Compare commits

..

11 Commits

Author SHA1 Message Date
josc146
ac1fa09604 release v1.2.5 2023-06-20 17:02:28 +08:00
josc146
43bc08648d update manifest 2023-06-20 16:07:52 +08:00
josc146
e93c77394d add usage 2023-06-20 15:55:52 +08:00
josc146
4b2509e643 chore 2023-06-20 15:34:34 +08:00
josc146
14fbb437ff embeddings api example 2023-06-20 00:30:49 +08:00
josc146
8963543159 embeddings api compatible with openai api and langchain(sdk) 2023-06-19 22:51:06 +08:00
josc146
377f71b16b type 2023-06-19 22:32:02 +08:00
josc146
d32351c130 exact model name 2023-06-19 22:30:49 +08:00
josc146
967be6f88f refactor completions api 2023-06-18 20:16:52 +08:00
josc146
fcdda71b46 typo 2023-06-17 19:32:47 +08:00
github-actions[bot]
138251932c release v1.2.4 2023-06-15 16:37:43 +00:00
16 changed files with 651 additions and 298 deletions

1
.gitignore vendored
View File

@@ -13,6 +13,7 @@ __pycache__
/py310 /py310
*.zip *.zip
/cmd-helper.bat /cmd-helper.bat
/install-py-dep.bat
/backend-python/wkv_cuda /backend-python/wkv_cuda
*.exe *.exe
*.old *.old

View File

@@ -1,11 +1,9 @@
## Changes ## Changes
- improve api docs - add usage and exact model name to API
- improve error messages - embeddings API compatible with openai api and langchain (sdk)
- fix the state cache crash caused by bad prompts - update manifest
- clear confirm for chat page - refactor and chore
- save conversation button
- chore
## Install ## Install

View File

@@ -87,6 +87,45 @@ body.json:
} }
``` ```
## Embeddings API Example
If you are using langchain, just use `OpenAIEmbeddings(openai_api_base="http://127.0.0.1:8000", openai_api_key="sk-")`
```python
import numpy as np
import requests
def cosine_similarity(a, b):
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
values = [
"I am a girl",
"我是个女孩",
"私は女の子です",
"广东人爱吃福建人",
"我是个人类",
"I am a human",
"that dog is so cute",
"私はねこむすめです、にゃん♪",
"宇宙级特大事件!号外号外!"
]
embeddings = []
for v in values:
r = requests.post("http://127.0.0.1:8000/embeddings", json={"input": v})
embedding = r.json()["data"][0]["embedding"]
embeddings.append(embedding)
compared_embedding = embeddings[0]
embeddings_cos_sim = [cosine_similarity(compared_embedding, e) for e in embeddings]
for i in np.argsort(embeddings_cos_sim)[::-1]:
print(f"{embeddings_cos_sim[i]:.10f} - {values[i]}")
```
## Todo ## Todo
- [ ] Model training functionality - [ ] Model training functionality

View File

@@ -87,6 +87,45 @@ body.json:
} }
``` ```
## Embeddings API 示例
如果你在用langchain, 直接使用 `OpenAIEmbeddings(openai_api_base="http://127.0.0.1:8000", openai_api_key="sk-")`
```python
import numpy as np
import requests
def cosine_similarity(a, b):
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b))
values = [
"I am a girl",
"我是个女孩",
"私は女の子です",
"广东人爱吃福建人",
"我是个人类",
"I am a human",
"that dog is so cute",
"私はねこむすめです、にゃん♪",
"宇宙级特大事件!号外号外!"
]
embeddings = []
for v in values:
r = requests.post("http://127.0.0.1:8000/embeddings", json={"input": v})
embedding = r.json()["data"][0]["embedding"]
embeddings.append(embedding)
compared_embedding = embeddings[0]
embeddings_cos_sim = [cosine_similarity(compared_embedding, e) for e in embeddings]
for i in np.argsort(embeddings_cos_sim)[::-1]:
print(f"{embeddings_cos_sim[i]:.10f} - {values[i]}")
```
## Todo ## Todo
- [ ] 模型训练功能 - [ ] 模型训练功能

View File

@@ -1,4 +1,6 @@
import tiktoken
import GPUtil import GPUtil
import torch import torch
import rwkv import rwkv
import fastapi import fastapi

Binary file not shown.

