int i = 0; i < T; i++) {
const int ii = i * C;
const float kk = k[ii];
const float vv = v[ii];
float ww = u + kk;
float p = max(pp, ww);
float e1 = exp(pp - p);
float e2 = exp(ww - p);
y[ii] = __float2half((e1 * aa + e2 * vv) / (e1 * bb + e2));
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
_aa[_state_offset] = aa;
_bb[_state_offset] = bb;
_pp[_state_offset] = pp;
}
void cuda_wkv_forward_new(int B, int T, int C, float *w, float *u, float *k,
float *v, half *r, half *y, float *aa, float *bb,
float *pp) {
dim3 threadsPerBlock(min(C, 32));
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_wkv_forward_new<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, r,
y, aa, bb, pp);
}
__global__ void _att_mix(const half *xx, const half *sx, const half *k_mix,
const half *v_mix, const half *r_mix,
const int outer_size, const int inner_size, half *kx,
half *vx, half *rx) {
for (int idx2 = blockIdx.x * blockDim.x + threadIdx.x; idx2 < inner_size;
idx2 += blockDim.x * gridDim.x) {
half k_mix_ = k_mix[idx2];
half v_mix_ = v_mix[idx2];
half r_mix_ = r_mix[idx2];
for (int row = 0; row < outer_size; ++row) {
int idx1 = row * inner_size + idx2;
half xx_ = xx[idx1];
half sx_ = sx[idx1];
kx[idx1] = __hadd(__hmul(xx_, k_mix_),
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
vx[idx1] = __hadd(__hmul(xx_, v_mix_),
__hmul(sx_, __hsub(__float2half(1), v_mix_)));
rx[idx1] = __hadd(__hmul(xx_, r_mix_),
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
}
}
}
void att_mix(const half *xx, const half *sx, const half *k_mix,
const half *v_mix, const half *r_mix, const int outer_size,
const int inner_size, half *kx, half *vx, half *rx) {
// 256 is good enough on most GPUs
const int32_t BLOCK_SIZE = 256;
assert(inner_size % BLOCK_SIZE == 0);
_att_mix<<<inner_size / BLOCK_SIZE, BLOCK_SIZE>>>(
xx, sx, k_mix, v_mix, r_mix, outer_size, inner_size, kx, vx, rx);
}
struct InplaceSigmoid {
__device__ __forceinline__ half operator()(int i) const {
ptr[i] = __float2half(1.0 / (1.0 + exp(-__half2float(ptr[i]))));
}
half *ptr;
};
struct InplaceMul {
__device__ __forceinline__ half operator()(int i) const {
y[i] = __hmul(x[i], y[i]);
}
half *y;
half *x;
};
/*
Equivalent Python code:
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(gemm(rx, rw))
k = gemm(kx, kw, output_dtype=torch.float32)
v = gemm(vx, vw, output_dtype=torch.float32)
T = x.shape[0]
for t in range(T):
kk = k[t]
vv = v[t]
ww = t_first + kk
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
ww = t_decay + pp
p = torch.maximum(ww, kk)
e1 = torch.exp(ww - p)
e2 = torch.exp(kk - p)
aa = e1 * aa + e2 * vv
bb = e1 * bb + e2
pp = p
out = gemm(r * sx, ow)
return x + out, xx[-1,:], aa, bb, pp
*/
Tensor att_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
Tensor v_mix, Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
Tensor ow, Tensor t_first, Tensor pp, Tensor aa, Tensor bb,
Tensor t_decay, /* imm */ Tensor buf, /* out */ Tensor x_plus_out) {
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
sx = at::cat({sx.unsqueeze(0), xx.slice(0, 0, -1)}, 0);
char* buf_ptr = (char*)buf.data_ptr();
half* kx = (half*)buf_ptr;
half* vx = kx + x.numel();
half* rx = vx + x.numel();
half* wkv_y = rx + x.numel();
att_mix(data_ptr<half>(xx), data_ptr<half>(sx), data_ptr<half>(k_mix),
data_ptr<half>(v_mix), data_ptr<half>(r_mix), xx.size(0), xx.size(1),
kx, vx, rx);
float* k = reinterpret_cast<float*>(wkv_y + x.numel());
float* v = k + x.size(0) * kw.size(1);
half* r = reinterpret_cast<half*>(v + x.size(0) * vw.size(1));
gemm_fp16_cublas(kx, kw.data_ptr(), k, x.size(0), kw.size(1), kw.size(0), true);
gemm_fp16_cublas(vx, vw.data_ptr(), v, x.size(0), vw.size(1), vw.size(0), true);
gemm_fp16_cublas(rx, rw.data_ptr(), r, x.size(0), rw.size(1), rw.size(0), false);
element_wise(InplaceSigmoid{r}, x.size(0) * rw.size(1));
cuda_wkv_forward_new(1, x.size(0), x.size(1), data_ptr<float>(t_decay),
data_ptr<float>(t_first), k, v, r,
wkv_y, data_ptr<float>(aa),
data_ptr<float>(bb), data_ptr<float>(pp));
element_wise(InplaceMul{wkv_y, r}, x.numel());
gemm_fp16_cublas(wkv_y, ow.data_ptr(), x_plus_out.data_ptr(), x.size(0), ow.size(1), ow.size(0), false);
x_plus_out += x;
return xx;
}

View File

@ -1,21 +0,0 @@
#include <cassert>
#include <cstddef>
#include <cstdint>
template <typename Func> __global__ void _element_wise(Func func, int n) {
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n;
i += blockDim.x * gridDim.x) {
func(i);
}
}
// NOTE: packed data type (e.g. float4) is a overkill for current sizes
// (4096 in 7B model and 768 in 0.1B model),
// and is not faster than the plain float version.
template <typename Func>
void element_wise(Func func, int n) {
// 256 is good enough on most GPUs
const int32_t BLOCK_SIZE = 256;
assert(n % BLOCK_SIZE == 0);
_element_wise<<<n / BLOCK_SIZE, BLOCK_SIZE>>>(func, n);
}

View File

@ -1,165 +0,0 @@
#include "ATen/ATen.h"
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <torch/extension.h>
#include "element_wise.h"
#include "util.h"
using torch::Tensor;
void gemm_fp16_cublas(const void *a, const void *b, void *c, int ori_m,
int ori_n, int ori_k, bool output_fp32);
__global__ void _ffn_seq_mix(const half *xx, const half *sx, const half *k_mix,
const half *r_mix, const int outer_size,
const int inner_size, half *kx, half *rx) {
for (int idx2 = blockIdx.x * blockDim.x + threadIdx.x; idx2 < inner_size;
idx2 += blockDim.x * gridDim.x) {
half k_mix_ = k_mix[idx2];
half r_mix_ = r_mix[idx2];
for (int row = 0; row < outer_size; ++row) {
int idx1 = row * inner_size + idx2;
half xx_ = xx[idx1];
half sx_ = sx[idx1];
kx[idx1] = __hadd(__hmul(xx_, k_mix_),
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
rx[idx1] = __hadd(__hmul(xx_, r_mix_),
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
}
}
}
void ffn_seq_mix(const half *xx, const half *sx, const half *k_mix,
const half *r_mix, const int outer_size, const int inner_size,
half *kx, half *rx) {
// 256 is good enough on most GPUs
const int32_t BLOCK_SIZE = 256;
assert(inner_size % BLOCK_SIZE == 0);
_ffn_seq_mix<<<inner_size / BLOCK_SIZE, BLOCK_SIZE>>>(
xx, sx, k_mix, r_mix, outer_size, inner_size, kx, rx);
}
struct InplaceSigmoid {
__device__ __forceinline__ void operator()(int i) const {
ptr[i] = __float2half(1.0 / (1.0 + exp(-__half2float(ptr[i]))));
}
half *ptr;
};
struct InplaceReLUAndSquare {
__device__ __forceinline__ void operator()(int i) const {
// __hmax is not defined in old cuda
if (__hgt(ptr[i], __float2half(0))) {
ptr[i] = __hmul(ptr[i], ptr[i]);
} else {
ptr[i] = __float2half(0);
}
}
half *ptr;
};
struct InplaceFma {
__device__ __forceinline__ void operator()(int i) const {
a[i] = __hfma(a[i], b[i], c[i]);
}
half *a;
const half *b;
const half *c;
};
/*
Equivalent Python code:
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
kx = xx * k_mix + sx * (1 - k_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(gemm(rx, rw))
vx = torch.square(torch.relu(gemm(kx, kw)))
out = r * gemm(vx, vw)
return x + out, xx[-1,:]
*/
Tensor ffn_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
/* imm */ Tensor buf,
/* out */ Tensor x_plus_out) {
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
sx = at::cat({sx.unsqueeze(0), xx.slice(0, 0, -1)}, 0);
char *buf_ptr = (char *)buf.data_ptr();
half *kx = (half *)buf_ptr;
half *rx = kx + x.numel();
half *vx = rx + x.numel();
half *r = vx + x.size(0) * kw.size(1);
ffn_seq_mix(data_ptr<half>(xx), data_ptr<half>(sx), data_ptr<half>(k_mix),
data_ptr<half>(r_mix), xx.size(0), xx.size(1), kx, rx);
gemm_fp16_cublas(rx, rw.data_ptr(), r, x.size(0), rw.size(1), x.size(1),
false);
element_wise(InplaceSigmoid{r}, x.size(0) * rw.size(1));
gemm_fp16_cublas(kx, kw.data_ptr(), vx, x.size(0), kw.size(1), x.size(1),
false);
element_wise(InplaceReLUAndSquare{vx}, x.size(0) * kw.size(1));
gemm_fp16_cublas(vx, vw.data_ptr(), x_plus_out.data_ptr(), x.size(0),
vw.size(1), vw.size(0), false);
element_wise(InplaceFma{data_ptr<half>(x_plus_out), r, data_ptr<half>(x)},
x_plus_out.numel());
return xx;
}
struct FfnOneMix {
__device__ __forceinline__ void operator()(int idx) {
half k_mix_ = k_mix[idx];
half r_mix_ = r_mix[idx];
half xx_ = xx[idx];
half sx_ = sx[idx];
kx[idx] = __hadd(__hmul(xx_, k_mix_),
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
rx[idx] = __hadd(__hmul(xx_, r_mix_),
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
}
half *k_mix;
half *r_mix;
half *xx;
half *sx;
half *kx;
half *rx;
};
/*
Equivalent Python code:
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(gemm(rx, rw))
vx = torch.square(torch.relu(gemm(kx, kw)))
out = r * gemm(vx, vw)
return x + out, xx
*/
Tensor ffn_one(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
/* imm */ Tensor buf,
/* out */ Tensor x_plus_out) {
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
char *buf_ptr = (char *)buf.data_ptr();
half *kx = (half *)buf_ptr;
half *rx = kx + x.numel();
half *vx = rx + x.numel();
half *r = vx + x.size(0) * kw.size(1);
element_wise(FfnOneMix{data_ptr<half>(k_mix), data_ptr<half>(r_mix),
data_ptr<half>(xx), data_ptr<half>(sx), kx, rx},
x.numel());
// vector * matrix, so m = 1
gemm_fp16_cublas(rx, rw.data_ptr(), r, 1, rw.size(1), rw.size(0), false);
element_wise(InplaceSigmoid{r}, rw.size(1));
gemm_fp16_cublas(kx, kw.data_ptr(), vx, 1, kw.size(1), kw.size(0), false);
element_wise(InplaceReLUAndSquare{vx}, kw.size(1));
gemm_fp16_cublas(vx, vw.data_ptr(), x_plus_out.data_ptr(), 1, vw.size(1),
vw.size(0), false);
element_wise(InplaceFma{data_ptr<half>(x_plus_out), r, data_ptr<half>(x)},
x_plus_out.numel());
return xx;
}

View File

@ -1,128 +0,0 @@
#include <cublas_v2.h>
#include <cuda.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <torch/extension.h>
#define CUBLAS_CHECK(condition) \
for (cublasStatus_t _cublas_check_status = (condition); \
_cublas_check_status != CUBLAS_STATUS_SUCCESS;) \
throw std::runtime_error("cuBLAS error " + \
std::to_string(_cublas_check_status) + " at " + \
std::to_string(__LINE__));
#define CUDA_CHECK(condition) \
for (cudaError_t _cuda_check_status = (condition); \
_cuda_check_status != cudaSuccess;) \
throw std::runtime_error( \
"CUDA error " + std::string(cudaGetErrorString(_cuda_check_status)) + \
" at " + std::to_string(__LINE__));
cublasHandle_t get_cublas_handle() {
static cublasHandle_t cublas_handle = []() {
cublasHandle_t handle = nullptr;
CUBLAS_CHECK(cublasCreate(&handle));
#if CUDA_VERSION < 11000
CUBLAS_CHECK(cublasSetMathMode(handle, CUBLAS_TENSOR_OP_MATH));
#else
CUBLAS_CHECK(cublasSetMathMode(handle, CUBLAS_DEFAULT_MATH));
#endif // CUDA_VERSION < 11000
return handle;
}();
return cublas_handle;
}
/*
NOTE: blas gemm is column-major by default, but we need row-major output.
The data of row-major, transposed matrix is exactly the same as the
column-major, non-transposed matrix, and C = A * B ---> C^T = B^T * A^T
*/
void gemm_fp16_cublas(const void *a, const void *b, void *c, int ori_m,
int ori_n, int ori_k, bool output_fp32) {
const auto cuda_data_type = CUDA_R_16F;
const auto cuda_c_data_type = output_fp32 ? CUDA_R_32F : CUDA_R_16F;
const auto compute_type = CUDA_R_32F;
const float sp_alpha = 1.f;
// use CUBLAS_OP_N. see the notes above
const cublasOperation_t cublas_trans_a = CUBLAS_OP_N;
const cublasOperation_t cublas_trans_b = CUBLAS_OP_N;
// m = (B^T).size(0) = B.size(1) = n;
const int cublas_m = ori_n;
const int cublas_k = ori_k;
// comptiable with rwkv one mode, where 1-D tensor * 2-D tensor
// const int n = a.dense_dim() == 1 ? 1 : a.size(0);
const int cublas_n = ori_m;
const int cublas_lda = cublas_m;
const int cublas_ldb = cublas_k;
const int cublas_ldc = cublas_m;
cublasHandle_t cublas_handle = get_cublas_handle();
#if CUDA_VERSION >= 11000
cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT;
#else
cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
#endif
const float sp_beta = 0.f;
CUBLAS_CHECK(cublasGemmEx(
cublas_handle, cublas_trans_a, cublas_trans_b, cublas_m, cublas_n,
cublas_k, &sp_alpha, b, cuda_data_type, cublas_lda,
a, cuda_data_type, cublas_ldb, &sp_beta, c,
cuda_c_data_type, cublas_ldc, compute_type, algo));
}
/*
NOTE: blas gemm is column-major by default, but we need row-major output.
The data of row-major, transposed matrix is exactly the same as the
column-major, non-transposed matrix, and C = A * B ---> C^T = B^T * A^T
*/
void gemm_fp16_cublas_tensor(torch::Tensor a, torch::Tensor b, torch::Tensor c) {
if (a.sizes().size() == 1) {
assert(b.sizes().size() == 2);
a = at::unsqueeze(a, 0);
}
const auto cuda_data_type = CUDA_R_16F;
const auto cuda_c_data_type =
c.dtype() == torch::kFloat32 ? CUDA_R_32F : CUDA_R_16F;
const auto compute_type = CUDA_R_32F;
const float sp_alpha = 1.f;
// swap a and b, and use CUBLAS_OP_N. see the notes above
std::swap(a, b);
const cublasOperation_t cublas_trans_a = CUBLAS_OP_N;
const cublasOperation_t cublas_trans_b = CUBLAS_OP_N;
// m = (B^T).size(0) = B.size(1), and = A.size(1) after swap,
// negative axis is used because of the existence of batch matmul.
const int m = a.size(-1);
const int k = a.size(-2);
const int n = b.size(-2);
const int cublas_lda = m;
const int cublas_ldb = k;
const int cublas_ldc = m;
cublasHandle_t cublas_handle = get_cublas_handle();
#if CUDA_VERSION >= 11000
cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT;
#else
cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
#endif
const float sp_beta = 0.f;
if (a.sizes().size() == 2 && b.sizes().size() == 2) {
CUBLAS_CHECK(cublasGemmEx(
cublas_handle, cublas_trans_a, cublas_trans_b, m, n, k, &sp_alpha,
a.data_ptr(), cuda_data_type, cublas_lda, b.data_ptr(), cuda_data_type,
cublas_ldb, &sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc,
compute_type, algo));
} else {
// batch matmul
assert(a.sizes().size() == 3 && b.sizes().size() == 3);
const long long int cublas_stride_a = m * k;
const long long int cublas_stride_b = k * n;
const long long int cublas_stride_c = m * n;
CUBLAS_CHECK(cublasGemmStridedBatchedEx(
cublas_handle, cublas_trans_a, cublas_trans_b, m,
n, k, &sp_alpha, a.data_ptr(), cuda_data_type, cublas_lda,
cublas_stride_a, b.data_ptr(), cuda_data_type, cublas_ldb, cublas_stride_b,
&sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc, cublas_stride_c,
a.size(0), compute_type, algo));
}
}

View File

@ -1,246 +0,0 @@
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
#include <cuda_fp16.h>
#define MIN_VALUE (-1e38)
typedef at::Half fp16;
__half *cast(fp16 *ptr) {
return reinterpret_cast<__half *>(ptr);
}
template <typename F>
__global__ void kernel_wkv_forward(const int B, const int T, const int C,
const float *__restrict__ const _w, const float *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
F *__restrict__ const _y, float *__restrict__ const _aa, float *__restrict__ const _bb, float *__restrict__ const _pp) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
const int _state_offset = _b * C + _c;
float u = _u[_c];
float w = _w[_c];
const F *__restrict__ const k = _k + _offset;
const F *__restrict__ const v = _v + _offset;
F *__restrict__ const y = _y + _offset;
float aa = _aa[_state_offset];
float bb = _bb[_state_offset];
float pp = _pp[_state_offset];
for (int i = 0; i < T; i++) {
const int ii = i * C;
const float kk = float(k[ii]);
const float vv = float(v[ii]);
float ww = u + kk;
float p = max(pp, ww);
float e1 = exp(pp - p);
float e2 = exp(ww - p);
y[ii] = F((e1 * aa + e2 * vv) / (e1 * bb + e2));
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
_aa[_state_offset] = aa;
_bb[_state_offset] = bb;
_pp[_state_offset] = pp;
}
template <typename F>
void cuda_wkv_forward(int B, int T, int C, float *w, float *u, F *k, F *v, F *y, float *aa, float *bb, float *pp) {
dim3 threadsPerBlock( min(C, 32) );
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_wkv_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, aa, bb, pp);
}
template void cuda_wkv_forward<fp16>(
int B, int T, int C,
float *w, float *u, fp16 *k, fp16 *v, fp16 *y,
float *aa, float *bb, float *pp);
template void cuda_wkv_forward<float>(
int B, int T, int C,
float *w, float *u, float *k, float *v, float *y,
float *aa, float *bb, float *pp);
__global__ void kernel_mm_seq_fp32i8(
const int B, const int N, const int M,
const float *__restrict__ const x, const int x_stride,
const uint8_t *__restrict__ const w, const int w_stride,
const float *__restrict__ const mx,
const float *__restrict__ const rx,
const float *__restrict__ const my,
const float *__restrict__ const ry,
float *__restrict__ const y, const int y_stride) {
const int i = blockIdx.x * blockDim.x + threadIdx.x;
const int k = blockIdx.y * blockDim.y + threadIdx.y;
if (i < B && k < M) {
float y_local = 0;
for (int j = 0; j < N; ++j) {
y_local += x[i * x_stride + j] * (
(float(w[j * w_stride + k]) + 0.5f)
* rx[k] * ry[j] + mx[k] + my[j]
);
}
y[i * y_stride + k] = y_local;
}
}
template <typename F>
void cuda_mm8_seq(int B, int N, int M,
F *x, int x_stride,
uint8_t *w, int w_stride,
F *mx, F *rx,
F *my, F *ry,
F *y, int y_stride);
template <>
void cuda_mm8_seq<float>(int B, int N, int M,
float *x, int x_stride,
uint8_t *w, int w_stride,
float *mx, float *rx,
float *my, float *ry,
float *y, int y_stride) {
dim3 blockSize(1, 128);
dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
kernel_mm_seq_fp32i8<<<gridSize, blockSize>>>(
B, N, M, x, x_stride, w, w_stride,
mx, rx, my, ry, y, y_stride);
}
__global__ void kernel_mm_seq_fp16i8(
const int B, const int N, const int M,
const __half *__restrict__ const x, const int x_stride,
const uint8_t *__restrict__ const w, const int w_stride,
const __half *__restrict__ const mx,
const __half *__restrict__ const rx,
const __half *__restrict__ const my,
const __half *__restrict__ const ry,
__half *__restrict__ const y, const int y_stride) {
const int i = blockIdx.x * blockDim.x + threadIdx.x;
const int k = blockIdx.y * blockDim.y + threadIdx.y;
if (i < B && k < M) {
float y_local = 0;
for (int j = 0; j < N; ++j) {
y_local += __half2float(x[i * x_stride + j]) * (
(float(w[j * w_stride + k]) + 0.5f)
* __half2float(rx[k]) * __half2float(ry[j])
+ __half2float(mx[k]) + __half2float(my[j])
);
}
y[i * y_stride + k] = __float2half(y_local);
}
}
template <>
void cuda_mm8_seq<fp16>(int B, int N, int M,
fp16 *x, int x_stride,
uint8_t *w, int w_stride,
fp16 *mx, fp16 *rx,
fp16 *my, fp16 *ry,
fp16 *y, int y_stride) {
dim3 blockSize(1, 128);
dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
kernel_mm_seq_fp16i8<<<gridSize, blockSize>>>(
B, N, M, cast(x), x_stride, w, w_stride,
cast(mx), cast(rx), cast(my), cast(ry), cast(y), y_stride);
}
#define MM8_ONE_JSPLIT 24
#define MM8_ONE_TILE 1024
__global__ void kernel_mm_one_fp32i8(
const int N, const int M,
const float *__restrict__ const x,
const uint8_t *__restrict__ const w, const int w_stride,
const float *__restrict__ const mx,
const float *__restrict__ const rx,
const float *__restrict__ const my,
const float *__restrict__ const ry,
float *__restrict__ const y) {
const int k = blockIdx.y * blockDim.y + threadIdx.y;
const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
if (k < M) {
float y_local = 0;
for (int j = j0; j < j1; ++j) {
y_local += x[j] * (
(float(w[j * w_stride + k]) + 0.5f)
* rx[k] * ry[j] + mx[k] + my[j]
);
}
atomicAdd(&y[k], y_local);
}
}
template <typename F>
void cuda_mm8_one(int N, int M,
F *x,
uint8_t *w, int w_stride,
F *mx, F *rx,
F *my, F *ry,
float *y);
template <>
void cuda_mm8_one<float>(int N, int M,
float *x,
uint8_t *w, int w_stride,
float *mx, float *rx,
float *my, float *ry,
float *y) {
dim3 blockSize(1, MM8_ONE_TILE);
dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
kernel_mm_one_fp32i8<<<gridSize, blockSize>>>(
N, M, x, w, w_stride,
mx, rx, my, ry, y);
}
__global__ void kernel_mm_one_fp16i8(
const int N, const int M,
const __half *__restrict__ const x,
const uint8_t *__restrict__ const w, const int w_stride,
const __half *__restrict__ const mx,
const __half *__restrict__ const rx,
const __half *__restrict__ const my,
const __half *__restrict__ const ry,
float *__restrict__ const y) {
const int k = blockIdx.y * blockDim.y + threadIdx.y;
const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
if (k < M) {
float y_local = 0;
for (int j = j0; j < j1; ++j) {
y_local += __half2float(x[j]) * (
(float(w[j * w_stride + k]) + 0.5f)
* __half2float(rx[k]) * __half2float(ry[j])
+ __half2float(mx[k]) + __half2float(my[j])
);
}
atomicAdd(&y[k], y_local);
}
}
template <>
void cuda_mm8_one<fp16>(int N, int M,
fp16 *x,
uint8_t *w, int w_stride,
fp16 *mx, fp16 *rx,
fp16 *my, fp16 *ry,
float *y) {
dim3 blockSize(1, MM8_ONE_TILE);
dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
kernel_mm_one_fp16i8<<<gridSize, blockSize>>>(
N, M, cast(x), w, w_stride,
cast(mx), cast(rx), cast(my), cast(ry), y);
}

View File

@ -1,7 +0,0 @@
#include "ATen/ATen.h"
#include <cuda_fp16.h>
template <typename T> T *data_ptr(torch::Tensor x) { return x.data_ptr<T>(); }
template <> inline half *data_ptr(torch::Tensor x) {
return reinterpret_cast<half *>(x.data_ptr<at::Half>());
}

