Compare commits

..

1 Commits

Author SHA1 Message Date
dependabot[bot]
878fd6b4f7
chore(deps): bump actions/upload-artifact from 3 to 4
Bumps [actions/upload-artifact](https://github.com/actions/upload-artifact) from 3 to 4.
- [Release notes](https://github.com/actions/upload-artifact/releases)
- [Commits](https://github.com/actions/upload-artifact/compare/v3...v4)

---
updated-dependencies:
- dependency-name: actions/upload-artifact
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2024-03-11 19:19:39 +00:00
220 changed files with 4364 additions and 34434 deletions

View File

@ -109,7 +109,7 @@ jobs:
run: echo ${{ steps.build_rel.outputs.digest }} > /tmp/digest.txt
- name: Upload artifact
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: digest_${{ matrix.name }}
path: /tmp/digest.txt

View File

@ -18,11 +18,11 @@ jobs:
ref: master
- uses: actions/setup-go@v5
with:
go-version: "1.20.5"
go-version: '1.20.5'
- uses: actions/setup-python@v5
id: cp310
with:
python-version: "3.10"
python-version: '3.10'
- uses: crazy-max/ghaction-chocolatey@v3
with:
args: install upx
@ -39,7 +39,7 @@ jobs:
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../include" -Destination "py310/include" -Recurse
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../libs" -Destination "py310/libs" -Recurse
./py310/python -m pip install cyac==1.9
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
go install github.com/wailsapp/wails/v2/cmd/wails@latest
del ./backend-python/rwkv_pip/cpp/librwkv.dylib
del ./backend-python/rwkv_pip/cpp/librwkv.so
(Get-Content -Path ./backend-golang/app.go) -replace "//go:custom_build windows ", "" | Set-Content -Path ./backend-golang/app.go
@ -60,17 +60,18 @@ jobs:
ref: master
- uses: actions/setup-go@v5
with:
go-version: "1.20.5"
go-version: '1.20.5'
- run: |
wget https://github.com/josStorer/ai00_rwkv_server/releases/latest/download/webgpu_server_linux_x86_64 -O ./backend-rust/webgpu_server
wget https://github.com/josStorer/web-rwkv-converter/releases/latest/download/web-rwkv-converter_linux_x86_64 -O ./backend-rust/web-rwkv-converter
sudo apt-get update
sudo apt-get install upx
sudo apt-get install build-essential libgtk-3-dev libwebkit2gtk-4.0-dev libasound2-dev
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
go install github.com/wailsapp/wails/v2/cmd/wails@latest
rm ./backend-python/rwkv_pip/wkv_cuda.pyd
rm ./backend-python/rwkv_pip/rwkv5.pyd
rm ./backend-python/rwkv_pip/rwkv6.pyd
rm ./backend-python/rwkv_pip/beta/wkv_cuda.pyd
rm ./backend-python/get-pip.py
rm ./backend-python/rwkv_pip/cpp/librwkv.dylib
rm ./backend-python/rwkv_pip/cpp/rwkv.dll
@ -91,14 +92,15 @@ jobs:
ref: master
- uses: actions/setup-go@v5
with:
go-version: "1.20.5"
go-version: '1.20.5'
- run: |
wget https://github.com/josStorer/ai00_rwkv_server/releases/latest/download/webgpu_server_darwin_aarch64 -O ./backend-rust/webgpu_server
wget https://github.com/josStorer/web-rwkv-converter/releases/latest/download/web-rwkv-converter_darwin_aarch64 -O ./backend-rust/web-rwkv-converter
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
go install github.com/wailsapp/wails/v2/cmd/wails@latest
rm ./backend-python/rwkv_pip/wkv_cuda.pyd
rm ./backend-python/rwkv_pip/rwkv5.pyd
rm ./backend-python/rwkv_pip/rwkv6.pyd
rm ./backend-python/rwkv_pip/beta/wkv_cuda.pyd
rm ./backend-python/get-pip.py
rm ./backend-python/rwkv_pip/cpp/rwkv.dll
rm ./backend-python/rwkv_pip/cpp/librwkv.so
@ -112,3 +114,4 @@ jobs:
with:
name: RWKV-Runner_macos_universal.zip
path: build/bin/RWKV-Runner_macos_universal.zip

View File

@ -18,7 +18,7 @@ jobs:
with:
ref: master
- uses: jossef/action-set-json-field@v2.2
- uses: jossef/action-set-json-field@v2.1
with:
file: manifest.json
field: version
@ -43,11 +43,11 @@ jobs:
ref: master
- uses: actions/setup-go@v5
with:
go-version: "1.20.5"
go-version: '1.20.5'
- uses: actions/setup-python@v5
id: cp310
with:
python-version: "3.10"
python-version: '3.10'
- uses: crazy-max/ghaction-chocolatey@v3
with:
args: install upx
@ -64,7 +64,7 @@ jobs:
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../include" -Destination "py310/include" -Recurse
Copy-Item -Path "${{ steps.cp310.outputs.python-path }}/../libs" -Destination "py310/libs" -Recurse
./py310/python -m pip install cyac==1.9
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
go install github.com/wailsapp/wails/v2/cmd/wails@latest
del ./backend-python/rwkv_pip/cpp/librwkv.dylib
del ./backend-python/rwkv_pip/cpp/librwkv.so
(Get-Content -Path ./backend-golang/app.go) -replace "//go:custom_build windows ", "" | Set-Content -Path ./backend-golang/app.go
@ -83,17 +83,18 @@ jobs:
ref: master
- uses: actions/setup-go@v5
with:
go-version: "1.20.5"
go-version: '1.20.5'
- run: |
wget https://github.com/josStorer/ai00_rwkv_server/releases/latest/download/webgpu_server_linux_x86_64 -O ./backend-rust/webgpu_server
wget https://github.com/josStorer/web-rwkv-converter/releases/latest/download/web-rwkv-converter_linux_x86_64 -O ./backend-rust/web-rwkv-converter
sudo apt-get update
sudo apt-get install upx
sudo apt-get install build-essential libgtk-3-dev libwebkit2gtk-4.0-dev libasound2-dev
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
go install github.com/wailsapp/wails/v2/cmd/wails@latest
rm ./backend-python/rwkv_pip/wkv_cuda.pyd
rm ./backend-python/rwkv_pip/rwkv5.pyd
rm ./backend-python/rwkv_pip/rwkv6.pyd
rm ./backend-python/rwkv_pip/beta/wkv_cuda.pyd
rm ./backend-python/get-pip.py
rm ./backend-python/rwkv_pip/cpp/librwkv.dylib
rm ./backend-python/rwkv_pip/cpp/rwkv.dll
@ -112,14 +113,15 @@ jobs:
ref: master
- uses: actions/setup-go@v5
with:
go-version: "1.20.5"
go-version: '1.20.5'
- run: |
wget https://github.com/josStorer/ai00_rwkv_server/releases/latest/download/webgpu_server_darwin_aarch64 -O ./backend-rust/webgpu_server
wget https://github.com/josStorer/web-rwkv-converter/releases/latest/download/web-rwkv-converter_darwin_aarch64 -O ./backend-rust/web-rwkv-converter
go install github.com/wailsapp/wails/v2/cmd/wails@v2.8.0
go install github.com/wailsapp/wails/v2/cmd/wails@latest
rm ./backend-python/rwkv_pip/wkv_cuda.pyd
rm ./backend-python/rwkv_pip/rwkv5.pyd
rm ./backend-python/rwkv_pip/rwkv6.pyd
rm ./backend-python/rwkv_pip/beta/wkv_cuda.pyd
rm ./backend-python/get-pip.py
rm ./backend-python/rwkv_pip/cpp/rwkv.dll
rm ./backend-python/rwkv_pip/cpp/librwkv.so

View File

@ -1,26 +1,25 @@
## v1.8.4
## Changes
- fix f05a4a, __init__.py is not embedded
### Features
## v1.8.3
### Deprecations
- rwkv-beta is deprecated
### Upgrades
- bump webgpu(python) (https://github.com/cryscan/web-rwkv-py)
- sync https://github.com/JL-er/RWKV-PEFT (LoRA)
### Improvements
- improve default LoRA fine-tune params
- add Docker support (#291) @LonghronShen
### Fixes
- fix #342, #345: cannot import name 'packaging' from 'pkg_resources'
- fix the huge error prompt that pops up when running in webgpu mode
- fix a generation exception caused by potentially dangerous regex being passed into the stop array
- fix max_tokens parameter of Chat page not being passed to backend
- fix the issue where penalty_decay and global_penalty are not being passed to the backend default config when running
the model through client
### Improvements
- prevent 'torch' has no attribute 'cuda' error in torch_gc, so user can use CPU or WebGPU (#302)
### Chores
- bump dependencies
- add pre-release workflow
- dep_check.py now ignores GPUtil
## Install

View File

@ -1,5 +1,5 @@
<p align="center">
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/65c46133-7506-4b54-b64f-fe49f188afa7">
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/d24834b0-265d-45f5-93c0-fac1e19562af">
</p>
<h1 align="center">RWKV Runner</h1>
@ -94,8 +94,7 @@ English | [简体中文](README_ZH.md) | [日本語](README_JA.md)
- Built-in model conversion tool.
- Built-in download management and remote model inspection.
- Built-in one-click LoRA Finetune. (Windows Only)
- Can also be used as an OpenAI ChatGPT, GPT-Playground, Ollama and more clients. (Fill in the API URL and API Key in
Settings page)
- Can also be used as an OpenAI ChatGPT and GPT-Playground client. (Fill in the API URL and API Key in Settings page)
- Multilingual localization.
- Theme switching.
- Automatic updates.
@ -248,13 +247,13 @@ computer keyboard as MIDI input.
### Homepage
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/c1923ed8-22f7-48b4-a274-e215e27a8e01)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/c9b9cdd0-63f9-4319-9f74-5bf5d7df5a67)
### Chat
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/80009872-528f-4932-aeb2-f724fa892e7c)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/de8d3fa7-c31f-4941-a22b-ded785427ac0)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/e98c9038-3323-47b0-8edb-d639fafd37b2)
### Completion

View File

@ -1,5 +1,5 @@
<p align="center">
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/65c46133-7506-4b54-b64f-fe49f188afa7">
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/d24834b0-265d-45f5-93c0-fac1e19562af">
</p>
<h1 align="center">RWKV Runner</h1>
@ -89,8 +89,8 @@
- 内蔵モデル変換ツール
- ダウンロード管理とリモートモデル検査機能内蔵
- 内蔵のLoRA微調整機能を搭載しています (Windowsのみ)
- このプログラムは、OpenAI ChatGPT、GPT Playground、Ollama などのクライアントとしても使用できます(設定ページで `API URL`
`API Key` を入力してください)
- このプログラムは、OpenAI ChatGPTとGPT Playgroundのクライアントとしても使用できます(設定ページで `API URL``API Key`
を入力してください)
- 多言語ローカライズ
- テーマ切り替え
- 自動アップデート
@ -244,13 +244,13 @@ MIDIキーボードをお持ちでない場合、`Virtual Midi Controller 3 LE`
### ホームページ
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/c1923ed8-22f7-48b4-a274-e215e27a8e01)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/c9b9cdd0-63f9-4319-9f74-5bf5d7df5a67)
### チャット
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/80009872-528f-4932-aeb2-f724fa892e7c)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/de8d3fa7-c31f-4941-a22b-ded785427ac0)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/e98c9038-3323-47b0-8edb-d639fafd37b2)
### 補完

View File

@ -1,5 +1,5 @@
<p align="center">
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/65c46133-7506-4b54-b64f-fe49f188afa7">
<img src="https://github.com/josStorer/RWKV-Runner/assets/13366013/d24834b0-265d-45f5-93c0-fac1e19562af">
</p>
<h1 align="center">RWKV Runner</h1>
@ -83,7 +83,7 @@ API兼容的接口这意味着一切ChatGPT客户端都是RWKV客户端。
- 内置模型转换工具
- 内置下载管理和远程模型检视
- 内置一键LoRA微调 (仅限Windows)
- 也可用作 OpenAI ChatGPT, GPT Playground, Ollama 等服务的客户端 (在设置内填写API URL和API Key)
- 也可用作 OpenAI ChatGPT 和 GPT Playground 客户端 (在设置内填写API URL和API Key)
- 多语言本地化
- 主题切换
- 自动更新
@ -226,13 +226,13 @@ for i in np.argsort(embeddings_cos_sim)[::-1]:
### 主页
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/3265b11a-ab19-4e19-bfea-fc687f59aaf9)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/cd82674e-3ee3-4175-bd9c-a11d45437327)
### 聊天
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/9570e73b-dca2-4316-9e92-09961f3c48c4)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/162fce43-8568-4850-a6af-ab60af988da6)
![image](https://github.com/josStorer/RWKV-Runner/assets/13366013/54bb0e2b-cdc4-4ea0-8d16-9beaf57c232c)
### 续写

View File

@ -7,11 +7,7 @@ import (
"context"
"errors"
"io"
"log"
"net"
"net/http"
"net/http/httputil"
"net/url"
"os"
"os/exec"
"path/filepath"
@ -31,7 +27,6 @@ type App struct {
HasConfigData bool
ConfigData map[string]any
Dev bool
proxyPort int
exDir string
cmdPrefix string
}
@ -41,63 +36,6 @@ func NewApp() *App {
return &App{}
}
func (a *App) newFetchProxy() {
go func() {
handler := func(w http.ResponseWriter, r *http.Request) {
if r.Method == "OPTIONS" {
w.Header().Set("Access-Control-Allow-Methods", "GET, POST, OPTIONS")
w.Header().Set("Access-Control-Allow-Headers", "*")
w.Header().Set("Access-Control-Allow-Origin", "*")
return
}
proxy := &httputil.ReverseProxy{
ModifyResponse: func(res *http.Response) error {
res.Header.Set("Access-Control-Allow-Origin", "*")
return nil
},
Director: func(req *http.Request) {
realTarget := req.Header.Get("Real-Target")
if realTarget != "" {
realTarget, err := url.PathUnescape(realTarget)
if err != nil {
log.Printf("Error decoding target URL: %v\n", err)
return
}
target, err := url.Parse(realTarget)
if err != nil {
log.Printf("Error parsing target URL: %v\n", err)
return
}
req.Header.Set("Accept", "*/*")
req.Header.Del("Origin")
req.Header.Del("Referer")
req.Header.Del("Real-Target")
req.Header.Del("Sec-Fetch-Dest")
req.Header.Del("Sec-Fetch-Mode")
req.Header.Del("Sec-Fetch-Site")
req.URL.Scheme = target.Scheme
req.URL.Host = target.Host
req.URL.Path = target.Path
req.URL.RawQuery = url.PathEscape(target.RawQuery)
log.Println("Proxying to", realTarget)
} else {
log.Println("Real-Target header is missing")
}
},
}
proxy.ServeHTTP(w, r)
}
http.HandleFunc("/", handler)
listener, err := net.Listen("tcp", "127.0.0.1:0")
if err != nil {
return
}
a.proxyPort = listener.Addr().(*net.TCPAddr).Port
http.Serve(listener, nil)
}()
}
// startup is called when the app starts. The context is saved
// so we can call the runtime methods
func (a *App) OnStartup(ctx context.Context) {
@ -125,7 +63,6 @@ func (a *App) OnStartup(ctx context.Context) {
os.Chmod(a.exDir+"backend-rust/web-rwkv-converter", 0777)
os.Mkdir(a.exDir+"models", os.ModePerm)
os.Mkdir(a.exDir+"lora-models", os.ModePerm)
os.Mkdir(a.exDir+"state-models", os.ModePerm)
os.Mkdir(a.exDir+"finetune/json2binidx_tool/data", os.ModePerm)
trainLogPath := "lora-models/train_log.txt"
if !a.FileExists(trainLogPath) {
@ -139,7 +76,6 @@ func (a *App) OnStartup(ctx context.Context) {
a.midiLoop()
a.watchFs()
a.monitorHardware()
a.newFetchProxy()
}
func (a *App) OnBeforeClose(ctx context.Context) bool {
@ -152,9 +88,8 @@ func (a *App) OnBeforeClose(ctx context.Context) bool {
func (a *App) watchFs() {
watcher, err := fsnotify.NewWatcher()
if err == nil {
watcher.Add(a.exDir + "./models")
watcher.Add(a.exDir + "./lora-models")
watcher.Add(a.exDir + "./state-models")
watcher.Add(a.exDir + "./models")
go func() {
for {
select {
@ -304,7 +239,3 @@ func (a *App) RestartApp() error {
func (a *App) GetPlatform() string {
return runtime.GOOS
}
func (a *App) GetProxyPort() int {
return a.proxyPort
}

View File

@ -28,7 +28,7 @@ func (a *App) StartServer(python string, port int, host string, webui bool, rwkv
args = append(args, "--webui")
}
if rwkvBeta {
// args = append(args, "--rwkv-beta")
args = append(args, "--rwkv-beta")
}
if rwkvcpp {
args = append(args, "--rwkv.cpp")
@ -215,12 +215,8 @@ func (a *App) DepCheck(python string) error {
func (a *App) InstallPyDep(python string, cnMirror bool) (string, error) {
var err error
torchWhlUrl := "torch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 --index-url https://download.pytorch.org/whl/cu117"
if python == "" {
python, err = GetPython()
if cnMirror && python == "py310/python.exe" {
torchWhlUrl = "https://mirrors.aliyun.com/pytorch-wheels/cu117/torch-1.13.1+cu117-cp310-cp310-win_amd64.whl"
}
if runtime.GOOS == "windows" {
python = `"%CD%/` + python + `"`
}
@ -231,12 +227,12 @@ func (a *App) InstallPyDep(python string, cnMirror bool) (string, error) {
if runtime.GOOS == "windows" {
ChangeFileLine("./py310/python310._pth", 3, "Lib\\site-packages")
installScript := python + " ./backend-python/get-pip.py -i https://mirrors.aliyun.com/pypi/simple --no-warn-script-location\n" +
python + " -m pip install " + torchWhlUrl + " --no-warn-script-location\n" +
python + " -m pip install -r ./backend-python/requirements.txt -i https://mirrors.aliyun.com/pypi/simple --no-warn-script-location\n" +
installScript := python + " ./backend-python/get-pip.py -i https://pypi.tuna.tsinghua.edu.cn/simple --no-warn-script-location\n" +
python + " -m pip install torch==1.13.1 torchvision==0.14.1 torchaudio==0.13.1 --index-url https://download.pytorch.org/whl/cu117 --no-warn-script-location\n" +
python + " -m pip install -r ./backend-python/requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple --no-warn-script-location\n" +
"exit"
if !cnMirror {
installScript = strings.Replace(installScript, " -i https://mirrors.aliyun.com/pypi/simple", "", -1)
installScript = strings.Replace(installScript, " -i https://pypi.tuna.tsinghua.edu.cn/simple", "", -1)
}
err = os.WriteFile(a.exDir+"install-py-dep.bat", []byte(installScript), 0644)
if err != nil {
@ -246,7 +242,7 @@ func (a *App) InstallPyDep(python string, cnMirror bool) (string, error) {
}
if cnMirror {
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_without_cyac.txt", "-i", "https://mirrors.aliyun.com/pypi/simple")
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_without_cyac.txt", "-i", "https://pypi.tuna.tsinghua.edu.cn/simple")
} else {
return Cmd(python, "-m", "pip", "install", "-r", "./backend-python/requirements_without_cyac.txt")
}

View File

@ -102,8 +102,6 @@ if __name__ == "__main__":
"time_mix_w2",
"time_decay_w1",
"time_decay_w2",
"time_state",
"lora.0",
],
)
print(f"Saved to {args.output}")

View File

@ -1,8 +1,3 @@
import setuptools
if setuptools.__version__ >= "70.0.0":
raise ImportError("setuptools>=70.0.0 is not supported")
import multipart
import fitz
import safetensors

View File

@ -27,6 +27,11 @@ def get_args(args: Union[Sequence[str], None] = None):
action="store_true",
help="whether to enable WebUI (default: False)",
)
group.add_argument(
"--rwkv-beta",
action="store_true",
help="whether to use rwkv-beta (default: False)",
)
group.add_argument(
"--rwkv.cpp",
action="store_true",

View File

@ -1,8 +1,7 @@
torch
torchvision
torchaudio
setuptools==69.5.1
rwkv==0.8.26
rwkv==0.8.25
langchain==0.0.322
fastapi==0.109.1
uvicorn==0.23.2

View File

@ -1,8 +1,7 @@
torch
torchvision
torchaudio
setuptools==69.5.1
rwkv==0.8.26
rwkv==0.8.25
langchain==0.0.322
fastapi==0.109.1
uvicorn==0.23.2

View File

@ -4,7 +4,6 @@ from threading import Lock
from typing import List, Union
from enum import Enum
import base64
import time
from fastapi import APIRouter, Request, status, HTTPException
from sse_starlette.sse import EventSourceResponse
@ -54,11 +53,8 @@ class ChatCompletionBody(ModelConfigBody):
assistant_name: Union[str, None] = Field(
None, description="Internal assistant name", min_length=1
)
system_name: Union[str, None] = Field(
None, description="Internal system name", min_length=1
)
presystem: bool = Field(
False, description="Whether to insert default system prompt at the beginning"
True, description="Whether to insert default system prompt at the beginning"
)
model_config = {
@ -72,7 +68,6 @@ class ChatCompletionBody(ModelConfigBody):
"stop": None,
"user_name": None,
"assistant_name": None,
"system_name": None,
"presystem": True,
"max_tokens": 1000,
"temperature": 1,
@ -152,13 +147,10 @@ async def eval_rwkv(
print(get_rwkv_config(model))
response, prompt_tokens, completion_tokens = "", 0, 0
completion_start_time = None
for response, delta, prompt_tokens, completion_tokens in model.generate(
prompt,
stop=stop,
):
if not completion_start_time:
completion_start_time = time.time()
if await request.is_disconnected():
break
if stream:
@ -171,15 +163,12 @@ async def eval_rwkv(
),
# "response": response,
"model": model.name,
"id": "chatcmpl-123",
"system_fingerprint": "fp_44709d6fcb",
"choices": [
(
{
"delta": {"role":Role.Assistant.value,"content": delta},
"delta": {"content": delta},
"index": 0,
"finish_reason": None,
"logprobs":None
}
if chat_mode
else {
@ -193,13 +182,6 @@ async def eval_rwkv(
)
# torch_gc()
requests_num = requests_num - 1
completion_end_time = time.time()
completion_interval = completion_end_time - completion_start_time
tps = 0
if completion_interval > 0:
tps = completion_tokens / completion_interval
print(f"Generation TPS: {tps:.2f}")
if await request.is_disconnected():
print(f"{request.client} Stop Waiting")
quick_log(
@ -221,14 +203,11 @@ async def eval_rwkv(
),
# "response": response,
"model": model.name,
"id": "chatcmpl-123",
"system_fingerprint": "fp_44709d6fcb",
"choices": [
(
{
"delta": {},
"index": 0,
"logprobs": None,
"finish_reason": "stop",
}
if chat_mode
@ -273,9 +252,20 @@ async def eval_rwkv(
}
def chat_template_old(
model: TextRWKV, body: ChatCompletionBody, interface: str, user: str, bot: str
):
@router.post("/v1/chat/completions", tags=["Completions"])
@router.post("/chat/completions", tags=["Completions"])
async def chat_completions(body: ChatCompletionBody, request: Request):
model: TextRWKV = global_var.get(global_var.Model)
if model is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "model not loaded")
if body.messages is None or body.messages == []:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "messages not found")
interface = model.interface
user = model.user if body.user_name is None else body.user_name
bot = model.bot if body.assistant_name is None else body.assistant_name
is_raven = model.rwkv_type == RWKVType.Raven
completion_text: str = ""
@ -344,53 +334,6 @@ The following is a coherent verbose detailed conversation between a girl named {
completion_text += append_message + "\n\n"
completion_text += f"{bot}{interface}"
return completion_text
def chat_template(
model: TextRWKV, body: ChatCompletionBody, interface: str, user: str, bot: str
):
completion_text: str = ""
if body.presystem:
completion_text = (
f"{user}{interface} hi\n\n{bot}{interface} Hi. "
+ "I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.\n\n"
)
system = "System" if body.system_name is None else body.system_name
for message in body.messages:
append_message: str = ""
if message.role == Role.User:
append_message = f"{user}{interface} " + message.content
elif message.role == Role.Assistant:
append_message = f"{bot}{interface} " + message.content
elif message.role == Role.System:
append_message = f"{system}{interface} " + message.content
completion_text += append_message + "\n\n"
completion_text += f"{bot}{interface}"
return completion_text
@router.post("/v1/chat/completions", tags=["Completions"])
@router.post("/chat/completions", tags=["Completions"])
async def chat_completions(body: ChatCompletionBody, request: Request):
model: TextRWKV = global_var.get(global_var.Model)
if model is None:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "model not loaded")
if body.messages is None or body.messages == []:
raise HTTPException(status.HTTP_400_BAD_REQUEST, "messages not found")
interface = model.interface
user = model.user if body.user_name is None else body.user_name
bot = model.bot if body.assistant_name is None else body.assistant_name
if model.version < 5:
completion_text = chat_template_old(model, body, interface, user, bot)
else:
completion_text = chat_template(model, body, interface, user, bot)
user_code = model.pipeline.decode([model.pipeline.encode(user)[0]])
bot_code = model.pipeline.decode([model.pipeline.encode(bot)[0]])
if type(body.stop) == str:
@ -399,9 +342,9 @@ async def chat_completions(body: ChatCompletionBody, request: Request):
body.stop.append(f"\n\n{user_code}")
body.stop.append(f"\n\n{bot_code}")
elif body.stop is None:
body.stop = default_stop + [f"\n\n{user_code}", f"\n\n{bot_code}"]
# if not body.presystem:
# body.stop.append("\n\n")
body.stop = default_stop
if not body.presystem:
body.stop.append("\n\n")
if body.stream:
return EventSourceResponse(

View File

@ -120,11 +120,6 @@ def update_config(body: ModelConfigBody):
model_config = ModelConfigBody()
global_var.set(global_var.Model_Config, model_config)
merge_model(model_config, body)
exception = load_rwkv_state(
global_var.get(global_var.Model), model_config.state, True
)
if exception is not None:
raise exception
print("Updated Model Config:", model_config)
return "success"

View File

@ -96,9 +96,7 @@ def copy_tensor_to_cpu(tensors):
elif tensors_type == np.ndarray: # rwkv.cpp
copied = tensors
else: # WebGPU state
model = global_var.get(global_var.Model)
if model:
copied = model.model.model.back_state()
copied = tensors.back()
return copied, devices
@ -178,19 +176,6 @@ def reset_state():
return "success"
def force_reset_state():
global trie, dtrie
if trie is None:
return
import cyac
trie = cyac.Trie()
dtrie = {}
gc.collect()
class LongestPrefixStateBody(BaseModel):
prompt: str
@ -240,14 +225,11 @@ def longest_prefix_state(body: LongestPrefixStateBody, request: Request):
state: Union[Any, None] = v["state"]
logits: Union[Any, None] = v["logits"]
state_type = type(state)
if state_type == list and hasattr(state[0], "device"): # torch
if type(state) == list and hasattr(state[0], "device"): # torch
state = [
(
tensor.to(devices[i])
if devices[i] != torch.device("cpu")
else tensor.clone()
)
tensor.to(devices[i])
if devices[i] != torch.device("cpu")
else tensor.clone()
for i, tensor in enumerate(state)
]
logits = (
@ -255,9 +237,7 @@ def longest_prefix_state(body: LongestPrefixStateBody, request: Request):
if logits_device != torch.device("cpu")
else logits.clone()
)
elif state_type == np.ndarray: # rwkv.cpp
logits = np.copy(logits)
else: # WebGPU
else: # rwkv.cpp, WebGPU
logits = np.copy(logits)
quick_log(request, body, "Hit:\n" + prompt)

View File

@ -0,0 +1,124 @@
#include "ATen/ATen.h"
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <torch/extension.h>
#include "element_wise.h"
#include "util.h"
// Equivalent Python code:
// ww = t_first + k
// p = torch.maximum(pp, ww)
// e1 = torch.exp(pp - p)
// e2 = torch.exp(ww - p)
// wkv = ((e1 * aa + e2 * v) / (e1 * bb + e2)).to(dtype=x.dtype)
// ww = t_decay + pp
// p = torch.maximum(ww, k)
// e1 = torch.exp(ww - p)
// e2 = torch.exp(k - p)
// t1 = e1 * aa + e2 * v
// t2 = e1 * bb + e2
// r = r * wkv
// return t1, t2, p, r
struct WkvForwardOne {
const float *t_first;
const float *k;
const float *pp;
const float *aa;
const float *bb;
const float *t_decay;
const float *v;
/* out */ float *t1;
/* out */ float *t2;
/* out */ float *p;
/* in & out */ half *r;
__device__ void operator()(int i) const {
float ww = t_first[i] + k[i];
float pp_ = pp[i];
float p_ = (pp_ > ww) ? pp_ : ww;
float e1 = expf(pp_ - p_);
float e2 = expf(ww - p_);
float aa_ = aa[i];
float bb_ = bb[i];
float v_ = v[i];
r[i] = __hmul(r[i], __float2half(((e1 * aa_ + e2 * v_) / (e1 * bb_ + e2))));
ww = t_decay[i] + pp_;
float k_ = k[i];
p_ = (ww > k_) ? ww : k_;
e1 = expf(ww - p_);
e2 = expf(k_ - p_);
t1[i] = e1 * aa_ + e2 * v_;
t2[i] = e1 * bb_ + e2;
p[i] = p_;
}
};
/*
Equivalent Python code:
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
*/
struct Mix {
const half *xx;
const half *sx;
const half *k_mix;
const half *v_mix;
const half *r_mix;
/* out */ half *kx;
/* out */ half *vx;
/* out */ half *rx;
__device__ void operator()(int i) const {
half xx_ = xx[i];
half sx_ = sx[i];
half k_mix_ = k_mix[i];
half v_mix_ = v_mix[i];
half r_mix_ = r_mix[i];
kx[i] = __hadd(__hmul(xx_, k_mix_),
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
vx[i] = __hadd(__hmul(xx_, v_mix_),
__hmul(sx_, __hsub(__float2half(1), v_mix_)));
rx[i] = __hadd(__hmul(xx_, r_mix_),
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
}
};
using torch::Tensor;
void gemm_fp16_cublas_tensor(Tensor a, Tensor b, Tensor c);
Tensor att_one(Tensor x, Tensor ln_w, Tensor ln_b, Tensor sx, Tensor k_mix,
Tensor v_mix, Tensor r_mix, Tensor kw,
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx, Tensor rw,
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
/* imm */ Tensor k, Tensor pp, Tensor ww, Tensor aa, Tensor bb,
Tensor t_decay, /* imm */ Tensor v, /* in & out */ Tensor r,
/* out */ Tensor x_plus_out, /* out */ Tensor t1,
/* out */ Tensor t2, /* out */ Tensor p) {
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
element_wise(Mix{data_ptr<half>(xx), data_ptr<half>(sx),
data_ptr<half>(k_mix), data_ptr<half>(v_mix),
data_ptr<half>(r_mix), data_ptr<half>(kx),
data_ptr<half>(vx), data_ptr<half>(rx)},
x.numel());
gemm_fp16_cublas_tensor(kx, kw, k);
gemm_fp16_cublas_tensor(vx, vw, v);
gemm_fp16_cublas_tensor(rx, rw, r);
at::sigmoid_(r);
element_wise(WkvForwardOne{data_ptr<float>(t_first), data_ptr<float>(k),
data_ptr<float>(pp), data_ptr<float>(aa),
data_ptr<float>(bb), data_ptr<float>(t_decay),
data_ptr<float>(v), data_ptr<float>(t1),
data_ptr<float>(t2), data_ptr<float>(p),
data_ptr<half>(r)},
x.numel());
gemm_fp16_cublas_tensor(r, ow, x_plus_out);
x_plus_out += x;
return xx;
}

View File

@ -0,0 +1,109 @@
#include "ATen/ATen.h"
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <torch/extension.h>
#include "element_wise.h"
#include "util.h"
// Equivalent Python code:
// s1 = t_first * a + s
// s2 = a + t_decay * s
struct Fused1 {
const float *t_first;
const float *t_decay;
const float *a;
const float *s;
const int32_t inner_size;
/* out */ float *s1;
/* out */ float *s2;
__device__ void operator()(int i) const {
const int j = i / inner_size;
s1[i] = t_first[j] * a[i] + s[i];
s2[i] = a[i] + t_decay[j] * s[i];
}
};
/*
Equivalent Python code:
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
*/
struct Mix {
const half *xx;
const half *sx;
const half *k_mix;
const half *v_mix;
const half *r_mix;
/* out */ half *kx;
/* out */ half *vx;
/* out */ half *rx;
__device__ void operator()(int i) const {
half xx_ = xx[i];
half sx_ = sx[i];
half k_mix_ = k_mix[i];
half v_mix_ = v_mix[i];
half r_mix_ = r_mix[i];
kx[i] = __hadd(__hmul(xx_, k_mix_),
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
vx[i] = __hadd(__hmul(xx_, v_mix_),
__hmul(sx_, __hsub(__float2half(1), v_mix_)));
rx[i] = __hadd(__hmul(xx_, r_mix_),
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
}
};
using torch::Tensor;
void gemm_fp16_cublas_tensor(Tensor a, Tensor b, Tensor c);
Tensor att_one_v5(Tensor x, Tensor sx, Tensor s, Tensor ln_w, Tensor ln_b,
Tensor lx_w, Tensor lx_b, Tensor k_mix, Tensor v_mix,
Tensor r_mix, Tensor kw,
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx,
Tensor rw,
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
/* imm */ Tensor k, Tensor t_decay, /* imm */ Tensor v,
/* imm */ Tensor r, /* imm */ Tensor s1,
/* out */ Tensor x_plus_out, /* out */ Tensor s2) {
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
element_wise(Mix{data_ptr<half>(xx), data_ptr<half>(sx),
data_ptr<half>(k_mix), data_ptr<half>(v_mix),
data_ptr<half>(r_mix), data_ptr<half>(kx),
data_ptr<half>(vx), data_ptr<half>(rx)},
x.numel());
int H = t_decay.size(0);
int S = x.size(-1) / H;
gemm_fp16_cublas_tensor(rx, rw, r);
r = at::reshape(r, {H, 1, S});
gemm_fp16_cublas_tensor(kx, kw, k);
k = at::reshape(k, {H, S, 1});
gemm_fp16_cublas_tensor(vx, vw, v);
v = at::reshape(v, {H, 1, S});
{
Tensor a = at::matmul(k, v);
// s1 = t_first * a + s
// s2 = a + t_decay * s
element_wise(Fused1{data_ptr<float>(t_first), data_ptr<float>(t_decay),
data_ptr<float>(a), data_ptr<float>(s),
static_cast<int32_t>(a.size(1) * a.size(2)),
data_ptr<float>(s1), data_ptr<float>(s2)},
a.numel());
}
Tensor out = at::matmul(r, s1);
out = at::flatten(out);
out = at::squeeze(at::group_norm(at::unsqueeze(out, 0), H, lx_w, lx_b), 0);
out = at::_cast_Half(out);
gemm_fp16_cublas_tensor(out, ow, x_plus_out);
x_plus_out += x;
return xx;
}