View File

@@ -2,10 +2,13 @@ import asyncio
import json import json
from threading import Lock from threading import Lock
from typing import List from typing import List
import base64
from fastapi import APIRouter, Request, status, HTTPException from fastapi import APIRouter, Request, status, HTTPException
from sse_starlette.sse import EventSourceResponse from sse_starlette.sse import EventSourceResponse
from pydantic import BaseModel from pydantic import BaseModel
import numpy as np
import tiktoken
from utils.rwkv import * from utils.rwkv import *
from utils.log import quick_log from utils.log import quick_log
import global_var import global_var
@@ -40,11 +43,171 @@ class ChatCompletionBody(ModelConfigBody):
} }
class CompletionBody(ModelConfigBody):
prompt: str
model: str = "rwkv"
stream: bool = False
stop: str = None
class Config:
schema_extra = {
"example": {
"prompt": "The following is an epic science fiction masterpiece that is immortalized, "
+ "with delicate descriptions and grand depictions of interstellar civilization wars.\nChapter 1.\n",
"model": "rwkv",
"stream": False,
"stop": None,
"max_tokens": 100,
"temperature": 1.2,
"top_p": 0.5,
"presence_penalty": 0.4,
"frequency_penalty": 0.4,
}
}
completion_lock = Lock() completion_lock = Lock()
requests_num = 0 requests_num = 0
async def eval_rwkv(
model: RWKV,
request: Request,
body: ModelConfigBody,
prompt: str,
stream: bool,
stop: str,
chat_mode: bool,
):
global requests_num
requests_num = requests_num + 1
quick_log(request, None, "Start Waiting. RequestsNum: " + str(requests_num))
while completion_lock.locked():
if await request.is_disconnected():
requests_num = requests_num - 1
print(f"{request.client} Stop Waiting (Lock)")
quick_log(
request,
None,
"Stop Waiting (Lock). RequestsNum: " + str(requests_num),
)
return
await asyncio.sleep(0.1)
else:
completion_lock.acquire()
if await request.is_disconnected():
completion_lock.release()
requests_num = requests_num - 1
print(f"{request.client} Stop Waiting (Lock)")
quick_log(
request,
None,
"Stop Waiting (Lock). RequestsNum: " + str(requests_num),
)
return
set_rwkv_config(model, global_var.get(global_var.Model_Config))
set_rwkv_config(model, body)
response, prompt_tokens, completion_tokens = "", 0, 0
for response, delta, prompt_tokens, completion_tokens in model.generate(
prompt,
stop=stop,
):
if await request.is_disconnected():
break
if stream:
yield json.dumps(
{
"object": "chat.completion.chunk"
if chat_mode
else "text_completion",
"response": response,
"model": model.name,
"choices": [
{
"delta": {"content": delta},
"index": 0,
"finish_reason": None,
}
if chat_mode
else {
"text": delta,
"index": 0,
"finish_reason": None,
}
],
}
)
# torch_gc()
requests_num = requests_num - 1
completion_lock.release()
if await request.is_disconnected():
print(f"{request.client} Stop Waiting")
quick_log(
request,
body,
response + "\nStop Waiting. RequestsNum: " + str(requests_num),
)
return
quick_log(
request,
body,
response + "\nFinished. RequestsNum: " + str(requests_num),
)
if stream:
yield json.dumps(
{
"object": "chat.completion.chunk"
if chat_mode
else "text_completion",
"response": response,
"model": model.name,
"choices": [
{
"delta": {},
"index": 0,
"finish_reason": "stop",
}
if chat_mode
else {
"text": "",
"index": 0,
"finish_reason": "stop",
}
],
}
)
yield "[DONE]"
else:
yield {
"object": "chat.completion" if chat_mode else "text_completion",
"response": response,
"model": model.name,
"usage": {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
},
"choices": [
{
"message": {
"role": "assistant",
"content": response,
},
"index": 0,
"finish_reason": "stop",
}
if chat_mode
else {
"text": response,
"index": 0,
"finish_reason": "stop",
}
],
}
@router.post("/v1/chat/completions") @router.post("/v1/chat/completions")
@router.post("/chat/completions") @router.post("/chat/completions")
async def chat_completions(body: ChatCompletionBody, request: Request): async def chat_completions(body: ChatCompletionBody, request: Request):
@@ -77,7 +240,8 @@ The following is a coherent verbose detailed conversation between a girl named {
{bot} usually gives {user} kind, helpful and informative advices.\n {bot} usually gives {user} kind, helpful and informative advices.\n
""" """
if user == "Bob" if user == "Bob"
else f"{user}{interface} hi\n\n{bot}{interface} Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n" else f"{user}{interface} hi\n\n{bot}{interface} Hi. "
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
) )
for message in body.messages: for message in body.messages:
if message.role == "system": if message.role == "system":
@@ -123,156 +287,20 @@ The following is a coherent verbose detailed conversation between a girl named {
) )
completion_text += f"{bot}{interface}" completion_text += f"{bot}{interface}"
async def eval_rwkv(): stop = f"\n\n{user}" if body.stop is None else body.stop
global requests_num
requests_num = requests_num + 1
quick_log(request, None, "Start Waiting. RequestsNum: " + str(requests_num))
while completion_lock.locked():
if await request.is_disconnected():
requests_num = requests_num - 1
print(f"{request.client} Stop Waiting (Lock)")
quick_log(
request,
None,
"Stop Waiting (Lock). RequestsNum: " + str(requests_num),
)
return
await asyncio.sleep(0.1)
else:
completion_lock.acquire()
if await request.is_disconnected():
completion_lock.release()
requests_num = requests_num - 1
print(f"{request.client} Stop Waiting (Lock)")
quick_log(
request,
None,
"Stop Waiting (Lock). RequestsNum: " + str(requests_num),
)
return
set_rwkv_config(model, global_var.get(global_var.Model_Config))
set_rwkv_config(model, body)
if body.stream: if body.stream:
response = "" return EventSourceResponse(
for response, delta in model.generate( eval_rwkv(model, request, body, completion_text, body.stream, stop, True)
completion_text,
stop=f"\n\n{user}" if body.stop is None else body.stop,
):
if await request.is_disconnected():
break
yield json.dumps(
{
"response": response,
"model": "rwkv",
"choices": [
{
"delta": {"content": delta},
"index": 0,
"finish_reason": None,
}
],
}
) )
# torch_gc()
requests_num = requests_num - 1
completion_lock.release()
if await request.is_disconnected():
print(f"{request.client} Stop Waiting")
quick_log(
request,
body,
response + "\nStop Waiting. RequestsNum: " + str(requests_num),
)
return
quick_log(
request,
body,
response + "\nFinished. RequestsNum: " + str(requests_num),
)
yield json.dumps(
{
"response": response,
"model": "rwkv",
"choices": [
{
"delta": {},
"index": 0,
"finish_reason": "stop",
}
],
}
)
yield "[DONE]"
else:
response = ""
for response, delta in model.generate(
completion_text,
stop=f"\n\n{user}" if body.stop is None else body.stop,
):
if await request.is_disconnected():