View File

@ -1,181 +0,0 @@
#include <torch/extension.h>
#include "ATen/ATen.h"
#include <iostream>
#include <c10/cuda/CUDAGuard.h>
typedef at::Half fp16;
template <typename F>
void cuda_wkv_forward(int B, int T, int C,
float *w, float *u, F *k, F *v, F *y,
float *aa, float *bb, float *pp);
template <typename F>
void cuda_mm8_seq(int B, int N, int M,
F *x, int x_stride,
uint8_t *w, int w_stride,
F *mx, F *rx,
F *my, F *ry,
F *y, int y_stride);
template <typename F>
void cuda_mm8_one(int N, int M,
F *x,
uint8_t *w, int w_stride,
F *mx, F *rx,
F *my, F *ry,
float *y);
void wkv_forward(int64_t B, int64_t T, int64_t C,
torch::Tensor &w, torch::Tensor &u,
torch::Tensor &k, torch::Tensor &v, torch::Tensor &y,
torch::Tensor &aa, torch::Tensor &bb, torch::Tensor &pp) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
switch (k.scalar_type()) {
case c10::ScalarType::Half:
cuda_wkv_forward(B, T, C,
w.data_ptr<float>(), u.data_ptr<float>(),
k.data_ptr<fp16>(), v.data_ptr<fp16>(), y.data_ptr<fp16>(),
aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
break;
case c10::ScalarType::Float:
cuda_wkv_forward(B, T, C,
w.data_ptr<float>(), u.data_ptr<float>(),
k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>(),
aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
break;
default:
assert(false && "Only FP16 and FP32 are currently supported");
}
}
void mm8_seq(int64_t B, int64_t N, int64_t M,
torch::Tensor &x, torch::Tensor &w,
torch::Tensor &mx, torch::Tensor &rx,
torch::Tensor &my, torch::Tensor &ry,
torch::Tensor &y) {
assert(x.stride(1) == 1);
assert(w.stride(1) == 1);
assert(mx.stride(0) == 1 && rx.stride(0) == 1);
assert(my.stride(0) == 1 && ry.stride(0) == 1);
assert(y.stride(1) == 1);
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
switch (x.scalar_type()) {
case c10::ScalarType::Half:
cuda_mm8_seq(
B, N, M,
x.data_ptr<fp16>(), x.stride(0),
w.data_ptr<uint8_t>(), w.stride(0),
mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
y.data_ptr<fp16>(), y.stride(0));
break;
case c10::ScalarType::Float:
cuda_mm8_seq(
B, N, M,
x.data_ptr<float>(), x.stride(0),
w.data_ptr<uint8_t>(), w.stride(0),
mx.data_ptr<float>(), rx.data_ptr<float>(),
my.data_ptr<float>(), ry.data_ptr<float>(),
y.data_ptr<float>(), y.stride(0));
break;
default:
assert(false && "Only FP16 and FP32 are currently supported");
}
}
void mm8_one(int64_t N, int64_t M,
torch::Tensor &x, torch::Tensor &w,
torch::Tensor &mx, torch::Tensor &rx,
torch::Tensor &my, torch::Tensor &ry,
torch::Tensor &y) {
assert(x.stride(0) == 1);
assert(w.stride(1) == 1);
assert(mx.stride(0) == 1 && rx.stride(0) == 1);
assert(my.stride(0) == 1 && ry.stride(0) == 1);
assert(y.stride(0) == 1);
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
switch (x.scalar_type()) {
case c10::ScalarType::Half:
cuda_mm8_one(
N, M,
x.data_ptr<fp16>(),
w.data_ptr<uint8_t>(), w.stride(0),
mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
y.data_ptr<float>());
break;
case c10::ScalarType::Float:
cuda_mm8_one(
N, M,
x.data_ptr<float>(),
w.data_ptr<uint8_t>(), w.stride(0),
mx.data_ptr<float>(), rx.data_ptr<float>(),
my.data_ptr<float>(), ry.data_ptr<float>(),
y.data_ptr<float>());
break;
default:
assert(false && "Only FP16 and FP32 are currently supported");
}
}
using torch::Tensor;
#ifndef DISABLE_CUBLAS_GEMM
void gemm_fp16_cublas_tensor(Tensor a, Tensor b, Tensor c);
#endif
Tensor att_one(Tensor x, Tensor ln_w, Tensor ln_b, Tensor sx, Tensor k_mix,
Tensor v_mix, Tensor r_mix, Tensor kw,
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx, Tensor rw,
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
/* imm */ Tensor k, Tensor pp, Tensor ww, Tensor aa, Tensor bb,
Tensor t_decay, /* imm */ Tensor v, /* in & out */ Tensor r,
/* out */ Tensor x_plus_out, /* out */ Tensor t1,
/* out */ Tensor t2, /* out */ Tensor p);
Tensor att_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
Tensor v_mix, Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
Tensor ow, Tensor t_first, Tensor pp, Tensor aa, Tensor bb,
Tensor t_decay, /* imm */ Tensor buf, /* out */ Tensor x_plus_out);
Tensor att_one_v5(Tensor x, Tensor sx, Tensor s, Tensor ln_w, Tensor ln_b,
Tensor lx_w, Tensor lx_b, Tensor k_mix, Tensor v_mix,
Tensor r_mix, Tensor kw,
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx,
Tensor rw,
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
/* imm */ Tensor k, Tensor t_decay, /* imm */ Tensor v,
/* imm */ Tensor r, /* imm */ Tensor s1,
/* out */ Tensor x_plus_out, /* out */ Tensor s2);
Tensor ffn_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
/* imm */ Tensor buf,
/* out */ Tensor x_plus_out);
Tensor ffn_one(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
/* imm */ Tensor buf,
/* out */ Tensor x_plus_out);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("wkv_forward", &wkv_forward, "wkv forward");
m.def("mm8_seq", &mm8_seq, "mm8 seq");
m.def("mm8_one", &mm8_one, "mm8 one");
m.def("gemm_fp16_cublas", &gemm_fp16_cublas_tensor, "gemv fp16 cublas");
m.def("att_one", &att_one, "att one");
m.def("att_one_v5", &att_one_v5, "att one v5");
m.def("att_seq", &att_seq, "att seq");
m.def("ffn_seq", &ffn_seq, "ffn seq");
m.def("ffn_one", &ffn_one, "ffn one");
}
TORCH_LIBRARY(rwkv, m) {
m.def("wkv_forward", wkv_forward);
m.def("mm8_seq", mm8_seq);
m.def("mm8_one", mm8_one);
m.def("gemm_fp16_cublas", gemm_fp16_cublas_tensor);
m.def("att_one", att_one);
m.def("att_one_v5", &att_one_v5);
m.def("att_seq", att_seq);
m.def("ffn_seq", ffn_seq);
m.def("ffn_one", ffn_one);
}

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -9,6 +9,9 @@ class RWKV:
self.model = rwkv_cpp_model.RWKVModel(self.library, model_path)
self.w = {} # fake weight
self.w["emb.weight"] = [0] * self.model.n_vocab
self.version = (
self.model.arch_version_major + self.model.arch_version_minor / 10
)
def forward(self, tokens: List[int], state: Union[Any, None] = None):
return self.model.eval_sequence_in_chunks(tokens, state, use_numpy=True)

Binary file not shown.

View File

@ -52,9 +52,14 @@ class RWKVModel:
if 'gpu_layers_count' in kwargs:
gpu_layer_count = kwargs['gpu_layers_count']
assert os.path.isfile(model_path), f'{model_path} is not a file'
assert thread_count > 0, 'Thread count must be > 0'
assert gpu_layer_count >= 0, 'GPU layer count must be >= 0'
if not os.path.isfile(model_path):
raise ValueError(f'{model_path} is not a file')
if not (thread_count > 0):
raise ValueError('Thread count must be > 0')
if not (gpu_layer_count >= 0):
raise ValueError('GPU layer count must be >= 0')
self._library: rwkv_cpp_shared_library.RWKVSharedLibrary = shared_library
@ -84,10 +89,19 @@ class RWKVModel:
Count of layers to offload onto the GPU, must be >= 0.
"""
assert layer_count >= 0, 'Layer count must be >= 0'
if not (layer_count >= 0):
raise ValueError('Layer count must be >= 0')
return self._library.rwkv_gpu_offload_layers(self._ctx, layer_count)
@property
def arch_version_major(self) -> int:
return self._library.rwkv_get_arch_version_major(self._ctx)
@property
def arch_version_minor(self) -> int:
return self._library.rwkv_get_arch_version_minor(self._ctx)
@property
def n_vocab(self) -> int:
return self._library.rwkv_get_n_vocab(self._ctx)
@ -133,7 +147,8 @@ class RWKVModel:
Logits vector of shape (n_vocab); state for the next step.
"""
assert self._valid, 'Model was freed'
if not self._valid:
raise ValueError('Model was freed')
use_numpy = self._detect_numpy_usage([state_in, state_out, logits_out], use_numpy)
@ -207,7 +222,8 @@ class RWKVModel:
Logits vector of shape (n_vocab); state for the next step.
"""
assert self._valid, 'Model was freed'
if not self._valid:
raise ValueError('Model was freed')
use_numpy = self._detect_numpy_usage([state_in, state_out, logits_out], use_numpy)
@ -281,7 +297,8 @@ class RWKVModel:
Logits vector of shape (n_vocab); state for the next step.
"""
assert self._valid, 'Model was freed'
if not self._valid:
raise ValueError('Model was freed')
use_numpy = self._detect_numpy_usage([state_in, state_out, logits_out], use_numpy)
@ -320,7 +337,8 @@ class RWKVModel:
The object must not be used anymore after calling this method.
"""
assert self._valid, 'Already freed'
if not self._valid:
raise ValueError('Already freed')
self._valid = False
@ -344,16 +362,25 @@ class RWKVModel:
def _validate_tensor(self, tensor: NumpyArrayOrPyTorchTensor, name: str, size: int) -> None:
if self._is_pytorch_tensor(tensor):
tensor: torch.Tensor = tensor
assert tensor.device == torch.device('cpu'), f'{name} is not on CPU'
assert tensor.dtype == torch.float32, f'{name} is not of type float32'
assert tensor.shape == (size,), f'{name} has invalid shape {tensor.shape}, expected ({size})'
assert tensor.is_contiguous(), f'{name} is not contiguous'
if tensor.device != torch.device('cpu'):
raise ValueError(f'{name} is not on CPU')
if tensor.dtype != torch.float32:
raise ValueError(f'{name} is not of type float32')
if tensor.shape != (size,):
raise ValueError(f'{name} has invalid shape {tensor.shape}, expected ({size})')
if not tensor.is_contiguous():
raise ValueError(f'{name} is not contiguous')
else:
import numpy as np
tensor: np.ndarray = tensor
assert tensor.dtype == np.float32, f'{name} is not of type float32'
assert tensor.shape == (size,), f'{name} has invalid shape {tensor.shape}, expected ({size})'
assert tensor.data.contiguous, f'{name} is not contiguous'
if tensor.dtype != np.float32:
raise ValueError(f'{name} is not of type float32')
if tensor.shape != (size,):
raise ValueError(f'{name} has invalid shape {tensor.shape}, expected ({size})')
if not tensor.data.contiguous:
raise ValueError(f'{name} is not contiguous')
def _get_data_ptr(self, tensor: NumpyArrayOrPyTorchTensor):
if self._is_pytorch_tensor(tensor):

View File

@ -6,21 +6,22 @@ import platform
from typing import Optional, List, Tuple, Callable
QUANTIZED_FORMAT_NAMES: Tuple[str, str, str, str, str] = (
'Q4_0',
'Q4_1',
'Q5_0',
'Q5_1',
'Q8_0'
"Q4_0",
"Q4_1",
"Q5_0",
"Q5_1",
"Q8_0",
)
P_FLOAT = ctypes.POINTER(ctypes.c_float)
P_INT = ctypes.POINTER(ctypes.c_int32)
class RWKVContext:
class RWKVContext:
def __init__(self, ptr: ctypes.pointer) -> None:
self.ptr: ctypes.pointer = ptr
class RWKVSharedLibrary:
"""
Python wrapper around rwkv.cpp shared library.
@ -39,7 +40,7 @@ class RWKVSharedLibrary:
# When Python is greater than 3.8, we need to reprocess the custom dll
# according to the documentation to prevent loading failure errors.
# https://docs.python.org/3/whatsnew/3.8.html#ctypes
if platform.system().lower() == 'windows':
if platform.system().lower() == "windows":
self.library = ctypes.CDLL(shared_library_path, winmode=0)
else:
self.library = ctypes.cdll.LoadLibrary(shared_library_path)
@ -47,39 +48,48 @@ class RWKVSharedLibrary:
self.library.rwkv_init_from_file.argtypes = [ctypes.c_char_p, ctypes.c_uint32]
self.library.rwkv_init_from_file.restype = ctypes.c_void_p
self.library.rwkv_gpu_offload_layers.argtypes = [ctypes.c_void_p, ctypes.c_uint32]
self.library.rwkv_gpu_offload_layers.argtypes = [
ctypes.c_void_p,
ctypes.c_uint32,
]
self.library.rwkv_gpu_offload_layers.restype = ctypes.c_bool
self.library.rwkv_eval.argtypes = [
ctypes.c_void_p, # ctx
ctypes.c_int32, # token
P_FLOAT, # state_in
P_FLOAT, # state_out
P_FLOAT # logits_out
ctypes.c_void_p, # ctx
ctypes.c_int32, # token
P_FLOAT, # state_in
P_FLOAT, # state_out
P_FLOAT, # logits_out
]
self.library.rwkv_eval.restype = ctypes.c_bool
self.library.rwkv_eval_sequence.argtypes = [
ctypes.c_void_p, # ctx
P_INT, # tokens
ctypes.c_size_t, # token count
P_FLOAT, # state_in
P_FLOAT, # state_out
P_FLOAT # logits_out
ctypes.c_void_p, # ctx
P_INT, # tokens
ctypes.c_size_t, # token count
P_FLOAT, # state_in
P_FLOAT, # state_out
P_FLOAT, # logits_out
]
self.library.rwkv_eval_sequence.restype = ctypes.c_bool
self.library.rwkv_eval_sequence_in_chunks.argtypes = [
ctypes.c_void_p, # ctx
P_INT, # tokens
ctypes.c_size_t, # token count
ctypes.c_size_t, # chunk size
P_FLOAT, # state_in
P_FLOAT, # state_out
P_FLOAT # logits_out
ctypes.c_void_p, # ctx
P_INT, # tokens
ctypes.c_size_t, # token count
ctypes.c_size_t, # chunk size
P_FLOAT, # state_in
P_FLOAT, # state_out
P_FLOAT, # logits_out
]
self.library.rwkv_eval_sequence_in_chunks.restype = ctypes.c_bool
self.library.rwkv_get_arch_version_major.argtypes = [ctypes.c_void_p]
self.library.rwkv_get_arch_version_major.restype = ctypes.c_uint32
self.library.rwkv_get_arch_version_minor.argtypes = [ctypes.c_void_p]
self.library.rwkv_get_arch_version_minor.restype = ctypes.c_uint32
self.library.rwkv_get_n_vocab.argtypes = [ctypes.c_void_p]
self.library.rwkv_get_n_vocab.restype = ctypes.c_size_t
@ -101,7 +111,11 @@ class RWKVSharedLibrary:
self.library.rwkv_free.argtypes = [ctypes.c_void_p]
self.library.rwkv_free.restype = None
self.library.rwkv_quantize_model_file.argtypes = [ctypes.c_char_p, ctypes.c_char_p, ctypes.c_char_p]
self.library.rwkv_quantize_model_file.argtypes = [
ctypes.c_char_p,
ctypes.c_char_p,
ctypes.c_char_p,
]
self.library.rwkv_quantize_model_file.restype = ctypes.c_bool
self.library.rwkv_get_system_info_string.argtypes = []
@ -109,7 +123,9 @@ class RWKVSharedLibrary:
self.nullptr = ctypes.cast(0, ctypes.c_void_p)
def rwkv_init_from_file(self, model_file_path: str, thread_count: int) -> RWKVContext:
def rwkv_init_from_file(
self, model_file_path: str, thread_count: int
) -> RWKVContext:
"""
Loads the model from a file and prepares it for inference.
Throws an exception in case of any error. Error messages would be printed to stderr.
@ -122,9 +138,12 @@ class RWKVSharedLibrary:
Count of threads to use, must be positive.
"""
ptr = self.library.rwkv_init_from_file(model_file_path.encode('utf-8'), ctypes.c_uint32(thread_count))
ptr = self.library.rwkv_init_from_file(
model_file_path.encode("utf-8"), ctypes.c_uint32(thread_count)
)
assert ptr is not None, 'rwkv_init_from_file failed, check stderr'
if ptr is None:
raise ValueError("rwkv_init_from_file failed, check stderr")
return RWKVContext(ptr)
@ -145,17 +164,20 @@ class RWKVSharedLibrary:
Count of layers to offload onto the GPU, must be >= 0.
"""
assert layer_count >= 0, 'Layer count must be >= 0'
if not (layer_count >= 0):
raise ValueError("Layer count must be >= 0")
return self.library.rwkv_gpu_offload_layers(ctx.ptr, ctypes.c_uint32(layer_count))
return self.library.rwkv_gpu_offload_layers(
ctx.ptr, ctypes.c_uint32(layer_count)
)
def rwkv_eval(
self,
ctx: RWKVContext,
token: int,
state_in_address: Optional[int],
state_out_address: int,
logits_out_address: int
self,
ctx: RWKVContext,
token: int,
state_in_address: Optional[int],
state_out_address: int,
logits_out_address: int,
) -> None:
"""
Evaluates the model for a single token.
@ -176,21 +198,22 @@ class RWKVSharedLibrary:
Address of the first element of a FP32 buffer of size rwkv_get_logits_buffer_element_count. This buffer will be written to.
"""
assert self.library.rwkv_eval(
if not self.library.rwkv_eval(
ctx.ptr,
ctypes.c_int32(token),
ctypes.cast(0 if state_in_address is None else state_in_address, P_FLOAT),
ctypes.cast(state_out_address, P_FLOAT),
ctypes.cast(logits_out_address, P_FLOAT)
), 'rwkv_eval failed, check stderr'
ctypes.cast(logits_out_address, P_FLOAT),
):
raise ValueError("rwkv_eval failed, check stderr")
def rwkv_eval_sequence(
self,
ctx: RWKVContext,
tokens: List[int],
state_in_address: Optional[int],
state_out_address: int,
logits_out_address: int
self,
ctx: RWKVContext,
tokens: List[int],
state_in_address: Optional[int],
state_out_address: int,
logits_out_address: int,
) -> None:
"""
Evaluates the model for a sequence of tokens.
@ -223,23 +246,24 @@ class RWKVSharedLibrary:
Address of the first element of a FP32 buffer of size rwkv_get_logits_buffer_element_count. This buffer will be written to.
"""
assert self.library.rwkv_eval_sequence(
if not self.library.rwkv_eval_sequence(
ctx.ptr,
ctypes.cast((ctypes.c_int32 * len(tokens))(*tokens), P_INT),
ctypes.c_size_t(len(tokens)),
ctypes.cast(0 if state_in_address is None else state_in_address, P_FLOAT),
ctypes.cast(state_out_address, P_FLOAT),
ctypes.cast(logits_out_address, P_FLOAT)
), 'rwkv_eval_sequence failed, check stderr'
ctypes.cast(logits_out_address, P_FLOAT),
):
raise ValueError("rwkv_eval_sequence failed, check stderr")
def rwkv_eval_sequence_in_chunks(
self,
ctx: RWKVContext,
tokens: List[int],
chunk_size: int,
state_in_address: Optional[int],
state_out_address: int,
logits_out_address: int
self,
ctx: RWKVContext,
tokens: List[int],
chunk_size: int,
state_in_address: Optional[int],
state_out_address: int,
logits_out_address: int,
) -> None:
"""
Evaluates the model for a sequence of tokens using `rwkv_eval_sequence`, splitting a potentially long sequence into fixed-length chunks.
@ -269,15 +293,40 @@ class RWKVSharedLibrary:
Address of the first element of a FP32 buffer of size rwkv_get_logits_buffer_element_count. This buffer will be written to.
"""
assert self.library.rwkv_eval_sequence_in_chunks(
if not self.library.rwkv_eval_sequence_in_chunks(
ctx.ptr,
ctypes.cast((ctypes.c_int32 * len(tokens))(*tokens), P_INT),
ctypes.c_size_t(len(tokens)),
ctypes.c_size_t(chunk_size),
ctypes.cast(0 if state_in_address is None else state_in_address, P_FLOAT),
ctypes.cast(state_out_address, P_FLOAT),
ctypes.cast(logits_out_address, P_FLOAT)
), 'rwkv_eval_sequence_in_chunks failed, check stderr'
ctypes.cast(logits_out_address, P_FLOAT),
):
raise ValueError("rwkv_eval_sequence_in_chunks failed, check stderr")
def rwkv_get_arch_version_major(self, ctx: RWKVContext) -> int:
"""
Returns the major version used by the given model.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
"""
return self.library.rwkv_get_arch_version_major(ctx.ptr)
def rwkv_get_arch_version_minor(self, ctx: RWKVContext) -> int:
"""
Returns the minor version used by the given model.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
"""
return self.library.rwkv_get_arch_version_minor(ctx.ptr)
def rwkv_get_n_vocab(self, ctx: RWKVContext) -> int:
"""
@ -358,7 +407,9 @@ class RWKVSharedLibrary:
ctx.ptr = self.nullptr
def rwkv_quantize_model_file(self, model_file_path_in: str, model_file_path_out: str, format_name: str) -> None:
def rwkv_quantize_model_file(
self, model_file_path_in: str, model_file_path_out: str, format_name: str
) -> None:
"""
Quantizes FP32 or FP16 model to one of INT4 formats.
Throws an exception in case of any error. Error messages would be printed to stderr.
@ -373,20 +424,25 @@ class RWKVSharedLibrary:
One of QUANTIZED_FORMAT_NAMES.
"""
assert format_name in QUANTIZED_FORMAT_NAMES, f'Unknown format name {format_name}, use one of {QUANTIZED_FORMAT_NAMES}'
if format_name not in QUANTIZED_FORMAT_NAMES:
raise ValueError(
f"Unknown format name {format_name}, use one of {QUANTIZED_FORMAT_NAMES}"
)
assert self.library.rwkv_quantize_model_file(
model_file_path_in.encode('utf-8'),
model_file_path_out.encode('utf-8'),
format_name.encode('utf-8')
), 'rwkv_quantize_model_file failed, check stderr'
if not self.library.rwkv_quantize_model_file(
model_file_path_in.encode("utf-8"),
model_file_path_out.encode("utf-8"),
format_name.encode("utf-8"),
):
raise ValueError("rwkv_quantize_model_file failed, check stderr")
def rwkv_get_system_info_string(self) -> str:
"""
Returns system information string.
"""
return self.library.rwkv_get_system_info_string().decode('utf-8')
return self.library.rwkv_get_system_info_string().decode("utf-8")
def load_rwkv_shared_library() -> RWKVSharedLibrary:
"""
@ -396,27 +452,27 @@ def load_rwkv_shared_library() -> RWKVSharedLibrary:
file_name: str
if 'win32' in sys.platform or 'cygwin' in sys.platform:
file_name = 'rwkv.dll'
elif 'darwin' in sys.platform:
file_name = 'librwkv.dylib'
if "win32" in sys.platform or "cygwin" in sys.platform:
file_name = "rwkv.dll"
elif "darwin" in sys.platform:
file_name = "librwkv.dylib"
else:
file_name = 'librwkv.so'
file_name = "librwkv.so"
# Possible sub-paths to the library relative to the repo dir.
child_paths: List[Callable[[pathlib.Path], pathlib.Path]] = [
# No lookup for Debug config here.
# I assume that if a user wants to debug the library,
# they will be able to find the library and set the exact path explicitly.
lambda p: p / 'backend-python' / 'rwkv_pip' / 'cpp' / file_name,
lambda p: p / 'bin' / 'Release' / file_name,
lambda p: p / 'bin' / file_name,
lambda p: p / "backend-python" / "rwkv_pip" / "cpp" / file_name,
lambda p: p / "bin" / "Release" / file_name,
lambda p: p / "bin" / file_name,
# Some people prefer to build in the "build" subdirectory.
lambda p: p / 'build' / 'bin' / 'Release' / file_name,
lambda p: p / 'build' / 'bin' / file_name,
lambda p: p / 'build' / file_name,
lambda p: p / "build" / "bin" / "Release" / file_name,
lambda p: p / "build" / "bin" / file_name,
lambda p: p / "build" / file_name,
# Fallback.
lambda p: p / file_name
lambda p: p / file_name,
]
working_dir: pathlib.Path = pathlib.Path(os.path.abspath(os.getcwd()))
@ -430,7 +486,7 @@ def load_rwkv_shared_library() -> RWKVSharedLibrary:
# .
working_dir,
# Repo dir relative to this Python file.
pathlib.Path(os.path.abspath(__file__)).parent.parent.parent
pathlib.Path(os.path.abspath(__file__)).parent.parent.parent,
]
for parent_path in parent_paths:
@ -440,5 +496,7 @@ def load_rwkv_shared_library() -> RWKVSharedLibrary:
if os.path.isfile(full_path):
return RWKVSharedLibrary(str(full_path))
assert False, (f'Failed to find {file_name} automatically; '
f'you need to find the library and create RWKVSharedLibrary specifying the path to it')
raise ValueError(
f"Failed to find {file_name} automatically; "
f"you need to find the library and create RWKVSharedLibrary specifying the path to it"
)

View File

@ -488,14 +488,19 @@ class RWKV(MyModule):
print_need_newline = False
REAL_TIME_FIRST = False
args.time_state = False
for x in list(w.keys()):
if ".time_faaaa" in x:
REAL_TIME_FIRST = True
if ".time_state" in x:
args.time_state = True
if REAL_TIME_FIRST:
w = {
k.replace(".time_faaaa", ".time_first")
if ".time_faaaa" in k
else k: v
(
k.replace(".time_faaaa", ".time_first")
if ".time_faaaa" in k
else k
): v
for k, v in w.items()
}
self.w = w
@ -552,7 +557,12 @@ class RWKV(MyModule):
elif ".ln_x" in x: # need fp32 for group_norm
w[x] = w[x].float()
else:
if (len(w[x].shape) == 2) and ("emb" not in x):
if (
(len(w[x].shape) == 2)
and ("emb" not in x)
and ("_w1" not in x)
and ("_w2" not in x)
):
if WTYPE != torch.uint8:
w[x] = w[x].to(dtype=WTYPE)
else:
@ -626,10 +636,12 @@ class RWKV(MyModule):
torch.cuda.empty_cache()
shape = [i for i in w[x].shape if i != 1]
if len(shape) > 1:
shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)}"
if len(shape) > 2:
shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)} {str(shape[2]).rjust(5)}"
elif len(shape) > 1:
shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)} "
else:
shape = f" {str(shape[0]).rjust(5)} "
shape = f" {str(shape[0]).rjust(5)} "
if layer_id == 0 or layer_id >= args.n_layer - 1:
if print_need_newline:
prxxx("\n", end="")
@ -2103,16 +2115,25 @@ class RWKV(MyModule):
state[i * 3 + 0] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()
state[i * 3 + 1] = torch.zeros(
(
args.n_head,
args.n_att // args.n_head,
args.n_att // args.n_head,
),
dtype=torch.float,
requires_grad=False,
device=dev,
).contiguous()
if args.time_state:
state[i * 3 + 1] = (
w[f"blocks.{i}.att.time_state"]
.transpose(1, 2)
.to(dtype=torch.float, device=dev)
.requires_grad_(False)
.contiguous()
)
else:
state[i * 3 + 1] = torch.zeros(
(
args.n_head,
args.n_att // args.n_head,
args.n_att // args.n_head,
),
dtype=torch.float,
requires_grad=False,
device=dev,
).contiguous()
state[i * 3 + 2] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()

File diff suppressed because it is too large Load Diff

View File

@ -34,6 +34,25 @@ class PIPELINE_ARGS:
)
class ABC_TOKENIZER:
def __init__(self):
self.pad_token_id = 0
self.bos_token_id = 2
self.eos_token_id = 3
def encode(self, text):
ids = [ord(c) for c in text]
return ids
def decode(self, ids):
txt = "".join(
chr(idx) if idx > self.eos_token_id else ""
for idx in ids
if idx != self.eos_token_id
)
return txt
class PIPELINE:
def __init__(self, model, WORD_NAME: str):
self.model = model
@ -48,6 +67,8 @@ class PIPELINE:
self.tokenizer = TRIE_TOKENIZER(
os.path.dirname(os.path.abspath(__file__)) + "/rwkv_vocab_v20230424.txt"
)
elif WORD_NAME == "abc_tokenizer":
self.tokenizer = ABC_TOKENIZER()
else:
if WORD_NAME.endswith(".txt"):
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
@ -150,10 +171,17 @@ class PIPELINE:
all_tokens += [token]
for xxx in occurrence:
occurrence[xxx] *= args.alpha_decay
ttt = self.decode([token])
www = 1
if ttt in " \t0123456789":
www = 0
# elif ttt in '\r\n,.;?!"\':+-*/=#@$%^&_`~|<>\\()[]{},。;“”:?!()【】':
# www = 0.5
if token not in occurrence:
occurrence[token] = 1
occurrence[token] = www
else:
occurrence[token] += 1
occurrence[token] += www
# print(occurrence) # debug
# output