View File

@ -0,0 +1,178 @@
#include "ATen/ATen.h"
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <torch/extension.h>
#include "util.h"
#include "element_wise.h"
using torch::Tensor;
void gemm_fp16_cublas(const void *a, const void *b, void *c, int m,
int n, int k, bool output_fp32);
// based on `kernel_wkv_forward`, fusing more operations
__global__ void kernel_wkv_forward_new(
const int B, const int T, const int C, const float *__restrict__ const _w,
const float *__restrict__ const _u, const float *__restrict__ const _k,
const float *__restrict__ const _v, const half *__restrict__ const r,
half *__restrict__ const _y, float *__restrict__ const _aa,
float *__restrict__ const _bb, float *__restrict__ const _pp) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
const int _state_offset = _b * C + _c;
float u = _u[_c];
float w = _w[_c];
const float *__restrict__ const k = _k + _offset;
const float *__restrict__ const v = _v + _offset;
half *__restrict__ const y = _y + _offset;
float aa = _aa[_state_offset];
float bb = _bb[_state_offset];
float pp = _pp[_state_offset];
for (int i = 0; i < T; i++) {
const int ii = i * C;
const float kk = k[ii];
const float vv = v[ii];
float ww = u + kk;
float p = max(pp, ww);
float e1 = exp(pp - p);
float e2 = exp(ww - p);
y[ii] = __float2half((e1 * aa + e2 * vv) / (e1 * bb + e2));
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
_aa[_state_offset] = aa;
_bb[_state_offset] = bb;
_pp[_state_offset] = pp;
}
void cuda_wkv_forward_new(int B, int T, int C, float *w, float *u, float *k,
float *v, half *r, half *y, float *aa, float *bb,
float *pp) {
dim3 threadsPerBlock(min(C, 32));
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_wkv_forward_new<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, r,
y, aa, bb, pp);
}
__global__ void _att_mix(const half *xx, const half *sx, const half *k_mix,
const half *v_mix, const half *r_mix,
const int outer_size, const int inner_size, half *kx,
half *vx, half *rx) {
for (int idx2 = blockIdx.x * blockDim.x + threadIdx.x; idx2 < inner_size;
idx2 += blockDim.x * gridDim.x) {
half k_mix_ = k_mix[idx2];
half v_mix_ = v_mix[idx2];
half r_mix_ = r_mix[idx2];
for (int row = 0; row < outer_size; ++row) {
int idx1 = row * inner_size + idx2;
half xx_ = xx[idx1];
half sx_ = sx[idx1];
kx[idx1] = __hadd(__hmul(xx_, k_mix_),
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
vx[idx1] = __hadd(__hmul(xx_, v_mix_),
__hmul(sx_, __hsub(__float2half(1), v_mix_)));
rx[idx1] = __hadd(__hmul(xx_, r_mix_),
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
}
}
}
void att_mix(const half *xx, const half *sx, const half *k_mix,
const half *v_mix, const half *r_mix, const int outer_size,
const int inner_size, half *kx, half *vx, half *rx) {
// 256 is good enough on most GPUs
const int32_t BLOCK_SIZE = 256;
assert(inner_size % BLOCK_SIZE == 0);
_att_mix<<<inner_size / BLOCK_SIZE, BLOCK_SIZE>>>(
xx, sx, k_mix, v_mix, r_mix, outer_size, inner_size, kx, vx, rx);
}
struct InplaceSigmoid {
__device__ __forceinline__ half operator()(int i) const {
ptr[i] = __float2half(1.0 / (1.0 + exp(-__half2float(ptr[i]))));
}
half *ptr;
};
struct InplaceMul {
__device__ __forceinline__ half operator()(int i) const {
y[i] = __hmul(x[i], y[i]);
}
half *y;
half *x;
};
/*
Equivalent Python code:
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
kx = xx * k_mix + sx * (1 - k_mix)
vx = xx * v_mix + sx * (1 - v_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(gemm(rx, rw))
k = gemm(kx, kw, output_dtype=torch.float32)
v = gemm(vx, vw, output_dtype=torch.float32)
T = x.shape[0]
for t in range(T):
kk = k[t]
vv = v[t]
ww = t_first + kk
p = torch.maximum(pp, ww)
e1 = torch.exp(pp - p)
e2 = torch.exp(ww - p)
sx[t] = ((e1 * aa + e2 * vv) / (e1 * bb + e2)).to(dtype=x.dtype)
ww = t_decay + pp
p = torch.maximum(ww, kk)
e1 = torch.exp(ww - p)
e2 = torch.exp(kk - p)
aa = e1 * aa + e2 * vv
bb = e1 * bb + e2
pp = p
out = gemm(r * sx, ow)
return x + out, xx[-1,:], aa, bb, pp
*/
Tensor att_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
Tensor v_mix, Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
Tensor ow, Tensor t_first, Tensor pp, Tensor aa, Tensor bb,
Tensor t_decay, /* imm */ Tensor buf, /* out */ Tensor x_plus_out) {
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
sx = at::cat({sx.unsqueeze(0), xx.slice(0, 0, -1)}, 0);
char* buf_ptr = (char*)buf.data_ptr();
half* kx = (half*)buf_ptr;
half* vx = kx + x.numel();
half* rx = vx + x.numel();
half* wkv_y = rx + x.numel();
att_mix(data_ptr<half>(xx), data_ptr<half>(sx), data_ptr<half>(k_mix),
data_ptr<half>(v_mix), data_ptr<half>(r_mix), xx.size(0), xx.size(1),
kx, vx, rx);
float* k = reinterpret_cast<float*>(wkv_y + x.numel());
float* v = k + x.size(0) * kw.size(1);
half* r = reinterpret_cast<half*>(v + x.size(0) * vw.size(1));
gemm_fp16_cublas(kx, kw.data_ptr(), k, x.size(0), kw.size(1), kw.size(0), true);
gemm_fp16_cublas(vx, vw.data_ptr(), v, x.size(0), vw.size(1), vw.size(0), true);
gemm_fp16_cublas(rx, rw.data_ptr(), r, x.size(0), rw.size(1), rw.size(0), false);
element_wise(InplaceSigmoid{r}, x.size(0) * rw.size(1));
cuda_wkv_forward_new(1, x.size(0), x.size(1), data_ptr<float>(t_decay),
data_ptr<float>(t_first), k, v, r,
wkv_y, data_ptr<float>(aa),
data_ptr<float>(bb), data_ptr<float>(pp));
element_wise(InplaceMul{wkv_y, r}, x.numel());
gemm_fp16_cublas(wkv_y, ow.data_ptr(), x_plus_out.data_ptr(), x.size(0), ow.size(1), ow.size(0), false);
x_plus_out += x;
return xx;
}

View File

@ -0,0 +1,21 @@
#include <cassert>
#include <cstddef>
#include <cstdint>
template <typename Func> __global__ void _element_wise(Func func, int n) {
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n;
i += blockDim.x * gridDim.x) {
func(i);
}
}
// NOTE: packed data type (e.g. float4) is a overkill for current sizes
// (4096 in 7B model and 768 in 0.1B model),
// and is not faster than the plain float version.
template <typename Func>
void element_wise(Func func, int n) {
// 256 is good enough on most GPUs
const int32_t BLOCK_SIZE = 256;
assert(n % BLOCK_SIZE == 0);
_element_wise<<<n / BLOCK_SIZE, BLOCK_SIZE>>>(func, n);
}

165
backend-python/rwkv_pip/beta/cuda/ffn.cu vendored Normal file
View File

@ -0,0 +1,165 @@
#include "ATen/ATen.h"
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <torch/extension.h>
#include "element_wise.h"
#include "util.h"
using torch::Tensor;
void gemm_fp16_cublas(const void *a, const void *b, void *c, int ori_m,
int ori_n, int ori_k, bool output_fp32);
__global__ void _ffn_seq_mix(const half *xx, const half *sx, const half *k_mix,
const half *r_mix, const int outer_size,
const int inner_size, half *kx, half *rx) {
for (int idx2 = blockIdx.x * blockDim.x + threadIdx.x; idx2 < inner_size;
idx2 += blockDim.x * gridDim.x) {
half k_mix_ = k_mix[idx2];
half r_mix_ = r_mix[idx2];
for (int row = 0; row < outer_size; ++row) {
int idx1 = row * inner_size + idx2;
half xx_ = xx[idx1];
half sx_ = sx[idx1];
kx[idx1] = __hadd(__hmul(xx_, k_mix_),
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
rx[idx1] = __hadd(__hmul(xx_, r_mix_),
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
}
}
}
void ffn_seq_mix(const half *xx, const half *sx, const half *k_mix,
const half *r_mix, const int outer_size, const int inner_size,
half *kx, half *rx) {
// 256 is good enough on most GPUs
const int32_t BLOCK_SIZE = 256;
assert(inner_size % BLOCK_SIZE == 0);
_ffn_seq_mix<<<inner_size / BLOCK_SIZE, BLOCK_SIZE>>>(
xx, sx, k_mix, r_mix, outer_size, inner_size, kx, rx);
}
struct InplaceSigmoid {
__device__ __forceinline__ void operator()(int i) const {
ptr[i] = __float2half(1.0 / (1.0 + exp(-__half2float(ptr[i]))));
}
half *ptr;
};
struct InplaceReLUAndSquare {
__device__ __forceinline__ void operator()(int i) const {
// __hmax is not defined in old cuda
if (__hgt(ptr[i], __float2half(0))) {
ptr[i] = __hmul(ptr[i], ptr[i]);
} else {
ptr[i] = __float2half(0);
}
}
half *ptr;
};
struct InplaceFma {
__device__ __forceinline__ void operator()(int i) const {
a[i] = __hfma(a[i], b[i], c[i]);
}
half *a;
const half *b;
const half *c;
};
/*
Equivalent Python code:
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
sx = torch.cat((sx.unsqueeze(0), xx[:-1,:]))
kx = xx * k_mix + sx * (1 - k_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(gemm(rx, rw))
vx = torch.square(torch.relu(gemm(kx, kw)))
out = r * gemm(vx, vw)
return x + out, xx[-1,:]
*/
Tensor ffn_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
/* imm */ Tensor buf,
/* out */ Tensor x_plus_out) {
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
sx = at::cat({sx.unsqueeze(0), xx.slice(0, 0, -1)}, 0);
char *buf_ptr = (char *)buf.data_ptr();
half *kx = (half *)buf_ptr;
half *rx = kx + x.numel();
half *vx = rx + x.numel();
half *r = vx + x.size(0) * kw.size(1);
ffn_seq_mix(data_ptr<half>(xx), data_ptr<half>(sx), data_ptr<half>(k_mix),
data_ptr<half>(r_mix), xx.size(0), xx.size(1), kx, rx);
gemm_fp16_cublas(rx, rw.data_ptr(), r, x.size(0), rw.size(1), x.size(1),
false);
element_wise(InplaceSigmoid{r}, x.size(0) * rw.size(1));
gemm_fp16_cublas(kx, kw.data_ptr(), vx, x.size(0), kw.size(1), x.size(1),
false);
element_wise(InplaceReLUAndSquare{vx}, x.size(0) * kw.size(1));
gemm_fp16_cublas(vx, vw.data_ptr(), x_plus_out.data_ptr(), x.size(0),
vw.size(1), vw.size(0), false);
element_wise(InplaceFma{data_ptr<half>(x_plus_out), r, data_ptr<half>(x)},
x_plus_out.numel());
return xx;
}
struct FfnOneMix {
__device__ __forceinline__ void operator()(int idx) {
half k_mix_ = k_mix[idx];
half r_mix_ = r_mix[idx];
half xx_ = xx[idx];
half sx_ = sx[idx];
kx[idx] = __hadd(__hmul(xx_, k_mix_),
__hmul(sx_, __hsub(__float2half(1), k_mix_)));
rx[idx] = __hadd(__hmul(xx_, r_mix_),
__hmul(sx_, __hsub(__float2half(1), r_mix_)));
}
half *k_mix;
half *r_mix;
half *xx;
half *sx;
half *kx;
half *rx;
};
/*
Equivalent Python code:
xx = F.layer_norm(x, (x.shape[-1],), weight=ln_w, bias=ln_b)
kx = xx * k_mix + sx * (1 - k_mix)
rx = xx * r_mix + sx * (1 - r_mix)
r = torch.sigmoid(gemm(rx, rw))
vx = torch.square(torch.relu(gemm(kx, kw)))
out = r * gemm(vx, vw)
return x + out, xx
*/
Tensor ffn_one(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
/* imm */ Tensor buf,
/* out */ Tensor x_plus_out) {
Tensor xx = at::layer_norm(x, {x.size(-1)}, ln_w, ln_b);
char *buf_ptr = (char *)buf.data_ptr();
half *kx = (half *)buf_ptr;
half *rx = kx + x.numel();
half *vx = rx + x.numel();
half *r = vx + x.size(0) * kw.size(1);
element_wise(FfnOneMix{data_ptr<half>(k_mix), data_ptr<half>(r_mix),
data_ptr<half>(xx), data_ptr<half>(sx), kx, rx},
x.numel());
// vector * matrix, so m = 1
gemm_fp16_cublas(rx, rw.data_ptr(), r, 1, rw.size(1), rw.size(0), false);
element_wise(InplaceSigmoid{r}, rw.size(1));
gemm_fp16_cublas(kx, kw.data_ptr(), vx, 1, kw.size(1), kw.size(0), false);
element_wise(InplaceReLUAndSquare{vx}, kw.size(1));
gemm_fp16_cublas(vx, vw.data_ptr(), x_plus_out.data_ptr(), 1, vw.size(1),
vw.size(0), false);
element_wise(InplaceFma{data_ptr<half>(x_plus_out), r, data_ptr<half>(x)},
x_plus_out.numel());
return xx;
}

View File

@ -0,0 +1,128 @@
#include <cublas_v2.h>
#include <cuda.h>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <torch/extension.h>
#define CUBLAS_CHECK(condition) \
for (cublasStatus_t _cublas_check_status = (condition); \
_cublas_check_status != CUBLAS_STATUS_SUCCESS;) \
throw std::runtime_error("cuBLAS error " + \
std::to_string(_cublas_check_status) + " at " + \
std::to_string(__LINE__));
#define CUDA_CHECK(condition) \
for (cudaError_t _cuda_check_status = (condition); \
_cuda_check_status != cudaSuccess;) \
throw std::runtime_error( \
"CUDA error " + std::string(cudaGetErrorString(_cuda_check_status)) + \
" at " + std::to_string(__LINE__));
cublasHandle_t get_cublas_handle() {
static cublasHandle_t cublas_handle = []() {
cublasHandle_t handle = nullptr;
CUBLAS_CHECK(cublasCreate(&handle));
#if CUDA_VERSION < 11000
CUBLAS_CHECK(cublasSetMathMode(handle, CUBLAS_TENSOR_OP_MATH));
#else
CUBLAS_CHECK(cublasSetMathMode(handle, CUBLAS_DEFAULT_MATH));
#endif // CUDA_VERSION < 11000
return handle;
}();
return cublas_handle;
}
/*
NOTE: blas gemm is column-major by default, but we need row-major output.
The data of row-major, transposed matrix is exactly the same as the
column-major, non-transposed matrix, and C = A * B ---> C^T = B^T * A^T
*/
void gemm_fp16_cublas(const void *a, const void *b, void *c, int ori_m,
int ori_n, int ori_k, bool output_fp32) {
const auto cuda_data_type = CUDA_R_16F;
const auto cuda_c_data_type = output_fp32 ? CUDA_R_32F : CUDA_R_16F;
const auto compute_type = CUDA_R_32F;
const float sp_alpha = 1.f;
// use CUBLAS_OP_N. see the notes above
const cublasOperation_t cublas_trans_a = CUBLAS_OP_N;
const cublasOperation_t cublas_trans_b = CUBLAS_OP_N;
// m = (B^T).size(0) = B.size(1) = n;
const int cublas_m = ori_n;
const int cublas_k = ori_k;
// comptiable with rwkv one mode, where 1-D tensor * 2-D tensor
// const int n = a.dense_dim() == 1 ? 1 : a.size(0);
const int cublas_n = ori_m;
const int cublas_lda = cublas_m;
const int cublas_ldb = cublas_k;
const int cublas_ldc = cublas_m;
cublasHandle_t cublas_handle = get_cublas_handle();
#if CUDA_VERSION >= 11000
cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT;
#else
cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
#endif
const float sp_beta = 0.f;
CUBLAS_CHECK(cublasGemmEx(
cublas_handle, cublas_trans_a, cublas_trans_b, cublas_m, cublas_n,
cublas_k, &sp_alpha, b, cuda_data_type, cublas_lda,
a, cuda_data_type, cublas_ldb, &sp_beta, c,
cuda_c_data_type, cublas_ldc, compute_type, algo));
}
/*
NOTE: blas gemm is column-major by default, but we need row-major output.
The data of row-major, transposed matrix is exactly the same as the
column-major, non-transposed matrix, and C = A * B ---> C^T = B^T * A^T
*/
void gemm_fp16_cublas_tensor(torch::Tensor a, torch::Tensor b, torch::Tensor c) {
if (a.sizes().size() == 1) {
assert(b.sizes().size() == 2);
a = at::unsqueeze(a, 0);
}
const auto cuda_data_type = CUDA_R_16F;
const auto cuda_c_data_type =
c.dtype() == torch::kFloat32 ? CUDA_R_32F : CUDA_R_16F;
const auto compute_type = CUDA_R_32F;
const float sp_alpha = 1.f;
// swap a and b, and use CUBLAS_OP_N. see the notes above
std::swap(a, b);
const cublasOperation_t cublas_trans_a = CUBLAS_OP_N;
const cublasOperation_t cublas_trans_b = CUBLAS_OP_N;
// m = (B^T).size(0) = B.size(1), and = A.size(1) after swap,
// negative axis is used because of the existence of batch matmul.
const int m = a.size(-1);
const int k = a.size(-2);
const int n = b.size(-2);
const int cublas_lda = m;
const int cublas_ldb = k;
const int cublas_ldc = m;
cublasHandle_t cublas_handle = get_cublas_handle();
#if CUDA_VERSION >= 11000
cublasGemmAlgo_t algo = CUBLAS_GEMM_DEFAULT;
#else
cublasGemmAlgo_t algo = CUBLAS_GEMM_DFALT_TENSOR_OP;
#endif
const float sp_beta = 0.f;
if (a.sizes().size() == 2 && b.sizes().size() == 2) {
CUBLAS_CHECK(cublasGemmEx(
cublas_handle, cublas_trans_a, cublas_trans_b, m, n, k, &sp_alpha,
a.data_ptr(), cuda_data_type, cublas_lda, b.data_ptr(), cuda_data_type,
cublas_ldb, &sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc,
compute_type, algo));
} else {
// batch matmul
assert(a.sizes().size() == 3 && b.sizes().size() == 3);
const long long int cublas_stride_a = m * k;
const long long int cublas_stride_b = k * n;
const long long int cublas_stride_c = m * n;
CUBLAS_CHECK(cublasGemmStridedBatchedEx(
cublas_handle, cublas_trans_a, cublas_trans_b, m,
n, k, &sp_alpha, a.data_ptr(), cuda_data_type, cublas_lda,
cublas_stride_a, b.data_ptr(), cuda_data_type, cublas_ldb, cublas_stride_b,
&sp_beta, c.data_ptr(), cuda_c_data_type, cublas_ldc, cublas_stride_c,
a.size(0), compute_type, algo));
}
}

View File

@ -0,0 +1,246 @@
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
#include <cuda_fp16.h>
#define MIN_VALUE (-1e38)
typedef at::Half fp16;
__half *cast(fp16 *ptr) {
return reinterpret_cast<__half *>(ptr);
}
template <typename F>
__global__ void kernel_wkv_forward(const int B, const int T, const int C,
const float *__restrict__ const _w, const float *__restrict__ const _u, const F *__restrict__ const _k, const F *__restrict__ const _v,
F *__restrict__ const _y, float *__restrict__ const _aa, float *__restrict__ const _bb, float *__restrict__ const _pp) {
const int idx = blockIdx.x * blockDim.x + threadIdx.x;
const int _b = idx / C;
const int _c = idx % C;
const int _offset = _b * T * C + _c;
const int _state_offset = _b * C + _c;
float u = _u[_c];
float w = _w[_c];
const F *__restrict__ const k = _k + _offset;
const F *__restrict__ const v = _v + _offset;
F *__restrict__ const y = _y + _offset;
float aa = _aa[_state_offset];
float bb = _bb[_state_offset];
float pp = _pp[_state_offset];
for (int i = 0; i < T; i++) {
const int ii = i * C;
const float kk = float(k[ii]);
const float vv = float(v[ii]);
float ww = u + kk;
float p = max(pp, ww);
float e1 = exp(pp - p);
float e2 = exp(ww - p);
y[ii] = F((e1 * aa + e2 * vv) / (e1 * bb + e2));
ww = w + pp;
p = max(ww, kk);
e1 = exp(ww - p);
e2 = exp(kk - p);
aa = e1 * aa + e2 * vv;
bb = e1 * bb + e2;
pp = p;
}
_aa[_state_offset] = aa;
_bb[_state_offset] = bb;
_pp[_state_offset] = pp;
}
template <typename F>
void cuda_wkv_forward(int B, int T, int C, float *w, float *u, F *k, F *v, F *y, float *aa, float *bb, float *pp) {
dim3 threadsPerBlock( min(C, 32) );
assert(B * C % threadsPerBlock.x == 0);
dim3 numBlocks(B * C / threadsPerBlock.x);
kernel_wkv_forward<<<numBlocks, threadsPerBlock>>>(B, T, C, w, u, k, v, y, aa, bb, pp);
}
template void cuda_wkv_forward<fp16>(
int B, int T, int C,
float *w, float *u, fp16 *k, fp16 *v, fp16 *y,
float *aa, float *bb, float *pp);
template void cuda_wkv_forward<float>(
int B, int T, int C,
float *w, float *u, float *k, float *v, float *y,
float *aa, float *bb, float *pp);
__global__ void kernel_mm_seq_fp32i8(
const int B, const int N, const int M,
const float *__restrict__ const x, const int x_stride,
const uint8_t *__restrict__ const w, const int w_stride,
const float *__restrict__ const mx,
const float *__restrict__ const rx,
const float *__restrict__ const my,
const float *__restrict__ const ry,
float *__restrict__ const y, const int y_stride) {
const int i = blockIdx.x * blockDim.x + threadIdx.x;
const int k = blockIdx.y * blockDim.y + threadIdx.y;
if (i < B && k < M) {
float y_local = 0;
for (int j = 0; j < N; ++j) {
y_local += x[i * x_stride + j] * (
(float(w[j * w_stride + k]) + 0.5f)
* rx[k] * ry[j] + mx[k] + my[j]
);
}
y[i * y_stride + k] = y_local;
}
}
template <typename F>
void cuda_mm8_seq(int B, int N, int M,
F *x, int x_stride,
uint8_t *w, int w_stride,
F *mx, F *rx,
F *my, F *ry,
F *y, int y_stride);
template <>
void cuda_mm8_seq<float>(int B, int N, int M,
float *x, int x_stride,
uint8_t *w, int w_stride,
float *mx, float *rx,
float *my, float *ry,
float *y, int y_stride) {
dim3 blockSize(1, 128);
dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
kernel_mm_seq_fp32i8<<<gridSize, blockSize>>>(
B, N, M, x, x_stride, w, w_stride,
mx, rx, my, ry, y, y_stride);
}
__global__ void kernel_mm_seq_fp16i8(
const int B, const int N, const int M,
const __half *__restrict__ const x, const int x_stride,
const uint8_t *__restrict__ const w, const int w_stride,
const __half *__restrict__ const mx,
const __half *__restrict__ const rx,
const __half *__restrict__ const my,
const __half *__restrict__ const ry,
__half *__restrict__ const y, const int y_stride) {
const int i = blockIdx.x * blockDim.x + threadIdx.x;
const int k = blockIdx.y * blockDim.y + threadIdx.y;
if (i < B && k < M) {
float y_local = 0;
for (int j = 0; j < N; ++j) {
y_local += __half2float(x[i * x_stride + j]) * (
(float(w[j * w_stride + k]) + 0.5f)
* __half2float(rx[k]) * __half2float(ry[j])
+ __half2float(mx[k]) + __half2float(my[j])
);
}
y[i * y_stride + k] = __float2half(y_local);
}
}
template <>
void cuda_mm8_seq<fp16>(int B, int N, int M,
fp16 *x, int x_stride,
uint8_t *w, int w_stride,
fp16 *mx, fp16 *rx,
fp16 *my, fp16 *ry,
fp16 *y, int y_stride) {
dim3 blockSize(1, 128);
dim3 gridSize((B + blockSize.x - 1) / blockSize.x, (M + blockSize.y - 1) / blockSize.y);
kernel_mm_seq_fp16i8<<<gridSize, blockSize>>>(
B, N, M, cast(x), x_stride, w, w_stride,
cast(mx), cast(rx), cast(my), cast(ry), cast(y), y_stride);
}
#define MM8_ONE_JSPLIT 24
#define MM8_ONE_TILE 1024
__global__ void kernel_mm_one_fp32i8(
const int N, const int M,
const float *__restrict__ const x,
const uint8_t *__restrict__ const w, const int w_stride,
const float *__restrict__ const mx,
const float *__restrict__ const rx,
const float *__restrict__ const my,
const float *__restrict__ const ry,
float *__restrict__ const y) {
const int k = blockIdx.y * blockDim.y + threadIdx.y;
const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
if (k < M) {
float y_local = 0;
for (int j = j0; j < j1; ++j) {
y_local += x[j] * (
(float(w[j * w_stride + k]) + 0.5f)
* rx[k] * ry[j] + mx[k] + my[j]
);
}
atomicAdd(&y[k], y_local);
}
}
template <typename F>
void cuda_mm8_one(int N, int M,
F *x,
uint8_t *w, int w_stride,
F *mx, F *rx,
F *my, F *ry,
float *y);
template <>
void cuda_mm8_one<float>(int N, int M,
float *x,
uint8_t *w, int w_stride,
float *mx, float *rx,
float *my, float *ry,
float *y) {
dim3 blockSize(1, MM8_ONE_TILE);
dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
kernel_mm_one_fp32i8<<<gridSize, blockSize>>>(
N, M, x, w, w_stride,
mx, rx, my, ry, y);
}
__global__ void kernel_mm_one_fp16i8(
const int N, const int M,
const __half *__restrict__ const x,
const uint8_t *__restrict__ const w, const int w_stride,
const __half *__restrict__ const mx,
const __half *__restrict__ const rx,
const __half *__restrict__ const my,
const __half *__restrict__ const ry,
float *__restrict__ const y) {
const int k = blockIdx.y * blockDim.y + threadIdx.y;
const int j0 = min(N, blockIdx.x * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
const int j1 = min(N, (blockIdx.x + 1) * ((N + MM8_ONE_JSPLIT - 1) / MM8_ONE_JSPLIT));
if (k < M) {
float y_local = 0;
for (int j = j0; j < j1; ++j) {
y_local += __half2float(x[j]) * (
(float(w[j * w_stride + k]) + 0.5f)
* __half2float(rx[k]) * __half2float(ry[j])
+ __half2float(mx[k]) + __half2float(my[j])
);
}
atomicAdd(&y[k], y_local);
}
}
template <>
void cuda_mm8_one<fp16>(int N, int M,
fp16 *x,
uint8_t *w, int w_stride,
fp16 *mx, fp16 *rx,
fp16 *my, fp16 *ry,
float *y) {
dim3 blockSize(1, MM8_ONE_TILE);
dim3 gridSize(MM8_ONE_JSPLIT, (M + blockSize.y - 1) / blockSize.y);
kernel_mm_one_fp16i8<<<gridSize, blockSize>>>(
N, M, cast(x), w, w_stride,
cast(mx), cast(rx), cast(my), cast(ry), y);
}

View File

@ -0,0 +1,7 @@
#include "ATen/ATen.h"
#include <cuda_fp16.h>
template <typename T> T *data_ptr(torch::Tensor x) { return x.data_ptr<T>(); }
template <> inline half *data_ptr(torch::Tensor x) {
return reinterpret_cast<half *>(x.data_ptr<at::Half>());
}

View File

@ -0,0 +1,181 @@
#include <torch/extension.h>
#include "ATen/ATen.h"
#include <iostream>
#include <c10/cuda/CUDAGuard.h>
typedef at::Half fp16;
template <typename F>
void cuda_wkv_forward(int B, int T, int C,
float *w, float *u, F *k, F *v, F *y,
float *aa, float *bb, float *pp);
template <typename F>
void cuda_mm8_seq(int B, int N, int M,
F *x, int x_stride,
uint8_t *w, int w_stride,
F *mx, F *rx,
F *my, F *ry,
F *y, int y_stride);
template <typename F>
void cuda_mm8_one(int N, int M,
F *x,
uint8_t *w, int w_stride,
F *mx, F *rx,
F *my, F *ry,
float *y);
void wkv_forward(int64_t B, int64_t T, int64_t C,
torch::Tensor &w, torch::Tensor &u,
torch::Tensor &k, torch::Tensor &v, torch::Tensor &y,
torch::Tensor &aa, torch::Tensor &bb, torch::Tensor &pp) {
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
switch (k.scalar_type()) {
case c10::ScalarType::Half:
cuda_wkv_forward(B, T, C,
w.data_ptr<float>(), u.data_ptr<float>(),
k.data_ptr<fp16>(), v.data_ptr<fp16>(), y.data_ptr<fp16>(),
aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
break;
case c10::ScalarType::Float:
cuda_wkv_forward(B, T, C,
w.data_ptr<float>(), u.data_ptr<float>(),
k.data_ptr<float>(), v.data_ptr<float>(), y.data_ptr<float>(),
aa.data_ptr<float>(), bb.data_ptr<float>(), pp.data_ptr<float>());
break;
default:
assert(false && "Only FP16 and FP32 are currently supported");
}
}
void mm8_seq(int64_t B, int64_t N, int64_t M,
torch::Tensor &x, torch::Tensor &w,
torch::Tensor &mx, torch::Tensor &rx,
torch::Tensor &my, torch::Tensor &ry,
torch::Tensor &y) {
assert(x.stride(1) == 1);
assert(w.stride(1) == 1);
assert(mx.stride(0) == 1 && rx.stride(0) == 1);
assert(my.stride(0) == 1 && ry.stride(0) == 1);
assert(y.stride(1) == 1);
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
switch (x.scalar_type()) {
case c10::ScalarType::Half:
cuda_mm8_seq(
B, N, M,
x.data_ptr<fp16>(), x.stride(0),
w.data_ptr<uint8_t>(), w.stride(0),
mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
y.data_ptr<fp16>(), y.stride(0));
break;
case c10::ScalarType::Float:
cuda_mm8_seq(
B, N, M,
x.data_ptr<float>(), x.stride(0),
w.data_ptr<uint8_t>(), w.stride(0),
mx.data_ptr<float>(), rx.data_ptr<float>(),
my.data_ptr<float>(), ry.data_ptr<float>(),
y.data_ptr<float>(), y.stride(0));
break;
default:
assert(false && "Only FP16 and FP32 are currently supported");
}
}
void mm8_one(int64_t N, int64_t M,
torch::Tensor &x, torch::Tensor &w,
torch::Tensor &mx, torch::Tensor &rx,
torch::Tensor &my, torch::Tensor &ry,
torch::Tensor &y) {
assert(x.stride(0) == 1);
assert(w.stride(1) == 1);
assert(mx.stride(0) == 1 && rx.stride(0) == 1);
assert(my.stride(0) == 1 && ry.stride(0) == 1);
assert(y.stride(0) == 1);
const at::cuda::OptionalCUDAGuard device_guard(device_of(w));
switch (x.scalar_type()) {
case c10::ScalarType::Half:
cuda_mm8_one(
N, M,
x.data_ptr<fp16>(),
w.data_ptr<uint8_t>(), w.stride(0),
mx.data_ptr<fp16>(), rx.data_ptr<fp16>(),
my.data_ptr<fp16>(), ry.data_ptr<fp16>(),
y.data_ptr<float>());
break;
case c10::ScalarType::Float:
cuda_mm8_one(
N, M,
x.data_ptr<float>(),
w.data_ptr<uint8_t>(), w.stride(0),
mx.data_ptr<float>(), rx.data_ptr<float>(),
my.data_ptr<float>(), ry.data_ptr<float>(),
y.data_ptr<float>());
break;
default:
assert(false && "Only FP16 and FP32 are currently supported");
}
}
using torch::Tensor;
#ifndef DISABLE_CUBLAS_GEMM
void gemm_fp16_cublas_tensor(Tensor a, Tensor b, Tensor c);
#endif
Tensor att_one(Tensor x, Tensor ln_w, Tensor ln_b, Tensor sx, Tensor k_mix,
Tensor v_mix, Tensor r_mix, Tensor kw,
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx, Tensor rw,
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
/* imm */ Tensor k, Tensor pp, Tensor ww, Tensor aa, Tensor bb,
Tensor t_decay, /* imm */ Tensor v, /* in & out */ Tensor r,
/* out */ Tensor x_plus_out, /* out */ Tensor t1,
/* out */ Tensor t2, /* out */ Tensor p);
Tensor att_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
Tensor v_mix, Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
Tensor ow, Tensor t_first, Tensor pp, Tensor aa, Tensor bb,
Tensor t_decay, /* imm */ Tensor buf, /* out */ Tensor x_plus_out);
Tensor att_one_v5(Tensor x, Tensor sx, Tensor s, Tensor ln_w, Tensor ln_b,
Tensor lx_w, Tensor lx_b, Tensor k_mix, Tensor v_mix,
Tensor r_mix, Tensor kw,
/* imm */ Tensor kx, Tensor vw, /* imm */ Tensor vx,
Tensor rw,
/* imm */ Tensor rx, Tensor ow, Tensor t_first,
/* imm */ Tensor k, Tensor t_decay, /* imm */ Tensor v,
/* imm */ Tensor r, /* imm */ Tensor s1,
/* out */ Tensor x_plus_out, /* out */ Tensor s2);
Tensor ffn_seq(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
/* imm */ Tensor buf,
/* out */ Tensor x_plus_out);
Tensor ffn_one(Tensor x, Tensor sx, Tensor ln_w, Tensor ln_b, Tensor k_mix,
Tensor r_mix, Tensor kw, Tensor vw, Tensor rw,
/* imm */ Tensor buf,
/* out */ Tensor x_plus_out);
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("wkv_forward", &wkv_forward, "wkv forward");
m.def("mm8_seq", &mm8_seq, "mm8 seq");
m.def("mm8_one", &mm8_one, "mm8 one");
m.def("gemm_fp16_cublas", &gemm_fp16_cublas_tensor, "gemv fp16 cublas");
m.def("att_one", &att_one, "att one");
m.def("att_one_v5", &att_one_v5, "att one v5");
m.def("att_seq", &att_seq, "att seq");
m.def("ffn_seq", &ffn_seq, "ffn seq");
m.def("ffn_one", &ffn_one, "ffn one");
}
TORCH_LIBRARY(rwkv, m) {
m.def("wkv_forward", wkv_forward);
m.def("mm8_seq", mm8_seq);
m.def("mm8_one", mm8_one);
m.def("gemm_fp16_cublas", gemm_fp16_cublas_tensor);
m.def("att_one", att_one);
m.def("att_one_v5", &att_one_v5);
m.def("att_seq", att_seq);
m.def("ffn_seq", ffn_seq);
m.def("ffn_one", ffn_one);
}

1821
backend-python/rwkv_pip/beta/model.py vendored Normal file

File diff suppressed because it is too large Load Diff

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -9,9 +9,6 @@ class RWKV:
self.model = rwkv_cpp_model.RWKVModel(self.library, model_path)
self.w = {} # fake weight
self.w["emb.weight"] = [0] * self.model.n_vocab
self.version = (
self.model.arch_version_major + self.model.arch_version_minor / 10
)
def forward(self, tokens: List[int], state: Union[Any, None] = None):
return self.model.eval_sequence_in_chunks(tokens, state, use_numpy=True)

Binary file not shown.