break
# torch_gc()
requests_num = requests_num - 1
completion_lock.release()
if await request.is_disconnected():
print(f"{request.client} Stop Waiting")
quick_log(
request,
body,
response + "\nStop Waiting. RequestsNum: " + str(requests_num),
)
return
quick_log(
request,
body,
response + "\nFinished. RequestsNum: " + str(requests_num),
)
yield {
"response": response,
"model": "rwkv",
"choices": [
{
"message": {
"role": "assistant",
"content": response,
},
"index": 0,
"finish_reason": "stop",
}
],
}
if body.stream:
return EventSourceResponse(eval_rwkv())
else: else:
try: try:
return await eval_rwkv().__anext__() return await eval_rwkv(
model, request, body, completion_text, body.stream, stop, True
).__anext__()
except StopAsyncIteration: except StopAsyncIteration:
return None return None
class CompletionBody(ModelConfigBody):
prompt: str
model: str = "rwkv"
stream: bool = False
stop: str = None
class Config:
schema_extra = {
"example": {
"prompt": "The following is an epic science fiction masterpiece that is immortalized, with delicate descriptions and grand depictions of interstellar civilization wars.\nChapter 1.\n",
"model": "rwkv",
"stream": False,
"stop": None,
"max_tokens": 100,
"temperature": 1.2,
"top_p": 0.5,
"presence_penalty": 0.4,
"frequency_penalty": 0.4,
}
}
@router.post("/v1/completions") @router.post("/v1/completions")
@router.post("/completions") @router.post("/completions")
async def completions(body: CompletionBody, request: Request): async def completions(body: CompletionBody, request: Request):
@@ -283,7 +311,52 @@ async def completions(body: CompletionBody, request: Request):
if body.prompt is None or body.prompt == "": if body.prompt is None or body.prompt == "":
raise HTTPException(status.HTTP_400_BAD_REQUEST, "prompt not found") raise HTTPException(status.HTTP_400_BAD_REQUEST, "prompt not found")
async def eval_rwkv(): if body.stream:
return EventSourceResponse(
eval_rwkv(model, request, body, body.prompt, body.stream, body.stop, False)
)
else:
try:
return await eval_rwkv(
model, request, body, body.prompt, body.stream, body.stop, False
).__anext__()
except StopAsyncIteration:
return None
class EmbeddingsBody(BaseModel):
input: str | List[str] | List[List[int]]
model: str = "rwkv"
encoding_format: str = None
fast_mode: bool = False
class Config:
schema_extra = {
"example": {
"input": "a big apple",
"model": "rwkv",
"encoding_format": None,
"fast_mode": False,
}
}
def embedding_base64(embedding: List[float]) -> str:
return base64.b64encode(np.array(embedding).astype(np.float32)).decode("utf-8")
@router.post("/v1/embeddings")
@router.post("/embeddings")
@router.post("/v1/engines/text-embedding-ada-002/embeddings")
@router.post("/engines/text-embedding-ada-002/embeddings")
async def embeddings(body: EmbeddingsBody, request: Request):
model: RWKV = global_var.get(global_var.Model)
if model is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "model not loaded")
if body.input is None or body.input == "" or body.input == [] or body.input == [[]]:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "input not found")
global requests_num global requests_num
requests_num = requests_num + 1 requests_num = requests_num + 1
quick_log(request, None, "Start Waiting. RequestsNum: " + str(requests_num)) quick_log(request, None, "Start Waiting. RequestsNum: " + str(requests_num))
@@ -310,93 +383,70 @@ async def completions(body: CompletionBody, request: Request):
"Stop Waiting (Lock). RequestsNum: " + str(requests_num), "Stop Waiting (Lock). RequestsNum: " + str(requests_num),
) )
return return
set_rwkv_config(model, global_var.get(global_var.Model_Config))
set_rwkv_config(model, body)
if body.stream:
response = ""
for response, delta in model.generate(body.prompt, stop=body.stop):
if await request.is_disconnected():
break
yield json.dumps(
{
"response": response,
"model": "rwkv",
"choices": [
{
"text": delta,
"index": 0,
"finish_reason": None,
}
],
}
)
# torch_gc()
requests_num = requests_num - 1
completion_lock.release()
if await request.is_disconnected():
print(f"{request.client} Stop Waiting")
quick_log(
request,
body,
response + "\nStop Waiting. RequestsNum: " + str(requests_num),
)
return
quick_log(
request,
body,
response + "\nFinished. RequestsNum: " + str(requests_num),
)
yield json.dumps(
{
"response": response,
"model": "rwkv",
"choices": [
{
"text": "",
"index": 0,
"finish_reason": "stop",
}
],
}
)
yield "[DONE]"
else:
response = ""
for response, delta in model.generate(body.prompt, stop=body.stop):
if await request.is_disconnected():
break
# torch_gc()
requests_num = requests_num - 1
completion_lock.release()
if await request.is_disconnected():
print(f"{request.client} Stop Waiting")
quick_log(
request,
body,
response + "\nStop Waiting. RequestsNum: " + str(requests_num),
)
return
quick_log(
request,
body,
response + "\nFinished. RequestsNum: " + str(requests_num),
)
yield {
"response": response,
"model": "rwkv",
"choices": [
{
"text": response,
"index": 0,
"finish_reason": "stop",
}
],
}
if body.stream: base64_format = False
return EventSourceResponse(eval_rwkv()) if body.encoding_format == "base64":
base64_format = True
embeddings = []
prompt_tokens = 0
if type(body.input) == list:
if type(body.input[0]) == list:
encoding = tiktoken.model.encoding_for_model("text-embedding-ada-002")
for i in range(len(body.input)):
if await request.is_disconnected():
break
input = encoding.decode(body.input[i])
embedding, token_len = model.get_embedding(input, body.fast_mode)
prompt_tokens = prompt_tokens + token_len
if base64_format:
embedding = embedding_base64(embedding)
embeddings.append(embedding)
else: else:
try: for i in range(len(body.input)):
return await eval_rwkv().__anext__() if await request.is_disconnected():
except StopAsyncIteration: break
return None embedding, token_len = model.get_embedding(
body.input[i], body.fast_mode
)
prompt_tokens = prompt_tokens + token_len
if base64_format:
embedding = embedding_base64(embedding)
embeddings.append(embedding)
else:
embedding, prompt_tokens = model.get_embedding(body.input, body.fast_mode)
if base64_format:
embedding = embedding_base64(embedding)
embeddings.append(embedding)
requests_num = requests_num - 1
completion_lock.release()
if await request.is_disconnected():
print(f"{request.client} Stop Waiting")
quick_log(
request,
None,
"Stop Waiting. RequestsNum: " + str(requests_num),
)
return
quick_log(
request,
None,
"Finished. RequestsNum: " + str(requests_num),
)
ret_data = [
{
"object": "embedding",
"index": i,
"embedding": embedding,
}
for i, embedding in enumerate(embeddings)
]
return {
"object": "list",
"data": ret_data,
"model": model.name,
"usage": {"prompt_tokens": prompt_tokens, "total_tokens": prompt_tokens},
}