View File

@ -13,19 +13,38 @@ except ModuleNotFoundError:
class RWKV:
def __init__(self, model_path: str, strategy: str = None):
self.model = wrp.v5.Model(
model_path,
turbo=True,
quant=32 if "i8" in strategy else None,
quant_nf4=26 if "i4" in strategy else None,
layer = (
int(s.lstrip("layer"))
for s in strategy.split()
for s in s.split(",")
if s.startswith("layer")
)
chunk_size = (
int(s.lstrip("chunk"))
for s in strategy.split()
for s in s.split(",")
if s.startswith("chunk")
)
self.token_chunk_size = next(chunk_size, 32)
args = {
"path": model_path,
"quant": next(layer, 31) if "i8" in strategy else 0,
"quant_nf4": next(layer, 26) if "i4" in strategy else 0,
}
self.model = wrp.Model(**args)
self.info = self.model.info()
self.w = {} # fake weight
self.w["emb.weight"] = [0] * wrp.peek_info(model_path).num_vocab
self.w["emb.weight"] = [0] * self.info.num_vocab
self.version = str(self.info.version).lower()
self.version = float(self.version.lower().replace("v", ""))
def forward(self, tokens: List[int], state: Union[Any, None] = None):
if type(state).__name__ == "BackedState": # memory state
gpu_state = wrp.v5.ModelState(self.model, 1)
gpu_state.load(state)
else:
gpu_state = state
return wrp.v5.run_one(self.model, tokens, gpu_state)
if state is None:
self.model.clear_state()
elif type(state).__name__ == "State_Cpu":
self.model.load_state(state)
logits = self.model.run(tokens, self.token_chunk_size)
ret_state = "State_Gpu"
return logits, ret_state

View File

@ -4,18 +4,14 @@ import os
import pathlib
import copy
import re
from typing import Dict, Iterable, List, Tuple, Union, Type
import time
from typing import Dict, Iterable, List, Tuple, Union, Type, Callable
from utils.log import quick_log
from fastapi import HTTPException
from fastapi import HTTPException, status
from pydantic import BaseModel, Field
from routes import state_cache
import global_var
END_OF_TEXT = 0
END_OF_LINE_DOUBLE = 535
os.environ["TORCH_EXTENSIONS_DIR"] = f"{pathlib.Path(__file__).parent.parent.resolve()}"
@ -28,7 +24,11 @@ class RWKVType(Enum):
class AbstractRWKV(ABC):
def __init__(self, model, pipeline):
self.EOS_ID = 0
self.name = "rwkv"
self.model_path = ""
self.version = 4
self.model = model
self.pipeline = pipeline
self.model_state = None
@ -42,6 +42,10 @@ class AbstractRWKV(ABC):
self.top_k = 0
self.penalty_alpha_presence = 0
self.penalty_alpha_frequency = 1
self.penalty_decay = 0.99
self.global_penalty = False
self.state_path = ""
self.state_tuned = None
@abstractmethod
def adjust_occurrence(self, occurrence: Dict, token: int):
@ -235,7 +239,10 @@ class AbstractRWKV(ABC):
except HTTPException:
pass
if cache is None or cache["prompt"] == "" or cache["state"] is None:
self.model_state = None
if self.state_path:
self.model_state = copy.deepcopy(self.state_tuned)
else:
self.model_state = None
self.model_tokens = []
else:
delta_prompt = prompt[len(cache["prompt"]) :]
@ -245,9 +252,16 @@ class AbstractRWKV(ABC):
prompt_token_len = 0
if delta_prompt != "":
prompt_start_time = time.time()
logits, prompt_token_len = self.run_rnn(
self.fix_tokens(self.pipeline.encode(delta_prompt))
)
prompt_end_time = time.time()
prompt_interval = prompt_end_time - prompt_start_time
tps = 0
if prompt_interval > 0:
tps = prompt_token_len / prompt_interval
print(f"Prompt Prefill TPS: {tps:.2f}", end=" ", flush=True)
try:
state_cache.add_state(
state_cache.AddStateBody(
@ -274,7 +288,18 @@ class AbstractRWKV(ABC):
logits, temperature=self.temperature, top_p=self.top_p, top_k=self.top_k
)
if token == END_OF_TEXT:
if token == self.EOS_ID:
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
except HTTPException:
pass
yield response, "", prompt_token_len, completion_token_len
break
@ -305,22 +330,25 @@ class AbstractRWKV(ABC):
yield response, "", prompt_token_len, completion_token_len
break
elif type(stop) == list:
stop_exist_regex = "|".join(stop)
matched = re.search(stop_exist_regex, response)
if matched:
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
exit_flag = False
for s in stop:
if s in response:
try:
state_cache.add_state(
state_cache.AddStateBody(
prompt=prompt + response,
tokens=self.model_tokens,
state=self.model_state,
logits=logits,
)
)
)
except HTTPException:
pass
response = response.split(matched.group())[0]
yield response, "", prompt_token_len, completion_token_len
except HTTPException:
pass
exit_flag = True
response = response.split(s)[0]
yield response, "", prompt_token_len, completion_token_len
break
if exit_flag:
break
out_last = begin + i + 1
if i == self.max_tokens_per_generation - 1:
@ -363,18 +391,24 @@ class TextRWKV(AbstractRWKV):
self.bot = "Assistant"
self.END_OF_LINE = 11
self.AVOID_REPEAT_TOKENS = []
self.AVOID_REPEAT_TOKENS = set()
AVOID_REPEAT = ""
for i in AVOID_REPEAT:
dd = self.pipeline.encode(i)
assert len(dd) == 1
self.AVOID_REPEAT_TOKENS += dd
self.AVOID_REPEAT_TOKENS.add(dd[0])
self.AVOID_PENALTY_TOKENS = set()
AVOID_PENALTY = '\n,.:?!,。:?!"“”<>[]{}/\\|;~`@#$%^&*()_+-=0123456789 '
for i in AVOID_PENALTY:
dd = self.pipeline.encode(i)
if len(dd) == 1:
self.AVOID_PENALTY_TOKENS.add(dd[0])
self.__preload()
def adjust_occurrence(self, occurrence: Dict, token: int):
for xxx in occurrence:
occurrence[xxx] *= 0.996
occurrence[xxx] *= self.penalty_decay
if token not in occurrence:
occurrence[token] = 1
else:
@ -382,26 +416,24 @@ class TextRWKV(AbstractRWKV):
def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int):
for n in occurrence:
# if n not in self.AVOID_PENALTY_TOKENS:
logits[n] -= (
self.penalty_alpha_presence
+ occurrence[n] * self.penalty_alpha_frequency
)
if i == 0:
# set global_penalty to False to get the same generated results as the official RWKV Gradio
if self.global_penalty and i == 0:
for token in self.model_tokens:
token = int(token)
for xxx in occurrence:
occurrence[xxx] *= 0.996
if token not in occurrence:
occurrence[token] = 1
else:
occurrence[token] += 1
if token not in self.AVOID_PENALTY_TOKENS:
self.adjust_occurrence(occurrence, token)
# Model only saw '\n\n' as [187, 187] before, but the tokenizer outputs [535] for it at the end
def fix_tokens(self, tokens) -> List[int]:
if self.rwkv_type == RWKVType.World:
return tokens
if len(tokens) > 0 and tokens[-1] == END_OF_LINE_DOUBLE:
if len(tokens) > 0 and tokens[-1] == 535:
tokens = tokens[:-1] + [self.END_OF_LINE, self.END_OF_LINE]
return tokens
@ -459,7 +491,7 @@ The following is a coherent verbose detailed conversation between a girl named {
pass
class MusicRWKV(AbstractRWKV):
class MusicMidiRWKV(AbstractRWKV):
def __init__(self, model, pipeline):
super().__init__(model, pipeline)
@ -501,8 +533,47 @@ class MusicRWKV(AbstractRWKV):
return " " + delta
class MusicAbcRWKV(AbstractRWKV):
def __init__(self, model, pipeline):
super().__init__(model, pipeline)
self.EOS_ID = 3
self.max_tokens_per_generation = 500
self.temperature = 1
self.top_p = 0.8
self.top_k = 8
self.rwkv_type = RWKVType.Music
def adjust_occurrence(self, occurrence: Dict, token: int):
pass
def adjust_forward_logits(self, logits: List[float], occurrence: Dict, i: int):
pass
def fix_tokens(self, tokens) -> List[int]:
return tokens
def run_rnn(
self, _tokens: List[str], newline_adj: int = 0
) -> Tuple[List[float], int]:
tokens = [int(x) for x in _tokens]
token_len = len(tokens)
self.model_tokens += tokens
out, self.model_state = self.model.forward(tokens, self.model_state)
return out, token_len
def delta_postprocess(self, delta: str) -> str:
return delta
def get_tokenizer(tokenizer_len: int):
tokenizer_dir = f"{pathlib.Path(__file__).parent.parent.resolve()}/rwkv_pip/"
if tokenizer_len < 2176:
return "abc_tokenizer"
if tokenizer_len < 20096:
return tokenizer_dir + "tokenizer-midipiano.json"
if tokenizer_len < 50277:
return tokenizer_dir + "tokenizer-midi.json"
elif tokenizer_len < 65536:
@ -511,21 +582,49 @@ def get_tokenizer(tokenizer_len: int):
return "rwkv_vocab_v20230424"
def get_model_path(model_path: str) -> str:
if os.path.isabs(model_path):
return model_path
working_dir: pathlib.Path = pathlib.Path(os.path.abspath(os.getcwd()))
parent_paths: List[pathlib.Path] = [
working_dir, # [cwd](RWKV-Runner)/models/xxx
working_dir.parent, # [cwd](backend-python)/../models/xxx
pathlib.Path(
os.path.abspath(__file__)
).parent.parent, # backend-python/models/xxx
pathlib.Path(
os.path.abspath(__file__)
).parent.parent.parent, # RWKV-Runner/models/xxx
]
child_paths: List[Callable[[pathlib.Path], pathlib.Path]] = [
lambda p: p / model_path,
lambda p: p / "build" / "bin" / model_path, # for dev
]
for parent_path in parent_paths:
for child_path in child_paths:
full_path: pathlib.Path = child_path(parent_path)
if os.path.isfile(full_path):
return str(full_path)
return model_path
def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV:
rwkv_beta = global_var.get(global_var.Args).rwkv_beta
model_path = get_model_path(model)
rwkv_cpp = getattr(global_var.get(global_var.Args), "rwkv.cpp")
webgpu = global_var.get(global_var.Args).webgpu
if "midi" in model.lower() or "abc" in model.lower():
if "midi" in model_path.lower() or "abc" in model_path.lower():
os.environ["RWKV_RESCALE_LAYER"] = "999"
# dynamic import to make RWKV_CUDA_ON work
if rwkv_beta:
print("Using rwkv-beta")
from rwkv_pip.beta.model import (
RWKV as Model,
)
elif rwkv_cpp:
if rwkv_cpp:
print("Using rwkv.cpp, strategy is ignored")
from rwkv_pip.cpp.model import (
RWKV as Model,
@ -541,8 +640,8 @@ def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV
)
from rwkv_pip.utils import PIPELINE
filename, _ = os.path.splitext(os.path.basename(model))
model = Model(model, strategy)
filename, _ = os.path.splitext(os.path.basename(model_path))
model = Model(model_path, strategy)
if not tokenizer:
tokenizer = get_tokenizer(len(model.w["emb.weight"]))
pipeline = PIPELINE(model, tokenizer)
@ -550,39 +649,152 @@ def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV
rwkv_map: dict[str, Type[AbstractRWKV]] = {
"20B_tokenizer": TextRWKV,
"rwkv_vocab_v20230424": TextRWKV,
"tokenizer-midi": MusicRWKV,
"tokenizer-midi": MusicMidiRWKV,
"tokenizer-midipiano": MusicMidiRWKV,
"abc_tokenizer": MusicAbcRWKV,
}
tokenizer_name = os.path.splitext(os.path.basename(tokenizer))[0]
global_var.set(
global_var.Midi_Vocab_Config_Type,
(
global_var.MidiVocabConfig.Piano
if tokenizer_name == "tokenizer-midipiano"
else global_var.MidiVocabConfig.Default
),
)
rwkv: AbstractRWKV
if tokenizer_name in rwkv_map:
rwkv = rwkv_map[tokenizer_name](model, pipeline)
else:
rwkv = TextRWKV(model, pipeline)
tokenizer_name = tokenizer_name.lower()
if "music" in tokenizer_name or "midi" in tokenizer_name:
rwkv = MusicMidiRWKV(model, pipeline)
elif "abc" in tokenizer_name:
rwkv = MusicAbcRWKV(model, pipeline)
else:
rwkv = TextRWKV(model, pipeline)
rwkv.name = filename
rwkv.model_path = model_path
rwkv.version = model.version
return rwkv
class ModelConfigBody(BaseModel):
max_tokens: int = Field(default=None, gt=0, le=102400)
temperature: float = Field(default=None, ge=0, le=2)
temperature: float = Field(default=None, ge=0, le=3)
top_p: float = Field(default=None, ge=0, le=1)
presence_penalty: float = Field(default=None, ge=-2, le=2)
frequency_penalty: float = Field(default=None, ge=-2, le=2)
penalty_decay: float = Field(default=None, ge=0.99, le=0.999)
top_k: int = Field(default=None, ge=0, le=25)
global_penalty: bool = Field(
default=None,
description="When generating a response, whether to include the submitted prompt as a penalty factor. By turning this off, you will get the same generated results as official RWKV Gradio. If you find duplicate results in the generated results, turning this on can help avoid generating duplicates.",
)
state: str = Field(default=None, description="state-tuned file path")
model_config = {
"json_schema_extra": {
"example": {
"max_tokens": 1000,
"temperature": 1.2,
"top_p": 0.5,
"presence_penalty": 0.4,
"frequency_penalty": 0.4,
"temperature": 1,
"top_p": 0.3,
"presence_penalty": 0,
"frequency_penalty": 1,
"penalty_decay": 0.996,
"global_penalty": False,
"state": "",
}
}
}
def load_rwkv_state(
model: AbstractRWKV, state_path: str, print_log: bool = True
) -> HTTPException:
if model:
if state_path:
if model.model_path.endswith(".pth") and state_path.endswith(".pth"):
import torch
state_path = get_model_path(state_path)
if model.state_path == state_path:
return
if not os.path.isfile(state_path):
return HTTPException(
status.HTTP_400_BAD_REQUEST, "state file not found"
)
try:
state_raw = torch.load(state_path, map_location="cpu")
except Exception as e:
print(e)
return HTTPException(
status.HTTP_400_BAD_REQUEST, "state file failed to load"
)
state_raw_shape = next(iter(state_raw.values())).shape
args = model.model.args
if (
len(state_raw) != args.n_layer
or state_raw_shape[0] * state_raw_shape[1] != args.n_embd
):
if model.state_path:
pass
elif print_log:
print("state failed to load")
return HTTPException(
status.HTTP_400_BAD_REQUEST, "state shape mismatch"
)
strategy = model.model.strategy
model.state_tuned = [None] * args.n_layer * 3
for i in range(args.n_layer):
dd = strategy[i]
dev = dd.device
atype = dd.atype
model.state_tuned[i * 3 + 0] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()
model.state_tuned[i * 3 + 1] = (
state_raw[f"blocks.{i}.att.time_state"]
.transpose(1, 2)
.to(dtype=torch.float, device=dev)
.requires_grad_(False)
.contiguous()
)
model.state_tuned[i * 3 + 2] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()
state_cache.force_reset_state()
model.state_path = state_path
if print_log:
print("state loaded")
else:
if model.state_path:
pass
elif print_log:
print("state failed to load")
return HTTPException(
status.HTTP_400_BAD_REQUEST,
"file format of the model or state model not supported",
)
else:
if state_path == "" and model.state_path != "":
state_cache.force_reset_state()
model.state_path = ""
model.state_tuned = None # TODO cached
if print_log:
print("state unloaded")
else:
if print_log:
print("state not loaded")
def set_rwkv_config(model: AbstractRWKV, body: ModelConfigBody):
if body.max_tokens is not None:
model.max_tokens_per_generation = body.max_tokens
@ -597,6 +809,14 @@ def set_rwkv_config(model: AbstractRWKV, body: ModelConfigBody):
model.penalty_alpha_presence = body.presence_penalty
if body.frequency_penalty is not None:
model.penalty_alpha_frequency = body.frequency_penalty
if body.penalty_decay is not None:
model.penalty_decay = body.penalty_decay
if body.top_k is not None:
model.top_k = body.top_k
if body.global_penalty is not None:
model.global_penalty = body.global_penalty
if body.state is not None:
load_rwkv_state(model, body.state, False)
def get_rwkv_config(model: AbstractRWKV) -> ModelConfigBody:
@ -606,4 +826,8 @@ def get_rwkv_config(model: AbstractRWKV) -> ModelConfigBody:
top_p=model.top_p,
presence_penalty=model.penalty_alpha_presence,
frequency_penalty=model.penalty_alpha_frequency,
penalty_decay=model.penalty_decay,
top_k=model.top_k,
global_penalty=model.global_penalty,
state=model.state_path,
)

View File

@ -19,9 +19,12 @@ def set_torch():
def torch_gc():
import torch
try:
import torch
if torch.cuda.is_available():
with torch.cuda.device(0):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
if torch.cuda.is_available():
with torch.cuda.device(0):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
except:
pass # prevent 'torch' has no attribute 'cuda' error, so user can use CPU or WebGPU

View File

@ -0,0 +1,279 @@
{
"note_events": 128,
"wait_events": 125,
"max_wait_time": 1000,
"velocity_events": 128,
"velocity_bins": 16,
"velocity_exp": 0.33,
"do_token_sorting": true,
"unrolled_tokens": false,
"decode_end_held_note_delay": 5.0,
"decode_fix_repeated_notes": true,
"bin_instrument_names": [
"piano"
],
"ch10_instrument_bin_name": "",
"program_name_to_bin_name": {
"Acoustic Grand Piano": "piano",
"Bright Acoustic Piano": "piano",
"Electric Grand Piano": "piano",
"Honky-tonk Piano": "piano",
"Electric Piano 1 (Rhodes Piano)": "piano",
"Electric Piano 2 (Chorused Piano)": "piano",
"Harpsichord": "piano",
"Clavinet": "piano",
"Celesta": "",
"Glockenspiel": "",
"Music Box": "",
"Vibraphone": "",
"Marimba": "",
"Xylophone": "",
"Tubular Bells": "",
"Dulcimer (Santur)": "",
"Drawbar Organ (Hammond)": "",
"Percussive Organ": "piano",
"Rock Organ": "piano",
"Church Organ": "piano",
"Reed Organ": "piano",
"Accordion (French)": "piano",
"Harmonica": "piano",
"Tango Accordion (Band neon)": "piano",
"Acoustic Guitar (nylon)": "",
"Acoustic Guitar (steel)": "",
"Electric Guitar (jazz)": "",
"Electric Guitar (clean)": "",
"Electric Guitar (muted)": "",
"Overdriven Guitar": "",
"Distortion Guitar": "",
"Guitar harmonics": "",
"Acoustic Bass": "",
"Electric Bass (fingered)": "",
"Electric Bass (picked)": "",
"Fretless Bass": "",
"Slap Bass 1": "",
"Slap Bass 2": "",
"Synth Bass 1": "",
"Synth Bass 2": "",
"Violin": "",
"Viola": "",
"Cello": "",
"Contrabass": "",
"Tremolo Strings": "",
"Pizzicato Strings": "",
"Orchestral Harp": "",
"Timpani": "",
"String Ensemble 1 (strings)": "",
"String Ensemble 2 (slow strings)": "",
"SynthStrings 1": "",
"SynthStrings 2": "",
"Choir Aahs": "",
"Voice Oohs": "",
"Synth Voice": "",
"Orchestra Hit": "",
"Trumpet": "",
"Trombone": "",
"Tuba": "",
"Muted Trumpet": "",
"French Horn": "",
"Brass Section": "",
"SynthBrass 1": "",
"SynthBrass 2": "",
"Soprano Sax": "",
"Alto Sax": "",
"Tenor Sax": "",
"Baritone Sax": "",
"Oboe": "",
"English Horn": "",
"Bassoon": "",
"Clarinet": "",
"Piccolo": "",
"Flute": "",
"Recorder": "",
"Pan Flute": "",
"Blown Bottle": "",
"Shakuhachi": "",
"Whistle": "",
"Ocarina": "",
"Lead 1 (square wave)": "",
"Lead 2 (sawtooth wave)": "",
"Lead 3 (calliope)": "",
"Lead 4 (chiffer)": "",
"Lead 5 (charang)": "",
"Lead 6 (voice solo)": "",
"Lead 7 (fifths)": "",
"Lead 8 (bass + lead)": "",
"Pad 1 (new age Fantasia)": "",
"Pad 2 (warm)": "",
"Pad 3 (polysynth)": "",
"Pad 4 (choir space voice)": "",
"Pad 5 (bowed glass)": "",
"Pad 6 (metallic pro)": "",
"Pad 7 (halo)": "",
"Pad 8 (sweep)": "",
"FX 1 (rain)": "",
"FX 2 (soundtrack)": "",
"FX 3 (crystal)": "",
"FX 4 (atmosphere)": "",
"FX 5 (brightness)": "",
"FX 6 (goblins)": "",
"FX 7 (echoes, drops)": "",
"FX 8 (sci-fi, star theme)": "",
"Sitar": "",
"Banjo": "",
"Shamisen": "",
"Koto": "",
"Kalimba": "",
"Bag pipe": "",
"Fiddle": "",
"Shanai": "",
"Tinkle Bell": "",
"Agogo": "",
"Steel Drums": "",
"Woodblock": "",
"Taiko Drum": "",
"Melodic Tom": "",
"Synth Drum": "",
"Reverse Cymbal": "",
"Guitar Fret Noise": "",
"Breath Noise": "",
"Seashore": "",
"Bird Tweet": "",
"Telephone Ring": "",
"Helicopter": "",
"Applause": "",
"Gunshot": ""
},
"bin_name_to_program_name": {
"piano": "Acoustic Grand Piano"
},
"instrument_names": {
"0": "Acoustic Grand Piano",
"1": "Bright Acoustic Piano",
"2": "Electric Grand Piano",
"3": "Honky-tonk Piano",
"4": "Electric Piano 1 (Rhodes Piano)",
"5": "Electric Piano 2 (Chorused Piano)",
"6": "Harpsichord",
"7": "Clavinet",
"8": "Celesta",
"9": "Glockenspiel",
"10": "Music Box",
"11": "Vibraphone",
"12": "Marimba",
"13": "Xylophone",
"14": "Tubular Bells",
"15": "Dulcimer (Santur)",
"16": "Drawbar Organ (Hammond)",
"17": "Percussive Organ",
"18": "Rock Organ",
"19": "Church Organ",
"20": "Reed Organ",
"21": "Accordion (French)",
"22": "Harmonica",
"23": "Tango Accordion (Band neon)",
"24": "Acoustic Guitar (nylon)",
"25": "Acoustic Guitar (steel)",
"26": "Electric Guitar (jazz)",
"27": "Electric Guitar (clean)",
"28": "Electric Guitar (muted)",
"29": "Overdriven Guitar",
"30": "Distortion Guitar",
"31": "Guitar harmonics",
"32": "Acoustic Bass",
"33": "Electric Bass (fingered)",
"34": "Electric Bass (picked)",
"35": "Fretless Bass",
"36": "Slap Bass 1",
"37": "Slap Bass 2",
"38": "Synth Bass 1",
"39": "Synth Bass 2",
"40": "Violin",
"41": "Viola",
"42": "Cello",
"43": "Contrabass",
"44": "Tremolo Strings",
"45": "Pizzicato Strings",
"46": "Orchestral Harp",
"47": "Timpani",
"48": "String Ensemble 1 (strings)",
"49": "String Ensemble 2 (slow strings)",
"50": "SynthStrings 1",
"51": "SynthStrings 2",
"52": "Choir Aahs",
"53": "Voice Oohs",
"54": "Synth Voice",
"55": "Orchestra Hit",
"56": "Trumpet",
"57": "Trombone",
"58": "Tuba",
"59": "Muted Trumpet",
"60": "French Horn",
"61": "Brass Section",
"62": "SynthBrass 1",
"63": "SynthBrass 2",
"64": "Soprano Sax",
"65": "Alto Sax",
"66": "Tenor Sax",
"67": "Baritone Sax",
"68": "Oboe",
"69": "English Horn",
"70": "Bassoon",
"71": "Clarinet",
"72": "Piccolo",
"73": "Flute",
"74": "Recorder",
"75": "Pan Flute",
"76": "Blown Bottle",
"77": "Shakuhachi",
"78": "Whistle",
"79": "Ocarina",
"80": "Lead 1 (square wave)",
"81": "Lead 2 (sawtooth wave)",
"82": "Lead 3 (calliope)",
"83": "Lead 4 (chiffer)",
"84": "Lead 5 (charang)",
"85": "Lead 6 (voice solo)",
"86": "Lead 7 (fifths)",
"87": "Lead 8 (bass + lead)",
"88": "Pad 1 (new age Fantasia)",
"89": "Pad 2 (warm)",
"90": "Pad 3 (polysynth)",
"91": "Pad 4 (choir space voice)",
"92": "Pad 5 (bowed glass)",
"93": "Pad 6 (metallic pro)",
"94": "Pad 7 (halo)",
"95": "Pad 8 (sweep)",
"96": "FX 1 (rain)",
"97": "FX 2 (soundtrack)",
"98": "FX 3 (crystal)",
"99": "FX 4 (atmosphere)",
"100": "FX 5 (brightness)",
"101": "FX 6 (goblins)",
"102": "FX 7 (echoes, drops)",
"103": "FX 8 (sci-fi, star theme)",
"104": "Sitar",
"105": "Banjo",
"106": "Shamisen",
"107": "Koto",
"108": "Kalimba",
"109": "Bag pipe",
"110": "Fiddle",
"111": "Shanai",
"112": "Tinkle Bell",
"113": "Agogo",
"114": "Steel Drums",
"115": "Woodblock",
"116": "Taiko Drum",
"117": "Melodic Tom",
"118": "Synth Drum",
"119": "Reverse Cymbal",
"120": "Guitar Fret Noise",
"121": "Breath Noise",
"122": "Seashore",
"123": "Bird Tweet",
"124": "Telephone Ring",
"125": "Helicopter",
"126": "Applause",
"127": "Gunshot"
}
}

18
docker-compose.yml Normal file
View File

@ -0,0 +1,18 @@
services:
rmkv_runner:
image: rwkv-runner:latest
build: .
# Append "--rwkv.cpp" parameter to use rwkv.cpp
# command: python3.10 ./backend-python/main.py --port 27777 --host 0.0.0.0 --webui --rwkv.cpp
volumes:
- /mnt:/mnt
ports:
- "27777:27777"
# Comment the following lines if use rwkv.cpp
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: 1
capabilities: [gpu]

View File

@ -52,9 +52,13 @@ for x in keys:
if "time_maa" in x:
version = max(6, version)
params = f"--vocab_size {vocab_size} --n_layer {n_layer} --n_embd {n_embd}"
if version <= expected_max_version:
if version == 6:
params += ' --my_testing "x060"'
print(
f"v{int(version)}/train.py --vocab_size {vocab_size} --n_layer {n_layer} --n_embd {n_embd}",
f"v{int(version)}/train.py {params}",
end="",
)
else:

View File

@ -1,7 +1,7 @@
echo $@
if [[ ${cnMirror} == 1 ]]; then
export PIP_INDEX_URL="https://pypi.tuna.tsinghua.edu.cn/simple"
export PIP_INDEX_URL="https://mirrors.aliyun.com/pypi/simple"
if grep -q "mirrors.aliyun.com" /etc/apt/sources.list; then
echo "apt cnMirror already set"
else
@ -22,6 +22,12 @@ else
sudo apt -y install python3-pip
fi
if dpkg -s "python3-dev" >/dev/null 2>&1; then
echo "python3-dev installed"
else
sudo apt -y install python3-dev
fi
if dpkg -s "ninja-build" >/dev/null 2>&1; then
echo "ninja installed"
else
@ -47,11 +53,12 @@ else
fi
echo "loading $loadModel"
modelInfo=$(python3 ./finetune/get_layer_and_embd.py $loadModel 5.2)
modelInfo=$(python3 ./finetune/get_layer_and_embd.py $loadModel 6.0)
echo $modelInfo
if [[ $modelInfo =~ "--n_layer" ]]; then
sudo rm -rf /root/.cache/torch_extensions
python3 ./finetune/lora/$modelInfo $@ --proj_dir lora-models --data_type binidx --lora \
--lora_parts=att,ffn,time,ln --strategy deepspeed_stage_2 --accelerator gpu
--lora_parts=att,ffn,time,ln --strategy deepspeed_stage_2 --accelerator gpu --ds_bucket_mb 2
else
echo "modelInfo is invalid"
exit 1

202
finetune/lora/v6/cuda/wkv5_cuda.cu vendored Normal file
View File

@ -0,0 +1,202 @@
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
template <typename F>
__global__ void kernel_forward(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u,
F *__restrict__ const _y)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_w += h*_N_;
_u += h*_N_;
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
float state[_N_] = {0};
__syncthreads();
w[i] = _w[i];
u[i] = float(_u[i]);
__syncthreads();
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
{
__syncthreads();
r[i] = float(_r[t]);
k[i] = float(_k[t]);
__syncthreads();
const float v = float(_v[t]);
float y = 0;
#pragma unroll
for (int j = 0; j < _N_; j+=4)
{
const float4& r_ = (float4&)(r[j]);
const float4& k_ = (float4&)(k[j]);
const float4& w_ = (float4&)(w[j]);
const float4& u_ = (float4&)(u[j]);
float4& s = (float4&)(state[j]);
float4 x;
x.x = k_.x * v;
x.y = k_.y * v;
x.z = k_.z * v;
x.w = k_.w * v;
y += r_.x * (u_.x * x.x + s.x);
y += r_.y * (u_.y * x.y + s.y);
y += r_.z * (u_.z * x.z + s.z);
y += r_.w * (u_.w * x.w + s.w);
s.x = s.x * w_.x + x.x;
s.y = s.y * w_.y + x.y;
s.z = s.z * w_.z + x.z;
s.w = s.w * w_.w + x.w;
}
_y[t] = F(y);
}
}
template <typename F>
__global__ void kernel_backward(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const float *__restrict__ __w, const F *__restrict__ _u, const F *__restrict__ const _gy,
F *__restrict__ const _gr, F *__restrict__ const _gk, F *__restrict__ const _gv, F *__restrict__ const _gw, F *__restrict__ const _gu)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_w += h*_N_;
_u += h*_N_;
__w += h*_N_;
__shared__ float w_[_N_], u_[_N_];
__shared__ float r[_N_], k[_N_], v[_N_], gy[_N_];
__syncthreads();
w_[i] = _w[i];
u_[i] = float(_u[i]);
__syncthreads();
const float w = w_[i];
const float ww = __w[i];
const float u = u_[i];
float state[_N_] = {0}, saaaa[_N_] = {0}, sbbbb[_N_] = {0}, scccc[_N_] = {0}, sdddd[_N_] = {0};
float gw = 0, gu = 0;
const int t000 = b*T*C + h*_N_ + i;
const int t111 = (b+1)*T*C + h*_N_ + i;
const int t222 = t111 - 2*C;
for (int t = t000; t < t111; t += C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float k = float(_k[t]);
float gr = 0, gu_ = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = state[j];
float x = k * v[j];
gr += (u * x + s) * gy[j];
gu_ += x * gy[j];
s = s * w + x;
}
_gr[t] = F(gr);
gu += float(_r[t]) * gu_;
}
_gu[b*C + h*_N_ + i] = F(gu);
for (int t = t000; t < t222; t += C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t + 2*C]);
__syncthreads();
const float k = float(_k[t]);
float gw_ = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = saaaa[j];
float& s2 = sbbbb[j];
float x = k * v[j];
float tmp = w * (x + s);
s = tmp;
s2 = tmp + w * s2;
gw_ += s2 * gy[j];
}
gw += float(_r[t + 2*C]) * gw_;
}
_gw[b*C + h*_N_ + i] = F(ww * gw);
for (int t = t111 - C; t >= t000; t -= C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float rr = float(_r[t]);
float gk = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
float x = rr * gy[j];
gk += (u * x + s) * v[j];
s = x + s * w;
}
_gk[t] = F(gk);
}
for (int t = t111 - C; t >= t000; t -= C)
{
__syncthreads();
r[i] = float(_r[t]);
k[i] = float(_k[t]);
__syncthreads();
const float gyy = float(_gy[t]);
float gv = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = sdddd[j];
float x = gyy * r[j];
gv += (u_[j] * x + s) * k[j];
s = x + s * w_[j];
}
_gv[t] = F(gv);
}
}
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, y);
}
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, float *ww, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_backward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, ww, u, gy, gr, gk, gv, gw, gu);
}

22
finetune/lora/v6/cuda/wkv5_op.cpp vendored Normal file
View File

@ -0,0 +1,22 @@
#include <torch/extension.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y);
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, float *ww, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu);
void forward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
cuda_forward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), y.data_ptr<bf16>());
}
void backward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &ww, torch::Tensor &u, torch::Tensor &gy, torch::Tensor &gr, torch::Tensor &gk, torch::Tensor &gv, torch::Tensor &gw, torch::Tensor &gu) {
cuda_backward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), ww.data_ptr<float>(), u.data_ptr<bf16>(), gy.data_ptr<bf16>(), gr.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>());
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "wkv5 forward");
m.def("backward", &backward, "wkv5 backward");
}
TORCH_LIBRARY(wkv5, m) {
m.def("forward", forward);
m.def("backward", backward);
}

242
finetune/lora/v6/cuda/wkv6_cuda.cu vendored Normal file
View File

@ -0,0 +1,242 @@
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
template <typename F>
__global__ void kernel_forward(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u,
F *__restrict__ const _y)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_u += h*_N_;
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
float state[_N_] = {0};
__syncthreads();
u[i] = float(_u[i]);
__syncthreads();
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
{
__syncthreads();
w[i] = exp(_w[t]);
r[i] = float(_r[t]);
k[i] = float(_k[t]);
__syncthreads();
const float v = float(_v[t]);
float y = 0;
#pragma unroll
for (int j = 0; j < _N_; j+=4)
{
const float4& r_ = (float4&)(r[j]);
const float4& k_ = (float4&)(k[j]);
const float4& w_ = (float4&)(w[j]);
const float4& u_ = (float4&)(u[j]);
float4& s = (float4&)(state[j]);
float4 x;
x.x = k_.x * v;
x.y = k_.y * v;
x.z = k_.z * v;
x.w = k_.w * v;
y += r_.x * (u_.x * x.x + s.x);
y += r_.y * (u_.y * x.y + s.y);
y += r_.z * (u_.z * x.z + s.z);
y += r_.w * (u_.w * x.w + s.w);
s.x = s.x * w_.x + x.x;
s.y = s.y * w_.y + x.y;
s.z = s.z * w_.z + x.z;
s.w = s.w * w_.w + x.w;
}
_y[t] = F(y);
}
}
template <typename F>
__global__ void kernel_backward_111(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u, const F *__restrict__ const _gy,
F *__restrict__ const _gr, F *__restrict__ const _gk, F *__restrict__ const _gv, F *__restrict__ const _gu)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_u += h*_N_;
__shared__ float u_[_N_];
__shared__ float r[_N_], k[_N_], v[_N_], w_[_N_], gy[_N_];
__syncthreads();
u_[i] = float(_u[i]);
__syncthreads();
const float u = u_[i];
float state[_N_] = {0}, scccc[_N_] = {0}, sdddd[_N_] = {0};
const int t_0 = b*T*C + h*_N_ + i;
const int t_T_1 = t_0 + (T-1)*C;
const int t_T = t_0 + T*C;
float gu = 0;
for (int t = t_0; t < t_T; t += C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float k = float(_k[t]);
const float w = exp(_w[t]);
float gr = 0, gu_ = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = state[j];
float x = k * v[j];
gr += (u * x + s) * gy[j];
gu_ += x * gy[j];
s = s * w + x;
}
_gr[t] = F(gr);
gu += float(_r[t]) * gu_;
}
_gu[b*C + h*_N_ + i] = F(gu);
for (int t = t_T_1; t >= t_0; t -= C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float rr = float(_r[t]);
const float w = exp(_w[t]);
float gk = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
float x = rr * gy[j];
gk += (u * x + s) * v[j];
s = x + s * w;
}
_gk[t] = F(gk);
}
for (int t = t_T_1; t >= t_0; t -= C)
{
__syncthreads();
r[i] = float(_r[t]);
k[i] = float(_k[t]);
w_[i] = exp(_w[t]);
__syncthreads();
const float gyy = float(_gy[t]);
float gv = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = sdddd[j];
float x = gyy * r[j];
gv += (u_[j] * x + s) * k[j];
s = x + s * w_[j];
}
_gv[t] = F(gv);
}
}
template <typename F>
__global__ void kernel_backward_222(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u, const F *__restrict__ const _gy,
F *__restrict__ const _gw)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
__shared__ float v[_N_], gy[_N_];
float saaaa[_N_] = {0}, sbbbb[_T_-2] = {0}, scccc[_N_] = {0};
const int t_0 = b*T*C + h*_N_ + i;
const int t_1 = t_0 + C;
const int t_2 = t_0 + 2*C;
const int t_T_1 = t_0 + (T-1)*C;
for (int t = t_T_1; t > t_1; t -= C)
{
__syncthreads();
gy[i] = float(_gy[t]);
v[i] = float(_v[t-2*C]);
__syncthreads();
const float r = float(_r[t]);
const float w = exp(_w[t-C]);
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = saaaa[j];
float x = r * gy[j];
s = (s + x) * w;
sum += s * v[j];
}
sbbbb[(t-t_2)/C] = sum * float(_k[t-2*C]);
}
float sss = sbbbb[0];
_gw[t_0] = 0;
_gw[t_1] = F(sss * _w[t_1]);
for (int t = t_2; t < t_T_1; t += C)
{
__syncthreads();
gy[i] = float(_gy[t]);
v[i] = float(_v[t-2*C]);
__syncthreads();
const float w = exp(_w[t-C]);
const float k = float(_k[t-2*C]);
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
float x = k * v[j];
s = (s + x) * w;
sum += s * gy[j];
}
sss += sbbbb[(t-t_1)/C] - (sum * float(_r[t]));
_gw[t] = F(sss * _w[t]);
}
_gw[t_T_1] = 0;
}
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, y);
}
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_backward_111<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, gy, gr, gk, gv, gu);
kernel_backward_222<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, gy, gw);
}

22
finetune/lora/v6/cuda/wkv6_op.cpp vendored Normal file
View File

@ -0,0 +1,22 @@
#include <torch/extension.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y);
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu);
void forward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
cuda_forward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), y.data_ptr<bf16>());
}
void backward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &gy, torch::Tensor &gr, torch::Tensor &gk, torch::Tensor &gv, torch::Tensor &gw, torch::Tensor &gu) {
cuda_backward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), gy.data_ptr<bf16>(), gr.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>());
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "wkv6 forward");
m.def("backward", &backward, "wkv6 backward");
}
TORCH_LIBRARY(wkv6, m) {
m.def("forward", forward);
m.def("backward", backward);
}

311
finetune/lora/v6/cuda/wkv6infctx_cuda.cu vendored Normal file
View File

@ -0,0 +1,311 @@
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
template <typename F>
__global__ void kernel_forward(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ _w, const F *__restrict__ _u, F *__restrict__ _s,
F *__restrict__ const _y)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_u += h*_N_;
_s += h*_N_*_N_ + i*_N_;
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
float state[_N_];
__syncthreads();
u[i] = float(_u[i]);
__syncthreads();
for (int j = 0; j < _N_; j++) {
state[j] = float(_s[j]);
}
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
{
__syncthreads();
w[i] = __expf(-__expf(float(_w[t])));
r[i] = float(_r[t]);
k[i] = float(_k[t]);
__syncthreads();
const float v = float(_v[t]);
float y = 0;
#pragma unroll
for (int j = 0; j < _N_; j+=4)
{
const float4& r_ = (float4&)(r[j]);
const float4& k_ = (float4&)(k[j]);
const float4& w_ = (float4&)(w[j]);
const float4& u_ = (float4&)(u[j]);
float4& s = (float4&)(state[j]);
float4 x;
x.x = k_.x * v;
x.y = k_.y * v;
x.z = k_.z * v;
x.w = k_.w * v;
y += r_.x * (u_.x * x.x + s.x);
y += r_.y * (u_.y * x.y + s.y);
y += r_.z * (u_.z * x.z + s.z);
y += r_.w * (u_.w * x.w + s.w);
s.x = s.x * w_.x + x.x;
s.y = s.y * w_.y + x.y;
s.z = s.z * w_.z + x.z;
s.w = s.w * w_.w + x.w;
}
_y[t] = F(y);
}
#pragma unroll
for (int j = 0; j < _N_; j++)
_s[j] = F(state[j]);
}
template <typename F>
__global__ void kernel_backward_111(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ _w, const F *__restrict__ _u, const F *__restrict__ _s, const F *__restrict__ const _gy,
F *__restrict__ const _gr, F *__restrict__ const _gk, F *__restrict__ const _gv, F *__restrict__ const _gu, F *__restrict__ const _gs)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_u += h*_N_;
_s += h*_N_*_N_ + i;
__shared__ float u_[_N_];
__shared__ float r[_N_], k[_N_], v[_N_], w_[_N_], gy[_N_];
__syncthreads();
u_[i] = float(_u[i]);
__syncthreads();
const float u = u_[i];
float state[_N_], scccc[_N_] = {0}, sdddd[_N_] = {0}, sssss[_N_] = {0}, swwww[_N_];
for (int j = 0; j < _N_; j++) {
state[j] = float(_s[j*_N_]);
swwww[j] = 1.0;
}
const int t_0 = b*T*C + h*_N_ + i;
const int t_T_1 = t_0 + (T-1)*C;
const int t_T = t_0 + T*C;
float gu = 0;
for (int t = t_0; t < t_T; t += C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float k = float(_k[t]);
const float w = __expf(-__expf(float(_w[t])));
float gr = 0, gu_ = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = state[j];
float x = k * v[j];
gr += (u * x + s) * gy[j];
gu_ += x * gy[j];
s = s * w + x;
}
_gr[t] = F(gr);
gu += float(_r[t]) * gu_;
}
_gu[b*C + h*_N_ + i] = F(gu);
for (int t = t_T_1; t >= t_0; t -= C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float rr = float(_r[t]);
const float w = __expf(-__expf(float(_w[t])));
float gk = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
float x = rr * gy[j];
gk += (u * x + s) * v[j];
s = x + s * w;
}
_gk[t] = F(gk);
}
for (int t = t_T_1; t >= t_0; t -= C)
{
__syncthreads();
r[i] = float(_r[t]);
k[i] = float(_k[t]);
w_[i] = __expf(-__expf(float(_w[t])));
__syncthreads();
const float gyy = float(_gy[t]);
float gv = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = sdddd[j];
float x = gyy * r[j];
gv += (u_[j] * x + s) * k[j];
s = x + s * w_[j];
}
_gv[t] = F(gv);
}
for (int t = t_0; t < t_T; t += C)
{
__syncthreads();
r[i] = float(_r[t]);
w_[i] = __expf(-__expf(float(_w[t])));
__syncthreads();
const float gyy = float(_gy[t]);
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& w = swwww[j];
sssss[j] += gyy * w * r[j];
w *= w_[j];
}
}
for (int j = 0; j < _N_; j++)
_gs[b*H*_N_*_N_ + h*_N_*_N_ + i*_N_ + j] = F(sssss[j]);
}
template <typename F>
__global__ void kernel_backward_222(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ _w, const F *__restrict__ _u, const F *__restrict__ _s, const F *__restrict__ const _gy,
F *__restrict__ const _gw)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_s += h*_N_*_N_ + i;
__shared__ float v[_N_], gy[_N_];
float state[_N_], saaaa[_N_] = {0}, sbbbb[_T_-1] = {0}, scccc[_N_] = {0};
for (int j = 0; j < _N_; j++) {
state[j] = float(_s[j*_N_]);
}
const int t_0 = b*T*C + h*_N_ + i;
const int t_1 = t_0 + C;
const int t_2 = t_0 + 2*C;
const int t_T_1 = t_0 + (T-1)*C;
for (int t = t_T_1; t > t_1; t -= C)
{
__syncthreads();
gy[i] = float(_gy[t]);
v[i] = float(_v[t-2*C]);
__syncthreads();
const float r = float(_r[t]);
const float w = __expf(-__expf(float(_w[t-C])));
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = saaaa[j];
s = (s + r * gy[j]) * w;
sum += s * v[j];
}
sbbbb[(t-t_1)/C] = sum * float(_k[t-2*C]);
}
{
__syncthreads();
gy[i] = float(_gy[t_1]);
__syncthreads();
const float r = float(_r[t_1]);
const float w = __expf(-__expf(float(_w[t_0])));
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = saaaa[j];
s = (s + r * gy[j]) * w;
sum += s * state[j];
}
sbbbb[0] = sum;
}
float sss = sbbbb[0];
_gw[t_0] = F(sss * -__expf(float(_w[t_0])));
{
__syncthreads();
gy[i] = float(_gy[t_1]);
__syncthreads();
const float w = __expf(-__expf(float(_w[t_0])));
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
s = (s + state[j]) * w;
sum += s * gy[j];
}
sss += sbbbb[1] - (sum * float(_r[t_1]));
_gw[t_1] = F(sss * -__expf(float(_w[t_1])));
}
for (int t = t_2; t < t_T_1; t += C)
{
__syncthreads();
gy[i] = float(_gy[t]);
v[i] = float(_v[t-2*C]);
__syncthreads();
const float w = __expf(-__expf(float(_w[t-C])));
const float k = float(_k[t-2*C]);
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
s = (s + k * v[j]) * w;
sum += s * gy[j];
}
sss += sbbbb[(t-t_0)/C] - (sum * float(_r[t]));
_gw[t] = F(sss * -__expf(float(_w[t])));
}
_gw[t_T_1] = 0;
}
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *z, bf16 *y)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, z, y);
}
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *z, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu, bf16 *gs)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_backward_111<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, z, gy, gr, gk, gv, gu, gs);
kernel_backward_222<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, z, gy, gw);
}

22
finetune/lora/v6/cuda/wkv6infctx_op.cpp vendored Normal file
View File

@ -0,0 +1,22 @@
#include <torch/extension.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *s, bf16 *y);
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *s, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu, bf16 *gs);
void forward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &s, torch::Tensor &y) {
cuda_forward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<bf16>(), u.data_ptr<bf16>(), s.data_ptr<bf16>(), y.data_ptr<bf16>());
}
void backward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &s, torch::Tensor &gy, torch::Tensor &gr, torch::Tensor &gk, torch::Tensor &gv, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gs) {
cuda_backward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<bf16>(), u.data_ptr<bf16>(), s.data_ptr<bf16>(), gy.data_ptr<bf16>(), gr.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>(), gs.data_ptr<bf16>());
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "wkv6state forward");
m.def("backward", &backward, "wkv6state backward");
}
TORCH_LIBRARY(wkv6state, m) {
m.def("forward", forward);
m.def("backward", backward);
}

311
finetune/lora/v6/cuda/wkv6state_cuda.cu vendored Normal file
View File

@ -0,0 +1,311 @@
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
template <typename F>
__global__ void kernel_forward(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ _w, const F *__restrict__ _u,const F *__restrict__ _s,
F *__restrict__ const _y)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_u += h*_N_;
_s += h*_N_*_N_ + i*_N_;
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
float state[_N_];
__syncthreads();
u[i] = float(_u[i]);
__syncthreads();
for (int j = 0; j < _N_; j++) {
state[j] = float(_s[j]);
}
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
{
__syncthreads();
w[i] = __expf(-__expf(float(_w[t])));
r[i] = float(_r[t]);
k[i] = float(_k[t]);
__syncthreads();
const float v = float(_v[t]);
float y = 0;
#pragma unroll
for (int j = 0; j < _N_; j+=4)
{
const float4& r_ = (float4&)(r[j]);
const float4& k_ = (float4&)(k[j]);
const float4& w_ = (float4&)(w[j]);
const float4& u_ = (float4&)(u[j]);
float4& s = (float4&)(state[j]);
float4 x;
x.x = k_.x * v;
x.y = k_.y * v;
x.z = k_.z * v;
x.w = k_.w * v;
y += r_.x * (u_.x * x.x + s.x);
y += r_.y * (u_.y * x.y + s.y);
y += r_.z * (u_.z * x.z + s.z);
y += r_.w * (u_.w * x.w + s.w);
s.x = s.x * w_.x + x.x;
s.y = s.y * w_.y + x.y;
s.z = s.z * w_.z + x.z;
s.w = s.w * w_.w + x.w;
}
_y[t] = F(y);
}
// #pragma unroll
// for (int j = 0; j < _N_; j++)
// _s[j] = F(state[j]);
}
template <typename F>
__global__ void kernel_backward_111(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ _w, const F *__restrict__ _u, const F *__restrict__ _s, const F *__restrict__ const _gy,
F *__restrict__ const _gr, F *__restrict__ const _gk, F *__restrict__ const _gv, F *__restrict__ const _gu, F *__restrict__ const _gs)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_u += h*_N_;
_s += h*_N_*_N_ + i;
__shared__ float u_[_N_];
__shared__ float r[_N_], k[_N_], v[_N_], w_[_N_], gy[_N_];
__syncthreads();
u_[i] = float(_u[i]);
__syncthreads();
const float u = u_[i];
float state[_N_], scccc[_N_] = {0}, sdddd[_N_] = {0}, sssss[_N_] = {0}, swwww[_N_];
for (int j = 0; j < _N_; j++) {
state[j] = float(_s[j*_N_]);
swwww[j] = 1.0;
}
const int t_0 = b*T*C + h*_N_ + i;
const int t_T_1 = t_0 + (T-1)*C;
const int t_T = t_0 + T*C;
float gu = 0;
for (int t = t_0; t < t_T; t += C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float k = float(_k[t]);
const float w = __expf(-__expf(float(_w[t])));
float gr = 0, gu_ = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = state[j];
float x = k * v[j];
gr += (u * x + s) * gy[j];
gu_ += x * gy[j];
s = s * w + x;
}
_gr[t] = F(gr);
gu += float(_r[t]) * gu_;
}
_gu[b*C + h*_N_ + i] = F(gu);
for (int t = t_T_1; t >= t_0; t -= C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float rr = float(_r[t]);
const float w = __expf(-__expf(float(_w[t])));
float gk = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
float x = rr * gy[j];
gk += (u * x + s) * v[j];
s = x + s * w;
}
_gk[t] = F(gk);
}
for (int t = t_T_1; t >= t_0; t -= C)
{
__syncthreads();
r[i] = float(_r[t]);
k[i] = float(_k[t]);
w_[i] = __expf(-__expf(float(_w[t])));
__syncthreads();
const float gyy = float(_gy[t]);
float gv = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = sdddd[j];
float x = gyy * r[j];
gv += (u_[j] * x + s) * k[j];
s = x + s * w_[j];
}
_gv[t] = F(gv);
}
for (int t = t_0; t < t_T; t += C)
{
__syncthreads();
r[i] = float(_r[t]);
w_[i] = __expf(-__expf(float(_w[t])));
__syncthreads();
const float gyy = float(_gy[t]);
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& w = swwww[j];
sssss[j] += gyy * w * r[j];
w *= w_[j];
}
}
for (int j = 0; j < _N_; j++)
_gs[b*H*_N_*_N_ + h*_N_*_N_ + i*_N_ + j] = F(sssss[j]);
}
template <typename F>
__global__ void kernel_backward_222(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ _w, const F *__restrict__ _u, const F *__restrict__ _s, const F *__restrict__ const _gy,
F *__restrict__ const _gw)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_s += h*_N_*_N_ + i;
__shared__ float v[_N_], gy[_N_];
float state[_N_], saaaa[_N_] = {0}, sbbbb[_T_-1] = {0}, scccc[_N_] = {0};
for (int j = 0; j < _N_; j++) {
state[j] = float(_s[j*_N_]);
}
const int t_0 = b*T*C + h*_N_ + i;
const int t_1 = t_0 + C;
const int t_2 = t_0 + 2*C;
const int t_T_1 = t_0 + (T-1)*C;
for (int t = t_T_1; t > t_1; t -= C)
{
__syncthreads();
gy[i] = float(_gy[t]);
v[i] = float(_v[t-2*C]);
__syncthreads();
const float r = float(_r[t]);
const float w = __expf(-__expf(float(_w[t-C])));
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = saaaa[j];
s = (s + r * gy[j]) * w;
sum += s * v[j];
}
sbbbb[(t-t_1)/C] = sum * float(_k[t-2*C]);
}
{
__syncthreads();
gy[i] = float(_gy[t_1]);
__syncthreads();
const float r = float(_r[t_1]);
const float w = __expf(-__expf(float(_w[t_0])));
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = saaaa[j];
s = (s + r * gy[j]) * w;
sum += s * state[j];
}
sbbbb[0] = sum;
}
float sss = sbbbb[0];
_gw[t_0] = F(sss * -__expf(float(_w[t_0])));
{
__syncthreads();
gy[i] = float(_gy[t_1]);
__syncthreads();
const float w = __expf(-__expf(float(_w[t_0])));
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
s = (s + state[j]) * w;
sum += s * gy[j];
}
sss += sbbbb[1] - (sum * float(_r[t_1]));
_gw[t_1] = F(sss * -__expf(float(_w[t_1])));
}
for (int t = t_2; t < t_T_1; t += C)
{
__syncthreads();
gy[i] = float(_gy[t]);
v[i] = float(_v[t-2*C]);
__syncthreads();
const float w = __expf(-__expf(float(_w[t-C])));
const float k = float(_k[t-2*C]);
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
s = (s + k * v[j]) * w;
sum += s * gy[j];
}
sss += sbbbb[(t-t_0)/C] - (sum * float(_r[t]));
_gw[t] = F(sss * -__expf(float(_w[t])));
}
_gw[t_T_1] = 0;
}
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *z, bf16 *y)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, z, y);
}
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *z, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu, bf16 *gs)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_backward_111<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, z, gy, gr, gk, gv, gu, gs);
kernel_backward_222<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, z, gy, gw);
}