View File

@ -52,14 +52,9 @@ class RWKVModel:
if 'gpu_layers_count' in kwargs:
gpu_layer_count = kwargs['gpu_layers_count']
if not os.path.isfile(model_path):
raise ValueError(f'{model_path} is not a file')
if not (thread_count > 0):
raise ValueError('Thread count must be > 0')
if not (gpu_layer_count >= 0):
raise ValueError('GPU layer count must be >= 0')
assert os.path.isfile(model_path), f'{model_path} is not a file'
assert thread_count > 0, 'Thread count must be > 0'
assert gpu_layer_count >= 0, 'GPU layer count must be >= 0'
self._library: rwkv_cpp_shared_library.RWKVSharedLibrary = shared_library
@ -89,19 +84,10 @@ class RWKVModel:
Count of layers to offload onto the GPU, must be >= 0.
"""
if not (layer_count >= 0):
raise ValueError('Layer count must be >= 0')
assert layer_count >= 0, 'Layer count must be >= 0'
return self._library.rwkv_gpu_offload_layers(self._ctx, layer_count)
@property
def arch_version_major(self) -> int:
return self._library.rwkv_get_arch_version_major(self._ctx)
@property
def arch_version_minor(self) -> int:
return self._library.rwkv_get_arch_version_minor(self._ctx)
@property
def n_vocab(self) -> int:
return self._library.rwkv_get_n_vocab(self._ctx)
@ -147,8 +133,7 @@ class RWKVModel:
Logits vector of shape (n_vocab); state for the next step.
"""
if not self._valid:
raise ValueError('Model was freed')
assert self._valid, 'Model was freed'
use_numpy = self._detect_numpy_usage([state_in, state_out, logits_out], use_numpy)
@ -222,8 +207,7 @@ class RWKVModel:
Logits vector of shape (n_vocab); state for the next step.
"""
if not self._valid:
raise ValueError('Model was freed')
assert self._valid, 'Model was freed'
use_numpy = self._detect_numpy_usage([state_in, state_out, logits_out], use_numpy)
@ -297,8 +281,7 @@ class RWKVModel:
Logits vector of shape (n_vocab); state for the next step.
"""
if not self._valid:
raise ValueError('Model was freed')
assert self._valid, 'Model was freed'
use_numpy = self._detect_numpy_usage([state_in, state_out, logits_out], use_numpy)
@ -337,8 +320,7 @@ class RWKVModel:
The object must not be used anymore after calling this method.
"""
if not self._valid:
raise ValueError('Already freed')
assert self._valid, 'Already freed'
self._valid = False
@ -362,25 +344,16 @@ class RWKVModel:
def _validate_tensor(self, tensor: NumpyArrayOrPyTorchTensor, name: str, size: int) -> None:
if self._is_pytorch_tensor(tensor):
tensor: torch.Tensor = tensor
if tensor.device != torch.device('cpu'):
raise ValueError(f'{name} is not on CPU')
if tensor.dtype != torch.float32:
raise ValueError(f'{name} is not of type float32')
if tensor.shape != (size,):
raise ValueError(f'{name} has invalid shape {tensor.shape}, expected ({size})')
if not tensor.is_contiguous():
raise ValueError(f'{name} is not contiguous')
assert tensor.device == torch.device('cpu'), f'{name} is not on CPU'
assert tensor.dtype == torch.float32, f'{name} is not of type float32'
assert tensor.shape == (size,), f'{name} has invalid shape {tensor.shape}, expected ({size})'
assert tensor.is_contiguous(), f'{name} is not contiguous'
else:
import numpy as np
tensor: np.ndarray = tensor
if tensor.dtype != np.float32:
raise ValueError(f'{name} is not of type float32')
if tensor.shape != (size,):
raise ValueError(f'{name} has invalid shape {tensor.shape}, expected ({size})')
if not tensor.data.contiguous:
raise ValueError(f'{name} is not contiguous')
assert tensor.dtype == np.float32, f'{name} is not of type float32'
assert tensor.shape == (size,), f'{name} has invalid shape {tensor.shape}, expected ({size})'
assert tensor.data.contiguous, f'{name} is not contiguous'
def _get_data_ptr(self, tensor: NumpyArrayOrPyTorchTensor):
if self._is_pytorch_tensor(tensor):

View File

@ -6,22 +6,21 @@ import platform
from typing import Optional, List, Tuple, Callable
QUANTIZED_FORMAT_NAMES: Tuple[str, str, str, str, str] = (
"Q4_0",
"Q4_1",
"Q5_0",
"Q5_1",
"Q8_0",
'Q4_0',
'Q4_1',
'Q5_0',
'Q5_1',
'Q8_0'
)
P_FLOAT = ctypes.POINTER(ctypes.c_float)
P_INT = ctypes.POINTER(ctypes.c_int32)
class RWKVContext:
def __init__(self, ptr: ctypes.pointer) -> None:
self.ptr: ctypes.pointer = ptr
class RWKVSharedLibrary:
"""
Python wrapper around rwkv.cpp shared library.
@ -40,7 +39,7 @@ class RWKVSharedLibrary:
# When Python is greater than 3.8, we need to reprocess the custom dll
# according to the documentation to prevent loading failure errors.
# https://docs.python.org/3/whatsnew/3.8.html#ctypes
if platform.system().lower() == "windows":
if platform.system().lower() == 'windows':
self.library = ctypes.CDLL(shared_library_path, winmode=0)
else:
self.library = ctypes.cdll.LoadLibrary(shared_library_path)
@ -48,48 +47,39 @@ class RWKVSharedLibrary:
self.library.rwkv_init_from_file.argtypes = [ctypes.c_char_p, ctypes.c_uint32]
self.library.rwkv_init_from_file.restype = ctypes.c_void_p
self.library.rwkv_gpu_offload_layers.argtypes = [
ctypes.c_void_p,
ctypes.c_uint32,
]
self.library.rwkv_gpu_offload_layers.argtypes = [ctypes.c_void_p, ctypes.c_uint32]
self.library.rwkv_gpu_offload_layers.restype = ctypes.c_bool
self.library.rwkv_eval.argtypes = [
ctypes.c_void_p, # ctx
ctypes.c_int32, # token
P_FLOAT, # state_in
P_FLOAT, # state_out
P_FLOAT, # logits_out
ctypes.c_void_p, # ctx
ctypes.c_int32, # token
P_FLOAT, # state_in
P_FLOAT, # state_out
P_FLOAT # logits_out
]
self.library.rwkv_eval.restype = ctypes.c_bool
self.library.rwkv_eval_sequence.argtypes = [
ctypes.c_void_p, # ctx
P_INT, # tokens
ctypes.c_size_t, # token count
P_FLOAT, # state_in
P_FLOAT, # state_out
P_FLOAT, # logits_out
ctypes.c_void_p, # ctx
P_INT, # tokens
ctypes.c_size_t, # token count
P_FLOAT, # state_in
P_FLOAT, # state_out
P_FLOAT # logits_out
]
self.library.rwkv_eval_sequence.restype = ctypes.c_bool
self.library.rwkv_eval_sequence_in_chunks.argtypes = [
ctypes.c_void_p, # ctx
P_INT, # tokens
ctypes.c_size_t, # token count
ctypes.c_size_t, # chunk size
P_FLOAT, # state_in
P_FLOAT, # state_out
P_FLOAT, # logits_out
ctypes.c_void_p, # ctx
P_INT, # tokens
ctypes.c_size_t, # token count
ctypes.c_size_t, # chunk size
P_FLOAT, # state_in
P_FLOAT, # state_out
P_FLOAT # logits_out
]
self.library.rwkv_eval_sequence_in_chunks.restype = ctypes.c_bool
self.library.rwkv_get_arch_version_major.argtypes = [ctypes.c_void_p]
self.library.rwkv_get_arch_version_major.restype = ctypes.c_uint32
self.library.rwkv_get_arch_version_minor.argtypes = [ctypes.c_void_p]
self.library.rwkv_get_arch_version_minor.restype = ctypes.c_uint32
self.library.rwkv_get_n_vocab.argtypes = [ctypes.c_void_p]
self.library.rwkv_get_n_vocab.restype = ctypes.c_size_t
@ -111,11 +101,7 @@ class RWKVSharedLibrary:
self.library.rwkv_free.argtypes = [ctypes.c_void_p]
self.library.rwkv_free.restype = None
self.library.rwkv_quantize_model_file.argtypes = [
ctypes.c_char_p,
ctypes.c_char_p,
ctypes.c_char_p,
]
self.library.rwkv_quantize_model_file.argtypes = [ctypes.c_char_p, ctypes.c_char_p, ctypes.c_char_p]
self.library.rwkv_quantize_model_file.restype = ctypes.c_bool
self.library.rwkv_get_system_info_string.argtypes = []
@ -123,9 +109,7 @@ class RWKVSharedLibrary:
self.nullptr = ctypes.cast(0, ctypes.c_void_p)
def rwkv_init_from_file(
self, model_file_path: str, thread_count: int
) -> RWKVContext:
def rwkv_init_from_file(self, model_file_path: str, thread_count: int) -> RWKVContext:
"""
Loads the model from a file and prepares it for inference.
Throws an exception in case of any error. Error messages would be printed to stderr.
@ -138,12 +122,9 @@ class RWKVSharedLibrary:
Count of threads to use, must be positive.
"""
ptr = self.library.rwkv_init_from_file(
model_file_path.encode("utf-8"), ctypes.c_uint32(thread_count)
)
ptr = self.library.rwkv_init_from_file(model_file_path.encode('utf-8'), ctypes.c_uint32(thread_count))
if ptr is None:
raise ValueError("rwkv_init_from_file failed, check stderr")
assert ptr is not None, 'rwkv_init_from_file failed, check stderr'
return RWKVContext(ptr)
@ -164,20 +145,17 @@ class RWKVSharedLibrary:
Count of layers to offload onto the GPU, must be >= 0.
"""
if not (layer_count >= 0):
raise ValueError("Layer count must be >= 0")
assert layer_count >= 0, 'Layer count must be >= 0'
return self.library.rwkv_gpu_offload_layers(
ctx.ptr, ctypes.c_uint32(layer_count)
)
return self.library.rwkv_gpu_offload_layers(ctx.ptr, ctypes.c_uint32(layer_count))
def rwkv_eval(
self,
ctx: RWKVContext,
token: int,
state_in_address: Optional[int],
state_out_address: int,
logits_out_address: int,
self,
ctx: RWKVContext,
token: int,
state_in_address: Optional[int],
state_out_address: int,
logits_out_address: int
) -> None:
"""
Evaluates the model for a single token.
@ -198,22 +176,21 @@ class RWKVSharedLibrary:
Address of the first element of a FP32 buffer of size rwkv_get_logits_buffer_element_count. This buffer will be written to.
"""
if not self.library.rwkv_eval(
assert self.library.rwkv_eval(
ctx.ptr,
ctypes.c_int32(token),
ctypes.cast(0 if state_in_address is None else state_in_address, P_FLOAT),
ctypes.cast(state_out_address, P_FLOAT),
ctypes.cast(logits_out_address, P_FLOAT),
):
raise ValueError("rwkv_eval failed, check stderr")
ctypes.cast(logits_out_address, P_FLOAT)
), 'rwkv_eval failed, check stderr'
def rwkv_eval_sequence(
self,
ctx: RWKVContext,
tokens: List[int],
state_in_address: Optional[int],
state_out_address: int,
logits_out_address: int,
self,
ctx: RWKVContext,
tokens: List[int],
state_in_address: Optional[int],
state_out_address: int,
logits_out_address: int
) -> None:
"""
Evaluates the model for a sequence of tokens.
@ -246,24 +223,23 @@ class RWKVSharedLibrary:
Address of the first element of a FP32 buffer of size rwkv_get_logits_buffer_element_count. This buffer will be written to.
"""
if not self.library.rwkv_eval_sequence(
assert self.library.rwkv_eval_sequence(
ctx.ptr,
ctypes.cast((ctypes.c_int32 * len(tokens))(*tokens), P_INT),
ctypes.c_size_t(len(tokens)),
ctypes.cast(0 if state_in_address is None else state_in_address, P_FLOAT),
ctypes.cast(state_out_address, P_FLOAT),
ctypes.cast(logits_out_address, P_FLOAT),
):
raise ValueError("rwkv_eval_sequence failed, check stderr")
ctypes.cast(logits_out_address, P_FLOAT)
), 'rwkv_eval_sequence failed, check stderr'
def rwkv_eval_sequence_in_chunks(
self,
ctx: RWKVContext,
tokens: List[int],
chunk_size: int,
state_in_address: Optional[int],
state_out_address: int,
logits_out_address: int,
self,
ctx: RWKVContext,
tokens: List[int],
chunk_size: int,
state_in_address: Optional[int],
state_out_address: int,
logits_out_address: int
) -> None:
"""
Evaluates the model for a sequence of tokens using `rwkv_eval_sequence`, splitting a potentially long sequence into fixed-length chunks.
@ -293,40 +269,15 @@ class RWKVSharedLibrary:
Address of the first element of a FP32 buffer of size rwkv_get_logits_buffer_element_count. This buffer will be written to.
"""
if not self.library.rwkv_eval_sequence_in_chunks(
assert self.library.rwkv_eval_sequence_in_chunks(
ctx.ptr,
ctypes.cast((ctypes.c_int32 * len(tokens))(*tokens), P_INT),
ctypes.c_size_t(len(tokens)),
ctypes.c_size_t(chunk_size),
ctypes.cast(0 if state_in_address is None else state_in_address, P_FLOAT),
ctypes.cast(state_out_address, P_FLOAT),
ctypes.cast(logits_out_address, P_FLOAT),
):
raise ValueError("rwkv_eval_sequence_in_chunks failed, check stderr")
def rwkv_get_arch_version_major(self, ctx: RWKVContext) -> int:
"""
Returns the major version used by the given model.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
"""
return self.library.rwkv_get_arch_version_major(ctx.ptr)
def rwkv_get_arch_version_minor(self, ctx: RWKVContext) -> int:
"""
Returns the minor version used by the given model.
Parameters
----------
ctx : RWKVContext
RWKV context obtained from rwkv_init_from_file.
"""
return self.library.rwkv_get_arch_version_minor(ctx.ptr)
ctypes.cast(logits_out_address, P_FLOAT)
), 'rwkv_eval_sequence_in_chunks failed, check stderr'
def rwkv_get_n_vocab(self, ctx: RWKVContext) -> int:
"""
@ -407,9 +358,7 @@ class RWKVSharedLibrary:
ctx.ptr = self.nullptr
def rwkv_quantize_model_file(
self, model_file_path_in: str, model_file_path_out: str, format_name: str
) -> None:
def rwkv_quantize_model_file(self, model_file_path_in: str, model_file_path_out: str, format_name: str) -> None:
"""
Quantizes FP32 or FP16 model to one of INT4 formats.
Throws an exception in case of any error. Error messages would be printed to stderr.
@ -424,25 +373,20 @@ class RWKVSharedLibrary:
One of QUANTIZED_FORMAT_NAMES.
"""
if format_name not in QUANTIZED_FORMAT_NAMES:
raise ValueError(
f"Unknown format name {format_name}, use one of {QUANTIZED_FORMAT_NAMES}"
)
assert format_name in QUANTIZED_FORMAT_NAMES, f'Unknown format name {format_name}, use one of {QUANTIZED_FORMAT_NAMES}'
if not self.library.rwkv_quantize_model_file(
model_file_path_in.encode("utf-8"),
model_file_path_out.encode("utf-8"),
format_name.encode("utf-8"),
):
raise ValueError("rwkv_quantize_model_file failed, check stderr")
assert self.library.rwkv_quantize_model_file(
model_file_path_in.encode('utf-8'),
model_file_path_out.encode('utf-8'),
format_name.encode('utf-8')
), 'rwkv_quantize_model_file failed, check stderr'
def rwkv_get_system_info_string(self) -> str:
"""
Returns system information string.
"""
return self.library.rwkv_get_system_info_string().decode("utf-8")
return self.library.rwkv_get_system_info_string().decode('utf-8')
def load_rwkv_shared_library() -> RWKVSharedLibrary:
"""
@ -452,27 +396,27 @@ def load_rwkv_shared_library() -> RWKVSharedLibrary:
file_name: str
if "win32" in sys.platform or "cygwin" in sys.platform:
file_name = "rwkv.dll"
elif "darwin" in sys.platform:
file_name = "librwkv.dylib"
if 'win32' in sys.platform or 'cygwin' in sys.platform:
file_name = 'rwkv.dll'
elif 'darwin' in sys.platform:
file_name = 'librwkv.dylib'
else:
file_name = "librwkv.so"
file_name = 'librwkv.so'
# Possible sub-paths to the library relative to the repo dir.
child_paths: List[Callable[[pathlib.Path], pathlib.Path]] = [
# No lookup for Debug config here.
# I assume that if a user wants to debug the library,
# they will be able to find the library and set the exact path explicitly.
lambda p: p / "backend-python" / "rwkv_pip" / "cpp" / file_name,
lambda p: p / "bin" / "Release" / file_name,
lambda p: p / "bin" / file_name,
lambda p: p / 'backend-python' / 'rwkv_pip' / 'cpp' / file_name,
lambda p: p / 'bin' / 'Release' / file_name,
lambda p: p / 'bin' / file_name,
# Some people prefer to build in the "build" subdirectory.
lambda p: p / "build" / "bin" / "Release" / file_name,
lambda p: p / "build" / "bin" / file_name,
lambda p: p / "build" / file_name,
lambda p: p / 'build' / 'bin' / 'Release' / file_name,
lambda p: p / 'build' / 'bin' / file_name,
lambda p: p / 'build' / file_name,
# Fallback.
lambda p: p / file_name,
lambda p: p / file_name
]
working_dir: pathlib.Path = pathlib.Path(os.path.abspath(os.getcwd()))
@ -486,7 +430,7 @@ def load_rwkv_shared_library() -> RWKVSharedLibrary:
# .
working_dir,
# Repo dir relative to this Python file.
pathlib.Path(os.path.abspath(__file__)).parent.parent.parent,
pathlib.Path(os.path.abspath(__file__)).parent.parent.parent
]
for parent_path in parent_paths:
@ -496,7 +440,5 @@ def load_rwkv_shared_library() -> RWKVSharedLibrary:
if os.path.isfile(full_path):
return RWKVSharedLibrary(str(full_path))
raise ValueError(
f"Failed to find {file_name} automatically; "
f"you need to find the library and create RWKVSharedLibrary specifying the path to it"
)
assert False, (f'Failed to find {file_name} automatically; '
f'you need to find the library and create RWKVSharedLibrary specifying the path to it')

View File

@ -488,19 +488,14 @@ class RWKV(MyModule):
print_need_newline = False
REAL_TIME_FIRST = False
args.time_state = False
for x in list(w.keys()):
if ".time_faaaa" in x:
REAL_TIME_FIRST = True
if ".time_state" in x:
args.time_state = True
if REAL_TIME_FIRST:
w = {
(
k.replace(".time_faaaa", ".time_first")
if ".time_faaaa" in k
else k
): v
k.replace(".time_faaaa", ".time_first")
if ".time_faaaa" in k
else k: v
for k, v in w.items()
}
self.w = w
@ -636,12 +631,10 @@ class RWKV(MyModule):
torch.cuda.empty_cache()
shape = [i for i in w[x].shape if i != 1]
if len(shape) > 2:
shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)} {str(shape[2]).rjust(5)}"
elif len(shape) > 1:
shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)} "
if len(shape) > 1:
shape = f" {str(shape[0]).rjust(5)} {str(shape[1]).rjust(5)}"
else:
shape = f" {str(shape[0]).rjust(5)} "
shape = f" {str(shape[0]).rjust(5)} "
if layer_id == 0 or layer_id >= args.n_layer - 1:
if print_need_newline:
prxxx("\n", end="")
@ -2115,25 +2108,16 @@ class RWKV(MyModule):
state[i * 3 + 0] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()
if args.time_state:
state[i * 3 + 1] = (
w[f"blocks.{i}.att.time_state"]
.transpose(1, 2)
.to(dtype=torch.float, device=dev)
.requires_grad_(False)
.contiguous()
)
else:
state[i * 3 + 1] = torch.zeros(
(
args.n_head,
args.n_att // args.n_head,
args.n_att // args.n_head,
),
dtype=torch.float,
requires_grad=False,
device=dev,
).contiguous()
state[i * 3 + 1] = torch.zeros(
(
args.n_head,
args.n_att // args.n_head,
args.n_att // args.n_head,
),
dtype=torch.float,
requires_grad=False,
device=dev,
).contiguous()
state[i * 3 + 2] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()

View File

@ -13,6 +13,12 @@ except ModuleNotFoundError:
class RWKV:
def __init__(self, model_path: str, strategy: str = None):
self.info = wrp.peek_info(model_path)
self.w = {} # fake weight
self.w["emb.weight"] = [0] * self.info.num_vocab
self.version = str(self.info.version).lower()
self.wrp = getattr(wrp, self.version)
layer = (
int(s.lstrip("layer"))
for s in strategy.split()
@ -26,25 +32,21 @@ class RWKV:
for s in s.split(",")
if s.startswith("chunk")
)
self.token_chunk_size = next(chunk_size, 32)
args = {
"path": model_path,
"file": model_path,
"turbo": True,
"quant": next(layer, 31) if "i8" in strategy else 0,
"quant_nf4": next(layer, 26) if "i4" in strategy else 0,
"token_chunk_size": next(chunk_size, 32),
"lora": None,
}
self.model = wrp.Model(**args)
self.info = self.model.info()
self.w = {} # fake weight
self.w["emb.weight"] = [0] * self.info.num_vocab
self.version = str(self.info.version).lower()
self.version = float(self.version.lower().replace("v", ""))
self.model = self.wrp.Model(**args)
def forward(self, tokens: List[int], state: Union[Any, None] = None):
if state is None:
self.model.clear_state()
elif type(state).__name__ == "State_Cpu":
self.model.load_state(state)
logits = self.model.run(tokens, self.token_chunk_size)
ret_state = "State_Gpu"
return logits, ret_state
if type(state).__name__ == "BackedState": # memory state
gpu_state = self.wrp.ModelState(self.model, 1)
gpu_state.load(state)
else:
gpu_state = state
return self.wrp.run_one(self.model, tokens, gpu_state)

View File

@ -4,10 +4,9 @@ import os
import pathlib
import copy
import re
import time
from typing import Dict, Iterable, List, Tuple, Union, Type, Callable
from utils.log import quick_log
from fastapi import HTTPException, status
from fastapi import HTTPException
from pydantic import BaseModel, Field
from routes import state_cache
import global_var
@ -27,8 +26,6 @@ class AbstractRWKV(ABC):
self.EOS_ID = 0
self.name = "rwkv"
self.model_path = ""
self.version = 4
self.model = model
self.pipeline = pipeline
self.model_state = None
@ -42,10 +39,8 @@ class AbstractRWKV(ABC):
self.top_k = 0
self.penalty_alpha_presence = 0
self.penalty_alpha_frequency = 1
self.penalty_decay = 0.99
self.penalty_decay = 0.996
self.global_penalty = False
self.state_path = ""
self.state_tuned = None
@abstractmethod
def adjust_occurrence(self, occurrence: Dict, token: int):
@ -239,10 +234,7 @@ class AbstractRWKV(ABC):
except HTTPException:
pass
if cache is None or cache["prompt"] == "" or cache["state"] is None:
if self.state_path:
self.model_state = copy.deepcopy(self.state_tuned)
else:
self.model_state = None
self.model_state = None
self.model_tokens = []
else:
delta_prompt = prompt[len(cache["prompt"]) :]
@ -252,16 +244,9 @@ class AbstractRWKV(ABC):
prompt_token_len = 0
if delta_prompt != "":
prompt_start_time = time.time()
logits, prompt_token_len = self.run_rnn(
self.fix_tokens(self.pipeline.encode(delta_prompt))
)
prompt_end_time = time.time()
prompt_interval = prompt_end_time - prompt_start_time
tps = 0
if prompt_interval > 0:
tps = prompt_token_len / prompt_interval
print(f"Prompt Prefill TPS: {tps:.2f}", end=" ", flush=True)
try:
state_cache.add_state(
state_cache.AddStateBody(
@ -615,16 +600,22 @@ def get_model_path(model_path: str) -> str:
def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV:
model_path = get_model_path(model)
model = get_model_path(model)
rwkv_beta = global_var.get(global_var.Args).rwkv_beta
rwkv_cpp = getattr(global_var.get(global_var.Args), "rwkv.cpp")
webgpu = global_var.get(global_var.Args).webgpu
if "midi" in model_path.lower() or "abc" in model_path.lower():
if "midi" in model.lower() or "abc" in model.lower():
os.environ["RWKV_RESCALE_LAYER"] = "999"
# dynamic import to make RWKV_CUDA_ON work
if rwkv_cpp:
if rwkv_beta:
print("Using rwkv-beta")
from rwkv_pip.beta.model import (
RWKV as Model,
)
elif rwkv_cpp:
print("Using rwkv.cpp, strategy is ignored")
from rwkv_pip.cpp.model import (
RWKV as Model,
@ -640,8 +631,8 @@ def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV
)
from rwkv_pip.utils import PIPELINE
filename, _ = os.path.splitext(os.path.basename(model_path))
model = Model(model_path, strategy)
filename, _ = os.path.splitext(os.path.basename(model))
model = Model(model, strategy)
if not tokenizer:
tokenizer = get_tokenizer(len(model.w["emb.weight"]))
pipeline = PIPELINE(model, tokenizer)
@ -674,8 +665,6 @@ def RWKV(model: str, strategy: str, tokenizer: Union[str, None]) -> AbstractRWKV
else:
rwkv = TextRWKV(model, pipeline)
rwkv.name = filename
rwkv.model_path = model_path
rwkv.version = model.version
return rwkv
@ -688,11 +677,7 @@ class ModelConfigBody(BaseModel):
frequency_penalty: float = Field(default=None, ge=-2, le=2)
penalty_decay: float = Field(default=None, ge=0.99, le=0.999)
top_k: int = Field(default=None, ge=0, le=25)
global_penalty: bool = Field(
default=None,
description="When generating a response, whether to include the submitted prompt as a penalty factor. By turning this off, you will get the same generated results as official RWKV Gradio. If you find duplicate results in the generated results, turning this on can help avoid generating duplicates.",
)
state: str = Field(default=None, description="state-tuned file path")
global_penalty: bool = Field(default=None)
model_config = {
"json_schema_extra": {
@ -704,97 +689,11 @@ class ModelConfigBody(BaseModel):
"frequency_penalty": 1,
"penalty_decay": 0.996,
"global_penalty": False,
"state": "",
}
}
}
def load_rwkv_state(
model: AbstractRWKV, state_path: str, print_log: bool = True
) -> HTTPException:
if model:
if state_path:
if model.model_path.endswith(".pth") and state_path.endswith(".pth"):
import torch
state_path = get_model_path(state_path)
if model.state_path == state_path:
return
if not os.path.isfile(state_path):
return HTTPException(
status.HTTP_400_BAD_REQUEST, "state file not found"
)
try:
state_raw = torch.load(state_path, map_location="cpu")
except Exception as e:
print(e)
return HTTPException(
status.HTTP_400_BAD_REQUEST, "state file failed to load"
)
state_raw_shape = next(iter(state_raw.values())).shape
args = model.model.args
if (
len(state_raw) != args.n_layer
or state_raw_shape[0] * state_raw_shape[1] != args.n_embd
):
if model.state_path:
pass
elif print_log:
print("state failed to load")
return HTTPException(
status.HTTP_400_BAD_REQUEST, "state shape mismatch"
)
strategy = model.model.strategy
model.state_tuned = [None] * args.n_layer * 3
for i in range(args.n_layer):
dd = strategy[i]
dev = dd.device
atype = dd.atype
model.state_tuned[i * 3 + 0] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()
model.state_tuned[i * 3 + 1] = (
state_raw[f"blocks.{i}.att.time_state"]
.transpose(1, 2)
.to(dtype=torch.float, device=dev)
.requires_grad_(False)
.contiguous()
)
model.state_tuned[i * 3 + 2] = torch.zeros(
args.n_embd, dtype=atype, requires_grad=False, device=dev
).contiguous()
state_cache.force_reset_state()
model.state_path = state_path
if print_log:
print("state loaded")
else:
if model.state_path:
pass
elif print_log:
print("state failed to load")
return HTTPException(
status.HTTP_400_BAD_REQUEST,
"file format of the model or state model not supported",
)
else:
if state_path == "" and model.state_path != "":
state_cache.force_reset_state()
model.state_path = ""
model.state_tuned = None # TODO cached
if print_log:
print("state unloaded")
else:
if print_log:
print("state not loaded")
def set_rwkv_config(model: AbstractRWKV, body: ModelConfigBody):
if body.max_tokens is not None:
model.max_tokens_per_generation = body.max_tokens
@ -815,8 +714,6 @@ def set_rwkv_config(model: AbstractRWKV, body: ModelConfigBody):
model.top_k = body.top_k
if body.global_penalty is not None:
model.global_penalty = body.global_penalty
if body.state is not None:
load_rwkv_state(model, body.state, False)
def get_rwkv_config(model: AbstractRWKV) -> ModelConfigBody:
@ -829,5 +726,4 @@ def get_rwkv_config(model: AbstractRWKV) -> ModelConfigBody:
penalty_decay=model.penalty_decay,
top_k=model.top_k,
global_penalty=model.global_penalty,
state=model.state_path,
)

View File

@ -52,13 +52,9 @@ for x in keys:
if "time_maa" in x:
version = max(6, version)
params = f"--vocab_size {vocab_size} --n_layer {n_layer} --n_embd {n_embd}"
if version <= expected_max_version:
if version == 6:
params += ' --my_testing "x060"'
print(
f"v{int(version)}/train.py {params}",
f"v{int(version)}/train.py --vocab_size {vocab_size} --n_layer {n_layer} --n_embd {n_embd}",
end="",
)
else:

View File

@ -1,7 +1,7 @@
echo $@
if [[ ${cnMirror} == 1 ]]; then
export PIP_INDEX_URL="https://mirrors.aliyun.com/pypi/simple"
export PIP_INDEX_URL="https://pypi.tuna.tsinghua.edu.cn/simple"
if grep -q "mirrors.aliyun.com" /etc/apt/sources.list; then
echo "apt cnMirror already set"
else
@ -53,7 +53,7 @@ else
fi
echo "loading $loadModel"
modelInfo=$(python3 ./finetune/get_layer_and_embd.py $loadModel 6.0)
modelInfo=$(python3 ./finetune/get_layer_and_embd.py $loadModel 5.2)
echo $modelInfo
if [[ $modelInfo =~ "--n_layer" ]]; then
sudo rm -rf /root/.cache/torch_extensions