View File

@@ -32,7 +32,7 @@ class SwitchModelBody(BaseModel):
class Config: class Config:
schema_extra = { schema_extra = {
"example": { "example": {
"model": "models/RWKV-4-World-3B-v1-OnlyForTest_80%_trained-20230612-ctx4096.pth", "model": "models/RWKV-4-World-3B-v1-20230619-ctx4096.pth",
"strategy": "cuda fp16", "strategy": "cuda fp16",
"customCuda": False, "customCuda": False,
} }

View File

@@ -48,8 +48,8 @@ def add_state(body: AddStateBody):
raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded") raise HTTPException(status.HTTP_400_BAD_REQUEST, "trie not loaded")
try: try:
id = trie.insert(body.prompt) id: int = trie.insert(body.prompt)
device = body.state[0].device device: torch.device = body.state[0].device
dtrie[id] = { dtrie[id] = {
"tokens": copy.deepcopy(body.tokens), "tokens": copy.deepcopy(body.tokens),
"state": [tensor.cpu() for tensor in body.state] "state": [tensor.cpu() for tensor in body.state]
@@ -110,7 +110,7 @@ def _get_a_dtrie_buff_size(dtrie_v):
# print(dtrie_v["logits"][0].element_size()) # print(dtrie_v["logits"][0].element_size())
# print(dtrie_v["logits"].nelement()) # print(dtrie_v["logits"].nelement())
# print(dtrie_v["logits"][0].element_size() * dtrie_v["logits"].nelement()) # print(dtrie_v["logits"][0].element_size() * dtrie_v["logits"].nelement())
return 54 * len(dtrie_v["tokens"]) + 491520 + 262144 + 28 return 54 * len(dtrie_v["tokens"]) + 491520 + 262144 + 28 # TODO
@router.post("/longest-prefix-state") @router.post("/longest-prefix-state")
@@ -127,8 +127,9 @@ def longest_prefix_state(body: LongestPrefixStateBody, request: Request):
pass pass
if id != -1: if id != -1:
v = dtrie[id] v = dtrie[id]
device = v["device"] device: torch.device = v["device"]
prompt = trie[id] prompt: str = trie[id]
quick_log(request, body, "Hit:\n" + prompt) quick_log(request, body, "Hit:\n" + prompt)
return { return {
"prompt": prompt, "prompt": prompt,
@@ -137,7 +138,7 @@ def longest_prefix_state(body: LongestPrefixStateBody, request: Request):
if device != torch.device("cpu") if device != torch.device("cpu")
else v["state"], else v["state"],
"logits": v["logits"], "logits": v["logits"],
"device": device, "device": device.type,
} }
else: else:
return { return {