22
finetune/lora/v6/cuda/wkv6state_op.cpp vendored Normal file
View File

@ -0,0 +1,22 @@
#include <torch/extension.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *s, bf16 *y);
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *s, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu, bf16 *gs);
void forward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &s, torch::Tensor &y) {
cuda_forward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<bf16>(), u.data_ptr<bf16>(), s.data_ptr<bf16>(), y.data_ptr<bf16>());
}
void backward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &s, torch::Tensor &gy, torch::Tensor &gr, torch::Tensor &gk, torch::Tensor &gv, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gs) {
cuda_backward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<bf16>(), u.data_ptr<bf16>(), s.data_ptr<bf16>(), gy.data_ptr<bf16>(), gr.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>(), gs.data_ptr<bf16>());
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "wkv6state forward");
m.def("backward", &backward, "wkv6state backward");
}
TORCH_LIBRARY(wkv6state, m) {
m.def("forward", forward);
m.def("backward", backward);
}

View File

@ -0,0 +1,16 @@
base_model='/home/rwkv/JL/model/rwkv-x060-7b-world-v2.1-36%trained-20240413-ctx4k.pth'
lora_init='/home/rwkv/JL/out_model/nf4/init_lora.pth'
lora_checkpoint='/home/rwkv/JL/out_model/nf4/rwkv-0.pth'
output='/home/rwkv/JL/model/nf4-world.pth'
QUANT='nf4' #follow train
TYPE='lora'
Lora_alpha=128
python merge/merge.py --base_model $base_model \
--lora_init $lora_init \
--lora_checkpoint $lora_checkpoint \
--output $output \
--quant $QUANT \
--type $TYPE \
--lora_alpha $Lora_alpha

27
finetune/lora/v6/demo/demo-lora.sh vendored Normal file
View File

@ -0,0 +1,27 @@
load_model='/home/rwkv/JL/model/rwkv-x060-7b-world-v2.1-36%trained-20240413-ctx4k.pth'
proj_dir='/home/rwkv/JL/out_model/nf4'
data_file='/home/rwkv/JL/data/roleplay'
QUANT='nf4' #4bit nf4 fp4 none
lora_r=64
lora_alpha=128
n_layer=32
n_embd=4096
micro_bsz=8
epoch_save=1
epoch_steps=1000
ctx_len=1024
python train.py --load_model $load_model \
--proj_dir $proj_dir --data_file $data_file \
--data_type binidx --vocab_size 65536 \
--ctx_len $ctx_len --epoch_steps $epoch_steps --epoch_count 20 --epoch_begin 0 --epoch_save $epoch_save --micro_bsz $micro_bsz \
--n_layer $n_layer --n_embd $n_embd \
--pre_ffn 0 --head_qk 0 --lr_init 5e-5 --lr_final 5e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
--accelerator gpu --devices 1 --precision bf16 --strategy deepspeed_stage_1 --grad_cp 1 \
--my_testing "x060" \
--lora_load rwkv-0 --lora --lora_r $lora_r --lora_alpha $lora_alpha --lora_dropout 0.01 --lora_parts=att,ffn,time,ln \
--quant $QUANT

View File

@ -0,0 +1,15 @@
base_model='/home/rwkv/JL/model/RWKV-x060-World-1B6-v2-20240208-ctx4096.pth'
lora_init='/home/rwkv/JL/out_model/nf4/init_lora.pth'
lora_checkpoint='/home/rwkv/JL/out_model/nf4/rwkv-0.pth'
output='/home/rwkv/JL/model/end-world.pth'
QUANT='nf4' #follow train
TYPE='pissa'
python merge/merge.py --base_model $base_model \
--lora_init $lora_init \
--lora_checkpoint $lora_checkpoint \
--output $output \
--quant $QUANT \
--type $TYPE

40
finetune/lora/v6/demo/demo-pissa.sh vendored Normal file
View File

@ -0,0 +1,40 @@
load_model='/home/rwkv/JL/model/RWKV-x060-World-1B6-v2.1-20240328-ctx4096.pth'
proj_dir='/home/rwkv/JL/out_model/nf4'
data_file='/home/rwkv/JL/data/end_text_document'
QUANT='nf4' #4bit nf4 fp4 none
svd_niter=4
lora_r=64
n_layer=24
n_embd=2048
micro_bsz=8
epoch_save=1
epoch_steps=1000
ctx_len=1024
python train.py --load_model $load_model \
--proj_dir $proj_dir --data_file $data_file \
--data_type binidx --vocab_size 65536 \
--ctx_len $ctx_len --epoch_steps $epoch_steps --epoch_count 1 --epoch_begin 0 --epoch_save $epoch_save --micro_bsz $micro_bsz \
--n_layer $n_layer --n_embd $n_embd \
--pre_ffn 0 --head_qk 0 --lr_init 5e-5 --lr_final 5e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
--accelerator gpu --devices 1 --precision bf16 --strategy deepspeed_stage_1 --grad_cp 1 \
--my_testing "x060" \
--lora_load rwkv-0 --lora --lora_r $lora_r --lora_alpha 128 --lora_dropout 0.01 --lora_parts=att,ffn,time,ln \
--PISSA --svd_niter $svd_niter \
--dataload pad
###remove load_model
# python train.py --proj_dir $proj_dir --data_file $data_file \
# --data_type binidx --vocab_size 65536 \
# --ctx_len $ctx_len --epoch_steps $epoch_steps --epoch_count 20 --epoch_begin 0 --epoch_save $epoch_save --micro_bsz $micro_bsz \
# --n_layer $n_layer --n_embd $n_embd \
# --pre_ffn 0 --head_qk 0 --lr_init 5e-5 --lr_final 5e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
# --accelerator gpu --devices 1 --precision bf16 --strategy deepspeed_stage_1 --grad_cp 1 \
# --my_testing "x060" \
# --lora_load rwkv-0 --lora --lora_r $lora_r --lora_alpha 128 --lora_dropout 0.01 --lora_parts=att,ffn,time,ln \
# --PISSA --svd_niter $svd_niter \
# --quant $QUANT

27
finetune/lora/v6/demo/demo-qpissa-pt.sh vendored Normal file
View File

@ -0,0 +1,27 @@
load_model='/home/rwkv/JL/model/rwkv-x060-7b-world-v2.1-36%trained-20240413-ctx4k.pth'
proj_dir='/home/rwkv/JL/out_model/nf4'
data_file='/home/rwkv/JL/data/roleplay'
QUANT='nf4' #4bit nf4 fp4 none
svd_niter=4
lora_r=64
n_layer=32
n_embd=4096
micro_bsz=4
epoch_save=1
epoch_steps=1000
ctx_len=1024
python train.py --proj_dir $proj_dir --data_file $data_file \
--data_type binidx --vocab_size 65536 \
--ctx_len $ctx_len --epoch_steps $epoch_steps --epoch_count 20 --epoch_begin 0 --epoch_save $epoch_save --micro_bsz $micro_bsz \
--n_layer $n_layer --n_embd $n_embd \
--pre_ffn 0 --head_qk 0 --lr_init 5e-5 --lr_final 5e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
--accelerator gpu --devices 1 --precision bf16 --strategy deepspeed_stage_1 --grad_cp 1 \
--my_testing "x060" \
--lora_load rwkv-0 --lora --lora_r $lora_r --lora_alpha 128 --lora_dropout 0.01 --lora_parts=att,ffn,time,ln \
--PISSA --svd_niter $svd_niter \
--quant $QUANT

View File

@ -0,0 +1,8 @@
base_model='/home/rwkv/JL/model/RWKV-x060-World-3B-v2.1-20240417-ctx4096.pth'
state_checkpoint='/home/rwkv/JL/out_model/state/rwkv-9.pth'
output='/home/rwkv/JL/model/state-0.pth'
python merge/merge_state.py --base_model $base_model \
--state_checkpoint $state_checkpoint \
--output $output

View File

@ -0,0 +1,22 @@
load_model='/home/rwkv/JL/model/RWKV-x060-World-1B6-v2.1-20240328-ctx4096.pth'
proj_dir='/home/rwkv/JL/out_model/state'
data_file='/home/rwkv/JL/data/end_text_document'
n_layer=24
n_embd=2048
micro_bsz=1
epoch_save=1
epoch_steps=1000
ctx_len=1024
python train.py --load_model $load_model \
--proj_dir $proj_dir --data_file $data_file \
--data_type binidx --vocab_size 65536 \
--ctx_len $ctx_len --epoch_steps $epoch_steps --epoch_count 1 --epoch_begin 0 --epoch_save $epoch_save --micro_bsz $micro_bsz \
--n_layer $n_layer --n_embd $n_embd \
--pre_ffn 0 --head_qk 0 --lr_init 1 --lr_final 1e-1 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
--accelerator gpu --devices 1 --precision bf16 --strategy deepspeed_stage_1 --grad_cp 0 \
--my_testing "x060" \
--train_type "state" --dataload pad --wandb fla --fla

View File

@ -0,0 +1,27 @@
#!/bin/bash
# Create data directory
mkdir -p data
# Download minipile (1498226207 tokens, around 3GB)
wget --continue -O data/minipile.idx https://huggingface.co/datasets/BlinkDL/minipile-tokenized/resolve/main/rwkv_vocab_v20230424/minipile.idx
wget --continue -O data/minipile.bin https://huggingface.co/datasets/BlinkDL/minipile-tokenized/resolve/main/rwkv_vocab_v20230424/minipile.bin
# Generate initial model (L12-D768 = 169M)
BASE_NAME="model/0.1-1"
N_LAYER="12"
N_EMBD="768"
# magic_prime = the largest 3n+2 prime smaller than datalen/ctxlen-1 (= 1498226207/512-1 = 2926222.06 in this case)
# use https://www.dcode.fr/prime-numbers-search
python train.py --wandb "" --proj_dir $BASE_NAME \
--data_file "data/minipile" --data_type "binidx" --vocab_size 65536 \
--ctx_len 512 --my_pile_stage 1 --epoch_count 1 --epoch_begin 0 \
--epoch_save 1 --weight_decay 0 --head_size_a 64 \
--num_nodes 1 --micro_bsz 1 --n_layer $N_LAYER --n_embd $N_EMBD --pre_ffn 0 --head_qk 0 --my_exit_tokens 1498226207 --magic_prime 2926181 \
--lr_init 1e-5 --lr_final 1e-5 --warmup_steps 10 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 --my_pile_edecay 0 \
--accelerator cpu --devices 1 --precision bf16 --strategy deepspeed_stage_2 --grad_cp 0 --enable_progress_bar False --ds_bucket_mb 200

View File

@ -0,0 +1,21 @@
#!/bin/bash
BASE_NAME="model/0.1-1"
N_LAYER="12"
N_EMBD="768"
M_BSZ="16" # takes 16G VRAM (reduce this to save VRAM)
LR_INIT="6e-4"
LR_FINAL="6e-5"
GRAD_CP=0 # set to 1 to save VRAM (will be slower)
EPOCH_SAVE=10
# magic_prime = the largest 3n+2 prime smaller than datalen/ctxlen-1 (= 1498226207/512-1 = 2926222.06 in this case)
# use https://www.dcode.fr/prime-numbers-search
python train.py --load_model "0" --wandb "RWKV-5-Test" --proj_dir $BASE_NAME \
--ctx_len 512 --my_pile_stage 3 --epoch_count 999999 --epoch_begin 0 \
--data_file "data/minipile" --my_exit_tokens 1498226207 --magic_prime 2926181 \
--num_nodes 1 --micro_bsz $M_BSZ --n_layer $N_LAYER --n_embd $N_EMBD --pre_ffn 0 --head_qk 0 \
--lr_init $LR_INIT --lr_final $LR_FINAL --warmup_steps 10 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 --my_pile_edecay 0 --data_type "binidx" --vocab_size 65536 \
--weight_decay 0.001 --epoch_save $EPOCH_SAVE --head_size_a 64 \
--accelerator gpu --devices 1 --precision bf16 --strategy deepspeed_stage_2 --grad_cp $GRAD_CP --enable_progress_bar True --ds_bucket_mb 200

182
finetune/lora/v6/demo/demo.jsonl vendored Normal file

File diff suppressed because one or more lines are too long

25
finetune/lora/v6/demo/infctx.sh vendored Normal file
View File

@ -0,0 +1,25 @@
load_model='/home/rwkv/JL/model/RWKV-x060-World-1B6-v2.1-20240328-ctx4096.pth'
proj_dir='/home/rwkv/JL/out_model/infctx'
data_file='/home/rwkv/JL/data/roleplay'
n_layer=24
n_embd=2048
micro_bsz=8
epoch_save=5
epoch_steps=1000
ctx_len=16384
chunk_ctx=2048
python train.py --load_model $load_model \
--proj_dir $proj_dir --data_file $data_file \
--data_type binidx --vocab_size 65536 \
--ctx_len $ctx_len --epoch_steps $epoch_steps --epoch_count 1 --epoch_begin 0 --epoch_save $epoch_save --micro_bsz $micro_bsz \
--n_layer $n_layer --n_embd $n_embd \
--pre_ffn 0 --head_qk 0 --lr_init 1e-4 --lr_final 1e-4 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
--accelerator gpu --devices 1 --precision bf16 --strategy deepspeed_stage_1 --grad_cp 1 \
--lora_load rwkv-0 --lora --lora_r 64 --lora_alpha 128 --lora_dropout 0.01 --lora_parts=att,ffn,time,ln \
--my_testing "x060" --dataload pad \
--train_type infctx --chunk_ctx $chunk_ctx --fla --wandb infctx

50
finetune/lora/v6/fla/__init__.py vendored Normal file
View File

@ -0,0 +1,50 @@
# -*- coding: utf-8 -*-
from fla.layers import (ABCAttention, BasedLinearAttention, DeltaNet,
GatedLinearAttention, HGRN2Attention, LinearAttention,
MultiScaleRetention, ReBasedLinearAttention)
from fla.models import (ABCForCausalLM, ABCModel, DeltaNetForCausalLM,
DeltaNetModel, GLAForCausalLM, GLAModel,
HGRN2ForCausalLM, HGRN2Model, HGRNForCausalLM,
HGRNModel, LinearAttentionForCausalLM,
LinearAttentionModel, RetNetForCausalLM, RetNetModel,
RWKV6ForCausalLM, RWKV6Model, TransformerForCausalLM,
TransformerModel)
from fla.ops import (chunk_gla, chunk_retention, fused_chunk_based,
fused_chunk_gla, fused_chunk_retention)
__all__ = [
'ABCAttention',
'BasedLinearAttention',
'DeltaNet',
'HGRN2Attention',
'GatedLinearAttention',
'LinearAttention',
'MultiScaleRetention',
'ReBasedLinearAttention',
'ABCForCausalLM',
'ABCModel',
'DeltaNetForCausalLM',
'DeltaNetModel',
'HGRNForCausalLM',
'HGRNModel',
'HGRN2ForCausalLM',
'HGRN2Model',
'GLAForCausalLM',
'GLAModel',
'LinearAttentionForCausalLM',
'LinearAttentionModel',
'RetNetForCausalLM',
'RetNetModel',
'RWKV6ForCausalLM',
'RWKV6Model',
'TransformerForCausalLM',
'TransformerModel',
'chunk_gla',
'chunk_retention',
'fused_chunk_based',
'fused_chunk_gla',
'fused_chunk_retention'
]
__version__ = '0.1'

25
finetune/lora/v6/fla/layers/__init__.py vendored Normal file
View File

@ -0,0 +1,25 @@
# -*- coding: utf-8 -*-
from .abc import ABCAttention
from .based import BasedLinearAttention
from .delta_net import DeltaNet
from .gla import GatedLinearAttention
from .hgrn import HGRNAttention
from .hgrn2 import HGRN2Attention
from .linear_attn import LinearAttention
from .multiscale_retention import MultiScaleRetention
from .rebased import ReBasedLinearAttention
from .rwkv6 import RWKV6Attention
__all__ = [
'ABCAttention',
'BasedLinearAttention',
'DeltaNet',
'GatedLinearAttention',
'HGRNAttention',
'HGRN2Attention',
'LinearAttention',
'MultiScaleRetention',
'ReBasedLinearAttention',
'RWKV6Attention'
]

195
finetune/lora/v6/fla/layers/abc.py vendored Normal file
View File

@ -0,0 +1,195 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import warnings
from typing import Optional, Tuple
import torch
import torch.nn as nn
from einops import rearrange
from transformers.cache_utils import Cache
from fla.modules import (FusedRMSNormSwishGate, RMSNorm, RotaryEmbedding,
ShortConvolution)
from fla.modules.activations import swiglu, swish
from fla.modules.convolution import proj_then_conv1d
from fla.ops.abc.chunk import chunk_abc
class ABCAttention(nn.Module):
def __init__(
self,
hidden_size: int = 1024,
expand_k: float = 0.5,
expand_v: float = 1.0,
num_heads: int = 4,
use_short_conv: bool = False,
conv_size: int = 4,
conv_bias: bool = False,
share_conv_kernel: bool = True,
num_slots: Optional[int] = None,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
gate_low_rank_dim: int = 16,
gate_logit_normalizer: int = 16,
use_input_gate: bool = False,
use_output_gate: bool = True,
use_norm: bool = True,
clamp_min: Optional[float] = -32,
clamp_max: Optional[float] = 32,
layer_idx: Optional[int] = None,
**kwargs
) -> ABCAttention:
super().__init__()
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.num_heads = num_heads
self.key_dim = int(self.hidden_size * self.expand_k)
self.value_dim = int(self.hidden_size * self.expand_v)
self.head_k_dim = self.key_dim // self.num_heads
self.head_v_dim = self.value_dim // self.num_heads
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.share_conv_kernel = share_conv_kernel
self.gate_low_rank_dim = gate_low_rank_dim
self.gate_logit_normalizer = gate_logit_normalizer
self.use_input_gate = use_input_gate
self.use_output_gate = use_output_gate
self.use_norm = use_norm
if num_slots is None:
num_slots = self.head_k_dim
self.num_slots = num_slots
self.norm_eps = norm_eps
self.clamp_min = clamp_min
self.clamp_max = clamp_max
self.layer_idx = layer_idx
if layer_idx is None:
warnings.warn(
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.q_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.value_dim, bias=False)
if use_output_gate:
self.g_proj = nn.Linear(self.hidden_size, self.value_dim, bias=False)
self.s_proj = nn.Linear(self.hidden_size, self.num_heads * self.num_slots, bias=False)
self.o_proj = nn.Linear(self.value_dim, self.hidden_size, bias=False)
if use_short_conv:
self.conv_size = conv_size
if share_conv_kernel:
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation='silu')
else:
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
self.k_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
self.v_conv1d = ShortConvolution(self.value_dim, conv_size, activation='silu')
if self.use_norm:
if self.use_output_gate:
self.g_norm = FusedRMSNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps)
else:
self.g_norm = RMSNorm(self.head_v_dim, elementwise_affine, norm_eps)
if self.use_rope:
self.rotary = RotaryEmbedding(self.head_k_dim)
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
if self.use_short_conv:
if self.share_conv_kernel:
hidden_states = self.h_conv1d(hidden_states)
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
else:
q = proj_then_conv1d(hidden_states, self.q_proj.weight, self.q_conv1d.weight, self.q_conv1d.bias)
k = proj_then_conv1d(hidden_states, self.k_proj.weight, self.k_conv1d.weight, self.k_conv1d.bias)
v = proj_then_conv1d(hidden_states, self.v_proj.weight, self.v_conv1d.weight, self.v_conv1d.bias)
else:
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
if self.use_input_gate:
q, k, v = map(lambda x: swish(x), (q, k, v))
if self.use_rope:
q = rearrange(q, '... (h d) -> ... h d', h=self.num_heads)
k = rearrange(k, '... (h d) -> ... h d', h=self.num_heads)
seqlen_offset = 0
if past_key_values is not None:
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
q, k = self.rotary(q, k, seqlen_offset)
q = rearrange(q, 'b n h d -> b h n d', h=self.num_heads)
k = rearrange(k, 'b n h d -> b h n d', h=self.num_heads)
else:
q = rearrange(q, 'b n (h d) -> b h n d', h=self.num_heads)
k = rearrange(k, 'b n (h d) -> b h n d', h=self.num_heads)
v = rearrange(v, 'b n (h d) -> b h n d', h=self.num_heads)
# [batch_size, n_heads, seq_len, num_slots]
s = rearrange(self.s_proj(hidden_states), 'b t (h m) -> b h t m', h=self.num_heads)
s = s.clamp_(self.clamp_min, self.clamp_max)
last_state = past_key_values[self.layer_idx] if use_cache else None
o, last_state = chunk_abc(q, k, v, s, initial_state=last_state, output_final_state=use_cache)
if past_key_values is not None and last_state is not None:
past_key_values.update(last_state, self.layer_idx, q.shape[2])
o = rearrange(o, 'b h t d -> b t h d')
if self.use_norm and not self.use_output_gate:
o = self.g_norm(o)
elif self.use_output_gate:
g = rearrange(self.g_proj(hidden_states), 'b t (h d) -> b t h d', h=self.num_heads)
o = self.g_norm(o, g) if self.use_norm else swiglu(g, o)
o = rearrange(o, 'b t h d -> b t (h d)')
o = self.o_proj(o)
return o, None, past_key_values
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
param = next(self.parameters())
state = tuple()
if self.use_short_conv:
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
state += (param.new_zeros(batch_size, self.num_heads, self.head_k_dim, self.num_slots),
param.new_zeros(batch_size, self.num_heads, self.num_slots, self.head_v_dim))
return state
def state_size(self, sequence_length: int = 2048):
return self.num_heads * self.key_dim * self.head_v_dim

126
finetune/lora/v6/fla/layers/based.py vendored Normal file
View File

@ -0,0 +1,126 @@
# -*- coding: utf-8 -*-
"""
Linear attention in Based.
https://github.com/HazyResearch/zoology/blob/main/zoology/mixers/based.py
"""
import torch
import torch.nn as nn
from einops import rearrange
from fla.modules.feature_map import TaylorFeatureMap
from fla.ops.based import parallel_based
from fla.ops.linear_attn import chunk_linear_attn, fused_chunk_linear_attn
class BasedLinearAttention(nn.Module):
def __init__(
self,
hidden_size: int,
l_max: int = 2048,
feature_dim: int = 16,
num_key_value_heads: int = 12,
num_heads: int = 12,
feature_name: str = "taylor_exp",
eps: float = 1e-12,
causal: bool = True,
mode: str = "parallel",
):
super().__init__()
self.hidden_size
self.l_max = l_max
self.mode = mode
assert self.mode in ["fused_chunk", "parallel", 'chunk']
# linear attention
self.feature_name = feature_name
self.feature_dim = feature_dim
self.num_key_value_heads = num_key_value_heads
self.num_heads = num_heads
self.head_dim = self.hidden_size // self.num_key_value_heads
self.causal = causal
self.q_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.dropout = nn.Identity()
self.feature_map = TaylorFeatureMap(feature_dim)
self.eps = eps
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(self, hidden_states: torch.Tensor, **kwargs):
mode = self.mode
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
q, k, v = map(lambda x: rearrange(x, "b l (h d) -> b h l d", h=self.num_heads), [q, k, v])
if mode == "fused_chunk":
q, k = self.feature_map(q), self.feature_map(k)
o = fused_chunk_linear_attn(q, k, v, normalize=True, scale=1)
elif mode == 'chunk':
q, k = self.feature_map(q), self.feature_map(k)
o = chunk_linear_attn(q, k, v, normalize=True, scale=1)
elif mode == 'parallel':
assert q.shape[-1] <= 128
o = parallel_based(q, k, v, True, True)
o = rearrange(o, "b h l d -> b l (h d)")
o = self.o_proj(o)
o = self.dropout(o)
return o
# https://github.com/HazyResearch/zoology/blob/main/zoology/mixers/based.py#L119
def forward_reference(self, hidden_states: torch.Tensor, filters: torch.Tensor = None, *args, **kwargs):
"""
x (torch.Tensor): tensor of shape (b, d, l)
y (torch.Tensor): tensor of shape (b, d, l)
"""
# hidden_states = hidden_states.transpose(1, 2)
b, l, _ = hidden_states.size()
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
q = q.view(b, l, self.num_heads, self.feature_dim).transpose(1, 2)
k = k.view(b, l, self.num_key_value_heads, self.feature_dim).transpose(1, 2)
v = v.view(b, l, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# Linear attention
q, k = self.feature_map(q), self.feature_map(k)
q, k, v = q.unsqueeze(-2), k.unsqueeze(-2), v.unsqueeze(-1)
# Compute attention
if self.causal:
y = ((q * (k * v).cumsum(2)).sum(-1) / ((q * k.cumsum(2)).sum(-1) + self.eps))
else:
y = ((q * (k * v).sum(2, True)).sum(-1) / ((q * k.sum(2, True)).sum(-1) + self.eps))
y = rearrange(y, 'b h l d -> b l (h d)')
y = self.o_proj(y.to(hidden_states.dtype))
y = self.dropout(y)
return y.to(hidden_states.dtype)
if __name__ == '__main__':
batch = 4
seq_len = 1024
hidden_size = 1024
dtype = torch.float32
x = torch.randn(batch, seq_len, hidden_size).to(dtype).cuda().requires_grad_(True)
dy = torch.randn(batch, seq_len, hidden_size).to(dtype).cuda()
model = BasedLinearAttention(hidden_size, mode='chunk').to(dtype).cuda()
y = model(x)
y.backward(dy, retain_graph=True)
x_grad, x.grad = x.grad, None
y2 = model.forward_reference(x)
y2.backward(dy)
assert y.allclose(y2, 0, 1e-4), breakpoint()
assert x_grad.allclose(x.grad, 0, 1e-4), breakpoint()
print("Pass")