View File

@ -1,202 +0,0 @@
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
template <typename F>
__global__ void kernel_forward(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u,
F *__restrict__ const _y)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_w += h*_N_;
_u += h*_N_;
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
float state[_N_] = {0};
__syncthreads();
w[i] = _w[i];
u[i] = float(_u[i]);
__syncthreads();
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
{
__syncthreads();
r[i] = float(_r[t]);
k[i] = float(_k[t]);
__syncthreads();
const float v = float(_v[t]);
float y = 0;
#pragma unroll
for (int j = 0; j < _N_; j+=4)
{
const float4& r_ = (float4&)(r[j]);
const float4& k_ = (float4&)(k[j]);
const float4& w_ = (float4&)(w[j]);
const float4& u_ = (float4&)(u[j]);
float4& s = (float4&)(state[j]);
float4 x;
x.x = k_.x * v;
x.y = k_.y * v;
x.z = k_.z * v;
x.w = k_.w * v;
y += r_.x * (u_.x * x.x + s.x);
y += r_.y * (u_.y * x.y + s.y);
y += r_.z * (u_.z * x.z + s.z);
y += r_.w * (u_.w * x.w + s.w);
s.x = s.x * w_.x + x.x;
s.y = s.y * w_.y + x.y;
s.z = s.z * w_.z + x.z;
s.w = s.w * w_.w + x.w;
}
_y[t] = F(y);
}
}
template <typename F>
__global__ void kernel_backward(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const float *__restrict__ __w, const F *__restrict__ _u, const F *__restrict__ const _gy,
F *__restrict__ const _gr, F *__restrict__ const _gk, F *__restrict__ const _gv, F *__restrict__ const _gw, F *__restrict__ const _gu)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_w += h*_N_;
_u += h*_N_;
__w += h*_N_;
__shared__ float w_[_N_], u_[_N_];
__shared__ float r[_N_], k[_N_], v[_N_], gy[_N_];
__syncthreads();
w_[i] = _w[i];
u_[i] = float(_u[i]);
__syncthreads();
const float w = w_[i];
const float ww = __w[i];
const float u = u_[i];
float state[_N_] = {0}, saaaa[_N_] = {0}, sbbbb[_N_] = {0}, scccc[_N_] = {0}, sdddd[_N_] = {0};
float gw = 0, gu = 0;
const int t000 = b*T*C + h*_N_ + i;
const int t111 = (b+1)*T*C + h*_N_ + i;
const int t222 = t111 - 2*C;
for (int t = t000; t < t111; t += C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float k = float(_k[t]);
float gr = 0, gu_ = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = state[j];
float x = k * v[j];
gr += (u * x + s) * gy[j];
gu_ += x * gy[j];
s = s * w + x;
}
_gr[t] = F(gr);
gu += float(_r[t]) * gu_;
}
_gu[b*C + h*_N_ + i] = F(gu);
for (int t = t000; t < t222; t += C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t + 2*C]);
__syncthreads();
const float k = float(_k[t]);
float gw_ = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = saaaa[j];
float& s2 = sbbbb[j];
float x = k * v[j];
float tmp = w * (x + s);
s = tmp;
s2 = tmp + w * s2;
gw_ += s2 * gy[j];
}
gw += float(_r[t + 2*C]) * gw_;
}
_gw[b*C + h*_N_ + i] = F(ww * gw);
for (int t = t111 - C; t >= t000; t -= C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float rr = float(_r[t]);
float gk = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
float x = rr * gy[j];
gk += (u * x + s) * v[j];
s = x + s * w;
}
_gk[t] = F(gk);
}
for (int t = t111 - C; t >= t000; t -= C)
{
__syncthreads();
r[i] = float(_r[t]);
k[i] = float(_k[t]);
__syncthreads();
const float gyy = float(_gy[t]);
float gv = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = sdddd[j];
float x = gyy * r[j];
gv += (u_[j] * x + s) * k[j];
s = x + s * w_[j];
}
_gv[t] = F(gv);
}
}
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, y);
}
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, float *ww, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_backward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, ww, u, gy, gr, gk, gv, gw, gu);
}

View File

@ -1,22 +0,0 @@
#include <torch/extension.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y);
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, float *ww, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu);
void forward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
cuda_forward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), y.data_ptr<bf16>());
}
void backward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &ww, torch::Tensor &u, torch::Tensor &gy, torch::Tensor &gr, torch::Tensor &gk, torch::Tensor &gv, torch::Tensor &gw, torch::Tensor &gu) {
cuda_backward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), ww.data_ptr<float>(), u.data_ptr<bf16>(), gy.data_ptr<bf16>(), gr.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>());
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "wkv5 forward");
m.def("backward", &backward, "wkv5 backward");
}
TORCH_LIBRARY(wkv5, m) {
m.def("forward", forward);
m.def("backward", backward);
}

View File

@ -1,242 +0,0 @@
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
template <typename F>
__global__ void kernel_forward(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u,
F *__restrict__ const _y)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_u += h*_N_;
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
float state[_N_] = {0};
__syncthreads();
u[i] = float(_u[i]);
__syncthreads();
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
{
__syncthreads();
w[i] = exp(_w[t]);
r[i] = float(_r[t]);
k[i] = float(_k[t]);
__syncthreads();
const float v = float(_v[t]);
float y = 0;
#pragma unroll
for (int j = 0; j < _N_; j+=4)
{
const float4& r_ = (float4&)(r[j]);
const float4& k_ = (float4&)(k[j]);
const float4& w_ = (float4&)(w[j]);
const float4& u_ = (float4&)(u[j]);
float4& s = (float4&)(state[j]);
float4 x;
x.x = k_.x * v;
x.y = k_.y * v;
x.z = k_.z * v;
x.w = k_.w * v;
y += r_.x * (u_.x * x.x + s.x);
y += r_.y * (u_.y * x.y + s.y);
y += r_.z * (u_.z * x.z + s.z);
y += r_.w * (u_.w * x.w + s.w);
s.x = s.x * w_.x + x.x;
s.y = s.y * w_.y + x.y;
s.z = s.z * w_.z + x.z;
s.w = s.w * w_.w + x.w;
}
_y[t] = F(y);
}
}
template <typename F>
__global__ void kernel_backward_111(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u, const F *__restrict__ const _gy,
F *__restrict__ const _gr, F *__restrict__ const _gk, F *__restrict__ const _gv, F *__restrict__ const _gu)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_u += h*_N_;
__shared__ float u_[_N_];
__shared__ float r[_N_], k[_N_], v[_N_], w_[_N_], gy[_N_];
__syncthreads();
u_[i] = float(_u[i]);
__syncthreads();
const float u = u_[i];
float state[_N_] = {0}, scccc[_N_] = {0}, sdddd[_N_] = {0};
const int t_0 = b*T*C + h*_N_ + i;
const int t_T_1 = t_0 + (T-1)*C;
const int t_T = t_0 + T*C;
float gu = 0;
for (int t = t_0; t < t_T; t += C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float k = float(_k[t]);
const float w = exp(_w[t]);
float gr = 0, gu_ = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = state[j];
float x = k * v[j];
gr += (u * x + s) * gy[j];
gu_ += x * gy[j];
s = s * w + x;
}
_gr[t] = F(gr);
gu += float(_r[t]) * gu_;
}
_gu[b*C + h*_N_ + i] = F(gu);
for (int t = t_T_1; t >= t_0; t -= C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float rr = float(_r[t]);
const float w = exp(_w[t]);
float gk = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
float x = rr * gy[j];
gk += (u * x + s) * v[j];
s = x + s * w;
}
_gk[t] = F(gk);
}
for (int t = t_T_1; t >= t_0; t -= C)
{
__syncthreads();
r[i] = float(_r[t]);
k[i] = float(_k[t]);
w_[i] = exp(_w[t]);
__syncthreads();
const float gyy = float(_gy[t]);
float gv = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = sdddd[j];
float x = gyy * r[j];
gv += (u_[j] * x + s) * k[j];
s = x + s * w_[j];
}
_gv[t] = F(gv);
}
}
template <typename F>
__global__ void kernel_backward_222(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const float *__restrict__ _w, const F *__restrict__ _u, const F *__restrict__ const _gy,
F *__restrict__ const _gw)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
__shared__ float v[_N_], gy[_N_];
float saaaa[_N_] = {0}, sbbbb[_T_-2] = {0}, scccc[_N_] = {0};
const int t_0 = b*T*C + h*_N_ + i;
const int t_1 = t_0 + C;
const int t_2 = t_0 + 2*C;
const int t_T_1 = t_0 + (T-1)*C;
for (int t = t_T_1; t > t_1; t -= C)
{
__syncthreads();
gy[i] = float(_gy[t]);
v[i] = float(_v[t-2*C]);
__syncthreads();
const float r = float(_r[t]);
const float w = exp(_w[t-C]);
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = saaaa[j];
float x = r * gy[j];
s = (s + x) * w;
sum += s * v[j];
}
sbbbb[(t-t_2)/C] = sum * float(_k[t-2*C]);
}
float sss = sbbbb[0];
_gw[t_0] = 0;
_gw[t_1] = F(sss * _w[t_1]);
for (int t = t_2; t < t_T_1; t += C)
{
__syncthreads();
gy[i] = float(_gy[t]);
v[i] = float(_v[t-2*C]);
__syncthreads();
const float w = exp(_w[t-C]);
const float k = float(_k[t-2*C]);
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
float x = k * v[j];
s = (s + x) * w;
sum += s * gy[j];
}
sss += sbbbb[(t-t_1)/C] - (sum * float(_r[t]));
_gw[t] = F(sss * _w[t]);
}
_gw[t_T_1] = 0;
}
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, y);
}
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_backward_111<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, gy, gr, gk, gv, gu);
kernel_backward_222<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, gy, gw);
}

View File

@ -1,22 +0,0 @@
#include <torch/extension.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *y);
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, float *w, bf16 *u, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu);
void forward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &y) {
cuda_forward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), y.data_ptr<bf16>());
}
void backward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &gy, torch::Tensor &gr, torch::Tensor &gk, torch::Tensor &gv, torch::Tensor &gw, torch::Tensor &gu) {
cuda_backward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<float>(), u.data_ptr<bf16>(), gy.data_ptr<bf16>(), gr.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>());
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "wkv6 forward");
m.def("backward", &backward, "wkv6 backward");
}
TORCH_LIBRARY(wkv6, m) {
m.def("forward", forward);
m.def("backward", backward);
}

View File

@ -1,311 +0,0 @@
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
template <typename F>
__global__ void kernel_forward(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ _w, const F *__restrict__ _u, F *__restrict__ _s,
F *__restrict__ const _y)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_u += h*_N_;
_s += h*_N_*_N_ + i*_N_;
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
float state[_N_];
__syncthreads();
u[i] = float(_u[i]);
__syncthreads();
for (int j = 0; j < _N_; j++) {
state[j] = float(_s[j]);
}
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
{
__syncthreads();
w[i] = __expf(-__expf(float(_w[t])));
r[i] = float(_r[t]);
k[i] = float(_k[t]);
__syncthreads();
const float v = float(_v[t]);
float y = 0;
#pragma unroll
for (int j = 0; j < _N_; j+=4)
{
const float4& r_ = (float4&)(r[j]);
const float4& k_ = (float4&)(k[j]);
const float4& w_ = (float4&)(w[j]);
const float4& u_ = (float4&)(u[j]);
float4& s = (float4&)(state[j]);
float4 x;
x.x = k_.x * v;
x.y = k_.y * v;
x.z = k_.z * v;
x.w = k_.w * v;
y += r_.x * (u_.x * x.x + s.x);
y += r_.y * (u_.y * x.y + s.y);
y += r_.z * (u_.z * x.z + s.z);
y += r_.w * (u_.w * x.w + s.w);
s.x = s.x * w_.x + x.x;
s.y = s.y * w_.y + x.y;
s.z = s.z * w_.z + x.z;
s.w = s.w * w_.w + x.w;
}
_y[t] = F(y);
}
#pragma unroll
for (int j = 0; j < _N_; j++)
_s[j] = F(state[j]);
}
template <typename F>
__global__ void kernel_backward_111(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ _w, const F *__restrict__ _u, const F *__restrict__ _s, const F *__restrict__ const _gy,
F *__restrict__ const _gr, F *__restrict__ const _gk, F *__restrict__ const _gv, F *__restrict__ const _gu, F *__restrict__ const _gs)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_u += h*_N_;
_s += h*_N_*_N_ + i;
__shared__ float u_[_N_];
__shared__ float r[_N_], k[_N_], v[_N_], w_[_N_], gy[_N_];
__syncthreads();
u_[i] = float(_u[i]);
__syncthreads();
const float u = u_[i];
float state[_N_], scccc[_N_] = {0}, sdddd[_N_] = {0}, sssss[_N_] = {0}, swwww[_N_];
for (int j = 0; j < _N_; j++) {
state[j] = float(_s[j*_N_]);
swwww[j] = 1.0;
}
const int t_0 = b*T*C + h*_N_ + i;
const int t_T_1 = t_0 + (T-1)*C;
const int t_T = t_0 + T*C;
float gu = 0;
for (int t = t_0; t < t_T; t += C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float k = float(_k[t]);
const float w = __expf(-__expf(float(_w[t])));
float gr = 0, gu_ = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = state[j];
float x = k * v[j];
gr += (u * x + s) * gy[j];
gu_ += x * gy[j];
s = s * w + x;
}
_gr[t] = F(gr);
gu += float(_r[t]) * gu_;
}
_gu[b*C + h*_N_ + i] = F(gu);
for (int t = t_T_1; t >= t_0; t -= C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float rr = float(_r[t]);
const float w = __expf(-__expf(float(_w[t])));
float gk = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
float x = rr * gy[j];
gk += (u * x + s) * v[j];
s = x + s * w;
}
_gk[t] = F(gk);
}
for (int t = t_T_1; t >= t_0; t -= C)
{
__syncthreads();
r[i] = float(_r[t]);
k[i] = float(_k[t]);
w_[i] = __expf(-__expf(float(_w[t])));
__syncthreads();
const float gyy = float(_gy[t]);
float gv = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = sdddd[j];
float x = gyy * r[j];
gv += (u_[j] * x + s) * k[j];
s = x + s * w_[j];
}
_gv[t] = F(gv);
}
for (int t = t_0; t < t_T; t += C)
{
__syncthreads();
r[i] = float(_r[t]);
w_[i] = __expf(-__expf(float(_w[t])));
__syncthreads();
const float gyy = float(_gy[t]);
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& w = swwww[j];
sssss[j] += gyy * w * r[j];
w *= w_[j];
}
}
for (int j = 0; j < _N_; j++)
_gs[b*H*_N_*_N_ + h*_N_*_N_ + i*_N_ + j] = F(sssss[j]);
}
template <typename F>
__global__ void kernel_backward_222(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ _w, const F *__restrict__ _u, const F *__restrict__ _s, const F *__restrict__ const _gy,
F *__restrict__ const _gw)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_s += h*_N_*_N_ + i;
__shared__ float v[_N_], gy[_N_];
float state[_N_], saaaa[_N_] = {0}, sbbbb[_T_-1] = {0}, scccc[_N_] = {0};
for (int j = 0; j < _N_; j++) {
state[j] = float(_s[j*_N_]);
}
const int t_0 = b*T*C + h*_N_ + i;
const int t_1 = t_0 + C;
const int t_2 = t_0 + 2*C;
const int t_T_1 = t_0 + (T-1)*C;
for (int t = t_T_1; t > t_1; t -= C)
{
__syncthreads();
gy[i] = float(_gy[t]);
v[i] = float(_v[t-2*C]);
__syncthreads();
const float r = float(_r[t]);
const float w = __expf(-__expf(float(_w[t-C])));
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = saaaa[j];
s = (s + r * gy[j]) * w;
sum += s * v[j];
}
sbbbb[(t-t_1)/C] = sum * float(_k[t-2*C]);
}
{
__syncthreads();
gy[i] = float(_gy[t_1]);
__syncthreads();
const float r = float(_r[t_1]);
const float w = __expf(-__expf(float(_w[t_0])));
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = saaaa[j];
s = (s + r * gy[j]) * w;
sum += s * state[j];
}
sbbbb[0] = sum;
}
float sss = sbbbb[0];
_gw[t_0] = F(sss * -__expf(float(_w[t_0])));
{
__syncthreads();
gy[i] = float(_gy[t_1]);
__syncthreads();
const float w = __expf(-__expf(float(_w[t_0])));
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
s = (s + state[j]) * w;
sum += s * gy[j];
}
sss += sbbbb[1] - (sum * float(_r[t_1]));
_gw[t_1] = F(sss * -__expf(float(_w[t_1])));
}
for (int t = t_2; t < t_T_1; t += C)
{
__syncthreads();
gy[i] = float(_gy[t]);
v[i] = float(_v[t-2*C]);
__syncthreads();
const float w = __expf(-__expf(float(_w[t-C])));
const float k = float(_k[t-2*C]);
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
s = (s + k * v[j]) * w;
sum += s * gy[j];
}
sss += sbbbb[(t-t_0)/C] - (sum * float(_r[t]));
_gw[t] = F(sss * -__expf(float(_w[t])));
}
_gw[t_T_1] = 0;
}
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *z, bf16 *y)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, z, y);
}
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *z, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu, bf16 *gs)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_backward_111<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, z, gy, gr, gk, gv, gu, gs);
kernel_backward_222<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, z, gy, gw);
}

View File

@ -1,22 +0,0 @@
#include <torch/extension.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *s, bf16 *y);
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *s, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu, bf16 *gs);
void forward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &s, torch::Tensor &y) {
cuda_forward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<bf16>(), u.data_ptr<bf16>(), s.data_ptr<bf16>(), y.data_ptr<bf16>());
}
void backward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &s, torch::Tensor &gy, torch::Tensor &gr, torch::Tensor &gk, torch::Tensor &gv, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gs) {
cuda_backward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<bf16>(), u.data_ptr<bf16>(), s.data_ptr<bf16>(), gy.data_ptr<bf16>(), gr.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>(), gs.data_ptr<bf16>());
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "wkv6state forward");
m.def("backward", &backward, "wkv6state backward");
}
TORCH_LIBRARY(wkv6state, m) {
m.def("forward", forward);
m.def("backward", backward);
}

View File

@ -1,311 +0,0 @@
#include <stdio.h>
#include <assert.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
template <typename F>
__global__ void kernel_forward(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ _w, const F *__restrict__ _u,const F *__restrict__ _s,
F *__restrict__ const _y)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_u += h*_N_;
_s += h*_N_*_N_ + i*_N_;
__shared__ float r[_N_], k[_N_], u[_N_], w[_N_];
float state[_N_];
__syncthreads();
u[i] = float(_u[i]);
__syncthreads();
for (int j = 0; j < _N_; j++) {
state[j] = float(_s[j]);
}
for (int t = b*T*C + h*_N_ + i; t < (b+1)*T*C + h*_N_ + i; t += C)
{
__syncthreads();
w[i] = __expf(-__expf(float(_w[t])));
r[i] = float(_r[t]);
k[i] = float(_k[t]);
__syncthreads();
const float v = float(_v[t]);
float y = 0;
#pragma unroll
for (int j = 0; j < _N_; j+=4)
{
const float4& r_ = (float4&)(r[j]);
const float4& k_ = (float4&)(k[j]);
const float4& w_ = (float4&)(w[j]);
const float4& u_ = (float4&)(u[j]);
float4& s = (float4&)(state[j]);
float4 x;
x.x = k_.x * v;
x.y = k_.y * v;
x.z = k_.z * v;
x.w = k_.w * v;
y += r_.x * (u_.x * x.x + s.x);
y += r_.y * (u_.y * x.y + s.y);
y += r_.z * (u_.z * x.z + s.z);
y += r_.w * (u_.w * x.w + s.w);
s.x = s.x * w_.x + x.x;
s.y = s.y * w_.y + x.y;
s.z = s.z * w_.z + x.z;
s.w = s.w * w_.w + x.w;
}
_y[t] = F(y);
}
// #pragma unroll
// for (int j = 0; j < _N_; j++)
// _s[j] = F(state[j]);
}
template <typename F>
__global__ void kernel_backward_111(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ _w, const F *__restrict__ _u, const F *__restrict__ _s, const F *__restrict__ const _gy,
F *__restrict__ const _gr, F *__restrict__ const _gk, F *__restrict__ const _gv, F *__restrict__ const _gu, F *__restrict__ const _gs)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_u += h*_N_;
_s += h*_N_*_N_ + i;
__shared__ float u_[_N_];
__shared__ float r[_N_], k[_N_], v[_N_], w_[_N_], gy[_N_];
__syncthreads();
u_[i] = float(_u[i]);
__syncthreads();
const float u = u_[i];
float state[_N_], scccc[_N_] = {0}, sdddd[_N_] = {0}, sssss[_N_] = {0}, swwww[_N_];
for (int j = 0; j < _N_; j++) {
state[j] = float(_s[j*_N_]);
swwww[j] = 1.0;
}
const int t_0 = b*T*C + h*_N_ + i;
const int t_T_1 = t_0 + (T-1)*C;
const int t_T = t_0 + T*C;
float gu = 0;
for (int t = t_0; t < t_T; t += C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float k = float(_k[t]);
const float w = __expf(-__expf(float(_w[t])));
float gr = 0, gu_ = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = state[j];
float x = k * v[j];
gr += (u * x + s) * gy[j];
gu_ += x * gy[j];
s = s * w + x;
}
_gr[t] = F(gr);
gu += float(_r[t]) * gu_;
}
_gu[b*C + h*_N_ + i] = F(gu);
for (int t = t_T_1; t >= t_0; t -= C)
{
__syncthreads();
v[i] = float(_v[t]);
gy[i] = float(_gy[t]);
__syncthreads();
const float rr = float(_r[t]);
const float w = __expf(-__expf(float(_w[t])));
float gk = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
float x = rr * gy[j];
gk += (u * x + s) * v[j];
s = x + s * w;
}
_gk[t] = F(gk);
}
for (int t = t_T_1; t >= t_0; t -= C)
{
__syncthreads();
r[i] = float(_r[t]);
k[i] = float(_k[t]);
w_[i] = __expf(-__expf(float(_w[t])));
__syncthreads();
const float gyy = float(_gy[t]);
float gv = 0;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = sdddd[j];
float x = gyy * r[j];
gv += (u_[j] * x + s) * k[j];
s = x + s * w_[j];
}
_gv[t] = F(gv);
}
for (int t = t_0; t < t_T; t += C)
{
__syncthreads();
r[i] = float(_r[t]);
w_[i] = __expf(-__expf(float(_w[t])));
__syncthreads();
const float gyy = float(_gy[t]);
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& w = swwww[j];
sssss[j] += gyy * w * r[j];
w *= w_[j];
}
}
for (int j = 0; j < _N_; j++)
_gs[b*H*_N_*_N_ + h*_N_*_N_ + i*_N_ + j] = F(sssss[j]);
}
template <typename F>
__global__ void kernel_backward_222(const int B, const int T, const int C, const int H,
const F *__restrict__ const _r, const F *__restrict__ const _k, const F *__restrict__ const _v, const F *__restrict__ _w, const F *__restrict__ _u, const F *__restrict__ _s, const F *__restrict__ const _gy,
F *__restrict__ const _gw)
{
const int b = blockIdx.x / H;
const int h = blockIdx.x % H;
const int i = threadIdx.x;
_s += h*_N_*_N_ + i;
__shared__ float v[_N_], gy[_N_];
float state[_N_], saaaa[_N_] = {0}, sbbbb[_T_-1] = {0}, scccc[_N_] = {0};
for (int j = 0; j < _N_; j++) {
state[j] = float(_s[j*_N_]);
}
const int t_0 = b*T*C + h*_N_ + i;
const int t_1 = t_0 + C;
const int t_2 = t_0 + 2*C;
const int t_T_1 = t_0 + (T-1)*C;
for (int t = t_T_1; t > t_1; t -= C)
{
__syncthreads();
gy[i] = float(_gy[t]);
v[i] = float(_v[t-2*C]);
__syncthreads();
const float r = float(_r[t]);
const float w = __expf(-__expf(float(_w[t-C])));
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = saaaa[j];
s = (s + r * gy[j]) * w;
sum += s * v[j];
}
sbbbb[(t-t_1)/C] = sum * float(_k[t-2*C]);
}
{
__syncthreads();
gy[i] = float(_gy[t_1]);
__syncthreads();
const float r = float(_r[t_1]);
const float w = __expf(-__expf(float(_w[t_0])));
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = saaaa[j];
s = (s + r * gy[j]) * w;
sum += s * state[j];
}
sbbbb[0] = sum;
}
float sss = sbbbb[0];
_gw[t_0] = F(sss * -__expf(float(_w[t_0])));
{
__syncthreads();
gy[i] = float(_gy[t_1]);
__syncthreads();
const float w = __expf(-__expf(float(_w[t_0])));
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
s = (s + state[j]) * w;
sum += s * gy[j];
}
sss += sbbbb[1] - (sum * float(_r[t_1]));
_gw[t_1] = F(sss * -__expf(float(_w[t_1])));
}
for (int t = t_2; t < t_T_1; t += C)
{
__syncthreads();
gy[i] = float(_gy[t]);
v[i] = float(_v[t-2*C]);
__syncthreads();
const float w = __expf(-__expf(float(_w[t-C])));
const float k = float(_k[t-2*C]);
float sum = 0.0f;
#pragma unroll
for (int j = 0; j < _N_; j++)
{
float& s = scccc[j];
s = (s + k * v[j]) * w;
sum += s * gy[j];
}
sss += sbbbb[(t-t_0)/C] - (sum * float(_r[t]));
_gw[t] = F(sss * -__expf(float(_w[t])));
}
_gw[t_T_1] = 0;
}
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *z, bf16 *y)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_forward<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, z, y);
}
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *z, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu, bf16 *gs)
{
assert(H*_N_ == C);
assert(_N_%4 == 0);
kernel_backward_111<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, z, gy, gr, gk, gv, gu, gs);
kernel_backward_222<<<dim3(B * H), dim3(_N_)>>>(B, T, C, H, r, k, v, w, u, z, gy, gw);
}

View File

@ -1,22 +0,0 @@
#include <torch/extension.h>
#include "ATen/ATen.h"
typedef at::BFloat16 bf16;
void cuda_forward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *s, bf16 *y);
void cuda_backward(int B, int T, int C, int H, bf16 *r, bf16 *k, bf16 *v, bf16 *w, bf16 *u, bf16 *s, bf16 *gy, bf16 *gr, bf16 *gk, bf16 *gv, bf16 *gw, bf16 *gu, bf16 *gs);
void forward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &s, torch::Tensor &y) {
cuda_forward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<bf16>(), u.data_ptr<bf16>(), s.data_ptr<bf16>(), y.data_ptr<bf16>());
}
void backward(int64_t B, int64_t T, int64_t C, int64_t H, torch::Tensor &r, torch::Tensor &k, torch::Tensor &v, torch::Tensor &w, torch::Tensor &u, torch::Tensor &s, torch::Tensor &gy, torch::Tensor &gr, torch::Tensor &gk, torch::Tensor &gv, torch::Tensor &gw, torch::Tensor &gu, torch::Tensor &gs) {
cuda_backward(B, T, C, H, r.data_ptr<bf16>(), k.data_ptr<bf16>(), v.data_ptr<bf16>(), w.data_ptr<bf16>(), u.data_ptr<bf16>(), s.data_ptr<bf16>(), gy.data_ptr<bf16>(), gr.data_ptr<bf16>(), gk.data_ptr<bf16>(), gv.data_ptr<bf16>(), gw.data_ptr<bf16>(), gu.data_ptr<bf16>(), gs.data_ptr<bf16>());
}
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("forward", &forward, "wkv6state forward");
m.def("backward", &backward, "wkv6state backward");
}
TORCH_LIBRARY(wkv6state, m) {
m.def("forward", forward);
m.def("backward", backward);
}

View File

@ -1,16 +0,0 @@
base_model='/home/rwkv/JL/model/rwkv-x060-7b-world-v2.1-36%trained-20240413-ctx4k.pth'
lora_init='/home/rwkv/JL/out_model/nf4/init_lora.pth'
lora_checkpoint='/home/rwkv/JL/out_model/nf4/rwkv-0.pth'
output='/home/rwkv/JL/model/nf4-world.pth'
QUANT='nf4' #follow train
TYPE='lora'
Lora_alpha=128
python merge/merge.py --base_model $base_model \
--lora_init $lora_init \
--lora_checkpoint $lora_checkpoint \
--output $output \
--quant $QUANT \
--type $TYPE \
--lora_alpha $Lora_alpha

View File

@ -1,27 +0,0 @@
load_model='/home/rwkv/JL/model/rwkv-x060-7b-world-v2.1-36%trained-20240413-ctx4k.pth'
proj_dir='/home/rwkv/JL/out_model/nf4'
data_file='/home/rwkv/JL/data/roleplay'
QUANT='nf4' #4bit nf4 fp4 none
lora_r=64
lora_alpha=128
n_layer=32
n_embd=4096
micro_bsz=8
epoch_save=1
epoch_steps=1000
ctx_len=1024
python train.py --load_model $load_model \
--proj_dir $proj_dir --data_file $data_file \
--data_type binidx --vocab_size 65536 \
--ctx_len $ctx_len --epoch_steps $epoch_steps --epoch_count 20 --epoch_begin 0 --epoch_save $epoch_save --micro_bsz $micro_bsz \
--n_layer $n_layer --n_embd $n_embd \
--pre_ffn 0 --head_qk 0 --lr_init 5e-5 --lr_final 5e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
--accelerator gpu --devices 1 --precision bf16 --strategy deepspeed_stage_1 --grad_cp 1 \
--my_testing "x060" \
--lora_load rwkv-0 --lora --lora_r $lora_r --lora_alpha $lora_alpha --lora_dropout 0.01 --lora_parts=att,ffn,time,ln \
--quant $QUANT

View File

@ -1,15 +0,0 @@
base_model='/home/rwkv/JL/model/RWKV-x060-World-1B6-v2-20240208-ctx4096.pth'
lora_init='/home/rwkv/JL/out_model/nf4/init_lora.pth'
lora_checkpoint='/home/rwkv/JL/out_model/nf4/rwkv-0.pth'
output='/home/rwkv/JL/model/end-world.pth'
QUANT='nf4' #follow train
TYPE='pissa'
python merge/merge.py --base_model $base_model \
--lora_init $lora_init \
--lora_checkpoint $lora_checkpoint \
--output $output \
--quant $QUANT \
--type $TYPE

View File

@ -1,40 +0,0 @@
load_model='/home/rwkv/JL/model/RWKV-x060-World-1B6-v2.1-20240328-ctx4096.pth'
proj_dir='/home/rwkv/JL/out_model/nf4'
data_file='/home/rwkv/JL/data/end_text_document'
QUANT='nf4' #4bit nf4 fp4 none
svd_niter=4
lora_r=64
n_layer=24
n_embd=2048
micro_bsz=8
epoch_save=1
epoch_steps=1000
ctx_len=1024
python train.py --load_model $load_model \
--proj_dir $proj_dir --data_file $data_file \
--data_type binidx --vocab_size 65536 \
--ctx_len $ctx_len --epoch_steps $epoch_steps --epoch_count 1 --epoch_begin 0 --epoch_save $epoch_save --micro_bsz $micro_bsz \
--n_layer $n_layer --n_embd $n_embd \
--pre_ffn 0 --head_qk 0 --lr_init 5e-5 --lr_final 5e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
--accelerator gpu --devices 1 --precision bf16 --strategy deepspeed_stage_1 --grad_cp 1 \
--my_testing "x060" \
--lora_load rwkv-0 --lora --lora_r $lora_r --lora_alpha 128 --lora_dropout 0.01 --lora_parts=att,ffn,time,ln \
--PISSA --svd_niter $svd_niter \
--dataload pad
###remove load_model
# python train.py --proj_dir $proj_dir --data_file $data_file \
# --data_type binidx --vocab_size 65536 \
# --ctx_len $ctx_len --epoch_steps $epoch_steps --epoch_count 20 --epoch_begin 0 --epoch_save $epoch_save --micro_bsz $micro_bsz \
# --n_layer $n_layer --n_embd $n_embd \
# --pre_ffn 0 --head_qk 0 --lr_init 5e-5 --lr_final 5e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
# --accelerator gpu --devices 1 --precision bf16 --strategy deepspeed_stage_1 --grad_cp 1 \
# --my_testing "x060" \
# --lora_load rwkv-0 --lora --lora_r $lora_r --lora_alpha 128 --lora_dropout 0.01 --lora_parts=att,ffn,time,ln \
# --PISSA --svd_niter $svd_niter \
# --quant $QUANT

View File

@ -1,27 +0,0 @@
load_model='/home/rwkv/JL/model/rwkv-x060-7b-world-v2.1-36%trained-20240413-ctx4k.pth'
proj_dir='/home/rwkv/JL/out_model/nf4'
data_file='/home/rwkv/JL/data/roleplay'
QUANT='nf4' #4bit nf4 fp4 none
svd_niter=4
lora_r=64
n_layer=32
n_embd=4096
micro_bsz=4
epoch_save=1
epoch_steps=1000
ctx_len=1024
python train.py --proj_dir $proj_dir --data_file $data_file \
--data_type binidx --vocab_size 65536 \
--ctx_len $ctx_len --epoch_steps $epoch_steps --epoch_count 20 --epoch_begin 0 --epoch_save $epoch_save --micro_bsz $micro_bsz \
--n_layer $n_layer --n_embd $n_embd \
--pre_ffn 0 --head_qk 0 --lr_init 5e-5 --lr_final 5e-5 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
--accelerator gpu --devices 1 --precision bf16 --strategy deepspeed_stage_1 --grad_cp 1 \
--my_testing "x060" \
--lora_load rwkv-0 --lora --lora_r $lora_r --lora_alpha 128 --lora_dropout 0.01 --lora_parts=att,ffn,time,ln \
--PISSA --svd_niter $svd_niter \
--quant $QUANT

View File

@ -1,8 +0,0 @@
base_model='/home/rwkv/JL/model/RWKV-x060-World-3B-v2.1-20240417-ctx4096.pth'
state_checkpoint='/home/rwkv/JL/out_model/state/rwkv-9.pth'
output='/home/rwkv/JL/model/state-0.pth'
python merge/merge_state.py --base_model $base_model \
--state_checkpoint $state_checkpoint \
--output $output

View File

@ -1,22 +0,0 @@
load_model='/home/rwkv/JL/model/RWKV-x060-World-1B6-v2.1-20240328-ctx4096.pth'
proj_dir='/home/rwkv/JL/out_model/state'
data_file='/home/rwkv/JL/data/end_text_document'
n_layer=24
n_embd=2048
micro_bsz=1
epoch_save=1
epoch_steps=1000
ctx_len=1024
python train.py --load_model $load_model \
--proj_dir $proj_dir --data_file $data_file \
--data_type binidx --vocab_size 65536 \
--ctx_len $ctx_len --epoch_steps $epoch_steps --epoch_count 1 --epoch_begin 0 --epoch_save $epoch_save --micro_bsz $micro_bsz \
--n_layer $n_layer --n_embd $n_embd \
--pre_ffn 0 --head_qk 0 --lr_init 1 --lr_final 1e-1 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
--accelerator gpu --devices 1 --precision bf16 --strategy deepspeed_stage_1 --grad_cp 0 \
--my_testing "x060" \
--train_type "state" --dataload pad --wandb fla --fla