View File

@@ -1,10 +1,12 @@
import os import os
import pathlib import pathlib
import copy import copy
from typing import Dict, List from typing import Dict, List, Tuple
from utils.log import quick_log from utils.log import quick_log
from fastapi import HTTPException from fastapi import HTTPException
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
import torch
import numpy as np
from rwkv_pip.utils import PIPELINE from rwkv_pip.utils import PIPELINE
from routes import state_cache from routes import state_cache
@@ -21,6 +23,8 @@ class RWKV:
def __init__(self, model: str, strategy: str, tokens_path: str) -> None: def __init__(self, model: str, strategy: str, tokens_path: str) -> None:
from rwkv.model import RWKV as Model # dynamic import to make RWKV_CUDA_ON work from rwkv.model import RWKV as Model # dynamic import to make RWKV_CUDA_ON work
filename, _ = os.path.splitext(os.path.basename(model))
self.name = filename
self.model = Model(model, strategy) self.model = Model(model, strategy)
self.pipeline = PIPELINE(self.model, tokens_path) self.pipeline = PIPELINE(self.model, tokens_path)
self.model_state = None self.model_state = None
@@ -64,9 +68,10 @@ The following is a coherent verbose detailed conversation between a girl named {
{bot} usually gives {user} kind, helpful and informative advices.\n {bot} usually gives {user} kind, helpful and informative advices.\n
""" """
if self.user == "Bob" if self.user == "Bob"
else f"{user}{interface} hi\n\n{bot}{interface} Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n" else f"{user}{interface} hi\n\n{bot}{interface} Hi. "
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
) )
logits = self.run_rnn(self.fix_tokens(self.pipeline.encode(preset_system))) logits, _ = self.run_rnn(self.fix_tokens(self.pipeline.encode(preset_system)))
try: try:
state_cache.add_state( state_cache.add_state(
state_cache.AddStateBody( state_cache.AddStateBody(
@@ -87,6 +92,7 @@ The following is a coherent verbose detailed conversation between a girl named {
def run_rnn(self, _tokens: List[str], newline_adj: int = 0): def run_rnn(self, _tokens: List[str], newline_adj: int = 0):
tokens = [int(x) for x in _tokens] tokens = [int(x) for x in _tokens]
token_len = len(tokens)
self.model_tokens += tokens self.model_tokens += tokens
while len(tokens) > 0: while len(tokens) > 0:
@@ -99,7 +105,157 @@ The following is a coherent verbose detailed conversation between a girl named {
if self.model_tokens[-1] in self.AVOID_REPEAT_TOKENS: if self.model_tokens[-1] in self.AVOID_REPEAT_TOKENS:
out[self.model_tokens[-1]] = -999999999 out[self.model_tokens[-1]] = -999999999
return out return out, token_len
def get_embedding(self, input: str, fast_mode: bool) -> Tuple[List[float], int]:
if fast_mode:
embedding, token_len = self.fast_embedding(
self.fix_tokens(self.pipeline.encode(input)), None
)
else:
self.model_state = None
self.model_tokens = []
_, token_len = self.run_rnn(self.fix_tokens(self.pipeline.encode(input)))
embedding = self.model_state[-5].tolist()
embedding = (embedding / np.linalg.norm(embedding)).tolist()
return embedding, token_len
def fast_embedding(self, tokens: List[str], state):
tokens = [int(x) for x in tokens]
token_len = len(tokens)
self = self.model
with torch.no_grad():
w = self.w
args = self.args
if state == None:
state = [None] * args.n_layer * 5
for i in range(
args.n_layer
): # state: 0=att_xx 1=att_aa 2=att_bb 3=att_pp 4=ffn_xx
dd = self.strategy[i]
dev = dd.device
atype = dd.atype
state[i * 5 + 0] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()
state[i * 5 + 1] = torch.zeros(
args.n_embd, dtype=torch.float, requires_grad=False, device=dev
).contiguous()
state[i * 5 + 2] = torch.zeros(
args.n_embd, dtype=torch.float, requires_grad=False, device=dev
).contiguous()
state[i * 5 + 3] = (
torch.zeros(
args.n_embd,
dtype=torch.float,
requires_grad=False,
device=dev,
).contiguous()
- 1e30
)
state[i * 5 + 4] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()
break
seq_mode = len(tokens) > 1
x = w["emb.weight"][tokens if seq_mode else tokens[0]]
for i in range(args.n_layer):
bbb = f"blocks.{i}."
att = f"blocks.{i}.att."
ffn = f"blocks.{i}.ffn."
dd = self.strategy[i]
dev = dd.device
atype = dd.atype
wtype = dd.wtype
if seq_mode:
if "cuda" in str(dev) and os.environ["RWKV_CUDA_ON"] == "1":
ATT = (
self.cuda_att_seq
if wtype != torch.uint8
else self.cuda_att_seq_i8
)
else:
ATT = self.att_seq if wtype != torch.uint8 else self.att_seq_i8
FFN = self.ffn_seq if wtype != torch.uint8 else self.ffn_seq_i8
else:
ATT = self.att_one if wtype != torch.uint8 else self.att_one_i8
FFN = self.ffn_one if wtype != torch.uint8 else self.ffn_one_i8
x = x.to(dtype=atype, device=dev)
kw = w[f"{att}key.weight"]
vw = w[f"{att}value.weight"]
rw = w[f"{att}receptance.weight"]
ow = w[f"{att}output.weight"]
if dd.stream:
kw = kw.to(device=dev, non_blocking=True)
vw = vw.to(device=dev, non_blocking=True)
rw = rw.to(device=dev, non_blocking=True)
ow = ow.to(device=dev, non_blocking=True)
kmx = w[f"{att}key.weight_mx"] if wtype == torch.uint8 else x
krx = w[f"{att}key.weight_rx"] if wtype == torch.uint8 else x
kmy = w[f"{att}key.weight_my"] if wtype == torch.uint8 else x
kry = w[f"{att}key.weight_ry"] if wtype == torch.uint8 else x
vmx = w[f"{att}value.weight_mx"] if wtype == torch.uint8 else x
vrx = w[f"{att}value.weight_rx"] if wtype == torch.uint8 else x
vmy = w[f"{att}value.weight_my"] if wtype == torch.uint8 else x
vry = w[f"{att}value.weight_ry"] if wtype == torch.uint8 else x
rmx = w[f"{att}receptance.weight_mx"] if wtype == torch.uint8 else x
rrx = w[f"{att}receptance.weight_rx"] if wtype == torch.uint8 else x
rmy = w[f"{att}receptance.weight_my"] if wtype == torch.uint8 else x
rry = w[f"{att}receptance.weight_ry"] if wtype == torch.uint8 else x
omx = w[f"{att}output.weight_mx"] if wtype == torch.uint8 else x
orx = w[f"{att}output.weight_rx"] if wtype == torch.uint8 else x
omy = w[f"{att}output.weight_my"] if wtype == torch.uint8 else x
ory = w[f"{att}output.weight_ry"] if wtype == torch.uint8 else x
(
x,
state[i * 5 + 0],
state[i * 5 + 1],
state[i * 5 + 2],
state[i * 5 + 3],
) = ATT(
x,
state[i * 5 + 0],
state[i * 5 + 1],
state[i * 5 + 2],
state[i * 5 + 3],
w[f"{bbb}ln1.weight"],
w[f"{bbb}ln1.bias"],
w[f"{att}time_mix_k"],
w[f"{att}time_mix_v"],
w[f"{att}time_mix_r"],
w[f"{att}time_decay"],
w[f"{att}time_first"],
kw,
vw,
rw,
ow,
kmx,
krx,
kmy,
kry,
vmx,
vrx,
vmy,
vry,
rmx,
rrx,
rmy,
rry,
omx,
orx,
omy,
ory,
)
return state[0].tolist(), token_len
def generate(self, prompt: str, stop: str = None): def generate(self, prompt: str, stop: str = None):
quick_log(None, None, "Generation Prompt:\n" + prompt) quick_log(None, None, "Generation Prompt:\n" + prompt)
@@ -120,8 +276,11 @@ The following is a coherent verbose detailed conversation between a girl named {
self.model_tokens = copy.deepcopy(cache["tokens"]) self.model_tokens = copy.deepcopy(cache["tokens"])
logits = copy.deepcopy(cache["logits"]) logits = copy.deepcopy(cache["logits"])
prompt_token_len = 0
if delta_prompt != "": if delta_prompt != "":
logits = self.run_rnn(self.fix_tokens(self.pipeline.encode(delta_prompt))) logits, prompt_token_len = self.run_rnn(
self.fix_tokens(self.pipeline.encode(delta_prompt))
)
try: try:
state_cache.add_state( state_cache.add_state(
state_cache.AddStateBody( state_cache.AddStateBody(
@@ -139,6 +298,7 @@ The following is a coherent verbose detailed conversation between a girl named {
occurrence: Dict = {} occurrence: Dict = {}
completion_token_len = 0
response = "" response = ""
for i in range(self.max_tokens_per_generation): for i in range(self.max_tokens_per_generation):
for n in occurrence: for n in occurrence:
@@ -151,14 +311,15 @@ The following is a coherent verbose detailed conversation between a girl named {
) )
if token == END_OF_TEXT: if token == END_OF_TEXT:
yield response, "" yield response, "", prompt_token_len, completion_token_len
break break
if token not in occurrence: if token not in occurrence:
occurrence[token] = 1 occurrence[token] = 1
else: else:
occurrence[token] += 1 occurrence[token] += 1
logits = self.run_rnn([token]) logits, _ = self.run_rnn([token])
completion_token_len = completion_token_len + 1
delta: str = self.pipeline.decode(self.model_tokens[out_last:]) delta: str = self.pipeline.decode(self.model_tokens[out_last:])
if "\ufffd" not in delta: # avoid utf-8 display issues if "\ufffd" not in delta: # avoid utf-8 display issues
response += delta response += delta
@@ -176,7 +337,7 @@ The following is a coherent verbose detailed conversation between a girl named {
) )
except HTTPException: except HTTPException:
pass pass
yield response, "" yield response, "", prompt_token_len, completion_token_len
break break
out_last = begin + i + 1 out_last = begin + i + 1
if i == self.max_tokens_per_generation - 1: if i == self.max_tokens_per_generation - 1:
@@ -191,7 +352,7 @@ The following is a coherent verbose detailed conversation between a girl named {
) )
except HTTPException: except HTTPException:
pass pass
yield response, delta yield response, delta, prompt_token_len, completion_token_len
class ModelConfigBody(BaseModel): class ModelConfigBody(BaseModel):