254
finetune/lora/v6/fla/layers/delta_net.py vendored Normal file
View File

@ -0,0 +1,254 @@
# -*- coding: utf-8 -*-
# Sect4.2 of Linear Transformers Are Secretly Fast Weight Programmers https://arxiv.org/abs/2102.11174
from __future__ import annotations
from typing import Optional, Tuple
import torch
import torch.nn as nn
from einops import rearrange
from transformers.cache_utils import Cache
from fla.modules import FusedRMSNormSwishGate, RMSNorm, ShortConvolution, LayerNorm
from fla.modules.rotary import RotaryEmbedding
from fla.ops.delta_rule import (fused_chunk_delta_rule,
fused_recurrent_linear_attn_delta_rule,
chunk_delta_rule)
from torch.nn import functional as F
def simple_norm(x):
return (F.normalize(x, dim=-1) * x.shape[-1] ** 0.5).to(x)
# @torch.jit.script
def elu_p1(x):
return (F.elu(x, 1., False) + 1.).to(x)
# @torch.jit.script
def sum_norm(x):
return (x / x.sum(-1, keepdim=True)).to(x)
# @torch.jit.script
def elu_norm(x):
dtype = x.dtype
x = F.elu(x, 1., False) + 1.
return (x / x.sum(-1, keepdim=True)).to(dtype)
# https://github.com/IDSIA/recurrent-fwp/blob/master/algorithmic/layers.py#L86C1-L146C1
class DeltaNet(nn.Module):
def __init__(
self,
d_model: int = None,
hidden_size: int = 1024,
expand_k: float = 1.0,
expand_v: float = 1.0,
num_heads: int = 4,
mode: str = 'fused_chunk',
chunk_size: int = 16,
use_beta: bool = True,
use_gate: bool = True,
use_rope: bool = False,
use_output_norm: bool = True,
use_elu: bool = False,
use_short_conv: bool = True,
conv_size: int = 4,
conv_bias: bool = False,
share_conv_kernel: bool = False,
layer_idx: int = None,
qk_activation: str = 'silu',
qk_norm: str = None,
save_memory: str = False,
**kwargs
) -> DeltaNet:
super().__init__()
self.mode = mode
self.qk_activation = qk_activation
self.qk_norm = qk_norm
assert self.qk_activation in ['silu', 'relu', 'elu', 'identity']
assert self.qk_norm in ['l2', 'sum']
if d_model is not None:
hidden_size = d_model
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.num_heads = num_heads
self.chunk_size = chunk_size
self.use_gate = use_gate
self.use_output_norm = use_output_norm
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.share_conv_kernel = share_conv_kernel
self.key_dim = int(hidden_size * expand_k)
self.value_dim = int(hidden_size * expand_v)
self.head_qk_dim = self.key_dim // num_heads
self.head_v_dim = self.value_dim // num_heads
self.layer_idx = layer_idx
self.silu = torch.nn.SiLU()
assert mode in ['chunk', 'fused_chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
self.use_beta = use_beta
self.use_elu = use_elu
if self.use_beta:
self.b_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
if use_short_conv:
self.conv_size = conv_size
if share_conv_kernel:
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation=None)
else:
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu' if qk_activation == 'silu' else None)
self.k_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu' if qk_activation == 'silu' else None)
self.v_conv1d = ShortConvolution(self.value_dim, conv_size, activation='silu')
if use_gate:
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
if self.use_gate:
self.norm = FusedRMSNormSwishGate(self.head_v_dim)
else:
self.norm = RMSNorm(self.head_v_dim)
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
# change to inference mode.
mode = 'fused_recurrent' if hidden_states.shape[1] < 64 else self.mode
last_state = past_key_values[self.layer_idx] if use_cache else None
if attention_mask is not None:
if attention_mask.shape[-1] != hidden_states.shape[-2]:
attention_mask = attention_mask[:, -1:]
if self.use_short_conv:
conv_state = last_state[0] if use_cache else None
if self.share_conv_kernel:
# conv state is updated inplace
hidden_states = self.h_conv1d(hidden_states, attention_mask, conv_state)
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
else:
conv_state_q = last_state[0] if use_cache else None
conv_state_k = last_state[1] if use_cache else None
conv_state_v = last_state[2] if use_cache else None
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
q = self.q_proj(hidden_states)
q = self.q_conv1d(q, attention_mask, conv_state_q)
k = self.k_conv1d(k, attention_mask, conv_state_k)
v = self.v_conv1d(v, attention_mask, conv_state_v)
else:
q = (self.q_proj(hidden_states))
k = (self.k_proj(hidden_states))
v = self.silu(self.v_proj(hidden_states))
# dealing with left-padding
if attention_mask is not None:
v = v.mul_(attention_mask.unsqueeze(-1))
q, k, v = map(lambda x: rearrange(x, 'b l (h d) -> b h l d', h=self.num_heads), (q, k, v))
if self.qk_activation != 'silu':
if self.qk_activation == 'relu':
q, k = q.relu(), k.relu()
elif self.qk_activation == 'elu':
q, k = elu_p1(q), elu_p1(k)
elif self.qk_activation == 'identity':
pass
else:
raise NotImplementedError
if self.qk_norm is not None:
if self.qk_norm == 'l2':
k = torch.nn.functional.normalize(k, dim=-1, p=2).to(v) #auto mixed precision type transfer is annoying.
q = torch.nn.functional.normalize(q, dim=-1, p=2).to(v)
elif self.qk_norm == 'sum':
q = sum_norm(q).to(v)
k = sum_norm(k).to(v)
if self.use_beta:
beta = rearrange(self.b_proj(hidden_states), 'b l h -> b h l').sigmoid()
else:
beta = q.new_ones(q.shape[0], q.shape[1], q.shape[2])
state = past_key_values[self.layer_idx][-1] if use_cache else None
if mode == 'fused_recurrent':
o, recurrent_state = fused_recurrent_linear_attn_delta_rule(q, k, v, beta, state, output_final_state=use_cache)
elif mode == 'fused_chunk':
assert self.chunk_size in [16, 32, 64]
o, recurrent_state = fused_chunk_delta_rule(q, k, v, beta, self.chunk_size, state, output_final_state=use_cache)
elif mode == 'chunk':
assert self.chunk_size in [16, 32, 64]
o, recurrent_state = chunk_delta_rule(q, k, v, beta, self.chunk_size, state, output_final_state=use_cache)
else:
raise NotImplementedError(f"Not supported mode `{mode}`.")
if past_key_values is not None:
if self.use_short_conv:
if self.share_conv_kernel:
state = (conv_state, recurrent_state)
else:
state = (conv_state_q, conv_state_k, conv_state_v, recurrent_state)
else:
state = (recurrent_state,)
past_key_values.update(state, self.layer_idx)
o = rearrange(o, 'b h l d -> b l h d')
if self.use_gate:
g = rearrange(self.g_proj(hidden_states), 'b l (h d) -> b l h d', h=self.num_heads)
o = self.norm(o, g)
else:
o = self.norm(o)
o = rearrange(o, 'b l h d -> b l (h d)')
o = self.o_proj(o)
return o, None, past_key_values
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
param = next(self.parameters())
state = tuple()
if self.use_short_conv:
if self.share_conv_kernel:
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
else:
# for q/k/v each
state += (param.new_zeros(batch_size, self.key_dim, self.conv_size),
param.new_zeros(batch_size, self.key_dim, self.conv_size),
param.new_zeros(batch_size, self.value_dim, self.conv_size))
state += (param.new_zeros(batch_size, self.num_heads, self.head_qk_dim, self.head_v_dim),)
return state

234
finetune/lora/v6/fla/layers/gated_abc.py vendored Normal file
View File

@ -0,0 +1,234 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import warnings
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from transformers.cache_utils import Cache
from fla.modules import (FusedRMSNormSwishGateLinear, RMSNormLinear,
RotaryEmbedding, ShortConvolution)
from fla.modules.activations import ACT2FN, swiglu_linear, swish
from fla.ops.abc.chunk_gate import chunk_gated_abc
class GatedABCAttention(nn.Module):
def __init__(
self,
hidden_size: int = 1024,
expand_k: float = 1.,
expand_v: float = 1.,
num_heads: int = 4,
num_kv_heads: Optional[int] = None,
use_short_conv: bool = False,
conv_size: int = 4,
conv_bias: bool = False,
share_conv_kernel: bool = True,
num_slots: Optional[int] = None,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
gate_low_rank_dim: Optional[int] = None,
gate_logit_normalizer: int = 16,
feature_map: str = 'swish',
use_rope: bool = False,
use_output_gate: bool = False,
use_norm: bool = True,
layer_idx: Optional[int] = None,
**kwargs
) -> GatedABCAttention:
super().__init__()
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.num_heads = num_heads
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
self.num_kv_groups = self.num_heads // self.num_kv_heads
self.key_dim = int(hidden_size * expand_k)
self.value_dim = int(hidden_size * expand_v)
self.key_dim_per_group = self.key_dim // self.num_kv_groups
self.value_dim_per_group = self.value_dim // self.num_kv_groups
self.head_k_dim = self.key_dim // self.num_heads
self.head_v_dim = self.value_dim // self.num_heads
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.share_conv_kernel = share_conv_kernel
if gate_low_rank_dim is None:
gate_low_rank_dim = self.hidden_size // 16
self.gate_low_rank_dim = gate_low_rank_dim
self.gate_logit_normalizer = gate_logit_normalizer
self.feature_map = feature_map
self.use_rope = use_rope
self.use_output_gate = use_output_gate
self.use_norm = use_norm
if num_slots is None:
num_slots = self.head_k_dim
self.num_slots = num_slots
self.layer_idx = layer_idx
if layer_idx is None:
warnings.warn(
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.q_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.key_dim_per_group, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.value_dim_per_group, bias=False)
self.f_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.num_slots, bias=False)
if use_output_gate:
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
if use_short_conv:
self.conv_size = conv_size
if share_conv_kernel:
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation='silu')
else:
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
if self.use_norm:
if self.use_output_gate:
self.g_norm = FusedRMSNormSwishGateLinear(self.hidden_size, elementwise_affine, norm_eps)
else:
self.g_norm = RMSNormLinear(self.hidden_size, elementwise_affine, norm_eps)
self.o_proj = nn.Linear(self.value_dim, self.hidden_size, bias=False)
if self.use_rope:
self.rotary = RotaryEmbedding(self.head_k_dim)
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
lower_bound: Optional[torch.Tensor] = None,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
last_state = past_key_values[self.layer_idx] if use_cache else None
if self.use_short_conv:
conv_state = last_state[0] if use_cache else None
if self.share_conv_kernel:
# conv state is updated inplace
hidden_states = self.h_conv1d(hidden_states, attention_mask, conv_state)
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
else:
conv_state_q = last_state[0] if use_cache else None
conv_state_k = last_state[1] if use_cache else None
conv_state_v = last_state[2] if use_cache else None
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
q = self.q_conv1d(q, attention_mask, conv_state_q)
k = self.k_conv1d(k, attention_mask, conv_state_k)
v = self.v_conv1d(v, attention_mask, conv_state_v)
else:
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
f = self.f_proj(hidden_states)
if self.use_rope:
q = rearrange(q, '... (h d) -> ... h d', h=self.num_heads)
k = rearrange(k, '... (h d) -> ... h d', h=self.num_kv_heads)
seqlen_offset = 0
if past_key_values is not None:
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
q, k = self.rotary(q, k, seqlen_offset)
q = rearrange(q, 'b n h d -> b h n d', h=self.num_heads)
k = rearrange(k, 'b n h d -> b h n d', h=self.num_kv_heads)
else:
q = rearrange(q, 'b n (h d) -> b h n d', h=self.num_heads)
if self.num_kv_groups > 1:
k = repeat(k, 'b n (h d) -> b (h g) n d', h=self.num_kv_heads, g=self.num_kv_groups)
else:
k = rearrange(k, 'b n (h d) -> b h n d', h=self.num_kv_heads)
if self.num_kv_groups > 1:
v = repeat(v, 'b n (h d) -> b (h g) n d', h=self.num_kv_heads, g=self.num_kv_groups)
f = repeat(f, 'b n (h m) -> b (h g) n m', h=self.num_kv_heads, g=self.num_kv_groups)
else:
v = rearrange(v, 'b n (h d) -> b h n d', h=self.num_kv_heads)
f = rearrange(f, 'b n (h m) -> b h n m', h=self.num_kv_heads)
if self.feature_map is not None:
q, k, v = map(lambda x: ACT2FN[self.feature_map](x), (q, k, v))
f = F.logsigmoid(f) / self.gate_logit_normalizer
s = (1 - f.exp()).to(f.dtype)
# dealing with left-padding
if attention_mask is not None:
s = s.mul_(attention_mask.view(attention_mask.shape[0], 1, -1, 1))
v = v.mul_(attention_mask.view(attention_mask.shape[0], 1, -1, 1))
recurrent_state = last_state[-2:] if use_cache else None
o, recurrent_state = chunk_gated_abc(q, k, v, s, f,
initial_state=recurrent_state,
output_final_state=use_cache)
if past_key_values is not None:
if self.use_short_conv:
if self.share_conv_kernel:
last_state = (conv_state,) + recurrent_state
else:
last_state = (conv_state_q, conv_state_k, conv_state_v) + recurrent_state
else:
last_state = recurrent_state
past_key_values.update(last_state, self.layer_idx, q.shape[2])
o = rearrange(o, 'b h t d -> b t (h d)')
if self.use_norm and not self.use_output_gate:
o = swish(o)
o = self.g_norm(o, self.o_proj.weight, self.o_proj.bias)
elif self.use_output_gate and not self.use_norm:
o = swiglu_linear(self.g_proj(hidden_states), o, self.o_proj.weight, self.o_proj.bias)
elif self.use_output_gate and self.use_norm:
o = self.g_norm(o, self.g_proj(hidden_states), self.o_proj.weight, self.o_proj.bias)
else:
o = self.o_proj(o)
return o, None, past_key_values
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
param = next(self.parameters())
state = tuple()
if self.use_short_conv:
if self.share_conv_kernel:
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
else:
state += (param.new_zeros(batch_size, self.key_dim, self.conv_size),
param.new_zeros(batch_size, self.key_dim, self.conv_size),
param.new_zeros(batch_size, self.value_dim, self.conv_size))
state += (param.new_zeros(batch_size, self.num_heads, self.head_k_dim, self.num_slots),
param.new_zeros(batch_size, self.num_heads, self.num_slots, self.head_v_dim))
return state
def state_size(self, sequence_length: int = 2048):
return self.num_heads * self.key_dim * self.head_v_dim

268
finetune/lora/v6/fla/layers/gla.py vendored Normal file
View File

@ -0,0 +1,268 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from transformers.cache_utils import Cache
from fla.modules import FusedRMSNormSwishGate, RMSNorm, ShortConvolution
from fla.modules.activations import ACT2FN
from fla.ops.gla import chunk_gla, fused_chunk_gla, fused_recurrent_gla
class GatedLinearAttention(nn.Module):
r"""
The layer implementaion for [Gated Linear Attention Transformers with Hardware-Efficient Training](https://arxiv.org/abs/2312.06635). # noqa
Args:
mode (str, Optional):
Which GLA kernel to use.
Currently available: `chunk`, `fused_recurrent`, and `fused_chunk`.
Default: `chunk`.
hidden_size (int, Optional):
The hidden size of the input. Default: 1024.
expand_k (float, Optional):
The expansion ratio for the key dim. Default: 0.5.
expand_v (float, Optional):
The expansion ratio for the value dim. Default: 1.0.
num_heads (int, Optional):
The number of heads. Default: 4.
num_kv_heads (int, Optional):
The number of key/value heads, used for MQA. Default: None.
feature_map (str, Optional):
Feature map function applied to queries/keys. Default: None.
use_short_conv (bool, Optional):
Whether to use short convolutions. Default: `False`.
conv_size (int, Optional):
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
conv_bias (bool, Optional):
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
share_conv_kernel (bool, Optional):
Whether to apply convolutions berfore q/k/v mapping, only taking effects when `use_short_conv`. Default: `True`.
use_output_gate (bool, Optional):
Whether to use output gate. Default: `True`.
gate_fn (str, Optional):
The activation function for the output gate. Default: `swish`.
elementwise_affine (bool, Optional):
If `True`, applies elementwise affine to LayerNorm with learnable parameters. Default: `True`.
norm_eps (float, Optional):
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
gate_logit_normalizer (int, Optional):
The normalizer for the gate logits, appied after `logsigmoid`. Default: 16.
gate_low_rank_dim (int, Optional):
The low rank dim for the gate projection. Default: 16.
clamp_min (float, Optional):
The minimum value for the gate logits. Default: None.
fuse_norm (bool, Optional):
Whether to fuse the norm and the output gate for better memory footprint. Default: `True`.
layer_idx (int, Optional):
The index of the layer. Default: None.
"""
def __init__(
self,
mode: str = 'chunk',
hidden_size: int = 1024,
expand_k: float = 0.5,
expand_v: float = 1.0,
num_heads: int = 4,
num_kv_heads: Optional[int] = None,
feature_map: Optional[str] = None,
use_short_conv: bool = False,
conv_size: int = 4,
conv_bias: bool = False,
share_conv_kernel: bool = True,
use_output_gate: bool = True,
gate_fn: str = 'swish',
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
gate_logit_normalizer: int = 16,
gate_low_rank_dim: int = 16,
clamp_min: Optional[float] = None,
fuse_norm: bool = True,
layer_idx: int = None,
) -> GatedLinearAttention:
super().__init__()
self.mode = mode
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.num_heads = num_heads
self.num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads
self.num_kv_groups = self.num_heads // self.num_kv_heads
self.feature_map_fn = ACT2FN[feature_map] if feature_map is not None else None
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.share_conv_kernel = share_conv_kernel
self.use_output_gate = use_output_gate
self.key_dim = int(hidden_size * expand_k)
self.value_dim = int(hidden_size * expand_v)
self.key_dim_per_group = self.key_dim // self.num_kv_groups
self.value_dim_per_group = self.value_dim // self.num_kv_groups
self.clamp_min = clamp_min
self.layer_idx = layer_idx
assert mode in ['chunk', 'fused_recurrent', 'fused_chunk'], f"Not suppoerted mode `{mode}`."
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
self.head_qk_dim = self.key_dim // num_heads
self.head_v_dim = self.value_dim // num_heads
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(hidden_size, self.key_dim_per_group, bias=False)
self.v_proj = nn.Linear(hidden_size, self.value_dim_per_group, bias=False)
if self.use_output_gate:
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
if use_short_conv:
self.conv_size = conv_size
if share_conv_kernel:
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation='silu')
else:
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
self.gk_proj = nn.Sequential(nn.Linear(hidden_size, gate_low_rank_dim, bias=False),
nn.Linear(gate_low_rank_dim, self.key_dim_per_group, bias=True))
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
if gate_fn == 'swish' and fuse_norm and use_output_gate:
self.g_norm_swish_gate = FusedRMSNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps)
self.fuse_norm_and_gate = True
else:
self.fuse_norm_and_gate = False
self.g_norm = RMSNorm(self.head_v_dim, elementwise_affine, norm_eps)
self.gate_fn = ACT2FN[gate_fn]
self.gate_logit_normalizer = gate_logit_normalizer
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
# launching the triton kernel for just one token will actually be slower
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
last_state = past_key_values[self.layer_idx] if use_cache else None
if self.use_short_conv:
conv_state = last_state[0] if use_cache else None
if self.share_conv_kernel:
# conv state is updated inplace
hidden_states = self.h_conv1d(hidden_states, attention_mask, conv_state)
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
else:
conv_state_q = last_state[0] if use_cache else None
conv_state_k = last_state[1] if use_cache else None
conv_state_v = last_state[2] if use_cache else None
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
q = self.q_conv1d(q, attention_mask, conv_state_q)
k = self.k_conv1d(k, attention_mask, conv_state_k)
v = self.v_conv1d(v, attention_mask, conv_state_v)
else:
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
gk = self.gk_proj(hidden_states)
if self.feature_map_fn is not None:
q, k = map(self.feature_map_fn, (q, k))
# dealing with left-padding
if attention_mask is not None:
v = v.mul_(attention_mask.unsqueeze(-1))
q = rearrange(q, 'b l (h d) -> b h l d', h=self.num_heads)
if self.num_kv_groups > 1:
k, v, gk = (repeat(x, 'b l (h d) -> b (h g) l d', h=self.num_kv_heads, g=self.num_kv_groups) for x in (k, v, gk))
else:
k, v, gk = (rearrange(x, 'b l (h d) -> b h l d', h=self.num_kv_heads) for x in (k, v, gk))
gk = F.logsigmoid(gk) / self.gate_logit_normalizer
if self.clamp_min is not None:
gk = torch.clamp_min(gk, self.clamp_min)
recurrent_state = last_state[-1] if use_cache else None
if mode == 'fused_recurrent':
o, recurrent_state = fused_recurrent_gla(q, k, v, gk, initial_state=recurrent_state, output_final_state=use_cache)
elif mode == 'fused_chunk':
o, recurrent_state = fused_chunk_gla(q, k, v, gk, initial_state=recurrent_state, output_final_state=use_cache)
elif mode == 'chunk':
o, recurrent_state = chunk_gla(q, k, v, gk, initial_state=recurrent_state, output_final_state=use_cache)
else:
raise NotImplementedError(f"Not supported mode `{mode}`.")
if past_key_values is not None:
if self.use_short_conv:
if self.share_conv_kernel:
last_state = (conv_state, recurrent_state)
else:
last_state = (conv_state_q, conv_state_k, conv_state_v, recurrent_state)
else:
last_state = (recurrent_state,)
past_key_values.update(last_state, self.layer_idx, q.shape[2])
o = rearrange(o, 'b h l d -> b l h d')
if self.use_output_gate:
g = self.g_proj(hidden_states)
if self.fuse_norm_and_gate:
g = rearrange(g, 'b l (h d) -> b l h d', h=self.num_heads)
o = self.g_norm_swish_gate(o, g)
o = rearrange(o, 'b l h d -> b l (h d)')
else:
o = rearrange(self.g_norm(o), 'b l h d -> b l (h d)')
o = o * self.gate_fn(g)
else:
o = rearrange(self.g_norm(o), 'b l h d -> b l (h d)')
o = self.o_proj(o)
return o, None, past_key_values
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
param = next(self.parameters())
state = tuple()
if self.use_short_conv:
if self.share_conv_kernel:
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
else:
state += (param.new_zeros(batch_size, self.key_dim, self.conv_size),
param.new_zeros(batch_size, self.key_dim, self.conv_size),
param.new_zeros(batch_size, self.value_dim, self.conv_size))
state += (param.new_zeros(batch_size, self.num_heads, self.head_qk_dim, self.head_v_dim),)
return state
def state_size(self, **kwargs) -> int:
state_size = self.key_dim * self.head_v_dim
for module in self.children():
if isinstance(module, ShortConvolution):
state_size += module.state_size
return state_size

165
finetune/lora/v6/fla/layers/hgrn.py vendored Normal file
View File

@ -0,0 +1,165 @@
# -*- coding: utf-8 -*-
# "Hierarchically Gated Recurrent Neural Network for Sequence Modeling" [https://arxiv.org/abs/2311.04823]
from __future__ import annotations
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from transformers.cache_utils import Cache
from fla.modules import FusedRMSNormSwishGate, ShortConvolution
from fla.modules.activations import swiglu
from fla.ops.hgrn import chunk_hgrn, fused_recurrent_hgrn
class HGRNAttention(nn.Module):
def __init__(
self,
mode: str = 'chunk',
hidden_size: int = 1024,
num_heads: Optional[int] = None,
expand_ratio: Optional[int] = 1,
use_short_conv: bool = False,
conv_size: int = 4,
conv_bias: bool = False,
share_conv_kernel: bool = True,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
layer_idx: int = None
) -> HGRNAttention:
super().__init__()
self.mode = mode
self.hidden_size = hidden_size
self.num_heads = num_heads
self.expand_ratio = expand_ratio
self.input_dim = int(hidden_size * expand_ratio)
self.head_dim = self.input_dim // self.num_heads
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.share_conv_kernel = share_conv_kernel
self.layer_idx = layer_idx
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
assert self.hidden_size % num_heads == 0, f"hidden size must be divisible by num_heads of {num_heads}"
self.i_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
self.f_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
self.g_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
if use_short_conv:
self.conv_size = conv_size
if share_conv_kernel:
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation='silu')
else:
self.q_conv1d = ShortConvolution(self.input_dim, conv_size, activation='silu')
self.f_conv1d = ShortConvolution(self.input_dim, conv_size, activation='silu')
self.i_conv1d = ShortConvolution(self.input_dim, conv_size, activation='silu')
self.g_norm = FusedRMSNormSwishGate(self.input_dim, elementwise_affine, norm_eps)
self.o_proj = nn.Linear(self.input_dim, hidden_size, bias=False)
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
lower_bound: Optional[torch.Tensor] = None,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
# launching the triton kernel for just one token will actually be slower
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
last_state = past_key_values[self.layer_idx] if use_cache else None
if self.use_short_conv:
conv_state = last_state[0] if use_cache else None
if self.share_conv_kernel:
# conv state is updated inplace
hidden_states = self.h_conv1d(hidden_states, attention_mask, conv_state)
i = self.i_proj(hidden_states)
f = self.f_proj(hidden_states)
else:
conv_state_i = last_state[2] if use_cache else None
conv_state_f = last_state[1] if use_cache else None
i = self.i_conv1d(self.i_proj(hidden_states), attention_mask, conv_state_i)
f = self.f_conv1d(self.f_proj(hidden_states), attention_mask, conv_state_f)
else:
i = self.i_proj(hidden_states)
f = self.f_proj(hidden_states)
# the lower bound for the first layer is zero
if lower_bound is None or self.layer_idx == 0:
i, f = swiglu(i, 1 - f.sigmoid()), F.logsigmoid(f)
else:
g = lower_bound + (1 - lower_bound) * f.sigmoid()
i, f = swiglu(i, 1 - g), g.log()
# dealing with left-padding
if attention_mask is not None:
i = i.mul_(attention_mask.unsqueeze(-1))
i, f = map(lambda x: rearrange(x, 'b l (h d) -> b h l d', h=self.num_heads), (i, f))
recurrent_state = last_state[-1] if use_cache else None
if mode == 'chunk':
o, recurrent_state = chunk_hgrn(i, f, initial_state=recurrent_state, output_final_state=use_cache)
elif mode == 'fused_recurrent':
o, recurrent_state = fused_recurrent_hgrn(i, f, initial_state=recurrent_state, output_final_state=use_cache)
else:
raise NotImplementedError(f"Not supported mode `{mode}`.")
if past_key_values is not None:
if self.use_short_conv:
if self.share_conv_kernel:
last_state = (conv_state, recurrent_state)
else:
last_state = (conv_state_i, conv_state_f, recurrent_state)
else:
last_state = (recurrent_state,)
past_key_values.update(last_state, self.layer_idx, i.shape[2])
o = self.g_norm(self.g_proj(hidden_states), rearrange(o, 'b h l d -> b l (h d)'))
o = self.o_proj(o)
return o, None, past_key_values
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
param = next(self.parameters())
state = tuple()
if self.use_short_conv:
if self.share_conv_kernel:
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
else:
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),
param.new_zeros(batch_size, self.hidden_size, self.conv_size),
param.new_zeros(batch_size, self.hidden_size, self.conv_size))
state += (param.new_zeros(batch_size, self.num_heads, self.head_dim),)
return state
def state_size(self, **kwargs) -> int:
state_size = self.hidden_size
for module in self.children():
if isinstance(module, ShortConvolution):
state_size += module.state_size
return state_size