View File

@ -1,27 +0,0 @@
#!/bin/bash
# Create data directory
mkdir -p data
# Download minipile (1498226207 tokens, around 3GB)
wget --continue -O data/minipile.idx https://huggingface.co/datasets/BlinkDL/minipile-tokenized/resolve/main/rwkv_vocab_v20230424/minipile.idx
wget --continue -O data/minipile.bin https://huggingface.co/datasets/BlinkDL/minipile-tokenized/resolve/main/rwkv_vocab_v20230424/minipile.bin
# Generate initial model (L12-D768 = 169M)
BASE_NAME="model/0.1-1"
N_LAYER="12"
N_EMBD="768"
# magic_prime = the largest 3n+2 prime smaller than datalen/ctxlen-1 (= 1498226207/512-1 = 2926222.06 in this case)
# use https://www.dcode.fr/prime-numbers-search
python train.py --wandb "" --proj_dir $BASE_NAME \
--data_file "data/minipile" --data_type "binidx" --vocab_size 65536 \
--ctx_len 512 --my_pile_stage 1 --epoch_count 1 --epoch_begin 0 \
--epoch_save 1 --weight_decay 0 --head_size_a 64 \
--num_nodes 1 --micro_bsz 1 --n_layer $N_LAYER --n_embd $N_EMBD --pre_ffn 0 --head_qk 0 --my_exit_tokens 1498226207 --magic_prime 2926181 \
--lr_init 1e-5 --lr_final 1e-5 --warmup_steps 10 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 --my_pile_edecay 0 \
--accelerator cpu --devices 1 --precision bf16 --strategy deepspeed_stage_2 --grad_cp 0 --enable_progress_bar False --ds_bucket_mb 200

View File

@ -1,21 +0,0 @@
#!/bin/bash
BASE_NAME="model/0.1-1"
N_LAYER="12"
N_EMBD="768"
M_BSZ="16" # takes 16G VRAM (reduce this to save VRAM)
LR_INIT="6e-4"
LR_FINAL="6e-5"
GRAD_CP=0 # set to 1 to save VRAM (will be slower)
EPOCH_SAVE=10
# magic_prime = the largest 3n+2 prime smaller than datalen/ctxlen-1 (= 1498226207/512-1 = 2926222.06 in this case)
# use https://www.dcode.fr/prime-numbers-search
python train.py --load_model "0" --wandb "RWKV-5-Test" --proj_dir $BASE_NAME \
--ctx_len 512 --my_pile_stage 3 --epoch_count 999999 --epoch_begin 0 \
--data_file "data/minipile" --my_exit_tokens 1498226207 --magic_prime 2926181 \
--num_nodes 1 --micro_bsz $M_BSZ --n_layer $N_LAYER --n_embd $N_EMBD --pre_ffn 0 --head_qk 0 \
--lr_init $LR_INIT --lr_final $LR_FINAL --warmup_steps 10 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 --my_pile_edecay 0 --data_type "binidx" --vocab_size 65536 \
--weight_decay 0.001 --epoch_save $EPOCH_SAVE --head_size_a 64 \
--accelerator gpu --devices 1 --precision bf16 --strategy deepspeed_stage_2 --grad_cp $GRAD_CP --enable_progress_bar True --ds_bucket_mb 200

File diff suppressed because one or more lines are too long

View File

@ -1,25 +0,0 @@
load_model='/home/rwkv/JL/model/RWKV-x060-World-1B6-v2.1-20240328-ctx4096.pth'
proj_dir='/home/rwkv/JL/out_model/infctx'
data_file='/home/rwkv/JL/data/roleplay'
n_layer=24
n_embd=2048
micro_bsz=8
epoch_save=5
epoch_steps=1000
ctx_len=16384
chunk_ctx=2048
python train.py --load_model $load_model \
--proj_dir $proj_dir --data_file $data_file \
--data_type binidx --vocab_size 65536 \
--ctx_len $ctx_len --epoch_steps $epoch_steps --epoch_count 1 --epoch_begin 0 --epoch_save $epoch_save --micro_bsz $micro_bsz \
--n_layer $n_layer --n_embd $n_embd \
--pre_ffn 0 --head_qk 0 --lr_init 1e-4 --lr_final 1e-4 --warmup_steps 0 --beta1 0.9 --beta2 0.99 --adam_eps 1e-8 \
--accelerator gpu --devices 1 --precision bf16 --strategy deepspeed_stage_1 --grad_cp 1 \
--lora_load rwkv-0 --lora --lora_r 64 --lora_alpha 128 --lora_dropout 0.01 --lora_parts=att,ffn,time,ln \
--my_testing "x060" --dataload pad \
--train_type infctx --chunk_ctx $chunk_ctx --fla --wandb infctx

View File

@ -1,50 +0,0 @@
# -*- coding: utf-8 -*-
from fla.layers import (ABCAttention, BasedLinearAttention, DeltaNet,
GatedLinearAttention, HGRN2Attention, LinearAttention,
MultiScaleRetention, ReBasedLinearAttention)
from fla.models import (ABCForCausalLM, ABCModel, DeltaNetForCausalLM,
DeltaNetModel, GLAForCausalLM, GLAModel,
HGRN2ForCausalLM, HGRN2Model, HGRNForCausalLM,
HGRNModel, LinearAttentionForCausalLM,
LinearAttentionModel, RetNetForCausalLM, RetNetModel,
RWKV6ForCausalLM, RWKV6Model, TransformerForCausalLM,
TransformerModel)
from fla.ops import (chunk_gla, chunk_retention, fused_chunk_based,
fused_chunk_gla, fused_chunk_retention)
__all__ = [
'ABCAttention',
'BasedLinearAttention',
'DeltaNet',
'HGRN2Attention',
'GatedLinearAttention',
'LinearAttention',
'MultiScaleRetention',
'ReBasedLinearAttention',
'ABCForCausalLM',
'ABCModel',
'DeltaNetForCausalLM',
'DeltaNetModel',
'HGRNForCausalLM',
'HGRNModel',
'HGRN2ForCausalLM',
'HGRN2Model',
'GLAForCausalLM',
'GLAModel',
'LinearAttentionForCausalLM',
'LinearAttentionModel',
'RetNetForCausalLM',
'RetNetModel',
'RWKV6ForCausalLM',
'RWKV6Model',
'TransformerForCausalLM',
'TransformerModel',
'chunk_gla',
'chunk_retention',
'fused_chunk_based',
'fused_chunk_gla',
'fused_chunk_retention'
]
__version__ = '0.1'

View File

@ -1,25 +0,0 @@
# -*- coding: utf-8 -*-
from .abc import ABCAttention
from .based import BasedLinearAttention
from .delta_net import DeltaNet
from .gla import GatedLinearAttention
from .hgrn import HGRNAttention
from .hgrn2 import HGRN2Attention
from .linear_attn import LinearAttention
from .multiscale_retention import MultiScaleRetention
from .rebased import ReBasedLinearAttention
from .rwkv6 import RWKV6Attention
__all__ = [
'ABCAttention',
'BasedLinearAttention',
'DeltaNet',
'GatedLinearAttention',
'HGRNAttention',
'HGRN2Attention',
'LinearAttention',
'MultiScaleRetention',
'ReBasedLinearAttention',
'RWKV6Attention'
]

View File

@ -1,195 +0,0 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import warnings
from typing import Optional, Tuple
import torch
import torch.nn as nn
from einops import rearrange
from transformers.cache_utils import Cache
from fla.modules import (FusedRMSNormSwishGate, RMSNorm, RotaryEmbedding,
ShortConvolution)
from fla.modules.activations import swiglu, swish
from fla.modules.convolution import proj_then_conv1d
from fla.ops.abc.chunk import chunk_abc
class ABCAttention(nn.Module):
def __init__(
self,
hidden_size: int = 1024,
expand_k: float = 0.5,
expand_v: float = 1.0,
num_heads: int = 4,
use_short_conv: bool = False,
conv_size: int = 4,
conv_bias: bool = False,
share_conv_kernel: bool = True,
num_slots: Optional[int] = None,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
gate_low_rank_dim: int = 16,
gate_logit_normalizer: int = 16,
use_input_gate: bool = False,
use_output_gate: bool = True,
use_norm: bool = True,
clamp_min: Optional[float] = -32,
clamp_max: Optional[float] = 32,
layer_idx: Optional[int] = None,
**kwargs
) -> ABCAttention:
super().__init__()
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.num_heads = num_heads
self.key_dim = int(self.hidden_size * self.expand_k)
self.value_dim = int(self.hidden_size * self.expand_v)
self.head_k_dim = self.key_dim // self.num_heads
self.head_v_dim = self.value_dim // self.num_heads
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.share_conv_kernel = share_conv_kernel
self.gate_low_rank_dim = gate_low_rank_dim
self.gate_logit_normalizer = gate_logit_normalizer
self.use_input_gate = use_input_gate
self.use_output_gate = use_output_gate
self.use_norm = use_norm
if num_slots is None:
num_slots = self.head_k_dim
self.num_slots = num_slots
self.norm_eps = norm_eps
self.clamp_min = clamp_min
self.clamp_max = clamp_max
self.layer_idx = layer_idx
if layer_idx is None:
warnings.warn(
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.q_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.value_dim, bias=False)
if use_output_gate:
self.g_proj = nn.Linear(self.hidden_size, self.value_dim, bias=False)
self.s_proj = nn.Linear(self.hidden_size, self.num_heads * self.num_slots, bias=False)
self.o_proj = nn.Linear(self.value_dim, self.hidden_size, bias=False)
if use_short_conv:
self.conv_size = conv_size
if share_conv_kernel:
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation='silu')
else:
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
self.k_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
self.v_conv1d = ShortConvolution(self.value_dim, conv_size, activation='silu')
if self.use_norm:
if self.use_output_gate:
self.g_norm = FusedRMSNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps)
else:
self.g_norm = RMSNorm(self.head_v_dim, elementwise_affine, norm_eps)
if self.use_rope:
self.rotary = RotaryEmbedding(self.head_k_dim)
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
if self.use_short_conv:
if self.share_conv_kernel:
hidden_states = self.h_conv1d(hidden_states)
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
else:
q = proj_then_conv1d(hidden_states, self.q_proj.weight, self.q_conv1d.weight, self.q_conv1d.bias)
k = proj_then_conv1d(hidden_states, self.k_proj.weight, self.k_conv1d.weight, self.k_conv1d.bias)
v = proj_then_conv1d(hidden_states, self.v_proj.weight, self.v_conv1d.weight, self.v_conv1d.bias)
else:
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
if self.use_input_gate:
q, k, v = map(lambda x: swish(x), (q, k, v))
if self.use_rope:
q = rearrange(q, '... (h d) -> ... h d', h=self.num_heads)
k = rearrange(k, '... (h d) -> ... h d', h=self.num_heads)
seqlen_offset = 0
if past_key_values is not None:
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
q, k = self.rotary(q, k, seqlen_offset)
q = rearrange(q, 'b n h d -> b h n d', h=self.num_heads)
k = rearrange(k, 'b n h d -> b h n d', h=self.num_heads)
else:
q = rearrange(q, 'b n (h d) -> b h n d', h=self.num_heads)
k = rearrange(k, 'b n (h d) -> b h n d', h=self.num_heads)
v = rearrange(v, 'b n (h d) -> b h n d', h=self.num_heads)
# [batch_size, n_heads, seq_len, num_slots]
s = rearrange(self.s_proj(hidden_states), 'b t (h m) -> b h t m', h=self.num_heads)
s = s.clamp_(self.clamp_min, self.clamp_max)
last_state = past_key_values[self.layer_idx] if use_cache else None
o, last_state = chunk_abc(q, k, v, s, initial_state=last_state, output_final_state=use_cache)
if past_key_values is not None and last_state is not None:
past_key_values.update(last_state, self.layer_idx, q.shape[2])
o = rearrange(o, 'b h t d -> b t h d')
if self.use_norm and not self.use_output_gate:
o = self.g_norm(o)
elif self.use_output_gate:
g = rearrange(self.g_proj(hidden_states), 'b t (h d) -> b t h d', h=self.num_heads)
o = self.g_norm(o, g) if self.use_norm else swiglu(g, o)
o = rearrange(o, 'b t h d -> b t (h d)')
o = self.o_proj(o)
return o, None, past_key_values
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
param = next(self.parameters())
state = tuple()
if self.use_short_conv:
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
state += (param.new_zeros(batch_size, self.num_heads, self.head_k_dim, self.num_slots),
param.new_zeros(batch_size, self.num_heads, self.num_slots, self.head_v_dim))
return state
def state_size(self, sequence_length: int = 2048):
return self.num_heads * self.key_dim * self.head_v_dim

View File

@ -1,126 +0,0 @@
# -*- coding: utf-8 -*-
"""
Linear attention in Based.
https://github.com/HazyResearch/zoology/blob/main/zoology/mixers/based.py
"""
import torch
import torch.nn as nn
from einops import rearrange
from fla.modules.feature_map import TaylorFeatureMap
from fla.ops.based import parallel_based
from fla.ops.linear_attn import chunk_linear_attn, fused_chunk_linear_attn
class BasedLinearAttention(nn.Module):
def __init__(
self,
hidden_size: int,
l_max: int = 2048,
feature_dim: int = 16,
num_key_value_heads: int = 12,
num_heads: int = 12,
feature_name: str = "taylor_exp",
eps: float = 1e-12,
causal: bool = True,
mode: str = "parallel",
):
super().__init__()
self.hidden_size
self.l_max = l_max
self.mode = mode
assert self.mode in ["fused_chunk", "parallel", 'chunk']
# linear attention
self.feature_name = feature_name
self.feature_dim = feature_dim
self.num_key_value_heads = num_key_value_heads
self.num_heads = num_heads
self.head_dim = self.hidden_size // self.num_key_value_heads
self.causal = causal
self.q_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.dropout = nn.Identity()
self.feature_map = TaylorFeatureMap(feature_dim)
self.eps = eps
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(self, hidden_states: torch.Tensor, **kwargs):
mode = self.mode
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
q, k, v = map(lambda x: rearrange(x, "b l (h d) -> b h l d", h=self.num_heads), [q, k, v])
if mode == "fused_chunk":
q, k = self.feature_map(q), self.feature_map(k)
o = fused_chunk_linear_attn(q, k, v, normalize=True, scale=1)
elif mode == 'chunk':
q, k = self.feature_map(q), self.feature_map(k)
o = chunk_linear_attn(q, k, v, normalize=True, scale=1)
elif mode == 'parallel':
assert q.shape[-1] <= 128
o = parallel_based(q, k, v, True, True)
o = rearrange(o, "b h l d -> b l (h d)")
o = self.o_proj(o)
o = self.dropout(o)
return o
# https://github.com/HazyResearch/zoology/blob/main/zoology/mixers/based.py#L119
def forward_reference(self, hidden_states: torch.Tensor, filters: torch.Tensor = None, *args, **kwargs):
"""
x (torch.Tensor): tensor of shape (b, d, l)
y (torch.Tensor): tensor of shape (b, d, l)
"""
# hidden_states = hidden_states.transpose(1, 2)
b, l, _ = hidden_states.size()
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
q = q.view(b, l, self.num_heads, self.feature_dim).transpose(1, 2)
k = k.view(b, l, self.num_key_value_heads, self.feature_dim).transpose(1, 2)
v = v.view(b, l, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# Linear attention
q, k = self.feature_map(q), self.feature_map(k)
q, k, v = q.unsqueeze(-2), k.unsqueeze(-2), v.unsqueeze(-1)
# Compute attention
if self.causal:
y = ((q * (k * v).cumsum(2)).sum(-1) / ((q * k.cumsum(2)).sum(-1) + self.eps))
else:
y = ((q * (k * v).sum(2, True)).sum(-1) / ((q * k.sum(2, True)).sum(-1) + self.eps))
y = rearrange(y, 'b h l d -> b l (h d)')
y = self.o_proj(y.to(hidden_states.dtype))
y = self.dropout(y)
return y.to(hidden_states.dtype)
if __name__ == '__main__':
batch = 4
seq_len = 1024
hidden_size = 1024
dtype = torch.float32
x = torch.randn(batch, seq_len, hidden_size).to(dtype).cuda().requires_grad_(True)
dy = torch.randn(batch, seq_len, hidden_size).to(dtype).cuda()
model = BasedLinearAttention(hidden_size, mode='chunk').to(dtype).cuda()
y = model(x)
y.backward(dy, retain_graph=True)
x_grad, x.grad = x.grad, None
y2 = model.forward_reference(x)
y2.backward(dy)
assert y.allclose(y2, 0, 1e-4), breakpoint()
assert x_grad.allclose(x.grad, 0, 1e-4), breakpoint()
print("Pass")

View File

@ -1,254 +0,0 @@
# -*- coding: utf-8 -*-
# Sect4.2 of Linear Transformers Are Secretly Fast Weight Programmers https://arxiv.org/abs/2102.11174
from __future__ import annotations
from typing import Optional, Tuple
import torch
import torch.nn as nn
from einops import rearrange
from transformers.cache_utils import Cache
from fla.modules import FusedRMSNormSwishGate, RMSNorm, ShortConvolution, LayerNorm
from fla.modules.rotary import RotaryEmbedding
from fla.ops.delta_rule import (fused_chunk_delta_rule,
fused_recurrent_linear_attn_delta_rule,
chunk_delta_rule)
from torch.nn import functional as F
def simple_norm(x):
return (F.normalize(x, dim=-1) * x.shape[-1] ** 0.5).to(x)
# @torch.jit.script
def elu_p1(x):
return (F.elu(x, 1., False) + 1.).to(x)
# @torch.jit.script
def sum_norm(x):
return (x / x.sum(-1, keepdim=True)).to(x)
# @torch.jit.script
def elu_norm(x):
dtype = x.dtype
x = F.elu(x, 1., False) + 1.
return (x / x.sum(-1, keepdim=True)).to(dtype)
# https://github.com/IDSIA/recurrent-fwp/blob/master/algorithmic/layers.py#L86C1-L146C1
class DeltaNet(nn.Module):
def __init__(
self,
d_model: int = None,
hidden_size: int = 1024,
expand_k: float = 1.0,
expand_v: float = 1.0,
num_heads: int = 4,
mode: str = 'fused_chunk',
chunk_size: int = 16,
use_beta: bool = True,
use_gate: bool = True,
use_rope: bool = False,
use_output_norm: bool = True,
use_elu: bool = False,
use_short_conv: bool = True,
conv_size: int = 4,
conv_bias: bool = False,
share_conv_kernel: bool = False,
layer_idx: int = None,
qk_activation: str = 'silu',
qk_norm: str = None,
save_memory: str = False,
**kwargs
) -> DeltaNet:
super().__init__()
self.mode = mode
self.qk_activation = qk_activation
self.qk_norm = qk_norm
assert self.qk_activation in ['silu', 'relu', 'elu', 'identity']
assert self.qk_norm in ['l2', 'sum']
if d_model is not None:
hidden_size = d_model
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.num_heads = num_heads
self.chunk_size = chunk_size
self.use_gate = use_gate
self.use_output_norm = use_output_norm
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.share_conv_kernel = share_conv_kernel
self.key_dim = int(hidden_size * expand_k)
self.value_dim = int(hidden_size * expand_v)
self.head_qk_dim = self.key_dim // num_heads
self.head_v_dim = self.value_dim // num_heads
self.layer_idx = layer_idx
self.silu = torch.nn.SiLU()
assert mode in ['chunk', 'fused_chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
self.use_beta = use_beta
self.use_elu = use_elu
if self.use_beta:
self.b_proj = nn.Linear(hidden_size, self.num_heads, bias=False)
if use_short_conv:
self.conv_size = conv_size
if share_conv_kernel:
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation=None)
else:
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu' if qk_activation == 'silu' else None)
self.k_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu' if qk_activation == 'silu' else None)
self.v_conv1d = ShortConvolution(self.value_dim, conv_size, activation='silu')
if use_gate:
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
if self.use_gate:
self.norm = FusedRMSNormSwishGate(self.head_v_dim)
else:
self.norm = RMSNorm(self.head_v_dim)
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
# change to inference mode.
mode = 'fused_recurrent' if hidden_states.shape[1] < 64 else self.mode
last_state = past_key_values[self.layer_idx] if use_cache else None
if attention_mask is not None:
if attention_mask.shape[-1] != hidden_states.shape[-2]:
attention_mask = attention_mask[:, -1:]
if self.use_short_conv:
conv_state = last_state[0] if use_cache else None
if self.share_conv_kernel:
# conv state is updated inplace
hidden_states = self.h_conv1d(hidden_states, attention_mask, conv_state)
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
else:
conv_state_q = last_state[0] if use_cache else None
conv_state_k = last_state[1] if use_cache else None
conv_state_v = last_state[2] if use_cache else None
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
q = self.q_proj(hidden_states)
q = self.q_conv1d(q, attention_mask, conv_state_q)
k = self.k_conv1d(k, attention_mask, conv_state_k)
v = self.v_conv1d(v, attention_mask, conv_state_v)
else:
q = (self.q_proj(hidden_states))
k = (self.k_proj(hidden_states))
v = self.silu(self.v_proj(hidden_states))
# dealing with left-padding
if attention_mask is not None:
v = v.mul_(attention_mask.unsqueeze(-1))
q, k, v = map(lambda x: rearrange(x, 'b l (h d) -> b h l d', h=self.num_heads), (q, k, v))
if self.qk_activation != 'silu':
if self.qk_activation == 'relu':
q, k = q.relu(), k.relu()
elif self.qk_activation == 'elu':
q, k = elu_p1(q), elu_p1(k)
elif self.qk_activation == 'identity':
pass
else:
raise NotImplementedError
if self.qk_norm is not None:
if self.qk_norm == 'l2':
k = torch.nn.functional.normalize(k, dim=-1, p=2).to(v) #auto mixed precision type transfer is annoying.
q = torch.nn.functional.normalize(q, dim=-1, p=2).to(v)
elif self.qk_norm == 'sum':
q = sum_norm(q).to(v)
k = sum_norm(k).to(v)
if self.use_beta:
beta = rearrange(self.b_proj(hidden_states), 'b l h -> b h l').sigmoid()
else:
beta = q.new_ones(q.shape[0], q.shape[1], q.shape[2])
state = past_key_values[self.layer_idx][-1] if use_cache else None
if mode == 'fused_recurrent':
o, recurrent_state = fused_recurrent_linear_attn_delta_rule(q, k, v, beta, state, output_final_state=use_cache)
elif mode == 'fused_chunk':
assert self.chunk_size in [16, 32, 64]
o, recurrent_state = fused_chunk_delta_rule(q, k, v, beta, self.chunk_size, state, output_final_state=use_cache)
elif mode == 'chunk':
assert self.chunk_size in [16, 32, 64]
o, recurrent_state = chunk_delta_rule(q, k, v, beta, self.chunk_size, state, output_final_state=use_cache)
else:
raise NotImplementedError(f"Not supported mode `{mode}`.")
if past_key_values is not None:
if self.use_short_conv:
if self.share_conv_kernel:
state = (conv_state, recurrent_state)
else:
state = (conv_state_q, conv_state_k, conv_state_v, recurrent_state)
else:
state = (recurrent_state,)
past_key_values.update(state, self.layer_idx)
o = rearrange(o, 'b h l d -> b l h d')
if self.use_gate:
g = rearrange(self.g_proj(hidden_states), 'b l (h d) -> b l h d', h=self.num_heads)
o = self.norm(o, g)
else:
o = self.norm(o)
o = rearrange(o, 'b l h d -> b l (h d)')
o = self.o_proj(o)
return o, None, past_key_values
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
param = next(self.parameters())
state = tuple()
if self.use_short_conv:
if self.share_conv_kernel:
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
else:
# for q/k/v each
state += (param.new_zeros(batch_size, self.key_dim, self.conv_size),
param.new_zeros(batch_size, self.key_dim, self.conv_size),
param.new_zeros(batch_size, self.value_dim, self.conv_size))
state += (param.new_zeros(batch_size, self.num_heads, self.head_qk_dim, self.head_v_dim),)
return state

View File

@ -1,234 +0,0 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import warnings
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from transformers.cache_utils import Cache
from fla.modules import (FusedRMSNormSwishGateLinear, RMSNormLinear,
RotaryEmbedding, ShortConvolution)
from fla.modules.activations import ACT2FN, swiglu_linear, swish
from fla.ops.abc.chunk_gate import chunk_gated_abc
class GatedABCAttention(nn.Module):
def __init__(
self,
hidden_size: int = 1024,
expand_k: float = 1.,
expand_v: float = 1.,
num_heads: int = 4,
num_kv_heads: Optional[int] = None,
use_short_conv: bool = False,
conv_size: int = 4,
conv_bias: bool = False,
share_conv_kernel: bool = True,
num_slots: Optional[int] = None,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
gate_low_rank_dim: Optional[int] = None,
gate_logit_normalizer: int = 16,
feature_map: str = 'swish',
use_rope: bool = False,
use_output_gate: bool = False,
use_norm: bool = True,
layer_idx: Optional[int] = None,
**kwargs
) -> GatedABCAttention:
super().__init__()
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.num_heads = num_heads
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
self.num_kv_groups = self.num_heads // self.num_kv_heads
self.key_dim = int(hidden_size * expand_k)
self.value_dim = int(hidden_size * expand_v)
self.key_dim_per_group = self.key_dim // self.num_kv_groups
self.value_dim_per_group = self.value_dim // self.num_kv_groups
self.head_k_dim = self.key_dim // self.num_heads
self.head_v_dim = self.value_dim // self.num_heads
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.share_conv_kernel = share_conv_kernel
if gate_low_rank_dim is None:
gate_low_rank_dim = self.hidden_size // 16
self.gate_low_rank_dim = gate_low_rank_dim
self.gate_logit_normalizer = gate_logit_normalizer
self.feature_map = feature_map
self.use_rope = use_rope
self.use_output_gate = use_output_gate
self.use_norm = use_norm
if num_slots is None:
num_slots = self.head_k_dim
self.num_slots = num_slots
self.layer_idx = layer_idx
if layer_idx is None:
warnings.warn(
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
self.q_proj = nn.Linear(self.hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.key_dim_per_group, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.value_dim_per_group, bias=False)
self.f_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.num_slots, bias=False)
if use_output_gate:
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
if use_short_conv:
self.conv_size = conv_size
if share_conv_kernel:
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation='silu')
else:
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
if self.use_norm:
if self.use_output_gate:
self.g_norm = FusedRMSNormSwishGateLinear(self.hidden_size, elementwise_affine, norm_eps)
else:
self.g_norm = RMSNormLinear(self.hidden_size, elementwise_affine, norm_eps)
self.o_proj = nn.Linear(self.value_dim, self.hidden_size, bias=False)
if self.use_rope:
self.rotary = RotaryEmbedding(self.head_k_dim)
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
lower_bound: Optional[torch.Tensor] = None,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
last_state = past_key_values[self.layer_idx] if use_cache else None
if self.use_short_conv:
conv_state = last_state[0] if use_cache else None
if self.share_conv_kernel:
# conv state is updated inplace
hidden_states = self.h_conv1d(hidden_states, attention_mask, conv_state)
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
else:
conv_state_q = last_state[0] if use_cache else None
conv_state_k = last_state[1] if use_cache else None
conv_state_v = last_state[2] if use_cache else None
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
q = self.q_conv1d(q, attention_mask, conv_state_q)
k = self.k_conv1d(k, attention_mask, conv_state_k)
v = self.v_conv1d(v, attention_mask, conv_state_v)
else:
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
f = self.f_proj(hidden_states)
if self.use_rope:
q = rearrange(q, '... (h d) -> ... h d', h=self.num_heads)
k = rearrange(k, '... (h d) -> ... h d', h=self.num_kv_heads)
seqlen_offset = 0
if past_key_values is not None:
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
q, k = self.rotary(q, k, seqlen_offset)
q = rearrange(q, 'b n h d -> b h n d', h=self.num_heads)
k = rearrange(k, 'b n h d -> b h n d', h=self.num_kv_heads)
else:
q = rearrange(q, 'b n (h d) -> b h n d', h=self.num_heads)
if self.num_kv_groups > 1:
k = repeat(k, 'b n (h d) -> b (h g) n d', h=self.num_kv_heads, g=self.num_kv_groups)
else:
k = rearrange(k, 'b n (h d) -> b h n d', h=self.num_kv_heads)
if self.num_kv_groups > 1:
v = repeat(v, 'b n (h d) -> b (h g) n d', h=self.num_kv_heads, g=self.num_kv_groups)
f = repeat(f, 'b n (h m) -> b (h g) n m', h=self.num_kv_heads, g=self.num_kv_groups)
else:
v = rearrange(v, 'b n (h d) -> b h n d', h=self.num_kv_heads)
f = rearrange(f, 'b n (h m) -> b h n m', h=self.num_kv_heads)
if self.feature_map is not None:
q, k, v = map(lambda x: ACT2FN[self.feature_map](x), (q, k, v))
f = F.logsigmoid(f) / self.gate_logit_normalizer
s = (1 - f.exp()).to(f.dtype)
# dealing with left-padding
if attention_mask is not None:
s = s.mul_(attention_mask.view(attention_mask.shape[0], 1, -1, 1))
v = v.mul_(attention_mask.view(attention_mask.shape[0], 1, -1, 1))
recurrent_state = last_state[-2:] if use_cache else None
o, recurrent_state = chunk_gated_abc(q, k, v, s, f,
initial_state=recurrent_state,
output_final_state=use_cache)
if past_key_values is not None:
if self.use_short_conv:
if self.share_conv_kernel:
last_state = (conv_state,) + recurrent_state
else:
last_state = (conv_state_q, conv_state_k, conv_state_v) + recurrent_state
else:
last_state = recurrent_state
past_key_values.update(last_state, self.layer_idx, q.shape[2])
o = rearrange(o, 'b h t d -> b t (h d)')
if self.use_norm and not self.use_output_gate:
o = swish(o)
o = self.g_norm(o, self.o_proj.weight, self.o_proj.bias)
elif self.use_output_gate and not self.use_norm:
o = swiglu_linear(self.g_proj(hidden_states), o, self.o_proj.weight, self.o_proj.bias)
elif self.use_output_gate and self.use_norm:
o = self.g_norm(o, self.g_proj(hidden_states), self.o_proj.weight, self.o_proj.bias)
else:
o = self.o_proj(o)
return o, None, past_key_values
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
param = next(self.parameters())
state = tuple()
if self.use_short_conv:
if self.share_conv_kernel:
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
else:
state += (param.new_zeros(batch_size, self.key_dim, self.conv_size),
param.new_zeros(batch_size, self.key_dim, self.conv_size),
param.new_zeros(batch_size, self.value_dim, self.conv_size))
state += (param.new_zeros(batch_size, self.num_heads, self.head_k_dim, self.num_slots),
param.new_zeros(batch_size, self.num_heads, self.num_slots, self.head_v_dim))
return state
def state_size(self, sequence_length: int = 2048):
return self.num_heads * self.key_dim * self.head_v_dim