View File

@@ -70,7 +70,7 @@
"Type your message here": "在此输入消息", "Type your message here": "在此输入消息",
"Copy": "复制", "Copy": "复制",
"Read Aloud": "朗读", "Read Aloud": "朗读",
"Hello! I'm RWKV, an open-source and commercially available large language model.": "你好! 我是RWKV, 一个开源可商用的大语言模型.", "Hello! I'm RWKV, an open-source and commercially usable large language model.": "你好! 我是RWKV, 一个开源可商用的大语言模型.",
"This tool's API is compatible with OpenAI API. It can be used with any ChatGPT tool you like. Go to the settings of some ChatGPT tool, replace the 'https://api.openai.com' part in the API address with '": "本工具的API与OpenAI API兼容. 因此可以配合任意你喜欢的ChatGPT工具使用. 打开某个ChatGPT工具的设置, 将API地址中的'https://api.openai.com'部分替换为'", "This tool's API is compatible with OpenAI API. It can be used with any ChatGPT tool you like. Go to the settings of some ChatGPT tool, replace the 'https://api.openai.com' part in the API address with '": "本工具的API与OpenAI API兼容. 因此可以配合任意你喜欢的ChatGPT工具使用. 打开某个ChatGPT工具的设置, 将API地址中的'https://api.openai.com'部分替换为'",
"New Version Available": "新版本可用", "New Version Available": "新版本可用",
"Update": "更新", "Update": "更新",

View File

@@ -79,7 +79,7 @@ const ChatPanel: FC = observer(() => {
color: 'colorful', color: 'colorful',
avatarImg: logo, avatarImg: logo,
time: new Date().toISOString(), time: new Date().toISOString(),
content: t('Hello! I\'m RWKV, an open-source and commercially available large language model.'), content: t('Hello! I\'m RWKV, an open-source and commercially usable large language model.'),
side: 'left', side: 'left',
done: true done: true
} }