186
finetune/lora/v6/fla/layers/hgrn2.py vendored Normal file
View File

@ -0,0 +1,186 @@
# -*- coding: utf-8 -*-
# "HGRN2: Gated Linear RNNs with State Expansion"[https://arxiv.org/abs/2404.07904]
from __future__ import annotations
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from transformers.cache_utils import Cache
from fla.modules import RMSNorm, ShortConvolution
from fla.modules.activations import swish
from fla.ops.gla import chunk_gla, fused_chunk_gla, fused_recurrent_gla
class HGRN2Attention(nn.Module):
def __init__(
self,
mode: str = 'chunk',
hidden_size: int = 1024,
num_heads: Optional[int] = None,
expand_ratio: Optional[int] = 128,
use_short_conv: bool = False,
conv_size: int = 4,
conv_bias: bool = False,
share_conv_kernel: bool = True,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
layer_idx: int = None
) -> HGRN2Attention:
super().__init__()
self.mode = mode
self.hidden_size = hidden_size
if expand_ratio is None and num_heads is not None:
expand_ratio = hidden_size // num_heads
elif expand_ratio is not None and num_heads is None:
num_heads = hidden_size // expand_ratio
else:
raise RuntimeError("One of `expand_ratio` or `num_heads` should be provided.")
self.num_heads = num_heads
self.expand_ratio = expand_ratio
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.share_conv_kernel = share_conv_kernel
self.forget_dim = int(self.num_heads * self.expand_ratio)
self.input_dim = hidden_size
self.layer_idx = layer_idx
assert mode in ['chunk', 'fused_recurrent', 'fused_chunk'], f"Not suppoerted mode `{mode}`."
assert self.forget_dim % num_heads == 0, f"forget dim must be divisible by num_heads of {num_heads}"
assert self.input_dim % num_heads == 0, f"input dim must be divisible by num_heads of {num_heads}"
self.head_f_dim = self.expand_ratio
self.head_i_dim = self.hidden_size // num_heads
self.q_proj = nn.Linear(hidden_size, self.forget_dim, bias=False)
self.f_proj = nn.Linear(hidden_size, self.forget_dim, bias=False)
self.i_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
if use_short_conv:
self.conv_size = conv_size
if share_conv_kernel:
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation='silu')
else:
self.q_conv1d = ShortConvolution(self.forget_dim, conv_size, activation='silu')
self.f_conv1d = ShortConvolution(self.forget_dim, conv_size, activation='silu')
self.i_conv1d = ShortConvolution(self.input_dim, conv_size, activation='silu')
self.g_norm = RMSNorm(self.hidden_size, elementwise_affine, norm_eps)
self.o_proj = nn.Linear(self.input_dim, hidden_size, bias=False)
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
lower_bound: Optional[torch.Tensor] = None,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
# launching the triton kernel for just one token will actually be slower
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
last_state = past_key_values[self.layer_idx] if use_cache else None
if self.use_short_conv:
conv_state = last_state[0] if use_cache else None
if self.share_conv_kernel:
# conv state is updated inplace
hidden_states = self.h_conv1d(hidden_states, attention_mask, conv_state)
q = self.q_proj(hidden_states)
f = self.f_proj(hidden_states)
i = self.i_proj(hidden_states)
else:
conv_state_q = last_state[0] if use_cache else None
conv_state_f = last_state[1] if use_cache else None
conv_state_i = last_state[2] if use_cache else None
q = self.q_proj(hidden_states)
f = self.f_proj(hidden_states)
i = self.i_proj(hidden_states)
q = self.q_conv1d(q, attention_mask, conv_state_q)
f = self.f_conv1d(f, attention_mask, conv_state_f)
i = self.i_conv1d(i, attention_mask, conv_state_i)
else:
q = self.q_proj(hidden_states)
f = self.f_proj(hidden_states)
i = self.i_proj(hidden_states)
# dealing with left-padding
if attention_mask is not None:
i = i.mul_(attention_mask.unsqueeze(-1))
q = swish(q)
# the lower bound for the first layer is zero
if lower_bound is None or self.layer_idx == 0:
k, g = 1 - f.sigmoid(), F.logsigmoid(f)
else:
g = lower_bound + (1 - lower_bound) * f.sigmoid()
k, g = 1 - g, g.log()
q, k, i, g = map(lambda x: rearrange(x, 'b l (h d) -> b h l d', h=self.num_heads), (q, k, i, g))
recurrent_state = last_state[-1] if use_cache else None
if mode == 'fused_recurrent':
o, recurrent_state = fused_recurrent_gla(q, k, i, g, initial_state=recurrent_state, output_final_state=use_cache)
elif mode == 'fused_chunk':
o, recurrent_state = fused_chunk_gla(q, k, i, g, initial_state=recurrent_state, output_final_state=use_cache)
elif mode == 'chunk':
o, recurrent_state = chunk_gla(q, k, i, g, initial_state=recurrent_state, output_final_state=use_cache)
else:
raise NotImplementedError(f"Not supported mode `{mode}`.")
if past_key_values is not None:
if self.use_short_conv:
if self.share_conv_kernel:
last_state = (conv_state, recurrent_state)
else:
last_state = (conv_state_q, conv_state_f, conv_state_i, recurrent_state)
else:
last_state = (recurrent_state,)
past_key_values.update(last_state, self.layer_idx, q.shape[2])
o = self.g_norm(rearrange(o, 'b h l d -> b l (h d)'))
o = self.o_proj(o)
return o, None, past_key_values
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
param = next(self.parameters())
state = tuple()
if self.use_short_conv:
if self.share_conv_kernel:
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
else:
state += (param.new_zeros(batch_size, self.forget_dim, self.conv_size),
param.new_zeros(batch_size, self.forget_dim, self.conv_size),
param.new_zeros(batch_size, self.input_dim, self.conv_size))
state += (param.new_zeros(batch_size, self.num_heads, self.head_f_dim, self.head_i_dim),)
return state
def state_size(self, **kwargs) -> int:
state_size = self.forget_dim * self.head_i_dim
for module in self.children():
if isinstance(module, ShortConvolution):
state_size += module.state_size
return state_size

View File

@ -0,0 +1,156 @@
# -*- coding: utf-8 -*-
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from fla.modules import RMSNorm
from fla.modules.feature_map import (DPFPFeatureMap, HadamardFeatureMap,
HedgehogFeatureMap, T2RFeatureMap)
from fla.ops.linear_attn import (chunk_linear_attn, fused_chunk_linear_attn,
fused_recurrent_linear_attn)
class LinearAttention(nn.Module):
def __init__(
self,
hidden_size: str = 1024,
expand_k: int = 1.0,
expand_v: int = 1.0,
num_heads: int = 8,
mode: str = 'chunk',
feature_map: str = 'elementwise_product',
tie_feature_map_qk: bool = False,
output_norm: str = 'rmsnorm',
norm_q: bool = False,
norm_k: bool = False,
# standard linear attention normalization
do_feature_map_norm: bool = False,
elementwise_affine: bool = True,
norm_eps: float = 1e-5,
**kwargs,
):
super().__init__()
assert feature_map in ['elu', 'relu', 'hedgehog', 't2r', 'dpfp',
'identity', 'elementwise_product'], f"Not supported feature map `{feature_map}`."
assert output_norm in ['rmsnorm', 'identity'], f"Not supported output norm `{output_norm}`."
self.hidden_size
self.mode = mode
self.key_dim = int(hidden_size * expand_k)
self.value_dim = int(hidden_size * expand_v)
self.num_heads = num_heads
assert mode in ['chunk', 'fused_chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
self.head_qk_dim = self.key_dim // num_heads
self.head_v_dim = self.value_dim // num_heads
if feature_map == 'hedgehog':
if tie_feature_map_qk:
self.feature_map_q = self.feature_map_k = HedgehogFeatureMap(head_dim=self.head_qk_dim)
else:
self.feature_map_q = HedgehogFeatureMap(head_dim=self.head_qk_dim)
self.feature_map_k = HedgehogFeatureMap(head_dim=self.head_qk_dim)
elif feature_map == 't2r':
if tie_feature_map_qk:
self.feature_map_q = self.feature_map_k = T2RFeatureMap(head_dim=self.head_qk_dim)
else:
self.feature_map_q = T2RFeatureMap(head_dim=self.head_qk_dim)
self.feature_map_k = T2RFeatureMap(head_dim=self.head_qk_dim)
elif feature_map == 'elementwise_product':
if tie_feature_map_qk:
self.feature_map_q = self.feature_map_k = HadamardFeatureMap(head_dim=self.head_qk_dim)
else:
self.feature_map_q = HadamardFeatureMap(head_dim=self.head_qk_dim)
self.feature_map_k = HadamardFeatureMap(head_dim=self.head_qk_dim)
elif feature_map == 'dpfp':
self.feature_map_q = DPFPFeatureMap(head_dim=self.head_qk_dim)
self.feature_map_k = DPFPFeatureMap(head_dim=self.head_qk_dim)
elif feature_map == 'elu':
def elu(x):
return F.elu(x) + 1
self.feature_map_q = elu
self.feature_map_k = elu
elif feature_map == 'relu':
self.feature_map_q = nn.ReLU()
self.feature_map_k = nn.ReLU()
elif feature_map == 'identity':
self.feature_map_q = nn.Identity()
self.feature_map_k = nn.Identity()
else:
raise NotImplementedError
self.do_feature_map_norm = do_feature_map_norm
if output_norm == 'rmsnorm':
self.norm = RMSNorm(self.head_v_dim, elementwise_affine, norm_eps)
elif output_norm == 'identity':
self.norm = nn.Identity()
else:
raise NotImplementedError
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
self.norm_q = norm_q
self.norm_k = norm_k
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(self, x):
mode = self.mode
q = rearrange(self.q_proj(x), 'b n (h d) -> b h n d', h=self.num_heads)
k = rearrange(self.k_proj(x), 'b n (h d) -> b h n d', h=self.num_heads)
v = rearrange(self.v_proj(x), 'b n (h d) -> b h n d', h=self.num_heads)
q = self.feature_map_q(q)
k = self.feature_map_k(k)
if self.norm_q:
q = q / (q.sum(-1, keepdim=True) + 1e-4)
if self.norm_k:
k = k / (k.sum(-1, keepdim=True) + 1e-4)
if mode == 'chunk':
o = chunk_linear_attn(q, k, v, normalize=self.do_feature_map_norm)
elif mode == 'fused_chunk':
o = fused_chunk_linear_attn(q, k, v, normalize=self.do_feature_map_norm)
elif mode == 'fused_recurrent':
o = fused_recurrent_linear_attn(q, k, v, normalize=self.do_feature_map_norm)
else:
raise NotImplementedError
o = self.norm(o)
o = rearrange(o, 'b h n d -> b n (h d)')
o = self.o_proj(o)
return o
if __name__ == '__main__':
import torch
batch = 4
seq_len = 1024
hidden_size = 1024
x = torch.randn(batch, seq_len, hidden_size).to(torch.bfloat16).cuda().requires_grad_(True)
model = LinearAttention(hidden_size, feature_map='dplp').to(torch.bfloat16).cuda()
y = model(x)
print(y.shape)
y.sum().backward()
print(x.grad.shape)

View File

@ -0,0 +1,271 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
from typing import Optional, Tuple
import torch
import torch.nn as nn
from einops import rearrange, repeat
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache
from fla.modules import FusedRMSNormSwishGate, RMSNorm, ShortConvolution
from fla.modules.rotary import RotaryEmbedding
from fla.ops.retention import (chunk_retention, fused_chunk_retention,
fused_recurrent_retention, parallel_retention)
class MultiScaleRetention(nn.Module):
r"""
The layer implementaion for [Retentive Network: A Successor to Transformer for Large Language Models](https://arxiv.org/pdf/2307.08621.pdf). # noqa
Args:
mode (str, Optional):
Which Retention kernel to use.
Currently available: `chunk`, `fused_recurrent`, `parallel`, and `fused_chunk`.
Default: `fused_chunk`.
hidden_size (int, Optional):
The hidden size of the input. Default: 1024.
expand_k (float, Optional):
The expansion ratio for the key dim. Default: 1.0.
expand_v (float, Optional):
The expansion ratio for the value dim. Default: 2.0.
num_heads (int, Optional):
The number of heads. Default: 8.
num_kv_heads (int, Optional):
The number of key/value heads, used for MQA. Default: None.
feature_map (str, Optional):
Feature map function applied to queries/keys. Default: None.
use_short_conv (bool, Optional):
Whether to use short convolutions. Default: `False`.
conv_size (int, Optional):
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
conv_bias (bool, Optional):
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
share_conv_kernel (bool, Optional):
Whether to apply convolutions berfore q/k/v mapping, only taking effects when `use_short_conv`. Default: `True`.
use_output_gate (bool, Optional):
Whether to use output gate. Default: `True`.
gate_fn (str, Optional):
The activation function for the output gate. Default: `swish`.
elementwise_affine (bool, Optional):
If `True`, applies elementwise affine to LayerNorm with learnable parameters. Default: `True`.
norm_eps (float, Optional):
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
fuse_norm (bool, Optional):
Whether to fuse the norm and the output gate for better memory footprint. Default: `True`.
layer_idx (int, Optional):
The index of the layer. Default: None.
"""
def __init__(
self,
mode: str = 'fused_chunk',
hidden_size: int = 1024,
expand_k: float = 1.0,
expand_v: float = 2.0,
num_heads: int = 8,
num_kv_heads: Optional[int] = None,
feature_map: Optional[str] = None,
use_short_conv: bool = False,
conv_size: int = 4,
conv_bias: bool = False,
share_conv_kernel: bool = True,
use_output_gate: bool = True,
gate_fn: str = 'swish',
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
fuse_norm: bool = True,
layer_idx: int = None,
**kwargs
) -> MultiScaleRetention:
super().__init__()
self.mode = mode
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.num_heads = num_heads
self.num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads
self.num_kv_groups = self.num_heads // self.num_kv_heads
self.feature_map_fn = ACT2FN[feature_map] if feature_map is not None else None
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.share_conv_kernel = share_conv_kernel
self.use_output_gate = use_output_gate
self.key_dim = int(hidden_size * expand_k)
self.value_dim = int(hidden_size * expand_v)
self.key_dim_per_group = self.key_dim // self.num_kv_groups
self.value_dim_per_group = self.value_dim // self.num_kv_groups
self.layer_idx = layer_idx
assert mode in ['chunk', 'fused_chunk', 'parallel', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
self.head_qk_dim = self.key_dim // num_heads
self.head_v_dim = self.value_dim // num_heads
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(hidden_size, self.key_dim_per_group, bias=False)
self.v_proj = nn.Linear(hidden_size, self.value_dim_per_group, bias=False)
if self.use_output_gate:
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
if use_short_conv:
self.conv_size = conv_size
if share_conv_kernel:
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation='silu')
else:
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
if gate_fn == 'swish' and fuse_norm and use_output_gate:
self.g_norm_swish_gate = FusedRMSNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps)
self.fuse_norm_and_gate = True
else:
self.fuse_norm_and_gate = False
self.g_norm = RMSNorm(self.head_v_dim, elementwise_affine, norm_eps)
self.gate_fn = ACT2FN[gate_fn]
# TODO: fix this issue
# https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/ops/triton/rotary.py#L180
# Ideally, we would want to support arbitrary d_head_qk
assert self.head_qk_dim <= 256, "head_qk_dim must be less than or equal to 256"
self.rotary = RotaryEmbedding(dim=self.head_qk_dim)
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
# launching the triton kernel for just one token will actually be slower
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
last_state = past_key_values[self.layer_idx] if use_cache else None
if self.use_short_conv:
conv_state = last_state[0] if use_cache else None
if self.share_conv_kernel:
# conv state is updated inplace
hidden_states = self.h_conv1d(hidden_states, attention_mask, conv_state)
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
else:
conv_state_q = last_state[0] if use_cache else None
conv_state_k = last_state[1] if use_cache else None
conv_state_v = last_state[2] if use_cache else None
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
q = self.q_conv1d(q, attention_mask, conv_state_q)
k = self.k_conv1d(k, attention_mask, conv_state_k)
v = self.v_conv1d(v, attention_mask, conv_state_v)
else:
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
# dealing with left-padding
if attention_mask is not None:
v = v.mul_(attention_mask.unsqueeze(-1))
q = rearrange(q, '... (h d) -> ... h d', h=self.num_heads)
k = rearrange(k, '... (h d) -> ... h d', h=self.num_kv_heads)
if self.feature_map_fn is not None:
q, k = map(self.feature_map_fn, (q, k))
seqlen_offset, max_seqlen = 0, None
if past_key_values is not None:
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
max_seqlen = q.shape[1] + seqlen_offset
if attention_mask is not None:
# to deliminate the offsets of padding tokens
seqlen_offset = seqlen_offset + attention_mask.sum(-1) - attention_mask.shape[-1]
max_seqlen = q.shape[1] + max(seqlen_offset)
q, k = self.rotary(q, k, seqlen_offset, max_seqlen)
q = q.transpose(1, 2)
if self.num_kv_groups > 1:
k = repeat(k, 'b t h d -> b (h g) t d', h=self.num_kv_heads, g=self.num_kv_groups)
v = repeat(v, 'b t (h d) -> b (h g) t d', h=self.num_kv_heads, g=self.num_kv_groups)
else:
k, v = rearrange(k, 'b t h d -> b h t d'), rearrange(v, 'b t (h d) -> b h t d', h=self.num_kv_heads)
state = last_state[-1] if use_cache else None
if mode == 'chunk':
o, recurrent_state = chunk_retention(q, k, v, initial_state=state, output_final_state=use_cache)
elif mode == 'fused_chunk':
o, recurrent_state = fused_chunk_retention(q, k, v, initial_state=state, output_final_state=use_cache)
elif mode == 'parallel':
o, recurrent_state = parallel_retention(q, k, v, initial_state=state, output_final_state=use_cache)
elif mode == 'fused_recurrent':
o, recurrent_state = fused_recurrent_retention(q, k, v, initial_state=state, output_final_state=use_cache)
else:
raise NotImplementedError(f"Not supported mode `{mode}`.")
if past_key_values is not None:
if self.use_short_conv:
if self.share_conv_kernel:
last_state = (conv_state, recurrent_state)
else:
last_state = (conv_state_q, conv_state_k, conv_state_v, recurrent_state)
else:
last_state = (recurrent_state,)
past_key_values.update(last_state, self.layer_idx, q.shape[2])
o = rearrange(o, 'b h l d -> b l h d')
if self.use_output_gate:
g = self.g_proj(hidden_states)
if self.fuse_norm_and_gate:
g = rearrange(g, 'b l (h d) -> b l h d', h=self.num_heads)
o = self.g_norm_swish_gate(o, g)
o = rearrange(o, 'b l h d -> b l (h d)')
else:
o = rearrange(self.g_norm(o), 'b l h d -> b l (h d)')
o = o * self.gate_fn(g)
else:
o = rearrange(self.g_norm(o), 'b l h d -> b l (h d)')
o = self.o_proj(o)
return o, None, past_key_values
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
param = next(self.parameters())
state = tuple()
if self.use_short_conv:
if self.share_conv_kernel:
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
else:
state += (param.new_zeros(batch_size, self.key_dim, self.conv_size),
param.new_zeros(batch_size, self.key_dim, self.conv_size),
param.new_zeros(batch_size, self.value_dim, self.conv_size))
state += (param.new_zeros(batch_size, self.num_heads, self.head_qk_dim, self.head_v_dim),)
return state
def state_size(self, **kwargs) -> int:
state_size = self.key_dim * self.head_v_dim
for module in self.children():
if isinstance(module, ShortConvolution):
state_size += module.state_size
return state_size

137
finetune/lora/v6/fla/layers/rebased.py vendored Normal file
View File

@ -0,0 +1,137 @@
# -*- coding: utf-8 -*-
"""
https://github.com/corl-team/rebased/blob/main/flash_linear_attention/fla/layers/rebased_fast.py
"""
from __future__ import annotations
from typing import Optional
import torch
import torch.nn as nn
from einops import rearrange
from fla.modules.feature_map import RebasedFeatureMap
from fla.ops.linear_attn import chunk_linear_attn, fused_chunk_linear_attn
from fla.ops.rebased import parallel_rebased
class ReBasedLinearAttention(nn.Module):
def __init__(
self,
hidden_size: int,
l_max: int = 2048,
feature_dim: int = 16,
num_key_value_heads: int = 16,
num_heads: int = 16,
use_gamma: Optional[bool] = True,
use_beta: Optional[bool] = True,
normalize: Optional[bool] = True,
causal: bool = True,
eps: float = 1e-5,
mode: str = "parallel",
layer_idx: Optional[int] = None,
**kwargs
) -> ReBasedLinearAttention:
super().__init__()
self.hidden_size = hidden_size
self.l_max = l_max
self.mode = mode
assert self.mode in ["fused_chunk", "parallel", 'chunk']
# linear attention
self.feature_dim = feature_dim
self.num_key_value_heads = num_key_value_heads
self.num_heads = num_heads
self.head_dim = self.hidden_size // self.num_key_value_heads
self.use_gamma = use_gamma
self.use_beta = use_beta
self.normalize = normalize
self.causal = causal
self.feature_map = RebasedFeatureMap(self.feature_dim, use_gamma, use_beta, normalize)
self.q_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.dropout = nn.Identity()
self.eps = eps
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(self, hidden_states: torch.Tensor, **kwargs):
mode = self.mode
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
q, k, v = map(lambda x: rearrange(x, "b l (h d) -> b h l d", h=self.num_heads), [q, k, v])
q, k = self.feature_map(q, flatten=(mode != 'parallel')), self.feature_map(k, flatten=(mode != 'parallel'))
if mode == "fused_chunk":
o = fused_chunk_linear_attn(q, k, v, normalize=True, scale=1)
elif mode == 'chunk':
o = chunk_linear_attn(q, k, v, normalize=True, scale=1)
elif mode == 'parallel':
assert q.shape[-1] <= 128
o = parallel_rebased(q, k, v, self.eps, True, True)
o = rearrange(o, "b h l d -> b l (h d)")
o = self.o_proj(o)
o = self.dropout(o)
return o
# https://github.com/HazyResearch/zoology/blob/main/zoology/mixers/based.py#L119
def forward_reference(self, hidden_states: torch.Tensor, filters: torch.Tensor = None, *args, **kwargs):
"""
x (torch.Tensor): tensor of shape (b, d, l)
y (torch.Tensor): tensor of shape (b, d, l)
"""
# hidden_states = hidden_states.transpose(1, 2)
b, l, _ = hidden_states.size()
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
q = q.view(b, l, self.num_heads, self.feature_dim).transpose(1, 2)
k = k.view(b, l, self.num_key_value_heads, self.feature_dim).transpose(1, 2)
v = v.view(b, l, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# Linear attention
q, k = self.feature_map(q), self.feature_map(k)
q, k, v = q.unsqueeze(-2), k.unsqueeze(-2), v.unsqueeze(-1)
# Compute attention
if self.causal:
y = ((q * (k * v).cumsum(2)).sum(-1) / ((q * k.cumsum(2)).sum(-1) + self.eps))
else:
y = ((q * (k * v).sum(2, True)).sum(-1) / ((q * k.sum(2, True)).sum(-1) + self.eps))
y = rearrange(y, 'b h l d -> b l (h d)')
y = self.o_proj(y.to(hidden_states.dtype))
y = self.dropout(y)
return y.to(hidden_states.dtype)
if __name__ == '__main__':
batch = 4
seq_len = 1024
hidden_size = 1024
dtype = torch.float32
x = torch.randn(batch, seq_len, hidden_size).to(dtype).cuda().requires_grad_(True)
dy = torch.randn(batch, seq_len, hidden_size).to(dtype).cuda()
model = ReBasedLinearAttention(hidden_size=hidden_size, mode='parallel').to(dtype).cuda()
y = model(x)
y.backward(dy, retain_graph=True)
x_grad, x.grad = x.grad, None
print(model.mode)
model.mode = 'fused_chunk'
y2 = model(x)
print(model.mode)
y2.backward(dy)
# assert y.allclose(y2, 0, 1e-4), breakpoint()
# assert x_grad.allclose(x.grad, 0, 1e-4), breakpoint()
print("Pass")

264
finetune/lora/v6/fla/layers/rwkv6.py vendored Normal file
View File

@ -0,0 +1,264 @@
# -*- coding: utf-8 -*-
# "Eagle and Finch: RWKV with Matrix-Valued States and Dynamic Recurrence"[https://arxiv.org/abs/2404.05892]
from __future__ import annotations
from typing import Optional, Tuple
import torch
import torch.nn as nn
from einops import rearrange
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache
from fla.modules import FusedLayerNormSwishGate, LayerNorm
from fla.ops.rwkv6 import chunk_rwkv6, fused_recurrent_rwkv6
class RWKV6Attention(nn.Module):
def __init__(
self,
mode: str = 'chunk',
hidden_size: int = 1024,
expand_k: float = 0.5,
expand_v: float = 1.0,
num_heads: int = 4,
gate_fn: str = 'swish',
proj_low_rank_dim: int = 32,
gate_low_rank_dim: int = 64,
fuse_norm: bool = True,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
layer_idx: int = None,
**kwargs
) -> RWKV6Attention:
super().__init__()
self.mode = mode
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.num_heads = num_heads
self.proj_low_rank_dim = proj_low_rank_dim
self.gate_low_rank_dim = gate_low_rank_dim
self.key_dim = int(hidden_size * expand_k)
self.value_dim = int(hidden_size * expand_v)
self.layer_idx = layer_idx
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
self.head_qk_dim = self.key_dim // num_heads
self.head_v_dim = self.value_dim // num_heads
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.x_proj = nn.Sequential(
LerpLinear(hidden_size, proj_low_rank_dim * 5),
nn.Tanh(),
nn.Linear(proj_low_rank_dim * 5, hidden_size, bias=True)
)
self.r_proj = DDLerpLinear(hidden_size, self.key_dim)
self.w_proj = DDLerpLinear(hidden_size, self.key_dim, low_rank_dim=gate_low_rank_dim)
self.k_proj = DDLerpLinear(hidden_size, self.key_dim)
self.v_proj = DDLerpLinear(hidden_size, self.value_dim)
self.g_proj = DDLerpLinear(hidden_size, self.value_dim)
self.bonus = nn.Parameter(torch.zeros(num_heads, self.head_qk_dim))
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
if gate_fn == 'swish' and fuse_norm:
self.g_norm_swish_gate = FusedLayerNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps)
self.fuse_norm_and_gate = True
else:
self.fuse_norm_and_gate = False
self.g_norm = LayerNorm(self.head_v_dim, elementwise_affine, norm_eps)
self.gate_fn = ACT2FN[gate_fn]
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
if isinstance(module, nn.Parameter):
nn.init.xavier_uniform_(module, gain=2 ** -2.5)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
batch_size, seq_len, hidden_size = hidden_states.size()
# launching the triton kernel for just one token will actually be slower
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
delta = self.time_shift(hidden_states) - hidden_states
x = self.x_proj[0](hidden_states, delta).view(batch_size, seq_len, -1, self.proj_low_rank_dim)
r, w, k, v, g = torch.einsum('b l n r, n r d-> b l n d',
self.x_proj[1](x),
self.x_proj[2].weight.view(5, -1, hidden_size)).unbind(-2)
r = self.r_proj(hidden_states, r, delta)
w = self.w_proj(hidden_states, w, delta)
k = self.k_proj(hidden_states, k, delta)
v = self.v_proj(hidden_states, v, delta)
g = self.g_proj(hidden_states, g, delta)
# dealing with left-padding
if attention_mask is not None:
v = v.mul_(attention_mask.unsqueeze(-1))
r, w, k, v = map(lambda x: rearrange(x, 'b l (h d) -> b h l d', h=self.num_heads), (r, w, k, v))
w = -torch.exp(w)
u = self.bonus
last_state = past_key_values[self.layer_idx] if use_cache else None
state = last_state[-1] if use_cache else None
if mode == 'fused_recurrent':
o, recurrent_state = fused_recurrent_rwkv6(r, k, v, w, u, initial_state=state, output_final_state=use_cache)
elif mode == 'chunk':
o, recurrent_state = chunk_rwkv6(r, k, v, w, u, initial_state=state, output_final_state=use_cache)
else:
raise NotImplementedError(f"Not supported mode `{mode}`.")
if past_key_values is not None:
past_key_values.update((recurrent_state,), self.layer_idx, r.shape[2])
o = rearrange(o, 'b h l d -> b l h d')
if self.fuse_norm_and_gate:
g = rearrange(g, 'b l (h d) -> b l h d', h=self.num_heads)
o = self.g_norm_swish_gate(o, g)
o = rearrange(o, 'b l h d -> b l (h d)')
else:
o = self.g_norm(o)
o = rearrange(o, 'b l h d -> b l (h d)')
o = o * self.gate_fn(g)
o = self.o_proj(o)
return o, None, past_key_values
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
param = next(self.parameters())
state = (param.new_zeros(batch_size, self.num_heads, self.head_qk_dim, self.head_v_dim),)
return state
def state_size(self, **kwargs) -> int:
state_size = self.key_dim * self.head_v_dim
return state_size
class LoRA(nn.Module):
def __init__(
self,
input_dim: int,
output_dim: int,
low_rank_dim: int,
bias: Optional[bool] = True
):
super().__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.low_rank_dim = low_rank_dim
self.bias = bias
self.lora = nn.Sequential(
nn.Linear(input_dim, low_rank_dim, bias=False),
nn.Tanh(),
nn.Linear(low_rank_dim, output_dim, bias=bias)
)
def __repr__(self) -> str:
s = f"{self.__class__.__name__}("
s += f"input_dim={self.input_dim}, low_rank_dim={self.low_rank_dim}, output_dim={self.output_dim}"
if not self.bias:
s += f", bias={self.bias}"
s += ")"
return s
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.lora(x)
class LerpLinear(nn.Module):
def __init__(
self,
input_dim: int,
output_dim: int,
low_rank_dim: Optional[int] = None
):
super().__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.low_rank_dim = low_rank_dim
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
if low_rank_dim is None:
self.linear = nn.Linear(input_dim, output_dim, bias=False)
else:
self.linear = LoRA(input_dim, output_dim, low_rank_dim)
self.mu = nn.Parameter(torch.zeros(input_dim))
def __repr__(self) -> str:
s = f"{self.__class__.__name__}({self.input_dim}, {self.output_dim}"
if self.low_rank_dim is not None:
s += f", low_rank_dim={self.low_rank_dim}"
s += ")"
return s
def forward(self, x: torch.Tensor, delta: Optional[torch.Tensor] = None) -> torch.Tensor:
if delta is None:
shifted = self.time_shift(x)
if len(shifted.shape) == 2:
shifted = shifted.unsqueeze(1)
delta = shifted - x
return self.linear(x + delta * self.mu)
class DDLerpLinear(nn.Module):
def __init__(
self,
input_dim: int,
output_dim: int,
low_rank_dim: Optional[int] = None
):
super().__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.low_rank_dim = low_rank_dim
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
if low_rank_dim is None:
self.linear = nn.Linear(input_dim, output_dim, bias=False)
else:
self.linear = LoRA(input_dim, output_dim, low_rank_dim)
def __repr__(self) -> str:
s = f"{self.__class__.__name__}({self.input_dim}, {self.output_dim}"
if self.low_rank_dim is not None:
s += f", low_rank_dim={self.low_rank_dim}"
s += ")"
return s
def forward(self, x: torch.Tensor, mu: torch.Tensor, delta: Optional[torch.Tensor] = None) -> torch.Tensor:
if delta is None:
shifted = self.time_shift(x)
if len(shifted.shape) == 2:
shifted = shifted.unsqueeze(1)
delta = shifted - x
return self.linear(x + delta * mu)