View File

@ -1,268 +0,0 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from transformers.cache_utils import Cache
from fla.modules import FusedRMSNormSwishGate, RMSNorm, ShortConvolution
from fla.modules.activations import ACT2FN
from fla.ops.gla import chunk_gla, fused_chunk_gla, fused_recurrent_gla
class GatedLinearAttention(nn.Module):
r"""
The layer implementaion for [Gated Linear Attention Transformers with Hardware-Efficient Training](https://arxiv.org/abs/2312.06635). # noqa
Args:
mode (str, Optional):
Which GLA kernel to use.
Currently available: `chunk`, `fused_recurrent`, and `fused_chunk`.
Default: `chunk`.
hidden_size (int, Optional):
The hidden size of the input. Default: 1024.
expand_k (float, Optional):
The expansion ratio for the key dim. Default: 0.5.
expand_v (float, Optional):
The expansion ratio for the value dim. Default: 1.0.
num_heads (int, Optional):
The number of heads. Default: 4.
num_kv_heads (int, Optional):
The number of key/value heads, used for MQA. Default: None.
feature_map (str, Optional):
Feature map function applied to queries/keys. Default: None.
use_short_conv (bool, Optional):
Whether to use short convolutions. Default: `False`.
conv_size (int, Optional):
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
conv_bias (bool, Optional):
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
share_conv_kernel (bool, Optional):
Whether to apply convolutions berfore q/k/v mapping, only taking effects when `use_short_conv`. Default: `True`.
use_output_gate (bool, Optional):
Whether to use output gate. Default: `True`.
gate_fn (str, Optional):
The activation function for the output gate. Default: `swish`.
elementwise_affine (bool, Optional):
If `True`, applies elementwise affine to LayerNorm with learnable parameters. Default: `True`.
norm_eps (float, Optional):
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
gate_logit_normalizer (int, Optional):
The normalizer for the gate logits, appied after `logsigmoid`. Default: 16.
gate_low_rank_dim (int, Optional):
The low rank dim for the gate projection. Default: 16.
clamp_min (float, Optional):
The minimum value for the gate logits. Default: None.
fuse_norm (bool, Optional):
Whether to fuse the norm and the output gate for better memory footprint. Default: `True`.
layer_idx (int, Optional):
The index of the layer. Default: None.
"""
def __init__(
self,
mode: str = 'chunk',
hidden_size: int = 1024,
expand_k: float = 0.5,
expand_v: float = 1.0,
num_heads: int = 4,
num_kv_heads: Optional[int] = None,
feature_map: Optional[str] = None,
use_short_conv: bool = False,
conv_size: int = 4,
conv_bias: bool = False,
share_conv_kernel: bool = True,
use_output_gate: bool = True,
gate_fn: str = 'swish',
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
gate_logit_normalizer: int = 16,
gate_low_rank_dim: int = 16,
clamp_min: Optional[float] = None,
fuse_norm: bool = True,
layer_idx: int = None,
) -> GatedLinearAttention:
super().__init__()
self.mode = mode
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.num_heads = num_heads
self.num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads
self.num_kv_groups = self.num_heads // self.num_kv_heads
self.feature_map_fn = ACT2FN[feature_map] if feature_map is not None else None
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.share_conv_kernel = share_conv_kernel
self.use_output_gate = use_output_gate
self.key_dim = int(hidden_size * expand_k)
self.value_dim = int(hidden_size * expand_v)
self.key_dim_per_group = self.key_dim // self.num_kv_groups
self.value_dim_per_group = self.value_dim // self.num_kv_groups
self.clamp_min = clamp_min
self.layer_idx = layer_idx
assert mode in ['chunk', 'fused_recurrent', 'fused_chunk'], f"Not suppoerted mode `{mode}`."
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
self.head_qk_dim = self.key_dim // num_heads
self.head_v_dim = self.value_dim // num_heads
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(hidden_size, self.key_dim_per_group, bias=False)
self.v_proj = nn.Linear(hidden_size, self.value_dim_per_group, bias=False)
if self.use_output_gate:
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
if use_short_conv:
self.conv_size = conv_size
if share_conv_kernel:
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation='silu')
else:
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
self.gk_proj = nn.Sequential(nn.Linear(hidden_size, gate_low_rank_dim, bias=False),
nn.Linear(gate_low_rank_dim, self.key_dim_per_group, bias=True))
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
if gate_fn == 'swish' and fuse_norm and use_output_gate:
self.g_norm_swish_gate = FusedRMSNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps)
self.fuse_norm_and_gate = True
else:
self.fuse_norm_and_gate = False
self.g_norm = RMSNorm(self.head_v_dim, elementwise_affine, norm_eps)
self.gate_fn = ACT2FN[gate_fn]
self.gate_logit_normalizer = gate_logit_normalizer
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
# launching the triton kernel for just one token will actually be slower
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
last_state = past_key_values[self.layer_idx] if use_cache else None
if self.use_short_conv:
conv_state = last_state[0] if use_cache else None
if self.share_conv_kernel:
# conv state is updated inplace
hidden_states = self.h_conv1d(hidden_states, attention_mask, conv_state)
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
else:
conv_state_q = last_state[0] if use_cache else None
conv_state_k = last_state[1] if use_cache else None
conv_state_v = last_state[2] if use_cache else None
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
q = self.q_conv1d(q, attention_mask, conv_state_q)
k = self.k_conv1d(k, attention_mask, conv_state_k)
v = self.v_conv1d(v, attention_mask, conv_state_v)
else:
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
gk = self.gk_proj(hidden_states)
if self.feature_map_fn is not None:
q, k = map(self.feature_map_fn, (q, k))
# dealing with left-padding
if attention_mask is not None:
v = v.mul_(attention_mask.unsqueeze(-1))
q = rearrange(q, 'b l (h d) -> b h l d', h=self.num_heads)
if self.num_kv_groups > 1:
k, v, gk = (repeat(x, 'b l (h d) -> b (h g) l d', h=self.num_kv_heads, g=self.num_kv_groups) for x in (k, v, gk))
else:
k, v, gk = (rearrange(x, 'b l (h d) -> b h l d', h=self.num_kv_heads) for x in (k, v, gk))
gk = F.logsigmoid(gk) / self.gate_logit_normalizer
if self.clamp_min is not None:
gk = torch.clamp_min(gk, self.clamp_min)
recurrent_state = last_state[-1] if use_cache else None
if mode == 'fused_recurrent':
o, recurrent_state = fused_recurrent_gla(q, k, v, gk, initial_state=recurrent_state, output_final_state=use_cache)
elif mode == 'fused_chunk':
o, recurrent_state = fused_chunk_gla(q, k, v, gk, initial_state=recurrent_state, output_final_state=use_cache)
elif mode == 'chunk':
o, recurrent_state = chunk_gla(q, k, v, gk, initial_state=recurrent_state, output_final_state=use_cache)
else:
raise NotImplementedError(f"Not supported mode `{mode}`.")
if past_key_values is not None:
if self.use_short_conv:
if self.share_conv_kernel:
last_state = (conv_state, recurrent_state)
else:
last_state = (conv_state_q, conv_state_k, conv_state_v, recurrent_state)
else:
last_state = (recurrent_state,)
past_key_values.update(last_state, self.layer_idx, q.shape[2])
o = rearrange(o, 'b h l d -> b l h d')
if self.use_output_gate:
g = self.g_proj(hidden_states)
if self.fuse_norm_and_gate:
g = rearrange(g, 'b l (h d) -> b l h d', h=self.num_heads)
o = self.g_norm_swish_gate(o, g)
o = rearrange(o, 'b l h d -> b l (h d)')
else:
o = rearrange(self.g_norm(o), 'b l h d -> b l (h d)')
o = o * self.gate_fn(g)
else:
o = rearrange(self.g_norm(o), 'b l h d -> b l (h d)')
o = self.o_proj(o)
return o, None, past_key_values
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
param = next(self.parameters())
state = tuple()
if self.use_short_conv:
if self.share_conv_kernel:
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
else:
state += (param.new_zeros(batch_size, self.key_dim, self.conv_size),
param.new_zeros(batch_size, self.key_dim, self.conv_size),
param.new_zeros(batch_size, self.value_dim, self.conv_size))
state += (param.new_zeros(batch_size, self.num_heads, self.head_qk_dim, self.head_v_dim),)
return state
def state_size(self, **kwargs) -> int:
state_size = self.key_dim * self.head_v_dim
for module in self.children():
if isinstance(module, ShortConvolution):
state_size += module.state_size
return state_size

View File

@ -1,165 +0,0 @@
# -*- coding: utf-8 -*-
# "Hierarchically Gated Recurrent Neural Network for Sequence Modeling" [https://arxiv.org/abs/2311.04823]
from __future__ import annotations
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from transformers.cache_utils import Cache
from fla.modules import FusedRMSNormSwishGate, ShortConvolution
from fla.modules.activations import swiglu
from fla.ops.hgrn import chunk_hgrn, fused_recurrent_hgrn
class HGRNAttention(nn.Module):
def __init__(
self,
mode: str = 'chunk',
hidden_size: int = 1024,
num_heads: Optional[int] = None,
expand_ratio: Optional[int] = 1,
use_short_conv: bool = False,
conv_size: int = 4,
conv_bias: bool = False,
share_conv_kernel: bool = True,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
layer_idx: int = None
) -> HGRNAttention:
super().__init__()
self.mode = mode
self.hidden_size = hidden_size
self.num_heads = num_heads
self.expand_ratio = expand_ratio
self.input_dim = int(hidden_size * expand_ratio)
self.head_dim = self.input_dim // self.num_heads
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.share_conv_kernel = share_conv_kernel
self.layer_idx = layer_idx
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
assert self.hidden_size % num_heads == 0, f"hidden size must be divisible by num_heads of {num_heads}"
self.i_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
self.f_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
self.g_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
if use_short_conv:
self.conv_size = conv_size
if share_conv_kernel:
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation='silu')
else:
self.q_conv1d = ShortConvolution(self.input_dim, conv_size, activation='silu')
self.f_conv1d = ShortConvolution(self.input_dim, conv_size, activation='silu')
self.i_conv1d = ShortConvolution(self.input_dim, conv_size, activation='silu')
self.g_norm = FusedRMSNormSwishGate(self.input_dim, elementwise_affine, norm_eps)
self.o_proj = nn.Linear(self.input_dim, hidden_size, bias=False)
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
lower_bound: Optional[torch.Tensor] = None,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
# launching the triton kernel for just one token will actually be slower
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
last_state = past_key_values[self.layer_idx] if use_cache else None
if self.use_short_conv:
conv_state = last_state[0] if use_cache else None
if self.share_conv_kernel:
# conv state is updated inplace
hidden_states = self.h_conv1d(hidden_states, attention_mask, conv_state)
i = self.i_proj(hidden_states)
f = self.f_proj(hidden_states)
else:
conv_state_i = last_state[2] if use_cache else None
conv_state_f = last_state[1] if use_cache else None
i = self.i_conv1d(self.i_proj(hidden_states), attention_mask, conv_state_i)
f = self.f_conv1d(self.f_proj(hidden_states), attention_mask, conv_state_f)
else:
i = self.i_proj(hidden_states)
f = self.f_proj(hidden_states)
# the lower bound for the first layer is zero
if lower_bound is None or self.layer_idx == 0:
i, f = swiglu(i, 1 - f.sigmoid()), F.logsigmoid(f)
else:
g = lower_bound + (1 - lower_bound) * f.sigmoid()
i, f = swiglu(i, 1 - g), g.log()
# dealing with left-padding
if attention_mask is not None:
i = i.mul_(attention_mask.unsqueeze(-1))
i, f = map(lambda x: rearrange(x, 'b l (h d) -> b h l d', h=self.num_heads), (i, f))
recurrent_state = last_state[-1] if use_cache else None
if mode == 'chunk':
o, recurrent_state = chunk_hgrn(i, f, initial_state=recurrent_state, output_final_state=use_cache)
elif mode == 'fused_recurrent':
o, recurrent_state = fused_recurrent_hgrn(i, f, initial_state=recurrent_state, output_final_state=use_cache)
else:
raise NotImplementedError(f"Not supported mode `{mode}`.")
if past_key_values is not None:
if self.use_short_conv:
if self.share_conv_kernel:
last_state = (conv_state, recurrent_state)
else:
last_state = (conv_state_i, conv_state_f, recurrent_state)
else:
last_state = (recurrent_state,)
past_key_values.update(last_state, self.layer_idx, i.shape[2])
o = self.g_norm(self.g_proj(hidden_states), rearrange(o, 'b h l d -> b l (h d)'))
o = self.o_proj(o)
return o, None, past_key_values
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
param = next(self.parameters())
state = tuple()
if self.use_short_conv:
if self.share_conv_kernel:
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
else:
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),
param.new_zeros(batch_size, self.hidden_size, self.conv_size),
param.new_zeros(batch_size, self.hidden_size, self.conv_size))
state += (param.new_zeros(batch_size, self.num_heads, self.head_dim),)
return state
def state_size(self, **kwargs) -> int:
state_size = self.hidden_size
for module in self.children():
if isinstance(module, ShortConvolution):
state_size += module.state_size
return state_size

View File

@ -1,186 +0,0 @@
# -*- coding: utf-8 -*-
# "HGRN2: Gated Linear RNNs with State Expansion"[https://arxiv.org/abs/2404.07904]
from __future__ import annotations
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from transformers.cache_utils import Cache
from fla.modules import RMSNorm, ShortConvolution
from fla.modules.activations import swish
from fla.ops.gla import chunk_gla, fused_chunk_gla, fused_recurrent_gla
class HGRN2Attention(nn.Module):
def __init__(
self,
mode: str = 'chunk',
hidden_size: int = 1024,
num_heads: Optional[int] = None,
expand_ratio: Optional[int] = 128,
use_short_conv: bool = False,
conv_size: int = 4,
conv_bias: bool = False,
share_conv_kernel: bool = True,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
layer_idx: int = None
) -> HGRN2Attention:
super().__init__()
self.mode = mode
self.hidden_size = hidden_size
if expand_ratio is None and num_heads is not None:
expand_ratio = hidden_size // num_heads
elif expand_ratio is not None and num_heads is None:
num_heads = hidden_size // expand_ratio
else:
raise RuntimeError("One of `expand_ratio` or `num_heads` should be provided.")
self.num_heads = num_heads
self.expand_ratio = expand_ratio
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.share_conv_kernel = share_conv_kernel
self.forget_dim = int(self.num_heads * self.expand_ratio)
self.input_dim = hidden_size
self.layer_idx = layer_idx
assert mode in ['chunk', 'fused_recurrent', 'fused_chunk'], f"Not suppoerted mode `{mode}`."
assert self.forget_dim % num_heads == 0, f"forget dim must be divisible by num_heads of {num_heads}"
assert self.input_dim % num_heads == 0, f"input dim must be divisible by num_heads of {num_heads}"
self.head_f_dim = self.expand_ratio
self.head_i_dim = self.hidden_size // num_heads
self.q_proj = nn.Linear(hidden_size, self.forget_dim, bias=False)
self.f_proj = nn.Linear(hidden_size, self.forget_dim, bias=False)
self.i_proj = nn.Linear(hidden_size, self.input_dim, bias=False)
if use_short_conv:
self.conv_size = conv_size
if share_conv_kernel:
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation='silu')
else:
self.q_conv1d = ShortConvolution(self.forget_dim, conv_size, activation='silu')
self.f_conv1d = ShortConvolution(self.forget_dim, conv_size, activation='silu')
self.i_conv1d = ShortConvolution(self.input_dim, conv_size, activation='silu')
self.g_norm = RMSNorm(self.hidden_size, elementwise_affine, norm_eps)
self.o_proj = nn.Linear(self.input_dim, hidden_size, bias=False)
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
lower_bound: Optional[torch.Tensor] = None,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
# launching the triton kernel for just one token will actually be slower
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
last_state = past_key_values[self.layer_idx] if use_cache else None
if self.use_short_conv:
conv_state = last_state[0] if use_cache else None
if self.share_conv_kernel:
# conv state is updated inplace
hidden_states = self.h_conv1d(hidden_states, attention_mask, conv_state)
q = self.q_proj(hidden_states)
f = self.f_proj(hidden_states)
i = self.i_proj(hidden_states)
else:
conv_state_q = last_state[0] if use_cache else None
conv_state_f = last_state[1] if use_cache else None
conv_state_i = last_state[2] if use_cache else None
q = self.q_proj(hidden_states)
f = self.f_proj(hidden_states)
i = self.i_proj(hidden_states)
q = self.q_conv1d(q, attention_mask, conv_state_q)
f = self.f_conv1d(f, attention_mask, conv_state_f)
i = self.i_conv1d(i, attention_mask, conv_state_i)
else:
q = self.q_proj(hidden_states)
f = self.f_proj(hidden_states)
i = self.i_proj(hidden_states)
# dealing with left-padding
if attention_mask is not None:
i = i.mul_(attention_mask.unsqueeze(-1))
q = swish(q)
# the lower bound for the first layer is zero
if lower_bound is None or self.layer_idx == 0:
k, g = 1 - f.sigmoid(), F.logsigmoid(f)
else:
g = lower_bound + (1 - lower_bound) * f.sigmoid()
k, g = 1 - g, g.log()
q, k, i, g = map(lambda x: rearrange(x, 'b l (h d) -> b h l d', h=self.num_heads), (q, k, i, g))
recurrent_state = last_state[-1] if use_cache else None
if mode == 'fused_recurrent':
o, recurrent_state = fused_recurrent_gla(q, k, i, g, initial_state=recurrent_state, output_final_state=use_cache)
elif mode == 'fused_chunk':
o, recurrent_state = fused_chunk_gla(q, k, i, g, initial_state=recurrent_state, output_final_state=use_cache)
elif mode == 'chunk':
o, recurrent_state = chunk_gla(q, k, i, g, initial_state=recurrent_state, output_final_state=use_cache)
else:
raise NotImplementedError(f"Not supported mode `{mode}`.")
if past_key_values is not None:
if self.use_short_conv:
if self.share_conv_kernel:
last_state = (conv_state, recurrent_state)
else:
last_state = (conv_state_q, conv_state_f, conv_state_i, recurrent_state)
else:
last_state = (recurrent_state,)
past_key_values.update(last_state, self.layer_idx, q.shape[2])
o = self.g_norm(rearrange(o, 'b h l d -> b l (h d)'))
o = self.o_proj(o)
return o, None, past_key_values
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
param = next(self.parameters())
state = tuple()
if self.use_short_conv:
if self.share_conv_kernel:
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
else:
state += (param.new_zeros(batch_size, self.forget_dim, self.conv_size),
param.new_zeros(batch_size, self.forget_dim, self.conv_size),
param.new_zeros(batch_size, self.input_dim, self.conv_size))
state += (param.new_zeros(batch_size, self.num_heads, self.head_f_dim, self.head_i_dim),)
return state
def state_size(self, **kwargs) -> int:
state_size = self.forget_dim * self.head_i_dim
for module in self.children():
if isinstance(module, ShortConvolution):
state_size += module.state_size
return state_size

View File

@ -1,156 +0,0 @@
# -*- coding: utf-8 -*-
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from fla.modules import RMSNorm
from fla.modules.feature_map import (DPFPFeatureMap, HadamardFeatureMap,
HedgehogFeatureMap, T2RFeatureMap)
from fla.ops.linear_attn import (chunk_linear_attn, fused_chunk_linear_attn,
fused_recurrent_linear_attn)
class LinearAttention(nn.Module):
def __init__(
self,
hidden_size: str = 1024,
expand_k: int = 1.0,
expand_v: int = 1.0,
num_heads: int = 8,
mode: str = 'chunk',
feature_map: str = 'elementwise_product',
tie_feature_map_qk: bool = False,
output_norm: str = 'rmsnorm',
norm_q: bool = False,
norm_k: bool = False,
# standard linear attention normalization
do_feature_map_norm: bool = False,
elementwise_affine: bool = True,
norm_eps: float = 1e-5,
**kwargs,
):
super().__init__()
assert feature_map in ['elu', 'relu', 'hedgehog', 't2r', 'dpfp',
'identity', 'elementwise_product'], f"Not supported feature map `{feature_map}`."
assert output_norm in ['rmsnorm', 'identity'], f"Not supported output norm `{output_norm}`."
self.hidden_size
self.mode = mode
self.key_dim = int(hidden_size * expand_k)
self.value_dim = int(hidden_size * expand_v)
self.num_heads = num_heads
assert mode in ['chunk', 'fused_chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
self.head_qk_dim = self.key_dim // num_heads
self.head_v_dim = self.value_dim // num_heads
if feature_map == 'hedgehog':
if tie_feature_map_qk:
self.feature_map_q = self.feature_map_k = HedgehogFeatureMap(head_dim=self.head_qk_dim)
else:
self.feature_map_q = HedgehogFeatureMap(head_dim=self.head_qk_dim)
self.feature_map_k = HedgehogFeatureMap(head_dim=self.head_qk_dim)
elif feature_map == 't2r':
if tie_feature_map_qk:
self.feature_map_q = self.feature_map_k = T2RFeatureMap(head_dim=self.head_qk_dim)
else:
self.feature_map_q = T2RFeatureMap(head_dim=self.head_qk_dim)
self.feature_map_k = T2RFeatureMap(head_dim=self.head_qk_dim)
elif feature_map == 'elementwise_product':
if tie_feature_map_qk:
self.feature_map_q = self.feature_map_k = HadamardFeatureMap(head_dim=self.head_qk_dim)
else:
self.feature_map_q = HadamardFeatureMap(head_dim=self.head_qk_dim)
self.feature_map_k = HadamardFeatureMap(head_dim=self.head_qk_dim)
elif feature_map == 'dpfp':
self.feature_map_q = DPFPFeatureMap(head_dim=self.head_qk_dim)
self.feature_map_k = DPFPFeatureMap(head_dim=self.head_qk_dim)
elif feature_map == 'elu':
def elu(x):
return F.elu(x) + 1
self.feature_map_q = elu
self.feature_map_k = elu
elif feature_map == 'relu':
self.feature_map_q = nn.ReLU()
self.feature_map_k = nn.ReLU()
elif feature_map == 'identity':
self.feature_map_q = nn.Identity()
self.feature_map_k = nn.Identity()
else:
raise NotImplementedError
self.do_feature_map_norm = do_feature_map_norm
if output_norm == 'rmsnorm':
self.norm = RMSNorm(self.head_v_dim, elementwise_affine, norm_eps)
elif output_norm == 'identity':
self.norm = nn.Identity()
else:
raise NotImplementedError
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
self.norm_q = norm_q
self.norm_k = norm_k
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(self, x):
mode = self.mode
q = rearrange(self.q_proj(x), 'b n (h d) -> b h n d', h=self.num_heads)
k = rearrange(self.k_proj(x), 'b n (h d) -> b h n d', h=self.num_heads)
v = rearrange(self.v_proj(x), 'b n (h d) -> b h n d', h=self.num_heads)
q = self.feature_map_q(q)
k = self.feature_map_k(k)
if self.norm_q:
q = q / (q.sum(-1, keepdim=True) + 1e-4)
if self.norm_k:
k = k / (k.sum(-1, keepdim=True) + 1e-4)
if mode == 'chunk':
o = chunk_linear_attn(q, k, v, normalize=self.do_feature_map_norm)
elif mode == 'fused_chunk':
o = fused_chunk_linear_attn(q, k, v, normalize=self.do_feature_map_norm)
elif mode == 'fused_recurrent':
o = fused_recurrent_linear_attn(q, k, v, normalize=self.do_feature_map_norm)
else:
raise NotImplementedError
o = self.norm(o)
o = rearrange(o, 'b h n d -> b n (h d)')
o = self.o_proj(o)
return o
if __name__ == '__main__':
import torch
batch = 4
seq_len = 1024
hidden_size = 1024
x = torch.randn(batch, seq_len, hidden_size).to(torch.bfloat16).cuda().requires_grad_(True)
model = LinearAttention(hidden_size, feature_map='dplp').to(torch.bfloat16).cuda()
y = model(x)
print(y.shape)
y.sum().backward()
print(x.grad.shape)

View File

@ -1,271 +0,0 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
from typing import Optional, Tuple
import torch
import torch.nn as nn
from einops import rearrange, repeat
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache
from fla.modules import FusedRMSNormSwishGate, RMSNorm, ShortConvolution
from fla.modules.rotary import RotaryEmbedding
from fla.ops.retention import (chunk_retention, fused_chunk_retention,
fused_recurrent_retention, parallel_retention)
class MultiScaleRetention(nn.Module):
r"""
The layer implementaion for [Retentive Network: A Successor to Transformer for Large Language Models](https://arxiv.org/pdf/2307.08621.pdf). # noqa
Args:
mode (str, Optional):
Which Retention kernel to use.
Currently available: `chunk`, `fused_recurrent`, `parallel`, and `fused_chunk`.
Default: `fused_chunk`.
hidden_size (int, Optional):
The hidden size of the input. Default: 1024.
expand_k (float, Optional):
The expansion ratio for the key dim. Default: 1.0.
expand_v (float, Optional):
The expansion ratio for the value dim. Default: 2.0.
num_heads (int, Optional):
The number of heads. Default: 8.
num_kv_heads (int, Optional):
The number of key/value heads, used for MQA. Default: None.
feature_map (str, Optional):
Feature map function applied to queries/keys. Default: None.
use_short_conv (bool, Optional):
Whether to use short convolutions. Default: `False`.
conv_size (int, Optional):
The kernel size of the short convolution, only used when `use_short_conv` is `True`. Default: 4.
conv_bias (bool, Optional):
Whether to use bias in the short convolution, only used when `use_short_conv` is `True`. Default: `False`.
share_conv_kernel (bool, Optional):
Whether to apply convolutions berfore q/k/v mapping, only taking effects when `use_short_conv`. Default: `True`.
use_output_gate (bool, Optional):
Whether to use output gate. Default: `True`.
gate_fn (str, Optional):
The activation function for the output gate. Default: `swish`.
elementwise_affine (bool, Optional):
If `True`, applies elementwise affine to LayerNorm with learnable parameters. Default: `True`.
norm_eps (float, Optional):
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
fuse_norm (bool, Optional):
Whether to fuse the norm and the output gate for better memory footprint. Default: `True`.
layer_idx (int, Optional):
The index of the layer. Default: None.
"""
def __init__(
self,
mode: str = 'fused_chunk',
hidden_size: int = 1024,
expand_k: float = 1.0,
expand_v: float = 2.0,
num_heads: int = 8,
num_kv_heads: Optional[int] = None,
feature_map: Optional[str] = None,
use_short_conv: bool = False,
conv_size: int = 4,
conv_bias: bool = False,
share_conv_kernel: bool = True,
use_output_gate: bool = True,
gate_fn: str = 'swish',
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
fuse_norm: bool = True,
layer_idx: int = None,
**kwargs
) -> MultiScaleRetention:
super().__init__()
self.mode = mode
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.num_heads = num_heads
self.num_kv_heads = num_kv_heads if num_kv_heads is not None else num_heads
self.num_kv_groups = self.num_heads // self.num_kv_heads
self.feature_map_fn = ACT2FN[feature_map] if feature_map is not None else None
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.conv_bias = conv_bias
self.share_conv_kernel = share_conv_kernel
self.use_output_gate = use_output_gate
self.key_dim = int(hidden_size * expand_k)
self.value_dim = int(hidden_size * expand_v)
self.key_dim_per_group = self.key_dim // self.num_kv_groups
self.value_dim_per_group = self.value_dim // self.num_kv_groups
self.layer_idx = layer_idx
assert mode in ['chunk', 'fused_chunk', 'parallel', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
self.head_qk_dim = self.key_dim // num_heads
self.head_v_dim = self.value_dim // num_heads
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(hidden_size, self.key_dim_per_group, bias=False)
self.v_proj = nn.Linear(hidden_size, self.value_dim_per_group, bias=False)
if self.use_output_gate:
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
if use_short_conv:
self.conv_size = conv_size
if share_conv_kernel:
self.h_conv1d = ShortConvolution(hidden_size, conv_size, activation='silu')
else:
self.q_conv1d = ShortConvolution(self.key_dim, conv_size, activation='silu')
self.k_conv1d = ShortConvolution(self.key_dim_per_group, conv_size, activation='silu')
self.v_conv1d = ShortConvolution(self.value_dim_per_group, conv_size, activation='silu')
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
if gate_fn == 'swish' and fuse_norm and use_output_gate:
self.g_norm_swish_gate = FusedRMSNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps)
self.fuse_norm_and_gate = True
else:
self.fuse_norm_and_gate = False
self.g_norm = RMSNorm(self.head_v_dim, elementwise_affine, norm_eps)
self.gate_fn = ACT2FN[gate_fn]
# TODO: fix this issue
# https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/ops/triton/rotary.py#L180
# Ideally, we would want to support arbitrary d_head_qk
assert self.head_qk_dim <= 256, "head_qk_dim must be less than or equal to 256"
self.rotary = RotaryEmbedding(dim=self.head_qk_dim)
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
# launching the triton kernel for just one token will actually be slower
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
last_state = past_key_values[self.layer_idx] if use_cache else None
if self.use_short_conv:
conv_state = last_state[0] if use_cache else None
if self.share_conv_kernel:
# conv state is updated inplace
hidden_states = self.h_conv1d(hidden_states, attention_mask, conv_state)
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
else:
conv_state_q = last_state[0] if use_cache else None
conv_state_k = last_state[1] if use_cache else None
conv_state_v = last_state[2] if use_cache else None
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
q = self.q_conv1d(q, attention_mask, conv_state_q)
k = self.k_conv1d(k, attention_mask, conv_state_k)
v = self.v_conv1d(v, attention_mask, conv_state_v)
else:
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
# dealing with left-padding
if attention_mask is not None:
v = v.mul_(attention_mask.unsqueeze(-1))
q = rearrange(q, '... (h d) -> ... h d', h=self.num_heads)
k = rearrange(k, '... (h d) -> ... h d', h=self.num_kv_heads)
if self.feature_map_fn is not None:
q, k = map(self.feature_map_fn, (q, k))
seqlen_offset, max_seqlen = 0, None
if past_key_values is not None:
seqlen_offset = past_key_values.get_seq_length(self.layer_idx)
max_seqlen = q.shape[1] + seqlen_offset
if attention_mask is not None:
# to deliminate the offsets of padding tokens
seqlen_offset = seqlen_offset + attention_mask.sum(-1) - attention_mask.shape[-1]
max_seqlen = q.shape[1] + max(seqlen_offset)
q, k = self.rotary(q, k, seqlen_offset, max_seqlen)
q = q.transpose(1, 2)
if self.num_kv_groups > 1:
k = repeat(k, 'b t h d -> b (h g) t d', h=self.num_kv_heads, g=self.num_kv_groups)
v = repeat(v, 'b t (h d) -> b (h g) t d', h=self.num_kv_heads, g=self.num_kv_groups)
else:
k, v = rearrange(k, 'b t h d -> b h t d'), rearrange(v, 'b t (h d) -> b h t d', h=self.num_kv_heads)
state = last_state[-1] if use_cache else None
if mode == 'chunk':
o, recurrent_state = chunk_retention(q, k, v, initial_state=state, output_final_state=use_cache)
elif mode == 'fused_chunk':
o, recurrent_state = fused_chunk_retention(q, k, v, initial_state=state, output_final_state=use_cache)
elif mode == 'parallel':
o, recurrent_state = parallel_retention(q, k, v, initial_state=state, output_final_state=use_cache)
elif mode == 'fused_recurrent':
o, recurrent_state = fused_recurrent_retention(q, k, v, initial_state=state, output_final_state=use_cache)
else:
raise NotImplementedError(f"Not supported mode `{mode}`.")
if past_key_values is not None:
if self.use_short_conv:
if self.share_conv_kernel:
last_state = (conv_state, recurrent_state)
else:
last_state = (conv_state_q, conv_state_k, conv_state_v, recurrent_state)
else:
last_state = (recurrent_state,)
past_key_values.update(last_state, self.layer_idx, q.shape[2])
o = rearrange(o, 'b h l d -> b l h d')
if self.use_output_gate:
g = self.g_proj(hidden_states)
if self.fuse_norm_and_gate:
g = rearrange(g, 'b l (h d) -> b l h d', h=self.num_heads)
o = self.g_norm_swish_gate(o, g)
o = rearrange(o, 'b l h d -> b l (h d)')
else:
o = rearrange(self.g_norm(o), 'b l h d -> b l (h d)')
o = o * self.gate_fn(g)
else:
o = rearrange(self.g_norm(o), 'b l h d -> b l (h d)')
o = self.o_proj(o)
return o, None, past_key_values
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
param = next(self.parameters())
state = tuple()
if self.use_short_conv:
if self.share_conv_kernel:
state += (param.new_zeros(batch_size, self.hidden_size, self.conv_size),)
else:
state += (param.new_zeros(batch_size, self.key_dim, self.conv_size),
param.new_zeros(batch_size, self.key_dim, self.conv_size),
param.new_zeros(batch_size, self.value_dim, self.conv_size))
state += (param.new_zeros(batch_size, self.num_heads, self.head_qk_dim, self.head_v_dim),)
return state
def state_size(self, **kwargs) -> int:
state_size = self.key_dim * self.head_v_dim
for module in self.children():
if isinstance(module, ShortConvolution):
state_size += module.state_size
return state_size

View File

@ -1,137 +0,0 @@
# -*- coding: utf-8 -*-
"""
https://github.com/corl-team/rebased/blob/main/flash_linear_attention/fla/layers/rebased_fast.py
"""
from __future__ import annotations
from typing import Optional
import torch
import torch.nn as nn
from einops import rearrange
from fla.modules.feature_map import RebasedFeatureMap
from fla.ops.linear_attn import chunk_linear_attn, fused_chunk_linear_attn
from fla.ops.rebased import parallel_rebased
class ReBasedLinearAttention(nn.Module):
def __init__(
self,
hidden_size: int,
l_max: int = 2048,
feature_dim: int = 16,
num_key_value_heads: int = 16,
num_heads: int = 16,
use_gamma: Optional[bool] = True,
use_beta: Optional[bool] = True,
normalize: Optional[bool] = True,
causal: bool = True,
eps: float = 1e-5,
mode: str = "parallel",
layer_idx: Optional[int] = None,
**kwargs
) -> ReBasedLinearAttention:
super().__init__()
self.hidden_size = hidden_size
self.l_max = l_max
self.mode = mode
assert self.mode in ["fused_chunk", "parallel", 'chunk']
# linear attention
self.feature_dim = feature_dim
self.num_key_value_heads = num_key_value_heads
self.num_heads = num_heads
self.head_dim = self.hidden_size // self.num_key_value_heads
self.use_gamma = use_gamma
self.use_beta = use_beta
self.normalize = normalize
self.causal = causal
self.feature_map = RebasedFeatureMap(self.feature_dim, use_gamma, use_beta, normalize)
self.q_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.feature_dim * self.num_heads, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.dropout = nn.Identity()
self.eps = eps
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(self, hidden_states: torch.Tensor, **kwargs):
mode = self.mode
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
q, k, v = map(lambda x: rearrange(x, "b l (h d) -> b h l d", h=self.num_heads), [q, k, v])
q, k = self.feature_map(q, flatten=(mode != 'parallel')), self.feature_map(k, flatten=(mode != 'parallel'))
if mode == "fused_chunk":
o = fused_chunk_linear_attn(q, k, v, normalize=True, scale=1)
elif mode == 'chunk':
o = chunk_linear_attn(q, k, v, normalize=True, scale=1)
elif mode == 'parallel':
assert q.shape[-1] <= 128
o = parallel_rebased(q, k, v, self.eps, True, True)
o = rearrange(o, "b h l d -> b l (h d)")
o = self.o_proj(o)
o = self.dropout(o)
return o
# https://github.com/HazyResearch/zoology/blob/main/zoology/mixers/based.py#L119
def forward_reference(self, hidden_states: torch.Tensor, filters: torch.Tensor = None, *args, **kwargs):
"""
x (torch.Tensor): tensor of shape (b, d, l)
y (torch.Tensor): tensor of shape (b, d, l)
"""
# hidden_states = hidden_states.transpose(1, 2)
b, l, _ = hidden_states.size()
q, k, v = self.q_proj(hidden_states), self.k_proj(hidden_states), self.v_proj(hidden_states)
q = q.view(b, l, self.num_heads, self.feature_dim).transpose(1, 2)
k = k.view(b, l, self.num_key_value_heads, self.feature_dim).transpose(1, 2)
v = v.view(b, l, self.num_key_value_heads, self.head_dim).transpose(1, 2)
# Linear attention
q, k = self.feature_map(q), self.feature_map(k)
q, k, v = q.unsqueeze(-2), k.unsqueeze(-2), v.unsqueeze(-1)
# Compute attention
if self.causal:
y = ((q * (k * v).cumsum(2)).sum(-1) / ((q * k.cumsum(2)).sum(-1) + self.eps))
else:
y = ((q * (k * v).sum(2, True)).sum(-1) / ((q * k.sum(2, True)).sum(-1) + self.eps))
y = rearrange(y, 'b h l d -> b l (h d)')
y = self.o_proj(y.to(hidden_states.dtype))
y = self.dropout(y)
return y.to(hidden_states.dtype)
if __name__ == '__main__':
batch = 4
seq_len = 1024
hidden_size = 1024
dtype = torch.float32
x = torch.randn(batch, seq_len, hidden_size).to(dtype).cuda().requires_grad_(True)
dy = torch.randn(batch, seq_len, hidden_size).to(dtype).cuda()
model = ReBasedLinearAttention(hidden_size=hidden_size, mode='parallel').to(dtype).cuda()
y = model(x)
y.backward(dy, retain_graph=True)
x_grad, x.grad = x.grad, None
print(model.mode)
model.mode = 'fused_chunk'
y2 = model(x)
print(model.mode)
y2.backward(dy)
# assert y.allclose(y2, 0, 1e-4), breakpoint()
# assert x_grad.allclose(x.grad, 0, 1e-4), breakpoint()
print("Pass")