View File

@@ -88,7 +88,7 @@ export const defaultModelConfigsMac: ModelConfig[] = [
frequencyPenalty: 0.4 frequencyPenalty: 0.4
}, },
modelParameters: { modelParameters: {
modelName: 'RWKV-4-World-3B-v1-OnlyForTest_80%_trained-20230612-ctx4096.pth', modelName: 'RWKV-4-World-3B-v1-20230619-ctx4096.pth',
device: 'MPS', device: 'MPS',
precision: 'fp32', precision: 'fp32',
storedLayers: 41, storedLayers: 41,
@@ -145,7 +145,7 @@ export const defaultModelConfigsMac: ModelConfig[] = [
frequencyPenalty: 0.4 frequencyPenalty: 0.4
}, },
modelParameters: { modelParameters: {
modelName: 'RWKV-4-World-7B-v1-OnlyForTest_75%_trained-20230615-ctx4096.pth', modelName: 'RWKV-4-World-7B-v1-OnlyForTest_84%_trained-20230618-ctx4096.pth',
device: 'MPS', device: 'MPS',
precision: 'fp32', precision: 'fp32',
storedLayers: 41, storedLayers: 41,
@@ -200,7 +200,7 @@ export const defaultModelConfigsMac: ModelConfig[] = [
frequencyPenalty: 0.4 frequencyPenalty: 0.4
}, },
modelParameters: { modelParameters: {
modelName: 'RWKV-4-World-3B-v1-OnlyForTest_80%_trained-20230612-ctx4096.pth', modelName: 'RWKV-4-World-3B-v1-20230619-ctx4096.pth',
device: 'CPU', device: 'CPU',
precision: 'fp32', precision: 'fp32',
storedLayers: 41, storedLayers: 41,
@@ -254,7 +254,7 @@ export const defaultModelConfigsMac: ModelConfig[] = [
frequencyPenalty: 0.4 frequencyPenalty: 0.4
}, },
modelParameters: { modelParameters: {
modelName: 'RWKV-4-World-7B-v1-OnlyForTest_75%_trained-20230615-ctx4096.pth', modelName: 'RWKV-4-World-7B-v1-OnlyForTest_84%_trained-20230618-ctx4096.pth',
device: 'CPU', device: 'CPU',
precision: 'fp32', precision: 'fp32',
storedLayers: 41, storedLayers: 41,
@@ -311,7 +311,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4 frequencyPenalty: 0.4
}, },
modelParameters: { modelParameters: {
modelName: 'RWKV-4-World-3B-v1-OnlyForTest_80%_trained-20230612-ctx4096.pth', modelName: 'RWKV-4-World-3B-v1-20230619-ctx4096.pth',
device: 'CUDA', device: 'CUDA',
precision: 'int8', precision: 'int8',
storedLayers: 6, storedLayers: 6,
@@ -422,7 +422,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4 frequencyPenalty: 0.4
}, },
modelParameters: { modelParameters: {
modelName: 'RWKV-4-World-3B-v1-OnlyForTest_80%_trained-20230612-ctx4096.pth', modelName: 'RWKV-4-World-3B-v1-20230619-ctx4096.pth',
device: 'CUDA', device: 'CUDA',
precision: 'int8', precision: 'int8',
storedLayers: 24, storedLayers: 24,
@@ -479,7 +479,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4 frequencyPenalty: 0.4
}, },
modelParameters: { modelParameters: {
modelName: 'RWKV-4-World-7B-v1-OnlyForTest_75%_trained-20230615-ctx4096.pth', modelName: 'RWKV-4-World-7B-v1-OnlyForTest_84%_trained-20230618-ctx4096.pth',
device: 'CUDA', device: 'CUDA',
precision: 'int8', precision: 'int8',
storedLayers: 8, storedLayers: 8,
@@ -555,7 +555,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4 frequencyPenalty: 0.4
}, },
modelParameters: { modelParameters: {
modelName: 'RWKV-4-World-3B-v1-OnlyForTest_80%_trained-20230612-ctx4096.pth', modelName: 'RWKV-4-World-3B-v1-20230619-ctx4096.pth',
device: 'CUDA', device: 'CUDA',
precision: 'int8', precision: 'int8',
storedLayers: 41, storedLayers: 41,
@@ -612,7 +612,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4 frequencyPenalty: 0.4
}, },
modelParameters: { modelParameters: {
modelName: 'RWKV-4-World-7B-v1-OnlyForTest_75%_trained-20230615-ctx4096.pth', modelName: 'RWKV-4-World-7B-v1-OnlyForTest_84%_trained-20230618-ctx4096.pth',
device: 'CUDA', device: 'CUDA',
precision: 'int8', precision: 'int8',
storedLayers: 18, storedLayers: 18,
@@ -687,7 +687,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4 frequencyPenalty: 0.4
}, },
modelParameters: { modelParameters: {
modelName: 'RWKV-4-World-3B-v1-OnlyForTest_80%_trained-20230612-ctx4096.pth', modelName: 'RWKV-4-World-3B-v1-20230619-ctx4096.pth',
device: 'CUDA', device: 'CUDA',
precision: 'fp16', precision: 'fp16',
storedLayers: 41, storedLayers: 41,
@@ -744,7 +744,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4 frequencyPenalty: 0.4
}, },
modelParameters: { modelParameters: {
modelName: 'RWKV-4-World-7B-v1-OnlyForTest_75%_trained-20230615-ctx4096.pth', modelName: 'RWKV-4-World-7B-v1-OnlyForTest_84%_trained-20230618-ctx4096.pth',
device: 'CUDA', device: 'CUDA',
precision: 'int8', precision: 'int8',
storedLayers: 27, storedLayers: 27,
@@ -801,7 +801,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4 frequencyPenalty: 0.4
}, },
modelParameters: { modelParameters: {
modelName: 'RWKV-4-World-7B-v1-OnlyForTest_75%_trained-20230615-ctx4096.pth', modelName: 'RWKV-4-World-7B-v1-OnlyForTest_84%_trained-20230618-ctx4096.pth',
device: 'CUDA', device: 'CUDA',
precision: 'int8', precision: 'int8',
storedLayers: 41, storedLayers: 41,
@@ -877,7 +877,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4 frequencyPenalty: 0.4
}, },
modelParameters: { modelParameters: {
modelName: 'RWKV-4-World-7B-v1-OnlyForTest_75%_trained-20230615-ctx4096.pth', modelName: 'RWKV-4-World-7B-v1-OnlyForTest_84%_trained-20230618-ctx4096.pth',
device: 'CUDA', device: 'CUDA',
precision: 'fp16', precision: 'fp16',
storedLayers: 41, storedLayers: 41,
@@ -1027,7 +1027,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4 frequencyPenalty: 0.4
}, },
modelParameters: { modelParameters: {
modelName: 'RWKV-4-World-3B-v1-OnlyForTest_80%_trained-20230612-ctx4096.pth', modelName: 'RWKV-4-World-3B-v1-20230619-ctx4096.pth',
device: 'CPU', device: 'CPU',
precision: 'fp32', precision: 'fp32',
storedLayers: 41, storedLayers: 41,
@@ -1081,7 +1081,7 @@ export const defaultModelConfigs: ModelConfig[] = [
frequencyPenalty: 0.4 frequencyPenalty: 0.4
}, },
modelParameters: { modelParameters: {
modelName: 'RWKV-4-World-7B-v1-OnlyForTest_75%_trained-20230615-ctx4096.pth', modelName: 'RWKV-4-World-7B-v1-OnlyForTest_84%_trained-20230618-ctx4096.pth',
device: 'CPU', device: 'CPU',
precision: 'fp32', precision: 'fp32',
storedLayers: 41, storedLayers: 41,