View File

@ -0,0 +1,143 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from transformers.activations import ACT2FN
from fla.modules import FusedRMSNormSwishGate, RMSNorm
from fla.ops.simple_gla import chunk_simple_gla
class SimpleGatedLinearAttention(nn.Module):
r"""
The layer implementaion for [Gated Linear Attention Transformers with Hardware-Efficient Training](https://arxiv.org/abs/2312.06635). # noqa
This layer calls the simplified GLA kernel in which the gating is head-wise instead of elementwise.
Args:
mode (str, Optional):
Which GLA kernel to use.
Currently available: `chunk`.
Default: `chunk`.
hidden_size (int, Optional):
The hidden size of the input. Default: 1024.
expand_k (float, Optional):
The expansion ratio for the key dim. Default: 0.5.
expand_v (float, Optional):
The expansion ratio for the value dim. Default: 1.0.
num_heads (int, Optional):
The number of heads. Default: 4.
gate_fn (str, Optional):
The activation function for the output gate. Default: `swish`.
elementwise_affine (bool, Optional):
If `True`, applies elementwise affine to LayerNorm with learnable parameters. Default: `True`.
norm_eps (float, Optional):
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
gate_logit_normalizer (int, Optional):
The normalizer for the gate logits, appied after `logsigmoid`. Default: 16.
fuse_norm (bool, Optional):
Whether to fuse the norm and the output gate for better memory footprint. Default: `True`.
layer_idx (int, Optional):
The index of the layer. Default: None.
"""
def __init__(
self,
mode: str = 'chunk',
hidden_size: int = 1024,
expand_k: float = 1.0,
expand_v: float = 2.0,
num_heads: int = 4,
gate_fn: str = 'swish',
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
gate_logit_normalizer: int = 16,
fuse_norm: bool = True,
**kwargs
) -> SimpleGatedLinearAttention:
super().__init__()
self.hidden_size = hidden_size
self.mode = mode
self.key_dim = int(hidden_size * expand_k)
self.value_dim = int(hidden_size * expand_v)
assert mode in ['chunk'], f"Not suppoerted mode `{mode}`."
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
self.num_heads = num_heads
self.head_qk_dim = self.key_dim // num_heads
self.head_v_dim = self.value_dim // num_heads
self.gate_fn = ACT2FN[gate_fn]
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
self.gk_proj = nn.Linear(hidden_size, self.num_heads)
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
if gate_fn == 'swish' and fuse_norm:
self.g_norm_swish_gate = FusedRMSNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps)
self.fuse_norm_and_gate = True
else:
self.fuse_norm_and_gate = False
self.g_norm = RMSNorm(self.head_v_dim, elementwise_affine, norm_eps)
self.gate_logit_normalizer = gate_logit_normalizer
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(self, x):
mode = self.mode
q = rearrange(self.q_proj(x), 'b n (h d) -> b h n d', h=self.num_heads)
k = rearrange(self.k_proj(x), 'b n (h d) -> b h n d', h=self.num_heads)
v = rearrange(self.v_proj(x), 'b n (h d) -> b h n d', h=self.num_heads)
gk = rearrange(self.gk_proj(x), 'b n h -> b h n')
gk = (F.logsigmoid(gk) / self.gate_logit_normalizer)
if mode == 'chunk':
o = chunk_simple_gla(q, k, v, gk)
else:
raise NotImplementedError(f"Not supported mode `{mode}`.")
o = rearrange(o, 'b h l d -> b l h d')
g = self.g_proj(x)
if self.fuse_norm_and_gate:
g = rearrange(g, 'b l (h d) -> b l h d', h=self.num_heads)
o = self.g_norm_swish_gate(o, g)
o = rearrange(o, 'b l h d -> b l (h d)')
else:
o = self.g_norm(o)
o = rearrange(o, 'b l h d -> b l (h d)')
o = o * self.gate_fn(g)
o = self.o_proj(o)
return o
if __name__ == '__main__':
batch = 4
seq_len = 1024
hidden_size = 2048
x = torch.randn(batch, seq_len, hidden_size).to(torch.bfloat16).cuda().requires_grad_(True)
model = SimpleGatedLinearAttention(hidden_size=hidden_size, mode='chunk').to(torch.bfloat16).cuda()
y = model(x)
print(y.shape)
y.sum().backward()
print(x.grad.shape)

29
finetune/lora/v6/fla/models/__init__.py vendored Normal file
View File

@ -0,0 +1,29 @@
# -*- coding: utf-8 -*-
from fla.models.abc import ABCConfig, ABCForCausalLM, ABCModel
from fla.models.delta_net import (DeltaNetConfig, DeltaNetForCausalLM,
DeltaNetModel)
from fla.models.gla import GLAConfig, GLAForCausalLM, GLAModel
from fla.models.hgrn import HGRNConfig, HGRNForCausalLM, HGRNModel
from fla.models.hgrn2 import HGRN2Config, HGRN2ForCausalLM, HGRN2Model
from fla.models.linear_attn import (LinearAttentionConfig,
LinearAttentionForCausalLM,
LinearAttentionModel)
from fla.models.mamba import MambaConfig, MambaForCausalLM, MambaModel
from fla.models.retnet import RetNetConfig, RetNetForCausalLM, RetNetModel
from fla.models.rwkv6 import RWKV6Config, RWKV6ForCausalLM, RWKV6Model
from fla.models.transformer import (TransformerConfig, TransformerForCausalLM,
TransformerModel)
__all__ = [
'ABCConfig', 'ABCForCausalLM', 'ABCModel',
'DeltaNetConfig', 'DeltaNetForCausalLM', 'DeltaNetModel',
'GLAConfig', 'GLAForCausalLM', 'GLAModel',
'HGRNConfig', 'HGRNForCausalLM', 'HGRNModel',
'HGRN2Config', 'HGRN2ForCausalLM', 'HGRN2Model',
'LinearAttentionConfig', 'LinearAttentionForCausalLM', 'LinearAttentionModel',
'MambaConfig', 'MambaForCausalLM', 'MambaModel',
'RetNetConfig', 'RetNetForCausalLM', 'RetNetModel',
'RWKV6Config', 'RWKV6ForCausalLM', 'RWKV6Model',
'TransformerConfig', 'TransformerForCausalLM', 'TransformerModel'
]

View File

@ -0,0 +1,13 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.abc.configuration_abc import ABCConfig
from fla.models.abc.modeling_abc import ABCForCausalLM, ABCModel
AutoConfig.register(ABCConfig.model_type, ABCConfig)
AutoModel.register(ABCConfig, ABCModel)
AutoModelForCausalLM.register(ABCConfig, ABCForCausalLM)
__all__ = ['ABCConfig', 'ABCForCausalLM', 'ABCModel']

View File

@ -0,0 +1,74 @@
# -*- coding: utf-8 -*-
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class ABCConfig(PretrainedConfig):
model_type = 'abc'
keys_to_ignore_at_inference = ['past_key_values']
def __init__(
self,
vocab_size: int = 32000,
hidden_size: int = 2048,
gate_low_rank_dim: int = 16,
clamp_min: float = -32,
clamp_max: float = 32,
hidden_ratio: Optional[int] = 4,
intermediate_size: Optional[int] = None,
num_hidden_layers: int = 24,
num_heads: int = 4,
num_slots: Optional[int] = 64,
use_short_conv: bool = True,
conv_size: int = 4,
share_conv_kernel: bool = True,
exapnd_k: float = 0.5,
exapnd_v: float = 1,
hidden_act: str = "swish",
max_position_embeddings: int = 2048,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-6,
use_cache: bool = True,
pad_token_id: int = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
initializer_range: float = 0.02,
tie_word_embeddings: bool = False,
fuse_norm: bool = True,
fuse_cross_entropy: bool = True,
**kwargs
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.gate_low_rank_dim = gate_low_rank_dim
self.clamp_min = clamp_min
self.clamp_max = clamp_max
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_heads = num_heads
self.num_slots = num_slots
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.share_conv_kernel = share_conv_kernel
self.expand_k = exapnd_k
self.expand_v = exapnd_v
self.hidden_act = hidden_act
self.elementwise_affine = elementwise_affine
self.norm_eps = norm_eps
self.use_cache = use_cache
self.initializer_range = initializer_range
self.fuse_cross_entropy = fuse_cross_entropy
self.fuse_norm = fuse_norm
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@ -0,0 +1,394 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.layers.abc import ABCAttention
from fla.models.abc.configuration_abc import ABCConfig
from fla.models.utils import RecurrentCache
from fla.modules import FusedCrossEntropyLoss, RMSNorm
from fla.modules.activations import swiglu_linear
logger = logging.get_logger(__name__)
class ABCMLP(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'swish'
) -> ABCMLP:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
y = self.gate_proj(x)
gate, y = y.chunk(2, -1)
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
class ABCBlock(nn.Module):
def __init__(self, config: ABCConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.attn = ABCAttention(
hidden_size=config.hidden_size,
expand_k=config.expand_k,
expand_v=config.expand_v,
num_heads=config.num_heads,
num_slots=config.num_slots,
use_short_conv=config.use_short_conv,
conv_size=config.conv_size,
share_conv_kernel=config.share_conv_kernel,
gate_fn=config.hidden_act,
elementwise_affine=config.elementwise_affine,
norm_eps=config.norm_eps,
clamp_min=config.clamp_min,
clamp_max=config.clamp_max,
fuse_norm=config.fuse_norm,
layer_idx=layer_idx
)
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.mlp = ABCMLP(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.attn_norm(hidden_states)
hidden_states, attentions, past_key_values = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, attentions, past_key_values)
return outputs
class ABCPreTrainedModel(PreTrainedModel):
config_class = ABCConfig
supports_gradient_checkpointing = True
_no_split_modules = ['ABCBlock']
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class ABCModel(ABCPreTrainedModel):
def __init__(self, config: ABCConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([ABCBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # noqa
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn("`ABCModel` does not `output_attentions` now, setting it to `False`.")
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
hidden_states = inputs_embeds
if use_cache:
if past_key_values is None:
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
for layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
use_cache,
output_attentions
)
else:
hidden_states, attentions, past_key_values = layer(
hidden_states,
attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
if output_attentions:
all_attns += (attentions,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attns
)
class ABCForCausalLM(ABCPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = ABCModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exception:
if 'past_key_values' in str(exception):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exception
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is passed along.
if past_key_values is not None:
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
model_inputs = {'input_ids': input_ids}
model_inputs['past_key_values'] = past_key_values
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(logits.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View File

@ -0,0 +1,14 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.delta_net.configuration_delta_net import \
DeltaNetConfig
from fla.models.delta_net.modeling_delta_net import (
DeltaNetForCausalLM, DeltaNetModel)
AutoConfig.register(DeltaNetConfig.model_type, DeltaNetConfig)
AutoModel.register(DeltaNetConfig, DeltaNetModel)
AutoModelForCausalLM.register(DeltaNetConfig, DeltaNetForCausalLM)
__all__ = ['DeltaNetConfig', 'DeltaNetForCausalLM', 'DeltaNetModel']

View File

@ -0,0 +1,77 @@
# -*- coding: utf-8 -*-
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class DeltaNetConfig(PretrainedConfig):
model_type = 'delta_net'
keys_to_ignore_at_inference = ['past_key_values']
def __init__(
self,
vocab_size: int = 32000,
hidden_size: int = 2048,
expand_k: int = 1,
expand_v: int = 1,
use_gate: bool = False,
use_short_conv: bool = True,
conv_size: int = 4,
share_conv_kernel: bool = False,
use_rope: bool = False,
use_beta: bool = True,
use_output_norm: bool = True,
hidden_ratio: Optional[int] = 4,
intermediate_size: Optional[int] = None,
num_hidden_layers: int = 24,
num_heads: int = 4,
attn_mode: str = "chunk",
qk_norm: str = 'l2',
qk_activation: str = 'silu',
chunk_size: int = 64,
hidden_act: str = "swish",
max_position_embeddings: int = 2048,
rms_norm_eps: float = 1e-6,
use_cache: bool = True,
pad_token_id: int = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = False,
initializer_range: float = 0.02,
fuse_cross_entropy: bool = True,
**kwargs
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_heads = num_heads
self.attn_mode = attn_mode
self.hidden_act = hidden_act
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.initializer_range = initializer_range
self.fuse_cross_entropy = fuse_cross_entropy
self.use_gate = use_gate
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.share_conv_kernel = share_conv_kernel
self.use_rope = use_rope
self.use_beta = use_beta
self.use_output_norm = use_output_norm
self.qk_norm = qk_norm
self.qk_activation = qk_activation
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@ -0,0 +1,405 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.layers.delta_net import DeltaNet
from fla.models.delta_net.configuration_delta_net import DeltaNetConfig
from fla.models.utils import RecurrentCache
from fla.modules import FusedCrossEntropyLoss, RMSNorm
from fla.modules.activations import swiglu_linear
logger = logging.get_logger(__name__)
class DeltaNetMLP(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'swish'
) -> DeltaNetMLP:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
y = self.gate_proj(x)
gate, y = y.chunk(2, -1)
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
class DeltaNetBlock(nn.Module):
def __init__(self, config: DeltaNetConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.rms_norm_eps)
self.attn = DeltaNet(
mode=config.attn_mode,
hidden_size=config.hidden_size,
expand_k=config.expand_k,
expand_v=config.expand_v,
num_heads=config.num_heads,
use_gate=config.use_gate,
use_rope=config.use_rope,
use_beta=config.use_beta,
use_short_conv=config.use_short_conv,
use_output_norm=config.use_output_norm,
conv_size=config.conv_size,
share_conv_kernel=config.share_conv_kernel,
layer_idx=layer_idx,
qk_norm=config.qk_norm,
qk_activation=config.qk_activation
)
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.rms_norm_eps)
self.mlp = DeltaNetMLP(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.attn_norm(hidden_states)
hidden_states, attentions, past_key_values = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, attentions, past_key_values)
return outputs
class DeltaNetPreTrainedModel(PreTrainedModel):
config_class = DeltaNetConfig
supports_gradient_checkpointing = True
_no_split_modules = ['DeltaNetBlock']
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class DeltaNetModel(DeltaNetPreTrainedModel):
def __init__(self, config: DeltaNetConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([DeltaNetBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # noqa
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn("`DeltaNetModel` does not `output_attentions` now, setting it to `False`.")
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
hidden_states = inputs_embeds
if use_cache:
if past_key_values is None:
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
for layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
use_cache,
output_attentions
)
else:
hidden_states, attentions, past_key_values = layer(
hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
if output_attentions:
all_attns += (attentions,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = past_key_values
# if use_cache:
# next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attns
)
class DeltaNetForCausalLM(DeltaNetPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = DeltaNetModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exception:
if 'past_key_values' in str(exception):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exception
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is passed along.
if past_key_values is not None:
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
# breakpoint()
input_ids, attention_mask = input_ids[:, -1:], attention_mask[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard.
# Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {'input_ids': input_ids.contiguous()}
model_inputs.update({
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
})
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(logits.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View File

@ -0,0 +1,13 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.gla.configuration_gla import GLAConfig
from fla.models.gla.modeling_gla import GLAForCausalLM, GLAModel
AutoConfig.register(GLAConfig.model_type, GLAConfig)
AutoModel.register(GLAConfig, GLAModel)
AutoModelForCausalLM.register(GLAConfig, GLAForCausalLM)
__all__ = ['GLAConfig', 'GLAForCausalLM', 'GLAModel']

View File

@ -0,0 +1,80 @@
# -*- coding: utf-8 -*-
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class GLAConfig(PretrainedConfig):
model_type = 'gla'
keys_to_ignore_at_inference = ['past_key_values']
def __init__(
self,
vocab_size: int = 32000,
hidden_size: int = 2048,
expand_k: int = 0.5,
expand_v: int = 1,
hidden_ratio: Optional[int] = 4,
intermediate_size: Optional[int] = None,
num_hidden_layers: int = 24,
num_heads: int = 4,
num_kv_heads: Optional[int] = None,
feature_map: Optional[str] = None,
attn_mode: str = "chunk",
use_short_conv: bool = False,
conv_size: int = 4,
share_conv_kernel: bool = True,
use_output_gate: bool = True,
clamp_min: Optional[float] = None,
hidden_act: str = "swish",
max_position_embeddings: int = 2048,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-6,
use_gk: bool = True,
use_gv: bool = False,
use_cache: bool = True,
pad_token_id: int = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = False,
initializer_range: float = 0.02,
fuse_norm: bool = True,
fuse_cross_entropy: bool = True,
**kwargs
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_heads = num_heads
self.num_kv_heads = num_kv_heads
self.feature_map = feature_map
self.attn_mode = attn_mode
self.clamp_min = clamp_min
self.hidden_act = hidden_act
self.elementwise_affine = elementwise_affine
self.norm_eps = norm_eps
self.use_gk = use_gk
self.use_gv = use_gv
self.use_cache = use_cache
self.initializer_range = initializer_range
self.fuse_norm = fuse_norm
self.fuse_cross_entropy = fuse_cross_entropy
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.share_conv_kernel = share_conv_kernel
self.use_output_gate = use_output_gate
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@ -0,0 +1,403 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.layers.gla import GatedLinearAttention
from fla.models.gla.configuration_gla import GLAConfig
from fla.models.utils import RecurrentCache
from fla.modules import FusedCrossEntropyLoss, RMSNorm
from fla.modules.activations import swiglu_linear
logger = logging.get_logger(__name__)
class GLAMLP(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'swish'
) -> GLAMLP:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
y = self.gate_proj(x)
gate, y = y.chunk(2, -1)
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
class GLABlock(nn.Module):
def __init__(self, config: GLAConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.attn = GatedLinearAttention(
mode=config.attn_mode,
hidden_size=config.hidden_size,
expand_k=config.expand_k,
expand_v=config.expand_v,
num_heads=config.num_heads,
num_kv_heads=config.num_kv_heads,
feature_map=config.feature_map,
use_short_conv=config.use_short_conv,
conv_size=config.conv_size,
share_conv_kernel=config.share_conv_kernel,
use_output_gate=config.use_output_gate,
gate_fn=config.hidden_act,
elementwise_affine=config.elementwise_affine,
norm_eps=config.norm_eps,
clamp_min=config.clamp_min,
fuse_norm=config.fuse_norm,
layer_idx=layer_idx
)
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.mlp = GLAMLP(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.attn_norm(hidden_states)
hidden_states, attentions, past_key_values = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, attentions, past_key_values)
return outputs
class GLAPreTrainedModel(PreTrainedModel):
config_class = GLAConfig
supports_gradient_checkpointing = True
_no_split_modules = ['GLABlock']
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class GLAModel(GLAPreTrainedModel):
def __init__(self, config: GLAConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([GLABlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # noqa
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn("`GLAModel` does not `output_attentions` now, setting it to `False`.")
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
hidden_states = inputs_embeds
if use_cache:
if past_key_values is None:
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
for layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
use_cache,
output_attentions
)
else:
hidden_states, attentions, past_key_values = layer(
hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
if output_attentions:
all_attns += (attentions,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attns
)
class GLAForCausalLM(GLAPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = GLAModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exception:
if 'past_key_values' in str(exception):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exception
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is passed along.
if past_key_values is not None:
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
input_ids, attention_mask = input_ids[:, -1:], attention_mask[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard.
# Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {'input_ids': input_ids.contiguous()}
model_inputs.update({
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
})
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(logits.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View File

@ -0,0 +1,13 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.hgrn.configuration_hgrn import HGRNConfig
from fla.models.hgrn.modeling_hgrn import HGRNForCausalLM, HGRNModel
AutoConfig.register(HGRNConfig.model_type, HGRNConfig)
AutoModel.register(HGRNConfig, HGRNModel)
AutoModelForCausalLM.register(HGRNConfig, HGRNForCausalLM)
__all__ = ['HGRNConfig', 'HGRNForCausalLM', 'HGRNModel']

View File

@ -0,0 +1,66 @@
# -*- coding: utf-8 -*-
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class HGRNConfig(PretrainedConfig):
model_type = 'hgrn'
keys_to_ignore_at_inference = ['past_key_values']
def __init__(
self,
attn_mode: str = "chunk",
vocab_size: int = 32000,
hidden_size: int = 2048,
num_hidden_layers: int = 24,
num_heads: Optional[int] = 1,
expand_ratio: Optional[int] = 1,
use_short_conv: bool = False,
conv_size: int = 4,
share_conv_kernel: bool = True,
use_lower_bound: bool = True,
hidden_ratio: Optional[int] = 4,
intermediate_size: Optional[int] = None,
hidden_act: str = "swish",
max_position_embeddings: int = 2048,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-6,
use_cache: bool = True,
pad_token_id: int = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = False,
initializer_range: float = 0.02,
fuse_cross_entropy: bool = True,
**kwargs
):
self.attn_mode = attn_mode
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_heads = num_heads
self.expand_ratio = expand_ratio
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.share_conv_kernel = share_conv_kernel
self.use_lower_bound = use_lower_bound
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.elementwise_affine = elementwise_affine
self.norm_eps = norm_eps
self.use_cache = use_cache
self.initializer_range = initializer_range
self.fuse_cross_entropy = fuse_cross_entropy
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@ -0,0 +1,407 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.layers.hgrn import HGRNAttention
from fla.models.hgrn.configuration_hgrn import HGRNConfig
from fla.models.utils import RecurrentCache
from fla.modules import FusedCrossEntropyLoss, RMSNorm
from fla.modules.activations import swiglu_linear
logger = logging.get_logger(__name__)
class HGRNMLP(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'swish'
) -> HGRNMLP:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
y = self.gate_proj(x)
gate, y = y.chunk(2, -1)
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
class HGRNBlock(nn.Module):
def __init__(self, config: HGRNConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.attn = HGRNAttention(
mode=config.attn_mode,
hidden_size=config.hidden_size,
num_heads=config.num_heads,
expand_ratio=config.expand_ratio,
use_short_conv=config.use_short_conv,
conv_size=config.conv_size,
share_conv_kernel=config.share_conv_kernel,
elementwise_affine=config.elementwise_affine,
norm_eps=config.norm_eps,
layer_idx=layer_idx
)
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.mlp = HGRNMLP(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
lower_bound: Optional[torch.Tensor] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.attn_norm(hidden_states)
hidden_states, attentions, past_key_values = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
lower_bound=lower_bound
)
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, attentions, past_key_values)
return outputs
class HGRNPreTrainedModel(PreTrainedModel):
config_class = HGRNConfig
supports_gradient_checkpointing = True
_no_split_modules = ['HGRNBlock']
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class HGRNModel(HGRNPreTrainedModel):
def __init__(self, config: HGRNConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
if config.use_lower_bound:
self.lower_bounds = nn.Parameter(torch.zeros(config.num_hidden_layers, config.hidden_size))
self.layers = nn.ModuleList([HGRNBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # noqa
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn("`HGRNModel` does not `output_attentions` now, setting it to `False`.")
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
hidden_states = inputs_embeds
if use_cache:
if past_key_values is None:
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
if self.config.use_lower_bound:
lower_bounds = self.lower_bounds.softmax(0)
lower_bounds = lower_bounds.cumsum(0) - lower_bounds[0]
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
lower_bound = lower_bounds[i] if self.config.use_lower_bound else None
if self.gradient_checkpointing and self.training:
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
use_cache,
output_attentions,
lower_bound
)
else:
hidden_states, attentions, past_key_values = layer(
hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
lower_bound=lower_bound
)
if output_attentions:
all_attns += (attentions,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attns
)
class HGRNForCausalLM(HGRNPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = HGRNModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exception:
if 'past_key_values' in str(exception):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exception
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is passed along.
if past_key_values is not None:
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
input_ids, attention_mask = input_ids[:, -1:], attention_mask[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard.
# Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {'input_ids': input_ids.contiguous()}
model_inputs.update({
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
})
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(logits.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

Some files were not shown because too many files have changed in this diff Show More