View File

@ -1,264 +0,0 @@
# -*- coding: utf-8 -*-
# "Eagle and Finch: RWKV with Matrix-Valued States and Dynamic Recurrence"[https://arxiv.org/abs/2404.05892]
from __future__ import annotations
from typing import Optional, Tuple
import torch
import torch.nn as nn
from einops import rearrange
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache
from fla.modules import FusedLayerNormSwishGate, LayerNorm
from fla.ops.rwkv6 import chunk_rwkv6, fused_recurrent_rwkv6
class RWKV6Attention(nn.Module):
def __init__(
self,
mode: str = 'chunk',
hidden_size: int = 1024,
expand_k: float = 0.5,
expand_v: float = 1.0,
num_heads: int = 4,
gate_fn: str = 'swish',
proj_low_rank_dim: int = 32,
gate_low_rank_dim: int = 64,
fuse_norm: bool = True,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
layer_idx: int = None,
**kwargs
) -> RWKV6Attention:
super().__init__()
self.mode = mode
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.num_heads = num_heads
self.proj_low_rank_dim = proj_low_rank_dim
self.gate_low_rank_dim = gate_low_rank_dim
self.key_dim = int(hidden_size * expand_k)
self.value_dim = int(hidden_size * expand_v)
self.layer_idx = layer_idx
assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`."
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
self.head_qk_dim = self.key_dim // num_heads
self.head_v_dim = self.value_dim // num_heads
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
self.x_proj = nn.Sequential(
LerpLinear(hidden_size, proj_low_rank_dim * 5),
nn.Tanh(),
nn.Linear(proj_low_rank_dim * 5, hidden_size, bias=True)
)
self.r_proj = DDLerpLinear(hidden_size, self.key_dim)
self.w_proj = DDLerpLinear(hidden_size, self.key_dim, low_rank_dim=gate_low_rank_dim)
self.k_proj = DDLerpLinear(hidden_size, self.key_dim)
self.v_proj = DDLerpLinear(hidden_size, self.value_dim)
self.g_proj = DDLerpLinear(hidden_size, self.value_dim)
self.bonus = nn.Parameter(torch.zeros(num_heads, self.head_qk_dim))
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
if gate_fn == 'swish' and fuse_norm:
self.g_norm_swish_gate = FusedLayerNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps)
self.fuse_norm_and_gate = True
else:
self.fuse_norm_and_gate = False
self.g_norm = LayerNorm(self.head_v_dim, elementwise_affine, norm_eps)
self.gate_fn = ACT2FN[gate_fn]
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
if isinstance(module, nn.Parameter):
nn.init.xavier_uniform_(module, gain=2 ** -2.5)
module._is_hf_initialized = True
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
batch_size, seq_len, hidden_size = hidden_states.size()
# launching the triton kernel for just one token will actually be slower
mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode
delta = self.time_shift(hidden_states) - hidden_states
x = self.x_proj[0](hidden_states, delta).view(batch_size, seq_len, -1, self.proj_low_rank_dim)
r, w, k, v, g = torch.einsum('b l n r, n r d-> b l n d',
self.x_proj[1](x),
self.x_proj[2].weight.view(5, -1, hidden_size)).unbind(-2)
r = self.r_proj(hidden_states, r, delta)
w = self.w_proj(hidden_states, w, delta)
k = self.k_proj(hidden_states, k, delta)
v = self.v_proj(hidden_states, v, delta)
g = self.g_proj(hidden_states, g, delta)
# dealing with left-padding
if attention_mask is not None:
v = v.mul_(attention_mask.unsqueeze(-1))
r, w, k, v = map(lambda x: rearrange(x, 'b l (h d) -> b h l d', h=self.num_heads), (r, w, k, v))
w = -torch.exp(w)
u = self.bonus
last_state = past_key_values[self.layer_idx] if use_cache else None
state = last_state[-1] if use_cache else None
if mode == 'fused_recurrent':
o, recurrent_state = fused_recurrent_rwkv6(r, k, v, w, u, initial_state=state, output_final_state=use_cache)
elif mode == 'chunk':
o, recurrent_state = chunk_rwkv6(r, k, v, w, u, initial_state=state, output_final_state=use_cache)
else:
raise NotImplementedError(f"Not supported mode `{mode}`.")
if past_key_values is not None:
past_key_values.update((recurrent_state,), self.layer_idx, r.shape[2])
o = rearrange(o, 'b h l d -> b l h d')
if self.fuse_norm_and_gate:
g = rearrange(g, 'b l (h d) -> b l h d', h=self.num_heads)
o = self.g_norm_swish_gate(o, g)
o = rearrange(o, 'b l h d -> b l (h d)')
else:
o = self.g_norm(o)
o = rearrange(o, 'b l h d -> b l (h d)')
o = o * self.gate_fn(g)
o = self.o_proj(o)
return o, None, past_key_values
def init_state(self, batch_size: int) -> Tuple[torch.Tensor]:
param = next(self.parameters())
state = (param.new_zeros(batch_size, self.num_heads, self.head_qk_dim, self.head_v_dim),)
return state
def state_size(self, **kwargs) -> int:
state_size = self.key_dim * self.head_v_dim
return state_size
class LoRA(nn.Module):
def __init__(
self,
input_dim: int,
output_dim: int,
low_rank_dim: int,
bias: Optional[bool] = True
):
super().__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.low_rank_dim = low_rank_dim
self.bias = bias
self.lora = nn.Sequential(
nn.Linear(input_dim, low_rank_dim, bias=False),
nn.Tanh(),
nn.Linear(low_rank_dim, output_dim, bias=bias)
)
def __repr__(self) -> str:
s = f"{self.__class__.__name__}("
s += f"input_dim={self.input_dim}, low_rank_dim={self.low_rank_dim}, output_dim={self.output_dim}"
if not self.bias:
s += f", bias={self.bias}"
s += ")"
return s
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.lora(x)
class LerpLinear(nn.Module):
def __init__(
self,
input_dim: int,
output_dim: int,
low_rank_dim: Optional[int] = None
):
super().__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.low_rank_dim = low_rank_dim
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
if low_rank_dim is None:
self.linear = nn.Linear(input_dim, output_dim, bias=False)
else:
self.linear = LoRA(input_dim, output_dim, low_rank_dim)
self.mu = nn.Parameter(torch.zeros(input_dim))
def __repr__(self) -> str:
s = f"{self.__class__.__name__}({self.input_dim}, {self.output_dim}"
if self.low_rank_dim is not None:
s += f", low_rank_dim={self.low_rank_dim}"
s += ")"
return s
def forward(self, x: torch.Tensor, delta: Optional[torch.Tensor] = None) -> torch.Tensor:
if delta is None:
shifted = self.time_shift(x)
if len(shifted.shape) == 2:
shifted = shifted.unsqueeze(1)
delta = shifted - x
return self.linear(x + delta * self.mu)
class DDLerpLinear(nn.Module):
def __init__(
self,
input_dim: int,
output_dim: int,
low_rank_dim: Optional[int] = None
):
super().__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.low_rank_dim = low_rank_dim
self.time_shift = nn.ZeroPad2d((0, 0, 1, -1))
if low_rank_dim is None:
self.linear = nn.Linear(input_dim, output_dim, bias=False)
else:
self.linear = LoRA(input_dim, output_dim, low_rank_dim)
def __repr__(self) -> str:
s = f"{self.__class__.__name__}({self.input_dim}, {self.output_dim}"
if self.low_rank_dim is not None:
s += f", low_rank_dim={self.low_rank_dim}"
s += ")"
return s
def forward(self, x: torch.Tensor, mu: torch.Tensor, delta: Optional[torch.Tensor] = None) -> torch.Tensor:
if delta is None:
shifted = self.time_shift(x)
if len(shifted.shape) == 2:
shifted = shifted.unsqueeze(1)
delta = shifted - x
return self.linear(x + delta * mu)

View File

@ -1,143 +0,0 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
from typing import Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from transformers.activations import ACT2FN
from fla.modules import FusedRMSNormSwishGate, RMSNorm
from fla.ops.simple_gla import chunk_simple_gla
class SimpleGatedLinearAttention(nn.Module):
r"""
The layer implementaion for [Gated Linear Attention Transformers with Hardware-Efficient Training](https://arxiv.org/abs/2312.06635). # noqa
This layer calls the simplified GLA kernel in which the gating is head-wise instead of elementwise.
Args:
mode (str, Optional):
Which GLA kernel to use.
Currently available: `chunk`.
Default: `chunk`.
hidden_size (int, Optional):
The hidden size of the input. Default: 1024.
expand_k (float, Optional):
The expansion ratio for the key dim. Default: 0.5.
expand_v (float, Optional):
The expansion ratio for the value dim. Default: 1.0.
num_heads (int, Optional):
The number of heads. Default: 4.
gate_fn (str, Optional):
The activation function for the output gate. Default: `swish`.
elementwise_affine (bool, Optional):
If `True`, applies elementwise affine to LayerNorm with learnable parameters. Default: `True`.
norm_eps (float, Optional):
The epsilon value for the layernorm/rmsnorm layer. Default: 1e-5.
gate_logit_normalizer (int, Optional):
The normalizer for the gate logits, appied after `logsigmoid`. Default: 16.
fuse_norm (bool, Optional):
Whether to fuse the norm and the output gate for better memory footprint. Default: `True`.
layer_idx (int, Optional):
The index of the layer. Default: None.
"""
def __init__(
self,
mode: str = 'chunk',
hidden_size: int = 1024,
expand_k: float = 1.0,
expand_v: float = 2.0,
num_heads: int = 4,
gate_fn: str = 'swish',
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-5,
gate_logit_normalizer: int = 16,
fuse_norm: bool = True,
**kwargs
) -> SimpleGatedLinearAttention:
super().__init__()
self.hidden_size = hidden_size
self.mode = mode
self.key_dim = int(hidden_size * expand_k)
self.value_dim = int(hidden_size * expand_v)
assert mode in ['chunk'], f"Not suppoerted mode `{mode}`."
assert self.key_dim % num_heads == 0, f"key dim must be divisible by num_heads of {num_heads}"
assert self.value_dim % num_heads == 0, f"value dim must be divisible by num_heads of {num_heads}"
self.num_heads = num_heads
self.head_qk_dim = self.key_dim // num_heads
self.head_v_dim = self.value_dim // num_heads
self.gate_fn = ACT2FN[gate_fn]
self.q_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.k_proj = nn.Linear(hidden_size, self.key_dim, bias=False)
self.v_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
self.g_proj = nn.Linear(hidden_size, self.value_dim, bias=False)
self.gk_proj = nn.Linear(hidden_size, self.num_heads)
self.o_proj = nn.Linear(self.value_dim, hidden_size, bias=False)
if gate_fn == 'swish' and fuse_norm:
self.g_norm_swish_gate = FusedRMSNormSwishGate(self.head_v_dim, elementwise_affine, norm_eps)
self.fuse_norm_and_gate = True
else:
self.fuse_norm_and_gate = False
self.g_norm = RMSNorm(self.head_v_dim, elementwise_affine, norm_eps)
self.gate_logit_normalizer = gate_logit_normalizer
self.apply(self._initialize_weights)
def _initialize_weights(self, module: nn.Module):
if getattr(module, "_is_hf_initialized", False):
return
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5)
if module.bias is not None:
nn.init.zeros_(module.bias)
module._is_hf_initialized = True
def forward(self, x):
mode = self.mode
q = rearrange(self.q_proj(x), 'b n (h d) -> b h n d', h=self.num_heads)
k = rearrange(self.k_proj(x), 'b n (h d) -> b h n d', h=self.num_heads)
v = rearrange(self.v_proj(x), 'b n (h d) -> b h n d', h=self.num_heads)
gk = rearrange(self.gk_proj(x), 'b n h -> b h n')
gk = (F.logsigmoid(gk) / self.gate_logit_normalizer)
if mode == 'chunk':
o = chunk_simple_gla(q, k, v, gk)
else:
raise NotImplementedError(f"Not supported mode `{mode}`.")
o = rearrange(o, 'b h l d -> b l h d')
g = self.g_proj(x)
if self.fuse_norm_and_gate:
g = rearrange(g, 'b l (h d) -> b l h d', h=self.num_heads)
o = self.g_norm_swish_gate(o, g)
o = rearrange(o, 'b l h d -> b l (h d)')
else:
o = self.g_norm(o)
o = rearrange(o, 'b l h d -> b l (h d)')
o = o * self.gate_fn(g)
o = self.o_proj(o)
return o
if __name__ == '__main__':
batch = 4
seq_len = 1024
hidden_size = 2048
x = torch.randn(batch, seq_len, hidden_size).to(torch.bfloat16).cuda().requires_grad_(True)
model = SimpleGatedLinearAttention(hidden_size=hidden_size, mode='chunk').to(torch.bfloat16).cuda()
y = model(x)
print(y.shape)
y.sum().backward()
print(x.grad.shape)

View File

@ -1,29 +0,0 @@
# -*- coding: utf-8 -*-
from fla.models.abc import ABCConfig, ABCForCausalLM, ABCModel
from fla.models.delta_net import (DeltaNetConfig, DeltaNetForCausalLM,
DeltaNetModel)
from fla.models.gla import GLAConfig, GLAForCausalLM, GLAModel
from fla.models.hgrn import HGRNConfig, HGRNForCausalLM, HGRNModel
from fla.models.hgrn2 import HGRN2Config, HGRN2ForCausalLM, HGRN2Model
from fla.models.linear_attn import (LinearAttentionConfig,
LinearAttentionForCausalLM,
LinearAttentionModel)
from fla.models.mamba import MambaConfig, MambaForCausalLM, MambaModel
from fla.models.retnet import RetNetConfig, RetNetForCausalLM, RetNetModel
from fla.models.rwkv6 import RWKV6Config, RWKV6ForCausalLM, RWKV6Model
from fla.models.transformer import (TransformerConfig, TransformerForCausalLM,
TransformerModel)
__all__ = [
'ABCConfig', 'ABCForCausalLM', 'ABCModel',
'DeltaNetConfig', 'DeltaNetForCausalLM', 'DeltaNetModel',
'GLAConfig', 'GLAForCausalLM', 'GLAModel',
'HGRNConfig', 'HGRNForCausalLM', 'HGRNModel',
'HGRN2Config', 'HGRN2ForCausalLM', 'HGRN2Model',
'LinearAttentionConfig', 'LinearAttentionForCausalLM', 'LinearAttentionModel',
'MambaConfig', 'MambaForCausalLM', 'MambaModel',
'RetNetConfig', 'RetNetForCausalLM', 'RetNetModel',
'RWKV6Config', 'RWKV6ForCausalLM', 'RWKV6Model',
'TransformerConfig', 'TransformerForCausalLM', 'TransformerModel'
]

View File

@ -1,13 +0,0 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.abc.configuration_abc import ABCConfig
from fla.models.abc.modeling_abc import ABCForCausalLM, ABCModel
AutoConfig.register(ABCConfig.model_type, ABCConfig)
AutoModel.register(ABCConfig, ABCModel)
AutoModelForCausalLM.register(ABCConfig, ABCForCausalLM)
__all__ = ['ABCConfig', 'ABCForCausalLM', 'ABCModel']

View File

@ -1,74 +0,0 @@
# -*- coding: utf-8 -*-
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class ABCConfig(PretrainedConfig):
model_type = 'abc'
keys_to_ignore_at_inference = ['past_key_values']
def __init__(
self,
vocab_size: int = 32000,
hidden_size: int = 2048,
gate_low_rank_dim: int = 16,
clamp_min: float = -32,
clamp_max: float = 32,
hidden_ratio: Optional[int] = 4,
intermediate_size: Optional[int] = None,
num_hidden_layers: int = 24,
num_heads: int = 4,
num_slots: Optional[int] = 64,
use_short_conv: bool = True,
conv_size: int = 4,
share_conv_kernel: bool = True,
exapnd_k: float = 0.5,
exapnd_v: float = 1,
hidden_act: str = "swish",
max_position_embeddings: int = 2048,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-6,
use_cache: bool = True,
pad_token_id: int = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
initializer_range: float = 0.02,
tie_word_embeddings: bool = False,
fuse_norm: bool = True,
fuse_cross_entropy: bool = True,
**kwargs
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.gate_low_rank_dim = gate_low_rank_dim
self.clamp_min = clamp_min
self.clamp_max = clamp_max
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_heads = num_heads
self.num_slots = num_slots
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.share_conv_kernel = share_conv_kernel
self.expand_k = exapnd_k
self.expand_v = exapnd_v
self.hidden_act = hidden_act
self.elementwise_affine = elementwise_affine
self.norm_eps = norm_eps
self.use_cache = use_cache
self.initializer_range = initializer_range
self.fuse_cross_entropy = fuse_cross_entropy
self.fuse_norm = fuse_norm
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@ -1,394 +0,0 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.layers.abc import ABCAttention
from fla.models.abc.configuration_abc import ABCConfig
from fla.models.utils import RecurrentCache
from fla.modules import FusedCrossEntropyLoss, RMSNorm
from fla.modules.activations import swiglu_linear
logger = logging.get_logger(__name__)
class ABCMLP(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'swish'
) -> ABCMLP:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
y = self.gate_proj(x)
gate, y = y.chunk(2, -1)
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
class ABCBlock(nn.Module):
def __init__(self, config: ABCConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.attn = ABCAttention(
hidden_size=config.hidden_size,
expand_k=config.expand_k,
expand_v=config.expand_v,
num_heads=config.num_heads,
num_slots=config.num_slots,
use_short_conv=config.use_short_conv,
conv_size=config.conv_size,
share_conv_kernel=config.share_conv_kernel,
gate_fn=config.hidden_act,
elementwise_affine=config.elementwise_affine,
norm_eps=config.norm_eps,
clamp_min=config.clamp_min,
clamp_max=config.clamp_max,
fuse_norm=config.fuse_norm,
layer_idx=layer_idx
)
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.mlp = ABCMLP(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.attn_norm(hidden_states)
hidden_states, attentions, past_key_values = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, attentions, past_key_values)
return outputs
class ABCPreTrainedModel(PreTrainedModel):
config_class = ABCConfig
supports_gradient_checkpointing = True
_no_split_modules = ['ABCBlock']
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class ABCModel(ABCPreTrainedModel):
def __init__(self, config: ABCConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([ABCBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # noqa
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn("`ABCModel` does not `output_attentions` now, setting it to `False`.")
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
hidden_states = inputs_embeds
if use_cache:
if past_key_values is None:
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
for layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
use_cache,
output_attentions
)
else:
hidden_states, attentions, past_key_values = layer(
hidden_states,
attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
if output_attentions:
all_attns += (attentions,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attns
)
class ABCForCausalLM(ABCPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = ABCModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exception:
if 'past_key_values' in str(exception):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exception
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is passed along.
if past_key_values is not None:
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
model_inputs = {'input_ids': input_ids}
model_inputs['past_key_values'] = past_key_values
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(logits.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View File

@ -1,14 +0,0 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.delta_net.configuration_delta_net import \
DeltaNetConfig
from fla.models.delta_net.modeling_delta_net import (
DeltaNetForCausalLM, DeltaNetModel)
AutoConfig.register(DeltaNetConfig.model_type, DeltaNetConfig)
AutoModel.register(DeltaNetConfig, DeltaNetModel)
AutoModelForCausalLM.register(DeltaNetConfig, DeltaNetForCausalLM)
__all__ = ['DeltaNetConfig', 'DeltaNetForCausalLM', 'DeltaNetModel']

View File

@ -1,77 +0,0 @@
# -*- coding: utf-8 -*-
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class DeltaNetConfig(PretrainedConfig):
model_type = 'delta_net'
keys_to_ignore_at_inference = ['past_key_values']
def __init__(
self,
vocab_size: int = 32000,
hidden_size: int = 2048,
expand_k: int = 1,
expand_v: int = 1,
use_gate: bool = False,
use_short_conv: bool = True,
conv_size: int = 4,
share_conv_kernel: bool = False,
use_rope: bool = False,
use_beta: bool = True,
use_output_norm: bool = True,
hidden_ratio: Optional[int] = 4,
intermediate_size: Optional[int] = None,
num_hidden_layers: int = 24,
num_heads: int = 4,
attn_mode: str = "chunk",
qk_norm: str = 'l2',
qk_activation: str = 'silu',
chunk_size: int = 64,
hidden_act: str = "swish",
max_position_embeddings: int = 2048,
rms_norm_eps: float = 1e-6,
use_cache: bool = True,
pad_token_id: int = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = False,
initializer_range: float = 0.02,
fuse_cross_entropy: bool = True,
**kwargs
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_heads = num_heads
self.attn_mode = attn_mode
self.hidden_act = hidden_act
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.initializer_range = initializer_range
self.fuse_cross_entropy = fuse_cross_entropy
self.use_gate = use_gate
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.share_conv_kernel = share_conv_kernel
self.use_rope = use_rope
self.use_beta = use_beta
self.use_output_norm = use_output_norm
self.qk_norm = qk_norm
self.qk_activation = qk_activation
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@ -1,405 +0,0 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.layers.delta_net import DeltaNet
from fla.models.delta_net.configuration_delta_net import DeltaNetConfig
from fla.models.utils import RecurrentCache
from fla.modules import FusedCrossEntropyLoss, RMSNorm
from fla.modules.activations import swiglu_linear
logger = logging.get_logger(__name__)
class DeltaNetMLP(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'swish'
) -> DeltaNetMLP:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
y = self.gate_proj(x)
gate, y = y.chunk(2, -1)
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
class DeltaNetBlock(nn.Module):
def __init__(self, config: DeltaNetConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.rms_norm_eps)
self.attn = DeltaNet(
mode=config.attn_mode,
hidden_size=config.hidden_size,
expand_k=config.expand_k,
expand_v=config.expand_v,
num_heads=config.num_heads,
use_gate=config.use_gate,
use_rope=config.use_rope,
use_beta=config.use_beta,
use_short_conv=config.use_short_conv,
use_output_norm=config.use_output_norm,
conv_size=config.conv_size,
share_conv_kernel=config.share_conv_kernel,
layer_idx=layer_idx,
qk_norm=config.qk_norm,
qk_activation=config.qk_activation
)
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.rms_norm_eps)
self.mlp = DeltaNetMLP(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.attn_norm(hidden_states)
hidden_states, attentions, past_key_values = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, attentions, past_key_values)
return outputs
class DeltaNetPreTrainedModel(PreTrainedModel):
config_class = DeltaNetConfig
supports_gradient_checkpointing = True
_no_split_modules = ['DeltaNetBlock']
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class DeltaNetModel(DeltaNetPreTrainedModel):
def __init__(self, config: DeltaNetConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([DeltaNetBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # noqa
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn("`DeltaNetModel` does not `output_attentions` now, setting it to `False`.")
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
hidden_states = inputs_embeds
if use_cache:
if past_key_values is None:
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
for layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
use_cache,
output_attentions
)
else:
hidden_states, attentions, past_key_values = layer(
hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
if output_attentions:
all_attns += (attentions,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = past_key_values
# if use_cache:
# next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attns
)
class DeltaNetForCausalLM(DeltaNetPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = DeltaNetModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exception:
if 'past_key_values' in str(exception):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exception
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is passed along.
if past_key_values is not None:
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
# breakpoint()
input_ids, attention_mask = input_ids[:, -1:], attention_mask[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard.
# Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {'input_ids': input_ids.contiguous()}
model_inputs.update({
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
})
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(logits.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View File

@ -1,13 +0,0 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.gla.configuration_gla import GLAConfig
from fla.models.gla.modeling_gla import GLAForCausalLM, GLAModel
AutoConfig.register(GLAConfig.model_type, GLAConfig)
AutoModel.register(GLAConfig, GLAModel)
AutoModelForCausalLM.register(GLAConfig, GLAForCausalLM)
__all__ = ['GLAConfig', 'GLAForCausalLM', 'GLAModel']

View File

@ -1,80 +0,0 @@
# -*- coding: utf-8 -*-
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class GLAConfig(PretrainedConfig):
model_type = 'gla'
keys_to_ignore_at_inference = ['past_key_values']
def __init__(
self,
vocab_size: int = 32000,
hidden_size: int = 2048,
expand_k: int = 0.5,
expand_v: int = 1,
hidden_ratio: Optional[int] = 4,
intermediate_size: Optional[int] = None,
num_hidden_layers: int = 24,
num_heads: int = 4,
num_kv_heads: Optional[int] = None,
feature_map: Optional[str] = None,
attn_mode: str = "chunk",
use_short_conv: bool = False,
conv_size: int = 4,
share_conv_kernel: bool = True,
use_output_gate: bool = True,
clamp_min: Optional[float] = None,
hidden_act: str = "swish",
max_position_embeddings: int = 2048,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-6,
use_gk: bool = True,
use_gv: bool = False,
use_cache: bool = True,
pad_token_id: int = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = False,
initializer_range: float = 0.02,
fuse_norm: bool = True,
fuse_cross_entropy: bool = True,
**kwargs
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_heads = num_heads
self.num_kv_heads = num_kv_heads
self.feature_map = feature_map
self.attn_mode = attn_mode
self.clamp_min = clamp_min
self.hidden_act = hidden_act
self.elementwise_affine = elementwise_affine
self.norm_eps = norm_eps
self.use_gk = use_gk
self.use_gv = use_gv
self.use_cache = use_cache
self.initializer_range = initializer_range
self.fuse_norm = fuse_norm
self.fuse_cross_entropy = fuse_cross_entropy
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.share_conv_kernel = share_conv_kernel
self.use_output_gate = use_output_gate
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@ -1,403 +0,0 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.layers.gla import GatedLinearAttention
from fla.models.gla.configuration_gla import GLAConfig
from fla.models.utils import RecurrentCache
from fla.modules import FusedCrossEntropyLoss, RMSNorm
from fla.modules.activations import swiglu_linear
logger = logging.get_logger(__name__)
class GLAMLP(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'swish'
) -> GLAMLP:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
y = self.gate_proj(x)
gate, y = y.chunk(2, -1)
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
class GLABlock(nn.Module):
def __init__(self, config: GLAConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.attn = GatedLinearAttention(
mode=config.attn_mode,
hidden_size=config.hidden_size,
expand_k=config.expand_k,
expand_v=config.expand_v,
num_heads=config.num_heads,
num_kv_heads=config.num_kv_heads,
feature_map=config.feature_map,
use_short_conv=config.use_short_conv,
conv_size=config.conv_size,
share_conv_kernel=config.share_conv_kernel,
use_output_gate=config.use_output_gate,
gate_fn=config.hidden_act,
elementwise_affine=config.elementwise_affine,
norm_eps=config.norm_eps,
clamp_min=config.clamp_min,
fuse_norm=config.fuse_norm,
layer_idx=layer_idx
)
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.mlp = GLAMLP(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.attn_norm(hidden_states)
hidden_states, attentions, past_key_values = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, attentions, past_key_values)
return outputs
class GLAPreTrainedModel(PreTrainedModel):
config_class = GLAConfig
supports_gradient_checkpointing = True
_no_split_modules = ['GLABlock']
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class GLAModel(GLAPreTrainedModel):
def __init__(self, config: GLAConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList([GLABlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # noqa
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn("`GLAModel` does not `output_attentions` now, setting it to `False`.")
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
hidden_states = inputs_embeds
if use_cache:
if past_key_values is None:
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
for layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
use_cache,
output_attentions
)
else:
hidden_states, attentions, past_key_values = layer(
hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
if output_attentions:
all_attns += (attentions,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attns
)
class GLAForCausalLM(GLAPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = GLAModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exception:
if 'past_key_values' in str(exception):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exception
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is passed along.
if past_key_values is not None:
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
input_ids, attention_mask = input_ids[:, -1:], attention_mask[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard.
# Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {'input_ids': input_ids.contiguous()}
model_inputs.update({
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
})
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(logits.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View File

@ -1,13 +0,0 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.hgrn.configuration_hgrn import HGRNConfig
from fla.models.hgrn.modeling_hgrn import HGRNForCausalLM, HGRNModel
AutoConfig.register(HGRNConfig.model_type, HGRNConfig)
AutoModel.register(HGRNConfig, HGRNModel)
AutoModelForCausalLM.register(HGRNConfig, HGRNForCausalLM)
__all__ = ['HGRNConfig', 'HGRNForCausalLM', 'HGRNModel']

View File

@ -1,66 +0,0 @@
# -*- coding: utf-8 -*-
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class HGRNConfig(PretrainedConfig):
model_type = 'hgrn'
keys_to_ignore_at_inference = ['past_key_values']
def __init__(
self,
attn_mode: str = "chunk",
vocab_size: int = 32000,
hidden_size: int = 2048,
num_hidden_layers: int = 24,
num_heads: Optional[int] = 1,
expand_ratio: Optional[int] = 1,
use_short_conv: bool = False,
conv_size: int = 4,
share_conv_kernel: bool = True,
use_lower_bound: bool = True,
hidden_ratio: Optional[int] = 4,
intermediate_size: Optional[int] = None,
hidden_act: str = "swish",
max_position_embeddings: int = 2048,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-6,
use_cache: bool = True,
pad_token_id: int = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = False,
initializer_range: float = 0.02,
fuse_cross_entropy: bool = True,
**kwargs
):
self.attn_mode = attn_mode
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_heads = num_heads
self.expand_ratio = expand_ratio
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.share_conv_kernel = share_conv_kernel
self.use_lower_bound = use_lower_bound
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.elementwise_affine = elementwise_affine
self.norm_eps = norm_eps
self.use_cache = use_cache
self.initializer_range = initializer_range
self.fuse_cross_entropy = fuse_cross_entropy
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@ -1,407 +0,0 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.layers.hgrn import HGRNAttention
from fla.models.hgrn.configuration_hgrn import HGRNConfig
from fla.models.utils import RecurrentCache
from fla.modules import FusedCrossEntropyLoss, RMSNorm
from fla.modules.activations import swiglu_linear
logger = logging.get_logger(__name__)
class HGRNMLP(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'swish'
) -> HGRNMLP:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
y = self.gate_proj(x)
gate, y = y.chunk(2, -1)
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
class HGRNBlock(nn.Module):
def __init__(self, config: HGRNConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.attn = HGRNAttention(
mode=config.attn_mode,
hidden_size=config.hidden_size,
num_heads=config.num_heads,
expand_ratio=config.expand_ratio,
use_short_conv=config.use_short_conv,
conv_size=config.conv_size,
share_conv_kernel=config.share_conv_kernel,
elementwise_affine=config.elementwise_affine,
norm_eps=config.norm_eps,
layer_idx=layer_idx
)
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.mlp = HGRNMLP(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
lower_bound: Optional[torch.Tensor] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.attn_norm(hidden_states)
hidden_states, attentions, past_key_values = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
lower_bound=lower_bound
)
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, attentions, past_key_values)
return outputs
class HGRNPreTrainedModel(PreTrainedModel):
config_class = HGRNConfig
supports_gradient_checkpointing = True
_no_split_modules = ['HGRNBlock']
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class HGRNModel(HGRNPreTrainedModel):
def __init__(self, config: HGRNConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
if config.use_lower_bound:
self.lower_bounds = nn.Parameter(torch.zeros(config.num_hidden_layers, config.hidden_size))
self.layers = nn.ModuleList([HGRNBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # noqa
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn("`HGRNModel` does not `output_attentions` now, setting it to `False`.")
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
hidden_states = inputs_embeds
if use_cache:
if past_key_values is None:
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
if self.config.use_lower_bound:
lower_bounds = self.lower_bounds.softmax(0)
lower_bounds = lower_bounds.cumsum(0) - lower_bounds[0]
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
lower_bound = lower_bounds[i] if self.config.use_lower_bound else None
if self.gradient_checkpointing and self.training:
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
use_cache,
output_attentions,
lower_bound
)
else:
hidden_states, attentions, past_key_values = layer(
hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
lower_bound=lower_bound
)
if output_attentions:
all_attns += (attentions,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attns
)
class HGRNForCausalLM(HGRNPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = HGRNModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exception:
if 'past_key_values' in str(exception):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exception
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is passed along.
if past_key_values is not None:
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
input_ids, attention_mask = input_ids[:, -1:], attention_mask[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard.
# Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {'input_ids': input_ids.contiguous()}
model_inputs.update({
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
})
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(logits.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View File

@ -1,13 +0,0 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.hgrn2.configuration_hgrn2 import HGRN2Config
from fla.models.hgrn2.modeling_hgrn2 import HGRN2ForCausalLM, HGRN2Model
AutoConfig.register(HGRN2Config.model_type, HGRN2Config)
AutoModel.register(HGRN2Config, HGRN2Model)
AutoModelForCausalLM.register(HGRN2Config, HGRN2ForCausalLM)
__all__ = ['HGRN2Config', 'HGRN2ForCausalLM', 'HGRN2Model']

View File

@ -1,66 +0,0 @@
# -*- coding: utf-8 -*-
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class HGRN2Config(PretrainedConfig):
model_type = 'hgrn2'
keys_to_ignore_at_inference = ['past_key_values']
def __init__(
self,
vocab_size: int = 32000,
hidden_size: int = 2048,
num_hidden_layers: int = 24,
attn_mode: str = "chunk",
num_heads: Optional[int] = None,
expand_ratio: Optional[int] = 128,
use_short_conv: bool = False,
conv_size: int = 4,
share_conv_kernel: bool = True,
use_lower_bound: bool = True,
hidden_ratio: Optional[int] = 4,
intermediate_size: Optional[int] = None,
hidden_act: str = "swish",
max_position_embeddings: int = 2048,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-6,
use_cache: bool = True,
pad_token_id: int = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = False,
initializer_range: float = 0.02,
fuse_cross_entropy: bool = True,
**kwargs
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.attn_mode = attn_mode
self.num_heads = num_heads
self.expand_ratio = expand_ratio
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.share_conv_kernel = share_conv_kernel
self.use_lower_bound = use_lower_bound
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.elementwise_affine = elementwise_affine
self.norm_eps = norm_eps
self.use_cache = use_cache
self.initializer_range = initializer_range
self.fuse_cross_entropy = fuse_cross_entropy
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@ -1,407 +0,0 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.layers.hgrn2 import HGRN2Attention
from fla.models.hgrn2.configuration_hgrn2 import HGRN2Config
from fla.models.utils import RecurrentCache
from fla.modules import FusedCrossEntropyLoss, RMSNorm
from fla.modules.activations import swiglu_linear
logger = logging.get_logger(__name__)
class HGRN2MLP(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'swish'
) -> HGRN2MLP:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
y = self.gate_proj(x)
gate, y = y.chunk(2, -1)
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
class HGRN2Block(nn.Module):
def __init__(self, config: HGRN2Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.attn = HGRN2Attention(
mode=config.attn_mode,
hidden_size=config.hidden_size,
num_heads=config.num_heads,
expand_ratio=config.expand_ratio,
use_short_conv=config.use_short_conv,
conv_size=config.conv_size,
share_conv_kernel=config.share_conv_kernel,
elementwise_affine=config.elementwise_affine,
norm_eps=config.norm_eps,
layer_idx=layer_idx
)
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.mlp = HGRN2MLP(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
lower_bound: Optional[torch.Tensor] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.attn_norm(hidden_states)
hidden_states, attentions, past_key_values = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
lower_bound=lower_bound
)
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, attentions, past_key_values)
return outputs
class HGRN2PreTrainedModel(PreTrainedModel):
config_class = HGRN2Config
supports_gradient_checkpointing = True
_no_split_modules = ['HGRN2Block']
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class HGRN2Model(HGRN2PreTrainedModel):
def __init__(self, config: HGRN2Config):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
if config.use_lower_bound:
self.lower_bounds = nn.Parameter(torch.zeros(config.num_hidden_layers, config.hidden_size))
self.layers = nn.ModuleList([HGRN2Block(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # noqa
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn("`HGRN2Model` does not `output_attentions` now, setting it to `False`.")
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
hidden_states = inputs_embeds
if use_cache:
if past_key_values is None:
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
if self.config.use_lower_bound:
lower_bounds = self.lower_bounds.softmax(0)
lower_bounds = lower_bounds.cumsum(0) - lower_bounds[0]
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
lower_bound = lower_bounds[i] if self.config.use_lower_bound else None
if self.gradient_checkpointing and self.training:
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
use_cache,
output_attentions,
lower_bound
)
else:
hidden_states, attentions, past_key_values = layer(
hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
lower_bound=lower_bound
)
if output_attentions:
all_attns += (attentions,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attns
)
class HGRN2ForCausalLM(HGRN2PreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = HGRN2Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exception:
if 'past_key_values' in str(exception):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exception
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is passed along.
if past_key_values is not None:
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
input_ids, attention_mask = input_ids[:, -1:], attention_mask[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard.
# Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {'input_ids': input_ids.contiguous()}
model_inputs.update({
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
})
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[List[torch.Tensor]]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(logits.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View File