View File

@@ -1,5 +1,5 @@
{ {
"version": "1.2.3", "version": "1.2.4",
"introduction": { "introduction": {
"en": "RWKV is an open-source, commercially usable large language model with high flexibility and great potential for development.\n### About This Tool\nThis tool aims to lower the barrier of entry for using large language models, making it accessible to everyone. It provides fully automated dependency and model management. You simply need to click and run, following the instructions, to deploy a local large language model. The tool itself is very compact and only requires a single executable file for one-click deployment.\nAdditionally, this tool offers an interface that is fully compatible with the OpenAI API. This means you can use any ChatGPT client as a client for RWKV, enabling capability expansion beyond just chat functionality.\n### Preset Configuration Rules at the Bottom\nThis tool comes with a series of preset configurations to reduce complexity. The naming rules for each configuration represent the following in order: device - required VRAM/memory - model size - model language.\nFor example, \"GPU-8G-3B-EN\" indicates that this configuration is for a graphics card with 8GB of VRAM, a model size of 3 billion parameters, and it uses an English language model.\nLarger model sizes have higher performance and VRAM requirements. Among configurations with the same model size, those with higher VRAM usage will have faster runtime.\nFor example, if you have 12GB of VRAM but running the \"GPU-12G-7B-EN\" configuration is slow, you can downgrade to \"GPU-8G-3B-EN\" for a significant speed improvement.\n### About RWKV\nRWKV is an RNN with Transformer-level LLM performance, which can also be directly trained like a GPT transformer (parallelizable). And it's 100% attention-free. You only need the hidden state at position t to compute the state at position t+1. You can use the \"GPT\" mode to quickly compute the hidden state for the \"RNN\" mode.<br/>So it's combining the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, \"infinite\" ctx_len, and free sentence embedding (using the final hidden state).", "en": "RWKV is an open-source, commercially usable large language model with high flexibility and great potential for development.\n### About This Tool\nThis tool aims to lower the barrier of entry for using large language models, making it accessible to everyone. It provides fully automated dependency and model management. You simply need to click and run, following the instructions, to deploy a local large language model. The tool itself is very compact and only requires a single executable file for one-click deployment.\nAdditionally, this tool offers an interface that is fully compatible with the OpenAI API. This means you can use any ChatGPT client as a client for RWKV, enabling capability expansion beyond just chat functionality.\n### Preset Configuration Rules at the Bottom\nThis tool comes with a series of preset configurations to reduce complexity. The naming rules for each configuration represent the following in order: device - required VRAM/memory - model size - model language.\nFor example, \"GPU-8G-3B-EN\" indicates that this configuration is for a graphics card with 8GB of VRAM, a model size of 3 billion parameters, and it uses an English language model.\nLarger model sizes have higher performance and VRAM requirements. Among configurations with the same model size, those with higher VRAM usage will have faster runtime.\nFor example, if you have 12GB of VRAM but running the \"GPU-12G-7B-EN\" configuration is slow, you can downgrade to \"GPU-8G-3B-EN\" for a significant speed improvement.\n### About RWKV\nRWKV is an RNN with Transformer-level LLM performance, which can also be directly trained like a GPT transformer (parallelizable). And it's 100% attention-free. You only need the hidden state at position t to compute the state at position t+1. You can use the \"GPT\" mode to quickly compute the hidden state for the \"RNN\" mode.<br/>So it's combining the best of RNN and transformer - great performance, fast inference, saves VRAM, fast training, \"infinite\" ctx_len, and free sentence embedding (using the final hidden state).",
"zh": "RWKV是一个开源且允许商用的大语言模型灵活性很高且极具发展潜力。\n### 关于本工具\n本工具旨在降低大语言模型的使用门槛做到人人可用本工具提供了全自动化的依赖和模型管理你只需要直接点击运行跟随引导即可完成本地大语言模型的部署工具本身体积极小只需要一个exe即可完成一键部署。\n此外本工具提供了与OpenAI API完全兼容的接口这意味着你可以把任意ChatGPT客户端用作RWKV的客户端实现能力拓展而不局限于聊天。\n### 底部的预设配置规则\n本工具内置了一系列预设配置以降低使用难度每个配置名的规则依次代表着设备-所需显存/内存-模型规模-模型语言。\n例如GPU-8G-3B-CN表示该配置用于显卡需要8G显存模型规模为30亿参数使用的是中文模型。\n模型规模越大性能要求越高显存要求也越高而同样模型规模的配置中显存占用越高的运行速度越快。\n例如当你有12G显存但运行GPU-12G-7B-CN配置速度比较慢可降级成GPU-8G-3B-CN将会大幅提速。\n### 关于RWKV\nRWKV是具有Transformer级别LLM性能的RNN也可以像GPT Transformer一样直接进行训练可并行化。而且它是100% attention-free的。你只需在位置t处获得隐藏状态即可计算位置t + 1处的状态。你可以使用“GPT”模式快速计算用于“RNN”模式的隐藏状态。\n因此它将RNN和Transformer的优点结合起来 - 高性能、快速推理、节省显存、快速训练、“无限”上下文长度以及免费的语句嵌入(使用最终隐藏状态)。" "zh": "RWKV是一个开源且允许商用的大语言模型灵活性很高且极具发展潜力。\n### 关于本工具\n本工具旨在降低大语言模型的使用门槛做到人人可用本工具提供了全自动化的依赖和模型管理你只需要直接点击运行跟随引导即可完成本地大语言模型的部署工具本身体积极小只需要一个exe即可完成一键部署。\n此外本工具提供了与OpenAI API完全兼容的接口这意味着你可以把任意ChatGPT客户端用作RWKV的客户端实现能力拓展而不局限于聊天。\n### 底部的预设配置规则\n本工具内置了一系列预设配置以降低使用难度每个配置名的规则依次代表着设备-所需显存/内存-模型规模-模型语言。\n例如GPU-8G-3B-CN表示该配置用于显卡需要8G显存模型规模为30亿参数使用的是中文模型。\n模型规模越大性能要求越高显存要求也越高而同样模型规模的配置中显存占用越高的运行速度越快。\n例如当你有12G显存但运行GPU-12G-7B-CN配置速度比较慢可降级成GPU-8G-3B-CN将会大幅提速。\n### 关于RWKV\nRWKV是具有Transformer级别LLM性能的RNN也可以像GPT Transformer一样直接进行训练可并行化。而且它是100% attention-free的。你只需在位置t处获得隐藏状态即可计算位置t + 1处的状态。你可以使用“GPT”模式快速计算用于“RNN”模式的隐藏状态。\n因此它将RNN和Transformer的优点结合起来 - 高性能、快速推理、节省显存、快速训练、“无限”上下文长度以及免费的语句嵌入(使用最终隐藏状态)。"
@@ -15,6 +15,18 @@
} }
], ],
"models": [ "models": [
{
"name": "RWKV-4-World-CHNtuned-0.1B-v1-20230617-ctx4096.pth",
"desc": {
"en": "100+ Languages 0.1B v1 Enhanced Chinese",
"zh": "100+ 语言 0.1B v1 中文增强"
},
"size": 385594610,
"SHA256": "a3888f9958d378ee6d4976ae1c02edb698f4382e426086febafb4a69417b9080",
"lastUpdated": "2023-06-17T18:35:26",
"url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-CHNtuned-0.1B-v1-20230617-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-CHNtuned-0.1B-v1-20230617-ctx4096.pth"
},
{ {
"name": "RWKV-4-World-0.1B-v1-20230520-ctx4096.pth", "name": "RWKV-4-World-0.1B-v1-20230520-ctx4096.pth",
"desc": { "desc": {
@@ -27,6 +39,18 @@
"url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-0.1B-v1-20230520-ctx4096.pth", "url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-0.1B-v1-20230520-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-0.1B-v1-20230520-ctx4096.pth" "downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-0.1B-v1-20230520-ctx4096.pth"
}, },
{
"name": "RWKV-4-World-CHNtuned-0.4B-v1-20230618-ctx4096.pth",
"desc": {
"en": "100+ Languages 0.4B v1 Enhanced Chinese",
"zh": "100+ 语言 0.4B v1 中文增强"
},
"size": 923362866,
"SHA256": "dbd5302cbee596bbc900f97eb10b2af3001a7f2c7e4d8643bf8683b2cdbdd324",
"lastUpdated": "2023-06-18T10:46:50",
"url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-CHNtuned-0.4B-v1-20230618-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-CHNtuned-0.4B-v1-20230618-ctx4096.pth"
},
{ {
"name": "RWKV-4-World-0.4B-v1-20230529-ctx4096.pth", "name": "RWKV-4-World-0.4B-v1-20230529-ctx4096.pth",
"desc": { "desc": {
@@ -39,6 +63,18 @@
"url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-0.4B-v1-20230529-ctx4096.pth", "url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-0.4B-v1-20230529-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-0.4B-v1-20230529-ctx4096.pth" "downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-0.4B-v1-20230529-ctx4096.pth"
}, },
{
"name": "RWKV-4-World-CHNtuned-1.5B-v1-20230620-ctx4096.pth",
"desc": {
"en": "100+ Languages 1.5B v1 Enhanced Chinese",
"zh": "100+ 语言 1.5B v1 中文增强"
},
"size": 3155281586,
"SHA256": "9f31f2ed5fe52dcf2d50208eb2efd764b9674dba2adb1baeff61997b4390a26b",
"lastUpdated": "2023-06-20T06:35:37",
"url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-CHNtuned-1.5B-v1-20230620-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-CHNtuned-1.5B-v1-20230620-ctx4096.pth"
},
{ {
"name": "RWKV-4-World-1.5B-v1-OnlyForTest_57%_trained-20230529-ctx4096.pth", "name": "RWKV-4-World-1.5B-v1-OnlyForTest_57%_trained-20230529-ctx4096.pth",
"desc": { "desc": {
@@ -139,7 +175,20 @@
"SHA256": "3bb10caf3017871435d83f39facc8a729fd774020390153470f004eb3ef645bd", "SHA256": "3bb10caf3017871435d83f39facc8a729fd774020390153470f004eb3ef645bd",
"lastUpdated": "2023-06-12T06:31:32", "lastUpdated": "2023-06-12T06:31:32",
"url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-3B-v1-OnlyForTest_80%25_trained-20230612-ctx4096.pth", "url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-3B-v1-OnlyForTest_80%25_trained-20230612-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-3B-v1-OnlyForTest_80%25_trained-20230612-ctx4096.pth" "downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-3B-v1-OnlyForTest_80%25_trained-20230612-ctx4096.pth",
"hide": true
},
{
"name": "RWKV-4-World-3B-v1-20230619-ctx4096.pth",
"desc": {
"en": "100+ Languages 3B v1",
"zh": "100+ 语言 3B v1"
},
"size": 6125597618,
"SHA256": "1b227af317fa25b6939ab3c7cd321226ca48b8fe4bbbd2df3db669f1482c54ba",
"lastUpdated": "2023-06-20T03:00:51",
"url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-3B-v1-20230619-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-3B-v1-20230619-ctx4096.pth"
}, },
{ {
"name": "RWKV-4-World-7B-v1-OnlyForTest_30%_trained-20230529-ctx4096.pth", "name": "RWKV-4-World-7B-v1-OnlyForTest_30%_trained-20230529-ctx4096.pth",
@@ -203,7 +252,20 @@
"SHA256": "a5f4246a18698a350a49988de7a8a01cbd765f8d11ee6427cabb93bf659f2d0d", "SHA256": "a5f4246a18698a350a49988de7a8a01cbd765f8d11ee6427cabb93bf659f2d0d",
"lastUpdated": "2023-06-15T15:09:11", "lastUpdated": "2023-06-15T15:09:11",
"url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-7B-v1-OnlyForTest_75%25_trained-20230615-ctx4096.pth", "url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-7B-v1-OnlyForTest_75%25_trained-20230615-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-7B-v1-OnlyForTest_75%25_trained-20230615-ctx4096.pth" "downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-7B-v1-OnlyForTest_75%25_trained-20230615-ctx4096.pth",
"hide": true
},
{
"name": "RWKV-4-World-7B-v1-OnlyForTest_84%_trained-20230618-ctx4096.pth",
"desc": {
"en": "100+ Languages 7B v1 Test",
"zh": "100+ 语言 7B v1 测试"
},
"size": 15035393581,
"SHA256": "dfb56e8ba32907cb47df83c8d702e7f350d9ad50a59b71b031da4681637588b3",
"lastUpdated": "2023-06-19T01:28:17",
"url": "https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-7B-v1-OnlyForTest_84%25_trained-20230618-ctx4096.pth",
"downloadUrl": "https://huggingface.co/BlinkDL/rwkv-4-world/resolve/main/RWKV-4-World-7B-v1-OnlyForTest_84%25_trained-20230618-ctx4096.pth"
}, },
{ {
"name": "RWKV-4-Novel-7B-v1-ChnEng-ChnPro-20230410-ctx4096.pth", "name": "RWKV-4-Novel-7B-v1-ChnEng-ChnPro-20230410-ctx4096.pth",