@ -1,14 +0,0 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.linear_attn.configuration_linear_attn import \
LinearAttentionConfig
from fla.models.linear_attn.modeling_linear_attn import (
LinearAttentionForCausalLM, LinearAttentionModel)
AutoConfig.register(LinearAttentionConfig.model_type, LinearAttentionConfig)
AutoModel.register(LinearAttentionConfig, LinearAttentionModel)
AutoModelForCausalLM.register(LinearAttentionConfig, LinearAttentionForCausalLM)
__all__ = ['LinearAttentionConfig', 'LinearAttentionForCausalLM', 'LinearAttentionModel']

View File

@ -1,70 +0,0 @@
# -*- coding: utf-8 -*-
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class LinearAttentionConfig(PretrainedConfig):
model_type = 'linear_attn'
keys_to_ignore_at_inference = ['past_key_values']
def __init__(
self,
vocab_size: int = 32000,
hidden_size: int = 2048,
expand_k: int = 1,
expand_v: int = 1,
hidden_ratio: Optional[int] = 4,
intermediate_size: Optional[int] = None,
num_hidden_layers: int = 24,
num_heads: int = 4,
attn_mode: str = "fused_chunk",
feature_map: str = "elementwise_product",
tie_feature_map_qk: bool = False,
norm_q: bool = False,
norm_k: bool = False,
norm_feature_map: bool = False,
hidden_act: str = "swish",
max_position_embeddings: int = 2048,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-6,
use_cache: bool = True,
pad_token_id: int = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = False,
initializer_range: float = 0.02,
fuse_cross_entropy: bool = True,
**kwargs
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_heads = num_heads
self.attn_mode = attn_mode
self.feature_map = feature_map
self.tie_feature_map_qk = tie_feature_map_qk
self.norm_q = norm_q
self.norm_k = norm_k
self.norm_feature_map = norm_feature_map
self.hidden_act = hidden_act
self.elementwise_affine = elementwise_affine
self.norm_eps = norm_eps
self.use_cache = use_cache
self.initializer_range = initializer_range
self.fuse_cross_entropy = fuse_cross_entropy
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@ -1,424 +0,0 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.layers.linear_attn import LinearAttention
from fla.models.linear_attn.configuration_linear_attn import \
LinearAttentionConfig
from fla.modules import FusedCrossEntropyLoss, RMSNorm
from fla.modules.activations import swiglu_linear
logger = logging.get_logger(__name__)
class LinearAttentionMLP(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'swish'
) -> LinearAttentionMLP:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
y = self.gate_proj(x)
gate, y = y.chunk(2, -1)
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
class LinearAttentionBlock(nn.Module):
def __init__(self, config: LinearAttentionConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.attn = LinearAttention(
hidden_size=config.hidden_size,
expand_k=config.expand_k,
expand_v=config.expand_v,
num_heads=config.num_heads,
mode=config.attn_mode,
feature_map=config.feature_map,
tie_feature_map_qk=config.tie_feature_map_qk,
norm_q=config.norm_q,
norm_k=config.norm_k,
do_feature_map_norm=config.norm_feature_map,
elementwise_affine=config.elementwise_affine,
norm_eps=config.norm_eps,
layer_idx=layer_idx
)
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.mlp = LinearAttentionMLP(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
# currently not supported
attn_weights, present_key_value = None, None
hidden_states = self.attn_norm(hidden_states)
hidden_states = self.attn(hidden_states)
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class LinearAttentionPreTrainedModel(PreTrainedModel):
config_class = LinearAttentionConfig
supports_gradient_checkpointing = True
_no_split_modules = ['LinearAttentionBlock']
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class LinearAttentionModel(LinearAttentionPreTrainedModel):
def __init__(self, config: LinearAttentionConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[LinearAttentionBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn(
"`LinearAttentionModel` does not support output attention weights now, "
"so `output_attentions` is set to `False`."
)
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
_, seq_length = input_ids.shape[:2]
elif inputs_embeds is not None:
_, seq_length = inputs_embeds.shape[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
past_key_values_length = 0
if use_cache:
use_legacy_cache = not isinstance(past_key_values, Cache)
if use_legacy_cache:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
past_key_values_length = past_key_values.get_usable_length(seq_length)
if position_ids is None:
device = input_ids.device if input_ids is not None else inputs_embeds.device
position_ids = torch.arange(
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
)
position_ids = position_ids.unsqueeze(0)
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
# embed positions
hidden_states = inputs_embeds
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for decoder_layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
class LinearAttentionForCausalLM(LinearAttentionPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = LinearAttentionModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exc:
# Expected exception: "AttributeError: '(object name)' object has no attribute 'past_key_values'"
if 'past_key_values' in str(exc):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exc
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
state: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
**kwargs
):
# only last token for inputs_ids if the state is passed along.
if state is not None:
input_ids = input_ids[:, -1].unsqueeze(-1)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and state is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs["state"] = state
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(logits.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View File

@ -1,14 +0,0 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.mamba.configuration_mamba import MambaConfig
from fla.models.mamba.modeling_mamba import (MambaBlock, MambaForCausalLM,
MambaModel)
AutoConfig.register(MambaConfig.model_type, MambaConfig, True)
AutoModel.register(MambaConfig, MambaModel, True)
AutoModelForCausalLM.register(MambaConfig, MambaForCausalLM, True)
__all__ = ['MambaConfig', 'MambaForCausalLM', 'MambaModel', 'MambaBlock']

View File

@ -1,156 +0,0 @@
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MAMBA configuration"""
import math
from transformers.configuration_utils import PretrainedConfig
class MambaConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`MambaModel`]. It is used to instantiate a MAMBA
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the MAMBA
[state-spaces/mamba-2.8b](https://huggingface.co/state-spaces/mamba-2.8b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50280):
Vocabulary size of the MAMBA model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MambaModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the embeddings and hidden states.
state_size (`int`, *optional*, defaults to 16): shape of the state space latents.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the model.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
The epsilon to use in the layer normalization layers.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 0):
The id of the beginning of sentence token in the vocabulary.
eos_token_id (`int`, *optional*, defaults to 0):
The id of the end of sentence token in the vocabulary.
expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size.
conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel.
use_bias (`bool`, *optional*, defaults to `False`):
Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block
use_conv_bias (`bool`, *optional*, defaults to `True`):
Whether or not to use bias in the convolution layer of the mixer block.
hidden_act (`str`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
initializer_range (`float`, *optional*, defaults to 0.1):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
residual_in_fp32 (`bool`, *optional*, defaults to `True`):
Whether or not residuals should be in `float32`.
If set to `False` residuals will keep the same `dtype` as the rest of the model
time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
Rank of the the discretization projection matrix.
`"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
time_step_scale (`float`, *optional*, defaults to 1.0):
Scale used used to scale `dt_proj.bias`.
time_step_min (`float`, *optional*, defaults to 0.001):
Minimum `time_step` used to bound `dt_proj.bias`.
time_step_max (`float`, *optional*, defaults to 0.1):
Maximum `time_step` used to bound `dt_proj.bias`.
time_step_init_scheme (`float`, *optional*, defaults to `"random"`):
Init scheme used for `dt_proj.weight`. Should be one of `["random","uniform"]`
time_step_floor (`float`, *optional*, defaults to 0.0001):
Minimum clamping value of the `dt_proj.bias` layer initialization.
rescale_prenorm_residual (`bool`, *optional*, defaults to `False`):
Whether or not to rescale `out_proj` weights when initializing.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the cache should be used.
Example:
```python
>>> from transformers import MambaConfig, MambaModel
>>> # Initializing a Mamba configuration
>>> configuration = MambaConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = MambaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mamba"
def __init__(
self,
vocab_size=32000,
hidden_size=2048,
state_size=16,
num_hidden_layers=48,
layer_norm_epsilon=1e-5,
pad_token_id= 0,
bos_token_id= 1,
eos_token_id= 2,
expand=2,
conv_kernel=4,
use_bias=False,
use_conv_bias=True,
hidden_act="silu",
initializer_range=0.1,
residual_in_fp32=False,
time_step_rank="auto",
time_step_scale=1.0,
time_step_min=0.001,
time_step_max=0.1,
time_step_init_scheme="random",
time_step_floor=1e-4,
rescale_prenorm_residual=False,
use_cache=True,
fuse_norm: bool = True,
fuse_cross_entropy: bool = True,
tie_word_embeddings: bool = False,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.state_size = state_size
self.num_hidden_layers = num_hidden_layers
self.layer_norm_epsilon = layer_norm_epsilon
self.conv_kernel = conv_kernel
self.expand = expand
self.intermediate_size = int(expand * self.hidden_size)
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.use_bias = use_bias
self.use_conv_bias = use_conv_bias
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.time_step_rank = math.ceil(self.hidden_size / 16) if time_step_rank == "auto" else time_step_rank
self.time_step_scale = time_step_scale
self.time_step_min = time_step_min
self.time_step_max = time_step_max
self.time_step_init_scheme = time_step_init_scheme
self.time_step_floor = time_step_floor
self.rescale_prenorm_residual = rescale_prenorm_residual
self.residual_in_fp32 = residual_in_fp32
self.use_cache = use_cache
self.fuse_cross_entropy = fuse_cross_entropy
self.fuse_norm = fuse_norm
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs)

View File

@ -1,605 +0,0 @@
# coding=utf-8
# Copyright 2024 state-spaces/mamba org and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch MAMBA model."""
import math
from dataclasses import dataclass
from typing import Any, Dict, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from transformers.activations import ACT2FN
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import ModelOutput, logging
from fla.models.mamba.configuration_mamba import MambaConfig
from fla.modules import FusedCrossEntropyLoss, RMSNorm
logger = logging.get_logger(__name__)
try:
from mamba_ssm.ops.selective_scan_interface import (mamba_inner_fn,
selective_scan_fn)
from mamba_ssm.ops.triton.selective_state_update import \
selective_state_update
except ImportError:
selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None
try:
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
except ImportError:
causal_conv1d_update, causal_conv1d_fn = None, None
is_fast_path_available = all(
(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)
)
class MambaCache:
def __init__(self, config, batch_size, dtype=torch.float16, device=None):
self.seqlen_offset = 0
self.dtype = dtype
intermediate_size = config.intermediate_size
ssm_state_size = config.state_size
conv_kernel_size = config.conv_kernel
self.conv_states = {
i: torch.zeros(batch_size, intermediate_size, conv_kernel_size, device=device, dtype=dtype)
for i in range(config.num_hidden_layers)
}
self.ssm_states = {
i: torch.zeros(batch_size, intermediate_size, ssm_state_size, device=device, dtype=dtype)
for i in range(config.num_hidden_layers)
}
class MambaMixer(nn.Module):
"""
Compute , A, B, C, and D the state space parameters and compute the `contextualized_states`.
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
and is why Mamba is called **selective** state spaces)
"""
def __init__(self, config, layer_idx):
super().__init__()
self.hidden_size = config.hidden_size
self.ssm_state_size = config.state_size
self.conv_kernel_size = config.conv_kernel
self.intermediate_size = config.intermediate_size
self.time_step_rank = config.time_step_rank
self.layer_idx = layer_idx
self.use_conv_bias = config.use_conv_bias
self.conv1d = nn.Conv1d(
in_channels=self.intermediate_size,
out_channels=self.intermediate_size,
bias=config.use_conv_bias,
kernel_size=config.conv_kernel,
groups=self.intermediate_size,
padding=config.conv_kernel - 1,
)
self.activation = config.hidden_act
self.act = ACT2FN[config.hidden_act]
# projection of the input hidden states
self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=config.use_bias)
# selective projection used to make dt, B and C input dependant
self.x_proj = nn.Linear(self.intermediate_size, self.time_step_rank + self.ssm_state_size * 2, bias=False)
# time step projection (discretization)
self.dt_proj = nn.Linear(self.time_step_rank, self.intermediate_size, bias=True)
# S4D real initialization. These are not discretized!
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :]
A = A.expand(self.intermediate_size, -1).contiguous()
self.A_log = nn.Parameter(torch.log(A))
self.D = nn.Parameter(torch.ones(self.intermediate_size))
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
self.use_bias = config.use_bias
if not is_fast_path_available:
logger.warning_once(
"The fast path is not available because on of "
"`(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`"
" is None. Falling back to the naive implementation. "
"To install follow https://github.com/state-spaces/mamba/#installation and"
" https://github.com/Dao-AILab/causal-conv1d"
)
def cuda_kernels_forward(self, hidden_states: torch.Tensor, cache_params: Optional[MambaCache] = None):
# 1. Gated MLP's linear projection
projected_states = self.in_proj(hidden_states).transpose(1, 2)
if self.training and cache_params is None: # Doesn't support outputting the states -> used for training
contextualized_states = mamba_inner_fn(
projected_states,
self.conv1d.weight,
self.conv1d.bias if self.use_conv_bias else None,
self.x_proj.weight,
self.dt_proj.weight,
self.out_proj.weight,
self.out_proj.bias.float() if self.use_bias else None,
-torch.exp(self.A_log.float()),
None, # input-dependent B
None, # input-dependent C
self.D.float(),
delta_bias=self.dt_proj.bias.float(),
delta_softplus=True,
)
else:
hidden_states, gate = projected_states.chunk(2, dim=1)
# 2. Convolution sequence transformation
conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2))
if cache_params is not None and cache_params.seqlen_offset > 0:
hidden_states = causal_conv1d_update(
hidden_states.squeeze(-1),
cache_params.conv_states[self.layer_idx],
conv_weights,
self.conv1d.bias,
self.activation,
)
hidden_states = hidden_states.unsqueeze(-1)
else:
if cache_params is not None:
conv_states = nn.functional.pad(
hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0)
)
cache_params.conv_states[self.layer_idx].copy_(conv_states)
hidden_states = causal_conv1d_fn(
hidden_states, conv_weights, self.conv1d.bias, activation=self.activation
)
# 3. State Space Model sequence transformation
# 3.a. input varying initialization of time_step, B and C
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
time_step, B, C = torch.split(
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
)
discrete_time_step = self.dt_proj.weight @ time_step.transpose(1, 2)
A = -torch.exp(self.A_log.float())
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
time_proj_bias = self.dt_proj.bias.float() if hasattr(self.dt_proj, "bias") else None
if cache_params is not None and cache_params.seqlen_offset > 0:
scan_outputs = selective_state_update(
cache_params.ssm_states[self.layer_idx],
hidden_states[..., 0],
discrete_time_step[..., 0],
A,
B[:, 0],
C[:, 0],
self.D,
gate[..., 0],
time_proj_bias,
dt_softplus=True,
).unsqueeze(-1)
else:
scan_outputs, ssm_state = selective_scan_fn(
hidden_states,
discrete_time_step,
A,
B.transpose(1, 2),
C.transpose(1, 2),
self.D.float(),
gate,
time_proj_bias,
delta_softplus=True,
return_last_state=True,
)
if ssm_state is not None and cache_params is not None:
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
# 4. Final linear projection
contextualized_states = self.out_proj(scan_outputs.transpose(1, 2))
return contextualized_states
# fmt: off
def slow_forward(self, input_states, cache_params: Optional[MambaCache] = None):
batch_size, seq_len, _ = input_states.shape
dtype = input_states.dtype
# 1. Gated MLP's linear projection
# [batch, 2 * intermediate_size, seq_len]
projected_states = self.in_proj(input_states).transpose(1, 2)
hidden_states, gate = projected_states.chunk(2, dim=1)
# 2. Convolution sequence transformation
if cache_params is not None:
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
if cache_params.seqlen_offset > 0:
# [batch, intermediate_size, conv_kernel_size]
conv_state = cache_params.conv_states[self.layer_idx]
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
conv_state[:, :, -1] = hidden_states[:, :, 0]
cache_params.conv_states[self.layer_idx].copy_(conv_state)
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
if self.use_conv_bias:
hidden_states += self.conv1d.bias
# [batch, intermediate_size, 1] : decoding
hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1)
else:
conv_state = nn.functional.pad(
hidden_states,
(self.conv_kernel_size - hidden_states.shape[-1], 0)
)
cache_params.conv_states[self.layer_idx].copy_(conv_state)
# [batch, intermediate_size, seq_len]
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len])
else:
ssm_state = torch.zeros(
(batch_size, self.intermediate_size, self.ssm_state_size),
device=hidden_states.device, dtype=dtype
)
# [batch, intermediate_size, seq_len]
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len])
# 3. State Space Model sequence transformation
# 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2]
ssm_parameters = self.x_proj(hidden_states.transpose(1, 2))
time_step, B, C = torch.split(
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
)
# [batch, seq_len, intermediate_size]
discrete_time_step = self.dt_proj(time_step)
# [batch, intermediate_size, seq_len]
discrete_time_step = nn.functional.softplus(discrete_time_step).transpose(1, 2)
# 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM)
# [intermediate_size, ssm_state_size]
A = -torch.exp(self.A_log.float())
# [batch, intermediate_size, seq_len, ssm_state_size]
discrete_A = torch.exp(A[None, :, None, :] * discrete_time_step[:, :, :, None])
# [batch, intermediade_size, seq_len, ssm_state_size]
discrete_B = discrete_time_step[:, :, :, None] * B[:, None, :, :].float()
deltaB_u = discrete_B * hidden_states[:, :, :, None].float()
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
scan_outputs = []
for i in range(seq_len):
# [batch, intermediade_size, ssm_state]
ssm_state = discrete_A[:, :, i, :] * ssm_state + deltaB_u[:, :, i, :]
# [batch, intermediade_size, 1]
scan_output = torch.matmul(ssm_state.to(dtype), C[:, i, :].unsqueeze(-1))
scan_outputs.append(scan_output[:, :, 0])
# [batch, seq_len, intermediade_size]
scan_output = torch.stack(scan_outputs, dim=-1)
scan_output = scan_output + (hidden_states * self.D[None, :, None])
scan_output = (scan_output * self.act(gate))
if cache_params is not None:
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
# 4. Final linear projection
# [batch, seq_len, hidden_size]
contextualized_states = self.out_proj(scan_output.transpose(1, 2))
return contextualized_states
# fmt: on
def forward(self, hidden_states, cache_params: Optional[MambaCache] = None):
if is_fast_path_available and "cuda" in self.x_proj.weight.device.type:
return self.cuda_kernels_forward(hidden_states, cache_params)
return self.slow_forward(hidden_states, cache_params)
class MambaBlock(nn.Module):
def __init__(self, config, layer_idx):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.residual_in_fp32 = config.residual_in_fp32
self.norm = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.mixer = MambaMixer(config, layer_idx=layer_idx)
def forward(self, hidden_states, cache_params: Optional[MambaCache] = None):
residual = hidden_states
hidden_states = self.norm(hidden_states)
# if self.residual_in_fp32:
# residual = residual.to(torch.float32)
hidden_states = self.mixer(hidden_states, cache_params=cache_params)
hidden_states = residual + hidden_states
return hidden_states
class MambaPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MambaConfig
base_model_prefix = "backbone"
_no_split_modules = ["MambaBlock"]
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, MambaMixer):
module.A_log._no_weight_decay = True
module.D._no_weight_decay = True
dt_init_std = self.config.time_step_rank**-0.5 * self.config.time_step_scale
if self.config.time_step_init_scheme == "constant":
nn.init.constant_(module.dt_proj.weight, dt_init_std)
elif self.config.time_step_init_scheme == "random":
nn.init.uniform_(module.dt_proj.weight, -dt_init_std, dt_init_std)
dt = torch.exp(
torch.rand(self.config.intermediate_size)
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
+ math.log(self.config.time_step_min)
).clamp(min=self.config.time_step_floor)
# # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
inv_dt = dt + torch.log(-torch.expm1(-dt))
with torch.no_grad():
module.dt_proj.bias.copy_(inv_dt)
module.dt_proj.bias._no_reinit = True
if isinstance(module, nn.Linear):
if module.bias is not None:
if not getattr(module.bias, "_no_reinit", False):
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, std=self.config.initializer_range)
if self.config.rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["out_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
with torch.no_grad():
p /= math.sqrt(self.config.num_layers)
@dataclass
class MambaOutput(ModelOutput):
"""
Class for the MAMBA model outputs.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
cache_params (`MambaCache`):
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
avoid providing the old `input_ids`.
Includes both the State space model state matrices after the selective scan, and the Convolutional states
hidden_states (`tuple(torch.FloatTensor)`, *optional*,
returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
cache_params: Optional[MambaCache] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class MambaCausalLMOutput(ModelOutput):
"""
Base class for causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
cache_params (`MambaCache`):
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
avoid providing the old `input_ids`.
Includes both the State space model state matrices after the selective scan, and the Convolutional states
hidden_states (`tuple(torch.FloatTensor)`, *optional*,
returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
cache_params: Optional[MambaCache] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
class MambaModel(MambaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList([MambaBlock(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
self.norm_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, new_embeddings):
self.embeddings = new_embeddings
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.LongTensor] = None,
cache_params: Optional[MambaCache] = None,
use_cache: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs, # `attention_mask` is passed by the tokenizer and we don't want it
) -> Union[Tuple, MambaOutput]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
if self.gradient_checkpointing and self.training and use_cache:
use_cache = False
if cache_params is None and use_cache:
cache_params = MambaCache(
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
)
hidden_states = inputs_embeds
all_hidden_states = () if output_hidden_states else None
for mixer_block in self.layers:
if self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(mixer_block.__call__, hidden_states, cache_params)
else:
hidden_states = mixer_block(hidden_states, cache_params=cache_params)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if use_cache:
cache_params.seqlen_offset += inputs_embeds.shape[1]
hidden_states = self.norm_f(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None)
return MambaOutput(
last_hidden_state=hidden_states,
cache_params=cache_params if use_cache else None,
hidden_states=all_hidden_states,
)
class MambaForCausalLM(MambaPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.backbone = MambaModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_input_embeddings(self):
return self.backbone.get_input_embeddings()
def set_input_embeddings(self, new_embeddings):
return self.backbone.set_input_embeddings(new_embeddings)
def _update_model_kwargs_for_generation(
self, outputs: ModelOutput, model_kwargs: Dict[str, Any], **kwargs
) -> Dict[str, Any]:
model_kwargs["cache_params"] = outputs.get("cache_params", None)
return model_kwargs
def prepare_inputs_for_generation(
self, input_ids, cache_params: Optional[MambaCache] = None, inputs_embeds=None, attention_mask=None, **kwargs
):
# only last token for inputs_ids if the state is passed along.
if cache_params is not None:
input_ids = input_ids[:, -1].unsqueeze(-1)
if inputs_embeds is not None and cache_params is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs["cache_params"] = cache_params
return model_inputs
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
cache_params: Optional[MambaCache] = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
use_cache: Optional[bool] = None,
**kwargs, # for now we need this for generation
) -> Union[Tuple, MambaCausalLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
mamba_outputs = self.backbone(
input_ids,
cache_params=cache_params,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
use_cache=use_cache,
)
hidden_states = mamba_outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(logits.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + mamba_outputs[1:]
return (loss,) + output if loss is not None else output
return MambaCausalLMOutput(
loss=loss,
logits=logits,
cache_params=mamba_outputs.cache_params,
hidden_states=mamba_outputs.hidden_states,
)

View File

@ -1,13 +0,0 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.retnet.configuration_retnet import RetNetConfig
from fla.models.retnet.modeling_retnet import RetNetForCausalLM, RetNetModel
AutoConfig.register(RetNetConfig.model_type, RetNetConfig)
AutoModel.register(RetNetConfig, RetNetModel)
AutoModelForCausalLM.register(RetNetConfig, RetNetForCausalLM)
__all__ = ['RetNetConfig', 'RetNetForCausalLM', 'RetNetModel']

View File

@ -1,76 +0,0 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class RetNetConfig(PretrainedConfig):
model_type = 'retnet'
keys_to_ignore_at_inference = ['past_key_values']
def __init__(
self,
vocab_size: int = 32000,
hidden_size: int = 2048,
expand_k: int = 1,
expand_v: int = 2,
hidden_ratio: Optional[int] = 2,
intermediate_size: Optional[int] = None,
num_hidden_layers: int = 24,
num_heads: int = 8,
num_kv_heads: Optional[int] = None,
feature_map: Optional[str] = None,
attn_mode: str = "fused_chunk",
hidden_act: str = "swish",
use_short_conv: bool = False,
conv_size: int = 4,
share_conv_kernel: bool = True,
use_output_gate: bool = True,
max_position_embeddings: int = 2048,
elementwise_affine: Optional[bool] = True,
norm_eps: float = 1e-6,
use_cache: bool = True,
pad_token_id: int = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = False,
initializer_range: float = 0.02,
fuse_norm: bool = True,
fuse_cross_entropy: bool = True,
**kwargs
) -> RetNetConfig:
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_heads = num_heads
self.num_kv_heads = num_kv_heads
self.feature_map = feature_map
self.attn_mode = attn_mode
self.hidden_act = hidden_act
self.use_short_conv = use_short_conv
self.conv_size = conv_size
self.share_conv_kernel = share_conv_kernel
self.use_output_gate = use_output_gate
self.elementwise_affine = elementwise_affine
self.norm_eps = norm_eps
self.use_cache = use_cache
self.initializer_range = initializer_range
self.fuse_norm = fuse_norm
self.fuse_cross_entropy = fuse_cross_entropy
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

View File

@ -1,410 +0,0 @@
# -*- coding: utf-8 -*-
from __future__ import annotations
import math
import warnings
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.modeling_outputs import (BaseModelOutputWithPast,
CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from fla.layers.multiscale_retention import MultiScaleRetention
from fla.models.retnet.configuration_retnet import RetNetConfig
from fla.models.utils import RecurrentCache
from fla.modules import FusedCrossEntropyLoss, RMSNorm
from fla.modules.activations import swiglu_linear
logger = logging.get_logger(__name__)
class RetNetMLP(nn.Module):
def __init__(
self,
hidden_size: int,
hidden_ratio: Optional[int] = None,
intermediate_size: Optional[int] = None,
hidden_act: str = 'swish'
) -> RetNetMLP:
super().__init__()
self.hidden_size = hidden_size
# the final number of params is `hidden_ratio * hidden_size^2`
# `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
if hidden_ratio is None:
hidden_ratio = 4
if intermediate_size is None:
intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[hidden_act]
def forward(self, x):
y = self.gate_proj(x)
gate, y = y.chunk(2, -1)
return swiglu_linear(gate, y, self.down_proj.weight, self.down_proj.bias)
class RetNetBlock(nn.Module):
def __init__(self, config: RetNetConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.attn = MultiScaleRetention(
mode=config.attn_mode,
hidden_size=config.hidden_size,
expand_k=config.expand_k,
expand_v=config.expand_v,
num_heads=config.num_heads,
num_kv_heads=config.num_kv_heads,
feature_map=config.feature_map,
use_output_gate=config.use_output_gate,
gate_fn=config.hidden_act,
elementwise_affine=config.elementwise_affine,
norm_eps=config.norm_eps,
fuse_norm=config.fuse_norm,
layer_idx=layer_idx
)
self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
self.mlp = RetNetMLP(
hidden_size=config.hidden_size,
hidden_ratio=config.hidden_ratio,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.attn_norm(hidden_states)
hidden_states, attentions, past_key_values = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, attentions, past_key_values)
return outputs
class RetNetPreTrainedModel(PreTrainedModel):
config_class = RetNetConfig
supports_gradient_checkpointing = True
_no_split_modules = ['RetNetBlock']
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(
self,
module: nn.Module,
rescale_prenorm_residual: bool = True,
num_residuals_per_layer: int = 2,
):
if isinstance(module, (nn.Linear, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
if rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["o_proj.weight", "down_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
with torch.no_grad():
p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)
class RetNetModel(RetNetPreTrainedModel):
def __init__(self, config: RetNetConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[RetNetBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings = value
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None, # noqa
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None
) -> Union[Tuple, BaseModelOutputWithPast]:
if output_attentions:
warnings.warn(
"`RetNetModel` does not support output attention weights now, so `output_attentions` is set to `False`."
)
output_attentions = False
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
batch_size, seq_len = input_ids.shape[:2]
elif inputs_embeds is not None:
batch_size, seq_len = inputs_embeds.shape[:2]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
hidden_states = inputs_embeds
if use_cache:
if past_key_values is None:
past_key_values = [layer.attn.init_state(batch_size) for layer in self.layers]
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_attns = () if output_attentions else None
for layer in self.layers:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
hidden_states, attentions, past_key_values = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
past_key_values,
use_cache,
output_attentions
)
else:
hidden_states, attentions, past_key_values = layer(
hidden_states,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions
)
if output_attentions:
all_attns += (attentions,)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = None
if use_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(x for x in [hidden_states, next_cache, all_hidden_states, all_attns] if x is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attns
)
class RetNetForCausalLM(RetNetPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config)
self.model = RetNetModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embeddings
def set_input_embeddings(self, value):
self.model.embeddings = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def generate(self, *args, **kwargs):
try:
return super().generate(*args, **kwargs)
except AttributeError as exception:
# Expected exception: "AttributeError: '(object name)' object has no attribute 'past_key_values'"
if 'past_key_values' in str(exception):
raise AttributeError(
f"You tried to call `generate` with a decoding strategy that manipulates `past_key_values`, "
f"which is not supported for {self.__class__.__name__}. "
f"Try another generation strategy instead. "
f"For the available generation strategies, check this doc: "
f"https://huggingface.co/docs/transformers/en/generation_strategies#decoding-strategies"
)
else:
raise exception
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor = None,
past_key_values: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
**kwargs
):
# only last token for `inputs_ids` if the `past_key_values` is passed along.
if past_key_values is not None:
if not isinstance(past_key_values, RecurrentCache):
past_key_values = RecurrentCache.from_legacy_cache(past_key_values, input_ids.shape[1] - 1)
input_ids, attention_mask = input_ids[:, -1:], attention_mask[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {'inputs_embeds': inputs_embeds}
else:
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
# recompiles graphs as the stride of the inputs is a guard.
# Ref: https://github.com/huggingface/transformers/pull/29114
# TODO: use `next_tokens` directly instead.
model_inputs = {'input_ids': input_ids.contiguous()}
model_inputs.update({
'past_key_values': past_key_values,
'use_cache': kwargs.get('use_cache'),
'attention_mask': attention_mask,
})
return model_inputs
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
if self.config.fuse_cross_entropy:
loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
else:
loss_fct = nn.CrossEntropyLoss()
# Enable model parallelism
labels = labels.to(logits.device)
labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)

View File

@ -1,13 +0,0 @@
# -*- coding: utf-8 -*-
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
from fla.models.rwkv6.configuration_rwkv6 import RWKV6Config
from fla.models.rwkv6.modeling_rwkv6 import RWKV6ForCausalLM, RWKV6Model
AutoConfig.register(RWKV6Config.model_type, RWKV6Config)
AutoModel.register(RWKV6Config, RWKV6Model)
AutoModelForCausalLM.register(RWKV6Config, RWKV6ForCausalLM)
__all__ = ['RWKV6Config', 'RWKV6ForCausalLM', 'RWKV6Model']

View File

@ -1,66 +0,0 @@
# -*- coding: utf-8 -*-
from typing import Optional
from transformers.configuration_utils import PretrainedConfig
class RWKV6Config(PretrainedConfig):
model_type = 'rwkv6'
keys_to_ignore_at_inference = ['past_key_values']
def __init__(
self,
attn_mode: str = "chunk",
vocab_size: int = 32000,
hidden_size: int = 2048,
expand_k: int = 0.5,
expand_v: int = 1,
hidden_ratio: Optional[int] = 3.5,
intermediate_size: Optional[int] = None,
use_glu: Optional[bool] = False,
num_hidden_layers: int = 24,
num_heads: int = 4,
proj_low_rank_dim: int = 32,
gate_low_rank_dim: int = 64,
hidden_act: str = "sqrelu",
max_position_embeddings: int = 2048,
eps: float = 1e-6,
use_cache: bool = True,
pad_token_id: int = None,
bos_token_id: int = 1,
eos_token_id: int = 2,
tie_word_embeddings: bool = False,
initializer_range: float = 0.02,
fuse_norm: bool = True,
fuse_cross_entropy: bool = True,
**kwargs
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.expand_k = expand_k
self.expand_v = expand_v
self.hidden_ratio = hidden_ratio
self.intermediate_size = intermediate_size
self.use_glu = use_glu
self.num_hidden_layers = num_hidden_layers
self.num_heads = num_heads
self.proj_low_rank_dim = proj_low_rank_dim
self.gate_low_rank_dim = gate_low_rank_dim
self.attn_mode = attn_mode
self.hidden_act = hidden_act
self.eps = eps
self.use_cache = use_cache
self.initializer_range = initializer_range
self.fuse_norm = fuse_norm
self.fuse_cross_entropy = fuse_cross_entropy
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)

Some files were not shown because too many files have changed in this diff Show More